
\

Wallis, T. and Storer, T. (2018) Modelling Realistic User Behaviour in
Information Systems Simulations as Fuzzing Aspects. In: CAiSE’18 Forum,
Tallinn, Estonia, 11-15 June 2018, pp. 254-268. ISBN 9783319929002
(doi:10.1007/978-3-319-92901-9)

There may be differences between this version and the published version.
You are advised to consult the publisher’s version if you wish to cite from
it.

http://eprints.gla.ac.uk/206107/

 Deposited on 18 December 2019

Enlighten – Research publications by members of the University of
 Glasgow

http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/view/author/30857.html
http://eprints.gla.ac.uk/view/author/30857.html
http://eprints.gla.ac.uk/view/author/13378.html
http://eprints.gla.ac.uk/view/author/13378.html
http://dx.doi.org/10.1007/978-3-319-92901-9
http://dx.doi.org/10.1007/978-3-319-92901-9
http://eprints.gla.ac.uk/206107/
http://eprints.gla.ac.uk/206107/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Modelling Realistic User Behaviour in
Information Systems Simulations as Fuzzing

Aspects

Tom Wallis and Tim Storer

University of Glasgow, Glasgow, Scotland.
w.wallis.1@research.gla.ac.uk
timothy.storer@glasgow.ac.uk

Abstract In this paper we contend that the engineering of information
systems is hampered by a paucity of tools to tractably model, simulate
and predict the impact of realistic user behaviours on the emergent prop-
erties of the wider socio-technical system, evidenced by the plethora of
case studies of system failure in the literature. We address this gap by
presenting a novel approach that models ideal user behaviour as work-
flows, and introduces irregularities in that behaviour as aspects which
fuzz the model. We demonstrate the success of this approach through a
case study of software development workflows, showing that the intro-
duction of realistic user behaviour to idealised workflows better simulates
outcomes reported in the empirical software engineering literature.

1 Introduction

Information systems are operated within a wider organisational context, charac-
terised by the needs, demands and behaviours of individual users, interpersonal
relationships, organisational structures, business processes, legal and regulatory
standards, and cultural norms [? ?]. The influence of this socio-technical in-
terplay on system behaviour (and often failure) has been described in multiple
and diverse case studies of information systems, including automated emergency
vehicle dispatch [?], electronic voting [?] and stock market trading systems [?].
In each case, system failure cannot be attributed to either purely user behaviour
or the information system(s), but instead to an interplay between both factors
within the overall socio-technical system.

The contention in this paper is that these failures arise because systems en-
gineers lack the tools and methods to efficiently model and accurately simulate
the interaction between the information systems and their organisational con-
text, which comprise a socio-technical system. Without such facilities, systems
engineers cannot predict potential socio-technical system behaviour during in-
formation system design. Simulating this interaction between the information
system and users is hard because user behaviour is heterogeneous, contingent
and evolutionary, leading to irregularities in workflows envisaged by systems en-
gineers. Different users have different abilities, training and experiences and can

experience phenomena such as distraction, misjudgements, exhaustion and con-
fusion that can have significant influence on how and when a user completes a
task. For example, a novice developer working within a large software team may
be unaware of software development best practices described in a workflow, per-
haps forgetting to make frequent commits to a version control server. Conversely,
an experienced developer may omit steps that they consider unnecessary, such
as peer reviews of their code, to optimise their performance.

Information system users may also adapt their behaviour due to contingencies
that arise from faults in the information system or the behaviour of other users in
the environment [?]. Continuing the example scenario, a software development
team may be tempted to begin reducing quality assurance efforts as a deadline for
a release approaches, in an effort to ensure all required features are completed [?
]. Behaviour is also continually evolving, as the users of a system adapt to new
circumstances, discover optimizations to their workflows, adapt the workflow to
suit local organisational priorities or take shortcuts [?]. In the example scenario,
it is reasonable to anticipate that a novice developer’s behaviour will gradually
evolve into that of an expert as they gain more experience. As a consequence,
the de facto behaviour exhibited within a system may differ from that envisaged
by system architects in idealised workflows.

Despite the potential impact on system performance, the complexity of user
behaviour is cumbersome to model and therefore predict using conventional sys-
tems engineering notations for describing workflows, such as BPMN [?], activity
diagrams [?] and YAWL [?]. Attempting to model all the potential sequences
of actions that result from realistic user behaviour using these approaches inev-
itably results in models that are either too abstract or narrow to be informative,
or too complex to be tractable. Approaches that abstract the complexity of
user behaviour, such as i* [?], Kaos [?] and Responsibility Modelling [?] lack
sufficient detail to generate executable simulations.

The key insight of this paper is that the same behavioural irregularities can
affect many different idealised workflows. Conversely, a given user’s behaviour
can be modelled as the combination of expected ideal behaviour and the irregu-
larities that affect how that user exhibits their behaviour. Therefore, we propose
and demonstrate the separate modelling of behavioural irregularities from work-
flows themselves, showing that they can be represented as cross-cutting concerns
which can be applied to an idealised workflow model.

The two contributions of this paper are as follows:

– A method for simulating user interactions with information systems that
allows for the separate modelling of idealised descriptions of workflows and
the effects of irregularities on those workflows. The approach is implemented
in a framework comprising of aspect oriented programming [?] and dynamic
code fuzzing [?]. This combination allows for irregularities to be introduced
into workflow models without sacrificing readability or simplicity.

– A demonstration of the efficacy of the approach in a case study comparison
of Test Driven Development (TDD) and Waterfall software development
workflows. The case study demonstrates that models of idealised behaviour

in software development do not conform with the empirical evidence which
suggests that TDD outperforms Waterfall [? ? ?], but that models which
incorporate realistic user behaviour when interacting with information sys-
tems do.

The rest of this paper is structured as follows. Section 2 discusses related
work, covering existing techniques for modelling socio-technical workflows and
the limitations encountered in the literature. Section 3 introduces the case study
problem domain selected to evaluate our approach, and presents the method for
constructing models of information systems and associated workflows. Section 4
describes the development of aspect oriented fuzzing of user behaviour and the
software tool developed for this purpose. Section 5 presents our evaluation of the
case study and Section 6 discusses conclusions and future work.

2 Related Work

This section presents a literature review of approaches to modelling the interac-
tion between users and information systems. Graphical notations have received
considerable attention, perhaps due to their perceived efficacy in communic-
ating specifications between users, customers and system architects. Workflow
description languages, such as as UML activity diagrams [?], BPMN [?] and
YAWL [?] can be used to denote workflows visually as directed graphs com-
posed of activities, as well as forking and merging workflows. Although activity
diagrams are more widely adopted than BPMN, the latter provides a richer
modelling notation, allowing for discrimination between tasks, activities and
transactions; triggering and orchestrating concurrent activities using messages;
the identification of information resources need to realise an activity; and the
orchestration of activities across organisational boundaries. YAWL also provides
for a richer range of workflow requirements than activity diagrams, including
sophisticated forking and merging rules, separation between workflow specifica-
tions and executions and resourcing and data requirements.

Describing realistic user behaviour in workflow notations can be difficult,
because of the basic assumption that all paths in a workflow can be completely
described at a given level of granularity, and that more complex details can
be encapsulated within coarser grained modules. As argued in Section 1, user
behaviours are inherently complex, making such refinement based techniques
difficult to apply. As ?] have argued, the ‘unknowns’ in a socio-technical system
may be far more significant than the ‘knowns’.

Several authors have therefore discussed alternative techniques for modelling
socio-technical systems with support for complexity in behaviour. Both i* [?
] and KaOS [?] are goal oriented notations for modelling socio-technical sys-
tems [?]. In contrast to workflows, goal oriented approaches primarily capture
what system actors are seeking to achieve. Goals can be de-composed into a
sub-goal hierarchy using logical operators to express the form of decomposi-
tion. Goals can also be annotated with strategies and/or resource requirements

to support automated analysis. ?] argued that socio-technical systems should
be viewed as collections of collaborating actors, each with their own (poten-
tially conflicting) objectives. Eliciting and analysing the actors’ intents allows
the inter-dependencies between actors and the overall behaviour of the system
to be understood, without the need for explicit models of individual workflows. ?
] introduced techniques for annotating goal oriented system models with vague-
ness. The annotation allows for the distinction between consistent vagueness
(due to abstraction) and inconsistent vagueness due to omission. In principle,
this approach allows for the identification of aspects of a model that may be
subject to irregularity. However, the notation is not accompanied by a formal
semantics, or other means of supporting automated analysis.

Other authors have extended goal oriented approaches to provide greater
flexibility. ?] argued that stakeholders often struggle to express their behaviour
within a socio-technical system in terms of goals. Instead, they argue that the
concept of responsibilities, the duties held by an actor in a system, are a more
intuitive means of describing system behaviours that also capture a variety of
contingencies. Various notational features have been provided for extending re-
sponsibility modelling, including for linking between responsibilities and required
resources and for associating indicative workflows [?]. However, these are not
accompanied with a means of evaluating the effects.

The contributions made by ?] and ?] demonstrate the recognition of the need
for methods which capture the complexity of user interactions with information
systems. However, to the best of our knowledge there has been no attempt to
go further and develop methods which can simulate the effects of this behaviour
on the overall system. The observation made in Section 1 that the causes of
irregularities in workflow execution are separate concerns from the model of the
workflow itself invites a novel approach to the problem of simulating realistic user
behaviour. This approach combines dynamic software fuzzing, which provides
variation in the workflow model, with aspect oriented programming (AOP), to
decouple this behavioural variation from the idealised model.

The representation of cross-cutting concerns, such as access control, logging
and concurrency as program aspects has been extensively studied in the literat-
ure [?]; and the use of code fuzzing techniques have been employed extensively
in quality assurance practices, to assess the impact of unexpected events on
software systems, including fuzzing of software configurations at runtime [?],
mutation testing of test suites [?] and fuzzing of inputs test data to search for
software security vulnerabilities [?]. However, we have not discovered any similar
work on the application of fuzzing techniques to dynamically inject variation into
a simulation model at runtime in order to mimic complex user behaviour. Simil-
arly, we are unaware of any research that utilises AOP techniques in simulation
models, either for socio-technical user behaviours or elsewhere.

3 Team Based Software Development Case Study

In this section we demonstrate our approach to modelling information systems
and associated idealised workflows in socio-technical systems through a case
study. We have chosen a case study of team based software development, in
which we will explore the efficacy of the workflows of two software development
lifecycles (SDLC): Waterfall and Test Driven Development (TDD). The case
study was chosen as representative of a socio-technical system, combining differ-
ent user roles (developer, project manager), information systems (version control
server and client, and the software development effort itself) and a variety of well
documented idealised workflows (implementation, testing, debugging etc.). Fur-
ther, there is a growing consensus amongst software development professionals
and in the academic literature that TDD is a more resilient SDLC than Water-
fall to realistic human behaviour [? ? ?]. The case study therefore provides an
opportunity to test whether the modelling approach can be used to distinguish
between the effects of idealised and realistic user behaviours in a socio-technical
system. The model is implemented in an agent oriented framework, Theatre Ag,
written in Python. Fragments of the case study are provided as examples, but
the full source code is also available for inspection [?].

The first step in the modelling approach is to represent the state and func-
tions of the information systems in the case study. The domain is modelled as a
collection of Python classes, as shown in Figure 1, following an object oriented
approach [?]. The core information system is a version control server (VCS)
which hosts the software development effort. Software developers interact with
the server via a VCS client. Both the server and clients maintain copies of the
software system, which must be coordinated through a VCS update, conflict-
resolve, commit cycle. Software systems are composed of features, representing
user-facing specifications of the system’s functionality. Features may be of vary-
ing size, requiring more or fewer code chunks to be implemented in order to
be operational. Chunks may have dependencies on other chunks in the system.
Each time a new chunk is added to a feature other chunks may also need to
be modified, potentially creating further dependencies between chunks or intro-
ducing bugs. Features can be operated, causing some of the underlying chunks
and any dependencies to also be operated. Bugs may become manifest during
chunk operation, or through the execution of tests. Features can be debugged,
resulting in the removal of detected bugs. Consequently, the more tests created
for a feature, the greater the probability of detecting a given bug, easing the
process of debugging. All of the information system behaviours described above
and shown in the diagram are implemented as methods in Python classes.

The second modelling step is to define user behaviour workflows that will be
followed by users, represented by agents in the simulation environment. These
are also implemented as Python classes, collating related tasks to operate on a
common state (the information systems). Figure 2 shows classes for two of the
workflows created for the case study: change management and implementation.
The state for the change management workflow is the VCS server and a client
that manages the working copy. Separate task methods are provided for checking

SoftwareProject

deploy_and_operate()

SoftwareSystem

add_test()
add_feature()
operate()

Feature

size

extend()
debug()
refactor()
operate()

Chunk

modify()
debug()
refactor()
operate()

Bug

manifest()

Test

exercise()

VCSClient

update()
commit()
resolve()

VCSServer

checkout()
receive_commit()

*

*

*

dependencies

*

*

*

working_copy master

Figure 1: The software development case study domain model, showing inform-
ation system artefacts and functions that can be accessed by user workflows.

out the client, committing working copy changes to the server and resolving
conflicts that arise during a commit task.

Note that many of the functions of the information system have side effects
that are modelled stochastically, such as the possibility that an update from the
version control server will result in conflicts with another client’s commit. The
workflows therefore explicitly pass a source of randomness to the information
system model when these actions are invoked.

Further workflows were implemented for common software development activ-
ities, including the specification and implementation of features in the system,
debugging and refactoring (reducing dependencies), and testing. Since workflows
are modular they can also be organised hierarchically. Figure 2 shows how this
modularity is exploited for the implementation workflow. The other workflows
for modifying the structure of a software system (for adding chunks or tests and
so on) also depend on the change management workflow in order to coordinate
the distribution of changes within a team.

Two further workflows, Waterfall and Test Driven Development (TDD) were
implemented to investigate the performance of different team based software
development lifecycles (SDLC). The Waterfall SDLC [?] describes a linear staged
approach to system development, in which specification of all features is followed
by system implementation, testing, debugging, refactoring and final deployment.
Conversely, TDD [?] prescribes the definition of tests for each feature, before
proceeding to implementation and refactoring. Advocates of TDD argue that
such an approach results in software that is delivered quicker and of higher
quality because tests are explicitly linked to the specification and features are
not committed without a passing test suite.

class ChangeManagement(object):
def __init__(self, vcs_server):

self.vcs_server = vcs_server
self.vcs_client = None

@default_cost(1)
def resolve(self, conflict, rand):

self.vcs_client.resolve(conflict, rand)

@default_cost(0)
def commit_changes(self, rand):

while True:
try:

self.vcs_client.commit()
self.vcs_client.update(rand)
break

except CentralisedVCSException:
self.vcs_client.update(rand)
for conflict in self.vcs_client.conflicts:

self.resolve(conflict, rand)

@default_cost(0)
def checkout(self):

self.vcs_client = self.vcs_server.checkout()

class Implementation(object):
def __init__(self, change_management):

self.change_management = change_management

@property
def working_copy(self):

return self.change_management.vcs_client.working_copy

@default_cost(1)
def add_chunk(self, chunk_logical_name, feature, rand):

feature.extend(chunk_logical_name, rand)

@default_cost()
def implement_feature(self, logical_name, rand):

self.change_management.checkout()

feature = self.working_copy.get_feature(logical_name)

while not feature.is_implemented:
self.add_chunk(len(feature.chunks), feature, rand)
self.change_management.commit_changes(rand)

@default_cost()
def implement_system(self, rand):

self.change_management.checkout()
for feature in self.working_copy:

self.implement_feature(feature, rand)

Figure 2: Python code for workflows describing change management and software
implementation.

Once the models of the information systems and workflows are complete,
simulations can be executed in Theatre Ag, which are initiated by allocating a
set of tasks (individual methods in a workflow) to agents in the system. This may
lead to the creation and execution of further tasks by agents, or to the allocation
of tasks to other agents. In the case study, simulations were configured to repres-
ent a team of software developers working on a software project following both
types of SDLC. For Waterfall, the initial configuration specified an agent in the
team with the role of project manager. This agent is directed to allocate tasks for
each stage of the software development process (specification, implementation,
testing, debugging, refactoring) to other agents in the team and waits for all
tasks in each stage of the development process to be complete before allocating
tasks in the next stage. For TDD, all members of the software development were
configured to draw features to be implemented from the project backlog and
implement them following TDD.

All task execution is coordinated relative to a single simulation clock, en-
abling both the explicit representation of problem domain time for controlling
task execution and concurrent execution of these tasks by agents. Task costs
are denoted using the @default_cost decorator in a workflow as shown in Fig-
ure 2. The agent pauses execution of a task until sufficient ticks from the clock
have been received and then resumes execution. This mechanism is implemented
transparently with respect to workflow classes, easing the modelling burden. The
execution of tasks and their duration is logged in a tree-like structure by each
agent, supporting later inspection and analysis of behaviour.

4 Modelling Irregularity in Behaviour as Fuzzing Aspects

In this section the approach to modelling irregularities in user behaviour is
demonstrated. To achieve this, an irregularity is modelled as a dynamic fuzzing
aspect using the library developed for this purpose, PyDySoFu [?]. PyDySoFu
interrupts the invocation of workflow task methods in the background during the
execution of a simulation. When a workflow task method that can be subject
to irregularity is invoked, PyDySoFu pauses the simulation thread of execution
and passes the method context and structure (represented as the abstract syn-
tax trees of the statements in the method body) to a modeller defined fuzzing
function. The fuzzing function then manipulates the structure of the method
AST and context as desired and returns the AST to PyDySoFu. In a final stage,
PyDySoFu compiles the altered AST and resumes simulation execution by invok-
ing the altered method. Further implementation details are omitted for brevity,
but the full source code of the PyDySoFu library and documentation is available
for inspection [?].

In order to evaluate the feasibility of the approach, a fuzzing aspect that
mimics distraction was implemented using PyDySoFu. The distraction aspect
represents irregularities in expected behaviour when a user engaged in one task
becomes distracted by another, irrelevant activity and so does not complete later
steps in the intended workflow. The probability of distraction increases as the

def default_pmf(concentration=1.0):

def _probability_distribution(remaining_time, probability):
adjusted_probability =\

probability ** ((remaining_time + 1.0) * concentration)

return sys.maxint if adjusted_probability == 1.0 \
else int(1.0 / (1.0 - adjusted_probability) - 1)

return _probability_distribution

def incomplete_procedure(random, pmf=default_pmf()):

def _incomplete_procedure(steps, context):
clock = context.agent.clock
remaining_time = clock.max_ticks - clock.current_tick

n = pmf(remaining_time, random.uniform(0.0, 0.9999))

fuzzer =\
recurse_into_nested_steps(

target_structures={ast.While, ast.For, ast.TryExcept),
fuzzer=filter_steps(

choose_last_steps(n, reapply=False),
replace_steps_with(

replacement=’self.agent.idling.idle()’
)))

return fuzzer(steps, context)

return _incomplete_procedure

Figure 3: An aspect which dynamically truncates the execution of a workflow to
represent a distracted user operating a system.

simulation proceeds, i.e. the probability of moving to an irrelevant task increases
the longer a simulation has been executing. For example, a software development
team may be distracted from the implementation of tests and debugging as the
pressure to complete a set of features increases, due to an impending release
deadline. Conversely, the aspect also allows the probability of distraction to
be reduced by increasing the concentration of a simulated user (i.e. users with
better concentration do not get distracted as easily). The implementation of the
incomplete_procedure fuzzing aspect is shown in Figure 3.

The fuzzing aspect is parameterised, so the actual aspect is defined as the
inner function _incomplete_procedure. The first four lines of the inner func-
tion configures a probability mass function (PMF) for choosing how many steps
should be removed by the aspect, n, based on the remaining time in the simu-
lation and the agent’s concentration. The default PMF is shown in the figure,
although this can be configured by the modeller.

PyDySoFu is accompanied by a library of aspects from which more complex
aspects can be constructed and parameterised. This includes functions for re-
cursing into control structures and selecting and replacing steps based on their
position in the AST. These features are exploited in the second part of the
fuzzer, which recurses into any nested control structures (while, for and try)

found in the method and applies a filter to the bodies of these statements, tail
first. The filter_steps aspect selects up to n steps to remove from the body and
replaces each of them with an invocation of idle(), causing the agent executing
the workflow to wait one tick for each replaced step. The filter_steps aspect
is then applied successively up through the target AST. The choose_last_steps
filter is configured to track how many steps it has already removed, so that the
value of n is calculated across the entire body of the fuzzed task method, rather
than at each level in the recursion.

Notice that the fuzzing aspect models the effects of distraction independently
of its application to a particular workflow. This allows the effects of this irregular
behaviour to be applied transparently to any of the different user workflows in the
simulation. In the current work, it is not claimed that the implementation of the
aspect is empirically accurate, rather that it is representative of a qualitatively
recognisable phenomena that is better modelled separately from the workflow;
and that the approach allows for the effect of the phenomena on a workflow at
different degrees of severity to be assessed. Also, it is not claimed that distraction
is the only cause of irregularities in behaviour in software development workflows.
Rather, we present distraction as an example of a cause of irregularity that may
affect many different workflows in the same way, and demonstrate the approach
to modelling it separately as a cross-cutting concern.

5 Evaluation

This section presents the results of applying the user behaviour fuzzing method
to the case study. Evaluating the correctness of simulation techniques inten-
ded for large scale systems is notoriously difficult, since the usual rationale for
developing the simulation is the lack of available empirical observations of the
real world phenomena [?]. However, in the context of the case study, limited
empirical evidence exists that suggests TDD outperforms Waterfall in terms of
features delivered and software quality [? ? ?]. The evaluation will therefore
adopt a hybrid strategy.

Following ?], the model of the problem domain will first be tested for plaus-
ibility. A comparison of simulations of user behaviour with and without the ap-
plication of dynamic aspect fuzzing will then be made. The first comparison will
test whether two SDLC workflow models perform equivalently when executed in
ideal circumstances, i.e. that simulations of ideal behaviour do not conform with
results presented in the literature. The second comparison will test whether the
TDD workflow simulation out-performs Waterfall when user behaviour varies
from the ideal workflow due to the effects of distraction, in conformance with
the literature.

Simulations of the problem domain were configured as follows. A single
source of randomness was initialised for each configuration with a constant seed
to provide for repeatability of the experiment and to provide for comparison
between configurations. All configurations were executed for a team of 3 soft-
ware developers, with simulations executing for a maximum of 500 ticks. Each

0 5 10 15 20 25

#chunks

0

2000

4000

6000

8000

#
co

m
m

it
s

(a) Commits against project size.

0 5 10 15 20 25

#chunks

0

100

200

300

400

m
tf

a
v
g

(b) Mean time to failure.

Figure 4: Scatter plots of software development simulations without fuzzing for
Waterfall (blue) and TDD (red) projects.

configuration was run for 25 different projects. The system ‘built’ by the sim-
ulation was operated 10 times, in order to measure software quality. Operation
of the simulated system entails random selection and operation of features up
to 750 times. If a bug is manifested during operation then the system operation
halts. The length of the average trace of the operations of the system was re-
corded as the system’s mean time to failure (MTF). Software projects consisted
of up between 1 and 6 features, with projects divided into small (2 chunks per
feature) and large (4 chunks per feature). Both the Waterfall and TDD SDLC
workflows were simulated. In either case, the incomplete procedure distraction
aspect was applied to either the high level software development workflow, or to
the set of lower level development activity workflows (implementation, change
management etc.). The aspect was applied using concentration values between
0.001 and 5.0. Raw simulations results are available for inspection [?].

In the first part of the evaluation, simulations of the software development
workflow were considered for ideal behaviours, without the effects of distraction
applied. Figure 4 illustrates two comparisons of simulations to establish problem
domain plausibility. Figure 4a shows that there is an exponential increase in
the number of commits to the version control server as project size increases.
This result is to be expected due to the exponential increase in the number of
additional modifications, tests, debugging and refactoring activities that would
be required as a project grows in scale. Similarly, Figure 4b shows a decline in
project quality (a reduction in the MTF from 300 to just above 0) as project
size increases. Again, the additional complexity of larger projects increases the
probability of a bug causing a system failure. These results strengthen the claim
that the model of the problem domain is plausible.

A further observation from the figures is that TDD and Waterfall work-
flows perform equivalently when workflows are not subject to user distraction.
When ideal workflows are executed for both Waterfall (blue) and TDD (red),
the results show similar metrics for each. This confirms the expectation that

0 100 200 300 400 500 600

#statements removed

0

1

2

3

4

5

6

7

#
fe

a
tu

re
s

co
m

p
le

te
d

(a) Fuzzing of Waterfall and TDD.

0 100 200 300 400 500 600

#statements removed

0

1

2

3

4

5

6

7

#
fe

a
tu

re
s

co
m

p
le

te
d

(b) Fuzzing of low-level workflows.

Figure 5: Scatter plots and trend lines of feature completion for Waterfall (blue)
and TDD (red) for distraction applied to selected workflows.

the simulations of idealised workflows, while behaving plausibly, do not conform
with expectations from the literature that TDD should outperform Waterfall.

We now proceed to compare the performance of the two strategies when
subject to behavioural irregularity caused by distraction. Figure 5 shows scatter
plots for the effect of distraction for subsets of workflows on productivity. In both
plots, the number of features implemented is plotted against the total number
of workflow statements removed by fuzzing (Waterfall in blue, TDD in red).
Figure 5a shows the effect when only the high level software development work-
flow (Waterfall or TDD) is fuzzed, whereas Figure 5b shows the effect of fuzzing
lower level activities (change management, implementation, testing, debugging
and refactoring). Both figures clearly demonstrate that increasing distraction re-
duces the number of completed features. However, in both configurations, TDD
is more resilient to distraction fuzzing than Waterfall, with a larger proportion
of features implemented as steps are removed. In Figure 5, both SDLC workflows
appear to be largely immune to distraction until around 100 steps are removed,
after which feature completion declines, with steeper declines for Waterfall.

Figure 6 shows the effect of distraction on MTF, again distinguishing between
Waterfall (blue) and TDD (red) SDLCs. In these plots, both workflow fuzzing
configurations described above are plotted together, as their effects are similar.
Instead, small and large feature projects are plotted separately, as these have dif-
ferent orders of magnitude MTF. Similar to the plots of feature completion, the
plots of MTF suggest that TDD is more resilient to fuzzing than Waterfall, which
experiences a much more dramatic decline as more statements are removed. In
summary, the two comparisons of productivity and quality demonstrate that the
application of distraction fuzzing results in more realistic simulations of user be-
haviour in software development workflows, as found in the available literature.

0 100 200 300 400 500 600

#statements removed

0

50

100

150

200

250

m
tf

(a) Small projects.

0 100 200 300 400 500 600

#statements removed

0

10

20

30

40

50

m
tf

(b) Large projects.

Figure 6: Scatter plots and trend lines of MTF for Waterfall (blue) and TDD
(red) for distraction applied to all workflow combinations.

6 Conclusions

This paper has presented and evaluated a novel approach to modelling and
simulating realistic user behaviours when interacting with information systems,
through the use of model fuzzing aspects. The novelty of this approach is the
ability to model the causes of realistic user behaviour (such as distraction) sep-
arately as aspects that can be applied flexibly to many different workflows in a
simulation. The efficacy of the approach is demonstrated in the introduction of
realistic user behaviour to an example system simulation, which better conforms
with results in the literature without altering the original workflows.

This proof of concept presents the opportunity for a substantial research
agenda in the modelling and simulation of user interaction with information sys-
tems, in order to better predict emergent system properties. Further research
is necessary to test the viability of the approach in more complex, large scale
simulations, such as the election e-counting system described by ?], comprising
whole information infrastructures and many diverse users. This will provide op-
portunities to experiment with a variety of other causes of irregularity in user
behaviour, such as subjective misjudgements, exhaustion, reordering of steps
and shortcut taking. Interdisciplinary research is required to develop and val-
idate the realism of the fuzzing aspects that implement these user behaviours,
and a library of pre-validated aspects could be made available to ease modelling.
There is a need to link empirical evidence of the causes and occurrences of these
behaviours to their impact on a workflow’s simulation and real-world execution.

The overall aim of this research agenda is towards simulation techniques
that can have predictive capabilities suitable for informing systems engineering
decisions, before resources are allocated toward them. Such tools would do much
to progress the current craft of large scale information systems engineering.

Acknowledgements

The authors would especially like to thank Gordon Baxter, Phil Trinder and
Russell Lock for their help when revising this paper, and OBASHI Technology
for helping to fund the work.

	Cover Sheet (AFV)
	206107

