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1 Introduction

“That’s your bloody GDP. Not ours.” So famously shouted a Brexit heckler in Newcastle, in the
North East of England, in response to an ‘expert’ predicting an economic slowdown in the UK post-
Brexit (Chakrabortty, 2017). The Chief Economist at the Bank of England has similarly reflected
on the apparently contrasting economic experiences of half a dozen local charities and community
groups in Nottingham, in the East Midlands of England, in the aftermath of the global financial
crisis, asking “whose recovery were we actually talking about?”. He then went on to emphasize
the need to “disaggregate” the “economic jigsaw” to provide a more meaningful, including regionally
disaggregated, picture of the UK economy (Haldane, 2016).

Many macroeconomic variables at the national (in our application, UK) level, including the main
measures of economic activity such as Gross Domestic Product (GDP) and Gross Value Added
(GVA)!, are available at a monthly or quarterly frequency and are released fairly quickly. How-
ever, official GVA data for the UK regions are currently only available from the national statistics
office, the Office for National Statistics (ONS), on an annual basis. Furthermore, these data are re-
leased with a delay of approximately a year and only date back, in their current form, to 1997,/1998.2
Thus, hecklers and policymakers alike have been obliged, if they want to understand local/regional
developments, to use data which are out-of-date and offer limited historical coverage.

Similar issues are faced in other countries, as emphasized by Stock (2005): “an important practical
challenge facing regional economists is combining ... different sources of data to provide a timely and
accurate measure of regional economic activity”. For example, in the US the Bureau of Economic
Analysis produces their advance US-wide quarterly GDP data about one month after the end of the
quarter. However, quarterly state domestic product data exist only from 2005 and are published
three months later than GDP data for the US as a whole. The purpose of this paper is to propose a
methodology to exploit different data sources to provide more timely and higher frequency regional
(or state) level estimates of (official) output growth. We do so via a detailed application to the UK.

Specifically, we improve the regional database in the UK by developing and then using econometric
methods to produce quarterly estimates of GVA growth for the twelve ‘Nomenclature of Territorial
Units for Statistics’® (NUTS) 1, or first-level, regions of the UK. Importantly this is done ensuring
these new quarterly data are consistent with, and indeed condition on, both the annual data for
the regions that are (and historically have been) published by the ONS and the quarterly data for
the UK as a whole which they add up to. Using these econometric methods we produce historical
quarterly estimates of regional GVA growth dating back to 1970. We also describe how we use and
evaluate them on an ongoing, quarterly, basis to produce more timely estimates (or ‘nowcasts’) of
regional economic growth up to the present day. We demonstrate that accurate regional nowcasts can
be produced using our econometric methods by timing their production so that they exploit - and
importantly add up to - the latest quarterly estimates for UK growth as a whole. These historical

!Our model uses data on GVA rather than GDP, as GVA is the measure of economic growth available
consistently at the regional level; the growth rates of real GVA and real GDP are the same. Recall, GVA
plus taxes (less subsidies) on products equals GDP. For further details on the relationship between GDP and
GVA see: https://www.ons.gov.uk/ons/rel/elmr/economic-trends--discontinued-/no--627--february-2006/
methodology-notes--links-between-gross-domestic-product--gdp--and-gross-value-added--gva-.pdf

2In the summer of 2018 ONS changed its publication model and release calendars to release UK GVA (and GDP)
at a monthly frequency. But historical estimates (prior to January 1997) of UK GVA at this monthly frequency are
not available. As discussed below, the ONS also plan to publish some quarterly Regional Short Term Indicator data in
2019.

3For an overview of the NUTS classification system, see: https://www.ons.gov.uk/methodology/geography/
ukgeographies/eurostat



and more timely data are all made available to researchers online.* These estimates are and will be
updated each quarter on receipt of the latest UK data.

The ONS itself plans to fill some of the same information gaps that this paper seeks to address with
the expected publication later in 2019 of quarterly Regional Short Term Indicator data. In addition,
some quarterly GVA data already exist for Scotland. In this paper, we will use these Scottish data as
a check on our model-based estimates. Official estimates of regional output growth are, of course, to
be preferred over model-based ones - if and when both sets of estimate are available. But our model-
based approach, however, does and will continue to offer the advantage of facilitating the production
both of more timely estimates (as the ONS’s planned Regional Short Term Indicators will still be
released with a longer delay of 3 to 4 months than equivalent quarterly data for the UK as a whole)
and consistent quarterly historical data back to 1970.

The intuition underlying the econometric methods that we develop is that (unobserved) quarterly
GVA growth for the UK regions is likely correlated with quarterly UK GVA growth (and possibly
other quarterly variables). Hence, information about UK GVA growth at the quarterly frequency can
provide information which is useful in interpolating and updating quarterly regional GVA growth.
Formally, the model we develop which is consistent with this intuition is a mixed-frequency Vector
Autoregression (MF-VAR). A MF-VAR models a set of time series variables where some of them are
observed at a different frequency than others. In our case, the mixed frequency aspect arises since
our MF-VAR involves quarterly UK GVA growth and annual GVA growth for the 12 UK regions.
We augment the MF-VAR with additional quarterly predictors at both the regional and UK level, as
these additional predictors are also found to help explain intra-year regional growth dynamics. We
adopt a state space approach where the unobserved regional quarterly GVA growth rates are treated
as latent states. MF-VARs which use state space methods have been popularized in papers such as
Eraker, Chiu, Foerster, Kim and Seoane (2015), Schorfheide and Song (2015), Mandalinci (2015) and
Brave, Butters and Justiniano (2016).5 The basic idea underlying this approach is to construct a
VAR at the higher (in our case, quarterly) frequency and then treat the unobserved observations for
the low (in our case, annual) frequency variables as states in a state space model. Bayesian Markov
Chain Monte Carlo (MCMC) algorithms which combine Bayesian state space methods with Bayesian
VAR methods can be used to estimate the MF-VAR.

Our empirical problem differs from the ones addressed in the papers cited earlier due to our having
many more low than high frequency variables and a smaller number of observations. That is, we have
12 annual frequency variables and only one (or a few) quarterly variables. In contrast, Schorfheide
and Song (2015) in their application have 3 quarterly variables and 8 monthly ones. Use of annual low
frequency data limits the number of observations we have. Thus, we have many more state equations
to estimate and fewer observations with which to do so. To overcome these problems, we extend
standard MF-VAR methods in two ways.

First, we use the hierarchical Dirichlet-Laplace prior of Bhattacharya, Pati, Pillai and Dunson
(2015) to ensure optimal shrinkage and, thus, parsimony in our MF-VAR. Dirichlet-Laplace priors
are a popular machine learning method for Big Data problems; such methods let the data decide
what restrictions to impose. The existing literature that uses this hierarchical prior mostly focuses on
single-equation, homoscedastic models. A recent exception to this is Kastner and Huber (2017) who
use Dirichlet-Laplace shrinkage in a large VAR with stochastic volatility. We extend these methods
to the MF-VAR with stochastic volatility (MF-VAR-SV) and find them to be effective at ensuring

“See www.escoe.ac. uk/regionalnowcasting

5Ghysels (2016) offers a detailed discussion of the relationship between the state space approach and other mixed
frequency methods. Koop, McIntyre and Mitchell (2019) use one of these other approaches, the stacked VAR approach,
in a UK regional nowcasting exercise. The stacked VAR approach does not allow for the calculation of smoothed
historical quarterly estimates of regional GVA growth which is a key innovation of the present paper.



parsimony in our model.

Second, we exploit the fact that UK GVA is the sum of regional GVA. We do this using a method
proposed by Doran (1992) for restricting states in a state space model. We find that this, too, helps
improve estimation precision; and of course the restriction ensures that our new quarterly regional
data are consistent with the observed quarterly UK totals.

The plan of the remainder of this paper is as follows. Section 2 describes our mixed frequency
econometric methods. We start, in subsection 2.1, with a brief literature review. Following this in
Section 2.2 our MF-VAR with temporal and cross-sectional constraints is described. Subsections 2.3
and 2.4 then respectively consider the Dirichlet-Laplace hierarchical prior for optimal shrinkage and
our posterior simulation algorithm. In Section 3, we present our new quarterly regional estimates
and summarize their statistical features. Then in Section 4 we provide three applications of our
data, designed to illustrate their utility to economists. These involve firstly looking at business cycle
dynamics, where we identify how several regional contractions would be missed without access to our
new higher-frequency data. We also use our new data to compare the high-frequency time-profiles
of recessions and recovery in the regions with the four main recessions the UK, as a whole, has
experienced since 1970. Secondly, we use connectedness measures developed in Diebold and Yilmaz
(2014) to investigate the dynamic connections between the UK regions at the quarterly frequency,
finding regions’ growth dynamics are largely idiosyncratic in the quarter immediately after a shock
but become increasingly common five years later. Third, we show how we can update and then
evaluate our regional data in real-time to provide nowcasts of regional growth on an ongoing basis.
These up-to-date estimates, alongside updated historical estimates, are and will be published online
each quarter (at www.escoe.ac.uk/regionalnowcasting), on receipt of the latest UK data. Section
5 concludes. Online appendices contain supplementary material about the data, econometric methods
and empirical results.

2 Mixed-Frequency Econometric Methods

2.1 A Review of the Literature: Motivation for our MF-VAR

The MF-VAR model that we develop draws on a long tradition of measuring economic activity, in
general at an aggregate level, at a higher frequency than official statistics. Like the least squares and
state space temporal disaggregation methods of Chow and Lin (1971) and Harvey and Pierse (1984),
respectively - and subsequent unifications and developments of these two methods to multivariate
dynamic contexts® - the MF-VAR model seeks to estimate or interpolate the unobserved or missing
higher frequency variable(s) of interest. This involves jointly modeling observed lower frequency data
on the variable(s) of interest and observed data on higher frequency indicator variables believed
to relate to the variable(s) of interest. Consistent with a more recent mixed frequency nowcasting
literature this is accomplished by placing the VAR model in state space form; e.g. see Mariano and
Murasawa (2010) and Schorfheide and Song (2015). The state equations are given by a VAR at the
higher frequency; and the measurement equation relates the observed lower frequency observations to
the unobserved higher frequency variables ensuring temporal aggregation is satisfied. In effect, this
temporal aggregation constraint ensures that the interpolated higher frequency estimates ‘add up’ to
the observed lower frequency data. The Kalman filter is used to “fill in” the missing higher frequency
observations, handling both the mixed frequency and the “ragged-edge” nature of the data.”

SFor example, see Mitchell et al. (2005), Proietti (2006, 2011) and Schorfheide and Song (2015).
"“Ragged-edge” means that due to differential publication lags there can be missing values for some variables at the
end of the sample.



Alternatives to a VAR, including mixed frequency dynamic factor models with temporal aggre-
gation constraints, have been used in other nowcasting applications; e.g. see Mariano and Murasawa
(2003), Banbura and Rijcenstler (2011) and Frale et al. (2011). The Kalman filter again delivers
estimates of the missing observations. Foroni and Marcellino (2014) provide a comparison of mixed
frequency approaches for nowcasting. We follow studies like Schorfheide and Song (2015) and use the
VAR. This choice is also supported by empirical evidence (see, among many others, Carriero, Clark
and Marcellino, 2015) that VAR models can be effective forecasting and nowcasting tools in practice.

Related mixed frequency approaches, following Stock and Watson (1989), use dynamic factor
models and involve constructing coincident indicators of higher frequency economic activity from
a set of higher frequency business cycle indicators; e.g. see Forni et al. (2001). But as argued by
Mariano and Murasawa (2003) and Mitchell et al. (2005), an advantage of producing higher frequency
estimates of economic activity itself (as measured directly by GDP or GVA, as in this paper), rather
than estimates of the underlying “state of the economy” as represented by the estimated common
factor, is that this facilitates evaluation of the higher frequency estimates. The higher frequency
estimates must relate to and be consistent with the observed lower frequency data. This is captured
by the temporal aggregation constraint.

A smaller literature uses variants of these mixed frequency econometric methods to measure
specifically regional economic activity at a higher frequency than is provided by the official statistical
agencies. Again rather than construct, separately for each region, higher frequency estimates of a
latent “economic activity index” (e.g. as Crone and Clayton-Matthews (2005) do for 50 states and
Arias et al. (2018) do for 50 metropolitan statistical areas of the US), our focus in the MF-VAR
is producing higher frequency estimates of regional GVA itself. Our multi-region focus also means
another constraint arises. That is, the regional (or disaggregated) data must be consistent with the
observed aggregate (economy-wide) totals. As we explain below in a state space context, this cross-
sectional constraint ensures “coherence”. But it also provides an important source of higher-frequency
conditioning information when nowcasting regional GVA in real-time.?

Our MF-VAR model, with the temporal and cross-sectional constraints, can also be interpreted
as a flexible and dynamic model-based generalization of Di Fonzo (1990). Di Fonzo (1990) provides
a least squares estimator for missing data subject to both temporal and cross-sectional constraints.
Cuevas et al. (2015) develop a variant of this matrix based approach, that does not rely on Kalman
filtering, to produce higher frequency estimates of regional (chain linked) GDP in Spain.

2.2 The MF-VAR Model and the Cross-sectional Restriction

This section sets out the form of the MF-VAR model that we use to produce the new regional estimates
and explains its properties. Further details are in the online Technical Appendix.

We use the following notational conventions, emphasizing that, like Schorfheide and Song (2015)
and others, we model output in logarithmic differences:®

e t =1,..,T runs at the quarterly frequency.
e 7 =1,.., R denotes the R regions in the UK.

e VUK is GVA for the UK in quarter .

80ur one-step multivariate model-based approach to imposing “coherence” can be contrasted with least squares
approaches that first forecast each disaggregate series independently then, at a second step, impose coherence such that
forecasts for the disaggregates add up to forecasts of the aggregated series; e.g. see Wickramasuriya et al. (2019).

°In Appendix C.3 we consider the modifications to our MF-VAR required when we model in exact growth rates.
We also show that estimation results are similar and not sensitive to the data transformation chosen.



o y/E = log(V,VE) — log(V,VL) is the quarterly growth rate in GVA in the UK.
e Y/ is GVA for region r in quarter ¢. It is never observed.

° YtT’A =Y +Y ", +Y/,+Y/ 3is annual GVA for region r. It is observed in quarter 4 of each
year, but not in other quarters.

° y{’A = log(Y;r’A) - log(YL”i) is annual GVA growth in region r. It is observed, but only in

/
quarter 4 of each year. Let y,§4 = (ytl’A, . yf’A> denote the vector of annual GVA growth rates
for the R regions.

o y; =log(Y]) —log(Y/ ) is the quarterly growth rate in GVA in region r. It is never observed.
Let th = (ytl, o yﬁ)l denote the vector of quarterly GVA growth rates for the R regions.

The MF-VAR is a state space model, comprising a transition equation and a measurement equation.
The transition equation of the MF-VAR models the unobserved th along with the observed UK

/
quarterly data, y %, using a VAR.'® Specifically, let y; = (yng, y?') be an = R+ 1 vector assumed

to evolve as:
Yy = Po + Pryp—1 + ... + Ppyi—p +uy (1)

where u; is i.i.d. N (0,%;). The goal of our econometric analysis is to produce posterior and predictive
densities for these regional quarterly growth rates, th . We use posterior means as point estimates of
these growth rates. The posterior is also used to produce credible intervals.
We emphasize that, except for y/ %, the elements of y; are not observed. But what we do observe
. . . . . . r,A
(every fourth quarter, ignoring publication lags for now) is the annual regional growth rate y,”*, where
y:’A is the weighted sum of the quarterly latent states y;:

y = iyl + %yf_l + Zyi_z +yist Zyl_z; + %y§_5 + %yf{_@- (2)
Note that (2) is an approximate relationship between the annual and quarterly log differences,
as used by Mariano and Murasawa (2003, 2010), Mitchell et al. (2005) and Schorfheide and Song
(2015). This approximation preserves the linear structure of the state space model.
We can define a matrix, A4, which imposes the temporal constraint in (2). We can then write
an equation which links what we actually observe of the regional data to the unobserved regional
quarterly GVA growth rates which we seek to estimate:

yit = M A2, (3)

where 2z = (y}, ..,yg_6)/. The role of M/ in (3) is understood if we remember that we only observe

y:’A once a year. Thus we define M/ = 1 for the fourth quarter and MtA to be an empty matrix (i.e.
of dimension zero) in the first three quarters of each year. We can also use M;* to allow for delays in
the release of the data, important in practice when nowcasting and forecasting in real-time given the
“ragged-edge” or unbalanced nature of the dataset.

The preceding relationships were for regional GVA growth. For the UK as a whole they are
simpler, since we observe UK GVA growth every quarter. Hence, we only need a restriction matrix,
AVK  which picks out the time ¢ value of UK GVA growth from y,. If there are delays in the release

10T our empirical work below, we augment the vector, y;, with additional observed quarterly data for the UK and
include regional quarterly data as exogenous predictors. For ease of exposition, our notation in this section does not
include these additional variables.



of the data we can construct an MUX matrix in a similar fashion as MtA. In this case, we simply
have MY = 1 except for the most recent observations which have not been released yet. With these

definitions, we can write:
K KAUK
i = MEA g, (4)

The structure described so far is essentially the same as in Schorfheide and Song (2015). It involves
a state space model involving the state equations, given in (1), and measurement equations, given in
(3) and (4). We want to add to this the cross-sectional restriction that UK GVA is the sum of GVA
across the R regions. For log-differenced data, using derivations as in Mitchell et al. (2005), it can
be shown that the following relationship holds:!'!

R
1
y?K=§§ yr -+ e (5)
r=1

where 1, ~ N(0,02,) captures the approximate nature of this relationship. When o2, > 0, UK output
need not equal the sum of regional output (in levels). We impose this stochastic constraint using a
method developed in Doran (1992). This involves adding (5) as an additional measurement equation
to the state space model.'?> The online Appendix B.2 provides details. An additional reason for this
cross-sectional relationship to be an approximate one is that the output from the UK continental
shelf (UKCS) is not included in the vector of regional outputs, th , given its idiosyncratic time-series
properties. UKCS mostly reflects oil and gas output from the North Sea.'? But UKCS is part of
the UK GVA figure, yV%, as measured by the ONS. This means UK output is not the sum of the
R regions’ output in levels. Note that it is not possible to remove UKCS activity from the overall
estimates of UK quarterly GVA.!4

Next we need to define ;. In most empirical macroeconomic applications, there is evidence of
changes in volatility (although the mixed frequency VAR literature has mostly ignored this issue
and worked with homoscedastic models). In this paper we adopt a popular multivariate stochastic
volatility specification (see Cogley and Sargent, 2005 and Carriero, Clark and Marcellino, 2016). This
decomposes the error covariance matrix as:

>l =L'D/L, (6)

where L is n X n lower triangular matrix with ones of the diagonal:

1 0 cee 0

L | @ ! s (7)
. c. - O
an,1 an,n—1 1

"Note that, as explained in Appendix C.3, if we were to use exact growth rates rather than logarithmic differences,
then the (exact) cross-sectional constraint weights each region proportionally to its share of UK GVA. But, when using
log differences, Appendix B.2.1 shows that the simple average can be shown to be a first order approximation.

12Tn our posterior simulation algorithm, (5) imposes (stochastically) the constraint for each draw. This means that
as 02, — 0 the posterior density for y7* approaches the equal-weighted sum of the regional posterior densities. Taeib
et al. (2017) call this (density or probabilistic) coherence.

13Since both the quantity of oil and gas produced and their price have fluctuated greatly over time it is a very volatile
series, with time series properties which are very different from other regions of the UK.

MWWhile some sectoral detail for GVA is available for the UK as a whole on a more timely basis, not all Oil and Gas
related activity in the UK ‘Mining & quarrying including oil and gas extraction’ sector is activity which takes place in
the UKCS. Some of this activity relates to onshore activity in support of activity in the UKCS. Similarly, not all of the
activity in this sector relates to oil and gas extraction. It would therefore not be appropriate to treat the ‘Mining &
quarrying including oil and gas extraction’ sector as synonymous with the UKCS activity series.



and we definea = (a1 1,a2,1,...,an,1,021,...,ann—1)" asan mx1 vector. D; = diag(exp(hi¢),...,exp(hn)]
and the log-volatilities hy = (hi4, ..., hn,t)/ evolve according to a random walk:

hy =h; 1 + v, 1, ~ N(0,2), (8)

where Y;, = diag(w%l, . ,w%n).

We label our MF-VAR with this multivariate stochastic volatility specification as the MF-VAR-
SV. Our complete specification includes the cross-sectional restriction and this stochastic volatility
specification.

We note that in Koop, McIntyre, Mitchell and Poon (2018), which is the working paper version of
the present paper, we presented econometric evidence in support of our MF-VAR-SV. In particular,
marginal likelihoods strongly indicated that the homoskedastic version of our model was not supported
and that SV is present in our real and nominal data sets. Furthermore, marginal likelihoods also
indicated some support for adding additional macroeconomic indicators to the model. Accordingly,
in this paper we will only present results from models which include SV and are augmented with
additional macroeconomic and regional indicators (as noted below). The reader is referred to our
earlier working paper for empirical justification of these choices.

2.3 Dirichlet-Laplace Hierarchical Prior for Optimal Shrinkage

The MF-VAR defined in the previous sub-section is undoubtedly over-parameterized. The VAR em-
bedded in the MF-VAR is quite large (involving, even before we include any additional macroeconomic
and regional indicators, n = R 4+ 1 = 13 dependent variables); and our frequency mis-match means
that we have 12 latent state variables to be estimated. In addition we have the multivariate stochastic
volatility process to estimate. In the Bayesian VAR literature, prior shrinkage is used to avoid such
over-parameterization concerns in high-dimensional models.

Traditionally, subjective Bayesian priors have been used, although these are carefully chosen to
reflect empirical patterns which often exist with macroeconomic data. The most popular of these is
the Minnesota prior (see Doan, Litterman, and Sims, 1984, and Litterman, 1986) which reflects the
empirical wisdom of the authors and has been found to work well with many data sets (see Koop
and Korobilis, 2009 and Dieppe, Legrand and van Roye, 2016, for a range of related priors in this
class). However, arising from the machine learning literature, there has been a growth of interest in
hierarchical priors which automatically induce shrinkage in high-dimensional parameter spaces and
require fewer subjective prior choices. In the Bayesian VAR literature, George, Sun and Ni (2008),
Koop (2013) Korobilis (2013) and Gefang (2014), were early contributions which showed how various
machine learning methods involving hierarchical priors could successfully be used with large VARs.
Recent developments in the statistical theory (see, Bhattacharya, Pati, Pillai and Dunson, 2015)
show that one particular method induces shrinkage which is, in a theoretical sense, optimal. This
is the Dirichlet-Laplace hierarchical prior. Kastner and Huber (2017) is a recent paper which uses
Dirichlet-Laplace shrinkage in a large VAR. To our knowledge, Dirichlet-Laplace methods have not
been used in mixed frequency models. Thus, our wish is to use these methods with the MF-VAR
defined in the preceding sub-section.

As noted in the online Appendix B.1, the state equations for our state space model can be written
in multivariate regression form where 5 = vec([®g, P4, ..., <I>p]/) is a k& dimensional vector of VAR
coefficients. We use Dirichlet-Laplace priors (see Bhattacharya et al. 2015) on these coefficients. If
we define 8 = (B4, ..., Bk)’, then the prior for each coefficient is independent of the other coefficients
and takes the form:

Bj ~ N(0, 4702 573), (9)



v ~ Exp(3), (10)

v 3 ~ Dir(ag, ..., ag), (11)
1

18 ~ G(kag, 5)

Note that this prior would shrink the estimate of 3; towards the prior mean of zero relative to,

(12)

e.g., a maximum likelihood estimate (MLE). The prior variance, ¢B 92 ﬁTﬂ, determines the degree of
shrinkage. Large values of the prior variance imply very little shrlnkage is done and the Bayesian
estimate is similar to the MLE. However, if the prior variance is close to zero, then the coefficient is
shrunk towards zero. In the limit, the coefficient is set to zero and the j** explanatory variable is
removed from the model.

The terms making up the prior variance, z,b 19? 5 and 7'/3 are treated as unknown parameters and
estimated. Thus, the algorithm automatically demdes whether the prior variance for each coefficient
should be near zero or not. The Dirichlet-Laplace prior is hierarchical: it is expressed in terms
of unknown parameters which in turn require their own priors. It is an example of a global-local
shrinkage prior since it involves the prior variance being composed of a term which is local (i.e. ¢f
is specific to the j** coefficient) and a term which is global (i.e. Tg is the same for all coefficients).
Allowing for separate estimation of local and global shrinkage has been found to be useful in obtaining
an appropriate degree of parsimony in high-dimensional models and is a common feature of a range
of variable selection priors such as the Bayesian Lasso (see Park and Casella, 2008). The Dirichlet-
Laplace prior adds an extra term, 19?7 3 Bhattacharya et al. (2015) prove that the Dirichlet-Laplace
prior leads to a posterior which contracts to the true value at a rate which is optimal in a theoretical
sense (i.e. the posterior contracts at the minimax rate). This is better than other alternatives such
as the Bayesian Lasso.

The Dirichlet-Laplace prior involves only one prior hyperparameter, ag, making the job of prior
elicitation particularly easy. Bhattacharya et al. (2015) recommend setting it to % and the results in
the body of the paper reflect this. Results using a tighter prior which sets the hyperparameter to %
are given in Appendix B.1.3 to demonstrate prior robustness.

In addition to undertaking Dirichlet-Laplace shrinkage on the MF-VAR coefficients, we also shrink
the coefficients in a which appear in L; see equation (7). These control the error covariances and,
empirically, we have found that allowing for prior shrinkage on this high-dimensional vector of pa-
rameters can be helpful in inducing parsimony. Details on how this is done are given in the online
Technical Appendix.

2.4 Posterior Simulation Algorithm for the MF-VAR-SV

Complete details of our posterior simulation algorithms are given in the Technical Appendix. Here
we describe the basic structure and intuition of our MCMC algorithm.

Our MCMC algorithm involves various blocks which are drawn from three different branches of
the statistical literature. With each of these, the algorithms are familiar, and have been thoroughly
tested and found to work well in many applications. These are: i) the state space literature, ii)
the literature on hierarchical variable selection priors in general and the Dirichlet-Laplace prior in
particular and iii) the literature on stochastic volatility. We discuss each of these in turn.

As emphasized in Schorfheide and Song (2015), the basic MF-VAR is a Normal linear state space
model where the goal is to learn about the unobserved latent states. In our case, these are the
unobserved quarterly regional GVA growth rates. There is a large Bayesian literature on posterior
simulation in Normal linear state space models. Influential early papers include Carter and Kohn



(1994) and Fruhwirth-Schnatter (1994), with Koop and Korobilis (2009) surveying this work. We use
the precision sampler of Chan (2017) which is computationally more efficient than methods involving
the Kalman filter. This part of our MCMC algorithm is the same as Schorfheide and Song (2015),
with the exception of our use of the precision sampler and the addition of the extra measurement
equation given in (5).

The blocks of the MCMC algorithm relating to the Dirichlet-Laplace prior are derived in Bhat-
tacharya et al (2015). Kastner and Huber (2017) uses this algorithm in a large VAR. Section 4 and
6.4 of Kastner and Huber (2017) discusses its computational properties. In terms of computation
time they note (page 23): “Even though the efficient sampling schemes outlined in this paper help
to overcome absolutely prohibitive computational burdens, the CPU time needed to perform fully
Bayesian inference in a model of this size can still be considered substantial”.

The addition of stochastic volatility implies a nonlinear state space model and, thus, results for
Normal linear state space models described above cannot be used to draw the volatilities. However,
various Bayesian posterior simulation algorithms for stochastic volatility have been developed. The
auxiliary mixture sampler of Kim et al. (1998) has been found to work particularly well. In this paper,
we follow Chan and Eisenstat (2018) and use the algorithm of Kim et al. (1998) in conjunction with
the precision sampler.

3 Empirical Results: Quarterly Regional Growth Estimates

3.1 Annual Regional and Quarterly Macroeconomic and Regional Data

The ONS have published annual nominal GDP or GVA estimates (via the income approach) for the
regions of the UK since the late 1960s, although there have been changes to accounting standards
and to the geographic definitions of the regions since then. This means that, after some basic data
analysis and geographic reconciliation as described in the Data Appendix, we have an annual data
set of nominal GVA, for the R = 12 currently defined NUTS 1 regions, from 1966. We also have
quarterly UK GVA data from 1966.

Aware of the potential importance of modeling real-time data given data revisions, we have con-
structed two versions of the nominal GVA data set: a latest vintage!® and a real-time one. When
producing historical estimates of quarterly regional growth rates, we use the latest vintage. We also
use the latest vintage data in our discussion of recession profiles and regional connectedness, on the
assumption that they offer the ONS’s best current assessment of historical regional economic activity.

The real-time data set is constructed from hard and archived electronic back copies of the ONS’s
Regional Trends publications, a database of first-release estimates of nominal GVA for these 12 regions.
This first-release data is used in our nowcasting and forecasting exercise as reflecting information the
forecaster would have had available at the time the forecast was being made. Clements and Galvao
(2013) have advocated a similar use of lightly revised data instead of using data from the latest-
available (real-time) vintage.

We also construct an annual real GVA data set for the UK regions which goes back to 1966, but
for this we only have a final vintage data set which comprises data from two sources. The first source,
which is used to construct data from 1998 onwards, but was published by ONS for the first time in
December 2017, comprises ‘balanced’ estimates of regional GVA (referred to as GVA(B) by ONS).
Balancing involves reconciling the income and production based estimates of GVA (see Fenton (2018)
for details); the latest data cover the period 1998 to 2018. Secondly, pre-1998 real regional data are
obtained by deflating the available nominal regional GVA data using the UK deflator. Thus, the real

15At the time of writing the latest vintage is December 2017.

10



regional data in the first part of our sample will not fully reflect cross-regional variation in prices and
will not be of as high quality as our nominal GVA data.

Using these annual observations for either nominal or real regional GVA, the MF-VAR-SV model,
(1), can be used to produce quarterly regional growth rate estimates for these 12 regions of the

/
UK. An MF-VAR-SV using only GVA, (th K y?') , would be a 13-dimensional model. Importantly,

this means that as well as region-specific and cross-region information, as captured by y?, observed
quarterly information from UK growth, y/% is used to help explain within-year regional growth
dynamics and thereby provide quarterly interpolated estimates th . We emphasize that these quarterly
GDP data, for the UK as a whole, are published with a much shorter lag than the regional data.

But it is possible that other quarterly macroeconomic series, in addition to y”' %, might be expected
to provide helpful indications of quarterly regional growth. Hence, we follow the recent literature (e.g.
Schorfheide and Song (2015); Brave, Butters and Justiniano (2016)) in considering additional high-
frequency macroeconomic indicators in our MF-VAR-SV. As the UK is a small open economy, in the
tradition of Sims (1992), we augment the VAR with four quarterly macroeconomic variables for the
UK: inflation, interest rates (the Bank Rate), the exchange rate and the oil price.'6

Following Cuevas et al. (2015), we also add quarterly regional indicator data into the model. Rel-
evant regional data going back to 1966 are difficult to find. As described in the online Data Appendix,
we have constructed a measure of regional unemployment and business optimism on a regional basis
going back to 1966. The former is based on the monthly claimant count rate measure of unemploy-
ment (although we choose to work with these data aggregated to the quarterly frequency), and the
latter uses the Confederation of British Industry’s (CBI) Business Optimism Survey, produced on a
quarterly basis. The inclusion of these two higher frequency variables, with importantly both pub-
lished on a timely basis relative to regional GVA (see Figure 6 below), may help capture idiosyncratic
movements in (interpolated) quarterly regional GVA. Both indicators are included in the VAR as
region-specific exogenous variables (i.e. the equation for region i will include the regional quarterly
data only for region 7). Thus, the results in this paper use a 17 dimensional MF-VAR-SV where each
equation contains these two exogenous variables. Results using smaller specifications, without these
regional quarterly variables or without the additional UK macroeconomic variables, are provided in
the working paper version of this paper; see Koop, McIntyre, Mitchell and Poon (2018). The working
paper also provides evidence that including the additional UK quarterly variables (instead of working
with a 13-dimensional model involving only GVA data) is empirically warranted. Similarly, to be
consistent with the number of lags in the inter-temporal restriction in (2), we choose a lag length of
p = 7 and marginal likelihoods indicate support for this choice. However, it is worth stressing that
use of the Dirichlet-Laplace shrinkage prior should remove extraneous coefficients, so the cost of using
a more parameter rich model than is necessary is low.

3.2 Historical Estimates of Quarterly Regional Growth

We estimate our MF-VAR-SV models on the latest (or final) vintage data to produce historical
quarterly estimates of both nominal and real regional growth. Downloadable files containing the full
set of historical estimates are made available online. We remind the reader that we use our model
to update these estimates in real-time (each quarter) and they are available at www.escoe.ac.uk/
regionalnowcasting.

Figure 1 presents the nominal and real estimates alongside the UK growth rate from 1970. To

'The choice of these variables is motivated partly by our wish to produce historical estimates of regional GVA
growth and, thus, wishing to use variables for which data goes back to 1966. Other potentially interesting predictors
(e.g. those based on surveys such as the Purchasing Managers’ Index) do not go back this far.
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aid in comparability with the published annual regional data, our quarterly estimates are annualized
(i.e. we take our quarterly regional GVA estimates and construct an annual change using (2)).
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Figure 1: Historical Estimates of Regional GVA Growth

Section 4 below illustrates how use of our new data can enrich our understanding of the UK
economy. Before this we draw out five statistical features of the new data.

First, as Figure 1 shows, while the UK growth rates tend to lie in the middle of the more volatile
regional growth rates and, in general, regional and UK growth rates tend to move together, this
is not always the case. On occasion the UK growth figure differs from the (cross-regional) average
of our quarterly estimates. This is possible because the cross-sectional restriction in equation (5)
is approximate since the UKCS is not included as a region, but UKCS output is included in the
UK figure. For this reason, as the share of UKCS in UK GVA temporarily rose to around 6% in
the early 1980s with the rise in the oil price, we see UK growth exceeding that of all regions. In
general, however, our econometric techniques are estimating the cross-sectional restriction to hold
fairly precisely, particularly in the latter half of the sample. This can be seen in Figure 2 which plots,
in the same units as Figure 1, the estimate of the error in the measurement equation, (2), along with
a credible interval for the nominal estimates (similar estimates are found for real GVA). This shows
how the information in UK GVA growth, via the cross-sectional restriction, is pulling our regional
estimates away from those that would be produced by univariate benchmarks. That is, methods in
the tradition of Chow and Lin (1971) interpolate quarterly estimates from the observed annual totals
but do not impose the cross-sectional constraint or indeed exploit the cross-region and cross-variable

linkages that our VAR in y; = <thK, th/, zY ) permits.
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Figure 2: Errors in Cross-sectional Restriction using Using Nominal GVA (68 percent credible interval
is shaded)

Secondly, inspection of the 68 percent credible intervals around our regional nominal and real
GVA growth estimates (see Appendix C.2) shows that our regional estimates are quite precise. Since
we plot annualized quarterly estimates once a year our estimates, which impose the intertemporal
restriction in (2), equal the actual observed annual regional growth rate. This accounts for why the
credible intervals go to zero once each year.

Third, as a further robustness check, we repeated our analysis using an alternative prior. This was
the spatial prior of LeSage and Krivelyova (1999) which reflects the spatial contiguity of neighboring
regions. The estimates of regional quarterly GVA growth produced by this prior were very similar to
those produced using the Dirichlet-Laplace prior. Since the Dirichlet-Laplace prior produces higher
marginal likelihoods the results in this paper use this prior. Results using the spatial prior are included
in the working paper version of this paper (Koop, McIntyre, Mitchell and Poon (2018)) along with
complete details of the spatial prior.

Fourth, we re-estimated the MF-VAR-SV using data in exact growth rates (instead of log differ-
ences) and found results to be very similar. Details are provided in Appendix C.3

Fifth, as another check on the accuracy, or certainly the credibility, of our interpolated quarterly
estimates - and ahead of the forecasting exercise below that provides an out-of-sample test - we
exploit the fact that, for Scotland, we do now observe quarterly nominal and real GVA estimates
from 1997Q1. The Scottish data are not as timely as equivalent data for the UK as a whole, but
are nevertheless produced within three months of the end of the quarter to which they relate. While
these data do not directly enter our model, they can be used as a check on our methods. Although we
should stress that the ONS and Scottish Government estimates for real GVA in Scotland are expected
to differ due to methodological differences. In particular, the ONS, when measuring real GVA for
the regions, apply top down (sectoral) deflators to the regions, whereas the Scottish Government
goes the other way and construct their deflators for Scotland just like the ONS does for the UK as
a whole. This includes the use of direct volume estimates for some sectors'”. Nevertheless, it would

Y"For more detail of the construction of the Scottish real-terms GDP series, see: https://www2.gov.scot/Resource/
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be worrying if our estimates bore no relationship to those from the Scottish Government, so we do
compare our quarterly estimates with theirs. Reassuringly, as Figure 3 shows, our estimates do track
those from the Scottish Government quite well, with a correlation coefficient against the Scottish data
of 0.91 for nominal GVA and 0.78 for real GVA.!8

Figure 3: Comparison of Our (KMMP) Estimates To Scottish Government’s: Nominal and Real GVA
Growth (4Q-on—4Q) in %
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4 Applications of the new data

In this section we illustrate three uses of the new quarterly regional data. First, we compare the
high-frequency time-profiles of recession and recovery in the regions with the four main recessions the
UK, as a whole, has experienced since 1970. Second, we analyze the dynamic connections between
the regions of the UK. Third, we show how we can update and then evaluate our regional data in
real-time to provide nowcasts of regional growth on an ongoing basis.

4.1 Recessions Profiles Within the UK

Our high frequency regional data help us gain a more complete picture of the nature of UK recessions
since 1970. As seen in Figure 1 above, UK downturns do tend to be accompanied, as we should
expect, with downturns at the regional level. But the regional cycles are more volatile and often
de-couple from the path of the UK as a whole.

To draw out further common and contrasting features of these regional business cycles, we apply
the nonparametric business cycle dating algorithm of Harding and Pagan (2002) to our real regional
and UK data (having transformed them back into log-levels) to identify the turning points that
separate business cycle expansions from contractions. We use the median historical estimates of real

0054/00548041 .pdf
'8We use December 2017 vintage data from the Scottish Government to match the final or latest vintage data, from
the ONS, that we use for the UK and its regions.
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GVA since recessions are typically defined in terms of real quantities.!? This algorithm identifies four
main recessions for the UK as a whole. These start in 1973Q3 (continuing in 1974), 1979Q3, 1990Q3
and 2008Q2.%°

Figure 4 plots the quarter in which each region, as well as the UK as a whole, entered and exited
recession. This figure shows considerable variation as to the frequency and timing of recessions across
regions. This variation is most marked during the 1970s and the period since the global financial
crisis. The lackluster recovery since 2008, and real-time talk of double and indeed triple dip recessions
(e.g. see https://www.bbc.com/news/business-22277955) although subsequently revised away at
the national level, is still evident when looking at the regional cycles since 2008. While the UK as
a whole has been in an expansionary phase since 2009Q3, all regions except London and the West
Midlands have experienced at least one recession since then. Many of these regional contractions
were short-lived and intra-year, and would be missed without access to our new higher-frequency
data. But perhaps the Brexit heckler, from Newcastle in the North East, was well aware of them.

Similarly, the so-called Great Moderation period, after the UK recession of 1990Q3, while as-
sociated with 68 expansionary quarters for the UK as a whole (from 1991Q2 to 2008Q1) is also
characterized by 34 regional recessions, four of which were in each of the devolved nations (Northern
Ireland, Scotland and Wales) alone. Again this cross-regional variation is lost if we focus on extant
annual regional data.

Table 1 indicates the mean duration and amplitude of these business cycle phases from 1970,
confirming the impression from Figure 1 that the UK aggregate smoothes out the many regional
idiosyncrasies, i.e. regional business cycle ‘ups and downs’. Table 1 shows that while the UK as a
whole spent, on average, around 30 quarters in expansionary phases of the business cycle, 9 of the
12 regions (all except London, the South East and the East Midlands) spent less than half this time
in an expansion. The amplitude of these expansions is also seen to vary considerably across regions
with London, like the UK aggregate, growing by around 20% points in an average expansion; with
the other regions often growing much more modestly.

This cross-region heterogeneity is also reflected when we follow Harding and Pagan (2002) and
measure the degree of co-movement between the regional cycles and that of the UK aggregate using
Harding and Pagan’s measure of concordance. This measure quantifies the fraction of time both
series are simultaneously in the same contractionary or expansionary state. This reveals a north-
south divide in England with London and the South East having concordance estimates of 91% and

19Tn principle, we could acknowledge the estimation uncertainty in these real GVA estimates when dating the con-
tractions and expansions by applying the dating algorithm to each draw from our MCMC algorithm. We explore
estimation precision further below, in the context of measuring the dynamic connections between the regions. But
Figures C1 to C4, in the online Empirical Appendix, show that the credible intervals around the central regional
growth estimates are quite precise. While there are differences, a qualitatively similar picture to that found below
also emerges when we analyze the nominal rather than real GVA data. In particular, business cycle phases still
exhibit considerable variation at the regional level relative to the UK aggregate. This mitigates a concern that,
prior to 1998, our use of a UK deflator, in the absence of regional deflators, may be exaggerating regional dispar-
ities in real GVA to the extent that removing common (UK-wide) inflation from the nominal data leaves residual
region-specific inflationary components in our real GVA estimates. Further reassurance that our results are not an
artefact of the absence of regional inflation data is evidence from a 2017 feasibility study, at the ONS, into produc-
ing regional inflation estimates, see https://www.ons.gov.uk/economy/inflationandpriceindices/methodologies/
feasibilitystudyintoproducingcpihconsistentinflationratesforukregions), that the basic patterns in regional
inflation, especially when housing costs are removed, are similar to those of UK inflation.

20These dates mostly accord with the views of others. For instance, the Conference Board recession dates for the
UK are June 1973, November 1979, May 1990, May 2008 and August 2010. The Harding and Pagan dating algorithm
seeks to formalize aspects of how the NBER date business cycles in the US, and has been found to match their turning
points better than commonly used rules of thumb that characterise a recession as, for example, at least two consecutive
quarters of negative growth. We note that we would arrive at similar recession dates for the UK as a whole if we did
use this two quarters of negative growth rule.
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Figure 4: Start and End Dates of Regional and UK Recessions Using Quarterly Real GVA

89%, respectively; with the North East and Yorkshire and the Humber having lower estimates of 76%
and 77%, respectively. The East and West Midlands are in the middle, as their names suggest, with
estimates of 85% and 80%, respectively. Of the devolved nations, Northern Ireland again stands out
as the most idiosyncratic with the lowest (joint with the North East) concordance estimate of 76%;
and Scotland and Wales both having estimates of 81%, placing them as more similar to the northern
than the southern regions of England.

To illustrate further how our new quarterly data are helpful in analyzing and understanding the
transmission of shocks and business cycle dynamics, Figure 5 presents regional recession profiles for
the four main UK recessions since 1970. The figure shows that while the 2008 recession was the
deepest and longest lasting at the UK level, it was the 1979 recession which was the deepest for many
regions, with the West Midlands, Scotland, the North West, Yorkshire and the Humber and Wales
particularly hard hit. This is consistent with macroeconomic analysis showing the differential effects
of the 1970s oil price shocks, particularly on the UK manufacturing and tradeable goods sectors (e.g.
see Bruno and Sachs, 1982). Recall from Section 3.2 that the UK as a whole recovered from the 1979
recession faster than the twelve regions due to the boost from the oil and gas sector.

Another interesting feature of Figure 5, bearing in mind the widely held belief that economic
growth in London dominates that of the other regions of the UK, is that London’s strong bounceback
from the 2008 recession is not observed in previous recoveries where London recovers in-line with the
other regions of the UK. Our new data, as they let us better appreciate regions’ intra-year dynamics,
also emphasize the stop-start nature of the economic recoveries of many of the regions, in particular
Northern Ireland, after the 1979 and 2008 recessions.

4.2 The Connectedness of the UK Regions
4.2.1 Measuring Connectedness

We complement our comparison of historical regional and UK business cycles by now presenting
evidence on the dynamic connections between the UK regions. We use connectedness measures
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Figure 5: The Regional Profiles of Four UK Recessions

developed in Diebold and Yilmaz (2014).

Connectedness measures can be defined based on any variance decomposition. We use the gen-
eralized variance decomposition developed in Koop, Pesaran and Potter (1996) and Pesaran and
Shin (1998) which are invariant to the ordering of the variables in the VAR. We use the formula on
top of page 20 of Pesaran and Shin (1998) to produce variance decompositions d?,j fori,j=1,..,n
and h = 1,.., H. Each of these is the proportion of the h-step ahead forecast error for variable ¢
which is accounted for by the errors in the equation for variable j. Section 3 of Pesaran and Shin
(1998) discusses the properties of the generalized variance decomposition and the relationship with
the orthogonalized variance decompositions. The latter are usually identified using an ordering of the
variables in the VAR. But, in our application, no logical ordering of the variables suggests itself and,
hence, we avoid use of orthogonalized variance decompositions.

The variance decompositions involve the parameters of our VAR given in equation (1). To be
precise, each draw from the MCMC algorithm provides all the variables and the parameters in (1)
and we use these to compute the variance decompositions. This provides us with draws of dZ f which
we then average to produce estimates. Thus, the results in this sub-section reflect the uncertainty
present in the quarterly regional growth rates. That is, we are not simply taking the point estimates
of regional quarterly GVA growth produced in the preceding section and estimating a VAR using
them.

Using these variance decompositions we can define the total directional connectedness from other
regions to region ¢ at horizon h as:

Connectedness from: Z de (13)
JF
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Table 1: Properties of Regional Contractions and Expansions

Durations (quarters) Amplitude (quarters) Concordance
Contractions Expansions Contractions Expansions

North East 5.00 10.17 -0.03 0.09 76%
Yorkshire and The Humber 3.67 9.79 -0.03 0.09 7%
East Midlands 4.44 17.88 -0.03 0.15 85%
East of England 4.00 13.00 -0.03 0.11 83%
London 4.33 15.13 -0.04 0.17 91%
South East 3.40 15.60 -0.03 0.13 89%
South West 3.55 12.90 -0.02 0.12 86%
West Midlands 4.60 10.80 -0.05 0.10 80%
North West 4.20 12.33 -0.04 0.10 85%
Wales 3.43 9.57 -0.04 0.10 81%
Scotland 3.13 9.79 -0.04 0.10 81%
Northern Ireland 4.08 10.25 -0.03 0.11 76%
UK 4.40 30.50 -0.04 0.23 100%

This is a measure of how information in other regions impacts the forecast error variance of region
(i.e. the summation is over j). This is called a “connectedness from” measure.
The total directional connectedness to other regions from region j at horizon h is:

Connectedness to: Z de (14)
i#j

This is a measure of how information in region j influences the forecast error variances of other regions
(i.e. the summation is over ). This is called a “connectedness to” measure.

We emphasize that our connectedness measures are based on a quarterly frequency VAR. Thus,
e.g., results for h = 20 measure connectedness in terms of the five year ahead forecast error variances.
Since a key contribution of this paper is to produce quarterly estimates of regional GVA growth, in
this section we focus on the connectedness measures at h = 1, although we do present some long run
results for h = 20. Of course, the h = 1 estimates could not be produced using a standard VAR with
annual data.

4.2.2 Connectedness Results

Tables 2 and 3 contrast the pattern of connectedness between the UK regions in the short (h = 1)
and longer run (h = 20) using our nominal data.?! As shown in online Appendix C.1 the pattern
of connectedness is similar when we consider the real data, so we do not discuss it separately. The
estimates in Tables 2 and 3 are posterior means at the end of our sample (2017Q4). In Appendix
C.1 we produce tables with the same format, but for the 16th and 84th percentiles of the posterior
distribution. These can be used to gauge estimation precision. The online appendix also presents

' Note that, because the errors are not orthogonal, sums of forecast error variance contributions do not necessarily
sum to one. Following Diebold and Yilmaz (2014) we normalize them so they do sum to one. To be specific, in the
connectedness tables the percentages sum to 100 across rows (but not down columns).
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results for h = 4 which lie between the h = 1 and h = 20 results, but suggest that region-specific
effects die out quite quickly.

Table 2 shows that in the short-run (A = 1) the degree of interconnectedness, although moderately
high, is dominated by region-specific effects. This is seen by focusing on the diagonal elements of the
tables which reflect the importance of region-specific effects. Across regions, we see that idiosyncratic
or region-specific shocks explain around 80% of short-run regional growth dynamics. This picture
of regions reacting idiosyncratically contrasts the earlier findings, using annual data, of Forni and
Reichlin (2001) who found 60-75% of the variation in regional growth is explained not by region-
specific but a common/UK-wide component.

The connectedness from measure varies only slightly across regions. But the connectedness to
measures vary more. For these, Wales and Northern Ireland exhibit higher numbers than the other
regions indicating that these regions have the strongest effects on the others.

Note that these connectedness to and connectedness from measures sum over all other variables in
the VAR model, including UK GVA growth and the additional macroeconomic variables, 2%, We
can also calculate these measures summing only over the other regions (i.e. excluding ¥ and y/ ).
When we do this, we find the previous conclusions to hold, but in a weaker form. The connectedness
to values for these other variables show the impact of these other indicators on regional GVA growth.
Following Pesaran (2016), the impact of UK GVA growth — given that it is a cross sectional average —
might be interpreted as revealing the effects of the common ‘factor’ driving regional growth dynamics.

Table 3 contains the connectedness measures for h = 20 and paints a very different picture. It
indicates that the inter-connections between regions are much higher at this longer forecast horizon.
Across regions, the idiosyncratic or region-specific shocks typically now explain less than 10%, rather
than 80%, of short-run regional growth dynamics. This finding is also supported by evidence from
Tables 2 and 3 that UK GVA growth - the common ‘factor’ driving regional growth dynamics -
becomes much more important in explaining regional growth dynamics in the longer run.

Thus, we are finding evidence that an appreciable amount of time is required for growth in one
region to spill over to another such that regional growth dynamics share common features. But
inspection of results (in the online appendix) reveals that these region-specific shocks explain about
25% to 30% of regional growth dynamics at h = 4, suggesting that shocks do begin to spill over across
regions quite quickly (within a year) even if it takes considerably longer for this process to complete.

The previous connectedness results were for a particular time period: 2017Q4. In theory, the
presence of time-varying volatilities in our model implies that they can change over time, as in
Korobilis and Yilmaz (2018). In practice, we find little evidence of changes in connectedness over
time. In the working paper version of this paper (Koop, McIntyre, Mitchell and Poon (2018)) we
highlighted a few cases where there did appear to be some (albeit modest) changes in connectedness
over time. The interested reader can refer to this working paper for further details.

4.3 Nowecasts of Quarterly Regional Growth

In this section, we investigate the nowcasting performance of our 17-variable MF-VAR-SV. To evaluate
its performance in real time, for both model estimation and nowcast evaluation, we use first release
GVA data as opposed to the latest or final vintage data used in the preceding sub-sections.

4.3.1 Design of Nowcasting Exercise

The nowcast evaluation period begins in 2000 and ends with the latest (as of the time of writing)
regional estimates for 2017 (published in December 2018). All nowcasts are produced recursively
(i.e. produced using an expanding window of data) and involve re-estimation of the VAR models.
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Given that real GVA data at the regional level have only been released since 2013 we confine this
nowcasting exercise to the nominal data; i.e., we focus on the timely production and evaluation of
quarterly nowcasts for nominal regional GVA growth only.

Using our model we produce timely and higher-frequency nowcasts of quarterly regional GVA
growth that anticipate the annual figures from the ONS, given that these data are released with a
delay of at least one year. An advantage of our approach is that nowcasts of quarterly and annual
regional growth can be produced respecting and acknowledging the staggered publication and release
of intra-year data on the regional and macroeconomic variables. That is, we produce nowcasts of
regional GVA acknowledging the fact that in real-time data have a ragged-edge at the end of the
sample.

Specifically, we focus on the production of regional nowcasts that are updated each time a new
quarterly estimate of UK GVA growth is released by the ONS. During our out-of-sample window, the
ONS produced these UK-wide estimates around 60 days after the end of the reference quarter. At
this point in time we also know the values of the other UK and regional indicator variables included
in our model, including for the reference quarter. But the ONS publish their estimates for annual
regional GVA in the fourth quarter of each year. Thus, it is only (late) in Q4 of each year that we can
update our regional nowcasts to condition on the annual regional growth data for the previous year.
This means that our forecasts produced in Q1-Q3 of any year are using regional data more than one
year old.

For clarity, a release calendar is presented in Figure 6. This illustrates, when nowcasting 2016, the
publication dates for UK quarterly GVA data and the regional annual GVA data. For ease of reading,
the publication dates for the “other” quarterly economic indicators included in our VAR model are
subsumed into one. While the financial market data (the Bank Rate, USD:GBP exchange rate and
oil price) are available sooner, like the CPI, claimant count and CBI business optimism data their
values are known one month after the end of the reference quarter.

This release calendar is helpful in understanding the timing of our nowcasts. As new information
accumulates we produce seven nowcasts of the same fixed-event: annual regional GVA growth ending
in a given year, 7. To illustrate, for 7 equal to 2016 these seven forecasts would be made quarterly
from May 2016, with the last estimate produced in November 2017 in advance of the regional data for
2016 being released the next month. More generally, in our real-time nowcasting exercise we estimate
annual regional GVA growth ending in year 7, with 7 running from 2000 to 2017. The seven nowcasts
for each year (with the timing advantage relative to the ONS’s release of year 7 regional data given
in brackets) are made in: Q2 of year 7 (19 months); Q3 of year 7 (16 months); Q4 of year 7 (13
months); Q1 of year 7 4+ 1 (10 months); Q2 of year; 7 + 1 (7 months); Q3 of year 7 + 1 (4 months);
and Q4 of year 7+ 1 (1 month).

Having explained the schedule behind the sets of seven nowcasts, we now explain precisely how
the MF-VAR-SV can be used to produce them. We stress that we are always producing nowcasts
of annual growth rates since we wish to evaluate them against the actual annual data subsequently
produced by the ONS. Thus, we take the quarterly nowcasts/forecasts made by the MF-VAR-SV
and transform them to annual quantities using the intertemporal restriction, (2). The quantities
on the right-hand-side of this equation are not observed, but we replace them with an appropriate
combination of in-sample nowcasts and out-of-sample forecasts. This means that nowcasts made in
Q2 of year 7 are constructed from an MF-VAR-SV estimated on a dataset that contains quarterly
UK and regional economic data up to and including Q1 of year 7 and annual regional data up to year
7 — 2. This model produces forecasts of quarterly regional growth rates for years 7 and 7 — 1 which
are then averaged using (2) to produce an annual nowcast/forecast for year 7.

The forecasts made in Q3 and Q4 of year 7 then work with MF-VAR-SVs that use the same
regional data as the Q2 model, but the quarterly UK and regional indicators now run through Q2
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Figure 6: Illustrative data release calendar, indicating the month in which the quarterly and annual
data are published, when nowcasting 7 = 2016. “Other” refers to the quarterly economic indicators

(the Bank Rate, USD:GBP exchange rate, oil price, CPI inflation, the claimant count and CBI
business optimism)

and Q3 of year 7, respectively. It is only by the nowcast made in Q1 of year 7 + 1 that the MF-
VAR-SV will also include regional data for year 7 — 1, meaning that these data no longer have to be
forecast. The forecast of regional growth for year 7 made in Q1 of year 7+ 1 is also the first nowcast
we make that is conditional on data for UK GVA growth for all of year 7. Subsequent nowcasts of
regional growth in year 7 will additionally contain UK and regional data from the initial part of year
7 + 1. Using information from year 7 + 1 to forecast year 7 quantities is unusual (in essence, we are
backasting). But to the extent that these year 7 + 1 updates also contain revisions to UK data in
year T it may be helpful. ONS finally publish their own estimates for year 7 regional GVA at the end
of Q4 of 7+ 1, after our seventh and final nowcast made in November.

4.3.2 Results of Nowcasting Exercise

We use root mean square forecast errors (RMSFEs) as a measure of the quality of the seven sets
of point (conditional mean) nowcasts. To evaluate the quality of the predictive densities we use log
scores (sums of log predictive likelihoods). To provide an indication of the size of the benefits of
conditioning the regional nowcasts on within-year data and of exploiting inter-regional dynamics,
we also present results from two simple benchmarks which lack these features. The first benchmark
forecasts annual regional GVA growth using individual AR(1) models for each region. The second
uses a VAR(1) on the annual data, and therefore allows for regional dependencies. In both cases, as
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we progress through the evaluation period, the latest vintage of GVA data are used as indicated in
Figure 6. For these benchmarks, estimation and forecasting is carried out using non-informative prior
Bayesian methods (i.e. ordinary least squares).??

Tables 4 and 5 contain the log scores and RMSFEs, respectively, for our nowcast /forecast com-
parison exercise. Note first that all of the seven differently timed nowcasts from the MF-VARs are,
with some exceptions, more accurate than forecasts from the benchmarks. This is true regardless of
region and is particularly strong when using log scores as the measure of forecast performance. The
VAR(1) benchmark is especially poor when looking at log scores. These gains over both benchmarks
offer strong additional reassurance that mixed frequency and multivariate methods are of great use
when density forecasting with our data set. A second point worth noting is that we see a general
tendency for forecast accuracy to increase as we move through the year and we accumulate informa-
tion on the performance of the UK economy with each subsequent estimation. With some exceptions,
particularly large improvements are to be found with the receipt in Q1 of year 7 + 1 of data about
the UK economy in Q4 of year 7. This is reassuring, given that it is when we have these data that
we also gain the regional data for year 7 — 1. Thus, the evidence suggests that clear accuracy gains
are to be had if we wait for publication of both year 7 — 1’s regional data and four quarters of year 7
UK data before computing our regional nowcasts using our MF-VAR-SV models. This means we can
produce good estimates of regional growth in year 7 to the same approximate timescale as growth
estimates for year 7 for the UK as a whole are published by the ONS — this is nearly one year before
official data for these regions are released by ONS.

Overall, our nowcasting results suggest that, especially shortly after the end of the year of interest,
the econometric methodology developed in this paper can be used to provide reliable and timely
nowcasts of regional GVA growth at a higher frequency (indeed a similar frequency to the release
of national GDP for the same period) than is possible with conventional methods. In addition to
providing more timely indicators of regional growth, this serves as a reassuring (out-of-sample) check
on the quality of the regional growth estimates produced in this paper.

5 Conclusions

Regional (or state-level) data measuring economic activity are often less timely, offer less historical
coverage and available at a lower frequency than the aggregate (economy-wide) output data provided
by the same national statistics office. This is the case in many countries. In general terms this paper
considers how regional and country-wide data, often measured at different frequencies, can be brought
together to provide more timely and higher frequency regional data.

Specifically, via a detailed application to the UK, this paper’s motivation is that economists
studying the regions of the UK have historically had to work with such low frequency, annual data,
often with limited historical coverage, rendering it hard to investigate issues such as the connectedness
of regions at higher frequencies or to understand how regions may enter and exit recessions differently.
Policymakers have had to suffer from a lack of high frequency regional estimates and from long
release delays which mean they are making decisions very much looking through the rear-view mirror
(discussed by Bean, 2007). We hope the output of this paper - a quarterly regional database for
the UK from 1970 which is updated online each quarter to provide up-to-date nowcasts of regional
economic growth - is found useful by economists and regional economic policymakers alike.

22WWe also investigated the significance of forecast improvements relative to the benchmarks using the Diebold-Mariano
test of equal predictability. When using log-scores, the hypothesis of equal predictability was always rejected in favor
of our approach when using the VAR as a benchmark. When using the AR benchmark, we consistently find significant
improvements for Q4 of year 7 and all later periods. When using RMSFEs, we do not reject the hypothesis of equal
predictability relative to either benchmark.
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To do this, we have developed a mixed frequency VAR that allows information from quarterly
frequency (and more timely) UK GVA and other indicator data to update the regional data throughout
the year. One key econometric contribution is the inclusion of the cross-sectional restriction describing
the relationship between (observed) UK quarterly GVA growth and (unobserved) regional quarterly
growth rates. Another contribution lies in the use of a machine learning method based on the Dirichlet-
Laplace hierarchical prior for ensuring parsimony in the very non-parsimonious mixed frequency VAR.
We hope that the methodology we propose will be useful in applications beyond the UK that seek to
improve the regional database.

Given that it is anticipated that 2019 will see the ONS starting to produce ‘Regional Short Term
Indicators’ at the quarterly frequency for the NUTS 1 regions, our next step will be to incorporate
these new indicators into our model. These data will be available for only part of our sample but,
we hope, will provide a source for improving, validating and testing our quarterly nowcasts ('flash
estimates’) of quarterly regional GVA published at www.escoe.ac.uk/regionalnowcasting. They
will also ensure that our model-based estimates remain consistent with ONS data and ongoing im-
provements to these. Given that these new quarterly regional data from the ONS will be published
with a delay of 3 to 4 months, our quarterly nowcasts will continue to provide an earlier indication
of regional economic activity.
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Online Appendix for “Regional Output Growth in the United King-
dom: More Timely and Higher Frequency Estimates From 1970” by
Gary Koop, Stuart McIntyre, James Mitchell and Aubrey Poon

In this set of three appendices, we describe the data (A. Data Appendix), provide full details of our
econometric methods (B. Technical Appendix) and present some supplementary empirical results (C.
Empirical Appendix).

A Data Appendix

This appendix summaries the data sources and construction of the estimation databases used in
this paper. It describes the process of arriving at an annual dataset for nominal and real GVA for
the 12 NUTS 1 regions (these are defined by the Classification of Territorial Units for Statistics) of
the UK (excluding the UK Continental Shelf) from 1966 to 2017 that is as consistent as possible,
given changes to accounting standards, over the time period. Our regional nominal GVA data are
measured at factor cost prior to 1996 and at basic prices from 1997. Our real GVA data utilize the
ONS’s balanced GVA data, GBA(B), for the period 1998-2017%3; and in the earlier period we deflate
our regional nominal GVA data by the UK wide deflator. We also extend our database to incorporate
a number of additional indicators into our model. These include the US dollar to British pound
exchange rate, the oil price, the Bank Rate and the Consumer Price Index; and regional indicators.
We focus in the main paper on latest vintage or final release data (at the time of writing the latest
vintage is December 2017), as they reflect the ONS’s latest, and we presume best, assessment of
historical economic growth. However, for our real-time nowcasting/forecasting work we use first
release (nominal) data to better simulate the situation of the analyst producing nowcasts/forecasts
using our model in real-time.

A.1 Nominal GVA data: first release and latest (or final) vintage

The construction of first release nominal GVA (income approach) data used in this paper follows
closely that of Koop et al. (2019).24 This earlier work provides a database of (as close as possible
to) first release nominal GVA growth for 9 regions of the UK, with the smaller number of regions
constructed in this work reflecting the need for a dataset of growth rates for each region on a consistent
geographical basis.

In our modelling framework in this paper, in contrast, we work at the current 12 region level.
These regions reflect the NUTS 1 regions of the UK, with the exception of the extra-regio (or UK
Continental Shelf) region, for reasons discussed in the paper. To construct a database of first release
nominal GVA growth covering the period 1967 to 2017, we therefore had to combine the information
available from 1995 onwards on first release nominal GVA growth available from the ONS with the
historical first release data collected in Koop et al. (2019). The nature of the changes in geography
used between the statistical office regions, in place prior to 1995, and the current NUTS 1 regions of
the UK, in place since 1995, mean that for five regions, which in Koop et al. (2019) were combined
into two regions, we assumed that these regions shared the same growth rate in this earlier period as
the aggregate, geographically consistent, region that they were part of in Koop et al. (2019).

To illustrate this in more detail, in Koop et al. (2019), which used the old Statistical Office Region
classification in place prior to 1995, what is now the North East and North West of England NUTS1

ZThese data are ‘balanced’ in the sense of balancing the income and production approaches to measuring GVA.
24 Available at https://www.escoe.ac.uk/download/2601/
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regions comprised two (different) regions, the North and North West. The old North region comprised
the whole of the current North East region, alongside a part of what is now the North West region.
We have no way of separating out economic activity in the old North region between these two parts
of the region. Therefore, in our database, prior to 1995 we assume that both the North East and
North West of England grew at the same annual rate. The only other part of the UK affected by this
change in geography is London, the South East and the East of England regions under the current
statistical geography, which comprised the South East (and from 1978 was further split into Greater
London and the Rest of the South East) and East Anglia (itself representing a proportion of the
subsequent East of England region which also includes part of what was the South East region) under
the old Statistical Office Region geography.

In order to reconcile these changing geographies in a consistent manner, we assumed that for the
regions on which we have disaggregated data from 1995 onwards, but only aggregate data prior to
this, the disaggregated regions grew at the same annual rate as the aggregate geographical area which
they were part of on a consistent geographical basis prior to 1995.

Like Koop et al. (2019), our aim in putting together the database for the nowcasting and fore-
casting work in this paper was to use, as near as possible, first-release estimates of regional GVA and
match these with the appropriate, similarly dated, data release for UK GVA. This strategy is in part
motivated by our interest in nowcasting first release regional GVA estimates. But it also reflects the
reality that final vintage data, e.g. the ONS’s latest regional estimates, are not available over the
whole sample period (i.e. the latest ONS data for nominal GVA(B) or GVA(I), published in December
2018, cover the period 1998-2017 or 1997-2017 only). So to get earlier data we inevitably have to look
to earlier data vintages. In matching the regional data to the UK data we sought to minimize the
cross-sectional aggregation error, as ideally the sum of the regional GVA data (including the UKCS)
equals the annual sum of the quarterly UK data. But, we should emphasize (as is detailed in the
data appendix for Koop et al. (2019)) that it was not possible to eradicate this measurement error
for all years. Also, as described in the main paper, we chose to exclude the UKCS from our VAR
models given its distinct time-series properties. This means that we should not expect, even absent
measurement error, the cross-sectional constraint to be met exactly, as we show below.

As detailed in the data appendix to Koop et al. (2019) the first release regional nominal GVA
data were matched from 1966-1996 against UK GVA data (at factor cost, seasonally adjusted (series:
ABML)) again extracted from successive, similarly dated, national account data releases (obtained
from the Bank of England’s real-time database for nominal income; code CGCB?%) with the secondary
aim of minimizing the cross-sectional aggregation measurement error of the sum of the regional data
against the quarterly UK data when aggregated to the annual frequency. From 1997 the regional
data are matched against successive, similarly dated (so that again the data vintages of the regional
data match that of the UK data), releases of quarterly UK GVA estimates, at basic prices, from the
ONS’s “Second estimate of GDP” previously known as the “UK Output, Income and Expenditure”
press release/bulletins. Figure A.1 shows that the cross-sectional aggregation measurement error is
time-varying and often less than zero. The average statistical discrepancy between 1966 and 1996 is
-0.47%, between 1997 and 2016 it is -0.39%

The final or latest vintage regional nominal GVA data are taken to be a combination (with the
geographical reconcilition outlined above) of: (i) the historical 1966-1996 regional nominal GVA
(income approach) data as released by the ONS2¢ but without taking this back to first release, as
described in Koop et al (2019), so that data revisions are accommodated?”; and (ii) the December

%5 Available at http://www.bankofengland.co.uk/statistics/Documents/gdpdatabase/nominal_income.x1lsx

26 Available at https://www.ons.gov.uk/economy/regionalaccounts/grossdisposablehouseholdincome/adhocs/
006226historiceconomicdataforregionsoftheuk1966t01996

2TThe ONS’s historical database picks up estimates from successive yearly publications of Regional Trends. But the
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Figure A.1: Discrepancy, by year, between the nominal UK Quarterly series and Regional Annual
series (as % UK GVA)
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2018 release of regional nominal GVA(B) data covering the period 1998-2017. The 1997 regional data
are not available in balanced form, but the December 2018 data release from the ONS does provide
estimates via the income approach and we use these. For the UK as a whole, the February 2019
vintage (of series AMBL) was taken as the latest vintage for quarterly nominal GVA.

A.2 Real GVA data: latest (or final) vintage

UK real quarterly GVA data on a comparable basis to the UK nominal quarterly GVA (series:
ABML) data described above are produced by the ONS (series: ABMM), and can therefore be
readily incorporated into our database. Again we use the February 2019 data vintage. Regional real
GVA(B) data from 1998-2017 for each NUTS 1 (indeed NUTS 2 also) region of the UK are available
from the ONS’s December 2017 publication.?®. But regional real GVA data are not available from
this 2017 publication prior to 1998; indeed the latest release of the GVA(B) data used in this exercise
is currently also the first release. However, using the database of latest release/vintage nominal GVA
data for each NUTS 1 region (excl. UKCS) detailed above, it is possible to proxy the latest/final
vintage estimates of real GVA growth in each of 12 NUTS 1 regions from 1966 to 1997 by deflating
the nominal data using a UK aggregate-implied GDP deflator. This is a strong assumption, but
without regional price data a necessary one, and assumes, in the period prior to 1998, common
regional inflation. To summarize, our annual final vintage regional real GVA dataset combines the
GVA(B) data produced for the first time in December 2018 (covering 1998-2017) with the final

publication lags vary, so that, for example, the 1966 GVA data come from the 1975 Regional Trends publication/vintage;
while the 1970 data come from the 1976 Regional Trends publication. In general the publication lag shortens in the
ONS’s historical database, suggesting that more recent data have been through fewer annual rounds of revision. Our
understanding, following email communication with ONS, is that this is in part because ONS chose to publish, in this
historical database, the latest iteration for a given year rather than the first. When data were available, we sought to
use the latest publication or data vintage for regional GVA in a given year.

%Data and a background methodology note are accessible here: https://www.ons.gov.uk/economy/
grossvalueaddedgva/bulletins/regionalgrossvalueaddedbalanceduk/1998t02016
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vintage, nominal regional data for the earlier period (1966-1997), deflated using a UK-wide measure
of inflation.

A.3 Additional quarterly economic indicators

In addition to GVA data for the UK as a whole and for the NUTS 1 regions, we include four further
quarterly macroeconomic indicators in our model. These are: the oil price (brent crude $U/BBL),
the Bank Rate (Bank of England base interest rate), consumer prices (UK CPI provided by ONS),
and the exchange rate between the USA and the UK ($ : £). These variables are not revised and so
first release and final vintages are the same. The oil price and the exchange rate enter the VAR in log
differenced form. For the CPI we use the log difference relative to the same quarter in the previous
year. We downloaded the Bank of England interest rate data directly from the Bank??, and the UK
consumer price index data from the ONS3?. The oil price data were taken from Thomson Reuters
Datastream?' as the quarterly average price. The US dollar : UK pound exchange rate series was
downloaded from the Bank of England’s Millennium Database??.

In our model we also make use of two additional data series relating to economic conditions in
each region. The first of these is the claimant count rate measure of unemployment, accessed through
http://www.nomisweb.co.uk. This provided claimant count rate data for NUTS1 regions of the UK
back to the early 1970s. Prior to this, we assume that each region’s claimant count rate evolved
in line with the claimant count rate of the UK as a whole. While available monthly, we consider
these data when aggregated to the quarterly frequency. The second regional indicator is the Business
Optimism Indicator produced by the Confederation of British Industry (CBI). This is available on
a regional basis from 1980 onward through Thomson Reuters Datastream. These data are produced
for 11 regions of the UK (these reflect the NUTS 1 regional definitions with the exception of London
and the South East of England where responses are combined together into a single region). Prior to
1980, we use the UK series for all regions.

B Technical Appendix

This appendix includes discussion of the state space model with state equations given by (1) and
measurement equations given by (3), (4), and (5) in the main paper. In addition, we describe the
stochastic volatility process given by (6), (7) and (8). We use an MCMC algorithm which draws from
the full conditional posterior distributions. That is, we draw the VAR-SV model conditional on the
states and the states conditional on the VAR coefficients and volatilities. Accordingly, this appendix
describes econometric methods for these two parts separately. First, we describe methods for the
VAR-SV, then for the states.

B.1 The VAR-SV
B.1.1 Model and Priors

We can rewrite (1), in the main paper, as a multivariate linear regression model:

vi = XiB+ e, e~ N(0,%), (B.1)

2https://www.bankofengland. co.uk/boeapps/database/Bank-Rate.asp
8%nttps://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerpriceindices/current
3https://financial.thomsonreuters.com/en/products/tools-applications/trading- investment-tools/
datastream-macroeconomic-analysis.html
32https://www.bankofengland.co.uk/statistics/research-datasets
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where X; =1, ® [1,y;_4,. .. ,y;,p] is an n x k matrix and 8 = vec([®q, ®1,...,®,] ) is a k x 1 vector
of coefficients. We can stack (B.1) over time t =1,...T, to get

y1 X1 €1

=] e | (B.2)
yr Xr er

y=XpB+¢€e~N(0,%), (B.3)

where ¥ = diag(3¥q,...,27).

The multivariate stochastic volatility specification used in this paper is given in (6), (7) and (8).
The Dirichlet-Laplace priors are given in (9), (10), (11), (12). We use the same Dirichlet-Laplace
priors for the a’s and assume ¢ =1,...,m

a; ~ N (0,497 ,73), (B.4)
o 1
Vi~ EXP(g)a (B.5)
Via ~ Dir(ag, ..., ), (B.6)
1
Ta ~ G(mag, 5) (B.7)
Finally, we assume
w,%j ~1G(vp;, Sh;), fori=1,...,n. (B.8)

B.1.2 The VAR-SV: MCMC Algorithm

Here we describe an MCMC algorithm for drawing from the VAR-SV parameters. In our MF-VAR-SV
we draw from these conditional on the draws of the states (see below).
The conditional posterior for the VAR coefficients takes the following form:

Ble ~ N(,K5"), (B.9)

where

Kg= X'T1X+8;', p=K;' (X3 y), (B.10)

where Sg = diag(wlﬂﬂiﬁm, . ,¢£19%767’52).
The conditional posterior for a takes the following form:

ale ~ N(a, K 1), (B.11)
where
K,= ED'E+S;!, a=K, (ED ), (B.12)

where S, = diag(wi‘ﬂiaﬂl, . ,@bfnﬁfn,aﬁ), D = diag(Dq,..., D7)’ and, assuming n = 3, an example
of the E matrix is

0 0 0 0 0 0
0 0 0 0 0

—€1
E;, = ’ B.13
t 0 —ey —ey 0 0 0o |’ (B.13)
0 0 0 —€1t —€2¢ —€3t
where E is the stacked version from ¢ = 1,...,7. For more information about constructing this E

matrix; see Chan (2017, pp. 130-131).
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To deal with stochastic volatility, we follow Chan and Eisenstat (2018) and apply the auxiliary
mixture sampler of Kim et al. (1998) in conjunction with the precision sampler to sequentially draw
each slice of h;,e = (hi1,..., ki), for i =1,...,n. See Chan and Hsiao (2014) and Cross and Poon
(2016) for details.

To draw the initial condition hg, we follow Chan and Eisenstat (2018) and use

hole ~ N(ho, K} ), (B.14)

where
Kp, = V,'+5,", hy=K.'(V,'a; + 3, 'hy). (B.15)

To draw X we note that w,%i are conditionally independent and follow

w}zlj|o ~ IG(uhj + %,Shj + % Zthl(thg - hj,t,l)Q), for j=1,...,n. (B.16)

As for w .V} 3,78, following Bhattacharya et al. (2015), the conditional posterior distributions
are

(W) te ~iG(HET, 1), for j=1,....k (B.17)

B Iﬁg
7gle ~ GIG(k(ap — 1) ,1,22 (B.18)

ﬂaﬁ
Rjgle ~ GIG(ag —1,1,2|85]), for j=1,....k (B.19)

and "
0jp = — 20— (B.20)
Zj:l Rjps

We use notation where GIG is the generalized inverse Gaussian distribution; and to simulate a
draw from this distribution we implement the algorithm by Devroye (2014). iG is the Inverse Gaussian
distribution.

Similarly, to draw ¢, 9; 4, 7, we use the following conditional posteriors:

() "o ~iG( Ta‘l'“,l) fori=1,...,m (B.21)
Tal® ~ GIG(m Z (B.22)
Riql® ~ GIG(ay — 1,1,2|a;]), for i=1,...,m (B.23)
and .
Via = = (B.24)
Zi:l Ri,a

B.1.3 Prior Hyperparameter Choices

The hyperparameters that we choose for both the VAR and VAR-SV are ag = a, = %, a, = 0,
Vi =10 x I, v; = vp; = 5 and S; = Sp; = .01. The priors for the variances of the stochastic
volatility terms are standard and similar to those made in Chan and Eisenstat (2018). The choices
for the Dirichlet-Laplace hyperparameters, ag, oy, are the relatively noninformative default choices
suggested by Bhattacharya et al. (2015). For a robustness check, we also consider the results when

ag = a5 = 0.1 and we find these results produce very similar results to our benchmark case of
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ag = o = % To demonstrate, Figures B.1
hyperparameter choices.
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Figure B.4: Regional Real GVA

B.2 The Mixed Frequency State Space Model

To show how we add the mixed frequency aspect to the model and incorporate the cross-sectional
restriction, we use a simple example where we have one quarterly frequency variable and two annual
frequency variables and assume seven lags. Results extend to many regions and other lag lengths in
a straightforward manner. In the context of our study, the quarterly variable is the UK GVA growth
rate and the two annual frequency variables are the two regions’ annual growth rates.
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Our quarterly VAR can be written as:

yly th1 91{17
) ) [0 - ) P -
1 qc qq,1 qa,l 1 qq,7 qa,7 1
= + |+ + - | +e&. (B.25
th |: ac :| |: a‘qﬂl ¢a’a’71 } yt2 ' |: G/Q77 aa77 :| yt2 7 ! ( )
Yi Y Y7

We can rearrange this equation into a state equation. First, we group the above VAR coefficients
together as

Dgq = [ Poq1s Pgg2, Pgg3 - Pogr ] ) (B.26)
<I>qa = [ <Df111717 <I>qa’2’ q)qa,3 e a(I)qa,7 ] , (B.27)
Qaq = [ @a’qal ) (I)(lq,Q 7@04(]73 cI)aq,? ] ) (B28)
(ba(l = |: @aa,l 9 @Q(LZ, @aa’g geeey (I)aa77 ] . (B29)
Then our state equation is
st =gse—1 + Fzyly—l;;;t—l + I+ Fuua,t, (B30)
where St = (ytla yi,?a yt1—17 th—l: ytl—27 yi,?—27 ytl—37 yt2—37 ] yt}—% yt2—7)/ iIs a z X 1 vector containing the
regional variables and their lags and yg_lfxt_l = (yVE, ...,y contains lags of the UK variables.
Using the following definitions:
| D4q O | DPyq | Pac 110
Fs—[ I 0} ,I‘Z—[ 0 L= 0 = 0 1 , (B.31)
ZXz ZXp zx1 ZX2
we can obtain the measurement equation:
thK = Agsst + (I)qqyg—[;:tfl + Pqc + Uqyt, (B.32)

where

Ags=[0 Pgq | (B.33)

1xz "

When both the quarterly and annual variables are observed at time ¢, the measurement equation is

1,A
[ ::ZtQ,A = Nqsst + Azygjj;:tfl + (I)qCa (B.34)
t
where
_ 0 @y Dy
Aas—|: M :|’AZ_[ 0 ]7 (B35)
1 1 3 3 1 1
0 502 010305 0 3z 0O0O0
M:[412143 V3 141 (B.36)
067 0505010350350 3700

This incorporates the intertemporal restriction given in (2).
Finally, the cross-sectional restriction, (5), gives us an additional measurement equation. We have
v =Rs; +1,m ~ N(0,02), (B-37)

rrces

where

R=[+ % 0] (B.38)

1xz°

We assume a tight prior for the variance of the cross-sectional restriction o2, ~ IG(1000,.001), where
the prior mean of the variance is close to zero.

Thus, we have a set of state equations given by (B.30) and measurement equations given by (B.32),
(B.34) and (B.37). Thus, conditional on draws of the all the other parameters of the MF-VAR-SV
described earlier in this Technical Appendix, we can use standard Bayesian MCMC methods to draw
the states. We use the precision sampler methods of Chan (2017) to do so.
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B.2.1 The Cross-sectional Restriction Using Log-differenced Data

The proof that our cross-sectional restriction is correct and that UK GVA growth is an average of
regional GVA growth rates for the R regions begins by noting you can write UK GVA growth in two
ways:

WK = In(YUK) ~ (v F) (8.39)
R R

WK =13V~ (3 VE). (8.40)
r=1 r=1

If we take a (first order) Taylor series expansion of the log of the average in the second equation and
use the fact that the geometric mean is never larger than the arithmetic mean (and the difference
between the two will be small if the quarterly movements are small relative to the quarterly average)

R
we obtain ln(Zf:1 Y)) ~ %Z InY/ 4+ RIn R. Hence,
r=1

1 & 1 &
g N EZInY}” - Ezlnyf—l
r=1 r=1
R

1
YUK ~ EZ (InY; —InY/" )

r=1
1 R
UK
Yt EEZ?/;
r=1

C Empirical Appendix

C.1 Additional Connectedness Results

In the body of the paper, tables of posterior means of connectedness measures were reported. To
give the reader a feeling for estimation uncertainty, Tables C.1 and C.2 present the 16th and 84th
percentiles, respectively, of the posteriors of the connectedness measures. These tables are based on
the nominal GVA data and are for one quarter ahead measures in 2017Q4. Results for other horizons
and time periods are similar. It is worth noting that these credible intervals are fairly wide indicating
a fair degree of estimation uncertainty.

For the reader interested in what the connectedness tables look like for real GVA, focusing on the
posterior means, we provide Tables C.3 and C.4. Note that, just as with the nominal GVA data, the
oil price has the largest impact.

We also provide a connectedness table for h = 4 which can be seen to lie between the results for
h =1 and h = 20 (see Table C.5).
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C.2 Credible Intervals for the Quarterly Regional Estimates

To convince the user that our econometric methodology is producing accurate estimates, Figures C.1
and C.2 plot quarterly estimates of annualized real regional GVA growth rates along with credible
intervals which cover the 16th through 84th percentiles. Note that, for the reasons discussed in the
body of the paper, these figures plot annual growth rates. Figures C.3 and C.4 present analogous

results for nominal regional GVA growth.
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Figure C.1: Regional Real GVA Growth Rates: Estimates and Credible Intervals
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Figure C.2: Regional Real GVA Growth Rates: Estimates and Credible Intervals
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C.3 Results using Exact Growth Rates

Here we consider the modifications to our MF-VAR required when we model in exact growth rates
rather than logarithmic differences as in the main paper. Then we explore the sensitivity of our
empirical results to this choice.

We use the following notational conventions, emphasizing that here we model in exact quarter-
on-quarter growth rates:

e t =1,..,T runs at the quarterly frequency.
e r=1,.., R denotes the R regions in the UK.

e YUK is GVA for the UK in quarter .

UK UK
L )

° ny = (T) is the quarterly (quarter-on-quarter) growth rate in GVA in the UK.

e Y/ is GVA for region r in quarter ¢. It is never observed.

. YtT’A =Y +Y", +Y/ ,+Y/ 5is annual GVA for region r. It is observed for quarter 4 of each
year, but not in other quarters.

7 ) is annual GVA growth in region r. It is observed, but only for quarter 4 of

/
each year. Let y/! = (ytl’A, ..,yf’A> denote the vector of annual GVA growth rates for the R

regions.

Y, -Y/[" . . . . .
oy = (%) is the quarterly (quarter-on-quarter) growth rate in GVA in region r. It is

t—1
never observed. Let th = (ytl, . yﬁ), denote the vector of quarterly year-on-year GVA growth

rates for the R regions.

/
The MF-VAR is again specified in y; = (ygj K y?/) , plus the additional macroeconomic and regional

variables observed at the quarterly frequency. But the temporal and cross-sectional constraints need
to be re-specified.
The temporal constraint is given as:

yr yr yr yr
A — -2 -3 —4
Y = 3t71 yi + 3t7 2yp1+ 3t7 3Y_o + 3t7 4y; 5 (C.1)

Y Y DY Y Y Y Y

=0 =0 =0 =0
Yy Yy Y/

+| 5 Bua | 5 |+ | 5 | e
DY DY DY
=0 =0 =0

) Yy . . . .
where the weights, <Y2j‘), denote the share of regional output in quarter £ — j in annual regional
t—4

output from the previous year. To avoid a nonlinear measurement equation, we proxy these weights
by 1/4.
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The cross-sectional restriction that UK GVA is the sum of GVA across the R regions is re-specified
as:

R
= Zwi’"y{ + (C2)

Y, . . . .
where w}" = Rt‘l is the share of regional output in aggregate output in quarter ¢ and 7y ~

E Y,

N(0,02). We proxy w;" by the observed annual shares, noting that we should expect to see little
within-year variation in these weights.

We re-estimate our MF-VAR-SV model, using exact growth rates with the re-specified temporal
and cross-sectional restrictions, (C.1) and (C.2), on the final vintage data to produce historical quar-
terly estimates of both nominal and real regional growth. Figure C.5 presents the quarterly nominal
and real estimates alongside the UK growth rate. To aid in comparability with the published annual
regional data, our quarterly estimates are again annualized (i.e. we take our quarterly regional GVA

estimates, y;, and construct and plot an annual change, y:’A, using (C.1)).

w ~ NE ——Yorks — EM East — London - SE - SW
1"0; ———-WM NW ----Wales Scotland — NI — UK

I \ W“ \\

i 14 | AR g %
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Figure C.5: Historical Estimates of Regional GVA Growth using Exact Growth Rates

Comparison of Figure C.5 with Figure 1 in the main paper, which uses logarithmic differences
rather than exact growth rates, reassures that the choice of data transformation does not have a
material effect on the movements of the quarterly regional estimates. The quarterly figures for the
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regions look very similar across Figures C.5 and 1, albeit as expected for large growth rates some
differences between the scale of the two sets of estimates are seen. Table C.6 confirms how highly
correlated the regional estimates in log differences are with those in exact growth rates.

Table C.6: Correlation Coefficient between log differences and exact growth rates
Nominal GVA Real GVA

North East 0.99 0.98
Yorkshire and The Humber 1.00 0.98
East Midlands 1.00 0.99
East of England 0.99 0.98
London 0.99 0.97
South East 0.99 0.99
South West 0.99 0.96
West Midlands 0.99 0.98
North West 0.99 0.97
Wales 0.99 0.98
Scotland 0.99 0.96
Northern Ireland 0.99 0.95
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