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Abstract  

Achieving kaleidoscopic wavefront controls or versatile distinct functions with a thin flat 

plate are pivotal for increasing data capacity yet still challenging in integrated optics. 

Anisotropic metasurface provides an efficient recipe primarily for arbitrary linear polarization, 

but is less efficient for multiple functionalities at arbitrary spin states, which significantly 

restricts many promising applications. Here, we report a strategy to design and realize spin-

decoupled high-capacity multifunctional metasurface by multiplexing the frequency and 

wavevector degree of freedom (DoF) of electromagnetic waves. By integrating both geometric 

and dynamic phases in a split ring resonators (SRRs) and crossbars in a chessboard super meta-

atoms, the inherent limitation of spin-flipped Pancharatnam-Berry profiles can be completely 

decoupled between two spin states. Such released extraordinary DoF unprecedentedly increases 

the capability to yield kaleidoscopic wavefronts control. To verify the significance, two proof-

of-concept metadevices that are nearly impossible in conventional metasurface have been 

experimentally demonstrated with the 4-port wavefront manipulations, exhibiting the spin-, 

frequency- and wavevector- dependent anomalous reflections, lensing, orbital angular 

momentum generation, wavevector-multiplexed vortices scattering, along with two-

dimensional holograms, etc. Both numerical and experimental results illustrate quad distinct 

functionalities with up to ten channels and near 100% efficiency, thanks to the totally 

suppressed crosstalk among different operation modes, angular wavevectors and spins. Our 

finding in triple-DoF multiplexing is expected to trigger great interest in 

electromagnetic/optical integration with boosted information capacity and emerging DoFs.  
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1. Introduction 

Performing independent multitasked wavefront control through a superthin plate is 

particulally promising in integration optics, and radar applications. Metasurface, in that sense, 

has especially intrigued the renewed interest since it affords great potentials to meet the 

increasing demands of high-speed and high-capacity electromagnetic (EM) devices in a flat-

profile fashion. For example, the anisotropic metasurface, composed of the arrays of 

subwavelength meta-atoms with asymmetric structural anisotropy along two principle axes, has 

been proposed and demonstrated for polarization multiplexing on arbitrary two orthogonal 

states/spins of linearly-polarized (LP)/circularly-polarized (CP) waves (1)-(12). Instead, the 

vesatile functionalities could also achieved by exploiting the wavelength/frequency 

multiplexing that involves various multi-mode resonators, each operating individually at well 

separate frequencies (13)-(19). The other remarkable avenue to increase the information 

delivery channels in metasurface is the spatial multiplexing, which are only recently showcased 

in a spatially interleave closely-packed structures in several sectors of a common layer or 

multilayer (20)-(23). Last but not the least, the spatial angular spectrum multiplexing is another 

unique technique for kaleidoscopic wavefronts, which encodes versatile phase patterns on 

various diffraction orders (24),(25) and incidence angles (26)-(28).  

Unfortunately, the common feature of above-mentioned approaches is that only single degree 

of freedom such as the polarization, wavelength, spatial modulation or angluarly asymmetric 

response was utilized, which could limit the information capacity for EM metasurface. Besides, 

most above strategies work primarily for arbitrary two LP waves and, as a result, the 

unavoidable speckle noise induced by the polarization crosstalk (7) would reduce data capacity 

in terms of Shannon entropy. Moreover, the emergence of compound multiplexing by mixing 

two or more aforementioned DoFs as information channels, more relevant to be called 

dual/multi-information metadevices, are still elusive and in infancy (29)-(31). In 

complementary to LP multitasking, spin multiplexing typically suffered inversed images or 

converged/diverged focusing due to locked spin-flipped phase patterns (2), (12). Moreover, the 

data capacity and functionalities are extremely limited since only spin was involved (12), (23), 

which therein may hinder the potentials in practical applications. Fortunately, emerging avenue 



 

- 3 - 
 

to decouple/unlock two spins (32)-(34) is proposed by combining both geometric and dynamic 

phase, which affords a powerful recipe for real spin multiplexing.  

In light of the above, here, we report the concept of triple-information (spin, frequency and 

wavevector) multitasked metaplexer, aiming to circumvent the issue of limited system capacity. 

By combining unlocked dual-spin multiplexing and crosstalk-free dual-mode multiplexing, 

quad-port versatile independent functionalities (F1, F2, F3 and F4) that generally requires 

different arbitrary phase modulations (φ1, φ2, φ3 and φ4) can be engineered at dual frequencies 

of left-handed/spin-up (LCP/σ+) and right-handed/spin-down (RCP/σ-) CP waves, see Fig. 1. In 

fact, a maximum of m×n channels (ports) would be achieved for spin and frequency 

multiplexing, with m and n being the eigen-channels owned by each information. Furthermore, 

if we continue to impose k-kind wavevectors to each of m×n ports, a full of m×n×k information 

channels would be facilitated. Thereby, this product term reveals an explosive growth of data 

capacity, which could even lead to full-space angular-responsible information delivery. Here, 

we show that such elusive scheme could be realized by hybridizing a crossbar and dual-gap 

split ring resonators (SRRs) in a composite meta-atom with negligible crosstalk at low and 

upper frequencies of f1 and f2 (see the inset of Fig. 1). Moreover, the high efficiency and better 

image quality are guaranteed by suppressing both angular and spin crosstalk. Our strategy opens 

up an alternative avenue for high-efficiency devices with unprecedented data capacity.  

 
Fig. 1 Schematic illustration of the proposed quad-port metaplexer using proposed mode- 

and spin-decoupled meta-atom. The wavevector (angular) multiplexing at angle of i  and 
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i  on partial or full of quad channels is not shown for brevity of the figure. The function F1 is 

achieved at the spin σ+ and the frequency f1, denoted as the eigenchannel (σ+; f1). Similarly, F2, 

F3 and F4 exhibit the information channel (σ-; f1), (σ+; f2) (σ-; f2). The pixel period is px=py=20 

mm. The widely available F4B dielectric board with εr=2.65 and loss tangent of 0.001 is utilized 

as the dual-layer substrates. The thickness of the top and bottom substrates is h1=1 and h2=2 

mm, respectively. The other geometric parameters are g=2, R=4.4, and w=0.8 mm. The width 

of the crossbar is 0.8 and 1.4 mm while the length along x and y directions is lx and ly, 

respectively. The full 360o phase cover is accomplished when lx=ly varying within 4.8~6.8 mm. 

2. Meta-atom with suppressed spin and mode crosstalk  

The negligible spin and mode corsstalk are the key for spin and frequency multiplexing. By 

taking these aspects into consideration, the two constitutive counterparts should not share a 

concentric optical axis. As shown in Fig.1, the basic building block utilized for the multitasked 

metasurface is composed of dual-layer metallic patterns backed by a full metallic ground. Two 

types of meta-atoms are adopted in a composite chessboard configuration, say two digonal 

SRRs in bottom layer and two digonal crossbars in both top and bottom layer. The two 

counterparts exhibit suppressed mode corsstalk and each operates individually at an arbitrary 

frequency by cautiously tuning structure parameters. Here, the crossbars engineered in double 

layers are aimed to form Fabry–Perot resonance and thus accumulate a full 360o reflection phase 

cover under two LP waves at different frequencies. The spin-decoupled approach guarantees 

the completely suppressed spin crosstalk by involving both dynamic and geometric phases (34).  
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J R R=      (1). 

Here, Φ, , and  are eigenvalues of above symmetric and unitary Jones matrix and are 

related to the orientations (half of geometric phase) and dynamic phases under x and y-polarized 

wave. They can be quantitatively achieved as a function of φ1/φ3 and φ2/φ4 by solving Eq. (1).  

To easy the design but not lose generality, here we engineer the SRRs for dual spin-flipped 

phases (φ2=-φ1) at f1 and the crossbar for dual spin-unlocked phases (φ3 and φ4) at f2. Therein, 

quad structured wavefronts can be arbitrarily engineered with two similar functions at f1 and 

x y
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two independent ones at f2 by flipping two spins of the excitation. As a consequence, only 

geometric phase is necessary for F1 and F2 by rotating the SRRs with different Ψ, whereas both 

geometric and dynamic phases are required to decouple F3 and F4 by simutaneously altering 

both the structural parameters and orientations Φ. Note that the phase profiles at f1 also can be 

completely decoupled for σ+ and σ- state by additionaly varying the gap of SRRs, which is not 

within the scope of this work. Interestly, the polarization crosstalk (34) between two orthogonal 

LP waves could signinficantly deteriorate the efficiency and fidelity of F3 and F4 at f2, while 

our adopted narrow bar instead of wide patch would nearly perfectly suppress the 

aforementioned LP crosstalk.  

 

Fig. 2 (a-f) Characterization of the basic meta-atom and (g) the three-step design process. 

Reflection magnitude and phase response of the individual (a) SRRs and (b) crossbar under x- 

and y-polarized LP wave. (c) Co-CP reflection magnitude and phase response of the composite 

meta-atom at (c, d) low and upper (e, f) bands under spin state of σ+ or σ- varying as (c, e) 

frequency and (d, f) orientations. Here, the two sub-meta-atoms are represented by orange and 

blue in (g).  

To characterize the EM response and performance, the subwavelength meta-atom and all 

resulting metaplexers were evaluated by performing full-wave finite-difference time-domain 

(FDTD) simulations in the commercial packet of CST Microwave Studio, see experimental 
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section for details. As shown in Fig. 2(a) and 2(b), both the SRRs and crossbar exhibit obvious 

anisotropy around f1=8.1 and f2=13 GHz, where shifted spectrum response is clearly inspected 

under two orthogonal LP waves. The shallow dip facilitates near-unity reflection with 

magnitude larger than 0.96 across the entire observed band, whereas the shifted phase response 

enables the 180o out-of-phase difference between φy and φx. Most importantly, both SRRs and 

crossbar manifest negligible phase tolerance at high and low frequency, respectively, implying 

a completely suppressed mode crosstalk between the two structures which thus can be 

individually designed. Such a merit is the key for the frequency multiplexing. Under the 

condition of |ryy|≈|rxx| and |φy-φx|≈180o at f1 and f2, near 100% efficiency can be engineered for 

co-CP reflection with almost suppressed cross component, as shown in Fig. 2(c) and 2(e). The 

geometric phases at f1 and f2 can be individually engineered by rotating SRRs and crossbar 

along its local optical axis with Ψ and Φ ranging from 0o to 180o. As expected in Fig. 2(d) and 

2(f), very coincident linear phase response φ≈2Ψ (2Φ) as theoretical anticipation and near-unity 

amplitude are clearly appreciated. Moreover, the dynamic phase of the crossbar is accomplished 

by altering its length of lx and ly based on φx-lx and φy-ly relation shown in Fig. S1 of Supporting 

Information, where a full 2π phase cover ranging from 12.5 to 13.5 GHz is fulfilled by varying 

ly within 4.8~6.8 mm. Such a level of full-phase bandwidth is very considerable for spin-

unlocked versatile wavefront control. Similar φx-lx relation can be expected the same as φy-ly 

due to the four-fold rotation symmetry. The outstanding phase tolerance to φy induced by the 

change of lx is less than 40o, indicating a negligible polarization crosstalk. Such a feature is very 

beneficial for spin multiplexing.  

Above exotic feature of our proposed scheme can be readily utilized to develop multiplexed 

metadevices with high capacity and efficiency. The design process is simple and mainly 

involves three steps. As shown in Fig. 2(g), the first step is discretizing the metasurface with a 

set of pixels and cautiously designing two types of sub-meta-atoms that exhibit negligible 

eigen-channel crosstalk in a chessboard configuration. Since SRRs and crossbars constitute the 

hybrid meta-atom, the phase mapping of imposed φ1 and φ2 can be implemented according to 

the predefined functionalities (F1 and F2) at f1 by spatially rotating Ψ of each SRRs to induce 

the geometric phase. Finally, determine layouts (lx, ly and Φ) of spatially varied crossbars 

according to φx, φy, and  by mapping the phase patterns of φ3 (F3) and φ4 (F4) at f2 following 
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Equation (1).  

3. Wavevector multiplexing principle   

Here, we will briefly introduce the fundamental principle for additional wavevector 

multiplexing, which is on the basis of mixing phase in a shared aperture and thereby is quite 

different from the grating (12), interleaved (20) and harmonic-response approach (24), (25). 

The synthetic wavevector and mixing phase can be arbitrarily engineered according to 

predefined composite functions. Here, to facilitate versatile wavevectors, multibeam scatterings 

carrying different topological charges (modes) of orbital angular momentum (OAM) are 

explored as an example. The synthetic wavevector k  and required phase pattern φ(x, y) can 

be formulated as  

i x y

1 1 1

exp( )=exp( ( , )) [ exp( ) exp( ) exp( )]
k k k

i i i

i i i

ik i x y m il ik x ik y  
  

    =     (2). 

Here, xx y y    , k is the required beam number, mi and li are tailored intensity and the 

topological charge of the ith spatial beam, x 0= cos( )sin( )i i ik k    and y 0= sin( )sin( )i i ik k    

are decomposed wavevectors of the ith beam along x and y directions, i  and i  are azimuth 

and elevation angle of each beam. Equation (2) reveals a boosted versatility of our approach, 

which is co-determined by the scattering intensity, OAM modes, beam numbers and beam 

directions. Moreover, the unique merit consists in that the mi, li, k, i  and i   can be 

arbitrarily controlled. These extraordinary DoF and increased capacity are extremely difficult 

to be realized through available approaches. It is pivotal to discuss the angular channel capacity 

limit, i.e., the upper limit of k. The signal-to-noise ratio (SNR) intensity per channel, which is 

related to the angular crosstalk, determines the k and has been demonstrated deceasing as 
21 k

(20). Thereby, the breakthrough of our mixing approach for wavevector multiplexing lies in the 

extremely boosted k determined by the SNR, particularly relative to the grating approach (12) 

whose beam is limited to two.  

4. Triple-information multitasked metaplexer I  
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As the proof-of-concept demonstration, we first design a metaplexer by performing partial 

wavevector multiplexing with inversed reflection angles on F1 and F2 channel under σ+ and σ- 

state of f1=8.1 GHz, while manifesting light focusing capability (F3) and specular spiral-beam 

generation (F4) under identical spin states of f2=13 GHz. Here, quad asymmetric scattering 

beams of different OAM modes are adopted for wavevector multiplexing with predesigned 

mi=1, li=0, 1, 2 and 3, k=4, and (
i ; 

i )=(0o, 90o, 180o, 270o; 15o). The target phases of φ1~φ4 

can be observed from Fig. 3(a) and Fig. S2(a), where a composite, parabolic and spiral phase 

profile are clearly observed. Following aforementioned theoretical strategy, φx, φy and Φ can 

be derived to decouple F3 and F4 with unlocked φ3 and φ4 at two helicity. For this purpose, a 

total of 360o phase cover and near 100% efficiency should be fulfilled when ly varies within 

4.8~6.8 mm, see Fig. S1 in Supporting Information. The final hybrid metaplexer can be mapped 

out according to 1 , φx, φy and Φ, as shown in Fig. 3(a). For experimental verification, all 

proof-of-concept samples shown in Fig. 3(b) and Fig. 4(b) were fabricated with near- and far-

field results measured in a microwave anechoic chamber, see experimental section.  

As shown in Fig. 3 (c), four distinct wavefronts are clearly obereved at σ+/σ- states of two 

well seperated frequencies. The switch among dot- and donut-shaped scattering patterns with 

gradually enlarged pattern aperture indicates sequential vortices of OAM modes of l=0, 1, 2, 

and 3 for F1 and F2. Such a declaration finds direct support from the measured near-field 

Re(Eσ+/σ-) distributions shown in Fig. 3 (d), where four localized patterns with different spiral 

arms of 0, 1, 2 and 3 are clearly observed. The well angular-resolved multibeams exhibit 

negligible noise and thus enable to provide high information capacity. Such multiple vortices 

(F1/F2) can be transformed into unique one (F4) by switching operaion mode from f1 to f2. Most 

importantly, the almost completely suppresed specular mode in F1/F2 and very low sidelobe in 

F4 imply a near 100% efficiency which benefits considerably from the extremely low angular 

crosstalk. Such a level of efficiency is in good consistency with that of pure anomalous 

reflection at F1/F2 channel shown in Fig. S3 of Supporting Information, indicating the 

reasonablity of mixing-phase approach. The experimental donut-shaped |Eσ+/σ-| intensity with 

sequentially enlarged ring spots coincides well with the increased FDTD calculated amplitude-

null (optical singularity) scattering patterns. This can be further evidenced from the well-agreed 
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far-field crosssection patterns between FDTD simulations and measurements shown in Fig. S4, 

where all beams are nearly directed toward (
i ;  )=(0o, 90o, 180o, 270o; 15o). Moreover, the 

peak intensity decreases as the OAM mode increases. The physics lies in that enlarged ring spot 

consumes more power and the energy conservation compels the peak to fall.  

The measured Eσ+/σ- intensity for F3 again agrees reasonably with the FDTD calculated ones, 

indicating fine light focusing with concave and convex wavefronts sandwiched by a clear 

focusing spot near F=115 mm (F=126 mm in theory) before the metaplexer. The reversed 

wavefronts evolved along opposite longitudinal axis resembles two waves emitting from an 

emerging source (spot). The full width at half maximum (FWHM) of the focusing spot is 

evaluated about ~ 17 mm at focal plane of z=118 mm. which is very close to the theoretical 

limit of 16.4 mm determined by aperture size and focal length. The minor deviations between 

simulations and measurements can be ascribed to slight misalignment of source/receiver 

antennas and nonideal plane wave excitations. To sum up, all quantitative results reveal four 

predefined functionalities of ten channels under spin-up/down waves, i.e., two wavevector-

multiplexed quad-beam vortices scatterings with reversed direction angles, and fine light 

focusing/specular OAM generation.  
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Fig. 3 Characterization of the triple-information multitasked metaplexer I with two wavevector-

multiplexed quad-beam vortices scatterings in reversed angles and different OAM modes, light 

focusing and specular spiral beam generation. The metaplexer contains 21*21 hybrid pixels and 

accommodates a square area of 420*420 mm2. For F1 and F2, the oblique OAM modes are 

orderly as l=0, 1, 2, and 3, whereas the direction angles are predesigned as (
i ; 

i )=(0o, 90o, 

180o, 270o; 15o). For F3, the focal length is predesigned as F=420*0.3=126 mm, whereas for F4 

the specular OAM mode is l=2. (a) Theoretically synthetic composite phase patterns for F1, F2, 

and derived dynamic and geometric phases of φx, φy, Φ to decouple F3 and F4 into two 

indepedent spin channels. (b) A magnified view of finally fabricated metaplexer sample with 

the top and bottom layer. (c) FDTD calculated far-field steered and specular vortex scatterings 

patterns (F1, F2 and F4), and Re(Eσ+/σ-) field distributions on yz plane (F3) under σ+ and σ- 

waves of f1 and f2. (d) Experimentally measured near-field intensity |Eσ+/σ-| and Re(Eσ+/σ-) on xy 
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(z=4 m for F1 and z=0.5 m for F4) and yz (x=0 mm) plane by scanning an area of 0.9×0.9 m2, 

0.2×0.18 m2 and 0.6×0.6 m2 in steps of 8 mm to illustrate kaleidoscopic wavefronts of F1, F3 

and F4. Here, measured results for similar functionality of F2 is not given for brevity of contents. 

The efficiency was defined as the ratio of the sum of the power associated with all anomalously 

steered OAM beams to the totally reflected power (
2 /2

0 /2
( , )P d d

 


   

  ) of a PEC plate of the 

same size.  

5. Triple-information multitasked metaplexer II  

To make a step forward, here we further demonstrate the possible applications of our strategy 

by characterizing a metaplexer with multitasked EM computer generated holography (CGH). 

The significance of utilizing hybrid strategy for multiplexing holograms under two independent 

helicity states lies in the avoidable sophisiticated optimization process (23). Instead, it is 

deterministic when two holographic phase patterns is given. Moreover, the data capacity is 

significantly enlarged as twice of previous report. To suppress undersirable parasitic 

diffractions in terms of finite-size effect, we utlize more pixels for better image quality. As 

shown in Fig. 4(a) and Fig. S6 in Supporting Information, a total of 30*30 hybrid pixels that 

accommodate an area of 600*600 mm2 are utilized to construct the sophisticated metaplexer 

imprinted with abundant wavefronts and holograms. Here, we encode multiple vortices of 

symmetric and asymmetric beams along two principal axes for wavevector-multiplexed F1/F2, 

but impose wavefronts of reconstructed image of letter ‘A’ and ‘B’ for F3 and F4 under σ+/σ- 

spin state, respectively. Quad beams with topological charges of l=0, 1, 2 and 1, and sidelobes 

less than -40 dB are precisely engineered toward (
i ;  )=(0o, 90o, 180o, 270o; 15o). The phase 

profiles for hologram images of letters ‘A’ and ‘B’ are designed in a way analogous to that of 

classical Gerchberg-Saxton (GS) algorithm, except for replacement of the fast Fourier 

transform by the first Rayleigh-Sommerfeld diffraction integral, given by  

 
   1 1 1 12

2 2 2 1 12

12Σ

, exp
,

U x y jkrz
U x y dx dy

j r
 ∬                      (3). 

Here, U1(x1, y1) and U2(x2, y2) are field distributions on the hologram and target plane, 

respectively, z and r12 are the projection and distance between arbitrary two points of the two 
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planes. Σ is the hologram domain, λ is the wavelength and k is the wave number in free space. 

The rigorous integral above can be evaluated by a discrete summation and detailed phase-

retrieving process can be referred to Fig. S5 in Supporting Information.  

The calculated phase distribution for quad vortices and the eventually optimized phases for 

dual images of ‘A’ and ‘B’ are shown in the top row of Fig. 4(a), whereas the decoupled phase 

profiles for F3 and F4 can be appreciated from the bottom row. By following the three-step 

design process, the final metaplexer is fabricated using multilayer printed circuit board 

fabrication process, see Fig. 4(b) for magnified view. As expected in Fig. 4(c) and 4(d), two 

asymmetric and two symmetric vortices are clearly inspected along x and y axis, respectively. 

The dot- and donut-shaped patterns of different sizes identify different OAM modes of l=0, 1, 

2 and 1 in anticlockwise. The flipped phase from σ+ to σ- state only reverses the spatial direction 

of the vortices. Again, the peak intensity lows down as the OAM mode increases due to enlarged 

ring spots. Versatile OAM modes can be directly evidenced from the number of measured spiral 

arms shown in left panel of Fig. 4(e). The channel mixing of different phases for F1~F4 does 

not pose much penalty on the fundamental behavior and efficiency of kaleidoscopic vortices 

scattering, except for the shrunk beam size of metaplexer II due to the enlarged aperture size 

relative to metaplexer I. The negligible specular backward scattering reveals near-unity 

efficiency. In sharp contrast, two distinct images of letters ‘A’ and ‘B’ with remarkable image 

quality are clearly observed from right panel of Fig. 4(e) by flipping the spin. Moreover, the 

reconstructed hologram image sacrifices slighly as the observation point and operation 

frequency deviate from z0=0.52 m and f2=13 GHz, see Fig. S7 and S8 in Supporting Information 

for results at off-f2 frequencies. Nevertheless, it does not poes much penlty within z0±0.06 m 

and f2±0.5 GHz, indicating a good robustness of our metahologram. The SNR, defined as the 

scale of the peak image intensity to the background noise, is evaluated near 8.1 dB for 

holograms at 0.52 m and deterioriates slightly to 7 dB at other observed positions and 

frequencies. Such a level of SNR is quite considerable for avaiable limited pixels relative to 

reprogrammable hologram (35), and more pixels would facilidate better SNR and image 

qualities. All the results above clearly illustrate kaleidoscopic wavefronts at four information 

channels, further verifying our concept and design.  
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Fig. 4 Characterization of the triple-information multitasked metaplexer II with wavefronts of 

two reversed wavevector-multiplexed quad-beam vortices scattering and two distinct hologram 

images. (a) Synthetic phase (top row) for quad vortices (F1/F2) and optimized phases for dual 

hologram images of ‘A’ and ‘B’ (F3 and F4) based on modified GS algorithm, and the derived 

dynamic and geometric phases (bottom row) of φx, φy, Φ to decouple F3 and F4. (b) A magnified 

view of the finally fabricated metaplexer with top and bottom layer. (c) FDTD calculated 3D 

far-field patterns and (d) experimentally measured cross section patterns on xz and yz planes 

for F1/F2. (e) Measured near-field Re(Eσ+/σ-) and |Eσ+/σ-| distributions by scanning an area of 

0.9×0.9 m2 and 0.5×0.5 m2 in steps of 8 mm to illustrate kaleidoscopic vortices (left panel) and 

hologram images of ‘A’ and ‘B’ (right panel) for F1, F3 and F4.  

6. Conclusion  
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To sum up, we have proposed and demonstrated the concept of frequency-and-wavevector 

multiplexing under the spin-decoupled framework for structured wavefronts. In this regard, a 

composite meta-atom of crossbar and dual-gap split ring resonators (SRRs) is devised with 

negligible mode and spin crosstalk. The reasonability of the triple-DoF multiplexing has been 

verified by two well-designed kaleidoscopic metaplexers operated at microwave frequencies. 

Consistent numerical and experimental results qualify our proposed hybrid strategy a solid 

platform to realize well spin/mode/angular resolved systems with high information capacity 

and efficiency. Albeit an operation in reflection scheme, our finding can be readily extended to 

transmission geometry, and other high-efficiency achromatic devices at multiple frequencies 

due to the unlocked arbitary phase profiles.  

7. Experimental section 

Numerical characterizations. All numerical designs and characterizations are performed 

through FDTD simulations in CST Microwave Studio package. Specifically, in calculations of 

the reflection amplitudes/phases of the metasurface, we only studied the basic composite meta-

atom with periodic boundary conditions imposed at its four bounds, and with a Floquet port 

placed at a distance 15 mm away from the meta-atom plane. In near-field and far-field 

characterizations, the metaplexer composed of spatially varied meta-atoms, is investigated with 

open boundary applied at its four bounds of plane. In all scenarios, the metaplexers/meta-atoms 

are illuminated by a normally incident plane wave under LP, spin-up or spin-down CP 

stimulation.  

Sample fabrication and microwave experiments. The dual-layer metallic patterns of each 

metaplexer were fabricated individually on two dielectric boards using printed circuit board 

technique. They were first aligned with each other through several embedded vias, then 

assembled together through adhesives, and finally reinforced through a hot press. To avoid any 

possible interference from the environment, all far-field (FF) and near-field (NF) microwave 

experiments are performed in an anechoic chamber, see the experimental setup shown in Fig. 

S9. In NF measurements, the metaplexer sample was excited by a CP horn with an axial ratio 

of less than 3.5 dB, and a voltage-standing-wave ratio of less than 2.5 in 8~18 GHz. A 15 mm-

long monopole antenna, functioning as the receiver, was placed between the sample and CP 

https://www.collinsdictionary.com/zh/dictionary/english-thesaurus/bounds
https://www.collinsdictionary.com/zh/dictionary/english-thesaurus/bounds
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horn which were fixed with a distance of 1.8 m, and was linked to a N5230C Agilent vector 

network analyzer to record the static EM signals. The monopole was fixed to a 2D electronic 

step motor that can move automatically in a maximum area of 1.2 m×1.2 m with a step 

resolution of 8 mm. By shifting the monopole orientation along x and y directions, both local 

xE  and yE  field can be obtained (with both amplitude and phase). Then the spin-up and spin-

down components can be calculated as 
1

( )
2

LCP x yE E iE   and 
1

( )
2

LCP x yE E iE   by 

incorporating both measured information. By altering the relative position of the metaplexer 

and 2D monitor, we can achieve the field information in xz, yz and xy planes. In all near-field 

contour maps, the incident signal in free space was deducted from the total fields. In the FF 

RCS measurements, two CP horns are adopted as the transmitter and receiver, and are displaced 

1.8 m apart from the sample. The receiving CP horn, which was aligned with the metaplexer, 

rotated freely to record the signal scattered within -90o<
r <90o. In the FF quad-beam pattern 

measurements, the metaplexer was fed by a small CP horn, and both of them were fixed on a 

large rigid foam which is capable of rotating freely along the foam’s axial center. The CP 

receiver was placed 10 m away to record the far-field signals.  
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