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aMathematics Institute, University of Warwick,
Coventry, CV4 7AL

bMathematics Institute, University of Warwick,
Coventry, CV4 7AL

Abstract

We consider a family of approximations to the Euler equations obtained by
adding (−∆)−α/2 to the non-locality in the Biot-Savart kernel together with a
mollification (with parameter ε). We consider the evolution of a thin vortex
tube. We show that the velocity on the filament (core of the tube) in the limit

as ε→ 0 is given C(α,t)
α

κB+O(1) where κ and B are the curvature and binormal
of the curve, and C, C−1 are uniformly bounded.

1. Introduction

The Euler equations model the evolution of an inviscid incompressible New-
tonian fluid. In 3-dimensions they can be formulated in terms of the vorticity
ω ∶ [0, T ] ×R3 → R3, which is the curl of the fluid velocity ω = ∇ × u:

ωt + (u ⋅ ∇)ω = (ω ⋅ ∇)u, (1)

u = curl−1ω, (2)

where curl−1 in R3 is given by the Biot–Savart operator on R3:

curl−1ω(x) ∶= −1

4π
∫
R3

x − y
∣x − y∣3 × dω(y), (3)

where dω(y) = ω(y)dy if ω is a function. This is a bounded operator Lp → Lq

for example if p ∈ (1,3) and 1/p = 1/q+1/3 (see [18], for example). The notation
curl−1 is justified if ω is divergence free.

Describing the evolution of ω in the case that it is initially highly con-
centrated around a filament, and approximately tangential to the curve is a
long-standing problem. In fact it dates back at least as far as the 1860s. See
for example the paper by Helmholtz [10] and the letter by Kelvin appended to
it. In the early 20th century, the asymptotic local induction approximation was
developed by Da Rios (see [5],[17], and [16]) and much later by Arms and Hama
[1], among other authors. A more recent treatment can be found in [20].
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For sufficiently regular flows, integral curves of the vorticity field are advected
by the velocity. Assuming the same to be true for an isolated vortex line,
consider a time dependent curve C(t) that is advected by the velocity u = curl−1ω
from (3) where ω is the H1 measure on C multiplied by the tangent. The local
induction approximation states that an advected point p(t) ∈ C(t) satisfies

d

dt
p(−t/ log(ε))∣

t=0
≍ κB (4)

as ε→ 0, where κ and B are the curvature and binormal to C at p.
Recently Jerrard and Seis [11] found new estimates of the difference between

the evolution of a weak solution of Euler in 3-dimensions with approximately-
filamentary vorticity and the binormal curvature flow. This was based on the
notion of weak binormal curvature flows developed in [12].

The evolution of a curve according to the binormal curvature flow is a subject
for study in its own right and is related to a nonlinear Schrödinger equation via
the Hasimoto transform [9]. For recent work on this topic, see [7], [8], [3], or
[21], for example.

Although this paper is concerned with three-dimenional flows, it is worth
noting that the analogous problem for two-dimensional Euler concerns the evo-
lution of systems of point vortices. Analysis of such systems has to date proved
more fruitful than that of their three-dimensional counterparts. The classical
vortex model states that the evolution of a collection of vortex points {xk(t)} is
such that each advected by the velocity corresponding to others:

ẋk = ∑
n≠k

curl−1δxn .

This has been properly justified by Marchioro and Pulvirenti [14] (see also [15,
13]), who showed that until such a time that two of the points collide under this
evolution, the vorticity of a solution of the Euler equations is concentrated at
the points xk(t), if initially it is sufficiently concentrated at the points xk(0).

Recently Davila et. al. [6] have found a way to construct solutions of the
Euler equations in two dimensions (including in bounded domains) with vor-
ticity uniformly approximating a sum of desingularised δ-distributions moving
according to the Kirchoff–Routh law, which generalises the simple vortex model
above for bounded domains. Whereas the approach of Marchioro and Pulvirenti
was largely concerned with controlling the support of vorticity, solutions con-
structed using these explicit desingularisations admit finer information about
the vorticity inside the core.

For a concise survey of some of these topics, see [2].
In order to avoid the need for time rescaling of the form (4), we study the

model of the Euler equations in R3 described below, in the case that ω is a
vector-valued measure given by the tangent to a closed simple smooth curve
C, parametrised by γ ∈ C∞(T1;R3), with non-vanishing tangent γ′. Here T1

denotes the torus R/Z. We want to replace the velocity u given by curl−1ω in
(3) by:
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u = uαε = Jεcurl−1Λ−αω, (5)

where Jε denotes mollification by some fixed three-dimensional mollifier ηε =
ε−3η(x/ε), Λ = (−∆)1/2, ε > 0, and α ∈ (0,1/2).

Using the notation H1
C ∶= H1 ⌞C for the 1-Hausdorff measure restricted to C,

we can state the main result of this paper as follows.

Theorem 1. If C is a smooth curve with smooth parametrisation γ, and ω =
γ′ ⋅ H1

C then for uαε defined by (5) satisfies

lim
ε→0

uε(γ(τ)) =
C(α, τ)

α
κ(τ)B(τ) +w(α, τ),

where C > 0 is bounded above and below independent of (α, τ), ∣w∣ is bounded
independent of (α, τ), and κ and B denote the curvature and binormal to C at
γ(τ).

The mollification appearing in (5) effectively removes a singularity of order
dist(x,C)α−1 as x approaches the curve C. This corresponds to a component
of the velocity of the order dist(x,C)−1, that also appears in the analysis of
the Euler equations. In the classical case, that term is not usually considered
to play a role in the evolution of the curve. The remaining terms are much
more remarkable. Indeed, for α > 0, Theorem 1 implies that after removing
the first singularity, the velocity of the curve is finite and moreover, it is only
the magnitude that depends on α, to leading order. This is in stark contrast
to vortices in the classical system, where the binormal term is also singular, of
order ∣ log(dist(x,C))∣, which warrants the time-rescaling seen in 4.

We remark that Berselli and Gubinelli [4] have proved well-posedness results
for filaments γ evolving under velocities of the form

u(t, x) = ∫
1

0
∇φ(x − γ(t, s)) × ∂sγ(t, s)ds,

where φ is even with integrable and non-negative Fourier transform φ̂ and

∫R3(1 + ∣ξ∣2)2φ̂(ξ)dξ < ∞. Such examples include the so-called Rosenhead ap-

proximation [19] (φ(x) = c(∣x∣2 + µ2)−1/2 for some µ ≠ 0), but not the system

u = curl−1Λ−αω.

The rest of the paper is dedicated to the proof of Theorem 1.

2. Taylor expanding kernel of curl−1Λ−α

In this section we calculate v = curl−1Λ−αω in the vicinity of C
Let γ be a smooth, closed and simple curve; it admits a security radius rs > 0,

such that for all x ∈ Brs(C) there exists a unique τ ∈ T1 for which ∣x−γ(τ)∣ < rs
and (x−γ(τ)) ⋅γ′(τ) = 0. In this case we say that x is within the security radius
at τ .
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To simplify the notation let us assume that γ(0) = 0 and consider x ≠ 0
within the security radius at 0. Calculating u within the security radius at
other points can be achieved by changing variables. The modified Biot-Savart
law corresponding to curl−1Λ−α is

v(x) = −cα ∫
R3

x − y
∣x − y∣3−α × dω(y), (6)

where cα > 0 converges as α → 0.
If ω = γ′ ⋅ H1

C , (6) becomes

v(x) = −cα ∫
T1

x − γ(s̃)
∣x − γ(s̃)∣3−α × γ′(s̃)∣γ′(s̃)∣ ds̃. (7)

We now calculate the Taylor expansion of the following term in the integrand

x − γ(s̃)
∣x − γ(s̃)∣3−α × γ′(s̃),

with respect to s̃, about s̃ = 0. For definiteness, we consider s̃ in the fundamental
domain [−1/2,1/2) of T1. Let R = R(x, s̃) be defined by

R ∶=
√

∣x∣2 + ∣γ′(0)∣2s̃2,

then for x in the security radius (i.e. x ∈ Br0(0))

∣x − γ(s̃)∣2 = R2 (1 − s̃
2x ⋅ γ′′(0)
R2

− s̃
3(x ⋅ γ(3)(0) − 3γ′(0) ⋅ γ′′(0))

3R2

+ s̃
4(3∣γ′′(0)∣2 + 4γ′(0) ⋅ γ(3)(0))

12R2
+O(∣x∣s̃4

R2
,
s̃5

R2
)) .

Hence for the denominator we obtain

∣x − γ(s̃)∣α−3 = Rα−3 (1 + 3 − α
2

( s̃
2x ⋅ γ′′(0)
R2

+ s̃
3(x ⋅ γ(3)(0) − 3γ′(0) ⋅ γ′′(0))

3R2
− s̃

4(3∣γ′′(0)∣2 + 4γ′(0) ⋅ γ(3)(0))
12R2

)

+O(∣x∣s̃4

R2
,
s̃5

R2
,
s̃4∣x∣2
R4

,
s̃8

R4
)) .

Now, for the numerator

(x − γ(s̃)) × γ′(s̃) = x × γ′(0) + s̃x × γ′′(0)

− s̃
2

2
γ′(0) × γ′′(0) +O (s̃3, ∣x∣s̃2) .
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Therefore

x − γ(s̃)
∣x − γ(s̃)∣3−α × γ′(s̃)

= 1

R3−α
(x × γ′(0) + s̃x × γ′′(0) − s̃

2

2
γ′(0) × γ′′(0))

+ 3 − α
2R5−α

(s̃2x ⋅ γ′′(0) − s̃3γ′(0) ⋅ γ′′(0))x × γ′(0)

+O( s̃3

R3−α
,
∣x∣s̃2

R3−α
,
∣x∣2s̃3

R5−α
,
∣x∣s̃4

R5−α
,
s̃5

R5−α
,
s̃4∣x∣3
R7−α

,
s̃6∣x∣2
R7−α

,
s̃8

R7−α
) . (8)

3. Mollifying the expansion

Since we are interested in a velocity field given by (5), we need to consider
the contribution to uε of each term in (8), via (7).

We want to consider the mollified velocity at a point on the curve. To
apply the mollification at a given τ ∈ T1 we fix a smooth orthonormal frame
n1(τ), n2(τ) spanning γ′(τ)⊥ for τ ∈ T1, this induces the following change of
coordinates within the security radius of the curve γ:

Ψ(τ, y1, y2) = γ(τ) + y1n1(τ) + y2n2(τ).

We also define
Ψ(τ, y) ∶= y1n1(τ) + y2n2(τ),

for the component orthogonal to the curve, and note that

∣det∇Ψ∣ = ∣γ′(τ)∣ + O (∣y∣) .

3.1. Leading term

A careful argument using the mollification will allow us to reduce the order
of the first term. Fix τ ∈ T1 and ε ∈ (0, rτ), uε on the curve γ is given by

uε(γ(τ)) = −cα ∫
T1
∫
R2
ηε(γ(τ) −Ψ(s, y)) ∣det∇Ψ∣ ⋅

∫
T1

Ψ(s, y) − γ̃(s̃)
∣Ψ(s, y) − γ̃(s̃)∣3−α

× γ̃′(s̃)∣γ′(s̃ + s)∣ds̃dy ds,

by periodicity, where γ̃(s̃) = γ(s̃ + s) − γ(s). Note that γ̃ is a curve for which
the expansion from the previous section holds, as we assumed at the time that
γ(0) = 0.

Thus the first term in the expansion (8) contributes the following

− cα ∫
T1
∫
γ′(s)⊥

ηε(γ(τ) − γ(s) − z)[∣γ′(s)∣ + O (∣z∣)]⋅

∫
1/2

−1/2

z × γ′(s)
R3−α

∣γ′(s̃ + s)∣ds̃dz ds
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where now R =
√

∣z∣2 + ∣γ′(s)∣2s̃2.
Now to make use of the anti-symmetry of z × γ′(s) in γ′(s)⊥ we decompose

the mollifier as follows:

ηε(γ(τ) − γ(s) − z) = ηε((τ − s)γ′(s) − z)
+O (ε−2)χ{(s,z)∶∣(τ−s)γ′(s)−z∣≤C1ε}

by the Mean Value Theorem, for some C1 > 0. Indeed, since γ is a smooth
parametrisation of a smooth curve, there exists C ′ > 0 such that for sufficiently
small ε > 0,

Ψ−1(Bε(γ(τ))) ⊂ (τ −C ′ε, τ +C ′ε) ×BC′ε(0)
for all τ ∈ T1. In which case, both ηε(γ(τ) − γ(s) − z), and ηε((τ − s)γ′(s) − z)
vanish if ∣(τ − s)γ′(s) − z∣ > εmax(

√
2C ′,1). To save notation, define

Σ(τ, ε) ∶= {(s, z) ∈ T1 × γ′(s)⊥∶ ∣(τ − s)γ′(s) − z∣ ≤ C1ε}.

We can also absorb the O(∣z∣) part of the determinant into the error term:

ηε(γ(τ) − γ(s) − z)[∣γ′(s)∣ + O (ε)]
= ηε((τ − s)γ′(s) − z)∣γ′(s)∣ + O (ε−2)χΣ(τ,ε).

By the oddness with respect to z, the contribution of the following term
vanishes (since ∣(τ − x)γ′(x) − z∣ = ∣(τ − x)γ′(x) + z∣, and η is chosen to be a
radial function):

∫
γ′(s)⊥

ηε((τ − s)γ′(s) − z)∣γ′(s)∣ ∫
1/2

−1/2

z × γ′(s)
R3−α

∣γ′(s̃ + s)∣ds̃dz,

for all s ∈ T1. The remaining term can be estimated as follows:

O(ε−2) ∣∫ ∫
Σ(τ,ε)

∫
1/2

−1/2

z × γ′(s)
R3−α

∣γ′(s̃ + s)∣ds̃dz ds∣

≤ O (ε−2)∫ ∫
Σ(τ,ε)

∣z∣α−1 dz ds

≤ O (ε−2)∫
τ−s≤C1ε/ inf ∥γ′∥

εα+1 ds ≤ O (εα) ,

where we have used that

∫
1

R3−α
ds̃ = ∫

−1/2

−1/2

1

∣∣z∣2 + ∣γ′(s̃)∣2s̃2∣∣(3−α)/2
ds̃ ≤ C ∣z∣α−2,

as can be seen by a simple scaling argument.
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3.2. Binormal term

We next consider the binormal term − s̃2

2R3−α γ
′(s) × γ′′(s). Elementary cal-

culations yield
1 − ∣z∣α
α

≲ ∫
1/2

−1/2

s̃2∣γ′(s̃ + s)∣
R3−α

ds̃ ≲ 1

α
,

hence

lim
ε→0
Jε (∫

1/2

−1/2

−s̃2

2R3−α
γ′(s) × γ′′(s)ds̃)(τ) = − C̃(α, τ)

α
γ′(τ) × γ′′(τ)

= − C̃(α, τ)
α

∣γ′(τ)∣3κ(τ)B(τ), (9)

where C̃ > 0 can be bounded above and below, independent of α and τ . Here
κ(τ) and B(τ) denote the curvature and binormal to the curve γ at γ(τ).

3.3. Remaining terms

More generally, for k ≥ 1, m, n ≥ 0 we have

∫
1/2

−1/2

s̃kxm

Rn−α
ds̃ ≤ O (∣x∣k+m+α−n+1)∫

1/∣x∣

0

s̃k

(1 + ∣γ′(s)∣2s̃2)(n−α)/2 ds̃

≤ O (∣x∣k+m+α−n+1) + 1

α + k + 1 − nO(∣x∣m) .

Now for each but the leading term in (8) we have k +m ≥ n− 1. Thus each such
term gives a contribution to uε(γ(τ)) of

O(εα) + 1

α + k + 1 − nO(εm) .

Noting that k ≥ n or m ≥ 1 for all except for the binormal term, combining
all of the estimates above yields

lim
ε→0

uε(γ(τ)) =
cαC̃(α, τ)

α
κ(τ)B(τ) +w(α, τ), (10)

where ∣w(α, τ)∣ is bounded independent of α, τ , and C̃ is as in (9).
Combining the estimates from Section 3, the proof of Theorem 1 is complete,

taking C(α, τ) = cαC̃(α, τ).
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