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Abstract

A total stress model applicable to clays under undrained conditions is presented. The model
involves three strength parameters: the undrained shear strengths in triaxial compression, triaxial
extension and simple shear. The amount of physical anisotropy implied by the model is a function
of the relative magnitude of these three strengths assuming a Mises type plastic potential.
Elastoplastic deformation characteristics below failure are accounted for by a hardening law
requiring two additional parameters that can be related to the axial strains halfway to failure in
triaxial compression and extension. Finally, elasticity is accounted for by Hooke’s law. The result
is a relatively simple model whose parameters can all be inferred directly from a combination
of in-situ and standard undrained laboratory tests. The model is applied to a problem involving
the horizontal loading of a monopile foundation for which full scale tests previously have been
conducted. The model shows good agreement with the measured data.
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1 INTRODUCTION

Many geotechnical problems may be analyzed assuming undrained conditions. That is, un-
der the assumption that the dissipation of the excess pore pressures generated in response
to loading is negligible during the time period of interest, e.g. the period of construction
or the period from load application to possible failure. For such problems, it is common
practice to model the material behaviour with reference to total, rather than effective,
stresses. The simplest possible elastoplasticity model within the total stress framework
is the linear elastic-perfectly plastic Tresca model which involves two parameters: the
undrained Young’s modulus (or the shear modulus) and the undrained shear strength,
both of which may be specified to vary with depth. While crude, this model does – with
careful selection of the two parameters – offer a reasonable estimate of both the defor-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/275554656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


mation characteristics under working conditions and the strength characteristics at the
ultimate limit state.

Somewhat surprisingly, while there have been significant advances in the development of
constitutive models for clays based on the more rigorous and arguably theoretically more
satisfactory effective stress approach, total stress models have evolved little beyond the
aforementioned linear elastic-perfectly plastic Tresca model. Considering that a number of
salient features are not captured by this model, there appears to be scope for an extension
of these types of linear elastic-perfectly plastic models, analogous in many ways to the
extension of such models in the more general effective stress setting.

This paper is concerned with one such extension. Following the conventional constitu-
tive modeling paradigm, the model, denoted AUS (Anisotropic Undrained Shear strength
model), is based on elastoplasticity. Rather than the standard Tresca strength criterion,
the so-called Generalized Tresca criterion is used. This strength criterion involves two
parameters, namely the undrained shear strengths in triaxial compression and extension,
and may be shown to be consistent with the effective stress Mohr-Coulomb model under
undrained conditions [7]. The Generalized Tresca model pertains to isotropic materials,
i.e. materials that have the same properties in all directions. The unequal strengths in
compression and extension implied by the model is essentially a Lode angle effect and is
not due to physical anisotropy, i.e. different properties in different directions.

The AUS model extends the Generalized Tresca model to anisotropic materials, in partic-
ular to the case of cross anisotropy, stemming for example from a preferential direction of
deposition. However, the two effects – Lode angle dependence and anisotropy – are clearly
delineated and treated separately. Secondly, in contrast to the linear elastic-perfectly plas-
tic Tresca models (standard as well as Generalized), the AUS model incorporates plasticity
prior to failure. This is achieved by means of a hardening Generalized Tresca yield surface
involving two parameters that can be related to the axial strain at half the failure stress
in triaxial compression and extension. These parameters can, together with the undrained
shear strengths, be inferred directly from experiments. As such, the model is straightfor-
ward to calibrate as will be demonstrated with respect to a number of experimental data
sets.

2 FAILURE CRITERION

The theoretical motivation for the classic linear elastic-perfectly plastic total stress models
is as follows. Assuming that the stiffness of the soil skeleton is much smaller than the
stiffness of both the pore fluid and the soil grains, it may be shown [e.g. 11] that the
change in volume as a result of undrained loading is negligible. For a linear elastic-perfectly
plastic effective stress models, this implies that the change in effective mean stress is zero
regardless of the loading programme. In this way, analysis in terms of total rather than
effective stresses becomes possible. For the Mohr-Coulomb criterion with cohesion c and
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Fig. 1. Generalized Tresca failure surface in principal stress space (left) and in the deviatoric plane
(right). The points indicated correspond to triaxial compression (TC) and triaxial extension
(TE).

friction angle ϕ:
F = σ1 − σ3 − (σ′

1 + σ′
3) sinϕ− 2c cosϕ = 0 (1)

it has been shown [7] that the equivalent total stress, or undrained, failure criterion is
given in terms of the so-called Generalized Tresca criterion 1 :

Fu = σ1 − σ3 +
(
suc
sue

− 1
)
(σ2 − σ3)− 2suc = 0 (2)

where σ1 ≥ σ2 ≥ σ3 are the principal stresses (positive in compression) and

suc =
3 sinϕ

3− sinϕ

(
p′0 +

c

tanϕ

)

sue =
3 sinϕ

3 + sinϕ

(
p′0 +

c

tanϕ

) (3)

are the undrained shear strengths in triaxial compression and extension respectively, p′0
being the initial effective mean stress. The Generalized Tresca criterion depicts a pressure
insensitive prism with a hexagonal cross section in principal stress space (see Figure 1).
The undrained shear strengths are limited by

1

2
≤ sue

suc
≤ 1 (4)

Outside this range, the failure surface is non-convex.

Assuming a von Mises plastic potential (which will be used later on), it may be shown
that the undrained strength in simple shear (ε̇p1 = −ε̇p3, ε̇

p
2 = 0 at the ultimate limit state)

1 Correcting an error of sign in [7].
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Fig. 2. Response of common soil models for normally consolidated clays under undrained condi-
tions: linear elastic-perfectly plastic Mohr-Coulomb (MC) and Cam clay type models (CC). The
undrained shear strengths indicated are those consistent with the former model.

is given by

sus =
[
1

2

(
1

sue
+

1

suc

)]−1

=
2suesuc
sue + suc

(5)

That is, as the harmonic mean of the compression and extension strengths. As such, sus
is always closer to sue than to suc.

The underlying Mohr-Coulomb model leading to the undrained shear strengths (3) is
based on a number of assumptions (perfect plasticity, zero dilation, etc) that often are
in contradiction with experimental data. In particular, normally consolidated clays have
a tendency to contract as a result of shearing, leading to a decrease in effective mean
stress and thereby a decrease in undrained shear strength as compared to what is implied
by the Mohr-Coulomb model. This effect is captured by more advanced models such as
the Cam clay models and their later extensions [see e.g. 11]. Many such models operate
under the classic critical state premise which under undrained conditions implies that the
effective mean stress at failure is given uniquely by the initial effective mean stress and
the model parameters, regardless of the path along which failure is reached (see Figure
2). As such, use of the Generalized Tresca model to capture failure is still justified as
long as the undrained shear strengths (3) are adjusted appropriately to reflect that the
effective mean stress does not remain constant but instead reaches a unique terminal value
at failure (shown as p′f in Figure 2).

More generally, rather than construct an effective stress constitutive model to account
in detail for the physics eventually leading to a given undrained shear strength, the idea
with the total stress models is to operate directly with the measured undrained shear
strengths. As such, while the above relations provide some motivation for how an ap-
propriate total stress model may be constructed, they are not in any way fundamental.
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Fig. 3. Experimental data of sue/suc ratios versus plasticity index collated by [18]. The shaded
region indicates the range of validity of the Generalized Tresca model (0.5 ≤ sue/suc ≤ 1)

However, considering that clays usually display different undrained strengths in compres-
sion and extension (see Figure 3), it appears reasonable to operate with a total stress
model capable of capturing this basic feature. In other words, while the standard Tresca
model involving a single strength parameter often is used, the Generalized Tresca model
(which contains the standard model as a special case) appears rather more appropriate.
The Generalized Tresca model is compared to a set of triaxial tests conducted by [12]
in Figure 4. While the agreement is not perfect, it does provide a better fit than single
parameter models such as Tresca and von Mises. It is also noted that the von Mises circles
provide a reasonable fit to the measured directions of plastic strain rate in the deviatoric
plane. Hence, von Mises will be used as plastic potential in the following.
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Fig. 4. Generalized Tresca failure surface and Mises circles matched to triaxial compression and
extension along with undrained true triaxal data for normally consolidated kaolin clay [12] at an
effective mean stress of 160 kPa. The ratio between the undrained shear strengths in extension
and compression is sue/suc ≈ 0.87. The arrows indicate the measured plastic strains which are
compared to those implied by the circular von Mises plastic potential.

2.1 Anisotropy

The characteristic of unequal shear strengths in triaxial compression and extension is
often referred to as ‘anisotropy’ [e.g. 4; 5; 10]. This is rather unfortunate as unequal com-
pression and extension strengths is an inherent feature of ideal isotropic Mohr-Coulomb
materials, c.f. the previous section. On the other hand, it is obviously conceivable that
natural clays, due to their deposition, stress history, etc, would display a certain amount
of strength anisotropy, i.e. would have different strengths when subjected to the same
loading programme at two different angles relative to a given plane of anisotropy.

In the following, a model incorporating cross-anisotropic strength, stemming for example
from a preferential direction of deposition, is considered. Identifying the normal to the
plane of anisotropy (the direction of deposition) as the z-direction, the strength anisotropy
may, following Grimstad et al. [4], be accommodated by an appropriate shift of the yield
surface. In the case where all shear stresses are zero, the geometric interpretation is a
shift of the Generalized Tresca surface in the direction of the σz axis (see Figure 5). The
additional degree-of-freedom required to accommodate this shift may be related to the
undrained shear strength in simple shear on the plane of anisotropy. In the following,
in order to avoid an excessive number of subscripts, we will make reference to material

6



σz

σy
σx

TE (isotropic)

TE (anisotropic)

TC (anisotropic)

TC (isotropic)
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Fig. 6. Tests associated with strength parameters: (a) triaxial compression (σz > σx = σy), (b)
triaxial extension (σz < σx = σy) and simple shear (γxy > 0 and all other strains equal to zero).
The plane of anisotropy is normal to the z-axis.

parameters suc and sue to denote the undrained shear strengths measured in triaxial
compression and extension, respectively, for a sample that is oriented such that the load
is applied normal to the plane of anisotropy. Similarly, sus refers to the simple shear
strength for a sample sheared on the plane of anisotropy. The three different tests are
sketched in Figure 6.

In the general case, the relevant anisotropic version of the Generalized Tresca model
may be written as (again following [4] and using standard continuum mechanics sign
conventions):

Fu = q̂ − 6k√
3(1 + 1/ρ) cos θ̂ − 3(1− 1/ρ) sin θ̂

(6)

where

q̂ =
√
3Ĵ2 (7)
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Ĵ2 =
1
2
ŝTDŝ (8)

ŝ = σ −mp− akr (9)

m = (1, 1, 1, 0, 0, 0)T (10)

D = diag(1, 1, 1, 2, 2, 2) (11)

p = 1
3
mTσ (12)

r = (1
3
, 1
3
,−2

3
, 0, 0, 0)T (13)

θ̂ = 1
3
arcsin

(
3
√
3

2

Ĵ3

Ĵ
3/2
2

)
(14)

Ĵ3 = ŝxxŝyyŝzz + 2ŝxyŝyz ŝzx − ŝ2xyŝzz − ŝ2yz ŝxx − ŝ2zxŝyy (15)

and k, ρ, and a are material parameters. Geometrically, these are related to the size, shape
and shift of the yield surface respectively. For k = suc, ρ = sue/suc and a = 0, the original
Generalized Tresca surface (2) is recovered. In the general anisotropic case, k, ρ and a
may be related to the three undrained shear strengths, suc, sue and sus by

k =
1 + sue/suc

1 + ρ
suc (16)

a = 2
ρ− sue/suc
1 + sue/suc

(17)

ρ =
sue + suc − sus −

√
(sue + suc)(sue + suc − 2sus)

sus
(18)

These relations all rely on the plastic strains following from the flow rule:

ε̇p = λ̇
∂G

∂σ
(19)

where G is a von Mises type potential given by

G = q̂ (20)

That is, a Mises cylinder shifted by the same amount as the Generalized Tresca failure
surface. This type of flow potential has both been observed experimentally in true triaxial
tests [12, see also Figure 4] and has a long history in the modeling of clays, going back at
least to the work of Roscoe and Burland [14] on Modified Cam Clay.

The condition that the yield surface remains convex (1
2
≤ ρ ≤ 1) imposes the following

limitations on sus/suc as function of sue/suc:

4

9

(
1 +

sue
suc

)
≤ sus

suc
≤ 1

2

(
1 +

sue
suc

)
(21)

The lower limit here corresponds to a Rankine triangle in the deviatoric plane while the
upper limit corresponds to a Tresca hexagon. The admissible parameter range is shown in
Figure 7 along with experimental data of Ladd [10] and Karlsrud and Hernandez-Martinez
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Fig. 7. Admissible parameter space for AUS model together with experimental data of Ladd [10]
and Karlsrud and Hernandez-Martinez [5]. The isotropic version of the AUS model (no shift of
the yield surface) is also indicated.

[5] (see also Appendix 1).

It should be noted that the above expressions imply ρ = sue/suc for a simple shear strength
equal to that of the isotropic model, sus = 2suesuc/(sue+suc). In that case, there is no shift
of the yield surface (a = 0). In other words, anisotropy only results from input (suc, sue,
sus) that cannot be accommodated by the original isotropic Generalized Tresca model.
This is a natural consequence of the fact that the model involves three parameters, or
‘degrees-of-freedom’, k, ρ, and a, that can be related uniquely to the three undrained
shear strengths. While more degrees-of-freedom could be added to control for example
a rounding of the Generalized Tresca surface, this would imply a loss of the uniqueness
between the model parameters and the undrained shear strengths and thereby necessitate
a number of deliberate and possibly less than obvious choices.

2.2 Plane strain

For the important special case of plane strain (ε̇py = 0 at the ultimate limit state), the
yield function is given by

F =
√
(σz − σx + ak)2 + 4τ 2zx −

4ρ

1 + ρ
k (22)

which reduces to the standard plane strain Tresca yield function for sue = suc = sus = su
(corresponding to a = 0, ρ = 1, k = su).

For the isotropic version of the model [sus = 2suesuc/(sue+suc)], we have a = 0, ρ = sue/suc
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(24).

and k = suc and thereby

F =
√
(σz − σx)

2 + 4τ 2zx − 2sus (23)

In other words, the ‘effective’ undrained shear strength is that measured in simple shear.

Another interesting special case is that where sus = 1
2
(suc + sue). The yield function is

here given by

F =
√
(σz − σx + suc − sue)

2 + 4τ 2zx − 2sus (24)

That is, an ellipse of magnitude with axes sue+suc and sus shifted by and amount suc−sue
along the (σz − σx)-axis (see Figure 8).

2.3 Evaluation of anisotropy

The basic premise of the model presented above is that anisotropy is indirectly character-
ized by the three undrained shear strengths suc, suc and sus measured as shown in Figure
6. For combinations that cannot be accounted for using the isotropic Generalized Tresca
surface, anisotropy results. That is, for sus = 2suesuc/(sue + suc), the model is isotropic
while for all other ratios some amount of anisotropy is necessary to account for all three
strengths.

In the following, we examine the effects of this anisotropy in more detail. In doing so, we
focus on the important special case where

sus =
1
2
(sue + suc) (25)

This is a common approximation [see e.g. 13] and corresponds to the upper boundary of
the admissible parameter space shown in Figure 7.

Consider now the situation where a sample has been taken out of the ground, trimmed
appropriately and then subjected to a state of biaxial compression at an angle α relative
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to the plane of anisotropy (see Figure 9). For α = 0◦ the sample is loaded normal to the
plane of anisotropy and the strength is suc,0 = suc while for α = 90◦ the sample is loaded
parallel to the plane of anisotropy and the measured strength is suc,90 = sue.

The results are shown in Figure 9. These have been computed numerically using the
program OptumG2 [8] which implements the model. The strength dependence on the
angle of inclination is, qualitatively, similar to previously reported experimental results
[see e.g. 11]. This type of variation is predicted by other relevant clay models including
the NGI-ADP [4] and MIT-E3 [17] models.

3 HARDENING LAW

Hardening is specified by first replacing the quantity k in the expression for the failure
surface (26) by a hardening variable κ:

Fu = q̂ − 6κ√
3(1 + 1/ρ) cos θ̂ − 3(1− 1/ρ) sin θ̂

(26)

By making κ vary from some initial value, κ0, such that the initial stress state, σ0, satisfies
F (σ0, κ0) = 0 to an ultimate value of κ = k, a family of affine surfaces are generated for
each value of κ between κ = κ0 and κ = k (see Figure 10). This type of isotropic hardening
is obviously just one possibility. In monotonic loading, it does not differ essentially from
other types of hardening whereas the modeling of cyclic loading would require a more
careful consideration of the exact type of hardening (isotropic, kinematic, mixed, etc).

As for the exact functional form of the hardening law, we have been inspired by the work
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of Vardanega and Bolton [16] who, on the basis of a large data base of triaxial test results,
proposed the following power law relation between deviatoric stress, q and axial strain,
εa:

q

2suc
=

1

2

(
εa
β

)α

(27)

where α and β are model parameters. We see that β in fact is the axial strain at half the
mobilized strength, i.e. for q/2suc = 1

2
. As for the parameter α, Vardanega suggested a

value of 0.6 but other, though similar, values are often appropriate. The relation (27) is
illustrated in Figure 11.

Assuming that the initial stress is at the yield surface initially such that q = 2κ throughout
and making the quite reasonable assumption that the total strain is governed by the plastic
strain, we have

q

2suc
=

κ

suc
=

κ

k
=

1

2

(
εpa
β

)α

(28)

The rate form of (28) is given by

κ̇ = h1ε̇
p
a = λ̇h1 (29)

where λ̇ is the plastic multiplier and

h1 =
αk

2εpa

(
εpa
β

)α

=
αk

2β

(
2κ

k

)α−1
α

(30)

Somewhat of a disadvantage of the above hardening law is that κ needs to be capped
explicitly. That is, κ does not approach k asymptotically but rather increases indefinitely
with the strain (see also Figure 11). This shortcoming is addressed by the following law:

κ = k
(
1− 2−εpa/β

)
(31)
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where β again is the strain at half the mobilized strength. The rate form of the above law
is given by:

κ̇ = λ̇h2 (32)

where

h2 =
k ln 2

β
2−εpa/β =

ln 2

β
(k − κ) (33)

While the alternative law (31) does have the correct asymptotic behaviour at large strains,
it implies a less stiff response at small strains than the Vardanega-Bolton law (see also
Figure 11). Hence, we opt for a compromise law given by

κ̇ = λ̇h (34)

where
h = (1− κ/k)h1 + κ/kh2 (35)

such that h1 dominates for small strains while h2 dominates for larger strains.

In the general case, the parameter β may be taken as

β =

(
1

2
−

√
3

2
tan θ̂

)
εpc,50 +

(
1

2
+

√
3

2
tan θ̂

)
εpe,50 (36)
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where εpc,50 and εpe,50 are two new material parameters, namely the axial plastic strains

halfway to failure in triaxial compression (θ̂ = −30◦) and triaxial extension (θ̂ = +30◦)
respectively.

4 ELASTICITY

The last remaining component of the model is the elastic law relating elastic strains to
total stresses. Assuming linear elasticity we have

εe = Cuσ (37)

where the undrained elastic compliance modulus is given by:

Cu =
1

3G0



1 −1
2

−1
2

−1
2

1 −1
2

−1
2

−1
2

1

3

3

3


with G0 being the shear modulus (Eu = 3G0 being the undrained Young’s modulus).

The use of isotropic elasticity for materials with anisotropic strength characteristics is
arguably somewhat unsatisfactory. However, for most problems of practical interest, plas-
ticity rather than elasticity is expected to be dominant. As such, and in the interest of
simplicity, the present version of the AUS model operates with isotropic elasticity.

5 MODEL CALIBRATION

Two model calibrations are performed in the following. Since no data for sus was pro-
vided, the isotropic version of the AUS model is used [ρ = sue/suc and thereby sus =
2suesuc/(sue + suc)].

5.1 Isotropically consolidated triaxial compression test

In the following the AUS model is calibrated to a set of triaxial compression data obtained
by [1]. The material, a natural intact Todi clay, was isotropically consolidated to various
pressures and then subjected to undrained triaxial compression. For the data considered
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Fig. 12. AUS fit to Burland et al. [1] data.

in the following the initial confining pressure was p′0 = 3, 200 kPa.

The calibration of the model proceeds as follows. First the undrained shear strength is
read off as suc = 0.5(σ1 − σ3)max ≈ 2, 035 kPa. Next, the axial strain at half the failure
load is identified as εc,50 ≈ 0.75%. Most of the deformation up to this level is assumed
to be plastic and hence we set εpc,50 = 0.75% in the AUS model. Finally, the undrained
Young’s modulus is taken as 10 times the secant stiffness modulus E50,c = suc/ε50. That
is, Eu = 3G = 2, 710MPa. The fit shown in Figure 12 then results. We see that the
parameter α affects the response primarily at small strains while at large strains the exact
value of the parameter is relatively inconsequential. The remaining parameters (which
have no influence on the behaviour in compression) must either be estimated or derived
from additional extension and simple shear tests. It should be noted that both suc and, to
a lesser extent, εc,50, are pressure dependent. Vardanega and Bolton [16] have proposed
a number of relations accounting for this and other effects. Finally, the AUS model does
not include strain softening. As such, the apparent softening observed in the experimental
results in Figure 12 cannot be captured.

5.2 K0 consolidated triaxial compression and extension tests

Next, the model is fitted to triaxial compression and extension tests for a silty clay con-
ducted by Won [19]. The data are plotted in Figure 13. For the compression test, the
initial stress state was (σ′

1, σ
′
3)0 = (65.4 kPa, 46.1 kPa) while for the extension test it was

(σ′
1, σ

′
3)0 = (56.4 kPa, 44.7 kPa). The undrained shear strengths, identified immediately

from the data, are suc = 13.3 kPa and sue = 9.2 kPa. The axial strains halfway to fail-
ure in compression and extension are estimated at εc,50 = 1% and εe,50 = 3%. Finally,
the undrained Young’s modulus is set to Eu = 10MPa. For these model parameters, the
AUS fits are as shown in Figure 13. While the fits are less than perfect, the model does
reproduce the overall features of the stress-strain behaviour. It should be noted that the
fits to a large extent are influenced by the choice of fixing the size of the initial yield
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surface to pass through the initial stress point. For the extension test, this means that
the initial stress state is at a compression corner (similar to what is shown in Figure 10).
Once the extension test commences, a substantial elastic region then needs to traversed
before yielding is recorded in extension. For the present test, this means that the stiffness
at intermediate stress levels in extension is somewhat overestimated.
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Fig. 13. AUS fits to triaxial compression (TC) and extension (TE) tests of Won [19].

6 ANALYSIS OF MONOPILE FOUNDATION

In the following, the AUS model in applied to the analysis of a monopile subjected to
horizontal loading. All data, including the measured response, are from the so-called PISA
project [2; 3; 20] which involved full scale tests on a variety of monopiles of different
dimensions, depths, pile wall thickness, etc. From partial data published, it is possible to
infer full sets of problem data for a number of particular cases. One such case is the one
sketched in Figure 14.

The steel monopile has a total length of 17.6m, a diameter of 0.762m and a wall thickness
of 25mm. The penetration into the soil is 7.6m and the loading is applied 10m above
the ground surface. The adopted profiles of triaxial compression undrained shear strength
(suc), elastic shear modulus (G), and coefficient of earth pressure at rest (K0) are shown in
Figure 15. The effective unit weight is taken as γ′ = 11.4 kN/m3. To examine the effects of
the deformation parameters εpc,50 and εpe,50, two load-displacement analyses are conducted:
one for εpc,50 = 0.5% and one for εpc,50 = 0.25%. In both cases, εpe,50/ε

p
c,50 = 4.

Regarding the suc/sue ratio, Zdravkovic et al. [20] report drained triaxial compression and
extension angles of ϕc = 27◦ and ϕc = 32◦ respectively. The analysis of Section 2 thus
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Fig. 14. Monopile subjected to horizontal loading.
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Fig. 15. Adopted profiles of triaxial compression undrained shear strength (suc), elastic shear
modulus (G), and coefficient of earth pressure at rest (K0). The two former are from [2] and the
latter is from [20].

suggests a ratio of
sue
suc

=
3− sinϕc

3 + sinϕe

sinϕe

sinϕc

= 0.84 (38)

which, without additional data, may be taken as the best estimate of true ratio.
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The pile is assumed elastic with E = 210GPa and ν = 0.3 and is modelled using shell
elements. At the interface between the clay and the pile, a tension cut-off is used. Following
Zdravkovic et al. [20], the undrained shear strength at the interface is assumed equal to
that of the surrounding soil. While some amount of reduction of interface shear strength
is required by most codes of practice, we have generally found that the closest match with
measured data is achieved by maintaining the full shear strength at the interface.

Symmetry is utilized so that only one half of the problem is modelled as shown in Figure
14. All analyses are conducted with the finite element program OptumG3 [9]. While
the sue/suc ratio of 0.84 calculated on the basis of the drained friction angles is not
unreasonable and falls well within the range of ratios regularly observed (see Figures 3
and 7), it is entirely possible that the true ratio would be different. Hence, to assess the
effects of the sue/suc ratio, limit analyses are conducted for sue/suc in the range of 0.2
to 1.0. In all cases, the simple shear strength is taken as sus = 1

2
(sue + suc), implying a

degree of anisotropy that decreases as sue/suc increases towards sue/suc = 1 in which case
the standard Tresca failure criterion is recovered.

The results are shown in Figure 16. It is seen that the capacity to a very good approxima-
tion is a linear function of sue/suc or, alternatively, of sus/suc within the range considered.
Indeed, the failure load can be reasonably approximated by

F =
sus
suc

F1 (39)

where F1 is the failure load for sue/suc = sus/suc = 1. The linear dependency of ultimate
capacity on sus/suc is unique to this particular problem, but illustrates a more general
point that analyses on the basis of the triaxial compression strength alone, e.g. using the
standard Tresca model, may overpredict the capacity significantly.
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Fig. 16. Failure load versus shear strength ratio.
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Fig. 17. Shear strain distribution at failure.

Finally, a load-displacement analysis is conducted for the best estimate of the parameters
of sue/suc = 0.84. Again, the simple shear strength is set to sus =

1
2
(sue + suc) = 0.92suc.

This implies a slight anisotropy as compared to the isotropic version of the model where
sus = 2suc/(1+suc/sue) = 0.91suc. The horizontal displacement of the pile at ground level
are shown in Figure 18. We see a relatively stiff response initially followed the expected
decrease in stiffness as the yield zone around the pile spreads. It should be noted that the
ultimate limit state is reached only at very large deformations – larger than can be justified
in a standard small-deformation analysis such as the present one. Indeed, a displacement
at the ground level of 0.1D corresponding to nominal failure [2; 20], is reached already at
about half the failure load.

The two analyses with εpc,50 = 0.25% and εpc,50 = 0.5% appear to bracket the test re-
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sults fairly well. Somewhat of a complication, however, is that the tests were conducted
with regular interruptions where creep and excess pore pressure dissipation was allowed
to progress. These periods appear as the approximately horizontal segments of the load-
displacement curve and are followed by a stiffer response consistent with an increase of
strength as a result of an increase in effective mean stress and thereby in undrained
strength. Finally, the analysis with εpc,50 = 0.5% is in good agreement with the finite ele-
ment analysis reported by Byrne et al. [2]. These are based on an effective stress modified
Cam clay type model requiring both direct calibration to both measured data and indirect
calibration to match the measured undrained shear strength profile [see 20, for details]. In
contrast, the AUS model involves a minimum of parameters that can be inferred directly
from site investigation data or otherwise estimated in a transparent manner.

7 CONCLUSIONS

A total stress model applicable to clays under undrained conditions has been presented.
The model involves three strength parameters: the undrained shear strengths in triax-
ial compression, triaxial extension and simple shear. The amount of physical anisotropy
implied by the model is a function of the relative magnitude of these three strengths.
Furthermore, the elastoplastic deformation characteristics are accounted for by a hard-
ening law requiring two additional parameters: the axial strains halfway to failure in
triaxial compression and extension. Finally, elasticity, as encountered for example in un-
loading/reloading, is accounted for by Hooke’s law. The result is a relatively simple model
whose parameters can all be inferred immediately from standard undrained laboratory
tests. The model is applied to a boundary value problem involving horizontal loading of
a monopile. The results reveal a considerable influence of the extension and simple shear
strengths in addition to the usual compression shear strength. Considering the capabilities
of the model along with its relative simplicity and the ease with which it is calibrated to
data that can be obtained by standard methods, it appears to be an attractive alternative
to more elaborate effective stress models.

APPENDIX 1

Figure 15 of the paper of Ladd [10] shows data of undrained shear strengths in triaxial
compression, triaxial extension and simple shear as function of the plasticity index, PI.
The trend lines proposed by Ladd are given approximately by:

sue/suc ≃ 0.50 + 0.0034PI

sus/suc ≃ 0.69 + 0.0015PI
(40)
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whereby:
sus/suc ≃ 0.47 + 0.44sue/suc (41)

The range of plasticity indices covered by Ladd’s data corresponds approximately to
0.5 ≤ sue/suc ≤ 0.84.

In a study concerned with Norwegian clays, Karlsrud and Hernandez-Martinez [5] found
the following relations between the strength ratios and the water content w:

sue/suc = 0.277 + 0.0029w

sus/suc = 0.454 + 0.00447w
(42)

whereby:
sus/suc = 0.03 + 1.54sue/suc (43)

for 0.35 ≤ sue/suc ≤ 0.5 corresponding to the range of water contents considered, w ≃ 25%
to 75%.
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