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Abstract
Cavity-magnon polaritons (CMPs) are the associated quasiparticles of the hybridization between
cavity photons andmagnons in amagnetic sample placed in amicrowave resonator. In the strong
coupling regime, where themacroscopic coupling strength exceeds the individual dissipation, there is
a coherent exchange of information. This renders CMPs as promising candidates for future
applications such as in information processing. Recent advances on the study of theCMPnow allow
not only for creation of CMPs on demand, but also for tuning of the coupling strength—this can be
thought of as the enhancement or suppression of information exchange.Here, we go beyond standard
single-port drivenCMPs and employ a two-port drivenCMP.We control the coupling strength by the
relative phasef and amplitude field ratio δ0 between both ports. Specifically, we derive a new
expression from input–output theory for the study of the two-port drivenCMP anddiscuss the
implications on the coupling strength. Furthermore, we examine intermediate cases where the relative
phase is tuned between itsmaximal andminimal value and, in particular, the high δ0 regime, which
has not been yet explored.

1. Introduction

The phenomena of (strong) coupling ofmagnons—the associated quanta of collective spinwave excitations—to
microwave cavity photons resulting in cavitymagnon-polaritons (CMPs) has been the subject of numerous
works in the past few years [1–9]. The ability to couplemagnons to different physical systems, throughmagneto-
optical [10–12] to optical, or bymagnetostrictive interaction tomechanical [13] and cavity photons
simultaneouslymakes CMPs highly interesting for various applications [8]. For instance, it allows for a
bidirectional conversion ofmicrowaves to optical light [14], or couplingmagnonswith superconducting
circuits, i.e. qubits [15]. The context of these studies varies frompurely classical [10, 14, 16–18] to quantum-
based approaches [15, 19]. For a strongly coupled cavity-magnon systemwhere the coupling strength exceeds
the individual dissipation from each subsystem at resonance frequency, that isωc=ωm≡ω0, the cavity photon
(ωc) andmagnon states (ωm) hybridize. As a result of the simultaneous coupling ofN contributing spins of the
magnonic sample, one observes the opening of a frequency gap wD = = ( )g g NS2 2 2eff 0 due to level
repulsionwhere S denotes the spin number of the utilizedmaterial [4]. Here, g0 denotes the single spin and geff
denotes the effectivemacroscopic coupling strength in the dispersion spectrum. It is worth noting that, the

single spin coupling strength
= hg m w

g
V0 2 2
0 0

mode
does not depend on the photon number. Rather, g0 is determined

by the photon andmagnonmode overlap η, the resonance frequencyω0, andmode volumeVmode of the chosen
cavity resonatormode. The observation of such an avoided crossing (anticrossing) is a characteristic feature of
cavitymagnon-polaritons (CMPs) and it enables the study of properties of said systems [7].
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However, inmost of theseworks, being able to control the coupling constant is imperative; whether the
ultimate goal is to achieve stronger coupling or to control the actual state of coupling [20].Whilemost of the
aforementioned initial studies have concentrated in the case of level repulsion , leading to said avoided level
crossing—also known as Rabi splitting [21]—more recently, another phenomenon has emerged : the so-called
‘level attraction’ [22–26]. In order to achieve the regime of level attraction, several approaches have been
employed so far. Themost simplistic one, perhaps, ismoving themagnetic sample to different positions within
the 3-dimensionalmicrowave resonator [24] or even a 2-dimensional one [27]. Inmost of these experiments,
however, amicrowave signal from an external sourcewas coupled into the resonator and thereby directly driving
the cavity photons at a certain cavity resonance frequencyωc. In such setups, amagnetic samplewas placed into
an antinode of the time varyingmagnetic field from the chosen cavity resonatormode resulting fromalternating
currents (AC). These ACfields then drive ferromagnetic resonance in themagnetic sample, i.e. excitemagnons
resonating at a frequencyωm [1].

In a recent work, we have shown away to access the regime of level attraction by the addition of a second
externalmicrowave input and by externally controlling the relative phasef and internal amplitude ratio δ0 of the
ACmagnetic fields within the resonator via tuning the relative input amplitude at eachmicrowave input [28]. By
tuning the relative phase tof=π and setting δ0=1, we observed a full closure of the anticrossing gapwhichwe
also call levelmerging. Experimentally, the relative phase shift is realized by the addition of amechanically
tunable phase shifter in the signal path to themagnon port (see figure 1). If the phase is kept fixed and δ0>1, we
enter the regime of level attraction. In this work, we study the conditions underwhich this couplingmight
happen in detail.We further study intermediate phases where level repulsion and attraction are both present
which has not been observed previously aswell as the impacts of a higher value of δ0 on our system.We focus on
the coupling of cavity photons tomagnons in theKittelmode, which is a special instance of amagnetostatic
modewithwave vector k=0. TheKittelmode denotes the uniformprecession for all spins and has a dispersion
ωm=γH0, where γ is the gyromagnetic ratio andH0 is a staticmagnetic field externally applied [29]. As it
typically shows the highest coupling strength to the cavity photons, numerous experiments studiedCMPs via the
coupling to theKittelmode [2, 4, 5, 30].

The experimental setup is described in section 2, followed by the theory detailed in section 3 and the
experimental results and discussions are given in section 4.

2. Experimental setup

Upuntil now, there have been several different andwell establishedmethods to probe the coupling between
cavity photons andmagnons experimentally where one of themost commonones ismicrowave spectroscopy.
In this, the system’s transmission or (and) reflection parameters are recorded [30]. Anothermethod is electrical
detection employing a voltage generated froma combination from spin pumping and the inverse spinHall effect
[31, 32].Magnon induced Brillouin light scattering has also been recently employedwithin the emerging field of
cavity optomagnonics [33].

For our two-port drivenCMP experiment, we employedmicrowave resonator spectroscopy andmodified a
previous single port driven setup [28, 34]. In our experiment, we employ a reentrant cavity resonator with
resonance frequencyωc/2π=6.5 GHz and insert a commercially bought sphere (d=0.2 mm, [35])made
of yttrium-iron-garnet (YIG) into the antinode of the resonator’s ACmagnetic field [3, 34]. Accordingly,
figure 1 gives a detailed overview of the position of the twomicrowave inputs [figure 1(a), topview] the relative
orientation of the single windedmetallic loopwhich constitutes the second input, calledmagnon port, in
combinationwith the ACmagnetic fields at the sample position [figure 1(b)] and the complete experimental
apparatus [figure 1(c)]. TheVectorNetwork Analyzer (VNA) serves as the singlemicrowave source of the system
as illustrated infigure 1. It is split using a power divider into two signal paths. As can be inferred from figure 1(b),
themagnon port is tilted by 45° to the cavity resonator’s xy-plane.We found experimentally, that this angle not
only gives the best compromise betweenminimal crosstalk and spatial limitations of our experimental setup,
but it is also crucial for the observation of level attraction in our two-port driven approach (see discussion and
comparison to relatedworks in section 4). The non-zero angle out of the xy-plane results in twoACmagnetic
field components (red), i.e. hz,magnon

AC and hx,magnon
AC . There, hz,magnon

AC , is parallel to the direction of the external,

staticmagnetic fieldHext=(0, 0,Hext) and, hence, does not drivemagnons.However, hx,magnon
AC is oriented such

that it also drives ferromagnetic resonance but does not directly couple to the cavity photon field (blue) because
^ ºh h hyx,magnon

AC
,cavity

AC
cavity
AC . Thus, both inputs can be considered to act independently on themagnons, once

indirectly by the first input, also called cavity port, via the coupling at resonance and directly by the second input,
i.e. themagnon port. Experimentally, there is a suppressed but non-zero residual direct coupling to the cavity
photons by a small component parallel to hcavity

AC . This is whatwe call crosstalk and itmay be, for instance, caused
by another small tilt of the coupling loop along the xz-plane. Specifically, in the experiment, wemeasure at the
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cavity port and record the reflectionparameter S11(ω) at the secondport of aVNA (seefigure 1(c)). There,we sketch
the experimental setup for both a single toneCMPmeasured in reflectionmode at the cavity port (thedashedparts
are thennot to be included) and a two-port drivenCMP.The latter is depicted by the greendotted line.

Infigure 1(c), we illustrate theCMPby a systemof two coupled harmonic oscillators with individual loss
parametersκc for the cavity photons andκm for themagnons and corresponding coupling losses due to the
coupling to the externalmicrowave feedline (see [7]). Now, such an introduction of a second input in the
experimental setup for the study of theCMP, requires themodification of the standard reflection parameter
S11(ω). This is discussed in the next section.

3. Theoretical background

In this sectionwe derive an expression tomodel a two-port cavitymagnon-polariton spectroscopic experiment
measured in reflection.However, in order to show clearly the implications of a second input,we find it necessary
to introduce the concepts andmain assumptions for the study of a simple single port drivenCMPfirst.

3.1. Spectroscopywith one port
An experimental setup such as the one shown infigure 1(c)—ignoring the dotted green line forwhich its
implications will be later discussed—can be used to conductmeasurements for single port drivenCMPs. Such
CMPs can bemodeled by employing the input–output formalismwithin the framework of theHamiltonian
approach [21]. In general, theHamiltonian describing thewhole system can bewritten as:

Figure 1.Overview over the implementation of the two ports for the coupling strength control of theCMP. (a)Topview: position of
both inputs including themechanically tunable phaseshifter, where themicrowave signal is inductively coupled by a single winded
metallic loop into the cavity resonator. (b)Relative orientation of themagnon port’s coupling loop around an spheremade of yttrium-
iron-garnet (YIG) and alignment of the intracavity ACmagnetic fields. (c) Schematics of the experimental setup for a single port
driven (solid lines) and a two-port driven (dotted green line)CMPsmeasurement in reflection from the cavity port and the phase
shifter along the path to themagnon port. TheCMP is illustrated as a system of two harmonic oscillators coupled by springs. Here, the
spring constants represent the effective coupling strength.Whilst the spring constants ka and kb give the coupling efficiency to the
microwave feedline, the internal losses from each constituent are given byκc andκm.
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   = + + ( ), 1sys bath int

where   w w= + + +( )† † † †aa mm g a m m ac msys eff which is also known as the Tavis–CummingsHamilto-
nian for anNparticle two-level system [21]. Here,sys refers to the intracavity interactions such as the coupling
between cavity photon andmagnonwhere † †a a m m g, , , , eff denote the photon destruction and creation
operators of the cavity photons, themagnons and the effectivemacroscopic coupling strength, respectively.
bath describes the coupling to the external environment, i.e. the bath; andint is the interaction between the
externalfieldmodes and the internal cavity photons. In themost simplistic case, we assume that there is no
direct coupling of the intracavity systemwith the environment. Accordingly, we consider theHermitian formof
thisHamiltonian.We can thenwrite equations ofmotion (EOM) for both the cavity photons ( †a a, ) and the
magnons ( †m m, ), which include damping and diffusion as:

 
 k k k= - - = - - +[ ] · [ ] · ( ) ( )m

t
m m

a

t
a a b t

d

d

i
, ,

d

d

i
, 2 . 2m c esys sys in

These expressions can then be combined in order to derive reflection S11(ω) or transmission S21(ω)
parameters from input–output theory.However, these steps are familiar from [21, 24] for reflection and from
[4] for transmission. Thus, we only summarize the basic assumptions in order to obtain the final equations.
These are:

1. Themagnons are not coupled to the external bath, but solely to the cavity photons.

2. The photons are coupled to the external bath, which represents the input microwave field from the
cavity port.

3. The following input–output relation between the signal entering and leaving the cavity resonator is utilized
[21]: w w k w+ =( ) ( ) ( )b b a2 e iout in , , where bout(ω) and bin(ω) denote the output and input from the
microwave feedline to the cavity resonator port, respectively, and a(ω) is the internal cavity photon field.

The EOMs are then solved, bymeans of a Fourier transformation, and then expressed as function of the
frequencyω. These yield

w
k

w w k
= - +

- + +
w w k- +

( )
( )

( )
( )

S 1
2

i
3e

c c
g

11

i m m

eff
2

for reflection.Here,κe are the losses due to the coupling to themicrowave feedline into the resonator,κc the total
(loaded) cavity resonator losses,ωc is the resonance frequency of the cavity resonator,ωm is the frequency of the
magnons, andκm is the loss parameter for themagnons corresponding to themagnon linewidth.

3.2. Scattering parameters for two-port drivenCMPs
In order to harness theCMP for applications, it is not sufficient to simply obtain a strongly coupled cavity-magnon
system, but instead, the coupling strength as ameasure for coherent information exchange needs to be
controlled. Among other ways to achieve a control of the coupling strength (see [22, 24]), the approach of the
introduction of a secondmicrowave port to the system represents a possibility to obtain such a control [25, 28].

For this two-port drivenCMP, the above assumptions for the derivation of the S-parameters remain valid
for the cavity port. However, the second port, whichwe callmagnon port, ideally couples to themagnons only
(this is the case shown infigure 1when considering the effect of the green dotted line). As a result of the addition
of themagnon port, themagnonic subsystem is nowdirectly coupled to the external bathwhich perturbs the
balanced gain and loss of the intracavity system in the presence of the cavity photon couplingwithout the
magnon port [36]. Consequently, the intracavity systemdescribing the cavity photon-magnon coupling is no
longer a closed systembut an open one.

Furthermore, themagnon portmay differ in phase and amplitude, which together with the direct coupling
to themagnons results in a change of the expression for the scattering parameter S11(ω) for a single port driven
CMP. This is discussed in the following.

As done previously for the simple hybrid system, our approach is based on an interactionHamiltoniansys.
However, in order to derive a new expression for S11(ω),Hsys derived earlier has to bemodified.Now,we assume
that the input from themicrowave feedline, which couples to the cavity port, is given by bin,1. In the sameway
that the second port, which exhibits the relative phase shift, is given by bin,2. The resulting spectrum is recorded
at the second port of theVNAwhich is configured for a transmissionmeasurement. However, the signal there
corresponds to the back-reflected signal from the cavity port, given by bout,1. The different roles and the labelling
of both feedlines in our systems are sketched infigure 2. This schematics shows the cavity resonatorwith the
inserted YIG sphere. Considering only bin,1, this inputfield corresponds to the classical cavity photonmagnon-
polariton experiments where both subsystems hybridize at resonance and form an avoided level crossing in the
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dispersion [4, 5]. The addition of themagnon port (input bin,2) changes the system’s properties drastically. The
system’s crosstalk is small for δ0≈1 and is neglected in the following derivation.However, towards higher
values of δ0, its contribution increases and, hence, lowers the signal to noise ratio and has to be taken into
account (see section 4.5).

As previouslymentioned, only themicrowave photons from the cavity port excite the cavity resonator
photons. This excitation is expressed by the photon creation and destruction operators †a and a, respectively.
Thus, the ACmagnetic field originating from themagnon port serves solely as a direct input for themagnons.

The second driving field acts on themagnetisation and, hence, exerts an additional torque on the
magnetisation [25]. If the phase and amplitude of this torque are chosen correctly, this torque compensates all
dissipation channels including the coupling of themagnons to the cavity photons, and the avoided level crossing
of theCMP coalesces. As a result, levelmerging can be observed, which alsomarks the transition to the regime of
level attraction.

Therefore, the classical Tavis–CummingsHamiltonian for a coupled systemwithN constituents is extended
to a driven form.As the drive takes place via the coupling of themagnons to the cavity photons, the driving
frequency, denoted byΩ, corresponds to the coupling strength geff modulated by the relative phasef and
amplitude δ0 from the contribution of the second port. It is key that the second port is not just another
microwave port of the cavity resonator but acts indirectly on the cavity resonator photons via the coupling of the
magnons. Otherwise, the effect of a relative phase and amplitudewould result in interference effects and not
levelmerging of theCMP’s dispersion.

Now, the systemHamiltoniansys has to bemodified to take into account this new contributionwhich
results in an open systemdue to the direct coupling. The total number of particles is conserved and, thus, the
first two terms denote the total number of cavity photons =ˆ †n a aphotons andmagnons =ˆ †n m mmagnons in the
system. In contrast to equation (1), there are now two interaction terms in the systemHamiltonian. As
previously, = +( )† †H g m a a mint,1 eff describes the interactionwith coupling strength geff of the cavity
resonator photonswith themagnons and vice versa. The addition of a second interaction term

 d= f( )†H g a meint,2 eff 0
i accounts for the impact of themagnon port on the hybrid system via the coupling

strength geff.
As a consequence fromour open system,we describe the two-port drivenCMPby a non-Hermitian

Hamiltonian via:

    w w= + + + + W( ) ( )† † † † †a a m m g m a a m a m ,c msys eff

where dW = fg eeff 0
i . The last term is now interpreted as an additional drive of the cavity photons through the

coupling to themagnonswhich are excited by themagnon port.
The complex conjugated termof the last term is not included because this would correspond to the crosstalk,

the direct interaction between the creation operator of the cavity resonator †a and themagnon lowering
operatorm. The addition of a secondmicrowave input to the hybrid system leads to an additional torque exerted
on the precessingmagnetisation due to the induced change in the x- and z- components of theACmagnetic
fields (see [25]).

Figure 2. Sketch of the different roles of the ports and thus their influence onto the coupled system. The cavity resonator is given as
blue horizontal bars while the coupling loop of the second input is shown as a inductive coupler. Themagnonic sample (red) is placed
at the end.Here, bin,1 represents themicrowave photon inputfield from the signal line directly exciting the cavity photons and it is the
port where onemeasures the back-reflected signal and bin,2 is the input signal from the second inputwith the additional phase shifter
inserted. The direct coupling between bin,2 and bin,1 is thewhat we refer to as crosstalk. The fields bout,1 and bout,2 refer to the output
microwave photonfields of thefirst and second input, respectively.
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Depending on themagnitude and the orientation of this torquewhich is determined by δ0 andf, the system
dissipation can be compensated if δ0=1 or even result in an additional drive for δ0>1. In this picture, the
coupling strength represents yet another dissipation channel which is then also compensated. Thus, tuningf
and δ0 allows for a control of the coupling strength of theCMP in this specific system.

However, in order to include a control of the coupling strength via the additional torquewhich can
compensate for the dissipation in the system, the aboveHamiltonian needs to be non-Hermitian. Also,
considering the 2×2matrix bymodeling theCMP, for instance, by two coupled harmonic oscillators where
the off-diagonal elements representing the coupling terms [7], levelmerging is only possible if the product of the
off-diagonal terms is negative. It cannot be a positive, real valued quantity because the interaction potential
would be repulsive. Thus, thismeans that the sign of the off-diagonal product has to change.

Now, the equations ofmotion can bewritten down in Langevin form [21] as:

w k k

w d k k

¶
¶

=- - - +

¶
¶

=- - + - +f

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

m t

t
m t g a t m t b t

a t

t
a t g m t a t b t

i i 2 ,

i i 1 e 2 ,

m m e

c c e

eff ,2 in,2

eff 0
i

,1 in,1

whereωm denotes themagnon precession frequency, geff the effective coupling strength, ke,2 the coupling factor
to themagnon port,ωc the cavity photon frequency,κc the total resonator losses and ke,1 the coupling factor of
the cavity port. After a Fourier transformation and employing the input–output relation for a systemwith one
external port and a reflectionmeasurement k+ =b b a2 eout,1 in,1 ,1 [21] the scattering parameter S11(ω) can be
expressed as :

w
k

w w k

d d k k

w w k
= - +

- - + +
-

+

- - + +
d

f f

d+ +f f( )( )
( )

( )

( )
( )

( ) ( )
S

g

X
1

2

i

2i e 1 e

i
, 4e

c c
g

X

e e

c c
g

X

11
,1

1 e

eff 0
i

0
i

,1 ,2

1 eeff
2

0
i

eff
2

0
i

whereX=−i(ω−ωm)+κm . Thefirst two terms can bemapped to equation (3) except a change in the term
for the coupling strength from d + f( )g g 1 e

eff
2

eff
2

0
i . In contrast, the term considering the coupling strength in

the expression for equation (3) for theCMPdrivenwith a single port is purely real. This would be the full
expression for the scattering parameter in the case of a single port CMP.However, the additional input via the
coupling of themagnon to the cavity resonator photons has to be considered for the two-port experiment.
Hence, the third term considers this contribution. As the additional drive ismediated by the coupling to the
cavity photons, it is proportional to geff, i.e. the coupling in the limit d  00 for different phasesf.

4. Results and discussion

Having discussed the nature of the hybridmagnon-cavity systemunder various conditions, we now turn to the
direct implications of two ports in a spectroscopic experiment.

4.1. Two-port spectroscopy numerically analyzed
We start by looking at the characteristics of equation (4) regarding the coupling strength. One can see that geff is
completely real for a ‘single-port’ drivenCMP.However, in case of a second contribution, the previous
expression for the coupling strength has to be rewritten as d f¢( )g ,0 which reads as

d f d¢ = + f( ) ( )g g, 1 e , 50 eff 0
i

where geff corresponds now to the ‘single-port’ coupling strength, i.e. the coupling strength in the limit
for d  00 .

For δ0=1 andf=π, the term in the square root vanishes and a completemerging of the frequency gap of
the avoided level crossing in the dispersion spectrum is expected. Hence, this combination of relative phase and
amplitude is what we describe as the onset of levelmerging. If the relative phase is kept constant atf=π and δ0
is further increased, the term d f¢( )g ,0 describing the coupling between the cavity photons and themagnons
becomes purely imaginary denoting the regime of level attraction. Infigure 3, the expected dependence of the
complex coupling strength on δ0 [(a) and (b)] andf [(c) and (d)] is displayed for the real [(a) and (c)] and
imaginary part [(b) and (d)]. The left column shows the real and imaginary part of the coupling strength as a
function of the relative amplitude ratio δ0 for threefixed values of the relative phase (fä0,π/2,π). Forf=0,
the coupling strength increases with δ0 whilst remaining a real valued quantity. On the other hand, forf=π the
real part vanishes for d 10 . Beyond this, the coupling strength is imaginary and increases for higher values of
δ0. A relative amplitude ratio of δ0=1 constitutes the transition from level repulsion to level attraction via level
merging at this specific δ0 forf=π, because the sign of d f¢( )g ,0 in equation (5) changes frompositive to
negative.
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Now, if we look back to the framework of two coupled harmonic oscillators, we can see that the repulsion
between the antisymmetric and the symmetricmode is changed to an ‘attraction of the eigenvalues’ of the
coupled system. The relative phases off=0 andf=π represent two special cases. Since either the imaginary
(f=0) or the real part (f=π) for δ0=1 are zero, these cases allow one to attribute the real part of the
coupling strength to level repulsion and the imaginary part to attraction, respectively. In this regard, for
intermediate relative phase values, the coupling strength is comprised of both a repulsive and attractive
contribution. Thefinal shape of the spectrum then depends onwhether for a specific relative phase the real or
imaginary part is the dominant contribution.However, due to the non-zero contribution of the other, the
dispersion spectra are slightly distorted by the coexistence of both repulsion and attraction.

In the case off=π/2 (real part shown infigure 3(a) and imaginary part shown infigure 3(b)), the non-zero
imaginary part acts to ‘damp’ the increase of the coupling strength towards higher values of δ0. At this relative
phase, both contributions are comparable inmagnitude. Therefore, compared to the increase (decrease) for
f=0 andf=π one should expect a strongly suppressed dependence of the coupling strength on δ0 for
f=π/2. In addition, the relative amplitude ratio can be kept fixed and the coupling strength studied as a
function of the relative phase (see figures 3(c) and (d)). The dependence onf is illustrated for three different
values of δ0 infigure 3(c) for the real part and (d) for the imaginary part.

The real part of d f¢( )g ,0 displays a periodic dependence on the relative phase in the interval [−2π, 2π]. For
δ0<1, the coupling strength increases equally forf=0 as andf=π for the same value of δ0. Hence, the
coupling ismodulated, but for the regime of levelmerging the relative amplitude ratio δ0 needs to be altered. For
instance, if d 10 (green and red solid lines infigure 3(c)), the coupling strength atf=0 increases. However, at
f=π, levelmerging sets in and the real part of d p¢( )g ,0 goes to zero. At this point, the difference between the
real part of δ0=1 and δ0=2.63 is negligible. This changes when the contribution from the imaginary part is
also considered. For δ0<1, the coupling strength d f¢ =( )g const,0 is a continuous function forfä [−2π, 2π].
However, at the transition to levelmerging, i.e. δ0=1, it becomes discontinuous atf=±π. At this point, the

Figure 3. Simulations of the dependence of the real and imaginary part of the complex coupling strength on the relative amplitude
ratio δ0 (a) and (b) and phasef. (c) and (d). (a)Dependence of the real part of the coupling strength for three different values of the
relative phase (fä (0,π/2,π)). Forf=π, the real part goes to zero for d 10 whilst forf=0, the real part continues to increase. At
the intermediate phase value off=π/2, the coupling strength also increases butwith a smaller gradient compared tof=0. (b)
Dependence of the imaginary part of the coupling strength for three phase values. Compared to (a) the imaginary part is always zero
forf=0, non-zero onlywhen d 10 forf=π and constantly increasing for all values of δ0 forf=π/2. (c)The real part of the
coupling strength as a function offä[−2π, 2π] for three values of δ0 below, at the onset of, and in the regime of levelmerging. The
dependence is periodic for all δ0, with increasingmaxima of the coupling strength forf=0 and a sharpminimumatf=π for
δ0>1. Below δ0=1, the coupling is always suppressed.However, the slope for values close toπ increases for higher δ0. (d) Imaginary
part from the spectrum shown in (c). Above δ0=1, the plot becomesmore andmore antisymmetric in the sense of a ‘smooth’
continuous transition atf=0 and an increasing discontinuity, i.e. sign change, atf=π.
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value of the imaginary part of the coupling strength is no longer uniquely defined.When the relative amplitude
ratio is further increased, the discontinuity increases both in slope andmagnitude. Just as in the previous
description ((a) and (b)), themagnitude of the imaginary part is zero for all values of δ0 whenf=0.

4.2. Two-port cavitymagnon-polariton spectroscopy
In our experiment for two-port cavitymagnon-polariton spectroscopy, the relative amplitude ratio δ0 is

defined as the ratio of the ACmagnetic field from themagnon port and the cavity port, that is d =
h

h0
x,magnon port
AC

cavity port
AC .

Please note that in the experiment we are not able to directlymeasure the strength of the internal AC
magnetic fields at the position of the sample. However, we can derive δ0 from calculating an external

amplitude ratio δext which is defined as d =
A

Aext
magnon port

cavity port
, whereA denotes the amplitude of themicrowave

feedline at either port before it is coupled into themicrowave resonator. The efficiency of the coupling, i.e.
the quality factor of themicrowave signal into the resonator at either port can be determined by performing a
‘circle fit’. This is a fit in the complex plane of the individual reflectionmeasurement from each port [37] and
yields an additional factor ζ<1 to the external amplitude ratio for coupling into the cavity resonator. Then,
δ0 is calculated via δ0=ζ δext.

The cavity port directly drives the cavity photons, i.e. the specific cavitymode. Typically, its amplitude is
much higher than the initial amplitude contribution from themagnon port. As a result, in order to increase the
value of δ0, themicrowave feedline to the cavity port needs to be attenuated. Attenuating the cavity ports
amplitude instead of amplifying the amplitude of themicrowave signal which enters at themagnon port clearly
prevents us from reaching a nonlinear regime for theCMPbut also sets an intrinsic limit to our setup due to the
presence of noise. The further the cavity port is attenuated, the lower the signal to noise ratio of the recorded data
aswe probe our system in reflection at the cavity port. Hence, the data analysis ismore andmore aggravated until
clear statements on the specific nature of the signal are not possible anymore. The subtle nature of crosstalk
frommagnon to cavity leading to an increasing signal, whereas the cavity reflection shows up as a decrease from
the baselines signal renders themeasured response very sensitive to the achievable crosstalk suppression. As for
allmicrowave devices, reduction of unwanted signal leakage is far from trivial. As an example, a crosstalk of 1%
corresponds to−20 dB of applied power. A power ratio of−20 dB corresponds to an amplitude ratio of 0.1. In
this work, the relative signal amplitudes are described by δ0. Thatmeans for δ0>(0.1)−1=10 (i.e.+20 dB)
relative power to themagnon compared to the power at the cavity the crosstalk signal from themagnon port
dominates the cavity probing signal.

4.3.Mechanism for level attraction for a two-drive CMP system
To date, level attraction in CMP systems has been experimentally observed by different approaches
employing a single input (e.g. [24, 27]). Themicroscopic origin of level attraction is now explained by the
dominance of dissipative coupling over the typicallymuch stronger coherent coupling between cavity
photons andmagnons [38]. The hallmark of the coherent coupling regime is the occurrence of an avoided
level crossing. For the explanation of themechanism in our two-microwave drive experimental apparatus,
we follow themicroscopicmodel presented in [38] of either coupling to a standing wave (coherent coupling
regimewithωm≡ωc) or travelling wave (w w w¹ =, const.c m m ). Although our approach rather addresses
themagnon frequency instead of the cavity frequency, we employ the same physical mechanism of a
transition between the coherent to the dissipative coupling regimewhich allows us to also observe level
attraction. As can be inferred from figure 1(b), the coupling loopwhich denotes themagnon port, exhibits an
angle of 45° to the xy-plane. In our system, it is that non-zero component of hz,magnon

AC parallel to the effective
magnetic fieldHeff and, hence, the saturationmagnetization, which results in the possibility to observe level
attraction by appropriately tuning the relative phase and amplitude if both drives. If hz,magnon

AC (see figure 4(a),
the coherent exchange of energy can be controlled by appropriately superimposing the contributions from
either drive but now level attraction is observed. However, if hz,magnon

AC (see figure 4)(b)), the frequency of the
magnetization precession, i.e. themagnon frequency, is modulated by time dependent addition of the AC
magnetic field toHeff. Similar to [38], that change results in a ‘detuning’ of themagnon from the cavity
photon in terms of frequency. As a result, the system is less coherently coupled and the contribution of the
dissipative coupling increases. In our system, level attraction is observed forf=π and δ0>1, such that the
coherent coupling is suppressed and the detuned, i.e. dissipative contribution is dominating (see figure 4(c)).
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4.4. Interplay of attraction and repulsion for intermediate phases (d > 10 )
For the intermediate phases, we observe a coexistence of levelmerging and level attraction. Specifically, in
figure 5, we show the coexistence of level attraction (f=π) and level repulsion (f=0) for a series of phase
values between 0 andπ for δ0=1.31±0.22. Depending on the relative difference of the actual relative phase
value, the spectrum exhibits a stronger contribution from either level attraction (e.f. left column infigure 5) or
level repulsion (e.g. right column infigure 5). For instance, for themiddle column (f=3π/8), below resonance
(frequencies below the frequency of the cavity photonωc/2π=6.5 GHz the signature of an avoided crossing
with a beginning opening of an anticrossing gap is visible. However, above resonance (frequencies above the
frequency of the cavityωc/2π=6.5 GHz partially the triangular shape of the level attraction regime (see
figure 4(c)) is also visible, showing a almost equal contribution of both coupling regimes. As it is clearer to see
this difference in the spectrum showing the phase of the coupled system (figure 5(b)), we also plot the phase. As

Figure 4.Model for the occurrence of level attraction in our two-drive controlledCMP. Instead of an impact on the photon frequency,
themodulation is via themagnon’s frequency. In linewith otherworks (e.g. [38]), the physicalmechanism behind our observation of
level attraction is also the transition from the coherent/strong coupling regime to the dispersive coupling regime. (a) Situation of a two
tone driven system in the xy-plane only. There is no level attraction possible because the only interaction is done by the superposition
of both in-plane components. (b)Themagnon port is tilt by 45°, which yields a time dependent AC component in the z-plane and
modulates the effectivemagnetic field. (c) Illustration of the change of themagnon frequencywhich results in a deviation from the
coherent coupling (ωc≡ωm) regime and allows for the observation of level attraction (similar to [38] for a CMPdriven by one
microwave input port).

Figure 5.Experimental data showing the coexistence of level repulsion and attraction for δ0=1.31±0.22 and for different values of
intermediate phases both for amplitude (a) and phase (b) at the transition from level attraction (left) towards level repulsion (right).
The counteracting repulsion and attraction at resonance lead to a partial extinction and partial enhancement of the signal. One can see
both the characteristic features. First, one can infer the signal’s curvature corresponding to the symmetric and antisymmetricmode of
a ‘classical’ avoided level crossing. Second, the existence of the level attraction structure with two triangles below and above the
magnetic field for a resonant coupling (i.e. here a crossing of themagnon and cavity photon dispersions—see also the phase signal)
with the right apexmore dominant than the left one is visible. The dominance of either phase depends on the chosen intermediate
phase value and the relative distance to a phase of0 orf.
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can be seen from the clear phase jump and corresponding anticrossing in the right spectrumoffigure 5(b) the
contribution of level attraction is negligible to the complete system’s responsewhich is in stark contrast to the
phase spectrum forf=5π/8where the typical shape of a spectrum for level attraction (such as sketched in
figure 4(c)) can be seen. Thus, we are able to deliberately tune the relative contributions from level attraction and
level repulsion to the total signal with our specific system. Apart from showing the broad tunability of our two-
port driven approach to control the cavitymagnon-polariton, the control of the relative contribution from level
attraction (levelmerging) and repulsion (anticrossing)might be interesting to generate intermediate states
betweenmaximumorminimumentanglement of cavity photon-magnon states and, hence, the transfer of
information. For instance, the two-port drivenCMP can be transferred to themillikelvin temperature regime
and these concepts tested in the singlemagnon regime as proposed in [39].

4.5. Towards high values of d0

As shown infigure 6(a) for the amplitude and (b) for the phase response forf=π, for our system, the highest
valuewas found to be δ0=11.79±1.97. The dashed lines serve as a guide for the eye and denote the level
merging (black) and an anticrossing (yellow) spectrum.Whilst the first is the signal of interest, the latter is a
result from a direct crosstalk, of our systemwhichwas suppressed asmuch as possible in the experiment but still
non-zero (see [28]). Ideally, the ACfield contribution from themagnon port does not couple to the cavity port.
However, in case of a direct coupling, i.e. crosstalk, themagnon port serves as the input port andwemeasure an
additional transmission signal at the cavity port due to that crosstalk. At the conditions for resonant coupling,
the usual hybridization of a single-port drivenCMP sets in and is observed by an anticrossing. Thus, wemeasure
the superposition of our levelmerging spectrum and the anticrossing due to crosstalk. An attenuation of the
cavity port results in an increasing contribution of themagnon port which starts to dominate for δ0>1.Hence,
for high values of δ0, the transmission signal due to crosstalk is higher in amplitude than the reflection signal of
interest from levelmerging (see figure 6(a)).

Consequently, for higher values of δ0 where the exact value of δ0 depends on the intrinsic amount of
suppressing the crosstalk, it is not sufficient to only take the amplitude data into account to clearly identify the
presence of level attraction of our system. Therefore, the phase data has to be considered as well. As shown in
figure 6(b) and indicated again by the dashed black (levelmerging) and yellow (crosstalk anticrossing) it
confirms the levelmerging signal for δ0=11.79±1.97. It shows, that thewidth in terms of appliedmagnetic
field values around the resonancemagnetic field (Hres≈232. 6 mT)where the coupled system exhibits a
coalesced spectrum can be increased from zero at levelmerging, i.e. a direct crossing of the cavity photon and the
Kittelmode dispersion curves forf=π and δ0=1 [28], to≈0.5 mTby altering the value of δ0 towards higher
values. Simulations using equation (4) also show that this distance can be further increased for even higher
values of δ0 but due to the increasing contribution of crosstalk, our specific system ismeeting its experimental
limitations for δ0=11.79±1.97.

Figure 6.Dispersion spectra of the amplitude (a) and phase (b) forf=π and highestmeasured value of δ0=11.79±1.97 in a
logarithmic scale. The spectra are a superposition of two signals, as indicated by the dashed lines, which serve as a guide for the eye.
They are comprised of a levelmerging spectrum (black)with an additional avoided level crossing (yellow) at the same resonance
frequency. The relative weight of the crosstalkmeasured in transmission at the cavity port increases towards higher δ0 and has to be
taken into account. Thus, for the complex-valued coupling strength, this avoided level crossing adds a parasitic real-valued
contribution, which decreases thefield distance between the apexes of the levelmerging signal and has to be considered in the
calculation of d f¢( ( ))I g ,0 .
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5. Summary and outlook

In summary, we explained in detail an experimental approach to control the coupling strength by employing the
relative phase and amplitude ratio δ0 of a two-port drivenCMP.Wenumerically studied our new expression for
the regime of levelmerging with complex coupling strength. Furthermore, we experimentally demonstrated the
coexistence of level attraction and level repulsion and the characteristics of the two-port drivenCMP in the limit
of high δ0. Such coexistence not only demonstrates the broad tunability of our approach, but also how it is
possible to realise a type of ‘superposition’ states of the avoided level crossing and levelmerging regimewhere the
amount of transmitted information flow can be exactly set. Since increasing δ0 results in an enhancement of the
relative weight of the crosstalk in the recorded signal, i.e. lowers the signal-to-noise ratio, we also show
limitations of controlling the two-port drivenCMP’s coupling strength.

Moreover, we show that the system’sHamiltonian is non-Hermitian but depends on the phase and
amplitude configurations and it can still result in real eigenvalues of the CMP. This can be possible because the
introduction of a non-Hermitian term into theHamiltonian denotes the possibility for an open system, i.e.
dissipation is now includedwhich is also referred to as approximate non-Hermiticity [40, 36]. For instance, this
also describes radioactive decay or the introduction of dissipative systems in semiconductor physics. However,
even for non-Hermitian systems, the spectra can be real if the system is  symmetric, i.e. is invariant under
parity and time reversal transformations such that  =[ ]H , 0.  symmetric systems are studied inmany
differentfields such as in quantummechanics [41], opticalmicrocavities [42] ormagnetism andmagnonics [43].
This symmetry also started to receive interest in cavity spintronics and for CMPswhere the spectra and
behaviour of  symmetric CMPs have recently been discussed [20, 44, 45].

As shown in [20], the  symmetric state is achieved by carefully engineering the losses from the cavity
resonator and themagnons such that γa=κc=κm. Then, the coupling strength is tuned bymoving the
position of the YIG sphere in the cavity resonator. In case of geff=γa, the two separate eigenmodes of the
coupled system coalesce to one point. This singularity in the eigenvalues represents the hallmark of a non-
Hermitian system and this point is called an exceptional point (EP).What we showhere, is the possibility to
transition from avoided level crossing to levelmerging by tuning the relative orientation and amplitude of the
additional torque added to the system.However, neither the cavity dissipation nor themagnon dissipation are
directly accessed and tuned such as has been done in [22]. Rather, we change the relative contribution and
orientation of the additional torque, which then enhances or compensates the intrinsic system’s dissipation. As a
result, in addition to the high tunability between different coupling regimes, our two-port driven approach
offers the possibility for further studies towards  symmetricmagnon polaritons. However, the connection
and incorporation of the experimental results from this two-port driven system to the above discussion of 
symmetry and singularities such as EPs and requires further in-depth theoretical studies.

Finally, here we demonstrate control over the coupling regimewithout any direct changes of the
experimental setup, thus improvingmeasurement and analysis precision and being advantageous for
applications. Such controlmechanism over the spin-photon interaction could pave theway for deliberately
turning the coherent exchange of information on and off. That could enable future applications for data storage
and information processing. For instance, the addition of a nonlinear component such as a superconducting
circuit to the spin-photon system and the control over the coupling strength could control the photonmediated
interaction between the superconducting circuit (processing unit) and themagnons (storage unit).
Furthermore, by performing fastmanipulations of the polaritonmodeswith two independent but coherent
pulses to the cavity andmagnon system [46] building blocks for a quantum Internet can be realized, and thus,
pave theway for furthermagnon-based quantum computing research.
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