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Abstract 

This paper presents experimental investigations into the wear performance of non-reinforced POM 
(Polyoxymethylene) and 28% GFR POM (glass fibre reinforced POM) gear pairs; polymer running 
against polymer is a little studied but important system. All the gears were manufactured locally by 
injection moulding. The injection mould design and manufacturing process are briefly described 
and progress in the control of injection moulding processes for polymer and fibre reinforced 
polymer gears is discussed. A specifically designed polymer composite gear test rig was used for 
this research. Performance differences for the POM and GFR POM gears are observed, notably 
their loading capacity and failure modes. Both POM and GFR POM gear pairs, showed a clear 
wear transition torque for a given running speed. Above the transition torque the wear rate 
accelerated rapidly causing thermal failure, while below the transition torque the gears had a very 
low specific wear rate. Significant performance enhancements were seen for the GFR POM gears, 
with an increase of around 50% in load carrying capacity when compared to the non-reinforced 
POM gears. The wear mechanisms are briefly discussed, noting that most data available for 
polymer gear design is not representative of these polymer against polymer pairings. 
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1. Introduction 

Fibre reinforced polymer composite gears offer unique advantages over metal gears for a wide 
range of industrial applications, including their low weight, low cost, high damping resistance and 
ability to function with grease or without external lubrication. However, the extensive research so 
far carried out to understand the gears’ behaviour in order to achieve high power transmission, 
especially in motorcycle and electric vehicle lightweight gearbox applications, heavily concentrates 
on metal-polymer gear pairs. There is very little literature directly relevant to the design of polymer-
polymer gear pairs, which are of increasing technical interest in many fields.  
 
The existing polymer gear design methods (e.g. British Standard 6168 [1] and German VDI 2736 
standard [2]) are based on metal gear tooth bending strength and surface contact fatigue 
approaches with modifications to use polymer material properties instead of steel. However, the 
current approaches still have significant limitations for bending and contact fatigue failure because 
of both the thermal behaviour and the larger relative deflections of polymer gears. Crucially, 
polymer gears may fail under failure modes not covered by the existing standards [3] because the 
polymer’s thermal performance is much lower than that of steels. The first notable progress on the 
calculation of temperature for polymer gears seems to be that made by Hachmann and Strickle [4] 
and both the British and German Standards are based on their method. However, their original 
gear temperature calculation was limited to lubricated nylon against steel gears only. Although 
much research has followed Hachmann and Strickle [4], there have been no large steps forward, 
e.g. Gauvin et al’s equation [5] is limited to polymer against steel gears. On the empirical side, the 
many gear surface and body temperature measurements carried out to understand polymer gear 
thermal behaviour have usually been achieved by stopping the tested gears. Such methods are 
inaccurate because both the gear surface and body temperature drop significantly once the gear 
stops [6]. An indirect measuring method had been reported by Letzelter et al [7] monitoring a nylon 
6/6 gear body temperature using an infrared camera; this method has been shown to give more 
accurate results. 
 
Another weakness of the current polymer gear design standards is the limited material information 
published. For example, there is no information included for polymer composite gears. Recent 
experimental comparisons between carbon fibre reinforced PEEK and nylon gears [8] showed that 
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the load capacity under high running temperature of the former is superior to that of other 
composite gears. It has been found that glass fibre reinforced nylon gears show better wear 
resistance in comparison to unfilled gears due to the improved elastic modulus and compressive 
strength [9 & 10]. Short-fibre reinforced high temperature resistant thermoplastic materials are now 
being used as sliding elements that were formerly composed only of metallic materials. There is 
some research on fibre reinforced POM (Polyoxymethylene) wear, but most uses standard 
tribology test methods, e.g. pin on disc tests in [11]. Hardly any work looks at GFR POM (glass 
fibre reinforced POM) gears. Gear contact behaviours are very different from, say, twin disc 
contact because gear sliding and rolling behaviours change at every contact point [12].  Also, most 
previous work concentrated on polymer against steel, but when a polymer gear drives a steel gear, 
the entire deformation will be on the former due to its low elastic modulus [13] and the contact 
conditions are affected by steel's relatively good thermal conductivity [14]. There is urgent need for 
data on GFR POM gears against GFR POM gears. 
 
Despite the currently available literature, the information on polymer composite gear design and 
performance is still very limited and their application remains restricted by this lack of performance 
information, design standards or agreed testing methodologies. 
 
2. Injection mould design, process and functional requirements 
The polymer gear injection moulding processes used an Engel 140T machine, with the 
experiments conducted using aluminium mould inserts for both POM and GFR POM materials. 

Initially, PP (Polypropylene) gears were moulded to understand the molten polymer filling pattern. 

This was followed by POM and GFR POM gears injection moulding. The processes were carried 
out with different injection moulding parameters and subsequently tested for shrinkage, porosity 
and crystallinity. 
 
The aluminium mould inserts (Fig.1) used for both 
POM and GFR POM gears used a radial gate 
design [15]. Contour design was eliminated from 
these mould inserts to aid easy part ejection; with 
contours in the mould the cooled polymer is gripped 
on the contour face making part ejection tougher. If 
a contour design is used it is recommended to use 
an ejector pins mechanism, which helps in reducing 
the wall thickness in certain regions, and helps in 
reducing the overall cooling time of the part. In this 
study the process is conducted without ejector pins. 
The moulded gear was ejected manually by tapping 
threads in the hub hole. The radial gating method 
was used for the designed mould inserts (Fig.1) 
because of existing assembly insert space 
limitations. The mould unit consists of two halves: the right side insert (RSI) is assembled to the 
fixed side of the mould cavity, which is the injection side of the machine, while the left side insert 
(LSI) slides on the guideways on the movable side of the cavity.  
 
For the POM and GFR POM gear 
injection moulding process a design of 
experiments approach was used to 
investigate the sensitivity of the moulded 
gears to various process parameters [16]. 
The packing pressure was identified as 
the most significant process parameter, 
showing 70% and 55% effects on the 
part shrinkage and warpage respectively. 
The gears moulded with a packing 
pressure ranging from 70 to 110 MPa 
were found to be of acceptable quality. 

Fig.1 Aluminium mould inserts RSI and LSI 

Fig.2 Moulded POM (4 left) and GFR POM gears (4 right) 



Fig.2 shows samples for four POM gears (left) and four GFR POM gears.  
 
All the measured values for investigating functional requirements (e.g. porosity, crystallinity, 
shrinkage) were obtained through the average of four tested samples, as were the test data (e.g. 
wear rate and transition torque) throughout the whole paper. Porosity evaluation was performed 
using a Nikon 225/320 CT scanner. The Computed Tomography technique is now very widely 
used to evaluate the internal features of an object through 3-dimensional scanning. High-resolution 
is achieved by projecting onto the object high-energy X-rays of up to 320 kV source voltage. The 
output is a 3D model fully populated by voxels. The major advantage of CT scanning is that it is a 
non-destructive testing method to evaluate internal features such as pores. In this work, the 
porosity percentage was assessed at 3.74% and 0,34% for POM and GFR POM gears 
respectively.  
 
Crystallinity and thermal transitions 

evaluation was done by differential 
scanning calorimetry (DSC) and 
thermal stability and glass fibre 
content evaluation by thermal 
gravimetric analysis (TGA). DSC is a 
widely used technique to analyse the 
thermal transitions of a polymer 
material by measuring the heat 
flowing inside and outside of a 
polymer material against the temperature. DSC is also used to determine glass transition 
temperature, crystallisation temperature, melting temperature, melting enthalpy and percentage 
crystallinity. The percentage crystallinity is determined by comparing the melting enthalpy of a 
sample with the reference melting enthalpy of a 100% crystalline polymer of the same material. 
Table 1 summarises the main DSC results. 
 
The actual glass fibre content present 
in the injection moulded reinforced 
POM material was evaluated using 
TGA within an air environment. The 
sample was heated in an alumina pan 
from room temperature to a maximum 
temperature of about 1000 ⁰C with a 

heating rate of 10 ⁰C/min. As the 
melting of glass fibre starts only after 

1400 ⁰C, the polymer portion of the 
sample will undergo complete thermal 
decomposition, and the remaining 
glass fibre content by percentage 
weight is determined. The glass fibre 
content by percentage weight for the 
reinforced POM gears in this study 
was about 28%. 
 
The shrinkage along flow (diametrical 
shrinkage) and shrinkage across flow (shrinkage along face width) were evaluated for the POM 
and GFR POM gears moulded at different packing pressures ranging from 60 MPa to 110 MPa. 
Both shrinkage along flow and shrinkage across flow decreased with the increase in the packing 
pressure as shown in Fig.3 and Fig.4. It is also observed that the shrinkage across flow is less than 
the shrinkage along flow at higher packing pressures for the POM gears while the opposite was 
true for the GFR POM gears. The minimum shrinkage for both POM and GFR POM gears 
occurred when they were moulded with a packing pressure of 110 MPa: for POM it was 2.88% 
along flow and 1.33% across flow; for GFR POM, 1.76% along flow and 2.13% across flow.  
 

Material 
Melting 
temperature 

(peak) in ⁰C 

Crystallization 
temperature 

(peak) in ⁰C 

Degree of 
crystallinity 
in % 

POM 176 147 51.13% 

GFR POM 170 143 28.06% 

Table 1 DSC results summary 
 

Fig.3 POM gear shrinkage against packing pressure 



The observed decrease in the 
percentage porosity of the POM 
gears with the increase in the 
packing pressure is due to the better 
packing of polymer molecules at 
higher pressures. The molecules 
then undergo much less movement 
during the cooling phase, resulting in 
lower porosity levels.  
 
GFR POM injection moulded gear 
samples were cut and examined 
using a scanning electron 
microscope to measure the average 
fibre length and average fibre 
diameter. Fig.5 shows example 
images. The glass fibre length 
ranged between 200 µm and 500 µm 
in size, while the fibre diameter 
ranged between 5 µm and 10 µm. 

This evaluation confirms the fibres present in the POM matrix to be short sized fibres [15]. The 
fibres in the gear tooth flank surface were seen to be in random orientations, as expected for gears 
moulded using a radial gated runner system. 
             
3. Experiments and gear specifications 

A unique, specialised polymer composite gear test rig (Fig.6) was employed to investigate the 

glass fibre reinforced polymer gear performance. Fully described elsewhere [3], this test rig has 
two immediately important features: the abilities to include deliberate controlled misalignments and 
to measure the wear rate continuously under constant load. The current work builds on initial 
progress in understanding the effects of misalignment on polymer gear performance [17]. Four test 
parameters are continuously recorded: 
torque, speed, wear rate and time to 
failure. Wear rate is measured indirectly 
by recording the movement of the 
bearing block using an LVDT (linear 
variable differential transducer) 
connected to a data-logging system. 
Note that this test method expresses 
wear in terms of the reduction in tooth 
thickness around the pitch point instead 
of using volume loss and that it cannot 
distinguish tooth deflections from the 
actual tooth thickness reduction [3]. 
However, the wear rate, a critical 

Fig.5 SEM observations for injection moulded GFR POM gear (before its loading tests) 

Fig.6 Polymer gear test rig [3] 

Pivot 

Fig.4 GFR POM gear shrinkage against packing pressure 



parameter to monitor the gear life, can be recorded accurately by this test method. It has been 
shown previously that this measure of wear rate can be successfully used to predict polymer gear 
performance [3].  
 
Experimental tests were carried out on both the GFR POM and POM gears to investigate the effect 
of glass fibre reinforcements on the gear performance. All test data presented in this paper are for 
either GFR POM against GFR POM or POM against POM spur gears with a speed ratio of one in 
unlubricated conditions. The material properties of the currently studied POM (Delrin 500P NC010) 
and GFR POM (Hostaform C9021 GV1/30) gears are shown in Table 2 and the nominal geometry 
of the gears is shown in Table 3. The shrinkage of the gears which leads to an average outside 
diameter of 63,73 mm (the nominal diameter being 64 mm) is close to the shrinkage seen for gears 
injection moulded by an external supplier, where the average outside diameter was 63.65 mm, and 
machine cut gears, where the average outside diameter was 63.88 mm [3].  

 
                                                                                                                   

Property POM GFR POM 

Density (kg/m3) 1420 1600 

Tensile modulus (MPa) 3100 9200 

Flexural modulus (MPa) 2900 7800 

Deflection temperature (⁰C) 158 160 

Melting temperature (⁰C) 176 170 

                                                                                                                                                                                         
4. Test results and discussions 

The tests were carried out using the established step loading method [3] with a running speed of 
2000 rpm; POM gears were predominantly investigated at 1000 rpm in previous studies. Both the 
POM and GFR POM gear pairs were run for a duration of 20,000 cycles at each load step, with 
successive load increases of 0.5 Nm for the POM gears and 1 Nm for the GFR POM gears. 
 
The POM gear pairs were tested with 
an initial torque set at 3 Nm, increasing 
by 0.5 Nm after every 20,000 cycles. 
The overall results are presented in 
Fig.7, showing that the POM gear wear 
rate increased dramatically (greater 
than a factor of 2) when the gear load 
reached and exceeded 7.5 Nm. There 
is a clear transition torque at about 7.5 
Nm. This observed transition torque is 
lower than that reported for similar 
POM gears running at 1000 rpm, e.g. a 
transition torque of 8.5 Nm is stated in 
[3]. The lower transition torque for 2000 
rpm is expected due to the higher 
sliding speed. The driving gear 
consistently failed due to severe 
thermal wear, Fig.8 (a) showing some 
evidence, but the driven gear was 
observed to have less severe thermal 
wear and less thinning across the tooth 
thickness. These behaviours likely 
arise from the gear tooth contact 
mechanisms [18]. The approach 
contact load is higher than the recess contact load because of the hard, non-involute, tip contact 
due to bending. Further, there is a reciprocating motion as the contact moves from non-involute 

Module (mm) 2 

Tooth Number 30 

Pressure angle  20 o 

Face width (mm) 17 

Thickness (mm) 3.14 

Contact ratio 1.67 

Table 2 POM and GFR POM material properties 

 

Table 3 Gear specifications 

 

Fig.7 Wear rate against torque for POM gears 

(a)    (b) 
   Fig.8 Tested POM gears (a) the driver (b) the driven 



premature contact to normal line of action contact. That leads to more wear during the approach 
process where the driver’s tip contacts the driven gear’s root. The wear at the driving gear’s tip will 
result in a pressure angle increase which can cause the gear wear to accelerate [3]. The 
percentage crystallinity of the tested gear tooth samples dropped to 43.4% from 51% before the 
tests, probably because of high local heating, as discussed later. Because POM gear hardness 
and wear resistance are properties dependent on crystallinity [19], this drop in crystallinity (i.e. 
hardness and wear resistance reduction) may be a symptom of the severe wear period (after the 
transition torque).  

A previously developed method is employed here to predict the POM gear loading capacity, via the 
transition torque, for cases where the maximum surface temperature reaches the melting point of 

the material [3]. The maximum surface temperature (max) is expressed as the sum of ambient (a), 

body (b) and flash (f) temperatures: 
 

 max a + b + f a + k1 T + k2 T
3/4  (1) 

 
where 

      
with T: transmitted torque, : specific gravity, k: thermal conductivity, c: specific heat, a: half 
contact width, ra: outside radius, r: reference radius, b: tooth face width, V1 and V2: sliding velocity 
for gear 1 and gear 2 respectively. 
 
Equation (1) predicts for the tested POM a transition torque of 7.15 Nm and a melting temperature 
of 176°C. This calculation correlates closely with the test results and so tends to confirm the 
importance of melting in the wear processes. Furthermore, both results correlate well with 
previously tested machine cut and injection moulded POM gears obtained from an external 
supplier [3], which provides additional confirmation of the quality of the injection moulding process 

undertaken. 
 
Typical SEM images of a worn POM driving gear tooth are shown in Fig.9. The wear at both tooth 

tip and root regions is much more severe than in the pitch region because of the much higher 

sliding speed at both tip and root, but close to zero sliding near the pitch point. Similar observations 

have also been obtained for the driven gear as illustrated in Fig.10.  

The GFR POM gears were tested with an initial torque of 6 Nm increased by 1 Nm after 20,000 
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Fig.9 Typical SEM results for 7.5 Nm loaded POM driving gears at 2000 

rpm 
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Fig.10 Typical SEM results for 7.5 Nm loaded POM driven gears at 2000 

rpm 

tip pitch root 



cycles at each torque level. The overall results are presented in Figure 11. A rapid increase in the 

wear rate was observed for loads around 11 Nm (the transition torque) and above. This significant 

increase of transition load observed for the GFR POM gears when compared to the POM gears 

(from 7.5 to 11 Nm) indicates around a 50% load capacity increase.  

Both the driving gear and driven gear 

were found to have failed due to the 

gross thermal tooth bending (Fig.12). 

Further running of the gear pair after 

the transition torque increased the 

wear rate very rapidly as the 

temperature of gear teeth increased 

and made them more soft and flexible. 

This temperature rise causes the 

gear tooth to melt and bend, leading 

eventually to failure (the fibre has little 

effect on melting temperature, see 

Table 1). The wear difference 

between the driver and driven gears 

shown in Fig.12 is mainly due to the 

friction forces as discussed for POM 

gears (Fig. 8). The SEM results for 

the GFR POM gear samples before 

and after test are illustrated by 

Fig.13. The glass fibre lengths in the 

untested gear samples were in the 

range of 200 µm to 500 µm, while in 

tested gear samples the glass fibre 

lengths ranged 

between 30 µm and 

100 µm. Reduced 

lengths of the glass 

fibres shows that fibres 

were being broken 

during testing because 

of the high loads on the 

gear tooth. The voids 

around the fibres after 

the test are also 

attributed to the local 

effects of fibre fracture. 

Post-test evaluations indicated that the percentage crystallinity of the driving and driven gear tooth 

samples after testing were 30% and 33.3% respectively, compared with the average crystallinity 

before testing of around 30% to 32%. In contrast to the non-reinforced POM gears, the GFR POM 

gears showed no significant change in crystallinity after testing. The elastic modulus (both tensile 

and flexural) of GFR POM gears is almost three times that of the unfilled ones (Table 2). For the 

same loading condition (e.g. 7.5 Nm), much higher tooth deformation would be expected for the 

unfilled gears, which would consequently generate much higher friction [18]. It is expected that the 

crystallinity level will change more if the teeth are at much higher surface temperatures for longer 

Fig.11 Wear rate against torque for GFR POM gears 

(a)    (b) 
   Fig.12 Tested GFR POM gears (a) the driver (b) the driven 

Fig.13 SEM results for GFR POM gears before (left) and after (right) tests 



durations. This is the case (nearly 20% reduction) for the unfilled gears. However, the failure of 

GFR POM gears is being mediated by gear surface fibre failure mechanism up to much higher 

loads (e.g. 11 Nm). Because the glass fibres are brittle, the surface fibre fractures cause a rapid 

and significant drop in the local elastic modulus (i.e. a large deformation) and consequent high 

local friction heating. This sudden friction increase and elasticity drop as the fibre fractures lead to 

a quick final thermal bending failure for the GFR POM gears, as shown in Fig. 12, within too short 

a time to affect crystallinity. Also, note that any fibres with special adhesive bonding to the POM 

may generate high resistance to any micro structure change for the GFR POM gears [16]. 

There is a clear load transition for both the GFR POM gears and the POM gears with the GFR 

POM gears further showing around a 50% load capacity increase (from 7.5 to 11 Nm). However, 

the average wear rates of the POM and GFR POM gears for loads below their transition torques 

were found to be very similar at 5.31 nm/cycle and 4.55 nm/cycle respectively.  

Wear rates for both GRF POM and POM gears below their critical load can be related to thrust 
bearing wear tests carried out by Friedrich [20], who expressed the wear volume, Vw, as 
 
 Vw = ksFs        (2) 
 
where  

ks is the specific wear rate,  
F the normal force, and  
s the sliding distance.  

 
If this equation is revised for spur gear tooth profiles, the specific wear rate can be expressed as 
      
 

 
TN

Qbd
k s

2
     (3) 

 
where  

Q is the wear depth (as measured in the tests),  
b is the gear face width,   
d is the gear pitch circle diameter, 
T is the torque transmitted, 
N is the number of cycles corresponding to the wear Q. 

 
Using the relevant parameter values, Equation (3) gives a specific wear rate of 5.84 x10-15 m3N-1m-

1 for the POM gears and 4.98 x10-15 m3N-1m-1 for the GFR POM gears. These values may be 
compared to a reported figure of 3 x10-15 m3N-1m-1 for POM against steel thrust bearing test [20]. 
The POM against steel data is not safely representative of the behaviour of polymer against 
polymer pairs. 
 
 
5. General conclusions 

Injection mould design and local, small-scale, manufacture of polymer gears by injection moulding 
have been successfully demonstrated, with relatively optimised moulding process parameters 
achieving high quality injection moulded polymer composite gears. A unique polymer gear test rig 
with the capabilities to simulate assembly misalignments and to continuously measure wear was 
then used to investigate the performance of polymer composite gear pairs. Material and 
performance testing confirmed that the locally moulded gears are as good as those provided by 
external professional manufacturers. The work thereby confirms the practicality of an effective and 
economic path for the widespread parametric studies and optimisation of polymer against polymer 
gear pairs to provide urgently-needed good design data and standards. 
 



28% GFR POM gear pairs showed significantly enhanced performance, with about 50% better load 
capacity, compared to non-reinforced POM gear pairs. Clear transition torques, above which wear 
rates increased rapidly, were observed for both POM and GFR POM gear pairs for the given 
running speed and geometry. The gear surfaces have a low specific wear rate while loaded below 
their critical values. Optical and SEM examinations indicated principally thermal wear associated 
with local surface melting after the transition load. Close correlation of experimental data with a 
published model indirectly confirms this interpretation. The wear rate of POM gears increases 
dramatically above the transition load because the gear operating temperature approaches the 
material melting point. The percentage crystallinity of the POM gears was initially higher than for 
the GFR POM gears, but dropped by 20% during the tests; there was no significant change for 
GFR POM gears. Surface fibres in GFR POM gears were broken, with significantly reduced 
lengths, during performance testing. Local bending resistance appears to drop significantly once 
the fibres break, leading to rapid thermal bending failure. The crystallinity data supports this model. 
Overall, it is clearly demonstrated that the design of polymer against polymer gear pairs cannot 
safely rely on existing data: new and specific large studies are needed. 
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