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Abstract-To predict the remaining discharge energy of a 
battery, it is significant to have an accurate prediction of its end 
of discharge time (EoDT). In recent studies, the EoDT is 
predicted by assuming that the battery load profile (current or 
power) is a priori known. However, in real-world applications 
future load on a battery is typically unknown with high 
dynamics and transients. Therefore, predicting battery EoDT in 
an online manner can be very challenging. The purpose of this 
paper is to derive a load prediction method for capturing 
historical charge/discharge behaviour of a battery to generate 
the most probable future usage of it, enabling an accurate EoDT 
prediction. This method is based on a two layer Markov model 
for the load extrapolation and iterative model-based estimation. 
To develop the proposed concept, lithium-ion batteries are 
selected and the numerical simulation results show an 
improvement in terms of the accuracy of the EoDT prediction 
compared to methods presented in the literature.  

Keywords-load prediction, end of discharge time, prognosis, 

Markov models, lithium-ion battery 

I. INTRODUCTION 

In the context of batteries, end of discharge time of a 
battery is defined as the time threshold when the battery hits 
its practical limits (typically a cut-off voltage of circa 2.8-
2.5V or a SOC <10%). It is not normally safe to use the 
battery after hitting these limits. Respectively, the remaining 
discharge time (RDT) of a battery is defined as the difference 
between the EoDT and the present time point. RDT defines 
the time that the battery can keep working safely with 
guaranteed performance. It is important to accurately estimate 
the battery EoDT/RDT in many practical applications. For 
example, in electric vehicles (EVs) the EoDT/RDT is 
requisite to estimate the remaining driving range (RDR). 
Accurate RDR estimation is vital to ease range anxiety or 
avoid breakdowns due to over-discharging [1]. Unlike battery 
state of charge (SoC) and state of health (SoH) estimations 
that only rely on battery historical use, EoDT is predicted 
based on both the battery past and future usage conditions. 
The EoDT calculation is also different with the state of power 
(SoP) prediction. While SoP employs a short term prediction 
algorithm to predict an incoming peak power point based on 
a time span of seconds, EoDT needs a long horizon prediction 
from the present time t to the time when the battery reaches 
its practical limits based on a time span of minutes or hours.  

There are two different definitions for the EoDT in the 
literature. The first one is the time when the SoC hits a pre-
determined limit [2] while the second one is when the 
terminal voltage reaches the lower cut-off voltage [3].  

Based on these definitions, researchers have addressed the 
critical issues for the EoDT prognosis and the corresponding 
RDT prediction by using advanced filtering  techniques, 
including particle filters [2], [4], and Kalman filters [5], [6] 
and data driven methods [3] for battery cells and packs. 
Although these studies show acceptable accuracy for the 

EoDT/RDT prediction, the proposed prediction approaches 
are based on the critical assumption that the battery 
charge/discharge profile is a priori known. In practical 
applications (i.e. EVs), the future load is known to be 
stochastic as it depends on many factors, such as: road traffic, 
driving style of driver, and road inclination [7].  

Recent researches have been conducted to overcome this 
challenge. In [8], battery RDT prediction is performed by 
assuming that future load is mean value of the historical load. 
Future load characterization based on Gaussian distribution 
with the mean and variance of the historical load is presented 
in [9]. A Markov process with two states of the minimum and 
maximum load obtained from the historical data within a 
fixed length window is used for representing the future 
scenarios in [2]. A mission map which provides information 
of terrain as well as driving style in an EV is introduced in 
[10] to predict the battery load demand. The above methods 
can face critical challenges for the practical EoDT/RDT 
prognosis. The mission map method [10] requires specifying 
start and end points of the journey by the driver and the online 
identification of driving schedule. The mean-based prediction 
[8], although simple, cannot effectively extrapolate the loads 
with high transitions. This is because the mean calculation is 
an integration-based calculation and subsequently, damps the 
transitions. On the other hand, the Markov model [2] can 
capture dynamic behaviour of the load, but when the states of 
the Markov model are maximum and minimum of the 
historical load, the predicted load will be either over 
estimated or under estimated, especially when the  battery 
data includes both charge and discharge values (positive and 
negative currents). Therefore, it is necessary to utilize a 
method that is capable of predicting transient loads with 
enough accuracy for EoDT prognosis purposes. 

Due to the advantages of the Markov models in 
representing highly transient systems, this study proposes a 
two layer Markov model for battery EoDT/RDT prediction 
purposes. This is performed by a combination of a higher-
level Markov model for characterization of future trend of 
battery charge and discharge, and a lower level Markov 
model for predicting actual load values. This two level 
configuration provides the opportunity to separately deal with 
the charge-discharge and states and the dynamic variation of 
the load value in each state. The higher level Markov model 
is homogeneous, while the lower level model is non-
homogeneous with probabilities dependent on the first level 
Markov model states.  

To evaluate the load and EoDT prediction method, a 
18650 Lithium-ion battery is firstly selected. Next, the 
experimental data are used as an input to the load prediction 
mechanism and obtaining the future load profiles. Then the 
predicted load is applied to a validated equivalent circuit 
model (ECM) and finally the EoDT is calculated based on 



 

both definitions mentioned before. The superiority of the 
proposed approach is clearly demonstrated through a 
comparison with both the mean-based predictor [8], and the 
single level Markov based predictor [2]. 

The remainder of this paper is organized as follows: in 
section 2 the preliminaries of Markov processes are given. In 
section 3 the two layer Markov model is addressed. Section 4 
provides the simulation results on a lithium ion battery ECM 
and comparisons between the proposed and existing methods. 
Finally, section 5 gives conclusions. 

II. MARKOV PROCESS 

The Markov model is a strong model both to analyse a 
time series and predict its future values. A time series is said 
to have the Markov property if the conditional probability 
distribution of the future states only depends on the present 
state and not the whole history of the occurred states. A 

Markov process{ , 0}kS k   takes values in the finite set

N {1,2,..., }N with conditional probabilities of: 

  1Pr | , Nk k ijS j S i i j      (1) 

Here, 0ij   is the transition probability (TP) from mode i  

at time k to mode j at time 1.k  The transition probabilities 

are never negative and the total probability is equal to one,

1
1.

N

ijj



 Each Markov process has a unique TP matrix 

(TPM) in the form of (2). 

 , , Nij i j   Λ  (2) 

Here, it is assumed that the Markov process used for load 
description is irreducible, i.e. it is possible to move from one 
mode to any modes in a countable number of jumps.  

III. TWO LAYER MARKOV MODEL FOR LOAD PREDICTION 

To address the concerns about the future load profiles for 
the purpose of EoDT/RDT prediction, here a stochastic load 
characterization by a two layer Markov model is proposed. 
The first level Markov model predicts the next 
charge/discharge state while the second level model predicts 
the load value state itself. 

Generally, the probability of the next state of the battery 
load depends on all of its previous states which means that the 
knowledge of all existing states is required. However, by the 
causality coming from the practical conditions, the load 
follows the Markov property [2]. This means that the 
conditional probability of the battery load state can be written 
as (3) where Sk can represent either charge/discharge state or 
the load value state. 
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The conditional probabilities (or the transition 
probabilities) of (3) are initially unknown and should be 
calculated from the historical data of load time series. 

A.  Transition Probability Calculation 

The probability of observing Sn as the state of the time 
series at the time point n, is obtained by (4) which results from 
the Markov property.  

1 1 1 12
Pr( ) Pr( ) Pr( | )

n

n n k k k kk
S s S s S s S s 

      (4) 

Based on the above equation the likelihood, L(.), of a given 
transition matrix is (5) where mij is the number of transitions 
from state i to state j [11]. 

 
1 1 1 1

( ) Pr( ) ij
N N m

iji j
L S s 

 
      (5) 

The TPs are found such that the likelihood function is 
maximized. Taking the logarithm of the likelihood function 

and considering the restriction of 
1

1,
N

ijj



 leads to (6). 

Taking the derivative of (6) and setting it to zero will give the 
TPs as (7) which will maximize the function (5). 
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B. Prediction of the Future Markov States 

After calculating the TPM, the probability of the next state 
can be computed by the difference equation of (8). 

 1Pr( ) Pr( )T

k kS S    (8) 

Consequently, the next state is the index of the 1( )kP S 

vector with the maximum probability. 

The accuracy of the TPs has a significant role in the 
accuracy of the prediction. Consequently, the quantity and 
quality of the data used for transition probability calculation 
is important. Here, it is assumed that the measurements from 
sensors are adequate for this purpose. The sensitivity of the 
predicted load to the TP accuracy is left for future studies.  

C. High Level Markov Model: Predicting the Charge/ 

Discharge Trend 

In vehicle applications acceleration results a discharge 
current for a battery while deceleration and braking provides 
charge for it because of recovery effect and regenerative 
braking. Input signals with both charge and discharge values 
are also observable at renewable energy-based systems, with 
charge due to the energy sources supplements and discharge 
due to the consumptions. The first level Markov model with 
states denoted by Sk, learns the charge or discharge pattern 
and forecasts the trend. This Markov model has two states 

defined at the set of N { , }.Ch DCh It is assumed that the Ik 

is the battery input current and classified as Ch, if Ik > 0, and 
DCh if Ik < 0. Remarkably, the first level Markov process is 
homogeneous [12] which means that the TPs are time 
independent in each training window.  



 

D. Low Level Markov Model: Prediction of the Load Value 

Here it is assumed that the battery load in any of the of 
charge or discharge states has two internal states of SSk 

defined as M { , }Min Max . The Max state of 

charge/discharge represents the high energy 
supply/consumption, and the Min state of charge/discharge 
represents the low-energy supply/consumption.  

Remarkably, the second level Markov process is a non-
homogeneous Markov process [12] with time-dependent TPs. 
This is because the second Markov process has two different 
TPMs, dependent on the states of the first level Markov 
process output.  
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For both Markov processes it is assumed that the initial 
state and its probability comes from the state of the last data 
used for training.  

By two layer Markov model the next value of the load is 
predicted and applied to the battery model to obtain its state 
variables. The prediction is iteratively repeated until the 
predicted battery states hit the limits specifying the EoDT. 
The flowchart of the proposed method as well as its block 
diagram is given in fig. 1 and 2. 

IV. BATTERY MODEL DESCRIPTION 

To demonstrate the applicability of the proposed method, 
it is applied on the Panasonic 3.03Ah 18650 battery cell. The 
battery is assumed to be represented by a discrete-time first 
order ECM of fig. 3 described by (10). 

 

Fig. 3. The first order ECM of the battery 
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Q is the standard capacity of the cell, Vp is the battery 
polarization voltage, Vt is the terminal voltage, Rp and Cp are 
the polarization resistance and capacitance respectively. Ro is 
the ohmic internal resistance of the cell. The battery ECM 
parameters are obtained via a pulse power test at 1C and an 
OCV characterization experiment at 4 SoC values at 10 oC 
using a commercial Li-ion cell cycler. The model parameters 
are given at fig. 4(a)-(c). The SoC-OCV curve is also given at 
fig. 4(d). The sampling time is Δt = 1sec. This model is 
validated under different conditions showing a root mean 
square error (RMSE) of <50 mV. 

 
Fig. 4. The SoC dependent parameters and OCV curve of the battery 

modelled by a first order ECM 

V. SIMULATION RESULTS 

The input current applied to the battery is shown in fig. 5, 
it follows the Artemis motorway charge/discharge driving 
style which is widely used by researchers to evaluate battery 
performance. 

 

Fig. 5. The current profile for the Artemis motorway driving style 

The prediction is updated each 2 minutes with the 
forgetting factor of 1. Since the Markov model is a stochastic 
model the future load profiles are not unique, therefore, the 
load profile generation is repeated for 5 different runs of 
Markov process for more reliability. The SoC and terminal 
voltage prediction results based on the load data between time 
[720, 780] are given by fig. 6, the initial SoC is assumed 
65.5% and different realizations are shown in different 
colours. The final EoDT is obtained by calculating the mean 
of the distinctive runs. 

 

Fig. 6. SoC and terminal voltage predictions under Artemis motorway 
style 
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Fig. 1. Flowchart of the prediction method 

 

Fig. 2. Diagram of the two layer Markov model  
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The method is both compared with the EoDT prognosis 
based on the mean of the historical data as well as the single 
level Markov model for load prediction on fig. 7 and fig.8 
respectively. Both definitions based on SoC and terminal 
voltage for the EoDT are simulated. The cut-off limits are SoC 
= 10% and VT = 2.8 (volts) based on the battery supplier 
recommendations. The initial SoC is set to 65.5%. The true 
EoDT is obtained by applying the whole profile to the battery 
in advance. It is 72.5 minutes by the first definition, while 82.3 
minutes by the second definition. 

The results show that the load prediction based on the two 
layer Markov model shows more accurate results than the 
historical mean-based method. In fact, the mean-based 
method shows multiple overestimation peaks. This difference 
is due to the fact that predictions based on the historical mean 
cannot model the transitions in the load, while the two layer 
Markov model captures the dynamic variation through the 
transition between its finite numbers of states.  

The root mean squared error of the EoDT prediction is 
given at table I both in minutes and the percentage of the error. 

 

Fig. 7. Comparison of the proposed and mean based methods for the 
EoDT prognosis under Artemis motorway style 

 

Fig. 8. Comparison between the proposed and the single Markov based 
method for the EoDT prognosis under Artemis motorway style 

TABLE I. COMPARISON BETWEEN THE EODT PROGNOSIS RESULTS BY 

DIFFERENT METHODS 

 SoC based Error VT based Error 

 RMSE (min) Error (%) RMSE (min) Error (%) 

archy 
Markov 

14.9750 20.64% 17.5977 21.37% 

Single 
Markov 

21.8291 30.09% 24.8481 30.71% 

Mean 36.2393 50.01% 47.8057 58.10% 

 

Fig. 9. The current profile for a random driving style 

To further investigate the specifications of the method, it 
is also applied on a battery subject to an input current from a 
driver at some random driving conditions given at fig. 9.  The 
EoDT prognosis based on SoC and VT are respectively 41.85 
and 67.01 minutes. The initial SoC is set 35%. As the results 
(fig. 10) show that the proposed method provides more 
accurate results in this case as well.  

The reason that the two layer Markov model method 
shows better accuracy compared to the others is that by 
separating the values relevant to the charge and discharge 
states, the predicted profile shows more similar specifications 
(Min, Max, Mean and variance) to the segment of profile used 
for training. This is shown by fig. 11 for a sample time 
window of historical data and the predicted load. Accordingly, 
the histogram and the distribution of the predicted data by the 
proposed method captures the statistics of the historical data 
(the most probable load values) better than the single level 
Markov model. Also, this figure shows why the prediction 
based on the Mean value of the historical data does not 
properly represent the data. 

 

Fig. 10. Comparison between the proposed and the mean based method 
for the EoDT prognosis under the random load style 



 

 

Fig. 11. Comparison between the histogram and distribution of the 
historical and predicted load by the proposed, the single Markov based and 

the mean based methods  

    

Fig. 12. The effect of the historical data length on the accuracy of the 
EoDT prediction error  

The effect of the historical data length on the accuracy of 
the EoDT prediction error is given at fig. 12. Accordingly, the 
error of the prediction reduces with more data being used for 
training. But on the other hand, increasing the length of the 
required data for training makes the prediction rate slower and 
increases the possibility of overtraining at the same time. For 
high demanding application such as electric air-vehicles and 
automobile which are subject to very transient conditions the 
slow rate of the prediction may not be enough to predict the 
accurate value of the EoDT and protect the battery from being 
over-discharged.  

VI. CONCLUSION 

This paper suggests a method for the EoDT and RDT 
prediction based on the historical data of the charge and 
discharge of a battery. The method uses two Markov models 
for predicting the charge/discharge trend as well as the load 
value. It provides a better accuracy for prediction of the EoDT 
and RDT compared to the single level and mean-based 
prediction. This is due to the potential of the Markov models 
for capturing the transient behaviour of the load while the 
mean-based method filters all transitions and single Markov 
model mixes charge and discharge data. Future works will 
focus on addressing the effect of the historical data length on 
the accuracy of the predicted load and the selection of an 
optimum length either by optimization methods or adaptive 
techniques. Furthermore, the temperature effect on the battery 

model will be considered into account to improve the 
robustness and reliability of the prediction. 
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