

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/131160

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

© 2019 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/131160
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk

Elsevier Computer Science 00 (2019) 1–46

Computer
Science
Reviews

A Review of Attack Graph and Attack Tree Visual Syntax in Cyber Security

Harjinder Singh Lalliea, Kurt Debattistab, Jay Balc

aCyber Security Centre, WMG, University of Warwick, Coventry, UK, HL@warwick.ac.uk
bWMG, University of Warwick, Coventry, UK, K.Debattista@warwick.ac.uk

cWMG, University of Warwick, Coventry, UK, jay.bal@warwick.ac.uk

Abstract

Perceiving and understanding cyber-attacks can be a difficult task, and more effective techniques are needed to aid cyber-attack perception. Attack
modelling techniques (AMTs) - such as attack graphs, attack trees and fault trees, are a popular method of mathematically and visually representing
the sequence of events that lead to a successful cyber-attack. These methods are useful visual aids that can aid cyber-attack perception.

This survey paper describes the fundamental theory of cyber-attack before describing how important elements of a cyber-attack are represented
in attack graphs and attack trees. The key focus of the paper is to present empirical research aimed at analysing more than 180 attack graphs and
attack trees to identify how attack graphs and attack trees present cyber-attacks in terms of their visual syntax.

There is little empirical or comparative research which evaluates the effectiveness of these methods. Furthermore, despite their popularity,
there is no standardised attack graph visual syntax configuration, and more than seventy self-nominated attack graph and twenty attack tree
configurations have been described in the literature - each of which presents attributes such as preconditions and exploits in a different way. The
survey demonstrates that there is no standard method of representing attack graphs or attack trees and that more research is needed to standardise
the representation.

Keywords: Attack graph, attack tree, visual syntax, cyber-attack

1. Introduction

Cyber security pervades many aspects of social, political
and business life and has huge implications for the online and
personal safety of individuals and families. In 2017, the average
cost of a data breach was reported globally as $3.86 million
[163]. Although many data breaches result in the compromise
of personal data, a number of well publicised attacks against
vehicular [392], medical [106], and industrial control systems
[112] have demonstrated that cyber security breaches can have
serious impacts on personal safety.

Quite often mitigation strategies focus on protecting sys-
tems from perpetrators intent on causing deliberate damage to
a system and/or data, however, many cyber security failures oc-
cur simply as a result of user behaviour - often because of un-
intentional errors brought about by a failure to fully understand
security mechanisms [75].

User error and behaviour is an important factor in a cyber-
attack [23, 92]. Perhaps one of the most important mechanisms
in improving user behaviour is to make it easier to perceive
cyber security and make it more ‘usable’. Research into cy-
ber security usability aims to design systems which help to

understand how users perceive and understand cyber security
[343, 309, 293] by taking “into account the perceptions, char-
acteristics, needs, abilities and behaviors of users” [77].

Cyber-attack perception is an important research problem
[295, 211, 381] which demands better techniques and methods
to aid the perception and assessment of cyber-attacks. Quite
often, observers find the analysis and understanding of com-
plex patterns difficult to visualise [187, 368]. Well-designed
diagrams and graphical systems can aid this process [263, 180].

This paper describes how attack graphs and attack trees rep-
resent cyber-attacks in terms of their visual syntax. The paper
demonstrates that although there are numerous benefits to pre-
senting cyber-attacks as attack graphs or attack trees, there are
inconsistencies regarding the way cyber-attacks are represented
in attack graphs and attack trees and in doing so, outlines the
need to standardise their visual syntax. This is the first paper to
present such a detailed critical analysis of the visual syntax of
attack modelling techniques.

Collectively these shortcomings outline the need for further
research and they also define some of the parameters that com-
parative evaluations should consider. The research presented in

1

/ Elsevier Computer Science 00 (2019) 1–46 2

user(1)sshd(1,2)

user(2)

sshd_bof(3,2)sshd_bof(1,2)

sshd(3,2) user(3)

sshd_bof(1,2)

user(2)

sshd_bof(3,2)

user(1) sshd(3,2)sshd(1,2) user(3)

Figure 1. Two attack models. A fault tree (left) and an attack graph (right)

Lallie et al. [216, 217] aims to address these shortcomings and
propose an attack graph visual syntax which is cognitively ef-
fective and also preferred by practitioners - thereby increasing
the likelihood of adoption.

The rest of this paper is structured as follows. Section 2 be-
gins by describing the concept of AMTs and the use of visual
syntax to represent cyber-attacks. Section 3 proceeds to de-
scribe the underlying theory of cyber-attacks. This section de-
scribes the relationship between the primary cyber-attack con-
structs which are: precondition, exploit and precondition logic,
and also explains the secondary constructs which are variants
of primary constructs. Collectively, the primary and secondary
constructs correspond to the concepts that AMTs should repre-
sent.

Section 4 outlines some of the graph theory relating to at-
tack graphs and attack trees and then Section 5 introduces im-
portant visual syntax theoretical concepts. Section 6 provides a
detailed analysis of the presentation of attack graphs and attack
trees.

2. Attack Modelling Techniques (AMTs)

Attack modelling techniques (AMT) are used to model and
visualise the sequence and/or combination of events that enable
a successful cyber-attack on a computer or network. AMTs
can be broadly divided into three categories: methods that are

Attack modelling techniques

Graph based methodsTemporal methodsUse case methods

Attack graph

Decision tree

Event tree

Fault tree

Attack tree

Petri net

Riskit

Cyber kill chain

Diamond model

Misuse cases

Security use cases

Misuse case maps

Misuse sequence

diagrams

CORAS

Figure 2. Attack modelling techniques

based on the use case framework, methods that present a cyber-
attack from a temporal perspective, and graph based methods.
These methods are highlighted in Figure 2. Of the methods
outlined in Figure 2, attack graphs and attack trees are the most
popular method of representing cyber-attacks - at least as far as
the academic literature is concerned. These two methods form
the basis of the present research.

AMTs enable observers to evaluate the salient information
in a diagram [190, 156, 99, 368] and help remove the intel-
lectual burden from security experts - who have to evaluate
cyber-attack scenarios and evaluate potential mitigations [329].
Consequently, security problems can be presented in a man-
ner that enables a decision maker - whether an expert or non-
expert, to more quickly grasp the problem [156], better per-
ceive risk landscapes [154], and easily perceive complex con-
cepts [350]. In such circumstances, AMTs provide effective
tools and workspaces [115], they make this process clearer and
simpler and thereby facilitate easier discussion and debate [99],
and can aid the perception of cyber-attacks with little reference
to logical models [118].

An example of two AMTs - a fault tree and attack graph,
is provided in Figure 1. The example in Figure 1 demon-
strates how a perpetrator is able to conduct a series of exploits
(sshd bof) on a sequence of host computing devices (denoted
in brackets), and by doing so, acquire user privileges (user)
on each one. The example also shows one of the preconditions
(sshd) that are necessary for the attack to be successful. This
example demonstrates how a sequence of exploits can be visu-
alised to aid cyber-attack perception.

The cyber security domain suffers from two specific prob-
lems relevant to the present paper: inconsistency in the onto-
logical terms, vocabulary, and definitions used to describe the
domain [146], and a problem of unclear and meaningless se-
mantics [157].

Multiple terms are used to mean the same thing. For exam-
ple, exploits are also referred to as actions or attacks, the perpe-
trators are also referred to as attackers, malefactors, actors and
adversaries, the preconditions to an exploit are also referred

2

/ Elsevier Computer Science 00 (2019) 1–46 3

Table 1. Terms used to describe the fundamental cyber-attack constructs

Term Term used & supporting references

Precondition Prerequisite: [278, 280, 281, 169, 243, 415, 233]; Precondition:
[371, 78, 16, 175, 45, 71, 160, 174, 125, 164]; Prerequisite and
precondition: [326, 363, 228, 125, 406]; Predicate; [176, 280, 302,
377, 6, 136, 146]; Requires: [279, 79, 15]

Postcondition Postcondition: [78, 175, 71, 174, 209]; Effect: [229]; Provides:
[279, 79, 15]; Consequence: [278, 280, 403, 228, 270]; Impact:
[118, 7, 11, 15, 4, 5];

Perpetrator Perpetrator: [86, 323, 389]; Attacker: [169, 243, 181, 294, 30, 137];
Adversary: [45, 319, 234, 222]; Malefactor: [209, 139, 358]; Actor:
[80, 146, 204, 364]; Hacker: [326, 130, 86, 56, 89, 374, 39, 227, 95,
110, 155, 52, 167, 185, 249, 219, 222, 73, 143, 164, 407, 22, 50,
207, 246, 42, 148, 204, 109, 189, 221]; Crook: [363] [364] [242];
Mis-actor: [363]2; Assailant: [32, 117, 338, 145, 109]; Misuser:
[363, 47, 250, 185, 120, 184]; Bad guy: [88, 194, 252, 398, 145,
191]

1 Wu et al. use the terms attacker, adversary, malefactor and perpetrator interchange-
ably in the same paper [418].
2 Sindre and Opdahl use the terms crook and mis-actor in the same paper to refer to
a perpetrator. The term mis-actor is used specifically as an ‘inverted actor’ in other
words the opposite to actor which is the term generically used in use cases to refer to
the user of a service or function [363].

to as requires, predicates or prerequisites, and the postcondi-
tions of the exploit are also referred to as provides or effects.
Further examples are provided in Table 1. This problem of in-
consistency extends to multiple areas in cyber security, and is
particularly acute for attack graphs and attack trees.

This paper uses the terms exploits, preconditions and perpe-
trators. While the use of precondition and exploit may appear
straightforward, the selection of the term perpetrator requires
more justification. Terms such as attacker, adversary, crook,
bad guy, assailant and hacker suggest that the source of a cyber-
attack is acting deliberately, when in fact the exploit might be
effected inadvertently. Terms such as mis-user and mis-actor
are very uncommon and unlikely to resonate easily with read-
ers. The term perpetrator doesn’t suggest either a deliberated
or inadvertent motive. The use of this term does not remove
anything in terms of the descriptive power of the term.

Attack models are constructed using a combination of two-
dimensional shapes - such as squares, rectangles, ellipses; one-
dimensional shapes - such as lines; and textual syntax to repre-
sent cyber-attack constructs. This is referred to as a visual syn-
tax [266], visual rhetoric [351] or visual grammar [212]. The
visual syntax of modelling systems such as fault trees [166] and
Petri nets [311] - both also used occasionally to model cyber-
attacks, is standardised - resulting in a common understanding
of the framework. This is not the case for attack graphs and
attack trees.

Attack graphs and attack trees suffer from a distinct lack of
standards, prescriptive methodologies and common approaches
in terms of their visual syntax [87, 253]. Authors use self-
nominated and untested visual syntax to model the attack - re-
ferred to by Alexander [9] as the unselfconscious design ap-
proach [9].

There are more than seventy five attack graph visual syntax
configurations and more than twenty attack tree configurations -
as demonstrated in Table 22 and Table 24 which describe the vi-
sual syntax of more than 180 attack graph and attack tree visual
syntaxes. The visual syntax in these examples differ in terms

of the shapes used to represent constructs such as preconditions
and exploits. The availability of numerous opposing propos-
als can give rise to confusion for researchers and practitioners
in deciding which to use and is evidence of an “immature re-
search field” resulting in a “fragmentation of research efforts”
[265].

3. Cyber-Attacks

A number of recent high-profile attacks have exemplified
the need to better understand cyber-attacks. These include the
Stuxnet virus [249, 112, 55] the Jeep Cherokee hack [392], the
heartbleed attack [42, 62, 100], the Sony hack [44, 109, 340,
397] and the Ukrainian power grid attack [221, 320].

The fundamental components of all these cyber-attacks
were the same and comprised of elements such as exploits, vul-
nerabilities, and postconditions.

The terms described in this paper are summarised in Table
2 and the rest of this section describes these terms in further
detail.

3.1. Vulnerability, Precondition and Postcondition

3.1.1. Vulnerability
A vulnerability is an exploitable weakness in the design,

implementation or management of a system [362]. A vulnera-
bility comprises of a combination of one or more system states
referred to as preconditions.

3.1.2. Precondition
Preconditions are a set of system properties that must ex-

ist for an exploit to be successful. An initial precondition is a
system property which exists inherently in a system and which
did not arise as a consequence of exploitation [16]. Addressing
these could make all further steps in an attack null and void.

There are at least three types of precondition:

1. Statuses/services. The target holds or advertises par-
ticular versions of operating systems, systems soft-
ware/applications, services [313, 12], or is in a particular
hardware/software state.

Table 2. Cyber-attack terms

Term Explanation

Vulnerability An exploitable unplanned system weakness which exists because of
the existence of one or more preconditions

Precondition A system state that is necessary for an exploit to be successful

Initial
precondition

The first precondition in a cyber-attack

Perpetrator
capability

The tools, knowledge and/or access/privilege levels that a perpetra-
tor needs to be able to run an exploit

Postcondition The conditions/states created by a successful exploit

Goal The ultimate target of a cyber-attack

Exploit A set of steps - executed as code or manual steps, which take advan-
tage of one or more vulnerabilities in a target system and provide
specific capabilities to the perpetrator

Non-intrusive
event

An event which aids and supports a cyber-attack but does not alter
the state of the target system

3

/ Elsevier Computer Science 00 (2019) 1–46 4

2. Reachability. The target is reachable.
3. Perpetrator capability. The perpetrator has particular ca-

pabilities such as the ability to run a process on a tar-
get, access to tools, or privilege levels [179] and/or is in
possession of the tools to conduct an attack and has the
necessary skill level [313].

Of the precondition types discussed above, statuses/services
are commonly represented in AMTs such as attack graphs and
attack trees, however, reachability and perpetrator capability
are less commonly represented [313, 146, 27].

Perpetrator capability is an important element in the analy-
sis of an attack and it can be important for a security analyst to
understand exploits that require greater perpetrator capability
versus those that require less [380]. As an example of perpe-
trator capability, consider the example of the rcp (remote call
procedure) exploit given by [16]. The rcp exploit requires the
following capabilities:

• The rcp service must be available to the perpetrator.
• The target host must trust the source host.
• The perpetrator must have local shell access.

3.1.3. Postcondition
The successful perpetration of an exploit results in one or

more postconditions. Although the result of an exploit is tech-
nically referred to as a postcondition, these can also form the
preconditions of further exploits, therefore, most researchers re-
fer to postconditions simply as precondition with the term goal
being used to identify the final postcondition.

3.2. Precondition Logic

For an exploit to be successful, one or more preconditions
must be satisfied. The combination of preconditions can be rep-
resented using precondition logic. So, given two preconditions:
pr1 and pr2, if both the preconditions have to be satisfied, this
can be represented as a conjunction of the form: pr1 ∧ pr2 -
where the symbol ∧ represents conjunction. Conversely, if any
one of the two must be satisfied, then this can be represented
as a disjunction of the form: pr1 ∨ pr2 - where the symbol ∨
represents disjunction.

The shape or symbol used to represent precondition logic
in an AMT is referred to as the precondition operator. In the
examples given above, the precondition operators are ∧ and ∨.

Although the representation of precondition logic is criti-
cal in helping to identify cyber-attack mitigations and counter-
measures, very few attack graphs represent precondition logic
[383, 366, 11, 227, 227, 54, 122].

To illustrate the benefit of presenting precondition logic,
consider the attack graph representation in Figure 3 [26]. In
this example, sshd(3,1) and user(3) are two preconditions.
In the formal expressions presented by Barik and Mazumdar,
sshd(3,1) means that the sshd (secure shell daemon/service)
is running on host 1 and is accessible by host 3, and user(3)

means that the perpetrator has user access privileges on host 3
which is the host from which the exploit will be launched.

This attack graph does not represent the precondition logic
necessary for each exploit, consequently, the attack graph could
be interpreted in a number of ways. For example, for a success-
ful sshd buffer overflow attack (sshd bof(3,1)), one of
the following two preconditions might apply:

1. sshd(3,1) ∧ user(3)

2. sshd(3,1) ∨ user(3)

As it happens, both preconditions (sshd(3,1) ∧ user(3))
must be satisfied for the exploit to be successful.

The representation of precondition logic in attack graphs
is highlighted in Table 22, and the data shows that there are
numerous attack graphs which do not represent precondition
logic.

3.3. Exploits

An exploit is a set of steps - executed as code or manual
steps, which take advantage of one or more vulnerabilities in a
target system and provide specific capabilities to the perpetrator
[146].

Exploits can be defined as a formal expression in the form:

exploit(vulnerability, postcondition, source,

target)

where:

• vulnerability is the vulnerability being exploited. As
outlined earlier, the vulnerability can be broken down
into a number of preconditions, all or a combination of
which must exist for the vulnerability to be exploited.

• postcondition is the outcome of the exploit.
• source is the source host i.e., the host that commits the

exploit.
• target is the target of the exploit.

Examples of the formal expression of exploits include:

A Graph Data Model for Attack Graph Generation and Analysis 243

second type of nodes to first type represent effect or postconditions of execut-
ing any exploit. This representation is based on the monotonicity assumption,
which states that preconditions of a given exploit are never invalidated by the
successful application of another exploit.

Attacker’s capabilities describe the fact that the attacker has a capability on
a specific host. Attacker’s capabilities user(1)/superuser(1) says that attacker
has user/superuser capability at host1. Network conditions describe the fact
that either a service running on a destination host can be accessed from a source
host or a unidirectional relation that exists from source host to destination host.
Network condition ftp(1, 2) means that the ftp service running on host2 is acces-
sible from host1. Network condition trust(1, 2) means that a trust relationship
exists from host1 to host2 allowing any user on host2 to remotely execute shell
commands on host1 without providing any password.

Fig. 1. An simple network and its corresponding attack graph

The other types of nodes represent exploits. To execute an exploit, an attacker
may require multiple capabilities or network conditions known as preconditions
of the exploit. Successful execution of an exploit may create new attacker ca-
pabilities or new network conditions known as postconditions of the exploit.
Exploit e(1, 2) describes the fact that an attacker having some capability on
host1 with the help of some existing network conditions, can perform the ex-
ploit e, exploiting some vulnerability on destination host2 thereby gaining new
capabilities or establishing new network conditions. Exploit e(1) means that the
exploit e is performed locally at host1. For example, buffer overflow vulnerabil-
ities CVE-2002-0640 of sshd, CVE-2003-0466 of wu − ftpd, CVE-2003-0245 of
apache server etc., allow attacker from a remote machine to execute arbitrary
code, thereby possibly gaining user privilege. CVE-2004-0495 is a vulnerability
in Linux kernel which allows local user to gain privileges.

Example: Figure 1 shows a simple example network that we shall consider as a
running example throughout this paper. The network consists of three hosts host1,
host2, and host3. host1 and host2 run the sshd service and it has a vulnerability
CVE-2002-0640.sshd service instance running athost2 can be accessed fromhost3
and host1 and the other instance of sshd service at host1 can be accessed from

Figure 3. An example attack graph (adapted from [27])

4

/ Elsevier Computer Science 00 (2019) 1–46 5

• ftp rhosts(ftp, trustedhost,i,j): where i ex-
ploits an ftp vulnerability in j, and uploads a list of
trusted hosts to host j.

• sshd bof(sshd, root,i,j): where i exploits a buffer
overflow vulnerability in the ssh (secure shell) service of
j. This provides i with root access to j.

• local bof(bofv, root,i,j): where i exploits a
buffer overflow vulnerability (bofv) in j. This provides
i with root access to j.

It is noteworthy that the formal expression presented above
is proposed by the authors, and although numerous proposals
have been put forward in the literature [91, 361, 169, 220], there
are no standards or agreements in terms of the formal expres-
sions used to define exploits and vulnerabilities.

3.3.1. Non-intrusive Events
Non-intrusive events - also referred to as secondary exploits

[209] and suspicious events [80], are system discovery oper-
ations used by perpetrators to discover target system proper-
ties and vulnerabilities [80, 294]. Unlike exploits - which alter
system properties, non-intrusive events do not alter the system
properties - unless there is a programmed/manual reaction to
the event such as system port blocking, or the creation of new
intrusion detection system rules.

Examples of non-intrusive events include rpcinfo - which
reveals port and service data on the target machine, and probes
and scans such as nmap, netcat, amap, XProbe, P0f and
X-Scan - which return a system response but do not alter the
system state.

Intrusion detection systems (IDSs) detect and alert both in-
trusive (exploits) and non-intrusive events. Table 3 shows that
some events - such as the RPC sadmind UDP PING and the
RPC portmap sadmind request UDP, are both intrusive and
non-intrusive. In other words, RPC sadmind UDP PING re-
veals some information about the host - this is non-intrusive,
and RPC portmap sadmind request UDP provides system
access to the host - which is intrusive. Similarly, an IP address
spoof results in a non-intrusive outcome.

Table 3. IDS signatures, preconditions & postconditions [15]

Signature (Exploit) Precondition Postcondition

RPC sadmind UDP
PING

Disclosure of host data Disclosure of running
service; system access
(non-intrusive)

RPC portmap sadmind
request UDP

Disclosure of host data Disclosure of port num-
ber; disclosure of run-
ning service; system
access; remote access
(non-intrusive)

RPC sadmind UDP
NETMGT PROC SERVICE
CLIENT DOMAIN
overflow attempt

Disclosure of host; dis-
closure of port num-
ber; disclosure of run-
ning service

System access; remote
access; admin access
(intrusive)

RPC sadmind
query with root
credentials attempt
UDP

Disclosure of host; dis-
closure of port num-
ber; disclosure of run-
ning service; system ac-
cess; remote access

Remote access; admin
access (intrusive)

This paper refers to intrusive and non-intrusive events sim-
ply as exploits.

Exploits, preconditions and precondition logic are referred
to in this research as primary constructs because they are
the fundamental cyber-attack constructs. Initial preconditions,
goals, postconditions and perpetrator capability are referred to
as secondary constructs because they are variants of primary
constructs.

3.4. Cyber-attack

Having outlined the basic cyber-attack constructs, the dis-
cussion can now proceed to defining the term itself. A cyber-
attack comprises of a set of one or more exploits which are
applied as sequences or in parallel against a target system or
systems and which expose vulnerabilities in, and alter the state
of the targeted system(s) [15].

Once the vulnerability is exploited, a number of postcondi-
tions are created - each of which could be a precondition for
further exploits [146]. The ultimate purpose/aim of an attack is
referred to as a goal in an attack tree [346] and attack graph,
and an undesirable condition in a fault tree [25].

It is useful to note that observers are interested in different
views of a cyber-attack. This is referred to by Moody [266] as
the principle of cognitive fit (discussed in Section 5). Analysts
are interested in a low level view technical of a cyber-attack and
particularly in the preconditions and exploits that contributed to
the attack. Occasionally, they have to communicate the cyber-
attack to non-experts. Non-experts such as stakeholders, ex-
ecutives and decision makers are interested in a high-level -
often non-technical view of the cyber-attack which hides the
constituent elements of the attack. However, occasionally it is
useful for them to see the cyber-attack from the analyst’s view-
point [352].

3.5. Attack Paths

Quite often, there are alternative sequences of exploits - any
one of which can result in a successful attack. These are re-
ferred to as attack paths and are represented in all AMTs. An
example of this is provided in the attack graph highlighted in
Figure 6 which comprises of two attack paths which can be de-
scribed as:

1. sshd(3,1) ∧ user(3) → sshd bof(3,1);

user(1) ∧ sshd(1,2) → sshd bof(1,2) →

user(2) (highlighted in a red/dotted line).
2. user(3) ∧ sshd(3,2) → sshd bof(3,2) →

user(2) (highlighted in a green/dashed line).

Techniques such as attack path analysis aid the investiga-
tion of exploit paths in an attack graph by outlining known and
predicted attack event sequences. Such an analysis helps to
identify the resources in the path that could be affected, as well
as the vulnerabilities that lie along those paths. Examples of the
use of attack path analysis combined with weighted edges in
aiding the attack prediction include the Bayesian based attack
graph proposed by Frigault and Wang [125]. The attack graph
in this example enables an analyst to calculate the probability

5

/ Elsevier Computer Science 00 (2019) 1–46 6

Table 4. Application of attack graphs in system hardening

Prediction strategy Method & citations

Measuring event
likelihood

Markov decision process to calculate the probability of attack success [176], hyper-alert correlation graph and the attack strategy
graph [280, 279], compromised confidence index [122], adjacency matrix clustering [285], alert correlation matrix [433], association
rule mining [228], rankFutureScenarios [7], probability based attack prediction [243, 233], absorbing Markov chain for performing
exploitability analysis and a Markov reward model for aiding likelihood of compromise, [2], forecasting attack graph [133], pwnPr3d
[178], Other contributions include: [130, 86, 280, 319, 228, 273, 243, 233, 37, 129]

Event predic-
tion Analysing multi-Step

attacks

Alert clustering, alert merging and intent recognition [80], alert correlation framework [278], causal correlation [281], clustered
adjacency matrices [285], divide and conquer framework [220], divisive hierarchical clustering algorithm [272], exploit dependency
graph [73], other contributions include: [91, 228, 273, 238, 349, 14, 64, 173, 329]

Attack path
analysis

Attack chaining [91], calculating the difficulty of perpetrating an attack [227], association rule mining [228], other contributions
include: [380], [273], [164],

Strengthening security
weaknesses

[86, 176, 359, 27] exploitation graphs [227], topological vulnerability analysis [287]

Miscellaneous Prioritising vulnera-
bility removal

Skill level analysis [380], Minimum Critical Set of Attacks (MCSA) [176], predictive graph [169, 229], network hardening graph [403],
[225], a game-theoretic approach [275]

IDS alert
correlation

Hyper-alert correlation graph [280], ADEPTS [122], association rule mining algorithm [228], topological vulnerability analysis (TVA)
[173], Other contributions include: [384, 175, 278, 319, 361, 169, 7, 15, 133]

Identifying critical de-
vices

AssetRank algorithm [344], Other contributions include: [144, 2, 316]

Determining
optimal

Determining optimal
device placement

Topological vulnerability analysis [287], success measurement model [13]

device config-
uration

Optimal device con-
figuration

Graph based network vulnerability analysis [313], clustered adjacency matrices [285], ranked attack graph using PageRank [256],
dependency attack graphs [344], optimal IDS placement [21, 287], NetSPA [169], attack response graph [241]

Predicting the impact
of configuration set-
tings

Reverse graph traversal for identifying critical preconditions and vulnerabilities [403], ranked attack graph [256], adjacency matrix
clustering method and reachability analysis [285], predictive graph [169, 229, 287], divisive hierarchical clustering algorithm [272]

of a successful attack path. Each node in the graph represents a
potential vulnerability and the preconditions and postconditions
associated with the vulnerability. A probability is assigned to
each node to represent the likelihood of that vulnerability being
exposed. Further examples are provided in Table 4.

Figure 6 highlights another of the differences in the visual
representation of attack graphs and attack trees - that of the
event flow. The figure shows that the flow of events is repre-
sented top-down. In other words, an observer starts reading at
the top and follows the sequence of events downwards. How-
ever in Figure 1 (left), the event flow is represented bottom-up.
The data described in Table 22 and Table 24, shows that 102
of the 118 attack graph configurations surveyed (86.4%) pre-
sented events as top-down, and 59 of the 61 attack trees sur-
veyed (96.7%) presented these as bottom-up.

Figure 6 introduces another key difference between the vi-
sual representation of attack graphs and attack trees. Although
this attack graph represents a single attack goal (user 2) with
two paths leading to it, attack graphs are frequently used to rep-
resent complex attacks which have multiple paths and goals.
Aguessy notes that attack trees are limited in that they only rep-
resent a single attack, whereas an attack graph can represent
multiple attacks [4].

Aguessy is referring to what are known as full attack graphs
and partial attack graphs. A full attack graph outlines all po-
tential vulnerabilities and all possible attack paths in a given
network [16, 174, 301, 65, 118]. A partial attack graph -
also referred to as a minimal attack graph [136], outlines
the pattern of interactions between nodes for a given attack
[313, 326, 175, 359, 65]. The ability to represent a full attack
graph is important in scenarios such as the Stuxnet and Jeep
Cherokee attacks and also in analysing network problems.

Generally, attack trees represent singular attacks, and the

attack forest - a collection of attack trees [347, 204], was an
attempt to address this problem.

4. Representing Attack Graphs and Attack Trees

Having outlined the broad principles relating to cyber-
attacks, it is useful to highlight how cyber-attacks are repre-
sented in a visual form using AMTs. Numerous AMTs have
been proposed in the academic literature. These can be broadly
divided into three categories: use case, temporal and graph
based methods. A number of these methods are highlighted
in Figure 2 and in Table 5. This section describes two graph
based AMTs - attack graphs and attack trees.

Attack graphs, attack trees and their variants - which in-
clude: OCTAVE, event trees and decision trees, are graph based
representations of a cyber-attack. Of these, attack graphs and
attack trees are the most popular in the research literature.

The research shows a clear divide between papers that focus
on attack graphs and those that focus on attack trees. In other
words, authors either write about attack graphs or attack trees -

Table 5. Attack modelling techniques - miscellaneous methods

Method Citations

Use case based
AMTs

Misuse cases [363, 10, 364, 251, 412, 298, 387, 184]; misuse
case maps [188, 185]; security use cases [116]; CORAS [322,
95, 370, 84, 33]

Temporal meth-
ods

Diamond model [58, 210]; cyber kill chain [161, 148, 258,
141]; Riskit [200, 202, 124]

Miscellaneous
graph/tree based
AMTs1

Event tree [182]; OCTAVE [8]; the bowtie method [74, 393,
38, 224, 389]; influence diagrams [357, 3, 160, 341, 107];
extended influence diagram [215, 367]

1 As the title suggests, these are general miscellaneous attack graph/tree based AMTs.
Attack graph based examples are given in Table 22, and attack tree based examples are
provided in Table 24.

6

/ Elsevier Computer Science 00 (2019) 1–46 7

with rarely an acknowledgement of the existence of the other.
The present research argues that both attack graphs and attack
trees are a graph based representation of a cyber-attack. How-
ever, it is important to differentiate between the graph theory
based representation of graphs and trees, and the visual repre-
sentation as found in the cyber-attack literature - and referred to
in this paper.

In graph theory, a tree is an acyclic graph in which any two
vertices are connected by exactly one path, and a graph is a
cyclic graph [388]. Generally, the visual representation of deci-
sion trees, event trees, attack trees, fault trees and Petri nets is
consistent with the definition of trees because they are visually
represented as acyclic graphs.

Attack graphs have been visually represented as both cyclic
[6, 36, 26, 102, 125, 135, 157, 174] and acyclic graphs [64, 70,
83, 113, 133, 149, 159, 169] - with the suffix graph being used
by authors in both cases. In other words, the visual represen-
tation of attack graphs in the research considered in this pa-
per, does not always conform to the graph theory definition of a
graph. Two visual examples of cyclic and acyclic attack graphs
are provided in Section 4.1.2 (Figure 10). Although these at-
tack graphs could more accurately be referred to as trees rather
than graphs, this apparent mathematical anomaly is not consid-
ered to be a problem in this paper because the present research
focuses on the visual representation of attack graphs and uses
the terms proposed by the authors in their papers - regardless
of whether they are seen to strictly conform to the definitions
outlined above.

In addition to these conceptual difficulties, a number of au-
thors confuse the attack graph and attack tree - or at least ‘blur’
the difference. For instance, Khaitan and Raheja [195] refers to
the attack tree proposal by Schneier [346] as an attack graph,
and Chen and Cheng [66] refers to the paper by Ingols et al.
[168] as a paper describing attack trees when in fact it describes
an attack graph method. Some authors use the terms attack
graph and attack tree interchangeably [149]. Perhaps recog-
nising the conceptual similarities, a handful of authors have
attempted to combine AMTs. For example, combine attack
graphs and attack trees [159, 33], attack trees and fault trees
[334] and attack graphs with Petri nets [241].

4.0.1. Defining the Graph
The graph based representation of cyber-attacks can be rep-

resented in the form: G(V; E) which comprises of vertices
v ∈ V and edges: e ∈ E which represent relationships between
the nodes. The overall graph structure can be expressed as a
tuple of the form G = (S , τ, S 0, S s, L, EX) where:

• S is a finite set of states
• τ ⊆ S × S is a transition relation
• S 0 ⊆ S is a set of initial states
• S s ⊆ S is a set of success states - for example obtaining

root or user privileges on a particular host
• L : S → 2AP is a labelling of states with a set of atomic

propositions (AP)
• EX is a finite set of exploits which connect the transition

between two states

Vertices (V). The vertices - also referred to as nodes, can rep-
resent:

• An exploit that has been or could be applied to the given
node ([284, 36, 12]).

• A precondition or postcondition.
• A combination of both the above.

Two examples of this are provided in Figure 4. The exam-
ple on the left is a graph where the vertices represent exploits,
and the example on the right is a graph in which the vertices
represent both preconditions/postconditions (sshd(3,1)) and
exploits (sshd bof(3,1)).

Edges (E). Edges can be directed - to represent specific transi-
tions, or undirected - to represent a general connection between
two nodes which indicates the perpetration of an exploit. Two
examples of this are provided in Figure 4. The example on the
left demonstrates an undirected edge in which two exploits are
connected together. The preconditions necessary for the execu-
tion of the WUFTPDX(MAUDE,NED) exploit are assumed to have
been met in the transition. In other words, the authors have
not considered it necessary to explicitly represent this. Such at-
tack graphs are referred to in the literature as an exploit-oriented
graph [284].

The example on the right demonstrates a directed edge in
which a precondition (sshd(3,1)) is connected to an exploit
(sshd bof(3,1)).

This outlines one of the differences in the visual represen-
tation of an attack graph and an attack tree. Generally, attack
trees use vertices to represent exploits and not preconditions,
preconditions are assumed to have been met in the transition
from one exploit to the next. Attack graphs represent both.
98 of the 118 attack graph configurations (83%) surveyed in
Section 6 (Table 22), represented preconditions explicitly as a
node. However, only 4 out of the 61 attack trees (6.5%, Table
24) specifically used different shapes to represent preconditions
and exploits [150, 308, 321, 382].

Weighted Edges. Weights can be assigned to edges [313, 380]
or vertices [87] to represent costs, probability, risks or other
metrics [313, 372]. These metrics indicate the difficulty of per-
petrating a particular type of attack, or probability/likelihood of
a particular form of attack being successful [420]. The cost can
be codified as continuous values, or as Boolean values such as:
easy and not easy; expensive and not expensive; intrusive and

RCPDOWNLOAD(MAUDE,ATTACK)

WUFTPDX(MAUDE,NED) sshd_bof(3,1)

sshd(3,1)

Figure 4. Examples of vertices and edges (adapted from [174, left], [27, right])

7

/ Elsevier Computer Science 00 (2019) 1–46 8

Figure 5. A weighted attack tree in which weights are attached to vertices (reproduced with permission from [40])

not intrusive etc., and continuous values such as: monetary cost
to defend/attack; time to achieve/repel; and cost in resources to
attack/defend etc [346].

An example of this is provided in the attack tree in Figure
5 in which the authors calculate the return on security invest-
ment (ROI) and return on attack (ROA) of conducting particular
exploits.

Sawilla and Ou apply the AssetRank algorithm (a modifica-
tion of PageRank) to measure the importance of system priv-
ileges and vulnerabilities in an attack against a system. The
resulting attack graph includes importance values which are
added to each edge in the attack graph [344].

Attack prediction algorithms are typically based around
Bayesian networks [89] or Markov decision processes [181]
which rely on the metrics provided in the weighted edges. Ex-
amples of this include: the behaviour based attack graph which
measures the risk of critical resources being compromised [89];
the probabilistic attack graph which calculates the annualised
loss expectancy of a computer network to aid in prioritising vul-
nerability patching [181]; and the three probability measures
(exploit success probability, successful occurrence probability
and condition obtained probability) calculated by [113] to mea-
sure the likelihood: of a successful exploit; that the exploit has
been applied; and that an attacker will achieve a given condition
respectively. Further examples are provided in Table 4. This
paper does not explore the representation of weighted edges.

Example of an AMT. It is now useful to apply the theory out-
lined above to an AMT example. The attack graph in Figure 6
demonstrates how a perpetrator could gain user level privileges
on a host which is denoted by the number 2. In this example,
the goal is represented as an ellipse at the bottom of the attack
graph (represented as user(2)).

The attack graph in Figure 6 uses ellipses to represent the
preconditions/postconditions, and rectangles to represent ex-
ploits. Edges in this attack graph connect preconditions to ex-
ploits indicating the preconditions required to achieve the ex-
ploit, and exploits to preconditions indicating that the success-
ful achievement of the exploit produces a set of postconditions
- which become the preconditions for a new exploit. There are

four initial preconditions: sshd(3,1), user(3) (presented
twice) and sshd(3,2). These are presented at the top of the
attack graph.

The preconditions/postconditions and exploits are con-
nected by a directed edge in the form of an arrow which
represents event flow. So, the directed edge connecting
sshd bof(3,1) with user(1) (sshd bof(3,1)→ user(1))
indicates that when the exploit sshd bof(3,1) is applied by
host 3 on host 1, a new postcondition: user(1) is achieved
which means that the perpetrator now has user privilege levels
on host 1.

4.1. Attack Graphs and Attack Trees
Having outlined the underlying theory relating to how

AMTs are represented, the discussion now proceeds to describe

sshd_bof(1,2)

user(2)

sshd_bof(3,2)

sshd_bof(3,1)

user(3)sshd(3,1)

user(1) sshd(3,2)sshd(1,2) user(3)

Figure 6. An example attack graph (adapted from [27])

8

/ Elsevier Computer Science 00 (2019) 1–46 9

Obtain
admin

privileges

1

Access
system
console

1.1

Obtain
admin

password

1.2

Enter
computer

center

1.1.1

Corrupt
operator

1.1.2

Guess
password

1.2.1

Look over
sys admin
shoulder

1.2.2

Unattended
guest

1.1.1.2

Obtain
password
file

1.2.1.1

Trojan
horse SA
account

1.2.3

Corrupt
SA

1.2.4

Break into
computer

center

1.1.1.1

Encounter
guessable
password

1.2.1.2

SWP=8
LAE=3
RISK=21.33
FUNC=OR

SWP=6
LAE=2
RISK=18.00
FUNC=OR

SWP=8
LAE=3
RISK=21.33
FUNC=OR

SWP=6
LAE=2
RISK=18.00
FUNC=OR

SWP=7
LAE=6
RISK=8.16

SWP=8
LAE=3
RISK=21.33
FUNC=AND

SWP=5
LAE=3
RISK=8.33

SWP=6
LAE=2
RISK=18.00

SWP=7
LAE=6
RISK=8.16

SWP=6
LAE=2
RISK=18.00

SWP=5
LAE=3
RISK=8.33

SWP=2
LAE=3
RISK=1.33

SWP=6
LAE=2
RISK=18.00

Open Safe

Pick lock
Learn
combo

Cut open
safe

Install
improperly

Find written
combo

Get combo
from target

Threaten EavesdropBlackmail Bribe

Listen to
conversation

Get target
to

state combo

and

Figure 7. A threat logic tree (left, adapted from [410]), and an attack tree (right, adapted from [346])

attack trees and attack graphs.

4.1.1. Attack Trees
Bruce Schneier is popularly attributed to have developed at-

tack trees and to have introduced the concept of threat counter-
measures and precondition logic [299, 110, 261, 43, 400, 253,
24, 396]. The actual origins of attack trees can be found in the
contributions by Weiss [410] which were developed further by
Salter et al. [339] (co-authored by Bruce Schneier).

Weiss introduced threat logic trees in 1991 (Figure 7, left),
and provided an example which included risk measurements
and precondition logic. Later, threat logic trees were recast in
the form of attack trees by Salter et al. [339] - who also included
the concept of threat countermeasures. However, the paper that
receives all the credit for the inception of attack trees is the
1999 paper by Schneier [346]. As Figure 7 (left) shows, if the
textual labels are removed from the threat logic tree, there is
no conceptual difference between the threat logic trees and the
attack tree.

The visual structure of event trees and decision trees is
similar to attack trees. Event trees [182] highlight success
and failure in a system [391], whereas decision trees high-
light system failure. Although both event trees and decision
trees have been applied to a computer/cyber security context
[410, 18, 17, 237, 114, 321], neither of these methods have
gained popularity.

Attack trees present cyber-attacks bottom-up. Shapes such
as rectangles and ellipses, or plaintext with no shape are used
to represent preconditions or exploits.

Two examples of the attack tree structure are provided in
Figure 7. Both the attack trees in these examples use rectan-
gles to represent exploits. Preconditions are assumed to have
been met in the transition between exploits. Figure 7 (left) out-
lines the use of weights which in this case are added to nodes

to identify risk levels.
Figure 7 (right) outlines the steps that a perpetrator needs

to complete to be able to open a safe. In this exam-
ple, the conjunction of the perpetrator needing to listen to

conversation AND get target to state combo leads to
a successful eavesdrop. This is represented by the arc con-
necting the two edges accordingly. Although the word and is
added to the arc to represent precondition logic. This is excep-
tional, and as the data in Table 24 shows, very few attack trees
actually represent precondition logic.

In the same attack tree, the disjunctive (OR) relationship
is represented by the absence of an arc. So, any one of:
threaten, blackmail, eavesdrop or bribe will result in
the perpetrator being able to: get combo from target.

Fault trees share the tree structure of attack trees The sym-
bolic representation of fault trees was first proposed by the U.S.
Nuclear Regulatory Commission [327]. Fault trees were later
standardised by the IEC in 1990, [166], the European Cooper-
ation for Space Standardization [103] and then by the British
Standards Institute [48].

Fault trees are used in a number of industries such as in
the aerospace industry [394, 67, 205], radioactive waste dis-
posal [355], the automotive industry [218, 59], and in the anal-
ysis of failure in computer systems [101, 244, 336]. Although
the fault tree standard is a generic standard (not particularly fo-
cussing on cyber security as a target domain), more recently
fault trees have become a popular means of representing cyber-
attacks [321, 247, 196].

Contrary to the assertion by Mirembe and Muyeba [261]
and Khand [196] - that fault trees lack suitable semantics to en-
able effective reasoning in regard to threat models, fault trees
are in fact one of the most visually expressive AMTs because
they utilise a wide range of standard symbols to express ele-
ments of an attack. The full set of defined symbols spans six

9

/ Elsevier Computer Science 00 (2019) 1–46 10

pages and extends beyond the symbols presented in Figure 8.
The full set includes symbols for: majority vote gates, prior-
ity and (PAND) gates, inhibit gates, NOT gates and sequential
gates - to name a few.

Figure 9 outlines the steps that a perpetrator needs to com-
plete in order to forge a package. This representation highlights
some of the symbols used in the fault tree standard. For exam-
ple, a precondition is represented by a circle, an exploit by a
rectangle, and precondition logic by two distinct shapes (Fig-
ure 8). The triangles represent a connection to another section
of the fault tree - thus enabling fault trees to be ‘compartmen-
talised’.

4.1.2. Attack Graphs
Attack graphs find their origins in the doctoral thesis and

two early papers by Dacier [81, 82, 83]. These contributions
emphasised the concept of a privilege graph which captures the
inheritance of privileges. In this graph, a node represents a set
of privileges owned by a user or a set of users and an edge
represents a vulnerability. In such a graph, preconditions are
presumed in the state transition.

Two attack graph examples are provided in Figure 10. Both
the attack graphs are examples of a partial attack graph wherein
there is a single goal - user level access on host 2 - referred to
as user(2) and h2 user privilege.

The attack graph in Figure 10 (top) represents exploits as
rectangles and preconditions as ellipses. In this example, pre-
condition logic is represented by the presence (AND) or ab-
sence (OR) of an arc. In Figure 10 (bottom), exploits are repre-
sented as ellipses and preconditions as plaintext. In this exam-
ple, precondition logic is not represented.

Figure 10 (bottom) outlines the proliferation of the sad-
mind malware through a network of three hosts (h1, h2 and
h3) [399]. There are three important elements to this attack
[162, 342]:

• The perpetrator has local user privileges on host h3

(h3,user privilege) and aims to get user privilege
status on hosts h1 and h2 i.e., to achieve postconditions:
h1,user privilege and h2,user privilege.

• h1 and h2 are advertising the sadmind service. This
is outlined in the graph as h1,sadmind service and
h2,sadmind service. The sadmind service is a pre-
condition to the attack.

• The perpetrator commits the sadmind buffer

overflow exploit on both the hosts. This is outlined

House event/
External event

Basic event
Conditioning

event
Intermediate

event

AND OR Exclusive OR Priority AND Inhibit

Figure 8. Fault tree symbols [166]

Fault Trees for Security System Design and Analysis

Phillip J. Brooke and Richard F. Paige

261

be demonstrated? This is difficult to ask,
especially since the rules are anecdotal even for
safety-critical systems analysis. At first look, the
rules offer guidance for the systematic
construction of the FT. The most difficult is
‘Ground Rule II’: the notion of a ‘system’ and a
‘component’ not completely clear.

4.3 Analysis

In Section 2.2, we very briefly discussed the
probability calculation for a root event given
information about the primary events. This is
sensible when good data is available concerning
the likelihood of failure of a given component.

However, in computer security, in common with
many failure problems in computer software
(and some types of hardware), it is difficult to
assign useful probabilities to the events: the
discrete, non-linear nature of these systems
makes a complete nonsense of the concept.

Instead, the analyst must carry out a risk
analysis [15]. The fault tree provides most of
the raw data: it tells the analyst how the
system fails, given the primary events (i.e. the
BASIC, UNDEVELOPED and EXTERNAL
events).

Essentially, the analysis of a fault tree for a
security-critical system provides information
about the interactions by which the system fails.
In this sense, the FTA is also an ‘attack
handbook’ — it identifies routes to obtain
information contrary to the system security
requirements. The system analyst must decide if
any of those routes are plausible, or if they are
unrealistic.

This last point deserves further explanation:
Consider systems that use symmetric
cryptography. The system may be perfectly
implemented (i.e. it does not introduce any
implementation faults — a rarity in real
systems), but during the operational lifetime of
that system, the symmetric algorithm may be
effectively broken. That is, given some
reasonably obtainable information, an enemy

can ‘break’ the algorithm sufficiently quickly to
obtain valuable information.

The FTA provides a communication
mechanism between the system designer and
the system certifier. The designer tries to show
that there are no plausible attacks on the
system, while the certifier attempts to show that
the designer’s arguments are wrong, or that the
FTA is an incorrect analysis of the system.

5. Example

The example in this section is a very small
system, and we have left much unresolved. A
real implementation would have possible faults
due to the implementation, as well as protocols
in use. However, it is useful for illustrative
purposes; moreover, this paper is inspired by the
application of this technique to a real system.

Our example concerns software package signing:
an increasingly common application of

Enemy forges
package

Enemy signs
forged package

Enemy has secret
key

Enemy replaces
genuine archive
with malicious

archive

Enemy has
effectively broken

hash algorithm

Enemy has
stolen secret

key

Enemy has
calculated secret

key

Enemy has constructed
malicious archive with

same hash as genuine
archive

Figure 4: Example FTA for software package signing.

Figure 9. A fault tree (reproduced with permission from [47])

sshd_bof(1,2)

user(2)

sshd_bof(3,2)

sshd_bof(3,1)

user(3)sshd(3,1)

user(1) sshd(3,2)sshd(1,2) user(3)

L. Wang et al. / Interactive analysis of attack graphs 423

Fig. 1. An example of attack graph.

The two types of edges in an attack graph have different semantics. The require
relation is regarded as conjunctive, whereas the imply relation is disjunctive. More
specifically, an exploit cannot be realized until all of its required conditions have
been satisfied (different variations of an exploit that require different sets of condi-
tions should be regarded as different exploits), but a condition can be satisfied by
one of the realized exploits that imply that condition. Another important perspec-
tive is that conditions can be divided into initial conditions (those not implied by
any exploit) and intermediate conditions. The main reason for such a distinction is
that initial conditions can be independently disabled to harden a network, whereas
intermediate conditions cannot be without first removing the exploits implying them.

2.2. A relational model for attack graphs

Instead of modeling an attack graph, we model necessary inputs required for gen-
erating the attack graph. The attack graph then becomes the result of relational
queries over these inputs. Such a result may be materialized or simply kept as the
definition of relational views. This flexibility is important in cases where materializ-
ing the complete attack graph is prohibitive. The inputs we model include network
configuration and domain knowledge. Here network configuration refers to the net-
work connectivity, and that which host has which vulnerabilities. Domain knowledge
refers to the interdependency between different type of vulnerabilities and condi-
tions. These are illustrated in Example 2.

Example 2. To generate the attack graph in Example 1, we need the network con-
figuration and domain knowledge shown in Fig. 2. The left-hand side shows the
connectivity between three hosts. Initially, hosts 1 and 2 satisfy the condition x and
host 3 satisfies y. The right-hand side says that an attacker can exploit the vulnera-
bility A on the destination (denoted by the symbol D) host, if it satisfies x and the

Figure 10. Two sample attack graphs by Barik and Mazumdar [2014, top] and
Wang, Hernandez and Van Mieghem [2008, bottom] - both adapted

10

/ Elsevier Computer Science 00 (2019) 1–46 11

as h3,h1,sadmind bof and h3,h2,sadmind bof

and this results in the user privilege status shown as
h2,user privilege in the graph.

As far as the AMT literature is concerned, attack graphs are
the most popular form and a number of attack graph variants
are highlighted in Table 6.

5. Visual Syntax Theory

This section briefly introduces a number of visual syntax
design theories and principles which can be applied to design
effective visual syntax design. These theories include Bertin’s
visual variables [35], Miller’s 7 ± 2 Law [259], Petre’s pri-
mary and secondary notation theory [312], visual distance (in-
spired by Petre [312] and [266]), the Gestalt theories [411],
and Moody’s physics of notations [266]. This discussion is fol-
lowed by a description of further design considerations such as
event flow, shapes and the use of colour.

5.1. Bertin’s Visual Variables

Bertin proposes seven visual variables - position, size,
shape, value, colour, orientation and texture [35]. These vari-
ables are generally used in most visual syntax based systems
and are quite fundamental to visual syntax design. Moody [263]
considers them to be the “vocabulary” and “building blocks”
for visual syntax design and proposes that they are “for graphic
design what the periodic table is for chemistry”.

Three of these variables - shapes, colour and texture are rel-
evant to the present study. Shapes and colour are discussed later
in Section 5.7.2 and 5.7.3 respectively, and the application of
all three in attack graphs and attack trees is discussed in further
detail in Section 6.5.

5.2. Miller’s 7 ± 2 Law

Miller [260] proposes that there is a relationship between
the limits of one-dimensional absolute judgement and limits on
short term memory. As the number of different stimuli increase,
the ability to remember each stimuli decreases.

Miller’s Law advocates that the average human can remem-
ber seven plus or minus two (7 ± 2) objects which implies that
the larger the visual syntax of an AMT - i.e., the total number of
shapes, colours and edge types, the less likely an observer is to
effectively perceive the message being conveyed by the AMT.

Examples of this as applied to AMTs are provided in Ta-
ble 7 which shows that the Bowtie advocated by Levy et al.
[224] conveys more than 10 colours, 6 icons, 2 shapes, and 2
connectors/edges, the misuse case maps proposed by Karpati
et al. [185] comprises of 17 shapes, the misuse sequence dia-
grams proposed by Katta et al. [188] comprises of 13 shapes,
and CORAS proposed by Rumbaugh et al. [333] comprises of
13 shapes and 3 edge types.

S1 sshd_bof(3,1)
2. Execute

arbitrary code on
Apache host 1

Figure 11. Attack graph labelling.

Left - character [45], middle - pseudonymous [27], right - textual [122]. All
diagrams adapted.

5.3. Petre’s Principle of Primary and Secondary Notation

Petre makes the distinction between primary and secondary
notation [312]. Primary notation is the set of visual variables
that form the generic structure of diagrams - such as shapes and
lines. Secondary notation - referred to by Moody [266] as dual
coding, refers to objects that are not part of the formal definition
of a framework, but which exhibit relationships and structures
important in aiding the perception of the observer and providing
further ancillary information. In addition, secondary notation
creates a visual distance [266] (discussed in Section 5.4).

Examples of secondary notation include labels and text
[255, 132] - which when combined with visual notation, are
more effective than either one of them on their own [304] and
more likely to improve perception [413].

Secondary notation should be used as a means of providing
additional information regarding a concept or to differentiate
sub-concepts, but not to represent the concept itself.

Labels are a form of secondary notation which are added to
a node in an AMT to aid the understanding of events and sta-
tuses. AMTs utilise three types of label: character, pseudony-
mous and textual. These are demonstrated in Figure 11.

A character label (Figure 11, left) utilises a single charac-
ter, number or other variable to represent the event. Character
labels result in compact models and are useful in demonstrating
concepts. However, they require recourse to a key or reference
material to help understand the label.

A pseudonymous label (Figure 11, middle) uses formal se-
mantics such as an IDS alert ID or CVE ID. Pseudonymous
labels bring an observer closer to the event as seen by an ana-
lyst, however, it requires recourse to a key or reference material
for an observer not familiar with the domain.

A textual label (Figure 11, right) is a textual description of
the exploit/precondition. This requires little or no recourse to a
separate key/description and is particularly useful if the graph is
to be used to aid cyber-attack perception amongst non-experts.
However, textual labels consume more graph space in compari-
son with pseudonymous and character labels. Table 22 and Ta-
ble 24 show that textual labels are particularly popular in attack
trees (n=48, 78.7%) in comparison with attack graphs (n=17,
14.4%).

The use of textual labels impacts the shape that can be used
in a model. Shapes such as ellipses and rectangles can accom-
modate textual labels, however, triangles, circles and diamonds
can not. This is discussed further in Section 6.5.3.

11

/ Elsevier Computer Science 00 (2019) 1–46 12

Table 6. Types of attack graph

Category References

‘Generic’ attack
graph

[21, 175, 176, 359, 361, 360, 89? , 174, 284, 232, 236, 283, 428, 209, 229, 169, 256, 402, 433, 228, 273, 345, 404, 36, 113, 125, 149, 243, 287, 344, 399, 65,
135, 422, 432, 64, 70, 173, 233, 240, 290, 26, 179, 303, 6, 136, 159, 157, 193, 11, 27, 33, 208, 358, 383, 2, 102, 5, 133, 189, 274, 417, 426, 31, 41, 172, 239,
353, 375, 431, 129]

Alert correlation
graph

[278, 319, 377]; alert correlation graph: [384, 79, 329, 15]2; hyper-alert correlation graph: [278, 279, 281, 433]; alert dependency graph: [329]; intrusion
graph (i-graph): [122]

Vulnerability
graph

Exploitation graph: [174, 227, 68]; exploit oriented graph: [284]; state enumeration attack graph: [359, 291]; dependency attack graph: [291]; coordinated
attack graph: [45]

Miscellaneous
attack graph

Personalised attack graph: [390, 271]; host access graph: [316]; hybrid attack graph: [275]; knowledge graph: [318]; mission dependency graph: [376];
Bayesian attack graph: [356]; multiple prerequisite attack graph: [169, 231]; evidence graph: [408]; logical attack graph: [301, 335, 303, 430, 157,
4, 214, 317]; host-compromised attack graph: [232]; predictive attack graph: [230, 232, 286, 288, 231]; attack strategy graph: [280]; privilege graph:
[82, 83, 300, 241, 235], [313]1, [380]1

Dependency graph
Exploit dependency graph3: [289, 403, 28, 284, 174, 404, 7, 73]; exploitation graph: [227]; hybrid dependency graph: [164]; general dependency graph:
[7]; behaviour based attack graph: [89]; probabilistic attack graph: [175, 176, 181]; attack scenario graph: [7]; vulnerability cause graph: [54, 63]; exploit
oriented graph: [284]

1 Although the authors refer to the graph generally as an attack graph, it is in fact based on the privilege graph proposed by [83] and based around the acquisition of privileges.
2 note that although Templeton and Levitt [384], Cuppens and Miege [79] and Alserhani et al. [14] did not specifically refer to their graph as an ‘alert-correlation graph’ the description
tallies with the alert correlation graph described by subsequent authors. Note also that Qin and Lee [319] and Sundaramurthy et al. [377] referred to their graph as a correlation graph
and Sundaramurthy et al. refer to the graph in one instance as an alert correlation graph.
3 Both terms - exploit dependency graph and dependency graph are used in the literature.

5.4. Visual Distance

Section 5.3 outlined that Petre’s secondary notation [312]
can be used to create visual distance between objects [266].
Visual distance refers to the perceptible steps - in terms of vari-
ables such as shape, colour, value and texture, between objects
[365, 416, 373]. This helps to distinguish between objects in a
diagram.

One of the most effective ways of creating a perceptible dis-

Table 7. AMTs that contradict Miller’s 7 ± 2 Law
AMT Total Colour Edge Shape

FACT Tree [334] 11 2 2 7
Bowtie by [224] 21 10 2 9
Misuse case map [185]1 18 1 2 15
Misuse sequence diagrams
[188]

15 5 2 11

CORAS [151, 96] 20 4 3 13
Attack defense tree [354] 10 0 2 8
Incident tree [323] 10 6 1 3
Attack tree [97] 10 0 2 8
Attack graph [345] 13 9 1 3
Attack graph [290] 10 4 1 52

Attack graph [6] 8 43 2 2
Attack execution graph [222] 8 5 1 4
Attack graph [31] 9 54 1 3
1 Total count in this method was difficult to calculate as some - exploit path without
damage for instance, could be considered to be a shape as well as a path. If treated
in this way, the total count could be as much as 26. However, only those specifically
referred to as a path by the authors have been considered thus.
2 Plaintext element treated as a shape.
3 All edges are blue, and this is not treated as a separate colour. In other words, if
edges were black and blue, then the colour count would have increased by 1, in this
case it has not.
4 3 edges of different colours treated as 3 colours rather than 3 edge types.
Note: The data in the table is calculated as follows. The total number of colours (not
including black and white), shapes and edge types were added together to give a total
number of elements. The representation of precondition logic was counted as a shape
(rather than an edge type). The upper section of the table reports AMTs that clearly
violate Miller’s law, i.e., the total number of elements is more than 9, whereas the
lower part highlights those where the total number of elements is 8 or 9. Although
Miller’s law states 7 ± 2, the table ignores, 5, 6 and 7 total elements. In other words,
it represents the more ‘extreme’ examples.

tance is to use particular shape pairings. For example, there
is a perceptible visual distance between a circle|rectangle, and
rectangle|hexagon pairings. However, the visual distance is
less perceptible in shape pairings such as a right angled rect-
angle|rectangle with rounded corners (referred to in this pa-
per as a rounded rectangle), circle|ellipse, square|rectangle and
hexagon|octagon pairings. Similarly, a shape filled with con-
trasting colours such as black|white, or red|green can create
a perceptible visual distance. However, an alteration in edge
colour or texture does not. In other words, the visual distance
between two circles filled with red and green respectively is
more perceptible compared to two circles with a red and green
edge respectively.

Two examples demonstrate this. The shapes in the data flow
diagram proposed by Gane and Sarson [1979, Figure 12, top]
have small visual distances because they are all rectangle vari-
ants. Two of the shapes are right angled rectangles (Figure 12,
top, left and right). One of these (right) has a vertical line. The
third shape (middle) is a rounded rectangle with a horizontal
line. On the other hand, the De Marco data flow diagrams [93,
Figure 12, bottom] maintains better visual distance by using
two rectangles (distinguished by size) and a circle.

Another way of creating a visual distance is by using colour
to fill objects. An example of this is provided by Man et al.
[243, Figure 13] where blue circles represent normal/user priv-

Process Data storeExternal entity

Data flow

Data flow
External entity Process Data store

Figure 12. Data flow diagram notation. Gane and Sarson [128, top] and De
Marco [94, bottom] (both adapted from [266])

12

/ Elsevier Computer Science 00 (2019) 1–46 13

9 11

3

10

IP3,IP2,1345 IP3,IP4,8641 IP3,IP5,5093

Figure 13. Using secondary notation to create visual distance (adapted from
[243])

ilege levels on a host, and red circles represent root privilege
[243]. In this example, colour provides further differentiation
between the same construct - preconditions.

An example of inadequate visual distance is provided by Al-
homidi et al. (Figure 14). In this example, exploits and precon-
ditions - the primary constructs, are represented using the same
shape - an ellipse, and constructs are differentiated by using up-
per and lower case pseudonymous labels to represent precon-
ditions (IIS(0,2) and SCL(0,1)) and exploits (for example
inj(1,2), sshd bof(2,3)) respectively.

This example contravenes Petre’s primary and secondary
notation theory because Alhomidi et al. have used secondary
instead of primary notation to differentiate two constructs. Fur-
thermore, the use of textual labels - albeit differentiated by up-
per case/lower case, conveys the unintended perception of sim-
ilarity. This is referred to as Gestalt’s factor of similarity (dis-
cussed later in Section 5.5). Consequently, a non-expert might
not be able to easily differentiate between the preconditions
(inj(1,2)) and the exploits (SSH(2,2)).

The visual distance between the vulnerable point/part and
vulnerable responsibility; vulnerable part and mitigated vul-
nerability, and the mitigated vulnerable responsibility and mit-
igated vulnerable responsibility in the misuse case maps [185,
Figure 15] is inadequate because these are differentiated by the
presence or absence of a cross.

Visual distance in the context of attack graphs and attack
trees is analysed in further detail in Section 6.4. As the discus-
sion therein will show, numerous attack graph and attack tree
configurations have been proposed in the research literature in
which there is either no visual distance, or a small - barely per-
ceptible, visual distance.

Buffer(1,1)

SSH(1,2)

inj(1,2)

SSH(2,2)

Figure 14. An example of inadequate visual distance (adapted from [12])

Vulnerable point/part

Vulnerable responsibility

Mitigated vulnerability

Mitigated vulnerable responsibility

X

X

Figure 15. Visual distance in misuse case maps (adapted from [185])

5.5. The Gestalt Theories

The Gestalt theories of the perception and interpretation of
grouped objects have become a popular mechanism for evalu-
ating observer response to diagrams and objects [199]. These
theories were framed by [411] into seven factors described in
Table 8.

The Gestalt laws indicate that ineffectively designed dia-
grams can distract an observer from or conceal the intended
meaning of the diagram.

5.6. Moody’s Physics of Notations

One of the key contributions to research on effective visual
syntax design are the physics of notations proposed by Moody
[266]. The physics of notations are a set of nine visual syn-
tax design principles drawn from various disciplines including:
cognitive psychology, perceptual psychology, communication
theory and cartography. These principles form the guidelines
for effective diagrams and outline how the eight Bertin vari-
ables should be manipulated.

The nine principles (described more fully in Table 9) are:

1. Semiotic clarity
2. Perceptual discriminability
3. Semantic transparency
4. Complexity management

Table 8. The Gestalt theories
Factor Description

Proximity Objects placed closely together, can br perceived as being part
of a whole. Examples of this include multiple shades of blue
in the sky.

Similarity When objects share similar properties - for example colour,
they are perceived to be associated and/or similar.

Uniform destiny
(‘common fate’)

When multiple factors (or multiple, different instances of a
single factor) come into conflict, one factor is dominant, and
overrides the other.

Prägnanzstufen’
(‘law of simplicity’)

Simple arrangements of objects are likely to be perceived
first.

Direction Given a diagram with multiple branches, the branch that best
follows the original line is likely to be perceived a continua-
tion of that line.

Closure If objects are close together, they are likely to be perceived as
being part of a whole.

‘Good curve’ Observers are likely to follow a continued line even if the
angle changes.

13

/ Elsevier Computer Science 00 (2019) 1–46 14

Table 9. Moody’s Physics of Notations [266]

Principle References Comments/examples

Semiotic
clarity

Redundancy (a shape represents multiple con-
cepts), and ambiguity (concept has no corre-
sponding shape) should be eliminated

Of the 33 commonly used symbols in the UML class diagram, there are 5 synographs, 20 homographs and 2
symbol excesses [108]. 10 (84.7%) of the attack graphs reviewed and 37 (60.7%) of the attack trees reviewed
had problems of ambiguity (Section 6.4).

Perceptual
discriminability

Techniques such as: visual distance (Section
5.4), shape primacy, redundant coding, percep-
tual popout and textual differentiation should be
used to make objects more distinguishable.

The misuse case maps [185] comprises of 17 shapes. A black triangle represents an exploit path without dam-
age, exploit path with possible damage, compromised/misused responsibility, order of the exploit paths and
last one of the exploit paths. Similarly, a dotted oval represents vulnerable point/part, vulnerable responsibil-
ity, compromised/misused responsibility, mitigated vulnerability and mitigated vulnerable responsibility. It is
difficult to discriminate between these shapes without recourse to a key in working examples [185, 183, 184].

Semantic
transparency

A concept should be directly derived from the
object. This is “the visual equivalent of ono-
matopoeia in spoken language” [57]. A seman-
tically perverse representation is one where an
object infers a different or opposite meaning.

Icon based shapes are sometimes considered useful in aiding the perception of complex concepts [131]. A
stick figure is to represent a user in UML. in CORAS icon of a man represents a threat or stakeholder, a bag
of money represents an asset, a lock represents a vulnerability [151]. However, Masri et al. [248] found that
whilst the use of icons was beneficial to most observers, they were less effective in aiding the perception of
English-as-a-second-language (ESL) participants.

Complexity
management

Complex diagrams can be managed by reducing
the number of objects on the diagram.

This can be achieved by using methods such as modularisation - which divides a diagram into multiple
smaller and more cognitively manageable components, and hierarchy - which abstracts elements of the
diagram to different levels. The Bowtie proposed by Levy et al. [224] exemplifies the problem of complexity.

Cognitive
integration

In diagrams comprising of multiple diagram
forms, methods such as conceptual integration
and perceptual integration should be used to re-
duce complexity.

Conceptual integration proposes the use of mechanisms that allow an observer to assemble information from
multiple diagrams and perceptual integration proposes the use of mechanisms to enable easier navigation
between diagrams. A good example of how complexity can be managed is provided in the fault tree models
where a triangle is used to connect sections of a large model.

Visual
expressiveness

More effective utilisation of design space can be
achieved by maximising the use of Bertin’s vari-
ables.

This principle appears to conflict with Miller’s 7±2 law [259, 292, 223] and to challenge Moody’s own view
that diagrams should be kept within “perceptual and cognitive limits” [263].

Dual coding Text and visual notation are more cognitively ef-
fective when used together [304, 413]

Similar to Petre’s principle of primary and secondary notation, Moody proposes that secondary notation
should be used to bolster cognitive perception.

Graphic
economy

As time progresses, newer symbols are added
to a framework and older ones rarely declared
defunct - resulting in an over-sized syntax.

The decision not to explicitly represent secondary constructs such as initial preconditions, goals and perpe-
trator capability in some attack graphs, [232, 24, 316] can be seen to adhere with the principle of graphical
economy. However, this creates a cognitive load for the observer who has to discern the secondary constructs.

Cognitive fit Diagrams should e developed according to au-
diences. In theory this would suggest one visual
syntax form for experts and another for non-
experts.

Experts and non-experts process diagrams in different ways [69, 198, 416], however, few modelling systems
are mature enough to make provision for both experts and non-experts. ORM (Object Role Modelling) [142]
and Oracle Data Modelling [29] are exceptions.

5. Cognitive integration
6. Visual expressiveness
7. Dual coding
8. Graphic economy
9. Cognitive fit

These methods are highlighted in Table 9.

5.7. Further Visual Syntax Considerations

This section introduces a number of further visual syntax
considerations such as the concept of event flow (Section 5.7.1),
shape - one of Bertin’s visual variables (Section 5.7.2) and
colour (Section 5.7.3) - all of which are important elements of
a visual syntax.

5.7.1. Event Flow
Event flow refers to the direction that the sequence of events

follow. Event flow is not represented in Bertin’s model. This
is surprising given that it is a critical variable in terms of how
observers process information.

The direction of information flow in a diagram can be an
important factor in aiding an observer’s perception of the in-
formation contained therein. Studies into visual scanning have
investigated scanning behaviour to identify location of fixation
and direction of saccades - the movement of eyes in the same
direction between two or more points of fixation. These studies
have analysed, left-right and right-left saccades to understand
eye movement habits [1].

Most research in this field has revealed that eye movement
and scanning tendencies tend to be influenced by past experi-
ences - many of which are culturally driven [1]. Aesthetic pref-
erences in terms of imagery represented left-right or right-left
is strongly influenced by reading habits - themselves driven by
cultural habits [416, 72, 170].

There is less research into top-down/bottom-up preferences
- possibly because most research focuses on reading prefer-
ences and/or aesthetic preferences of images rather than aes-
thetic preferences for process/event flow systems.

Events can be presented top-down - as in flow charts [171],
TROPOS [46] and SDL diagrams [121], bottom-up - as in fault
trees and attack trees, left-right - as in CORAS [84], Riskit
[201], and the event-driven architecture [257], or right-left.
There are very few if any event flow models where events are
represented right-left.

Some frameworks allow diagrams to be presented accord-
ing to a user’s preference. For example state diagrams and the
DRAKON model [307] can be presented either top-down and/or
left-right.

The bottom-up approach adopted by fault trees and bor-
rowed by attack trees aims to focus on the problem/goal - re-
ferred to as an undesirable event in an fault tree, and enable the
non-expert to dissect the causes of the event by reading down
to the causes. An observer might typically follow the tree top-
down - despite it being presented bottom-up.

The attack graph begins the visual narrative at the top of the
graph with an expression of the problems which ultimately lead
to the goal/event - which is represented at the bottom. Again,

14

/ Elsevier Computer Science 00 (2019) 1–46 15

the non-expert will follow this top-down.

5.7.2. Shapes
Shapes are one of the most important visual variables [131]

and can capture important phenomena more powerfully and
succinctly than words [296]. Shapes should be used as the
primary means of communicating information as they are the
primary visual variable for aiding object recognition [266].

The discussion in Section 5.4 has shown that the selection of
shapes is important in aiding perception and that certain shape
pairings such as ellipse|circle, or rounded rectangle|rectangle
can be counter-intuitive.

A detailed analysis of the use of shapes in attack graphs is
provided in Section 6. The discussion therein demonstrates that
ellipses, rectangles, and circles are popular methods of present-
ing cyber-attack constructs. The discussion also highlights that
some researchers prefer not to use a shape to represent a con-
struct but prefer instead to represent the construct using plain-
text.

5.7.3. Colour
Research into colour and perception has included attempts

to understand the links between colour and perceived down-
load speeds [138], the impact of colour in decision making [34],
the link between colour depth and quality of perception [134],
cultural and geographical differences in colour emotional re-
sponses [423, 424], the effect of colour on investment decisions
[197], and the link between colour and hazards [61].

Colour is a central variable in conveying information to an
observer. Colour has suggestive power and the ability to capture
and hold the attention of an observer [425]. If colour is added
to a shape, it could have a greater impact on user interpretation
than the shape on its own [328].

Notwithstanding the benefits of the use of colour, numerous
considerations have to be made when designing colour based
visual syntax. If not applied effectively, colour can create an im-
balance between elements and make one element appear more
important than another [425]. The number of colours used in a
diagram is limited by one’s working memory Hogganvik [151]
and for each colour added to a diagram increases the cognitive
load in terms of Miller’s 7 ± 2 Law [260]. Table 7 outlines
examples such as those by Levy et al. [224] and Sawilla and
Ou [345] where more than eight colours have been used in the
attack model.

Although colour is an effective variable, consideration
should be given to a number of factors such as colour blindness
- 8% of the global male and 0.5% of the global female popula-
tion suffer from a form of colour blindness [76]; the likelihood
that diagrams may be reproduced in black and white [409]; and
consideration that colour is only suitable for conveying nominal
data [206].

The discussion in Section 6.4.1 demonstrates that although
colour is used frequently in attack graphs and attack trees,
generally, there is no underlying rationale for the selection of
colour to represent a particular concept.

5.8. Assessing the Cognitive Effectiveness of AMTs

Notwithstanding the benefits of AMTs in aiding cyber-
attack perception - as outlined in Section 2, more research is
needed to assess the cognitive effectiveness of AMTs.

Table 10 outlines previous research into the cognitive effec-
tiveness of AMTs. The data describes the: AMTs compared
in each study, format of the study, measures used to determine
effectiveness, and study sample sizes.

Although the research outlined therein is a significant con-
tribution to this domain, the data reveals a number of shortcom-
ings relating to:

1. The diversity of AMT selection. There are no known com-
parative studies into the effectiveness of attack graphs in
aiding cyber-attack perception. Although there are con-
ceptual similarities in the visual syntax of attack trees and
attack graphs, only three of the studies under review con-
sidered attack trees [98, 298, 119].

2. Fundamental conceptual differences in AMTs. The vi-
sual syntax of some of the AMTs compared in these
studies is so conceptually different that their selection
could be considered to be cognitively biased. For ex-
ample, the studies by Diallo et al. [98] and Opdahl and
Sindre [298] compared common criteria method and mis-
use cases with attack trees, and misuse cases with attack
trees respectively. The visual syntax of misuse cases and
attack trees are fundamentally different and likely at the
outset to render results in favour of the attack tree - which
they did.

3. Statistical significance. In a number of studies, the num-
ber of participants have been too small to allow for sta-
tistically significant conclusions [242, 98, 53, 185, 119].

4. A number of studies outline the need to ground studies
into the effectiveness of AMTs with firm pedagogic un-
derpinning [242, 98, 53, 119]. In these studies, the mea-
sures of effectiveness are unclear and seem to be based
on personal judgement rather than in recognised method-
ologies and theories.

Collectively these shortcomings outline the need for further
research and they also define some of the parameters that com-
parative evaluations should consider. The research presented in
Lallie et al. [216, 217] aims to address these shortcomings and
propose an attack graph visual syntax which is cognitively ef-
fective and also preferred by practitioners - thereby increasing
the likelihood of adoption.

This problem could be reduced or eliminated if appropriate
visual syntax design theories - such as those described in this
section - or others such as: the Cognitive Theory of Multimedia
[254], Cognitive Dimensions of Notations [140], Guidelines of
Modeling (GoM) [348], Semiotic Quality (SEQUAL) frame-
work [213] were applied to the design and testing of the visual
syntax.

A number of design theories have been applied in numerous
contexts to test visual syntax design. However, most of these
efforts have applied these principles post-design. For example,

15

/ Elsevier Computer Science 00 (2019) 1–46 16

Table 10. Previous AMT comparison studies

AMT Description of Study Effectiveness Measurement n pref 1 Citation

Misuse cases Effectiveness of AMT and practitioner perceptions Case study with observations 10 i [242]

The Common Criteria, misuse
cases & attack trees

High level analysis of the “learnability, usability,
solution inclusiveness, clarity of output, and ana-
lyzability” of AMTs

Self-observation/critical evaluation 2 [98]

DREAD, NIST SP800-30,
OCTAVE-S & CORAS

Which AMT “performs best” Observational. Completion of a risk reduction exer-
cise using the four techniques

1 [53]

Misuse case & FMEA Comparison of techniques for ability to identify
user related failures

80 minute task to analyse scenarios and identify fail-
ures

42 TAM [369]

Attack trees & misuse cases Comparison of techniques in aiding practitioner
perception in threat identification

2x90 minute controlled experiments to measure per-
formance and perception 28/352 TAM [298]

Misuse case maps Effectiveness in aiding non-expert stakeholders de-
velop an understanding of multi-stage intrusions

Questionnaire response 12 TAM [185]

Misuse case maps Effectiveness in aiding observers find vulnerabili-
ties and mitigations

Controlled experiment/test to solve series of tasks
and self-reported TAM score

33 TAM [183]

Attack trees Suitability for modelling cyber-threat and in aiding
experts understand threat

Qualitative interview 2 [119]

Misuse case maps & misuse
sequence diagrams

Comparison of techniques for understanding, per-
formance and perception

90 minute task comprising of T/F questions (under-
standing), identifying/listing vulnerabilities (perfor-
mance)

42 TAM [188]

CORAS The effect of visual syntax on understanding a risk
scenario using the CORAS language

Questions relating to model navigation and under-
standing of concepts

25 [152]

CORAS What is the preferred method of visualising vulner-
abilities and visualising risk? comparison of the
UML profile and the standard UML use case icons

Survey comparing alternative representations of risk
scenarios

33 [153]

CORAS An empirical investigation of risk modeling prefer-
ences among professionals and students to improve

Questionnaire emailed to participants to make selec-
tion between modelling alternatives

33 [154]

Attack graph & fault tree An empirical investigation into the effectiveness of
both techniques in aiding cyber-attack perception

computer based test 63 [216]

27 attack graph configurations Evaluation of visual syntax preferences Participants ranked preferred configurations 212 Conjoint
analysis

[217]

1 pref : Preference/acceptance testing method. i=interview; TAM=Technology Acceptance Model [90]
2 2 separate experiments

[250] applied the physics of notations to the KAOS goal mod-
elling language and its supporting tool, Objectiver to determine
how well the model complies with the principles. El Kouhen
et al. [108] applied the physics of notations to a study in which
non-expert users proposed design notations aimed at speeding
up perception of UML.

Masri et al. [248] applied the cognitive theory of multime-
dia learning [254] and the cognitive load theory [378, 379] to
assess the impact of icons in entity relationship diagrams on
user perception.

Further contributions have included the application of de-
sign testing methods to i* [i-star 267], BPNM [132], UML
[268, 131], and misuse cases [151].

Not only have these efforts to evaluate methods been done
- as Moody [263] puts it in a “limited fashion”, but most of
these efforts have been applied post-design. The contributions
by Hogganvik and Lallie et al. [151, 216, 217] are notable ex-
ceptions which apply these techniques at the outset when de-
signing conceptual modelling systems.

6. An Analysis of Attack Graph and Attack Tree Visual
Syntax

This Section draws on the visual syntax design theories pre-
sented in Section 5 and presents a quantitative analysis of the
visual syntax used in attack graphs and attack trees.

The analysis seeks to determine the popular methods of pre-
senting constructs such as event flow, preconditions, exploits
and precondition operators. This reveals custom and practice
which outlines popular modes of visual expression.

In order to determine custom and practice, two questions
are asked whenever a construct is analysed:

1. Is the construct commonly represented in attack graphs
and/or attack trees?

2. If so, how - in quantitative terms, is the construct repre-
sented in the literature?

The structure of this section can be described as follows.
The discussion begins with an explanation and demonstra-
tion of the internal and external semiotic inconsistency prob-
lem. This is a key problem which applies to AMTs described
throughout this section. This is followed by an analysis of event
flow representation in attack graphs and attack trees to deter-
mine the popular forms of event representation. The discus-
sion proceeds to demonstrate why it is important to maintain
an adequate visual distance between objects before analysing
the use of colour and shape edge effects to increase the visual
distance. Following this, the analysis focuses on the shapes
used to represent preconditions (including initial preconditions,
postconditions and goals), exploits and precondition operators.
This discussion also considers why shapes such as diamonds
and circles are wholly unsuited in AMTs.

16

/ Elsevier Computer Science 00 (2019) 1–46 17

Table 11. Search terms applied in the literature search

Category Search terms

Use case
based AMTs

Abuse cases, misuse cases, misuse case maps, misuse sequence
diagrams, security use cases, CORAS

Temporal
methods

Diamond model, cyber kill chain, Riskit

Miscellaneous
methods

Event tree, OCTAVE, the bowtie method, influence diagrams, ex-
tended influence diagram

Attack trees

Attack tree, defense tree, attack defense tree, penetration attack
tree, cyber threat tree, security goals indicator tree, incident tree,
FACT tree, attack countermeasures tree, dynamic attack tree,
BDMP tree, threat tree, threat net, attack nets, protection tree,
vulnerability tree, fault trees

Attack graph

Attack graph, alert correlation graph, hyper-alert correlation
graph, alert dependency graph, intrusion graph, i-graph, vulner-
ability graph, exploit oriented graph, state enumeration attack
graph, dependency attack graph, coordinated attack graph, per-
sonalised attack graph, host access graph, hybrid attack graph,
knowledge graph, mission dependency graph, Bayesian attack
graph, multiple prerequisite attack graph, evidence graph, logi-
cal attack graph, host-compromised attack graph, predictive at-
tack graph, attack strategy graph, privilege graph, dependency
graph, exploit dependency graph, exploitation graph, hybrid de-
pendency graph, general dependency graph, behaviour based at-
tack graph, probabilistic attack graph, attack scenario graph, vul-
nerability cause graph, exploit oriented graph

Review Methodology. The data outlined herein was collected
through a systematic literature review which sourced peer-
reviewed journal/conference papers and books/chapters which
specifically use attack graphs or attack trees to demonstrate
cyber-attack related concepts. 223 attack graph related papers
and 147 attack tree papers were analysed giving 370 papers in
total. The search terms applied in the review are described in
Table 11. A process of forward and backward snowballing was
applied to identify further sources. No date/time limitations
were applied to the searches.

Sources were identified through Google Scholar, Web of
Science and Scopus. From this analysis, 120 attack graph and
61 attack tree visual syntax configurations used in published
papers were analysed.

Each attack graph/attack tree figure and the corresponding
narrative provided by the author was analysed at source to un-
derstand the methods used to represent event flow, precondi-
tion operators, preconditions, exploits, attack goals, the use of
colour, the use of labels and the use of shape edge texture.

The resulting data is presented in Table 22 and Table 24.
These two tables form the raw data from which the subsequent
analysis is done.

The analysis counts attack graph/attack tree configurations
and not authors. In other words, if an author has presented the
same attack graph/attack tree configuration in more than one
paper, then that is counted as a single attack graph/attack tree.
Examples of this include the: attack graphs by Jha et al. [175],
Jha et al. [176] and Sheyner et al. [359]1, attack graphs by Li
and Vaughn [226], Li et al. [227], attack graphs by Liu et al.
[236], Liu [233], exploit dependency graphs by [289, 403]2,

1Sheyner et al. is co-authored by Jha et al. and treated as the ‘same’ attack
graph.

2Wang, Noel and Jajodia is co-authored by Noel et al. and treated as the ‘same’
exploit dependency graph.

hyper alert correlation graphs. by Ning and Xu [280], Ning
et al. [281], Ning, Cui, Reeves and Xu [279], attack graphs by
Sheyner and Wing [361], Sheyner [360], host attack graphs by
Xie, Cai, Tang, Hu and Chen [420], Xie, Chen, Wang, Chen
and Hu [421], protection trees by Edge et al. [105], Edge [104]
and attack countermeasure trees by Roy et al. [330, 331, 332].

The analysis relies heavily on quantitative data. Occasion-
ally, this data is presented as n=21, 38.9%. In this example, n
is the total number and the percentage is calculated out of the
total number of attack graphs or attack trees surveyed which is
120 and 61 respectively.

A Poisson log-linear model was used to calculate parameter
estimates (β - also referred to as coefficients) and the effect size
(z). Parameter estimates outline the size of the contribution of a
predictor and describe the effect of a one-unit change in the pre-
dictor on the response if all other predictors are kept constant,
and the effect size is a method of quantifying the difference be-
tween groups. Collectively, this helps to establish whether there
is an association between categorical variables (i.e., whether the
variables are independent or related.)

Section 6.2 will show that a number of authors represent the
same construct using more than one shape. For example, [54]
used a rectangle and a hexagon to represent a precondition in
the same attack graph.

14 authors represented preconditions using multiple shapes
in the same paper. 8 authors represented exploits using multiple
shapes in the same paper. 6 authors represented both precondi-
tions and exploits using multiple shapes in the same paper. This
provides a total of 20 authors who represented preconditions
using multiple shapes in the same paper and 14 authors who
represented exploits using multiple shapes in the same paper.
In these cases, it would be unfair to arbitrate in favour of one
or the other. Consequently, configurations which represented
the same construct using more than one shape were disqualified
from the analysis.

This problem did not apply for any other constructs. Initial
preconditions, precondition operators, goals etc., are analysed
using the full 181 configurations.

6.1. Labels

Table 12 and Figure 16 outline the use of labels in attack
graphs and attack trees.

The data shows that for attack graphs and attack trees over-
all, the popular approach to the use of labels is to present
them as: pseudonymous labels (n=69, 38.1%, β=3.84, z=
4.65, p=0.00), character labels (n=39, 21.5%, β=3.27, z= 3.93,
p=0.00) and textual labels (n=70, 38.7%, β=3.85, z=4.67,
p=0.00).

When this data is analysed for attack graphs and attack
trees separately, the results show that while pseudonymous la-
bels are popular in attack graphs (n=65, 54.2%, β=3.78, z=4.57
p=0.00), they are not in attack trees (n=4, 6.6%, β=1.10, z=1.17
p=0.24).

Character labels are popular in both attack trees (n=10,
16.4%, β=1.95, z=2.23 p=0.03) and attack graphs (n=29,
24.2%, β=2.979, z=3.56 p=0.00). Similarly, textual labels

17

/ Elsevier Computer Science 00 (2019) 1–46 18

Figure 16. Review of representation of labels

Table 12. Review of representation of labels
Attack tree Attack graph All

Shape n % β σ z p n % β σ z p n % β σ z p

No label 3 2.5 0.85 0.98 0.87 0.39 3 1.7 0.85 0.98 0.87 0.39
Pseudonymous 4 6.6 1.10 0.94 1.17 0.24 65 54.2 3.78 0.83 4.57 0.00 69 38.1 3.84 0.83 4.65 0.00

Label 10 16.4 1.95 0.87 2.23 0.03 29 24.2 2.98 0.84 3.56 0.00 39 21.5 3.27 0.83 3.93 0.00
Textual 47 77.0 3.46 0.83 4.17 0.00 23 19.2 2.75 0.84 3.27 0.00 70 38.7 3.85 0.83 4.67 0.00

Total 120 181
σ = standard deviation

are popular in both attack trees (n=47, 77%, β=3.46, z=4.17,
p=0.00) and attack graphs (n=23, 19.2%, β=2.752, z=3.267
p=0.00).

6.2. Internal and External Semiotic Inconsistency

The principle of semiotic clarity was described in Section
5 which explained that each concept should have one corre-
sponding object in order to reduce redundancy and ambiguity.
This section proposes two variations of the principle of semiotic
clarity: internal semiotic inconsistency and external semiotic
inconsistency.

Internal semiotic inconsistency refers to instances where
authors represents the same construct using two or more differ-
ent variables in the same paper or in subsequent papers, i.e., a
construct is represented by not one but multiple shapes - thereby
generating redundancy.

A visual example of the internal semiotic inconsistency
problem is presented in the two papers by Barik and Mazumdar

[26, 27] who presented preconditions using plaintext [26] and
then in a subsequent paper [27], using ellipses. In the same two
papers, Barik and Mazumdar represented exploits using ellipses
[26] and then using rectangles [27].

Further examples of internal semiotic inconsistency in at-
tack graphs are presented in Table 13 which highlights a num-
ber of inconsistencies in papers by the same author/authors, and
most notably a number of examples of internal semiotic incon-
sistency within the same paper. In all these cases, the narrative
presented by authors was explored to understand why the vi-
sual syntax was different. Generally, the reasoning for these
inconsistencies was not clear.

External semiotic inconsistency refers to instances where
multiple authors represent the same construct in different ways.
An example of the external semiotic inconsistency problem is
presented in Figure 17 which demonstrates how the same con-
struct is represented in different ways by different authors.

Throughout the rest of this section, further examples of in-

18

/ Elsevier Computer Science 00 (2019) 1–46 19

Buffer(1,1)

SSH(1,2)

inj(1,2)

SSH(2,2)

�p(0,1)

sshd(0,1)trust(1,0)

�p_rhosts(0,1)

Exploit

Precondi�on

Figure 17. An example of external semiotic inconsistency (adapted from [12] (left) and [6] (right))

ternal and external semiotic inconsistency are provided in terms
of the way preconditions, exploits and precondition operators
are represented.

Table 13. Attack graph internal semiotic inconsistency

Semiotic inconsistency Citation

go vs ge [287] vs [290]
Separate
papers

prc, exr vs unclear representations [209] vs [208]

prp, exe vs pre, exr [26] vs [27]

Same paper

prr vs prp [85]
prr vs prh [54]
prr blue vs prh purple [6]
prr vs prh [63]
ortd vs orlr* [232]
pre, exr vs prr, exna [36]
efbu vs eftd [113]
exe, prd vs exd, pre [303]
prp, exe vs prp, exc [136]

* This is for both the attack graph and predictive attack graph in the same paper.
Key: g=goal; pr=precondition, ex=exploit, ef =event flow; o=octagon; e=ellipse;
c=circle; r=rectangle; p=plaintext; h=hexagon; rr=rounded rectangle; td=top-down;
lr=left-right; bu=bottom-up

6.3. Event Flow

The discussion in Section 3 highlighted that one of the key
differentiators in the visual representations of attack graphs and
attack trees is the method used to represent event flow.

Table 23 and Figure 18 highlight the approaches towards
representing event flow in attack graphs and attack trees. These
approaches are: top-down, bottom-up and left-right. There
are no examples of the right-left representation of event flow.
58.6% of all the AMTs represented event flow as top-down
(β=4.26, p=0.00) and 36.5% represented event flow as bottom-
up (β=3.79, p=0.00). There was a stronger effect size in favour
of the top-down approach (z=5.19) compared to the bottom-up
approach (z=4.59). The effect sizes could be subject to Simp-
son’s Paradox and can be explained by there being more attack
graphs in the sample than attack trees. The primary method

of representing event flow in attack graphs is the top-down ap-
proach (β=4.26, p=0.00) and in attack trees is the bottom-up
approach (β=3.68, p=0.00). The effect size in both these cases
is large (z=5.19, z=4.45 respectively).

There were some anomalies to this observation. 7 (5.8%,
β=1.61) attack graphs were presented bottom-up and 7 (5.8%,
β=1.61) were presented left-right. The effect size was small
in both cases (z=1.80). The attack graphs presented bottom-up
were by [33, 21, 281, 232, 157, 33, 417, 366, 390, 383, 271,
353].

2 (3.3%, β=0.51) attack trees were presented left-right,
these were the attack tree by [8], and the penetration attack
tree by [282].

The bottom-up attack graph presented in [366] is the combi-
nation of two modelling techniques - an attack graph and an ex-
tended influence diagram. The two attack graphs presented by
[113] were presented bottom-up for illustrative purposes. The
final attack graph in the same paper was presented top-down.

The decision to present the hyper alert correlation graph
left-right by [281] might have been influenced by the amount of
text the authors needed to present in each ellipse. The predictive
graph presented by [232] is presented both top-down and left-
right. The same applies to the general attack graph. In this case,
there appears to be no rationale for the event flow.

Figure 18. Review of shapes used to represent event flow

19

/ Elsevier Computer Science 00 (2019) 1–46 20

6.4. Visual Distance in Attack Graphs and Attack Trees
Section 5.4 introduced the concept of visual distance. The

discussion in Section 5.4 outlined that variables such as colour,
value and texture - three of Bertin’s visual variables, can be
used to increase the visual distance between objects. The dis-
cussion also outlined that careful consideration should be made
to ensure that there is a perceptible visual distance between two
objects that represent different constructs. A difference in shape
or the colour that fills the shape creates a perceptible visual dis-
tance. However, an alteration in edge colour or texture does
not.

Table 14 outlines 54 instances where there is either no vi-
sual distance between constructs i.e., they utilise the same shape
for both preconditions and exploits, or a small - possibly imper-
ceptible visual distance. This can be analysed further to show
that 10 (8.5%) attack graphs and 37 (60.7%) attack trees had no
visual distance between objects.

A number of examples demonstrate a perceptible visual dis-
tance. Kaynar and Sivrikaya [189] (Figure 19 top) used the
colour of the rectangle - red or yellow, to distinguish between
a precondition or exploit respectively. Similarly, Nandi et al.
[274] (Figure 19 bottom) use colour to differentiate exploits and
preconditions.

The example by Chaufette and Haag [63] (Figure 20 top)
and Durkota et al. [102] (Figure 20 middle) utilise a rectangle
and a rounded rectangle to represent a precondition and exploit
respectively. Sen and Madria [353] (Figure 20, bottom) utilise
a thick edge to differentiate exploits from preconditions. In all
three of these examples, there is an imperceptible visual dis-
tance which makes it difficult to discern between the shapes.

Table 14. Visual distance in attack graphs and attack trees

VD* Description and supporting citations

No visual
distance

[12, 85, 122, 133, 239, 240, 303, 316, 375, 417]

Attack
graph

Small visual
distance

Colour red and yellow rectangle: [189]; colour dif-
ferentiates ex and pr: [274]; thick edge differenti-
ates exploits: [353]; rectangle and rounded rectangle:
[63, 102]

Attack
tree

No visual
distance

[20, 19, 49, 51, 52, 99, 99, 110, 127, 147, 158, 167,
177, 186, 196, 203, 205, 247, 253, 262, 269, 277, 299,
305, 306, 310, 314, 315, 323, 324, 325, 334, 346, 354,
385, 386, 24]

Small visual
distance

Ellipse and rectangle appears to be used interchange-
ably: [111, 123]

* VD= Visual Distance

6.4.1. Colour in AMTs
Section 5.7.3 introduced the use of colour in AMTs. The

discussion therein outlined that although there are benefits to
the use of colour, there are numerous considerations that also
have to be borne when designing colour based visual syntax.
One of these is that colour should be applied effectively, i.e.,
there should be a cognitive reason for the use of a particular
colour. Relevant cognitive reasons could include to increase
the visual distance and make constructs more discernible, or to
add emphasis.

Vulnerability Exploit
IP Address: 75.62.3.35
CVE ID: CVE-2012-4576
CPE ID: CPE:/
o:Microso�:windows_xp::sp2
Applica�on name: Host 3 Windows XP

Privilege

IP Address: 75.62.3.35
Category: User Right
CPE Id: cpe:/
o:Microso�:windows_xp::sp2
Applica�on name: Host 3 Windows XP

2-0

4-55-20

Figure 19. Examples of a perceptible visual distance. Top: [189], bottom: [274]
- both adapted

Firewall
Access

Firewall
Vulnerable

Exploit Firewall
(0.27, 5, {2})

CVE-2002-0902

The src-a�ribute can be
terminated by BBCode

False data
injec�on
(0.506)

Node
Malfunc�on

(0.78)

Figure 20. Examples of a less perceptible visual distance. Top: [63]; middle:
[102]; bottom: [353] - both adapted

20

/ Elsevier Computer Science 00 (2019) 1–46 21

Table 15. Review of shapes used to represent preconditions
Attack tree Attack graph All

Shape n % β σ z p n % β σ z p n % β σ z p

Pr
ec

on
di

tio
n

noshape 15 28.8 2.34 0.86 2.73 0.01 28 28.9 2.94 0.84 3.52 0.00 43 28.9 3.37 0.83 4.06 0.00
ellipse 1 1.9 0.00 1.15 0.00 1.00 17 17.5 2.46 0.85 2.89 0.00 18 12.1 2.51 0.85 2.96 0.00

rectangle 21 40.4 2.66 0.84 3.15 0.00 15 15.5 2.34 0.86 2.73 0.01 36 24.2 3.19 0.83 3.83 0.00
circle 7 13.5 1.61 0.89 1.80 0.07 10 10.3 1.95 0.87 2.23 0.03 17 11.4 2.46 0.85 2.89 0.00

plaintext 5 9.6 1.30 0.92 1.41 0.16 24 24.7 2.79 0.84 3.32 0.00 29 19.5 2.98 0.84 3.56 0.00
diamond 3 3.1 0.85 0.98 0.87 0.39 3 2.0 0.85 0.98 0.87 0.39

rrectangle† 3 5.8 0.85 0.98 0.87 0.39 na 3 2.0 0.85 0.98 0.87 0.39
Total 52 97 149

In
iti

al
pr

ec
on

di
tio

ns

noshape 59 96.7 3.68 0.83 4.45 0.00 107 89.2 4.27 0.82 5.20 0.00 166 91.7 4.71 0.82 5.74 0.00
ellipse 4 3.3 1.10 0.94 1.17 0.24 4 2.2 1.10 0.94 1.17 0.24

rectangle 2 3.3 0.51 1.03 0.50 0.62 4 3.3 1.10 0.94 1.17 0.24 6 3.3 1.47 0.91 1.62 0.11
circle 3 2.5 0.85 0.98 0.87 0.39 3 1.7 0.85 0.98 0.87 0.39

triangle 2 1.7 0.51 1.03 0.50 0.62 2 1.1 0.51 1.03 0.50 0.62
Total 61 120 181

A
tta

ck
go

al

noshape 49 80.3 3.50 0.83 4.22 0.00 93 77.5 4.13 0.82 5.02 0.00 142 78.5 4.55 0.82 5.55 0.00
ellipse 5 4.2 1.30 0.92 1.41 0.16 5 2.8 1.30 0.92 1.41 0.16

rectangle 7 11.5 1.61 0.89 1.80 0.07 7 5.8 1.61 0.89 1.80 0.07 14 7.7 2.27 0.86 2.65 0.01
circle 2 3.3 0.51 1.03 0.50 0.62 5 4.2 1.30 0.92 1.41 0.16 7 3.9 1.61 0.89 1.80 0.07

plaintext 2 3.3 0.51 1.03 0.50 0.62 4 3.3 1.10 0.94 1.17 0.24 6 3.3 1.47 0.91 1.62 0.11
diamond 1 0.8 0.00 1.16 0.00 1.00 1 0.6 0.00 1.16 0.00 1.00
hexagon 1 0.8 0.00 1.16 0.00 1.00 1 0.6 0.00 1.16 0.00 1.00
octagon 4 3.3 1.10 0.94 1.17 0.24 4 2.2 1.10 0.94 1.17 0.24

rrectangle† 1 1.6 0.00 1.16 0.00 1.00 1 0.6 0.00 1.16 0.00 1.00
Total 61 120 181

E
xp

lo
it

noshape 5 8.9 1.30 0.92 1.41 0.16 6 5.4 1.47 0.91 1.62 0.11 11 6.6 2.04 0.87 2.35 0.02
ellipse 3 5.4 0.85 0.98 0.87 0.39 42 37.8 3.34 0.83 4.03 0.00 45 26.9 3.41 0.83 4.11 0.00

rectangle 31 55.4 3.05 0.84 3.64 0.00 17 15.3 2.46 0.85 2.89 0.00 48 28.7 3.48 0.83 4.19 0.00
circle 5 8.9 1.30 0.92 1.41 0.16 16 14.4 2.40 0.85 2.81 0.01 21 12.6 2.66 0.84 3.15 0.00

plaintext 6 10.7 1.47 0.91 1.62 0.11 22 19.8 2.71 0.84 3.21 0.00 28 16.8 2.94 0.84 3.52 0.00
diamond 2 1.8 0.51 1.03 0.50 0.62 2 1.2 0.51 1.03 0.50 0.62
hexagon 1 1.8 0.00 1.16 0.00 1.00 1 0.9 0.00 1.15 0.00 1.00 2 1.2 0.51 1.03 0.50 0.62
octagon 1 1.8 0.00 1.16 0.00 1.00 1 0.6 0.00 1.16 0.00 1.00
triangle 1 0.9 0.00 1.15 0.00 1.00 1 0.6 0.00 1.16 0.00 1.00

rrectangle† 4 7.1 1.10 0.94 1.17 0.24 4 3.6 1.10 0.94 1.17 0.24 8 4.8 1.74 0.89 1.96 0.05
Total 56 111 167

E
ve

nt
flo

w

topdown 0 0.0 106 88.3 4.26 0.82 5.19 0.00 106 58.6 4.26 0.82 5.19 0.00
bottomUp 59 96.7 3.68 0.83 4.45 0.00 7 5.8 1.61 0.89 1.80 0.07 66 36.5 3.79 0.83 4.59 0.00

leftright 2 3.3 0.51 1.03 0.50 0.62 7 5.8 1.61 0.89 1.80 0.07 9 5.0 1.85 0.88 2.10 0.04
Total 61 120 181

C
ol

ou
r no colour 39 63.9 3.27 0.83 3.93 0.00 64 53.3 3.76 0.83 4.55 0.00 103 56.9 4.23 0.82 5.15 0.00

shape 14 23.0 2.27 0.86 2.65 0.01 32 26.7 3.08 0.84 3.68 0.00 46 25.4 3.43 0.83 4.14 0.00
line 8 13.1 1.74 0.89 1.96 0.05 24 20.0 2.79 0.84 3.32 0.00 32 17.7 3.08 0.84 3.68 0.00

Total 61 120 181

L
in

e
te

xt
ur

e No 44 72.1 3.39 0.83 4.09 0.00 99 82.5 4.20 0.82 5.10 0.00 143 79.0 4.56 0.82 5.56 0.00
Yes 17 27.9 2.46 0.85 2.89 0.00 21 17.5 2.66 0.84 3.15 0.00 38 21.0 3.25 0.83 3.90 0.00

Total 61 120 181

Pr
ec

on
di

tio
n

op
er

at
or

s

noshape 7 11.5 1.61 0.89 1.80 0.07 105 87.5 4.25 0.82 5.17 0.00 112 61.9 4.32 0.82 5.25 0.00
ellipse 1 1.6 0.00 1.16 0.00 1.00 2 1.7 0.51 1.03 0.50 0.62 3 1.7 0.85 0.98 0.87 0.39

rectangle 2 3.3 0.51 1.03 0.50 0.62 2 1.7 0.51 1.03 0.50 0.62 4 2.2 1.10 0.94 1.17 0.24
circle 2 3.3 0.51 1.03 0.50 0.62 2 1.7 0.51 1.03 0.50 0.62 4 2.2 1.10 0.94 1.17 0.24

plaintext 1 1.6 0.00 1.16 0.00 1.00 3 2.5 0.85 0.98 0.87 0.39 4 2.2 1.10 0.94 1.17 0.24
diamond 3 2.5 0.85 0.98 0.87 0.39 3 1.7 0.85 0.98 0.87 0.39

FaultTree 22 36.1 2.71 0.84 3.21 0.00 1 0.8 0.00 1.16 0.00 1.00 23 12.7 2.75 0.84 3.27 0.00
Arc 21 34.4 2.66 0.84 3.15 0.00 1 0.8 0.00 1.16 0.00 1.00 22 12.2 2.71 0.84 3.21 0.00

triangle 1 1.6 0.00 1.16 0.00 1.00 1 0.8 0.00 1.16 0.00 1.00 2 1.1 0.51 1.03 0.50 0.62
Symbol 3 4.9 0.85 0.98 0.87 0.39 3 1.7 0.85 0.98 0.87 0.39

line 1 1.6 0.00 1.16 0.00 1.00 1 0.6 0.00 1.16 0.00 1.00
Total 61 120 181

L
ab

el
s No label 3 2.5 0.85 0.98 0.87 0.39 3 1.7 0.85 0.98 0.87 0.39

Pseudonymous 4 6.6 1.10 0.94 1.17 0.24 65 54.2 3.78 0.83 4.57 0.00 69 38.1 3.84 0.83 4.65 0.00
Label 10 16.4 1.95 0.87 2.23 0.03 29 24.2 2.98 0.84 3.56 0.00 39 21.5 3.27 0.83 3.93 0.00

Textual 47 77.0 3.46 0.83 4.17 0.00 23 19.2 2.75 0.84 3.27 0.00 70 38.7 3.85 0.83 4.67 0.00
Total 120 181

† rounded rectangle

σ = standard deviation

21

/ Elsevier Computer Science 00 (2019) 1–46 22

Figure 21. Review of the use of colour in attack graphs and attack trees

Table 16 presents a detailed overview of the use of colour in
preconditions and exploits, and Table 22 and Table 24 provide
a comprehensive overview of the decorative colour applied to
each attack graph and attack tree respectively with accompany-
ing citations and references to the original attack graph/attack
tree representations in the appendices.

78 (43.1%) AMTs utilised colour to either shade the shape
or the line. 46 (25.4%, β=3.43, z=4.14, p=0.00) exclusively
coloured the shape and 32 (17.7%, β=3.08, z=3.68, p=0.00)
exclusively coloured the line. 103 (56.9%) did not use colour
in any way (β=4.23, z=5.15, p=0.00).

The results show that although authors generally prefer not
to use colour, the use of colour to alter shapes and lines is
common and statistically significant. For example, although
there is a general preference not to use colour in attack trees
(n=39, 63.9%, β=3.27, z=3.93, p=0.00), the use of coloured
shapes (n=14, 23.0%, β=2.27, z=2.65 p=0.01) and coloured
lines (n=8, 13.1%, β=1.74, z=1.96 p=0.05) was common and
statistically significant.

Similarly, the use of coloured shapes (n=32, 26.7%,
β=3.08, z=3.68 p=0.00) and coloured lines (n=24, 20.0%,

Table 16. Use of colour in preconditions and exploits

Ellipse ebu egn erd egy etq eye evi ewh

Precondition AG 1 0 0 1 0 1 0 0

AT 0 1 0 0 0 1 0 0

Exploit AG 3 1 1 2 2 0 0 1

AT 0 1 0 0 0 0 0 0

Rectangle rbu rgn rgy rog rrd rbk rvi rye

Precondition AG 0 0 2 0 2 0 1 2

AT 0 1 2 0 0 0 0 0

Exploit AG 2 1 3 0 0 0 0 3

AT 2 1 4 1 0 0 0 0

Circle cbk cbu cgn cgy cog crd cwh cpk cye

Precondition AG 0 2 3 1 1 3 0 0 1

AT 0 2 0 1 0 1 0 0 0

Exploit AG 2 1 1 2 0 1 1 2 0

AT 0 0 0 1 0 1 0 0 0

Colour codes used in the descriptions are according to [165] corresponding to: vi:violet,
bu:blue, gn:green, og:orange, bk:black, ye:yellow, pk:pink, gy:grey, tq:turquoise, rd:red,
wh:white, bn:brown.

β=2.79, z=3.32 p=0.00), was common and statistically signifi-
cant.

4 of the 56 attack graphs presented the whole graph in a
particular colour. In these examples, colour was not used for
any perceivable cognitive reason. It was not used to increase
the visual distance or to add emphasis as all the shapes were
grey [125] or turquoise [2, 135, 136].

Nevertheless, a handful of attack graphs and attack trees
use colour to increase the visual distance between objects - for
example to represent elements such as: initial preconditions
[232, 428, 243, 432], and exploits [175, 256].

Table 16 reveals considerable variance in the way coloured
edges are used. Taking the representation of preconditions us-
ing a circle as a case in point, it can be observed that whilst 11
of the 22 representations apply a clear circle (with black edges),
the remaining 11 are variations which - for example, apply a
green circle [316], blue circle [432], red circle [209], grey cir-
cle [33], yellow circle [428], green circle [222] and an orange
circle [222].

6.4.2. Shape Edge Texture
Alterations in line style, colour or density are examples of

how shape edge texture can be adjusted to increase the visual
distance between objects to make them more perceptible. 14
(11.9%) attack graphs and 17 (27.9%) attack trees utilised tex-
ture in some form or other, these are highlighted in Table 17,
and some examples are provided herein.

Table 23 and Figure 22 highlight the approaches towards us-
ing line texture in attack graphs and attack trees. Table 22 and
Table 24 provide a comprehensive overview of the shape edge
texture applied to each attack graph and attack tree respectively
with accompanying citations and references to the original at-
tack graph/attack tree representations in the appendices.

The data shows that 143 of the 181 attack graphs and at-
tack trees (79%, β=4.56) analysed did not utilise shape edge
texture (z=5.56, p=0.00), whereas 38 (21.0%, β=3.25) did with
a smaller effect size (z=3.90, p=0.00). This was analysed fur-
ther to reveal that 99 of the 120 attack graphs (82.5%, β=4.20)
and 44 of the 61 attack trees (72.1%, β=3.39) did not utilise
line density. In both cases, the effect size was large indicating
a preference not to utilise shape edge texture (z=4.20, p=0.00
compared to z=2.66, p=0.00, and z=4.09, p=0.00 compared to

Figure 22. Review of the use of shape edge texture

22

/ Elsevier Computer Science 00 (2019) 1–46 23

z=2.89, p=0.00 respectively). Examples that utilise shape edge
texture are highlighted in Table 17, and some examples are pro-
vided herein.

Preconditions and exploits have been represented using a
dotted edge to represent the conjunction of two preconditions
[420], to represent exploits [274], to represent vulnerability
nodes, or a red/green edge to representno preconditions and ex-
ploits respectively [73].

Entire attack paths have been represented with double
edged rectangles which mark the nodes in the attack path [361]
or red edges [430].

The use of line density in attack trees is somewhat similar.
Line density has been used to represent attack paths [8], attack
goals [52, 60, 86] and mitigations [24, 40, 203, 299, 407].

Table 17. Representation of shape edge texture

Texture Description and citation

Edge texture Dotted rectangle represents precondition [54]; dotted edge
represents an exploit [420, 421]

Double/triple
edges

Doubled edged rectangles represent an attack path [361,
360]; double edged circle represents a goal: [273]; dou-
ble thick edge represents a goal: [149]; double edged el-
lipse represents a goal [422]; double edged circle represents
a goal [236, 233]; triple edged hexagon represents a goal
[289, 403]; thick lined circle represents a goal [36]

Coloured edges Red and green edges represent a precondition and exploit
respectively [73]; red edges represent an attack path [430]

Mixed Pink with dotted black edge represents an exploit [274]

6.5. The Use of Shapes in Attack Graph/Attack Tree Visual Syn-
tax

Shapes are a central and important visual variable. Shapes
are used in modelling systems to represent important concepts.

This section analyses the shapes used to represent precondi-
tions, exploits and precondition operators in attack graphs and
attack trees. The discussion begins by providing a high level
analysis of the shapes used to represent preconditions and ex-
ploits (Section 6.5.1). This is followed by an analysis of the vi-
sual syntax used to represent preconditions (Section 6.5.1 - in-
cluding initial preconditions, perpetrator capability and goals),
exploits (Section 6.5.1) and precondition operators (Section
6.5.2). The discussion then proceeds to demonstrate the prob-
lem of using diamonds and circles to represent constructs (Sec-
tion 6.5.3).

An overview of the shapes used is outlined in Figure 23.

6.5.1. The Visual Representation of Preconditions and Exploits
14 of the authors investigated in this study represented pre-

conditions using multiple shapes in the same paper. 6 au-
thors represented both preconditions and exploits using multi-
ple shapes in the same paper. These 20 papers were disqualified
from the analysis leaving 141 valid configurations.

An overview of the shapes used in attack graphs and attack
trees is presented in Figure 23 and Table 15. Table 22 and Table
24 provide a comprehensive overview of the shapes applied to
each attack graph and attack tree respectively with accompany-

Figure 23. AMT shapes count

23

/ Elsevier Computer Science 00 (2019) 1–46 24

ing citations and references to the original attack graph/attack
tree representations.

The data shows that the ellipse, rectangle, circle, plaintext,
diamond, hexagon, octagon and triangle have been used to rep-
resent preconditions and exploits. Of these shapes, ellipses,
rectangles, circles and plaintext are the dominant forms of rep-
resenting preconditions and exploits.

Preconditions. Figure 23 and Table 15 outline the shapes used
to represent preconditions.

The data shows that overall - that is including both attack
graphs and attack trees in the 149 papers reviewed, the pop-
ular shapes used to represent preconditions were the rectan-
gle (n=36, 24.2%, β=3.19, z=3.83, p=0.00), plaintext (n=29,
19.5%, β=2.98, z=3.56, p=0.00), ellipse (n=18, 12.1%,β=2.51,
z=2.96, p=0.00) and circle (n=17, 11.4%, β=2.46, z=2.89,
p=0.00).

This data can be broken down to analyse the use of shapes
across attack graphs and attack trees separately. The data
shows that attack graphs generally use plaintext (n=24, 24.7%,
β=2.79, z=3.32, p=0.00), ellipses (n=17, 17.5%, β=2.46,
z=2.89, p=0.00), rectangles (n=15, 15.5%, β=2.34, z=2.73,
p=0.01), and circles (n=10, 10.3% β=1.95, z=2.23, p=0.03) to
represent preconditions. 28 (28.5%, β=2.94, z=3.52, p=0.00)
attack graphs did not represent preconditions. Attack trees
favour rectangles (=21, 40.4%, β=2.66, z=3.15, p=0.00) and
circles (n=7, 13.5%, β=1.61, z=1.80). 15 (28.8%, β=2.34,
z=2.73, p=0.01) attack trees did not represent preconditions.

Initial Preconditions
The data provided in Figure 23 and Table 15 outlines the

representation of initial preconditions in attack graphs and at-
tack trees. Table 18 provides further insights into specific rep-
resentations.

The data shows that overall, it is not common to represent
initial preconditions (n=166, 91.7%, β=4.71, z=5.74). When
analysed across attack graphs and attack trees, the data shows
that 13 (10.8%) of the attack graph configurations and 2 (3.3%)
attack tree configurations represented initial preconditions. The
method of representing initial preconditions was diverse and
there was not enough data to determine custom and practice.
Given that the data shows that it is uncommon to represent ini-
tial preconditions, the corresponding narratives were explored
to understand the reasoning behind why:

Table 18. Representing initial preconditions in attack graphs and attack trees

AMT Shape Citation

Attack
graph

Rectangle [226, 227, 85, 41]; yellow rectangle: [173]
Circle Black circle [232]; grey circle: [428]; pink circle:

[172]
Ellipse grey ellipse: [278, 284]; violet ellipse: [6]; orange

ellipse: [159]
Triangle [125]; grey triangle: [290]

Attack tree Rectangle [324]; grey rectangle: [150]

1. The author considered it important or unimportant that
initial preconditions be expressed specifically.

2. The reason for representing an initial precondition in a
manner different to the precondition.

In either case, there was no explanation.

Perpetrator Capability
Although perpetrator capability can be an important consid-

eration in an attack model [313], none of the attack models con-
sidered in this survey distinctly presented this within the con-
figuration. This may be because perpetrator capability is a sec-
ondary construct, and many researchers choose to represent it
as a primary construct in the form of a precondition. Examples
of this representation include Wang et al. [405] who represent
the availability of the ftp service and the possession of trust
privileges using plaintext, and Wang and Jajodia [401] (Figure
10) who represent the availability of the sadmind service (a
precondition) and user privilege (a perpetrator capability) us-
ing ellipses.

Attack Goals
The final postcondition in an attack is the goal of the attack.

The data provided in Table 15 outlines the representation of
attack goals in attack graphs and attack trees.

39 (21.5%) of the attack graphs and attack trees specifi-
cally represented attack goals. Of these, 27 were attack graphs
and 10 were attack trees. Notably, 142 (78.5%, β=4.55) at-
tack graphs/attack trees did not represent attack goals. The
corresponding effect size (z=5.55, p=0.00) indicated that rep-
resentation of attack goals was not common. Notwithstanding,
the representation of attack goals using rectangles (n=14, 7.7%,
β=2.27, z=2.65 p=0.01) is statistically significant although the
effect size is small.

Here again, the corresponding narratives were explored to
understand the reasoning behind why:

1. The author considered it important or unimportant that
attack goals be expressed specifically.

2. The reason for representing an attack goals in a manner
different to the precondition.

In either case, there was no explanation.

Exploits. The data provided in Figure 23 and Table 15 outlines
the representation of exploits in attack graphs and attack trees.
Table 19 provide a comprehensive overview of the precise ex-
ploit configurations of each attack graph and attack tree respec-
tively.

The data shows that overall - that is including both at-
tack graphs and attack trees, the popular shapes used to rep-
resent exploits were rectangle (n=48, 28.7%, β=3.48, z=4.19,
p=0.00), ellipse (n=45, 26.9%, β=3.41, z=4.11, p=0.00), plain-
text (n=28, 16.8%, β=2.94, z=3.52, p=0.00), circle (n=21,
12.6%, β=2.66, z=3.15, p=0.00) and rounded rectangle (n=8,
4.8%, β=1.74, z=1.96, p=0.05).

When broken down to analyse the use of shapes across at-
tack graphs and attack trees separately, the data shows that the

24

/ Elsevier Computer Science 00 (2019) 1–46 25

most popular forms of representing exploits in attack graphs
were ellipse (n=42, 37.8%, β=3.34, z=4.03, p=0.00), plain-
text (n=22, 19.8%, β=2.71, z=3.21, p=0.00), rectangle (n=17,
15.3%, β=2.46, z=2.89, p=0.00) and circle (n=16, 14.4%,
β=2.40, z=2.81, p=0.01). In the attack tree representations,
the only shape to render a statistically significant result was the
rectangle (n=31, 55.4%, β=3.05, z=3.64, p=0.00).

The results show that although the overall results suggest
that the ellipse, rectangle, circle, plaintext and rounded rect-
angle are popular forms of representing exploits, the ellipse,
circle and plaintext are popular for the attack graph but not the
attack tree. The rounded rectangle - whilst statistically signifi-
cant overall, is not so for either the attack graph or attack tree.

Table 19. Analysis of exploit representation in attack trees

Shape Citation

Circle [203, 407, 205, 305]; red circle: [24]

Ellipse [86, 314] green ellipse: [127]

Hexagon [60]

Plaintext [8, 99, 177, 253, 315, 99]

Rectangle

[20, 49, 52, 110, 119, 158, 196, 247, 247, 262, 277, 299, 306, 324,
325, 346, 382, 386, 19, 147, 282, 245, 246, 269, 123] blue rectangle:
[321, 308] rounded rectangle: [51, 39, 334] green rectangle: [40]
grey rectangle: [126] [167] [186] [337] orange rectangle: [387]

Octagon Turqoise octagon: [150]

Mixed

Circle and rectangle: [323] [111] green hexagon and red hexagon:
[310] grey circle and grey triangle: [354] rectangle and ellipse: [395]
rectangle, rounded rectangle, and green rectangle: [385]

6.5.2. Representing Precondition Logic
The discussion in Section 3.2 outlined the importance of

presenting precondition logic. Data relating to how precondi-
tion logic is represented in attack graphs and attack trees is pre-
sented in Table 15, Table 20 and Figure 24. Raw data relating to
the use of visual syntax to represent precondition logic in attack
graphs and attack trees is provided in Table 20.

112 (61.9%, β=4.32, z=5.25, p=0.00) attack graphs/attack
trees did not represent precondition logic. The fault tree (n=23,
12.7%, β=2.75, z=3.27, p=0.00) and arc (n=22, 12.2%, β=2.71,
z=3.21, p=0.00) were the most popular form of representing
precondition logic.

When the attack graph and attack tree are analysed sepa-
rately, one can see that this is subject to Simpson’s paradox.
15 (12.5%) attack graphs presented precondition logic, 105
(87.5%, β=4.25) did not. The effect size (z=5.17, p=0.00) in-
dicates that it is not common to represent precondition logic in
attack graphs. Furthermore, although the ellipse, rectangle, cir-
cle, plaintext, fault tree symbol, arc and triangle have been used
to represent precondition logic, these results are not statistically
significant and the effect size is very small (ranging from z=0
to z=0.87).

The representation of precondition logic is much more com-
mon in the attack tree literature. 54 (89.0%) attack trees pre-
sented precondition logic. The fault tree (n=22, 36.1%, β=2.71,

z=3.21, p=0.00) and the arc (n=21, 34.4%, β=2.66, z=3.15,
p=0.00) were the most popular form of representing precondi-
tion logic.

Figure 24. Shapes used to represent precondition logic

6.5.3. The Problem with Diamonds and Circles
The data presented in Figure 23 and Table 15 demonstrates

that circles are a popular method of representing preconditions
and exploits, but diamonds, hexagons, octagons and triangles
are not. Diamonds, hexagons, octagons and triangles are proba-
bly unpopular because the use of these shapes compromises the
size of the textual label that can be added to the shape. However,
despite their popularity, circles are not suitable for representing
textual labels.

6.5.4. Circles
Gadyatskaya et al. [127] uses a combination of circles and

ellipses to represent preconditions and exploits. In this exam-
ple, it appears that the width is being adjusted to accommodate
the label being presented.

Table 20. Representation of precondition logic in attack graphs and attack trees

Shape Citation

Attack
graphs

Arc [122]; Circle [390], Black circle - [301]; Diamond [345, 344, 11, 4];
Ellipse Ellipse with the word ‘and’ inside [271, 353]. Ellipse represents
‘or’, diamond represents ‘and’ [54, 11, 4]; Fault tree symbols Fault tree
symbols turned upside down and coloured black: [239]; Plaintext [366,
383, 417, 54, 356]; Triangle The word ‘and’ added to a triangle [189]

Arc: [39, 40, 49, 105, 253, 104, 186, 245, 203, 24, 407, 246, 177, 127,
354]; Arc with the word ‘or’. Absence of arc represents ‘and’: [123];
Double arc is an ‘and’: [282]; Arc with the word ‘and’ and a double arc
with the word ‘or’: [324]; Arc - word ‘and’ added to the arc - the absence
of an arc represents an ‘or’: [346, 299, 110]

Attack
Tree

Fault tree symbols: [147, 395, 60, 321, 306, 337, 247, 297, 305, 382,
167, 99, 205, 111, 323]; The words ‘and’ and ‘or’ added the fault tree
shapes: [99, 158, 330, 331, 332, 334]; The words ‘and/or’ added to the
side of the fault tree symbol: [247]; The word ‘or’ added to a rectangle
which sit to the side of the fault tree symbol: [262]; Incorporate both
an ‘and’ and a ‘sequential and’ with the latter being represented with a
left-right arrow in the ‘and’ symbol: [20, 19]
Miscellaneous methods. Circle. With the word ‘and/or’: [310]; The
word ‘and’ inside, absence of circle represents ‘or’: [119]; Ellipse and
rectangle Green ellipse and blue rectangle to represent ‘and/or’ respec-
tively: [126]; Edge/line. use the edge connecting events to represent pre-
condition operators. A solid edge represents ‘and’ and a dotted edge
represents ‘or’: [97]; Plaintext: [325]; Rectangle. Thick edged rectan-
gle and black rectangle represent ‘and/or’ respectively: [196]; Rectangle:
‘or’, rounded rectangle: ‘and’: [385]; ∧ and ∨ to represent ‘and/or’ re-
spectively: [51, 277, 315]; Triangle. Triangle with a ‘plus’ symbol inside:
‘and’ - [269]

25

/ Elsevier Computer Science 00 (2019) 1–46 26

In an example by Ralston et al. [321]3, the text is hanging
over the edges of some of the circles. Another example of this is
provided by Patel et al. [308] who present textual labels within
circles - here again the text is hanging over the edges of some
of the circles.

6.5.5. Diamonds
5 of the AMTs that used a diamond combined it with a

pseudonymous label and ‘stretched’ the diamond to enable the
label to fit [345, 430, 4, 133, 376].

Generally, the combination of circles/diamonds with char-
acter or pseudonymous labels is not a problem [36, 157, 11,
317, 303], and the present review found only one instance
where a textual label fits a circle without the need to modify
the circle size [366].

This demonstrates that diamonds and circles - whilst suited
to accommodating character labels, are not suited to accommo-
dating pseudonymous or textual labels. The shape has to be
unacceptably modified to accommodate the label. This is not
a problem unique to attack graphs. In a Riskit diagrams pre-
sented by Kontio and Basili, circles are used to represent pro-
cesses [202]. Here again there are numerous examples where
the textual label does not fit into the circle. In most cases, the
text is allowed to bleed over the edge4.

3Tanu and Arreymbi presents the same attack graph in their paper - with the
same results [382].

4Consider for example Figure 6 in [202].

7. Discussion

This paper provided an overview of cyber-attack theory and
emphasised the primary constructs (exploit, precondition and
precondition logic) and secondary constructs (initial precondi-
tion, perpetrator capability, postcondition and goal). These pri-
mary constructs represent the basic elements of a cyber-attack
and are considered to be the concepts that should be represented
in an AMT.

A key argument in this paper has been that although the re-
search shows a clear divide between papers that focus on attack
graphs and those that focus on attack trees, both attack graphs
and attack trees are essentially a graph based structure with the
main differences being the manner in which event flow is repre-
sented, the representation of preconditions, and representation
of full and partial attacks. This is an important argument in
the context of the present study and has rarely been expressed
before. This premise enables similar studies to generalise the
problem domain to include both attack graphs and attack trees.

One of the central arguments of this paper is that the vi-
sual syntax of attack models such as attack graphs and attack
trees is not scientifically designed, and that researchers use self-
nominated visual syntax to model the attack. This is referred to
by Alexander [9] as the unselfconscious design approach and
manifests itself in some graph based AMTs in three ways:

1. Failure to standardise.
2. Ineffective design.
3. An assumption of cognitive effectiveness.

Table 21. Custom and practice in the representation of constructs in attack graphs and attack trees

Concept Custom and Practice

Event flow There is a preference towards representing event flow as both top-down (n=106, 58.6%, β=4.26, z=5.19 p=0.00) and bottom-up (n=66, 36.5%, β=3.79, z=4.59
p=0.00)

Colour There is a strong preference not to use colour to in attack graphs and attack trees (n=103, 56.9%, β=4.23, z=5.15 p=0.00). Where colour is used, it is used to
colour the entire shape (n=46, 25.4%, β=3.43, z=4.14 p=0.00), or the edge of the shape (n=32, 17.7%, β=3.08, z=3.68 p=0.00). Grey, green, blue, red, yellow
are the most popular colours. Colour is generally used to represent particular concepts and occasionally used to increase visual distance.

Line texture There is a preference not to use line texture in attack graphs and attack trees (n=143, 79.0%, β=4.56, z=5.56 p=0.00). Although a number of authors have
used line texture (n=38, 21.0%, β=3.25, z=3.90 p=0.00), there is no consistent approach to how colour is used in attack graphs or attack trees

Preconditions There is a preference across attack graphs and attack trees to represent preconditions using rectangles, (n=36, 24.2%, β=3.19, z=3.83 p=0.00), plaintext (n=29,
19.5%, β=2.98, z=3.56 p=0.00), circles (n=17, 11.4%, β=2.46, z=2.89 p=0.00), and ellipses (n=18, 12.1%, β=2.51, z=2.96 p=0.00) in that order. There is
also a preference not to represent preconditions (n=43, 28.9%, β=3.37, z=4.06 p=0.00).

Initial
preconditions

The general preference amongst authors is not to represent initial preconditions in attack graphs or attack trees (n=166, 91.7%, β=4.71, z=5.74 p=0.00).

Perpetrator
capability

Perpetrator
capability is not specifically represented in any of the attack graphs or attack trees surveyed.

Attack goals The general preference amongst authors is not to represent attack goals (n=142, 78.5%, β=4.55, z=5.55 p=0.00. However, there is a preference to represent
attack goals using rectangles (n=14, 7.7%, β=2.27, z=2.65 p=0.01).

Exploits There is a preference across attack graphs and attack trees to represent exploits using a rectangle (n=48, 28.7%, β=3.48, z=4.19 p=0.00), ellipse (n=45, 26.9%,
β=3.41, z=4.11 p=0.00), plaintext (n=28, 16.8%, β=2.94, z=3.52 p=0.00), circle (n=21, 12.6%, β=2.66, z=3.15 p=0.00), and rounded rectangle (n=8, 4.8%,
β=1.74, z=1.96 p=0.05) in that order. There is also a preference not to represent exploits (n=11, 6.6%, β=2.04, z=2.35 p=0.02).

Precondition
logic

The representation of precondition logic is common in attack trees where the common methods of representing precondition logic is to use the fault tree
method (n=23, 12.7%, β=2.75, z=3.27 p=0.00) or the arc method (n=22, 12.2%, β=2.71, z=3.21 p=0.00). Most attack graphs and attack trees do not represent
precondition logic (n=112, 61.9%, β=4.32, z=5.25 p=0.00).

Labels The common methods of representing labels in both attack graphs and attack trees is as textual (n=70, 38.7%, β=3.85, z=4.67 p=0.00), pseudonymous (n=69,
38.1%, β=3.84, z=4.65 p=0.00) and character labels (n=39, 21.5%, β=3.27, z=3.93 p=0.00).

26

/ Elsevier Computer Science 00 (2019) 1–46 27

7.1. A Failure to Standardise

The visual syntax of modelling systems such as fault trees
and Petri nets is standardised [166, 311] - resulting in a common
understanding of the visual syntax used to represent elements of
the respective framework.

Attack graphs and attack trees which suffer from a lack of
standardisation and a distinct lack of prescriptive methodolo-
gies and common approaches in terms of their visual syntax
[87] which leads to the problem of “ambiguous semantics”
[253]. This paper (Section 6) showed that there are more than
seventy five attack graph visual syntax configurations and more
than twenty attack tree configurations.

The visual syntax in these examples differ in terms of the
shapes used to represent constructs such as preconditions and
exploits. The availability of numerous opposing proposals can
give rise to confusion for researchers and practitioners in de-
ciding which to use and is evidence of an “immature research
field” resulting in a “fragmentation of research efforts” [265].

7.2. Ineffective Design

Many AMTs appear not to have undergone an effective de-
sign process. Too often, the cognitive value of graphical models
is overlooked in the design of the model.

As in many other visual modelling systems, the design
of AMT visual syntax is “ad hoc” [265], “unscientific”, and
based on “intuition... [and]... personal taste rather than sci-
entific evidence” [263]. Hogganvik and Stølen adds that the
visual syntax is used as “decoration” or aesthetic attribute to
make the model “look nicer” [152]. The effect of this is that
the visual modelling system conveys unintended and distorted
meanings [263].

7.3. An Assumption of Cognitive Effectiveness

Moody argues that cognitive effectiveness “is not an intrin-
sic property”, it has to be designed into the framework, but too
often, the cognitive value of diagrams is assumed without ev-
idence. Bad layout decisions can distort information and give
way to unintended judgements on diagram aesthetics [263].

Ineffective design can lead to systems that are cognitively
ineffective - resulting in visual syntax that is visually and cog-
nitively unintuitive.

Quite often, these designs have not been tested for their ef-
ficacy in enabling observers to understand complex attack se-
quences. Where they have been tested, this has often been done
post-design [151].

There are very few formal methods of evaluating concep-
tual models and visual syntax [419] and where attempts have
been made to evaluate such methods, these have been done in a
“limited fashion” [264].

Section 5.8 showed that there are limitations in terms of the
diversity of AMT selection, fundamental conceptual differences
in AMTs, statistical significance, and a failure in the effective
pedagogic grounding of these studies.

The key contribution of this paper has been a quantitative
analysis of the attack graph and attack tree visual syntax pro-
posed by researchers. This analysis has highlighted the range
of visual variables used in the published literature. This has
been referred to in this paper as custom and practice and is
summarised in Table 21.

The discussion has also demonstrated four related prob-
lems:

• The problem of internal and external semiotic inconsis-
tency.

• That there is wide ranging practice deployed in the con-
struction of attack graphs and attack trees.

• That there are no standard methods for presenting either
attack graphs or attack trees.

• The visual syntax of both attack graphs and attack trees
is self-selected.

This discussion emphasises the importance of designing an
attack graph visual syntax using evidence based design princi-
ples. This discussion alongside the theories and methodologies
relating to visual syntax design outlined in Section 5 provide the
basis for the attack graph design described in [216] and [217].

The work described in Lallie et al. [216] and Lallie et al.
[217] is one of the first attempts to develop a standardised attack
graph visual syntax.

References

[1] Abed, F. [1991], ‘Cultural Influences on Visual Scanning Patterns’, Jour-
nal of Cross-Cultural Psychology 22(4), 525–534.

[2] Abraham, S. and Nair, S. [2015], ‘A Predictive Framework for Cyber
Security Analytics Using Attack Graphs’, International Journal of Com-
puter Networks & Communications (IJCNC) 7(1), 1–17.

[3] Agogino, A. M. and Rege, A. [1987], ‘IDES: Influence Diagram Based
Expert System’, Mathematical Modelling 8, 227–233.

[4] Aguessy, F.-X. [2016], Évaluation Dynamique De Risque Et Calcul De
Réponses Basés Sur Des Modéles D’attaques Bayésiens, PhD thesis.

[5] Ahmed, I. K. and Fapojuwo, A. O. [2016], Security Threat Assessment of
Simultaneous Multiple Denial-of-Service Attacks in IEEE 802.22 Cog-
nitive Radio Networks, in ‘17th International Symposium on World of
Wireless, Mobile and Multimedia Networks (WoWMOM2016)’, IEEE,
pp. 1–9.

[6] Albanese, M., Jajodia, S. and Noel, S. [2012], Time-efficient and Cost-
effective Network Hardening Using Attack Graphs, in ‘42nd Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN2012)’, IEEE, pp. 1–12.

[7] Albanese, M., Jajodia, S., Pugliese, A. and Subrahmanian, V. [2011],
Scalable Analysis of Attack Scenarios, in ‘European Symposium on Re-
search in Computer Security (ESORICS2011)’, Springer, pp. 416–433.

[8] Alberts, C. and Dorofee, A. [2001], OCTAVESM Threat Profiles, Tech-
nical report, Software Engineering Institute, Carnegie Mellon University.

[9] Alexander, C. [1964], Notes on the Synthesis of Form, Vol. 5, Harvard
University Press, London, UK.

[10] Alexander, I. [2003], ‘Misuse Cases: Use Cases with Hostile Intent’,
IEEE Software 20(1), 58–66.

[11] Alhomidi, M. and Reed, M. [2014], ‘Attack Graph-Based Risk Assess-
ment and Optimisation Approach’, International Journal of Network Se-
curity & Its Applications 6(3), 31.

[12] Alhomidi, M., Reed, M. J. et al. [2012], Attack Graphs Representations,
in ‘4th Conference on Computer Science and Electronic Engineering
(CEEC2012)’, IEEE, pp. 83–88.

27

/ Elsevier Computer Science 00 (2019) 1–46 28

[13] Almohri, H. M., Watson, L. T., Yao, D. and Ou, X. [2016], ‘Security
Optimization of Dynamic Networks with Probabilistic Graph Modeling
and Linear Programming’, IEEE Transactions on Dependable and Secure
Computing 13(4), 474–487.

[14] Alserhani, F., Akhlaq, M., Awan, I. U., Cullen, A. J. and Mirchandani, P.
[2010], MARS: Multi-stage Attack Recognition System, in ‘24th Inter-
national Conference on Advanced Information Networking and Applica-
tions (AINA2010)’, IEEE, pp. 753–759.

[15] Alserhani, F. M. [2015], Knowledge-Based Model to Represent Secu-
rity Information and Reason About Multi-stage Attacks, in ‘Advanced
Information Systems Engineering Workshop (CAISE’2015)’, Springer,
pp. 482–494.

[16] Ammann, P., Wijesekera, D. and Kaushik, S. [2002], Scalable, Graph-
based Network Vulnerability Analysis, in ‘Proceedings of the 9th ACM
Conference on Computer and Communications Security (CCS’02)’,
ACM, pp. 217–224.

[17] Amor, N. B., Benferhat, S. and Elouedi, Z. [2004], Naive Bayes Vs Deci-
sion Trees in Intrusion Detection Systems, in ‘Proceedings of the 19th
ACM Symposium on Applied Computing (SAC’04)’, ACM, pp. 420–
424.

[18] Amoroso, E. G. [1994], Fundamentals of Computer Security Technology,
Prentice-Hall, Upper Saddle River, New Jersey.

[19] Arnold, F., Guck, D., Kumar, R. and Stoelinga, M. [2015], Sequential and
Parallel Attack Tree Modelling, in ‘International Conference on Com-
puter Safety, Reliability, and Security (SAFECOMP2015)’, Springer,
pp. 291–299.

[20] Arnold, F., Hermanns, H., Pulungan, R. and Stoelinga, M. [2014],
Time-dependent Analysis of Attacks., in ‘Third International Conference,
(POST2014)’, Vol. 14, pp. 285–305.

[21] Artz, M. L. [2002], Netspa: A Network Security Planning Architecture,
PhD thesis.

[22] Aslanyan, L. H., Alipour, D. and Heidari, M. [2013], ‘Comparative Anal-
ysis of Attack Graphs’, Mathematical Problems of Computer Science
40, 85–95.

[23] Baftiu, N. [2017], ‘Cyber Security in Kosovo’, European Journal of Eco-
nomics, Law and Social Sciences 1(1).

[24] Bagnato, A., Kordy, B., Meland, P. H. and Schweitzer, P. [2012], ‘At-
tribute Decoration of Attack–defense Trees’, International Journal of Se-
cure Software Engineering (IJSSE) 3(2), 1–35.

[25] Baker, S. E. and Edwards, R. [2012], How Many Qualitative Inter-
views Is Enough, Technical report, National Centre for Research Methods
(NCRM).

[26] Barik, M. S. and Mazumdar, C. [2011], A Novel Approach to Collab-
orative Security Using Attack Graph, in ‘5th International Conference
on Internet Multimedia Systems Architecture and Application (IMSAA),
2011’, IEEE, pp. 1–6.

[27] Barik, M. S. and Mazumdar, C. [2014], A Graph Data Model for Attack
Graph Generation and Analysis, in ‘Recent Trends in Computer Networks
and Distributed Systems Security’, Springer, New York, USA, pp. 239–
250.

[28] Barik, M. S., Sengupta, A. and Mazumdar, C. [2016], ‘Attack Graph Gen-
eration and Analysis Techniques’, Defence Science Journal 66(6), 559.

[29] Barker, R. [1990], Case Method: Entity Relationship Modelling,
Addison-Wesley Longman Publishing Co., Inc., Boston, Masschusets,
USA.

[30] Barrere, M. and Lupu, E. C. [n.d.], Naggen: A Network Attack Graph
Generation Tool, in ‘Proceedings of the IEEE Conference on Communi-
cations and Network Security (CNS17)’, Las Vegas, NV USA.

[31] Bates, A., Hassan, W. U., Butler, K., Dobra, A., Reaves, B., Cable, P.,
Moyer, T. and Schear, N. [2017], Transparent Web Service Auditing
Via Network Provenance Functions, in ‘Proceedings of the 26th Inter-
national Conference on World Wide Web (WWW2017)’, International
World Wide Web Conferences Steering Committee, pp. 887–895.

[32] Baybutt, P. [2003], ‘Cyber Security Vulnerability Analysis: An Asset-
based Approach’, Process Safety Progress 22(4), 220–228.

[33] Beckers, K., Heisel, M., Krautsevich, L., Martinelli, F., Meis, R. and
Yautsiukhin, A. [2014], Determining the Probability of Smart Grid At-
tacks by Combining Attack Tree and Attack Graph Analysis, in ‘Interna-
tional Workshop on Smart Grid Security (SmartGridSec2014)’, Springer,
pp. 30–47.

[34] Benbasat, I., Dexter, A. S. and Todd, P. [1986], ‘An Experimental Pro-

gram Investigating Color-enhanced and Graphical Information Presen-
tation: An Integration of the Findings’, Communications of the ACM
29(11), 1094–1105.

[35] Bertin, J. [1983], Semiology of Graphics: Diagrams, Networks, Maps,
University of Wisconsin press, Wisconsin, USA.

[36] Bhattacharya, S., Malhotra, S. and Ghsoh, S. [2008], A Scalable Repre-
sentation Towards Attack Graph Generation, in ‘1st International Confer-
ence on Information Technology, IT 2008’, IEEE, pp. 1–4.

[37] Bi, K., Han, D. and Wang, J. [2016], ‘K Maximum Probability Attack
Paths Dynamic Generation Algorithm’, Computer Science and Informa-
tion Systems 13(2), 677–689.

[38] Bialas, A. [2015], Critical Infrastructures Risk Manager–the Basic Re-
quirements Elaboration, in ‘Theory and Engineering of Complex Systems
and Dependability’, Springer, New York, USA, pp. 11–24.

[39] Bistarelli, S., Dall’Aglio, M. and Peretti, P. [2006], Strategic Games on
Defense Trees, in ‘International Workshop on Formal Aspects in Security
and Trust’, Springer, pp. 1–15.

[40] Bistarelli, S., Fioravanti, F. and Peretti, P. [2006], Defense Trees for Eco-
nomic Evaluation of Security Investments, in ‘First International Confer-
ence on Availability, Reliability and Security (ARES’06)’, IEEE, pp. 8–
pp.

[41] Bopche, G. S. and Mehtre, B. M. [2017], ‘Graph Similarity Metrics for
Assessing Temporal Changes in Attack Surface of Dynamic Networks’,
Computers & Security 64, 16–43.

[42] Borges, A. [2014], ‘How to Perform a Heartbleed Attack’. Date accessed:
20-09-2018.
URL: https://alexandreborgesbrazil.files.wordpress.com/2014/04/ hear-
bleed attack version a 1.pdf

[43] Bortot, S., Fedrizzi, M., Giove, S. et al. [2011], Modelling Fraud Detec-
tion by Attack Trees and Choquet Integral, Technical report, Department
of Computer and Management Sciences, University of Trento, Italy.

[44] Boston University [2015], Sony Hack: A Nauseating Whodunit, Techni-
cal report, Boston University.

[45] Braynov, S. and Jadliwala, M. [2003], Representation and Analysis of
Coordinated Attacks, in ‘Proceedings of the 2003 ACM Workshop on
Formal Methods in Security Engineering’, ACM, pp. 43–51.

[46] Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F. and Mylopoulos, J.
[2004], ‘TROPOS: An Agent-oriented Software Development Methodol-
ogy’, Autonomous Agents and Multi-agent Systems 8(3), 203–236.

[47] Brooke, P. J. and Paige, R. F. [2003], ‘Fault Trees for Security System
Design and Analysis’, Computers & Security 22(3), 256–264.

[48] BSI [2007], ‘BS EN 61025:2007 - Fault Tree Analysis’.
[49] Buldas, A., Laud, P., Priisalu, J., Saarepera, M. and Willemson, J.

[2006], ‘Rational Choice of Security Measures Via Multi-parameter At-
tack Trees’, Lecture Notes in Computer Science 4347, 235–248.

[50] Buldas, A. and Lenin, A. [2013], New Efficient Utility Upper Bounds for
the Fully Adaptive Model of Attack Trees, in ‘International Conference
on Decision and Game Theory for Security (GameSec2013)’, Springer,
pp. 192–205.

[51] Buldas, A. and Stepanenko, R. [2012], Upper Bounds for Adversaries
Utility in Attack Trees, in ‘International Conference on Decision and
Game Theory for Security’, Springer, pp. 98–117.

[52] Buoni, A., Fedrizzi, M. and Mezei, J. [n.d.], A Delphi-based Approach to
Fraud Detection Using Attack Trees and Fuzzy Numbers, in ‘Proceeding
of the IASK International Conferences’, Seville, Spain.

[53] Buyens, K., De Win, B. and Joosen, W. [2007], Empirical and Statistical
Analysis of Risk Analysis-driven Techniques for Threat Management, in
‘Second International Conference on Availability, Reliability and Secu-
rity, ARES 2007’, IEEE, pp. 1034–1041.

[54] Byers, D., Ardi, S., Shahmehri, N. and Duma, C. [2006], Modeling Soft-
ware Vulnerabilities with Vulnerability Cause Graphs, in ‘Proceedings of
the International Conference on Software Maintenance’.

[55] Byres, E., Ginter, A. and Langill, J. [2011], How Stuxnet Spreads–a Study
of Infection Paths in Best Practice Systems, Technical report, Tofino Se-
curity, White Paper.

[56] Byres, E. J., Franz, M. and Miller, D. [n.d.], The Use of Attack Trees in
Assessing Vulnerabilities in Scada Systems, in ‘Proceedings of the Inter-
national Infrastructure Survivability Workshop’, Lisbon, Portugal.

[57] Caire, P., Genon, N., Heymans, P. and Moody, D. L. [2013], Visual Nota-
tion Design 2.0: Towards User Comprehensible Requirements Engineer-
ing Notations, in ‘21st IEEE International Conference on Requirements

28

/ Elsevier Computer Science 00 (2019) 1–46 29

Engineering (RE’13) ’, IEEE, pp. 115–124.
[58] Caltagirone, S., Pendergast, A. and Betz, C. [2013], The Diamond

Model of Intrusion Analysis, techreport, Cyber Squared Ltd, Southmoor,
England.
URL: http://www.activeresponse.org/wp-
content/uploads/2013/07/diamond.pdf

[59] Campean, F. and Henshall, E. [2008], A Function Failure Approach to
Fault Tree Analysis for Automotive Systems, Technical Report 0148-
7191, SAE Technical Paper.

[60] Cervesato, I. and Meadows, C. [2007], ‘One Picture Is Worth a Dozen
Connectives: A Fault-tree Representation of Npatrl Security Require-
ments’, IEEE Transactions on Dependable and Secure Computing
4(3), 216.

[61] Chan, A. H. and Ng, A. W. [2009], ‘Perceptions of Implied Hazard for
Visual and Auditory Alerting Signals’, Safety Science 47(3), 346–352.

[62] Chandra, B. [2014], A Technical View of The Openssl ’heartbleed’ Vul-
nerability, Technical report, IBM.

[63] Chaufette, N. and Haag, T. [2007], Vulnerability Cause Graphs: A Case
of Study, Technical report, Linkopings universitet, Sweden.

[64] Chen, F., Liu, D., Zhang, Y. and Su, J. [2010], ‘A Scalable Approach to
Analyzing Network Security Using Compact Attack Graph’, Journal of
Networks 5(5), 543.

[65] Chen, F., Su, J. and Zhang, Y. [2009], A Scalable Approach to Full Attack
Graphs Generation, in ‘7th International Symposium, (ESSoS 2015)’,
Springer, pp. 150–163.

[66] Chen, H. H. and Cheng, C.-S. [2011], Fractional Factorial Designs, in
‘Design and Analysis of Experiments, Special Designs and Applications’,
Vol. 3, John Wiley & Sons, Hoboken, New Jersey, USA, p. 299.

[67] Cheng, C.-Y., Li, S.-F., Chu, S.-J., Yeh, C.-Y. and Simmons, R. J. [2013],
‘Application of Fault Tree Analysis to Assess Inventory Risk: A Practical
Case from Aerospace Manufacturing’, International Journal of Produc-
tion Research 51(21), 6499–6514.

[68] Cheng, H. T., Shan, H. and Zhuang, W. [2011], ‘Infotainment and Road
Safety Service Support in Vehicular Networking: From a Communication
Perspective’, Mechanical Systems and Signal Processing 25(6), 2020–
2038.

[69] Cheng, P. C.-H., Lowe, R. K. and Scaife, M. [2001], Cognitive Science
Approaches to Understanding Diagrammatic Representations, in ‘Think-
ing with Diagrams’, Springer, New York, USA, pp. 79–94.

[70] Cheng, P., Wang, L. and Long, T. [2010], Compressing Attack Graphs
through Reference Encoding, in ‘10th International Conference on Com-
puter and Information Technology (CIT), 2010’, IEEE, pp. 1026–1031.

[71] Cheung, S., Lindqvist, U. and Fong, M. W. [2003], Modeling Multistep
Cyber Attacks for Scenario Recognition, in ‘Proceedings of the DARPA
Information Survivability Conference and Exposition, (DISCEX2003)’,
Vol. 1, IEEE, pp. 284–292.

[72] Chokron, S. and De Agostini, M. [2000], ‘Reading Habits Influence Aes-
thetic Preference’, Cognitive Brain Research 10(1-2), 45–49.

[73] Chokshi, I., Ghosh, N. and Ghosh, S. K. [2012], Efficient Generation of
Exploit Dependency Graph by Customized Attack Modeling Technique,
in ‘18th Annual International Conference on Advanced Computing and
Communications (ADCOM2012)’, IEEE, pp. 39–45.

[74] Choo, K.-K. R. [2014], ‘A Cloud Security Risk-management Strategy’,
IEEE Cloud Computing 1(2), 52–56.

[75] Coffey, J. W. [2017], Ameliorating Sources of Human Error in Cyber-
Security: Technological and Human-Centered Approaches, in ‘8th Inter-
national Multi-Conference on Complexity, Informatics and Cybernetics,
Pensacola’, IMCIC, pp. 85–88.

[76] Colour Blind Awareness [2018], ‘Colour Blindness’. Date accessed: 20-
9-18.
URL: http://www.colourblindawareness.org/

[77] CSRC [2016], Usability of Security, Technical report, NIST.
[78] Cuppens, F. [2001], Managing Alerts in a Multi-intrusion Detection En-

vironment, in ‘17th Annual Computer Security Applications Conference
(ACSAC2001)’, Vol. 1, IEEE, p. 22.

[79] Cuppens, F. and Miege, A. [2002], Alert Correlation in a Cooperative
Intrusion Detection Framework, in ‘Proceedings of the IEEE Symposium
on Security and Privacy, 2002’, IEEE, pp. 202–215.

[80] Cuppens, F. and Ortalo, R. [2000], LAMBDA: A Language to Model
a Database for Detection of Attacks, in ‘3rd International Workshop,
(RAID 2000)’, Springer, Toulouse, France, pp. 197–216.

[81] Dacier, M. [1994], Towards Quantitative Evaluation of Computer Secu-
rity, PhD thesis.

[82] Dacier, M. and Deswarte, Y. [1994], Privilege Graph: An Extension to the
Typed Access Matrix Model, in ‘3rd European Symposium on Research
in Computer Security (ESORICS94)’, Springer, pp. 319–334.

[83] Dacier, M., Deswarte, Y. and Kaâniche, M. [1996], Models and Tools
for Quantitative Assessment of Operational Security, in ‘Information Sys-
tems Security’, IBM TJ Watson Research Center, Yorktown Heights, New
York, USA, pp. 177–186.

[84] Dahl, H. E., Hogganvik, I. and Stølen, K. [2007], Structured Semantics
for the Coras Security Risk Modelling Language. Report STF07 A970,
Technical report, SINTEF Information and Communication Technology.

[85] Dai, F., Hu, Y., Zheng, K. and Wu, B. [2015], ‘Exploring Risk Flow
Attack Graph for Security Risk Assessment’, IET Information Security
9(6), 344–353.

[86] Daley, K., Larson, R. and Dawkins, J. [2002], A Structural Framework for
Modeling Multi-stage Network Attacks, in ‘Proceedings of the Interna-
tional Conference on Parallel Processing Workshops, (ICPP-02)’, IEEE,
pp. 5–10.

[87] Dalton, G. C., Mills, R. F., Colombi, J. M. and Raines, R. A. [2006],
Analyzing Attack Trees Using Generalized Stochastic Petri Nets, in ‘In-
formation Assurance Workshop’, IEEE, pp. 116–123.

[88] Daly, M. K. [2009], ‘Advanced Persistent Threat’, Usenix, Nov
4(4), 2013–2016.

[89] Dantu, R., Loper, K. and Kolan, P. [n.d.], Risk Management Using Behav-
ior Based Attack Graphs, in ‘Proceedings of the International Conference
on Information Technology: Coding and Computing, (ITCC 2004)’, Las
Vegas, NV, USA.

[90] Davis, F. D. [1985], A Technology Acceptance Model for Empirically
Testing New End-user Information Systems: Theory and Results, PhD
thesis.

[91] Dawkins, J. and Hale, J. [2004], A Systematic Approach to Multi-stage
Network Attack Analysis, in ‘Proceedings of the 2nd IEEE International
Information Assurance Workshop, 2004’, IEEE, pp. 48–56.

[92] DCMS [2017], Cyber Security Breaches Survey 2017, Technical report,
Department for Digital, Culture, Media & Sport, UK Government.

[93] De Marco, T. [1979], Structure Analysis and System Specification, in
‘Pioneers and Their Contributions to Software Engineering’, Springer,
New York, USA, pp. 255–288.

[94] De Marco, T. [2002], Structured Analysis and System Specification, in
‘Software Pioneers’, Springer, New York, USA, pp. 529–560.

[95] den Braber, F., Dimitrakos, T., Gran, B. A., Lund, M. S., Stølen, K. and
Aagedal, J. Ø. [2003], ‘The Coras Methodology: Model-based Risk As-
sessment Using UML and UP’, UML and the Unified Process pp. 332–
357.

[96] den Braber, F., Hogganvik, I., Lund, M., Stølen, K. and Vraalsen, F.
[2007], ‘Model-based Security Analysis in Seven Steps - a Guided Tour
to the Coras Method’, BT Technology Journal 25(1), 101–117.

[97] Dewri, R., Poolsappasit, N., Ray, I. and Whitley, D. [2007], Optimal
Security Hardening Using Multi-objective Optimization on Attack Tree
Models of Networks, in ‘Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS’07)’, ACM, pp. 204–213.

[98] Diallo, M. H., Romero-Mariona, J., Sim, S. E., Alspaugh, T. A. and
Richardson, D. J. [2006], A Comparative Evaluation of Three Ap-
proaches to Specifying Security Requirements, in ‘12th Working Con-
ference on Requirements Engineering: Foundation for Software Quality
(RefsQ’06)’.

[99] Dondossola, G., Pietre-Cambacedes, L., McDonald, J., Ekstedt, M., Tork-
ilseng, A. and RSE, É. d. F. [2011], Modelling of Cyber Attacks for As-
sessing Smart Grid Security, in ‘Proceedings Cigré D2 2011 Colloquium’.

[100] Du, W. [2016], Heartbleed Attack Lab, Technical report, CIS.
[101] Dugan, J. B., Bavuso, S. J. and Boyd, M. A. [1992], ‘Dynamic Fault-

tree Models for Fault-tolerant Computer Systems’, IEEE Transactions on
Reliability 41(3), 363–377.

[102] Durkota, K., Lisỳ, V., Bošanskỳ, B. and Kiekintveld, C. [2015], Optimal
Network Security Hardening Using Attack Graph Games, in ‘Proceedings
of the 24th International Conference on Artificial Intelligence (IJCAI)’,
pp. 7–14.

[103] ECSS [1997], ‘Fault Tree Analysis - Adoption Notice ECSS / IEC
61025’.

[104] Edge, K. S. [2007], A Framework for Analyzing and Mitigating the Vul-

29

/ Elsevier Computer Science 00 (2019) 1–46 30

nerabilities of Complex Systems Via Attack and Protection Trees, PhD
thesis, Air Force Institute of Technology, Ohio, USA.

[105] Edge, K. S., Dalton, G. C., Raines, R. A. and Mills, R. F. [2006], Using
Attack and Protection Trees to Analyze Threats and Defenses to Home-
land Security, in ‘Military Communications Conference, 2006. Milcom
2006.’, IEEE, pp. 1–7.

[106] Ehrenfeld, J. M. [2017], ‘Wannacry, Cybersecurity and Health Informa-
tion Technology: A Time to Act’, Journal of Medical Systems 41(7), 104.

[107] Ekstedt, M. and Sommestad, T. [2009], Enterprise Architecture Models
for Cyber Security Analysis, in ‘Power Systems Conference and Exposi-
tion, 2009. PSCE’09. IEEE/PES’, IEEE, pp. 1–6.

[108] El Kouhen, A., Gherbi, A., Dumoulin, C. and Khendek, F. [2015], On
the Semantic Transparency of Visual Notations: Experiments with UML,
Springer, New York, USA.

[109] Elkind, P. [2015], Inside the Hack of the Century, Technical report, For-
tune.com.

[110] Espedalen, J. H. [2007], Attack Trees Describing Security in Distributed
Internet-enabled Metrology, PhD thesis.

[111] Fall, D., Okuda, T., Kadobayashi, Y. and Yamaguchi, S. [2014], Towards
a Vulnerability Tree Security Evaluation of Openstack’s Logical Archi-
tecture, in ‘International Conference on Trust and Trustworthy Comput-
ing’, Springer, pp. 127–142.

[112] Falliere, N., Murchu, L. O. and Chien, E. [2011], W32. Stuxnet Dossier,
Technical report, Symantec Corp., Security Response.

[113] Feng, C. and Jin-Shu, S. [2008], A Flexible Approach to Measuring
Network Security Using Attack Graphs, in ‘International Symposium on
Electronic Commerce and Security (ISECS2008)’, IEEE, pp. 426–431.

[114] Fette, I., Sadeh, N. and Tomasic, A. [2007], Learning to Detect Phishing
Emails, in ‘Proceedings of the 16th International Conference on World
Wide Web’, ACM, pp. 649–656.

[115] Fink, G. A., North, C. L., Endert, A. and Rose, S. [2009], Visualizing
Cyber Security: Usable Workspaces, in ‘6th International Workshop on
Visualization for Cyber Security, Vizsec 2009’, IEEE, pp. 45–56.

[116] Firesmith, D. G. [2003], ‘Security Use Cases’, Journal of Object Tech-
nology 2(3).

[117] Fisk, D. [2012], ‘Cyber Security, Building Automation, and the Intelli-
gent Building’, Intelligent Buildings International 4(3), 169–181.

[118] Fithen, W. L., Hernan, S. V., O’Rourke, P. F. and Shinberg, D. A.
[2004], ‘Formal Modeling of Vulnerability’, Bell Labs Technical Journal
8(4), 173–186.

[119] Flåten, O. and Lund, M. S. [2014], How Good Are Attack Trees for
Modelling Advanced Cyber Threats?, in ‘Proceedings of the Norwegian
Information Security Conference 2014’.

[120] Fletcher, K. K. and Liu, X. [n.d.], Security Requirements Analysis,
Specification, Prioritization and Policy Development in Cyber-physical
Systems, in ‘5th International Conference on Secure Software Integration
& Reliability Improvement Companion (SSIRI-C-2011)’, pp. 106–113.

[121] Fonseca Casas, P., Pi Palomés, X., Casanovas Garcia, J. and Jové, J.
[2013], Definition of Virtual Reality Simulation Models Using Specifica-
tion and Description Language Diagrams, in ‘SDL 2013: Model-driven
Dependability Engineering. (Lecture Notes in Computer Science), Pp
258-274’, Vol. 7916, Springer, pp. 258–274.

[122] Foo, B., Wu, Y.-S., Mao, Y.-C., Bagchi, S. and Spafford, E. [2005],
ADEPTS: Adaptive Intrusion Response Using Attack Graphs in an E-
commerce Environment, in ‘Proceedings of the International Confer-
ence on Dependable Systems and Networks, 2005. DSN 2005.’, IEEE,
pp. 508–517.

[123] Franke, U., Sommestad, T., Ekstedt, M. and Johnson, P. [2008], Defense
Graphs and Enterprise Architecture for Information Assurance Analysis,
Technical report, Royal Institute of Technology Stockholm (Sweden).

[124] Freimut, B., Hartkopf, S., Kaiser, P., Kontio, J. and Kobitzsch, W.
[2001], An Industrial Case Study of Implementing Software Risk Man-
agement, in ‘ACM Sigsoft Software Engineering Notes’, Vol. 26, ACM,
pp. 277–287.

[125] Frigault, M. and Wang, L. [2008], Measuring Network Security Using
Bayesian Network-based Attack Graphs, in ‘32nd Annual IEEE Confer-
ence on International Computer Software and Applications’, IEEE.

[126] Fung, C., Chen, Y.-L., Wang, X., Lee, J., Tarquini, R., Anderson, M.
and Linger, R. [2005], Survivability Analysis of Distributed Systems Us-
ing Attack Tree Methodology, in ‘Military Communications Conference.
MILCOM 2005.’, IEEE, pp. 583–589.

[127] Gadyatskaya, O., Jhawar, R., Kordy, P., Lounis, K., Mauw, S. and
Trujillo-Rasua, R. [2016], Attack Trees for Practical Security Assess-
ment: Ranking of Attack Scenarios with Adtool 2.0, in ‘Interna-
tional Conference on Quantitative Evaluation of Systems (QEST2016)’,
Springer, pp. 159–162.

[128] Gane, C. P. and Sarson, T. [1979], Structured Systems Analysis: Tools
and Techniques, Prentice-Hall, Upper Saddle River, New Jersey.

[129] Gao, N., He, Y. and Ling, B. [2018], ‘Exploring Attack Graphs for Se-
curity Risk Assessment: A Probabilistic Approach’, Wuhan University
Journal of Natural Sciences 23(2), 171–177.

[130] Geib, C. W. and Goldman, R. P. [2001], Plan Recognition in Intrusion
Detection Systems, in ‘Proceedings of the DARPA Information Surviv-
ability Conference & Exposition II, 2001. DISCEX’01’, Vol. 1, IEEE,
pp. 46–55. 169.

[131] Genon, N., Amyot, D. and Heymans, P. [2010], Analysing the Cognitive
Effectiveness of the Ucm Visual Notation, in ‘6th International Workshop
on System Analysis and Modeling’, Springer, pp. 221–240.

[132] Genon, N., Heymans, P. and Amyot, D. [2010], Analysing the Cogni-
tive Effectiveness of the Bpmn 2.0 Visual Notation, in ‘3rd International
Conference on Software Language Engineering (SEL2010)’, Springer,
pp. 377–396.

[133] GhasemiGol, M., Ghaemi-Bafghi, A. and Takabi, H. [2016], ‘A Com-
prehensive Approach for Network Attack Forecasting’, Computers & Se-
curity 58, 83–105.

[134] Ghinea, G. and Thomas, J. P. [2005], ‘Quality of Perception: User Qual-
ity of Service in Multimedia Presentations’, IEEE Transactions on Multi-
media 7(4), 786–789.

[135] Ghosh, N. and Ghosh, S. [2009], An Intelligent Technique for Gener-
ating Minimal Attack Graph, in ‘First Workshop on Intelligent Security
(Security and Artificial Intelligence)(SECART09)’, Citeseer.

[136] Ghosh, N. and Ghosh, S. K. [2012], ‘A Planner-based Approach to
Generate and Analyze Minimal Attack Graph’, Applied Intelligence
36(2), 369–390.

[137] Gonzalez-Granadillo, G., Doynikova, E., Kotenko, I. and Garcia-Alfaro,
J. [2017], Attack Graph-based Countermeasure Selection Using a State-
ful Return on Investment Metric, in ‘10th International Symposium on
Foundations and Practice of Security’, Springer, pp. 293–302.

[138] Gorn, G. J., Chattopadhyay, A., Sengupta, J. and Tripathi, S. [2004],
‘Waiting for the Web: How Screen Color Affects Time Perception’, Jour-
nal of Marketing Research 41(2), 215–225.

[139] Gorodetski, V. and Kotenko, I. [2002], Attacks against Computer Net-
work: Formal Grammar-based Framework and Simulation Tool, in ‘12th
International Symposium on Recent Advances in Intrusion Detection
(RAID2009)’, Springer, pp. 219–238. 84.

[140] Green, T. R. [1989], Cognitive Dimensions of Notations, in ‘Proceed-
ings of the 5th Conference of the British Computer Society’, pp. 443–460.

[141] Hahn, A., Thomas, R. K., Lozano, I. and Cardenas, A. [2015], ‘A Multi-
layered and Kill-chain Based Security Analysis Framework for Cyber-
physical Systems’, International Journal of Critical Infrastructure Pro-
tection 11, 39–50.

[142] Halpin, T. [2005], ORM 2 Graphical Notation - Technical Report
ORM2–02, techreport, Neumont University.

[143] Han, B., Wang, Q., Yu, F. and Zhang, X. [2012], A vulnerability attack
graph generation method based on scripts, in ‘3rd International Confer-
ence on Information Computing and Applications (ICICA2012)’, pp. 45–
50.

[144] Hariri, S., Qu, G., Dharmagadda, T., Ramkishore, M. and Raghaven-
dra, C. S. [2003], ‘Impact Analysis of Faults and Attacks in Large-scale
Networks’, IEEE Security & Privacy 99(5), 49–54.

[145] Harrington, S. L. [2014], ‘Cyber Security Active Defense: Playing with
Fire or Sound Risk Management’, Richmond Journal of Law & Technol-
ogy 20(4), 12.

[146] Heberlein, T., Bishop, M., Ceesay, E., Danforth, M., Senthilkumar, C.
and Stallard, T. [2012], A Taxonomy for Comparing Attack-graph Ap-
proaches, Technical report, Netsq.com.

[147] Helmer, G., Wong, J., Slagell, M., Honavar, V., Miller, L. and Lutz, R.
[2002], ‘A Software Fault Tree Approach to Requirements Analysis of an
Intrusion Detection System’, Requirements Engineering 7(4), 207–220.

[148] Herr, T. [2014], Prep: A Framework for Malware and Cyber Weapons,
in ‘9th International Conference on Cyber Warfare & Security: IC-
CWS2014’, Academic Conferences Limited, p. 84.

30

/ Elsevier Computer Science 00 (2019) 1–46 31

[149] Hewett, R. and Kijsanayothin, P. [2008], Host-centric Model Checking
for Network Vulnerability Analysis, in ‘Annual Computer Security Ap-
plications Conference, 2008. ACSAC 2008’, IEEE, pp. 225–234.

[150] Higuero, M., Unzilla, J., Jacob, E., Saiz, P., Aguado, M. and Luengo, D.
[2005], Application of ‘attack Trees’ in Security Analysis of Digital Con-
tents E-commerce Protocols with Copyright Protection, in ‘39th Annual
2005 International Carnahan Conference on Security Technology, 2005.
CCST’05’, IEEE, pp. 57–60.

[151] Hogganvik, I. [2007], A Graphical Approach to Security Risk Analysis,
PhD thesis.

[152] Hogganvik, I. and Stølen, K. [2005], On the Comprehension of Security
Risk Scenarios, in ‘Proceedings of the 13th International Workshop on
Program Comprehension (IWPC 2005)’, IEEE, pp. 115–124.

[153] Hogganvik, I. and Stølen, K. [2006], A Graphical Approach to Risk
Identification, Motivated by Empirical Investigations, in ‘International
Conference on Model Driven Engineering Languages and Systems’,
Springer, pp. 574–588.

[154] Hogganvik, I. and Stølen, K. [2007], Investigating Preferences in Graph-
ical Risk Modeling, Technical report, SINTEF.

[155] Holsopple, J., Yang, S. and Argauer, B. [2008], Virtual Terrain: A
Security-based Representation of a Computer Network, in ‘Proceedings
of Data Mining, Intrusion Detection, Information Assurance, and Data
Networks Security 2008’, Vol. 6973, International Society for Optics and
Photonics.

[156] Homer, J., Varikuti, A., Ou, X. and McQueen, M. A. [2008], Improving
Attack Graph Visualization through Data Reduction and Attack Group-
ing, in ‘5th International Workshop on Visualization for Computer Secu-
rity (VizSec 2008)’, Springer, pp. 68–79.

[157] Homer, J., Zhang, S., Ou, X., Schmidt, D., Du, Y., Rajagopalan, S. R.
and Singhal, A. [2013], ‘Aggregating Vulnerability Metrics in Enter-
prise Networks Using Attack Graphs’, Journal of Computer Security
21(4), 561–597.

[158] Hong, J. B. and Kim, D. S. [2013], Performance Analysis of Scalable
Attack Representation Models, in ‘28th IFIP International Conference
on Security and Privacy Protection in Information Processing Systems
(SEC2013)’, Springer, pp. 330–343. 11.

[159] Hong, J. and Kim, D.-S. [2012], HARMS: Hierarchical Attack Rep-
resentation Models for Network Security Analysis, in ‘10th Australian
Information Security Management Conference’, SRI Security Research
Institute, Edith Cowan University, Perth, Western Australia.

[160] Howard, M., Pincus, J. and Wing, J. M. [2005], Measuring Relative
Attack Surfaces, Springer, New York, USA.

[161] Hutchins, E. M., Cloppert, M. J. and Amin, R. M. [2011], ‘Intelligence-
driven Computer Network Defense Informed by Analysis of Adversary
Campaigns and Intrusion Kill Chains’, Leading Issues in Information
Warfare & Security Research 1(1), 80.

[162] IBM DeveloperWorks [2016], IBM SPSS Conjoint 24, Technical report,
IBM.

[163] IBM Security [2018], IBM Study: Hidden Costs of Data Breaches In-
crease Expenses for Businesses, Technical report, IBM.

[164] Idika, N. and Bhargava, B. [2012], ‘Extending Attack Graph-based Se-
curity Metrics and Aggregating Their Application’, IEEE Transactions
on Dependable and Secure Computing 9(1), 75–85.

[165] IEC [1983], ‘Code for Designation of Colours’.
[166] IEC [1990], IEC 61025 Fault Tree Analysis, Technical report, Interna-

tional Electrotechnical Commission.
[167] Ingoldsby, T. R. [2010], Attack Tree-based Threat Risk Analysis, Tech-

nical report, Amenaza Technologies Limited.
[168] Ingols, K., Chu, M., Lippmann, R., Webster, S. and Boyer, S. [2009],

Modeling Modern Network Attacks and Countermeasures Using Attack
Graphs, in ‘Annual Computer Security Applications Conference, 2009.
ACSAC’09.’, IEEE, pp. 117–126.

[169] Ingols, K., Lippmann, R. and Piwowarski, K. [2006], Practical Attack
Graph Generation for Network Defense, in ‘2015 Symposium on Us-
able Privacy and Security Conference on Computer Security Applica-
tions, ACSAC’06’, IEEE, pp. 121–130.

[170] Ishii, Y., Okubo, M., Nicholls, M. E. and Imai, H. [2011], ‘Lateral Biases
and Reading Direction: A Dissociation between Aesthetic Preference and
Line Bisection’, Brain and Cognition 75(3), 242–247.

[171] ISO [1985], Information Processing – Documentation Symbols and
Conventions for Data, Program and System Flowcharts, Program Net-

work Charts and System Resources Charts (ISO 5807:1985), Technical
report, ISO.

[172] Jabbar, M., Bopche, G. S., Deekshatulu, B. and Mehtre, B. [2017],
Diversity-aware, Cost-effective Network Security Hardening Using At-
tack Graph, in ‘5th International Symposium on Security in Computing
and Communication SSCC2017’, Springer, pp. 1–15.

[173] Jajodia, S. and Noel, S. [2010], Advanced Cyber Attack Modeling
Analysis and Visualization, Technical Report AFRL-RI-RS-TR-2010-
078, George Mason University, Fairfax.

[174] Jajodia, S., Noel, S. and O’Berry, B. [2005], Topological Analysis of
Network Attack Vulnerability, in ‘Managing Cyber Threats’, Springer,
New York, USA, pp. 247–266.

[175] Jha, S., Sheyner, O. and Wing, J. [2002a], Two Formal Analyses of At-
tack Graphs, in ‘Proceedings of the 15th IEEE Computer Security Foun-
dations Workshop (CSFW-15) ’, IEEE, pp. 49–63.

[176] Jha, S., Sheyner, O. and Wing, J. M. [2002b], Minimization and Relia-
bility Analyses of Attack Graphs, Report, DTIC Document.

[177] Jhawar, R., Kordy, B., Mauw, S., Radomirović, S. and Trujillo-Rasua, R.
[2015], Attack Trees with Sequential Conjunction, in ‘IFIP International
Information Security Conference’, Springer, pp. 339–353.

[178] Johnson, P., Vernotte, A., Ekstedt, M. and Lagerström, R. [2016],
Pwnpr3d: An Attack-graph-driven Probabilistic Threat-modeling Ap-
proach, in ‘11th International Conference on Availability, Reliability and
Security (ARES), 2016’, IEEE, pp. 278–283.

[179] Jun-chun, M., Yong-jun, W., Ji-yin, S. and Shan, C. [2011], ‘A Mini-
mum Cost of Network Hardening Model Based on Attack Graphs’, Pro-
cedia Engineering 15, 3227–3233.

[180] Kang, R., Dabbish, L., Fruchter, N. and Kiesler, S. [2015], My Data Just
Goes Everywhere: User Mental Models of the Internet and Implications
for Privacy and Security, in ‘2015 Symposium on Usable Privacy and
Security (SOUPS2015)’.

[181] Kap, G. and Ali, D. [2013], Statistical Analysis of Computer Network
Security, Technical report, Kth Royal Institute of Technology, Sweden
(October 2013).

[182] Kaplan, S. [1982], ‘Matrix Theory Formalism for Event Tree Analysis:
Application to Nuclear-risk Analysis’, Risk Analysis 2(1), 9–18.

[183] Karpati, P., Opdahl, A. L. and Sindre, G. [2011], Experimental Com-
parison of Misuse Case Maps with Misuse Cases and System Architec-
ture Diagrams for Eliciting Security Vulnerabilities and Mitigations, in
‘Sixth International Conference on Availability, Reliability and Security
(ARES)’, IEEE, pp. 507–514.

[184] Karpati, P., Redda, Y., Opdahl, A. L. and Sindre, G. [2014], ‘Comparing
Attack Trees and Misuse Cases in an Industrial Setting’, Information and
Software Technology 56(3), 294–308.

[185] Karpati, P., Sindre, G. and Opdahl, A. L. [2010], Visualizing Cyber At-
tacks with Misuse Case Maps, in ‘International Working Conference on
Requirements Engineering: Foundation for Software Quality’, Springer,
pp. 262–275.

[186] Karppinen, K. [2007], Security Measurement Based on Attack Trees in
a Mobile Ad Hoc Network Environment., Technical report, VTT Publica-
tions.

[187] Kasemsri, R. R. [2006], A Survey, Taxonomy, and Analysis of Network
Security Visualization Techniques, PhD thesis.

[188] Katta, V., Karpati, P., Opdahl, A. L., Raspotnig, C. and Sindre, G.
[2010], Comparing Two Techniques for Intrusion Visualization, in ‘IFIP
Working Conference on the Practice of Enterprise Modeling’, Springer,
pp. 1–15.

[189] Kaynar, K. and Sivrikaya, F. [2016], ‘Distributed Attack Graph Gen-
eration’, IEEE Transactions on Dependable and Secure Computing
13(5), 519–532.

[190] Keller, T. and Tergan, S.-O. [2005], Visualizing knowledge and infor-
mation: An introduction, in ‘Knowledge and Information Visualization’,
Springer, New York, USA, pp. 1–23.

[191] Kent, A. D. [2016], Cyber Security Data Sources for Dynamic Network
Research, in ‘Dynamic Networks and Cyber-Security’, World Scientific,
pp. 37–65.

[192] Keramati, M. and Akbari, A. [2012], An Attack Graph Based Metric
for Security Evaluation of Computer Networks, in ‘Telecommunications
(ist), 2012 Sixth International Symposium on’, IEEE, pp. 1094–1098.

[193] Keramati, M., Akbari, A. and Keramati, M. [2013], CVSS-based Se-
curity Metrics for Quantitative Analysis of Attack Graphs, in ‘3th In-

31

/ Elsevier Computer Science 00 (2019) 1–46 32

ternational EConference on Computer and Knowledge Engineering (IC-
CKE2013)’, IEEE, pp. 178–183.

[194] Kerr, O. S. [2005], ‘Virtual Crime, Virtual Deterrence: A Skeptical View
of Self-Help, Architecture, and Civil Liability’, Journal of Law, Eco-
nomics, and Policy 1, 197.

[195] Khaitan, S. and Raheja, S. [2011], ‘Finding Optimal Attack Path Using
Attack Graphs: A Survey’, International Journal of Soft Computing and
Engineering 1(3), 2231–2307.

[196] Khand, P. A. [2009], System Level Security Modeling Using Attack
Trees, in ‘2nd International Conference on Computer, Control and Com-
munication (IC42009)’, IEEE, pp. 1–6.

[197] Kliger, D. and Gilad, D. [2012], ‘Red Light, Green Light: Color Priming
in Financial Decisions’, The Journal of Socio-economics 41(5), 738–745.

[198] Koedinger, K. R. and Anderson, J. R. [1990], ‘Abstract Planning and
Perceptual Chunks: Elements of Expertise in Geometry’, Cognitive Sci-
ence 14(4), 511–550.

[199] Koffka, K. [2013], Principles of Gestalt Psychology, Routledge, Lon-
don, UK.

[200] Kontio, J. [1997], The Riskit Method for Software Risk Management,
Version 1.00, Technical report, University of Maryland, College Park,
MD, USA.

[201] Kontio, J. and Basili, V. R. [1996], ‘Risk Knowledge Capture in the
Riskit Method’, SEW Proceedings, SEL-96-002, University of Maryland
.

[202] Kontio, J. and Basili, V. R. [1998], Riskit: Increasing Confidence in Risk
Management, Technical report, np.

[203] Kordy, B., Mauw, S., Melissen, M. and Schweitzer, P. [2010], Attack–
defense Trees and Two-player Binary Zero-sum Extensive Form Games
Are Equivalent, in ‘International Conference on Decision and Game The-
ory for Security’, Springer, pp. 245–256.

[204] Kordy, B., Piètre-Cambacédès, L. and Schweitzer, P. [2014], ‘DAG-
based Attack and Defense Modeling: Don’t Miss the Forest for the Attack
Trees’, Computer Science Review 13, 1–38.

[205] Kornecki, A. J. and Liu, M. [2013], ‘Fault Tree Analysis for
Safety/security Verification in Aviation Software’, Electronics 2(1), 41–
56.

[206] Kosslyn, S. M. [1989], ‘Understanding Charts and Graphs’, Applied
Cognitive Psychology 3(3), 185–225.

[207] Kotenko, I. and Chechulin, A. [2013], A Cyber Attack Modeling and
Impact Assessment Framework, in ‘5th International Conference on Cy-
ber Conflict (CYCON2013)’, IEEE, pp. 1–24.

[208] Kotenko, I. and Chechulin, A. [2014], ‘Fast Network Attack Modeling
and Security Evaluation Based on Attack Graphs’, Journal of Cyber Se-
curity and Mobility 3(1), 27–46.

[209] Kotenko, I. and Stepashkin, M. [2006], Attack Graph Based Evalua-
tion of Network Security, in ‘Communications and Multimedia Security’,
Springer, pp. 216–227.

[210] Kotheimer, J., O’Meara, K. and Shick, D. [2016], Using Honeynets and
the Diamond Model for ICS Threat Analysis, Technical report, Carnegie
Mellon University (Software Engineering Institute).

[211] KPMG [2015], ‘Cyber security: a Failure of Imagination by CEOs’.
Date accessed: 28-12-16.
URL: https://home.kpmg.com/xx/en/home/insights/2015/12/cyber-security-
a-failure-of-imagination-by-ceos.html

[212] Kress, G. R. and Van Leeuwen, T. [1996], Reading Images: The Gram-
mar of Visual Design, Psychology Press, London, UK.

[213] Krogstie, J., Sindre, G. and Jørgensen, H. [2006], ‘Process Models Rep-
resenting Knowledge for Action: A Revised Quality Framework’, Euro-
pean Journal of Information Systems 15(1), 91–102.

[214] Kumar, S., Negi, A., Prasad, K. and Mahanti, A. [2016], Eval-
uation of Network Risk Using Attack Graph Based Security Met-
rics, in ‘IEEE 14th International Conference on Dependable, Au-
tonomic and Secure Computing, 14th Pervasive Intelligence and
Computing, 2nd International Conference on Big Data Intelli-
gence and Computing and Cyber Science and Technology Congress
(DASC/PICOM/DATACOM/CYBERSCITECH), 2016’, IEEE, pp. 91–
93.

[215] Lagerström, R., Johnson, P. and Närman, P. [2007], Extended Influence
Diagram Generation, in ‘Enterprise Interoperability II’, Springer, New
York, USA, pp. 599–602.

[216] Lallie, H. S., Debattista, K. and Bal, J. [2018a], ‘An empirical evalua-

tion of the effectiveness of attack graphs and fault trees in cyber-attack
perception’, IEEE Transactions on Information Forensics and Security
13(5), 1110–1122.

[217] Lallie, H. S., Debattista, K. and Bal, J. [2018b], ‘Evaluating Practitioner
Cyber-security Attack Graph Configuration Preferences’, Computers &

Security 79, 117 – 131.
URL: http://www.sciencedirect.com/science/article/pii/S0167404818306163

[218] Lambert, H. [2003], Use of Fault Tree Analysis for Automotive Reliabil-
ity and Safety Analysis, Report UCRL-JC-154905, Lawrence Livermore
National Lab., CA (US).

[219] Landry, J. P., Pardue, J. H., Johnsten, T., Campbell, M. and Patidar, P.
[2011], A Threat Tree for Health Information Security and Privacy, in
‘17th Americas Conference on Information Systems (AMCIS 2011)’.

[220] Lee, J., Lee, H. and In, H. P. [2009], Scalable Attack Graph for Risk
Assessment, in ‘International Conference on Information Networking,
ICOIN 2009’, IEEE, pp. 1–5.

[221] Lee, R. M., Assante, M. J. and Conway, T. [2016], ‘Analysis of the
Cyber Attack on the Ukrainian Power Grid’. Date accessed: 20-9-18.
URL: https://ics.sans.org/media/E-ISAC SANS Ukraine DUC 5.pdf

[222] LeMay, E., Ford, M. D., Keefe, K., Sanders, W. H. and Muehrcke,
C. [2011], Model-based Security Metrics Using Adversary View Secu-
rity Evaluation (advise), in ‘8th International Conference on Quantitative
Evaluation of Systems (QEST2011)’, IEEE, pp. 191–200.

[223] Lemon, A. v. K. and Lemon, O. v. K. [2000], Constraint Matching for
Diagram Design: Qualitative Visual Languages, in ‘International Confer-
ence on Theory and Application of Diagrams’, Springer, pp. 74–88.

[224] Levy, J., Yu, P. and Prizzia, R. [2016], Economic Disruptions, Business
Continuity Planning and Disaster Forensic Analysis: The Hawaii Busi-
ness Recovery Center (HIBRC) Project, in ‘Disaster Forensics’, Springer,
New York, USA, pp. 315–334.

[225] Li, M., Huang, W., Wang, Y. and Fan, W. [2016], The Optimized At-
tribute Attack Graph Based on Apt Attack Stage Model, in ‘2nd IEEE
International Conference on Computer and Communications (ICCC),
2016’, IEEE, pp. 2781–2785.

[226] Li, W. and Vaughn, R. B. [2006], Cluster Security Research Involving
the Modeling of Network Exploitations Using Exploitation Graphs, in
‘Sixth IEEE International Symposium on Cluster Computing and the Grid
(CCGRID06)’, Vol. 2, IEEE, pp. 26–26.

[227] Li, W., Vaughn, R. B. and Dandass, Y. S. [2006], ‘An Approach to
Model Network Exploitations Using Exploitation Graphs’, Simulation
82(8), 523–541.

[228] Li, Y. [2007], Probabilistic Toponym Resolution and Geographic Index-
ing and Querying, PhD thesis.

[229] Lippmann, R., Ingols, K., Scott, C., Piwowarski, K., Kratkiewicz, K.,
Artz, M. and Cunningham, R. [2006], Validating and Restoring Defense
in Depth Using Attack Graphs, in ‘Military Communications Conference,
2006. MILCOM2006’, IEEE, pp. 1–10.

[230] Lippmann, R. P., Fried, D. J., Graf, I., Haines, J. W., Kendall, K. R.,
McClung, D., Weber, D., Webster, S. E., Wyschogrod, D., Cunningham,
R. K. et al. [2000], Evaluating Intrusion Detection Systems: The 1998
DARPA Off-line Intrusion Detection Evaluation, in ‘DARPA Information
Survivability Conference and Exposition, 2000. DISCEX’00. Proceed-
ings’, Vol. 2, IEEE, pp. 12–26.

[231] Lippmann, R. P., Ingols, K. W. and Piwowarski, K. J. [2011], ‘Generat-
ing a Multiple-prerequisite Attack Graph’. US Patent 7,971,252.

[232] Lippmann, R. P., Ingols, K. W., Scott, C., Piwowarski, K., Kratkiewicz,
K. J., Artz, M. and Cunningham, R. K. [2005], Evaluating and Strength-
ening Enterprise Network Security Using Attack Graphs, Technical re-
port, Michigan Institute of Technology.

[233] Liu, B. [2010], ‘Sentiment Analysis and Subjectivity’, Handbook of Nat-
ural Language Processing 2, 627–666.

[234] Liu, X., Fang, C., Xiao, D. and Xu, H. [2010], A Goal-oriented Ap-
proach for Modeling and Analyzing Attack Graph, in ‘International Con-
ference on Information Science and Applications (ICISA2010)’, IEEE,
pp. 1–8.

[235] Liu, Y. M. and Traoré, I. [2007], ‘Properties for Security Measures of
Software Products’, Applied Mathematics and Information Science (amis)
Journal 1(2), 129–156.

[236] Liu, Y., Xiao, L., Liu, X., Ni, L. and Zhang, X. [2005], ‘Location Aware-
ness in Unstructured Peer-to-peer Systems’, IEEE Transactions on Paral-
lel and Distributed Systems pp. 163–174.

32

/ Elsevier Computer Science 00 (2019) 1–46 33

[237] Livadas, C., Walsh, R., Lapsley, D. and Strayer, W. T. [2006], Using Ma-
chine Learning Technliques to Identify Botnet Traffic, in ‘Proceedings of
the 31st IEEE Conference on Local Computer Networks’, IEEE, pp. 967–
974.

[238] Long, T. [2009], Attack Graph Compression, PhD thesis.
[239] Luckett, P., McDonald, J. T. and Glisson, W. B. [2017], Attack-graph

Threat Modeling Assessment of Ambulatory Medical Devices, in ‘Hawaii
International Conference on System Sciences (HICSS-50)’.

[240] Ma, J., Wang, Y., Sun, J. and Hu, X. [2010], A Scalable, Bidirectional-
based Search Strategy to Generate Attack Graphs, in ‘IEEE 10th Inter-
national Conference on Computer and Information Technology (CIT),
2010’, IEEE, pp. 2976–2981.

[241] Madan, B. B. and Trivedi, K. S. [2004], ‘Security Modeling and Quan-
tification of Intrusion Tolerant Systems Using Attack-response Graph’,
Journal of High Speed Networks 13(4), 297–308.

[242] Mæhre, M. [2005], Industrial Experiences with Misuse Cases, PhD the-
sis, Institutt for datateknikk og informasjonsvitenskap.

[243] Man, D., Zhang, B., Yang, W., Jin, W. and Yang, Y. [2008], A Method
for Global Attack Graph Generation, in ‘IEEE International Confer-
ence on Networking, Sensing and Control, 2008. ICNSC 2008.’, IEEE,
pp. 236–241.

[244] Manian, R., Dugan, J. B., Coppit, D. and Sullivan, K. J. [1998], Com-
bining Various Solution Techniques for Dynamic Fault Tree Analysis of
Computer Systems, in ‘Proceedings of the 3rd IEEE International Confer-
ence on High-assurance Systems Engineering Symposium, 1998.’, IEEE,
pp. 21–28.

[245] Marback, A., Do, H., He, K., Kondamarri, S. and Xu, D. [2009], Secu-
rity Test Generation Using Threat Trees, in ‘ICSE Workshop on Automa-
tion of Software Test (AST’09.)’, IEEE, pp. 62–69.

[246] Marback, A., Do, H., He, K., Kondamarri, S. and Xu, D. [2013], ‘A
Threat Model-based Approach to Security Testing’, Software: Practice
and Experience 43(2), 241–258.

[247] Masera, M., Fovino, I. N. and De Cian, A. [2009], ‘Integrating Cy-
ber Attacks within Fault Trees’, Reliability Engineering & System Safety
94(9), 1394–1402.

[248] Masri, K., Parker, D. and Gemino, A. [2008], ‘Using Iconic Graphics in
Entity-relationship Diagrams: The Impact on Understanding’, Journal of
Database Management 19(3), 22.

[249] Matrosov, A., Rodionov, E., Harley, D. and Malcho, J. [2010], Stuxnet
Under The Microscope, Technical report, ESET LLC (September 2010).

[250] Matulevičius, R. and Heymans, P. [2007], Visually Effective Goal Mod-
els Using Kaos, in ‘International Conference on Conceptual Modeling’,
Springer, pp. 265–275.

[251] Matulevicius, R., Mayer, N. and Heymans, P. [2008], Alignment of Mis-
use Cases with Security Risk Management, in ‘Third International Con-
ference on Availability, Reliability and Security, 2008. ARES 08’, IEEE,
pp. 1397–1404.

[252] Maughan, D. [2010], ‘The Need for a National Cybersecurity Research
and Development Agenda’, Communications of the ACM 53(2), 29–31.

[253] Mauw, S. and Oostdijk, M. [2006], Foundations of Attack Trees, in
‘8th International Conference on Information Security and Cryptology
(ICISC2005)’, Springer, pp. 186–198.

[254] Mayer, R. E. [1989], ‘Models for Understanding’, Review of Educa-
tional Research 59(1), 43–64.

[255] McLean, A. and Wiggins, G. [2012], Computer Programming in the
Creative Arts, in ‘Computers and Creativity’, Springer, New York, USA,
pp. 235–252.

[256] Mehta, V., Bartzis, C., Zhu, H., Clarke, E. and Wing, J. [2006], Ranking
Attack Graphs, in ‘Recent Advances in Intrusion Detection’, Springer,
pp. 127–144.

[257] Michelson, B. M. [2006], ‘Event-driven Architecture Overview’.
[258] Mihai, I.-C., Pruna, S. and Barbu, I.-D. [2014], ‘Cyber Kill Chain Anal-

ysis’, International Journal of Information Security & Cybercrime 3, 37.
[259] Miller, G. A. [1956], ‘The Magic Number Seven Plus or Minus Two:

Some Limits on Our Capacity for Processing Information’, Psychological
Review 63, 91–97.

[260] Miller, G. A. [1994], ‘The Magical Number Seven, Plus or Minus Two:
Some Limits on Our Capacity for Processing Information.’, Psychologi-
cal Review 101(2), 343.

[261] Mirembe, D. P. and Muyeba, M. [2008], Threat Modeling Revisited: Im-
proving Expressiveness of Attack, in ‘Second UKSIM European Sympo-

sium on Computer Modeling and Simulation, EMS’08’, IEEE, pp. 93–98.
[262] Mishra, S., Kant, K. and Yadav, R. [2012], Multi Tree View of Com-

plex Attack–stuxnet, in ‘Proceedings of the Second International Confer-
ence on Advances in Computing and Information Technology (ACITY)’,
Springer, pp. 171–188.

[263] Moody, D. [2007], What Makes a Good Diagram? Improving the Cogni-
tive Effectiveness of Diagrams in Is Development, in ‘Advances in Infor-
mation Systems Development’, Springer, New York, USA, pp. 481–492.

[264] Moody, D. L. [2003], The Method Evaluation Model: A Theoretical
Model for Validating Information Systems Design Methods, in ‘Pro-
ceedings of the 2013 European Conference on Information Systems
(ECIS2013)’, p. 79.

[265] Moody, D. L. [2005], ‘Theoretical and Practical Issues in Evaluating
the Quality of Conceptual Models: Current State and Future Directions’,
Data & Knowledge Engineering 55(3), 243–276.

[266] Moody, D. L. [2010], The” Physics” of Notations: A Scientific
Approach to Designing Visual Notations in Software Engineering, in
‘32nd International Conference on Software Engineering’, Vol. 2, IEEE,
pp. 485–486.

[267] Moody, D. L., Heymans, P. and Matulevičius, R. [2010], ‘Visual Syn-
tax Does Matter: Improving the Cognitive Effectiveness of the I* Visual
Notation’, Requirements Engineering 15(2), 141–175.

[268] Moody, D. and van Hillegersberg, J. [2008], Evaluating the Visual Syn-
tax of Uml: An Analysis of the Cognitive Effectiveness of the UML Fam-
ily of Diagrams, in ‘International Conference on Software Language En-
gineering’, Springer, pp. 16–34.

[269] Morakis, E., Vidalis, S. and Blyth, A. [2003], ‘Measuring Vulnerabili-
ties and Their Exploitation Cycle’, Information Security Technical Report
8(4), 45–55.

[270] More, S., Matthews, M., Joshi, A. and Finin, T. [2012], A Knowledge-
based Approach to Intrusion Detection Modeling, in ‘IEEE Symposium
on Security and Privacy Workshops (SPW), 2012’, IEEE, pp. 75–81.

[271] Mukherjee, S. [2017], A Heuristic-based Approach to Automatically
Extract Personalized Attack Graph Related Concepts from Vulnerability
Descriptions, PhD thesis.

[272] Murphy, C. T. and Yang, S. J. [2010], Clustering of Multistage Cyber
Attacks Using Significant Services, in ‘13th Conference on Information
Fusion (FUSION), 2010’, IEEE, pp. 1–7.

[273] Nanda, S. and Deo, N. [2007], A Highly Scalable Model for Network
Attack Identification and Path Prediction, in ‘Proceedings of the IEEE
Southeastcon, 2007’, IEEE, pp. 663–668.

[274] Nandi, A. K., Medal, H. R. and Vadlamani, S. [2016], ‘Interdicting At-
tack Graphs to Protect Organizations from Cyber Attacks: A Bi-level
Defender–attacker Model’, Computers & Operations Research 75, 118–
131.

[275] Nguyen, T. H., Wright, M., Wellman, M. P. and Baveja, S. [2017], Multi-
stage Attack Graph Security Games: Heuristic Strategies, with Empirical
Game-theoretic Analysis, in ‘Proceedings of the 2017 Workshop on Mov-
ing Target Defense’, ACM, pp. 87–97.

[276] Nichols, W., Hawrylak, P., Hale, J. and Papa, M. [2017], Introducing
Priority into Hybrid Attack Graphs, in ‘Proceedings of the 12th Annual
Conference on Cyber and Information Security Research’, ACM, p. 12.

[277] Niitsoo, M. [2010], Optimal Adversary Behavior for the Serial Model
of Financial Attack Trees., in ‘5th International Workshop on Security
(IWSEC2010)’, Springer, pp. 354–370.

[278] Ning, P., Cui, Y. and Reeves, D. S. [2002], Analyzing Intensive Intru-
sion Alerts Via Correlation, in ‘Recent Advances in Intrusion Detection
(RAID2002)’, Springer, pp. 74–94. 200.

[279] Ning, P., Cui, Y., Reeves, D. S. and Xu, D. [2004], ‘Techniques and
Tools for Analyzing Intrusion Alerts’, ACM Transactions on Information
and System Security (TISSEC) 7(2), 274–318.

[280] Ning, P. and Xu, D. [2003], Learning Attack Strategies from Intrusion
Alerts, in ‘Proceedings of the 10th ACM Conference on Computer and
Communications Security’, ACM, pp. 200–209.

[281] Ning, P. et al. [2004], Building Attack Scenarios through Integration of
Complementary Alert Correlation Method, in ‘Network and Distributed
System Security Symposium (NDSS) Symposium (2004)’, Vol. 4, pp. 97–
111.

[282] Ning, Z., Xin-yuan, C., Yong-fu, Z. and Si-yuan, X. [2008], Design and
Application of Penetration Attack Tree Model Oriented to Attack Resis-
tance Test, in ‘International Conference on Computer Science and Soft-

33

/ Elsevier Computer Science 00 (2019) 1–46 34

ware Engineering (CSSE2008)’, Vol. 3, IEEE, pp. 622–626.
[283] Noel, S., Jacobs, M., Kalapa, P. and Jajodia, S. [2005], Multiple Coordi-

nated Views for Network Attack Graphs, in ‘IEEE Workshop on Visual-
ization for Computer Security (VISZEC 05)’, IEEE, pp. 99–106.

[284] Noel, S. and Jajodia, S. [2004], Managing Attack Graph Complexity
through Visual Hierarchical Aggregation, in ‘Proceedings of the 2004
ACM Workshop on Visualization and Data Mining for Computer Secu-
rity’, ACM, pp. 109–118.

[285] Noel, S. and Jajodia, S. [2005], Understanding Complex Network Attack
Graphs through Clustered Adjacency Matrices, in ‘21st Annual Computer
Security Applications Conference (ACSAC2005)’, IEEE, pp. 10–pp.

[286] Noel, S. and Jajodia, S. [2007], Attack Graphs for Sensor Place-
ment, Alert Prioritization, and Attack Response, in ‘Cyberspace Research
Workshop’, pp. 1–8.

[287] Noel, S. and Jajodia, S. [2008], ‘Optimal IDS Sensor Placement and
Alert Prioritization Using Attack Graphs’, Journal of Network and Sys-
tems Management 16(3), 259–275. 46.

[288] Noel, S. and Jajodia, S. [2009], Advanced Vulnerability Analysis and
Intrusion Detection through Predictive Attack Graphs, Technical report,
Armed Forces Communications and Electronics Association (AFCEA).

[289] Noel, S., Jajodia, S., O’Berry, B. and Jacobs, M. [2003], Efficient
Minimum-cost Network Hardening Via Exploit Dependency Graphs, in
‘Proceedings of the 19th Annual Computer Security Applications Con-
ference, 2003’, IEEE, pp. 86–95.

[290] Noel, S., Jajodia, S., Wang, L. and Singhal, A. [2010], ‘Measuring Se-
curity Risk of Networks Using Attack Graphs’, International Journal of
Next-generation Computing 1(1), 135–147. 59.

[291] Noel, S., Robertson, E. and Jajodia, S. [2004], Correlating Intru-
sion Events and Building Attack Scenarios through Attack Graph Dis-
tances, in ‘20th Annual Computer Security Applications Conference (AC-
SAC2004)’, IEEE, pp. 350–359.

[292] Norman, D. [1988], ‘The Design of Everyday Things’, The Psychology
of Everyday Things) 20.

[293] Nurse, J. R., Creese, S., Goldsmith, M. and Lamberts, K. [2011], Trust-
worthy and Effective Communication of Cybersecurity Risks: A Re-
view, in ‘1st Workshop on Socio-technical Aspects in Security and Trust
(STAST2011)’, IEEE, pp. 60–68.

[294] Obes, J. L., Sarraute, C. and Richarte, G. [2013], Attack Planning in the
Real World, Technical report, Cornell University Library.

[295] Odgers Berndtson [2013], ‘Cyber Security - What Boards Need to
Know’. Date accessed: 20-9-18.
URL: http://www.odgersberndtson.com/media/2253/cyber security -
what boards need to know 01.pdf

[296] Omojola, O. [2016], ‘Using Symbols and Shapes for Analysis in Small
Focus Group Research’, The Qualitative Report 21(5), 832.

[297] Ongsakorn, P., Turney, K., Thornton, M., Nair, S., Szygenda, S. and
Manikas, T. [2010], Cyber Threat Trees for Large System Threat Cata-
loging and Analysis, in ‘4th Annual IEEE Systems Conference, 2010’,
IEEE, pp. 610–615.

[298] Opdahl, A. L. and Sindre, G. [2009], ‘Experimental Comparison of At-
tack Trees and Misuse Cases for Security Threat Identification’, Informa-
tion and Software Technology 51(5), 916–932.

[299] Opel, A. [2005], Design and Implementation of a Support Tool for At-
tack Trees, PhD thesis, Otto-von-guericke University Magdeburg.

[300] Ortalo, R., Deswarte, Y. and Kaâniche, M. [1999], ‘Experimenting
with Quantitative Evaluation Tools for Monitoring Operational Security’,
IEEE Transactions on Software Engineering 25(5), 633–650.

[301] Ou, X., Boyer, W. F. and McQueen, M. A. [2006], A Scalable Approach
to Attack Graph Generation, in ‘Proceedings of the 13th ACM Confer-
ence on Computer and Communications Security’, ACM, pp. 336–345.

[302] Ou, X., Govindavajhala, S. and Appel, A. W. [2005], Mulval: A Logic-
based Network Security Analyzer., in ‘Usenix Security’.

[303] Ou, X. and Singhal, A. [2011], Attack Graph Techniques, in ‘Quantita-
tive Security Risk Assessment of Enterprise Networks’, Springer, pp. 5–8.

[304] Palmer, S. and Rock, I. [1994], ‘Rethinking Perceptual Organization:
The Role of Uniform Connectedness’, Psychonomic Bulletin & Review
1(1), 29–55.

[305] Pardue, H., Yasinsac, A. and Landry, J. [2010], Towards Internet Voting
Security: A Threat Tree for Risk Assessment, in ‘Risks and Security of
Internet and Systems (crisis), 2010 Fifth International Conference on’,
IEEE, pp. 1–7.

[306] Park, G.-Y., Lee, C. K., Choi, J. G., Kim, D. H., Lee, Y. J. and Kwon,
K.-C. [2008], Cyber Security Analysis by Attack Trees for a Reactor Pro-
tection System, in ‘Proceedings of the Korean Nuclear Society (KNS)
Fall Meeting’.

[307] Parondzhanov, V. [1995], ‘Visual Syntax of the Drakon Language’, Pro-
gramming and Computer Software 21(3).

[308] Patel, S. C., Graham, J. H. and Ralston, P. A. [2008], ‘Quantitatively As-
sessing the Vulnerability of Critical Information Systems: A New Method
for Evaluating Security Enhancements’, International Journal of Infor-
mation Management 28(6), 483–491.

[309] Payne, B. D. and Edwards, W. K. [2008], ‘A Brief Introduction to Usable
Security’, IEEE Internet Computing 12(3).

[310] Peine, H., Jawurek, M. and Mandel, S. [2008], Security Goal Indicator
Trees: A Model of Software Features That Supports Efficient Security
Inspection, in ‘11th IEEE High Assurance Systems Engineering Sympo-
sium, 2008. Hase 2008’, IEEE, pp. 9–18.

[311] Peterson, J. L. [1977], ‘Petri Nets’, ACM Computing Surveys 9(3), 223–
252. 1755.

[312] Petre, M. [1995], ‘Why Looking Isn’t Always Seeing: Readership Skills
and Graphical Programming’, Communications of the ACM 38(6), 33–44.

[313] Phillips, C. and Swiler, L. P. [1998], A Graph-based System for
Network-vulnerability Analysis, in ‘Proceedings of the 1998 Workshop
on New Security Paradigms’, ACM, pp. 71–79.

[314] Pieters, W. and Davarynejad, M. [2015], Calculating Adversarial Risk
from Attack Trees: Control Strength and Probabilistic Attackers, in
‘9th International Workshop on Data Privacy Management, Autonomous
Spontaneous Security, and Security Assurance (DPM 2014)’, Springer,
pp. 201–215.

[315] Pinchinat, S., Acher, M. and Vojtisek, D. [2014], Towards Synthesis
of Attack Trees for Supporting Computer-aided Risk Analysis, in ‘In-
ternational Conference on Software Engineering and Formal Methods’,
Springer, pp. 363–375.

[316] Pokhrel, N. R. and Tsokos, C. P. [2017], ‘Cybersecurity: A Stochas-
tic Predictive Model to Determine Overall Network Security Risk Using
Markovian Process’, Journal of Information Security 8(02), 91–105.

[317] Prasad, K., Kumar, S., Negi, A. and Mahanti, A. [2016], Generation
and Risk Analysis of Network Attack Graph, in ‘Proceedings of the 4th
International Conference on Frontiers in Intelligent Computing: Theory
and Applications (FICTA) 2015’, Springer, pp. 507–516.

[318] Qian, J., Li, X.-Y., Zhang, C., Chen, L., Jung, T. and Han, J. [2017], ‘So-
cial Network De-anonymization and Privacy Inference with Knowledge
Graph Model’, IEEE Transactions on Dependable and Secure Computing
.

[319] Qin, X. and Lee, W. [2004], Attack Plan Recognition and Prediction Us-
ing Causal Networks, in ‘20th Annual Conference on Computer Security
Applications’, IEEE, pp. 370–379.

[320] Radiflow [2016], ‘Ukraine Cyber Attack Analysis’. Date accessed:
20-9-18.
URL: http://radiflow.com/wp-content/uploads/2015/12/

Ukraine cyber attack report.pdf
[321] Ralston, P. A., Graham, J. H. and Hieb, J. L. [2007], ‘Cyber Secu-

rity Risk Assessment for SCADA and DCS Networks’, ISA Transactions
46(4), 583–594.

[322] Raptis, D., Dimitrakos, T., Gran, B. A. and Stølen, K. [2002], The
Coras Approach for Model-based Risk Management Applied to E-
commerce Domain, in ‘Advanced Communications and Multimedia Se-
curity’, Springer, New York, USA, pp. 169–181.

[323] Rashid, A., Ramdhany, R., Edwards, M., Kibirige, S. M., Babar, A. and
Hutchison, D. [2014], Detecting and Preventing Data Exfiltration, Report,
University of Lancaster.

[324] Ray, I. and Poolsapassit, N. [2005], Using Attack Trees to Identify Ma-
licious Attacks from Authorized Insiders, in ‘European Symposium on
Research in Computer Security’, Springer, pp. 231–246.

[325] Reddy, K., Venter, H. S., Olivier, M. and Currie, I. [2008], Towards
Privacy Taxonomy-based Attack Tree Analysis for the Protection of Con-
sumer Information Privacy, in ‘Sixth Annual Conference on Privacy, Se-
curity and Trust, 2008. PST’08’, IEEE, pp. 56–64.

[326] Ritchey, R. W. and Ammann, P. [2000], Using Model Checking to An-
alyze Network Vulnerabilities, in ‘Proceedings of the IEEE Symposium
on Security and Privacy, S&P’2000.’, IEEE, pp. 156–165.

[327] Roberts, N., Vesely, W., Haasl, D. and Goldberg, F. [1981], Fault

34

/ Elsevier Computer Science 00 (2019) 1–46 35

Tree Handbook, NUREG-0492, Technical report, US Nuclear Regulatory
Commission.

[328] Rodriguez, M. A. [1991], What Makes a Warning Label Salient?, in
‘Proceedings of the Human Factors Society Annual Meeting’, Vol. 35,
SAGE Publications Sage CA: Los Angeles, CA, pp. 1029–1033.

[329] Roschke, S., Cheng, F. and Meinel, C. [2011], A New Alert Correlation
Algorithm Based on Attack Graph, in ‘4th International Conference on
Computational Intelligence in Security for Information Systems (CISIS
2011)’, Springer, pp. 58–67.

[330] Roy, A., Kim, D. S. and Trivedi, K. S. [2010], Cyber Security Analy-
sis Using Attack Countermeasure Trees, in ‘Proceedings of the 6th An-
nual Workshop on Cyber Security and Information Intelligence Research
(STAST2010)’, CSIIRW ’10, ACM, p. 28. http://doi.ACM.org/10.
1145/1852666.1852698 (visited: 13-04-2017).

[331] Roy, A., Kim, D. S. and Trivedi, K. S. [2012a], ‘Attack Countermeasure
Trees (ACT): Towards Unifying the Constructs of Attack and Defense
Trees’, Security and Communication Networks 5(8), 929–943.

[332] Roy, A., Kim, D. S. and Trivedi, K. S. [2012b], Scalable Optimal Coun-
termeasure Selection Using Implicit Enumeration on Attack Countermea-
sure Trees, in ‘42nd Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN)’, IEEE, pp. 1–12.

[333] Rumbaugh, J., Jacobson, I. and Booch, G. [2004], Unified Modeling
Language Reference Manual, The, Pearson Higher Education, Wolver-
hampton, UK.

[334] Sabaliauskaite, G. and Mathur, A. P. [2015], Aligning Cyber-physical
System Safety and Security, in ‘Proceedings of the 2nd Asia-Pacific Con-
ference on Complex Systems Design & Management (CSD&M Asia
2016)’, Springer, pp. 41–53.

[335] Saha, D. [2008], Extending Logical Attack Graphs for Efficient Vulner-
ability Analysis, in ‘Proceedings of the 15th ACM Conference on Com-
puter and Communications Security’, ACM, pp. 63–74.

[336] Sahner, R. A., Trivedi, K. and Puliafito, A. [2012], Performance and
Reliability Analysis of Computer Systems: An Example-based Approach
Using the Sharpe Software Package, Springer Science & Business Media,
New York, USA.

[337] Saini, V., Duan, Q. and Paruchuri, V. [2008], ‘Threat Modeling Using
Attack Trees’, Journal of Computing Sciences in Colleges 23(4), 124–
131.

[338] Sales, N. A. [2012], ‘Regulating Cyber-security’, Northwestern Univer-
sity Law Review 107, 1503.

[339] Salter, C., Saydjari, O. S., Schneier, B. and Wallner, J. [1998], Toward
a Secure System Engineering Methodolgy, in ‘Proceedings of the 1998
Workshop on New Security Paradigms’, ACM, pp. 2–10.

[340] Sanchez, G. [2015], ‘Critical Controls That Sony Should Have Imple-
mented’. Date accessed: 14-9-15.
URL: https://www.sans.org/reading-room/whitepapers/casestudies/case-
study-critical-controls-sony-implemented-36022

[341] Sanner, S. [2010], Relational Dynamic Influence Diagram Language
(RDDL): Language Description, PhD thesis, Australian National Univer-
sity.

[342] SANS [2016], Malware FAQ: Sadmind/IIS Worm, Web page, SANS.
URL: http://uk.sans.org/security-resources/malwarefaq/sadmind iis.php

[343] Sasse, M. and Flechais, I. [2005], Usable Security: Why Do We Need
It? How Do We Get It?, in ‘Security and Usability: Designing Secure
Systems That People Can Use’, O’Reilly, Farnham, UK.

[344] Sawilla, R. E. and Ou, X. [2008], Identifying Critical Attack Assets in
Dependency Attack Graphs, in ‘Proceedings of the 13th European Sym-
posium on Research in Computer Security: Computer Security’, ES-
ORICS ’08, Springer-Verlag, Malaga, Spain, pp. 18–34.

[345] Sawilla, R. and Ou, X. [2007], Googling Attack Graphs, Technical re-
port, Defence R & D Canada.

[346] Schneier, B. [1999], ‘Attack Trees’, Dr. Dobb’s Journal 24(12), 21–29.
[347] Schneier, B. [2000], Secrets and Lies: Digital Security in a Networked

World, Wiley, Indianapolis, Indiana, USA.
[348] Schuette, R. and Rotthowe, T. [1998], The Guidelines of Modeling–an

Approach to Enhance the Quality in Information Models, in ‘International
Conference on Conceptual Modeling (ER98)’, Springer, pp. 240–254.

[349] Schuppenies, R., Meinel, C. and Cheng, F. [2009], Automatic Extrac-
tion of Vulnerability Information for Attack Graphs, PhD thesis, Hasso-
plattner-institute for II Systems Engineering, University of Potsdam.

[350] Schweitzer, D. and Brown, W. [2009], ‘Using Visualization to Teach

Security’, Journal of Computing Sciences in Colleges 24(5), 143–150.
[351] Scott, L. M. [1994], ‘Images in Advertising: The Need for a Theory of

Visual Rhetoric’, Journal of Consumer Research 21(2), 252–273.
[352] Scully, T. [2014], ‘The Cyber Security Threat Stops in the Boardroom’,

Journal of business continuity & emergency planning 7(2), 138–148.
[353] Sen, A. and Madria, S. [2017], ‘Risk Assessment in a Sensor Cloud

Framework Using Attack Graphs’, IEEE Transactions on Services Com-
puting 10(6), 942–955.

[354] Sendi, A. S., Louafi, H., He, W. and Cheriet, M. [2016], ‘Dynamic Op-
timal Countermeasure Selection for Intrusion Response System’, IEEE
Transactions on Dependable and Secure Computing 15, 755–770.

[355] Senol, Y. E., Aydogdu, Y. V., Sahin, B. and Kilic, I. [2015], ‘Fault Tree
Analysis of Chemical Cargo Contamination by Using Fuzzy Approach’,
Expert Systems with Applications 42(12), 5232–5244.

[356] Sgandurra, D., Paudice, A., Lupu, E. C. et al. [2017], ‘Efficient Attack
Graph Analysis through Approximate Inference’, ACM Transactions on
Privacy and Security 20(3), 10.

[357] Shachter, R. D. [1986], ‘Evaluating Influence Diagrams’, Operations
Research 34(6), 871–882.

[358] Shandilya, V., Simmons, C. B. and Shiva, S. [2014], ‘Use of Attack
Graphs in Security Systems’, Journal of Computer Networks and Com-
munications 2014.

[359] Sheyner, O., Haines, J., Jha, S., Lippmann, R. and Wing, J. M. [2002],
Automated Generation and Analysis of Attack Graphs, in ‘Proceedings of
the 2002 IEEE Symposium on Security and Privacy’, IEEE, pp. 273–284.

[360] Sheyner, O. M. [2004], Scenario Graphs and Attack Graphs, PhD thesis.
[361] Sheyner, O. and Wing, J. [2004], Tools for Generating and Analyzing

Attack Graphs, in ‘3rd International symposium for Formal Methods for
Components and Objects (FMCO2004)’, Springer, pp. 344–371.

[362] Shirey, R. [2000], Internet Security Glossary, RFC 2828, RFC Editor.
[363] Sindre, G. and Opdahl, A. L. [2001], Templates for Misuse Case De-

scription, in ‘Proceedings of the 7th International Workshop on Require-
ments Engineering, Foundation for Software Quality (REFSQ’2001’,
Citeseer.

[364] Sindre, G. and Opdahl, A. L. [2005], ‘Eliciting Security Requirements
with Misuse Cases’, Requirements Engineering 10(1), 34–44.

[365] Smith, S. L. and Thomas, D. W. [1964], ‘Color Versus Shape Coding in
Information Displays.’, Journal of Applied Psychology 48(3), 137.

[366] Sommestad, T., Ekstedt, M. and Johnson, P. [2008], Combining De-
fense Graphs and Enterprise Architecture Models for Security Analysis,
in ‘12th International IEEE Conference on Enterprise Distributed Object
Computing Conference, 2008’, IEEE, pp. 349–355.

[367] Sommestad, T., Ekstedt, M. and Johnson, P. [2009], Cyber Security
Risks Assessment with Bayesian Defense Graphs and Architectural Mod-
els, in ‘42nd Hawaii International Conference on System Sciences, 2009.
HICSS’09’, IEEE, pp. 1–10.

[368] Staheli, D., Yu, T., Crouser, R. J., Damodaran, S., Nam, K., O’Gwynn,
D., McKenna, S. and Harrison, L. [2014], Visualization Evaluation for
Cyber Security: Trends and Future Directions, in ‘Proceedings of the
Eleventh Workshop on Visualization for Cyber Security’, ACM, pp. 49–
56.

[369] Stålhane, T. and Sindre, G. [2007], A Comparison of Two Approaches
to Safety Analysis Based on Use Cases, in ‘26th International Conference
on Conceptual Modeling’, Springer, pp. 423–437.

[370] Stamatiou, Y., Skipenes, E., Henriksen, E., Stathiakis, N., Sikianakis,
A., Charalambous, E., Antonakis, N., Stølen, K., den Braber, F., Lund,
M. S. et al. [2003], The CORAS Approach for Model-based Risk Man-
agement Applied to a Telemedicine Service, in ‘Proceedings of Medical
Informatics Europe (MIE2003)’.

[371] Staniford-Chen, S., Cheung, S., Crawford, R., Dilger, M., Frank, J.,
Hoagland, J., Levitt, K., Wee, C., Yip, R. and Zerkle, D. [1996], Grids-a
Graph Based Intrusion Detection System for Large Networks, in ‘Pro-
ceedings of the 19th National Information Systems Security Conference’,
Vol. 1, Baltimore, pp. 361–370.

[372] Steffan, J. and Schumacher, M. [2002], Collaborative Attack Modeling,
in ‘Proceedings of the 2002 ACM Symposium on Applied Computing’,
ACM, pp. 253–259.

[373] Störrle, H. and Fish, A. [2013], Towards an Operationalization of the
“Physics of Notations” for the Analysis of Visual Languages, in ‘16th
International Conference on Model Driven Engineering Languages and
Systems MODELS2013’, Springer, pp. 104–120.

35

/ Elsevier Computer Science 00 (2019) 1–46 36

[374] Sudit, M., Stotz, A. and Holender, M. [2005], Situational Awareness
of a Coordinated Cyber Attack, in ‘Defense and Security’, International
Society for Optics and Photonics, pp. 114–129.

[375] Sun, F., Pi, J., Lv, J. and Cao, T. [2017], ‘Network Security Risk Assess-
ment System Based on Attack Graph and Markov Chain’, 910(1), 012005.

[376] Sun, X., Singhal, A. and Liu, P. [2017], Towards Actionable Mission
Impact Assessment in the Context of Cloud Computing, in ‘IFIP Annual
Conference on Data and Applications Security and Privacy XXXI (DB-
Sec2017)’, Springer, pp. 259–274.

[377] Sundaramurthy, S. C., Zomlot, L. and Ou, X. [2011], Practical IDS Alert
Correlation in the Face of Dynamic Threats, in ‘Proceedings of the Inter-
national Conference on Security and Management’.

[378] Sweller, J. [1988], ‘Cognitive Load during Problem Solving: Effects on
Learning’, Cognitive Science 12(2), 257–285.

[379] Sweller, J. and Chandler, P. [1994], ‘Why Some Material Is Difficult to
Learn’, Cognition and Instruction 12(3), 185–233.

[380] Swiler, L. P., Phillips, C., Ellis, D. and Chakerian, S. [2001], Computer-
attack Graph Generation Tool, in ‘DARPA Information Survivability
Conference & Exposition II, 2001. DISCEX’01. Proceedings’, Vol. 2,
IEEE, pp. 307–321.

[381] Tanium [2017], The Accountability Gap, Technical report, Tanium.
[382] Tanu, E. and Arreymbi, J. [2010], An Examination of the Security Impli-

cations of the Supervisory Control and Data Acquisition (scada) System
in a Mobile Networked Environment: An Augmented Vulnerability Tree
Approach, in ‘Proceedings of the 5th Annual Conference on Advances in
Computing and Technology, (AC&T)’, pp. 228–242.

[383] Taylor, C. R., Venkatasubramanian, K. and Shue, C. A. [2014], Un-
derstanding the Security of Interoperable Medical Devices Using Attack
Graphs, in ‘Proceedings of the 3rd International Conference on High Con-
fidence Networked Systems (HiCoNS2014)’, ACM, pp. 31–40.

[384] Templeton, S. J. and Levitt, K. [2001], A Requires/provides Model for
Computer Attacks, in ‘Proceedings of the 2000 Workshop on New Secu-
rity Paradigms’, ACM, pp. 31–38.

[385] Ten, C.-W., Liu, C.-C. and Govindarasu, M. [2007], Vulnerability As-
sessment of Cybersecurity for Scada Systems Using Attack Trees, in
‘Power Engineering Society General Meeting, 2007’, IEEE, pp. 1–8.

[386] Tentilucci, M., Roberts, N., Kandari, S., Johnson, D., Bogaard, D.,
Stackpole, B. and Markowsky, G. [2015], Crowdsourcing Computer Se-
curity Attack Trees, in ‘10th Annual Symposium on Information Assur-
ance (ASIA’15)’, p. 19.

[387] Tøndel, I. A., Jensen, J. and Røstad, L. [2010], Combining Misuse Cases
with Attack Trees and Security Activity Models, in ‘International Confer-
ence on Availability, Reliability, and Security, 2010. ARES’10’, IEEE,
pp. 438–445.

[388] Trudeau, R. J. [2013], Introduction to Graph Theory, Courier Corpora-
tion, Mineola, NY, USA.

[389] Tucci, A. E. [2017], Cyber Risks in the Marine Transportation System,
in ‘Cyber-physical Security’, Springer, New York, USA, pp. 113–131.

[390] Urbanska, M., Roberts, M., Ray, I., Howe, A. and Byrne, Z. [2013], Ac-
cepting the Inevitable: Factoring the User into Home Computer Security,
in ‘Proceedings of the Third ACM Conference on Data and Application
Security and Privacy (CODASPY2013)’, ACM, pp. 325–332.

[391] US Nuclear Safety Commission [1975], Reactor Safety Study, Technical
report, US Nuclear Safety Commission.

[392] Valasek, C. and Miller, C. [2015], Remote Exploitation of an Unaltered
Passenger Vehicle, Report, Ioactive.

[393] Van den Berg, J., van Zoggel, J., Snels, M., van Leeuwen, M., Boeke,
S., van de Koppen, L., van der Lubbe, J., van den Berg, B. and de Bos,
T. [2014], On (the Emergence Of) Cyber Security Science and Its Chal-
lenges for Cyber Security Education, in ‘Proceedings of the NATO IST-
122 Cyber Security Science and Engineering Symposium’, pp. 13–14.

[394] Vesely, W., Stamatelatos, M., Dugan, J., Fragola, J., Minarick III, J. and
Railsback, J. [2002], Fault Tree Handbook with Aerospace Applications
Version 1.1, Technical report, NASA Office of Safety and Mission Assur-
ance, NASA HQ.

[395] Vidalis, S., Jones, A. et al. [2003], Using Vulnerability Trees for Deci-
sion Making in Threat Assessment, Technical report, University of Glam-
organ, School of Computing, Technical Report. CS-03-2.

[396] Vigo, R., Nielson, F. and Nielson, H. R. [2014], Automated Generation
of Attack Trees, in ‘27th IEEE Computer Security Foundations Sympo-
sium (CSF), 2014’, IEEE, pp. 337–350.

[397] Vlajic, N. [2015], ‘Sony Hack:the Most Puzzling Security Story of
2014’. Date accessed: 20-9-18.
URL: http://www.eecs.yorku.ca/course archive/2014-
15/W/3482/SonyHack Presentation.pdf

[398] Wall, D. S. [2013], ‘Enemies Within: Redefining the Insider Threat in
Organizational Security Policy’, Security Journal 26(2), 107–124.

[399] Wang, H., Hernandez, J. and Van Mieghem, P. [2008], ‘Betweenness
Centrality in a Weighted Network’, Physical Review E 77(4), 046105.

[400] Wang, J., Mo, H., Wang, F. and Jin, F. [2011], ‘Exploring the Net-
work Structure and Nodal Centrality of China’s Air Transport Net-
work: A Complex Network Approach’, Journal of Transport Geography
19(4), 712–721.

[401] Wang, L. and Jajodia, S. [2008], Intrusion Detection Systems, Vol. 38,
Springer Science & Business Media, New York, USA.

[402] Wang, L., Liu, A. and Jajodia, S. [2006], ‘Using Attack Graphs for Cor-
relating, Hypothesizing, and Predicting Intrusion Alerts’, Computer Com-
munications 29(15), 2917–2933.

[403] Wang, L., Noel, S. and Jajodia, S. [2006], ‘Minimum-cost Net-
work Hardening Using Attack Graphs’, Computer Communications
29(18), 3812–3824.

[404] Wang, L., Singhal, A. and Jajodia, S. [2007a], Measuring the Overall Se-
curity of Network Configurations Using Attack Graphs, in ‘21st Annual
IFIP WG 11.3 Working Conference on Data and Applications Security’,
Springer, pp. 98–112.

[405] Wang, L., Singhal, A. and Jajodia, S. [2007b], Toward Measuring Net-
work Security Using Attack Graphs, in ‘Proceedings of the 2007 ACM
Workshop on Quality of Protection’, ACM, pp. 49–54.

[406] Wang, L., Yao, C., Singhal, A. and Jajodia, S. [2008], ‘Implementing In-
teractive Analysis of Attack Graphs Using Relational Databases’, Journal
of Computer Security 16(4), 419–437.

[407] Wang, T., Wang, H., Liu, B. and Shi, P. [2012], ‘Which Strategy Is Better
to Restrain C&C Activities of Unstructured P2P Botnets?’, Journal of
Convergence Information Technology 7(20).

[408] Wang, W. and Daniels, T. E. [2008], ‘A Graph Based Approach toward
Network Forensics Analysis’, ACM Transactions on Information and Sys-
tem Security 12(1), 4.

[409] Ware, C. [2012], Information Visualization: Perception for Design, El-
sevier, Amsterdam, The Netherlands.

[410] Weiss, J. D. [1991], A System Security Engineering Process, in ‘Pro-
ceedings of the 14th National Computer Security Conference’, Vol. 249,
pp. 572–581.

[411] Wertheimer, M. [1923], ‘A Brief Introduction to Gestalt, Identifying Key
Theories and Principles’, Psychologische Forschung 4, 301–350.

[412] Whittle, J., Wijesekera, D. and Hartong, M. [2008], Executable Misuse
Cases for Modeling Security Concerns, in ‘30th International ACM/IEEE
Conference on Software Engineering, ICSE’08.’, IEEE, pp. 121–130.

[413] Wiegmann, D. A., Dansereau, D. F., McCagg, E. C., Rewey, K. L. and
Pitre, U. [1992], ‘Effects of Knowledge Map Characteristics on Informa-
tion Processing’, Contemporary Educational Psychology 17(2), 136–155.

[414] Williams, L., Lippmann, R. and Ingols, K. [2008], An Interactive Attack
Graph Cascade and Reachability Display, in ‘Symposium on Visualiza-
tion for Cyber Security (VIZSEC 2007)’, Springer, pp. 221–236.

[415] Williams, P. [2007], ‘Executive and Board Roles in Information Secu-
rity’, Network Security 2007(8), 11–14.

[416] Winn, W. [1993], ‘An Account of How Readers Search for Information
in Diagrams’, Contemporary Educational Psychology 18(2), 162–185.

[417] Wu, J., Ota, K., Dong, M. and Li, C. [2016], ‘A Hierarchical Security
Framework for Defending against Sophisticated Attacks on Wireless Sen-
sor Networks in Smart Cities’, IEEE Access 4, 416–424.

[418] Wu, J., Ye, C. and Jin, S. [2006], Adversarial Organization Modeling for
Network Attack/defense, in ‘Proceedings of the second International Con-
ference on Information Security Practice and Experience (IPSEC2006)’,
Springer, pp. 90–99.

[419] Wynekoop, J. L. and Russo, N. L. [1997], ‘Studying System Develop-
ment Methodologies: An Examination of Research Methods’, Informa-
tion Systems Journal 7(1), 47–65.

[420] Xie, A., Cai, Z., Tang, C., Hu, J. and Chen, Z. [2009], Evaluating Net-
work Security with Two-layer Attack Graphs, in ‘Annual Computer Se-
curity Applications Conference (ACSAC’09)’, IEEE, pp. 127–136.

[421] Xie, A., Chen, G., Wang, Y., Chen, Z. and Hu, J. [2009], A New Method
to Generate Attack Graphs, in ‘3rd IEEE International Conference on Se-

36

/ Elsevier Computer Science 00 (2019) 1–46 37

cure Software Integration and Reliability Improvement (SSIRI 2009)’,
IEEE, pp. 401–406.

[422] Xie, A., Zhang, L., Hu, J. and Chen, Z. [2009], A Probability-based Ap-
proach to Attack Graphs Generation, in ‘2nd International Symposium on
Electronic Commerce and Security (ISECS’09)’, Vol. 2, IEEE, pp. 343–
347.

[423] Xin, J., Cheng, K., Taylor, G., Sato, T. and Hansuebsai, A. [2004a],
‘Cross-regional Comparison of Colour Emotions Part Ii: Qualitative
Analysis’, Color Research & Application 29(6), 458–466.

[424] Xin, J. H., Cheng, K., Taylor, G., Sato, T. and Hansuebsai, A. [2004b],
‘Cross-regional Comparison of Colour Emotions Part I: Quantitative
Analysis’, Color Research & Application 29(6), 451–457.

[425] Zedda, M., Piras, C. and Pinna, F. [2013], ‘Road Signs: Walking among
Shapes and Colors’, International Journal of Research in Engineering
and Technology 2(10), 568–573.

[426] Zhang, B., Li, Q., Zhang, Y., Liu, X. and Ni, Z. [2016], ‘Genera-
tion of Cyber-security Reinforcement Strategies for Smart Grid Based
on the Attribute-based Attack Graph’, Journal of Power Technologies
96(3), 170.

[427] Zhang, C., Wang, S. and Zhan, D. [2017], A Protocol Vulnerability
Analysis Method Based on Logical Attack Graph, in ‘13th International
Conference on Intelligent Information Hiding and Multimedia Signal Pro-
cessing (IIH-MSP2017)’, Springer, pp. 309–317.

[428] Zhang, T., Hu, M.-Z., Li, D. and Sun, L. [2005], An Effective Method to
Generate Attack Graph, in ‘Proceedings of 2005 International Conference
on Machine Learning and Cybernetics (ICMLC 2005)’, Vol. 7, IEEE,
pp. 3926–3931.

[429] Zhang, Y., Xiang, Y. and Wang, L. [2017], ‘Power System Reliabil-
ity Assessment Incorporating Cyber Attacks against Wind Farm Energy
Management Systems’, IEEE Transactions on Smart Grid 8(5), 2343–
2357.

[430] Zhang, Z. and Wang, S. [2012], Boosting Logical Attack Graph for Ef-
ficient Security Control, in ‘7th International Conference on Availability,
Reliability and Security (ARES2012)’, IEEE, pp. 218–223.

[431] Zheng, Y., Lv, K. and Hu, C. [2017], A Quantitative Method for Eval-
uating Network Security Based on Attack Graph, in ‘11th International
Conference on Network and System Security’, Springer, pp. 349–358.

[432] Zhong, S., Yan, D. and Liu, C. [2009], Automatic Generation of Host-
based Network Attack Graph, in ‘WRI World Congress on Computer Sci-
ence and Information Engineering (CSIE2009)’, Vol. 1, IEEE, pp. 93–98.

[433] Zhu, B. and Ghorbani, A. A. [2006], ‘Alert Correlation for Extracting
Attack Strategies’, International Journal of Network Security 3(3), 244–
258.

37

/ Elsevier Computer Science 00 (2019) 1–46 38

8. A Review of Attack Graph and Attack Tree Visual Syn-
tax

38

/E
lsevier

C
om

puter
Science

00
(2019)1–46

39

Table 22. A review of attack graph visual syntax

This table is presented generally in alphabetic order of author surname. However, some entries are are not in alphabetic order and have been swapped to ensure the page space is used efficiently.

Type Citation ef ipc po pr ex go col lb edg notes

Attack graph [2] td X X p e X X* ps X * all nodes are turqoise

Logical attack graph [4] td X e|d* r d |e X X ps X *Ellipses represent AND, diamonds represent OR, however the same node represents preconditions as represents
exploits.

Attack graph [5] td X X X rrbu |erd rog X tx X

Attack graph* [6] td evi X ebu rgn X X ps X *potential mitigations represented as orange rectangles

State enumeration
attack graph

[12] td X X e e* X X ch X *ellipses are used to represent both exploits and preconditions, the distinction is made with exploits represented as
lower case text and preconditions as uppercase

Attack graph* [11] td X d|e† u u X X ch X *The terms attack graph and attack tree are used interchangeably, in particular when referring to the figure †(∧), d(∨)

Attack graph [21] lr X X e* pie X X ps X *grey represents states visible to an IDS

Attack graph [26] td X X p e X X ps X Note the difference in visual syntax of the two attack graphs proposed in [26]and [27]
Attack graph [27] td X X e r X X ps X

Attack graph [31] bu X X eye rbu X X ps X

Attack graph [33] lr X X c |cgy pie X X ps X

Attack graph [36] td X X p e c* X tx X *thick lined circle

Attack graph [36] td X X r X X X ps X

Attack graph [41] td r X r e p X ps X

Coordinated attack
graph

[45] td X X c* pie X X tx|ch† X *represented as statuses
†text:exploits, character:preconditions

Vulnerability cause
graph (second gen-
eration)*

[54] td X r|h† r |h§ h X X tx X *unclear use of hexagons and rectangles; †dotted rectangle encompasses precondition nodes. Does not appear to
distinguish between conjunction/disjunction; §precondition is represented by both the rectangle (’simple node’) and
the hexagon (’compound node’)

Vulnerability cause
graph

[63] td X X r|rr |h* rr X X tx X *rectangles, rounded rectangles and hexagons are used interchangeably, however these are not clearly explained

Attack graph [65,
64]

td X X p e X X ps X

Attack graph [70] td X X p e X X ps X

Exploit dependency
graph

[73] td X X e* e † X X ps X *red edge, †green edge

Privilege graph [83] td X X pie X c X ch X

Dependency attack
araph

[85] td X X p|r* e rgn y† ps X *Privileges given as rectangles and other preconditions as plaintext †goal given as a grey rectangle

Risk flow attack
graph

[85] td r X p p rgy rgy ps X

Attack graph [89] td X X X r X X tx X

Attack graph [102] td X X r rr d X tx X

Attack graph [113] td X X p e X X ps X Note: two attack graph configurations are proposed in the same paper
Attack graph [113] bu X X p e X X ps X

Dependancy Graph [118] td X X e pie X X ps X

KEY: Column descriptors. ef :event flow, ipc:initial precondition, po:precondition opera-
tor, pr:precondition, ex:exploit, go:goal, col:colour, lb:label type, edg:edge type
Colour codes used in accordance with the definitions provided by [165]. bu:blue, bk:black,
gn:green, gy:grey, og:orange, pk:pink, tq:turquoise, rd:red, vi:violet, wh:white, ye:yellow

Shapes. c:circle, r:rectangle, p:plaintext, e:ellipse, d:diamond, rr:rounded rectangle, h:hexagon, o:octagon, t:triangle, u:unclear
Precondition operator. ftr:fault tree method, sym:symbol, dl:dotted line, ∧: AND; ∨:OR
Event flow. td:top-down, bu:bottom-up, lr:left-right, rl:right-left
Labels. ps:pseudonymous, ch:character, tx:textual, ie:in edge (label presented on the edge)

Continued on next page

39

/E
lsevier

C
om

puter
Science

00
(2019)1–46

40

Table 23 – continued from previous page

Type Citation ef ipc po pr ex go col lb edg notes

i-graph [122] td X arc e e X X tx X *introduces ‘quorum operators as a double arc as well as the normal conjunction/disjunction “Minimum Required
Quorum (MRQ) on it, which represents the minimum number of child nodes whose goals need to be achieved in
order for the node with incoming Quorum edges to be achieved”

Attack graph [125] td t X r e o X† ps X *given as a downward facing triangle, this image is also used in [290] †all shapes are grey

Attack graph [129] td X X r* e X X† tx X *A distinction is made between a threat and a vulnerability by the use of an ‘angry face’ and ladybird icon respectively
† attacks presented with a red edge

Attack graph [133] td X X X e|d e|d X X ps

Attack graph [135] td X X p e* X y† ps X *In a separate paper [136] present exploits as circles and as ellipses in two separate attack graphs; †all shapes presented
in turqoise

Attack graph [136] td X X p e* X X† ps X *In the same paper, Ghosh and Ghosh present exploits as circles †all shapes presented in turqoise

Attack graph [149] td X X e pie y* X ps X *goal represented as an ellipse with a double thick edge

Attack graph [157] lr X X d e X X ch X

Attack graph [159] td eog X e r hgn X ps X

Multiple prerequi-
site graph

[169] td X X c|r* t† X X ps X *circles represent states, rectangles represent preconditions. †downward pointing triangle

Attack graph [169] td X X c pie X X ps X

Attack graph [172] td cpk X p r cpk* X ps X * double edged circle

Attack graph
[175,
176,
359]*

td X X X r X X ps X
Three different attack graphs are presented in the same paper and one is repeated in the paper by Sheyner et al..
These are counted as three separate attack graphs *Sheyner et al. is co-authored by Jha et al. †in-edge labelstd X X X cbk

† X X ps X

td X X X c* X X ps X

Attack graph [174] td X X p egn X X ps X

Attack graph* [173] td rye X rye ebu opk
† X ps X *On page 36, Jajodia and Noel present the attack graph previously presented by[125] in a colorised version. The

original is not cited. †divided into overall postconditions represented as a pink hexagon or intermediate postconditions
represented in plaintext

Attack graph [179] td X X p e X X ps X

Probabilistic attack
graph

[181] td X X rtq etq X X ps X

Attack graph [189] td X tgy* rrd rye X X ps|tx X *ANDgreytriangle, OR represented (one presumes) by absence thereof

Compact attack
graph

[192] td X X p rr X X ps X [192] is similar to [26]. Note: The attack graph and compact attack graph proposed in [192] and [193] are
essentially the same

Attack graph [193] td X X p rr X X ps X

Attack graph [209] td X X crd rgy |rwh* X X ps X *white and grey rectangles are used to represent exploits. White rectangles represent perpetrator action, grey rect-
angles represent final perpetrator action. A clear circle is used to represent hosts. NB. The editors and reviewers of
‘Communications and Multimedia Security’ appear to have missed the six profanities in the attack graph....

Attack graph [208] td X X u* u* u* X ps X *four colours and two shapes (rr, r) are used but there is no explanation outlining the meaning of the colours/shapes

Logical attack
graph*

[214] td t X d e r† X ps X *Near identical graph to [317]

Access execution
graph

[222] td X X cgn |rvi |cog rye X X tx* X *test used for certain prerequisites but not for anything represented using a circle

Predictive
Attack graph [232]

lr* X X X c X X ch X
*The predictive attack graph is presented both left-right and top-down in the same paperlr X X X cbk X X x X

td X X X c X X ch X

E-graph [226,
227]

td r X X r r X ps X

KEY: Column descriptors. ef :event flow, ipc:initial precondition, po:precondition opera-
tor, pr:precondition, ex:exploit, go:goal, col:colour, lb:label type, edg:edge type
Colour codes used in accordance with the definitions provided by [165]. bu:blue, bk:black,
gn:green, gy:grey, og:orange, pk:pink, tq:turquoise, rd:red, vi:violet, wh:white, ye:yellow

Shapes. c:circle, r:rectangle, p:plaintext, e:ellipse, d:diamond, rr:rounded rectangle, h:hexagon, o:octagon, t:triangle, u:unclear
Precondition operator. ftr:fault tree method, sym:symbol, dl:dotted line, ∧: AND; ∨:OR
Event flow. td:top-down, bu:bottom-up, lr:left-right, rl:right-left
Labels. ps:pseudonymous, ch:character, tx:textual, ie:in edge (label presented on the edge)

Continued on next page

40

/E
lsevier

C
om

puter
Science

00
(2019)1–46

41

Table 23 – continued from previous page

Type Citation ef ipc po pr ex go col lb edg notes

Attack graph [228] td X X e e X X* tx X *The example highlights two nodes in grey

Attack graph [228] td X X cgn pie X X ps X

Attack graph [232] td cbk X X cgy X X ps X An attack graph is presented in each of the papers by [232, 229], both of them are different. The attack graph
presented in [232] is presented both top-down and left-rightAttack graph [229] td X X X c X X ps X

Attack graph [236,
233]

td X X X e X* X ps X* *Double edged circle represents goal

Compressed attack
graph

[238] td X X u e X X ps X

Attack graph [239] td X ft c c X X* tx X * all edges are blue

Attack graph [240] td X X p p X X ps X

Attack response
graph

[241] td X X X c X X tx* X *textual explanation added at the side of each node

Attack graph [243] td X X cbu |crd* pie X X tx† X *blue is normally privilege level, red is root privilege. †exploit described as ps

Attack graph [256] td X X X cwh |cpk |

crd*
X X* ch X *colour used to denote severity of exploit

Personalised attack
graph

[271] bu X e* rgy r r† X tx X *with the word ‘and’ inside †bold blue edge

Attack graph [273] td X X X c c* X ch X *double edged circle

Attack graph [274] td X X c* cbu |cpk
† cgn X ch X *pink with dotted black edge.

†utilises blue nodes referred to as transition nodes

Hybrid attack graph [276] td X X e pie X X ch X

Attack strategy
graph

[280] td X X X e* X X tx X *source and destination ip addresses presented as in edge labels

Alert correlation
graph

[281] td X X X X X X ps X

Hyper alert
correlation graph

[278] lr egy X X e X X ch X

[280,
281,
279]

lr X X X e X X ch X

Integrated correla-
tion graph

[281] lr X X X ewh |egy X X ps X

Exploit dependency
graph*

[289,
403]

td X X p e o† X ps§ X

Attack graph* [284,
290]

td X X X etq X X ps X
*The exploit dependency graph presented in [284] is a compact version of the state enumeration graph

Condition oriented
attack graph*

[284] td X X rgy pie X X ps X

Exploit oriented at-
tack graph*

[284] td egy X egy pie x X ps X

Attack graph (low
Level)

[283] td X u e r X X ps X

Attack graph [287] td X X rpk ebu opk X ps X *one of the preconditions: execute(web) appears to have been misrepresented without a shape or colour

Attack graph [290] td tg* X p|rye ebu eye X ps X *green downwards facing triangle

KEY: Column descriptors. ef :event flow, ipc:initial precondition, po:precondition opera-
tor, pr:precondition, ex:exploit, go:goal, col:colour, lb:label type, edg:edge type
Colour codes used in accordance with the definitions provided by [165]. bu:blue, bk:black,
gn:green, gy:grey, og:orange, pk:pink, tq:turquoise, rd:red, vi:violet, wh:white, ye:yellow

Shapes. c:circle, r:rectangle, p:plaintext, e:ellipse, d:diamond, rr:rounded rectangle, h:hexagon, o:octagon, t:triangle, u:unclear
Precondition operator. ftr:fault tree method, sym:symbol, dl:dotted line, ∧: AND; ∨:OR
Event flow. td:top-down, bu:bottom-up, lr:left-right, rl:right-left
Labels. ps:pseudonymous, ch:character, tx:textual, ie:in edge (label presented on the edge)

Continued on next page

41

/E
lsevier

C
om

puter
Science

00
(2019)1–46

42

Table 23 – continued from previous page

Type Citation ef ipc po pr ex go col lb edg notes

Privilege graph [300] td X X c|e|pie* X* X X ch X *in edge labels represent the preconditions which are explained in the caption, circles and ellipses represent the state
of the host after an exploit. Although exploits are not represented, it is assumed that they have been executed.

Attack state graph [300] td X X pie* X X X ch X *The explanation of the graph is insufficient and the observer is left to work out that the in-edge labels represented
in the attack state graph, correspond to the in-edge labels presented in the privilege graph (Presented in the same
paper). Clear and black ellipses are used to represent the states after an exploit has been applied. Here again, there is
no explanation

Logical attack graph [301] td X cbk c* r† X X ch X *referred to as a ‘fact node’. There are two types of fact node: a ‘primitive fact node’ (small black circle), and a
derived ‘fact node’ (a circle with a number in it). *represented as a ‘derivation node’ which is explained as “how the
fact becomes true”, i.e., how a possible vulnerability is realised”.

Attack graph [303] td X X e|d* e|d* X X ch X *Each preceding number in the attack graph corresponds to a key also provided in the paper. The numbers 1, 2, 6, 7,
11 and 12 correspond to exploits, the rest correspond to preconditions. The figure shows that diamonds and ellipses
are used to represent exploits and preconditions interchangeably

Host access graph [316] td X X cgn cgn X X ch X

Logical attack
graph*

[317] td X X d e r† X ps X *Near identical graph to [214] †The graph includes ‘configuration nodes’ represented as rectangles. These are pre-
sumably (although not explained) the postconditions when node configurations that are changes as a consequence of
an exploit

Attack graph [345,
344]

td X d|e r* d* X X ps X *coloured red to blue according to AssetRank value †d(∨) e(∧)

Attack graph [353] bu X e* r r X X tx X† *Ellipse with text † specific exploits outlined with double density line

Bayesian attack
graph

[356] td X rvi X e X X tx X

Attack graph [358] td X X e pie x X tx X

Attack graph [361,
360]

td X X X cgy* X X ch X *shaded grey circles used to outline IDS alarms
Red rectangles are used in examples to highlight attack paths, these are not part of the definition

Defense graph [366] bu X p|d e e X X tx X

Attack graph [375] td X X c c X X ch X

Mission depen-
dency graph

[376] td X X r|d e X X ps X

Alert correlation
graph

[377] td X X r e X X tx X

Attack graph [383] bu X p(∨) p p X X tx X

Personalised attack
graph

[390] bu X c* r† rgy X X tx X * conjunction represented with a circle - not labelled †solid and dashed line rectangles

Attack graph* [402] td X X r e X X† tx X *Although referred to as an attack graph, other authors have referred to a graph representing a similar concept as an
alert correlation graph; †grey shapes used to highlight missing alerts

Attack graph [404,
405]

td X X p e egy X ps X

Attack graph [399] td X X p e X X ps X

Multiple prerequi-
site graph

[414] td X X u u X X ps X Multiple colours are used in the graph, the narrative does not reveal the meanings of the colours and it is not possible
to discern preconditions and exploits

Attack graph [417] lr X p c c X X ch X

Host attack graph [420,
421]

td X X X pie* X X ps X *exploits are represented with a dotted edge
ellipses are used to identify hosts - hence the name

Sub attack graph [421] td X X e* pie
† X X ch X *represented as states, the specific state is not identified †an in edge label is provided, the label has to be correlated

with a table (also provided)

Attack graph [422] td X X X pie* e† X ch X *exploit is presented as a label. A separate table is provided to aid the observer †doubled edged ellipse

KEY: Column descriptors. ef :event flow, ipc:initial precondition, po:precondition opera-
tor, pr:precondition, ex:exploit, go:goal, col:colour, lb:label type, edg:edge type
Colour codes used in accordance with the definitions provided by [165]. bu:blue, bk:black,
gn:green, gy:grey, og:orange, pk:pink, tq:turquoise, rd:red, vi:violet, wh:white, ye:yellow

Shapes. c:circle, r:rectangle, p:plaintext, e:ellipse, d:diamond, rr:rounded rectangle, h:hexagon, o:octagon, t:triangle, u:unclear
Precondition operator. ftr:fault tree method, sym:symbol, dl:dotted line, ∧: AND; ∨:OR
Event flow. td:top-down, bu:bottom-up, lr:left-right, rl:right-left
Labels. ps:pseudonymous, ch:character, tx:textual, ie:in edge (label presented on the edge)

Continued on next page

42

/E
lsevier

C
om

puter
Science

00
(2019)1–46

43

Table 23 – continued from previous page

Type Citation ef ipc po pr ex go col lb edg notes

Attack graph [428] td cgy* X cye |crd
† pie X X ch X *grey†red nodes represent root privilege, yellow nodes represent user privilege

Logical attack graph [430] td X X e d X X* ch X *red edges as well as black edges

Attack graph [426] td X X p e X X ps X

Bayesian attack
graph

[429] td* X X p e |egy X X ch X * The same paper also presents the attack graph as left to right

Protocol vulnerabil-
ity correlation graph

[427] td X X c* X X X ch X *light green edge

Attack graph [431] td X X p c X X ch X

Attack graph [432] td X X cbu* rbu
† X X ch X *represented as a target host against which an attack has been successful †exploits are represented as free standing

rectangular boxes in which the exploit description is inserted

Attack graph [433] td X X X e X X tx X

KEY: Column descriptors. ef :event flow, ipc:initial precondition, po:precondition opera-
tor, pr:precondition, ex:exploit, go:goal, col:colour, lb:label type, edg:edge type
Colour codes used in accordance with the definitions provided by [165]. bu:blue, bk:black,
gn:green, gy:grey, og:orange, pk:pink, tq:turquoise, rd:red, vi:violet, wh:white, ye:yellow

Shapes. c:circle, r:rectangle, p:plaintext, e:ellipse, d:diamond, rr:rounded rectangle, h:hexagon, o:octagon, t:triangle, u:unclear
Precondition operator. ftr:fault tree method, sym:symbol, dl:dotted line, ∧: AND; ∨:OR
Event flow. td:top-down, bu:bottom-up, lr:left-right, rl:right-left
Labels. ps:pseudonymous, ch:character, tx:textual, ie:in edge (label presented on the edge)

Continued on next page

43

/E
lsevier

C
om

puter
Science

00
(2019)1–46

44

Table 24. A review of attack tree visual syntax

This table is presented generally in alphabetic order of author surname. However, some entries are swapped to ensure the page space is used
efficiently and may not appear in alphabetic order

Type Citation ef ipc po pr ex go col lb edg notes

Attack tree [8] lr X X X p X X tx X* *Attack path

Attack tree [8] lr X X X p X X tx X* *Attack path

Attack tree [20] bu X ft* r r X X tx X * ft AND/OR and SAND

Dynamic Attack
Tree*

[19] bu X ft† r r X X tx X *Dynamic because it captures probabilities, otherwise the same as the attack tree [20] †ft AND/OR and SAND and
SOR

Attack defense tree [24] bu X arc crd crd X X tx X* *dotted dash to highlight mitigations. Mitigations (defenses) are highlighted as green rectangles

Defense tree [40] bu X arc X rrgn X X tx X* *dotted dash to highlight mitigations. Mitigations (defenses) are highlighted as purple rectangles

Defense tree [39] bu X arc X rr X X tx X* *dotted dash to highlight mitigations. Mitigations (defenses) are highlighted as rectangles

Attack tree [49] bu X arc* r r X X tx X * Double line and, absence or, coupled with text

Attack tree [51] bu X sym rr rr X X tx X

Attack tree [52] bu X X r r r* X tx X* *thick lined rectangle represents the goal

Fault tree [60] bu X ftr X h* r† X ps X† *double lined rectangle represents goal

Attack tree [86] bu X X X e X X tx X* *used to represent ‘implicit’ and ‘explicit’ subgoals

Attack tree [97] bu X dl* X† fl§ X X ps X* *solid edge = and, dotted edge = or †user/computer icon used to represent an achieved postcondition which becomes
a precondition to the next stage § flag symbol

Attack tree [99] bu X ftr p p X* X tx X† *Represented as a ’bomb’ icon †The use of dashed and solid lines is not explained in the paper

BDMP tree [99] bu X ftr p p X† X tx X§ *red dotted arrow used to express SAND †Represented as a ’bomb’ icon §The use of dashed and solid lines is not
explained in the paper

Protection tree [105,
104]

bu X arc X X* X X tx X *The point of the protection tree is that it highlights protections and not exploits

Attack tree [110] bu X arc* r r X X tx X *with a textual label for ‘and’

Vulnerability tree [111] bu X ftr c|r X X X tx X All the symbols in the vulnerability tree are directly based on the fault tree

Attack tree [119] bu X c* X r rbk X tx X *circle with the word ‘and’

Defense tree [123] bu X arc* r r X X tx X *arc means OR, absence of an arc ’should’ represent AND, however this is not clear † Ellipse is used to represent
‘security variables’, a diamond is used to represent a ‘utility node’ and a hexagon is used to represent a ‘security
metric’

Attack tree [126] bu X egn |

ebu

X rgn X X* tx X *Green ellipse and blue rectangle used to represent AND/OR respectively

Attack tree [127] bu X arc* egn |eye egn
† cbn X§ tx X *SAND represented by directed arc, AND/OR not demonstrated †Darker shade of green to the precondition §All

ellipses have a red edge

Fault tree [147] bu X ftr r r X X ps X

Attack tree [150] bu rgy X rrgn otq X X tx X

Attack tree [158] bu X ftr r r r X ch X

Attack tree [167] bu X ftr rgy rgy X X* tx X

Attack tree [177] bu X arc* p p X X tx X *Also utilises a directed arc to represent SAND

Attack tree [186] bu X arc rgy rgy X X tx X

Attack tree [196] bu* X r† r r X X ch X *Although ef is bu, all the edges point downwards towards the cause of the problem †thick edged rectangle and black
rectangle represent AND/OR respectively

KEY: Column descriptors. ef :event flow, ipc:initial precondition, po:precondition opera-
tor, pr:precondition, ex:exploit, go:goal, col:colour, lb:label type, edg:edge type
Colour codes used in accordance with the definitions provided by [165]. bu:blue, bk:black,
gn:green, gy:grey, og:orange, pk:pink, tq:turquoise, rd:red, vi:violet, wh:white, ye:yellow

Shapes. c:circle, r:rectangle, p:plaintext, e:ellipse, d:diamond, rr:rounded rectangle, h:hexagon, o:octagon, t:triangle, u:unclear
Precondition operator. ftr:fault tree method, sym:symbol, dl:dotted line, ∧: AND; ∨:OR
Event flow. td:top-down, bu:bottom-up, lr:left-right, rl:right-left
Labels. ps:pseudonymous, ch:character, tx:textual, ie:in edge (label presented on the edge)

Continued on next page

44

/E
lsevier

C
om

puter
Science

00
(2019)1–46

45

Table 24 – continued from previous page

Type Citation ef ipc po pr ex go col lb edg notes

Attack Defense tree [203] bu X arc c c X X* tx X† *all circles have a red edge. Defense nodes represented as rgn, †dotted edges connect defense nodes to exploits

Fault tree [205] bu X ftr c c rr* X* ch X *all nodes are green

Threat logic trees [245] bu X arc X r X X tx X

Threat tree [246] bu X arc X r X X tx X

Attack tree [247] bu X ftr r* r X X tx X

Attack tree [253] bu X arc p p X X tx X

Attack tree [262] bu X ftr r r X* X§ ch X *The goal node is supported by a textual label with the words ‘goal’ †All nodes represented in blue

Vulnerability tree [269] bu X t* r† r† X X tx X *Triangle with a plus sign represents AND †double rectangle

Attack tree [277] bu X sym* r r X X ch X *∧/∨ symbols in a circle

Penetration attack
tree

[282] lr X arc* X r X X ch X *double arc represents AND

Cyber threat tree [297] bu X ftr X X* X X ch X *physical exploit targets - such as ‘Hydro plant’ are represented, however, the exploit itself is not outlined

Attack tree [299] bu* X arc† r§ r§ X X tx X§ *Although ef is bu, all the edges point downwards towards the cause of the problem †Appended with the word ‘AND’
§Mitigations highlighted as dashed lines

Threat tree [305] bu X ftr c c X X ch X

Attack tree [306] bu X ftr r* r* X X tx X *rectangle with a ling 2/3 of the way across. ALSO note, improbable and probable events distinguished by faded ink
and normal ink respectively

Vulnerability tree [308] bu X X cbu* rbu X X† tx X *Notable that the circle forces the authors to produce very large circles to get all the text in †All nodes are light blue

Security goal indi-
cator trees

[310] bu X c* hgn |hrd
† hgn |hrd

† rbu X† tx X *Circle with the words ‘AND/OR‘ † hrd is used to represent a ‘negative indicator’

Attack tree [314] bu X arc e e X X* tx X *All nodes have a red edge

Attack tree [315] bu* X sym† p p X X ch X *Although ef is bu, all the edges point downwards towards the cause of the problem †∧ and ∨ symbols in a circle

Vulnerability tree [321] bu X ftr cbu rbu X X* tx X *All nodes are blue

Incident tree [323] bu X ft* r|c r|c rrd X† tx X *multiple colours depending on attack path †multiple colours

Attack tree [324] bu r arc* r r X X ch X† *Double arc used to represent OR † double edged rectangle

Attack tree [325] bu* X p r r X X tx X *Although ef is bu, all the edges point downwards towards the cause of the problem

Attack countermea-
sure tree*

[330,
331,
332]

bu X ftr r X X X tx X *Mitigations given as ellipses. In the 2012 paper, a detection event (rectangle with triangular right edge) is also added

FACT tree [334] bu X ftr rr* rr r X† tx X§ *a ‘basic event’ ir represented as an ellipse. The basic event appears to represent preconditions alongside rounded
rectangles †blue trapezoid represents safety countermeasures and a pink pentagon represents security countermeasures
§ red dotted arrows represent ‘triggers’

Attack tree [337] bu X ft* X† rgy X X* tx X *blue and and green or †incorporated within the and/or

Attack tree [346] bu X arc* r r X X tx X *labelled with the word ‘and’

Attack defense tree [354] bu X arc cgy |tgy cgy |tgy cgy X* ps X† *three shades of grey, darker (circle) to represent goal, lighter (circle and triangle) to represent sub-goal node, lighter
(star) to representa sub-graph †dotted line represents ‘non-function dependency’

Attack tree [382] bu X ftr c r X X* tx X *All nodes are presented in grey

Attack tree [385] bu X r* rr|r|rgn rr|r|rgn X X tx X *AND represented as a rounded rectangle, OR represented as a rectangle

Attack tree [386] bu X X r r X X tx X

Attack tree [387] bu X X X rog X X tx X

Vulnerability tree [395] bu X ftr X r|e X X tx X

Attack defense tree [407] bu X arc X c† X X tx X* *dashed lines used to represent defensive actions †rectangles used to represent defense nodes

KEY: Column descriptors. ef :event flow, ipc:initial precondition, po:precondition opera-
tor, pr:precondition, ex:exploit, go:goal, col:colour, lb:label type, edg:edge type
Colour codes used in accordance with the definitions provided by [165]. bu:blue, bk:black,
gn:green, gy:grey, og:orange, pk:pink, tq:turquoise, rd:red, vi:violet, wh:white, ye:yellow

Shapes. c:circle, r:rectangle, p:plaintext, e:ellipse, d:diamond, rr:rounded rectangle, h:hexagon, o:octagon, t:triangle, u:unclear
Precondition operator. ftr:fault tree method, sym:symbol, dl:dotted line, ∧: AND; ∨:OR
Event flow. td:top-down, bu:bottom-up, lr:left-right, rl:right-left
Labels. ps:pseudonymous, ch:character, tx:textual, ie:in edge (label presented on the edge)

Continued on next page

45

/ Elsevier Computer Science 00 (2019) 1–46 46

Acknowledgment

The authors would like to thank the following for use of figures in this paper: Bistarelli, Fioravanti and Peretti for permission
to reproduce Figure 5 and Brooke and Paige for permission to reproduce Figure 9

46

