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Abstract. Methanogenic sludge granules are densely packed, small (diameter, 1 

approx. 0.5-2.0 mm) spherical biofilms found in anaerobic digesters used to treat 2 

industrial wastewaters, where they underpin efficient organic waste conversion and 3 

biogas production. A single digester contains millions of individual granules, each of 4 

which is a highly-organised biofilm comprised of a complex consortium of likely 5 

billions of cells from across thousands of species – but not all granules are identical. 6 

Whilst each granule theoretically houses representative microorganisms from all of 7 

the trophic groups implicated in the successive and interdependent reactions of the 8 

anaerobic digestion process, parallel granules function side-by-side in digesters to 9 

provide a ‘meta-organism’ of sorts. Granules from a full-scale bioreactor were size-10 

separated into small, medium and large granules. Laboratory-scale bioreactors were 11 

operated using only small (0.6–1 mm), medium (1–1.4 mm) or large (1.4–1.8 mm) 12 

granules, or unfractionated (naturally distributed) sludge. After >50 days of 13 

operation, the granule size distribution in each of the small, medium and large 14 

bioreactor types had diversified beyond – to both bigger and smaller than – the size 15 

fraction used for inoculation. ‘New’ granules were analysed by studying community 16 

structure based on high-throughput 16S rRNA gene sequencing. Methanobacterium, 17 

Aminobacterium, Propionibacteriaceae and Desulfovibrio represented the majority of 18 

the community in new granules. H2-using, and not acetoclastic, methanogens 19 

appeared more important, and were associated with abundant syntrophic bacteria. 20 

Multivariate integration analyses identified distinct discriminant taxa responsible for 21 

shaping the microbial communities in different-sized granules, and along with alpha 22 

diversity data, indicated a possible biofilm life cycle. 23 

Importance. Methanogenic granules are spherical biofilms found in the built 24 

environment, where despite their importance for anaerobic digestion of wastewater 25 
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in bioreactors, little is understood about the fate of granules across their entire life. 1 

Information on exactly how, and at what rates, methanogenic granules develop will 2 

be important for more precise and innovative management of environmental 3 

biotechnologies. Microbial aggregates also spark interest as subjects in which to 4 

study fundamental concepts from microbial ecology, including immigration and 5 

species sorting affecting the assembly of microbial communities. This experiment is 6 

the first, of which we are aware, to compartmentalise methanogenic granules into 7 

discrete, size-resolved fractions, which were then used to separately start up 8 

bioreactors to investigate the granule life cycle. The evidence, and extent, of de novo 9 

granule growth, and the identification of key microorganisms shaping new granules 10 

at different life-cycle stages, is important for environmental engineering and microbial 11 

ecology. 12 

  13 
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INTRODUCTION 1 

 2 

Biofilms form in a wide range of natural and built environments, and have important 3 

significance for biogeochemical cycling in Nature, as well as for clinical and industrial 4 

applications. Moreover, evidence suggests that most microorganisms form, or can 5 

be found in, complex biofilm aggregates (1). Aggregation is an ancient process that 6 

has allowed prokaryotic life to thrive even in the harshest of environments (2). 7 

However, though biofilms are classically found as layers, or films, attached to 8 

suitable surfaces – from rocks, to medical devices, to ship hulls – aggregation may 9 

also occur due to self-immobilisation of cells into discrete structures, such as flocs or 10 

granules, without the involvement of a surface. Many such examples can be found in 11 

engineered environments, such as in biological wastewater treatment, where 12 

prevailing conditions of shear, and hydrodynamic, stresses promote flocculation and 13 

granulation. Common types include anaerobic ammonium oxidising (annamox) 14 

granules (3), aerobic granules (4), and anaerobic (methanogenic) granules (5).  15 

 16 

Indeed, the success of high-rate anaerobic digestion (AD) – which is widely applied 17 

to treat a range of industrial wastewaters – is underpinned by the spontaneous 18 

generation of active biomass in the form of anaerobic granules (AnGs) (Fig 1), which 19 

are small (approx. 0.5-2.0 mm), densely-packed biofilm spheres comprising the 20 

complex microbial community necessary for the complete mineralisation of organic 21 

pollutants by AD (6). The settleabilty of AnGs accounts for long biomass retention – 22 

even in ‘upflow’ bioreactors, such as the upflow anaerobic sludge bed (UASB) and 23 

expanded granular sludge bed (EGSB) bioreactors, operated with short hydraulic 24 

retention times (HRT), and very high volumetric loading and up-flow velocities (7). 25 
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 1 

A single granule can contain billions of microbial cells from thousands of species 2 

juxtaposed, and immobilised, within a complex matrix of extracellular polymeric 3 

substances (EPS). Within these highly organised consortia, a collection of microbial 4 

trophic groups mediates a cascade of interdependent reactions resulting in complete 5 

degradation of complex organic wastewater pollutants. Equally, the consortium’s 6 

species rely on efficient mass transfer of substrates into, and throughout, the 7 

granule. 8 

 9 

Granulation is a process whereby suspended particles and planktonic cells 10 

accumulate, forming small dense biofilm aggregates (6). Unlike conventional biofilm 11 

formation, which is a well-documented phenomenon, less is understood about 12 

granulation of anaerobic sludge. Hulshoff Pol et al. (8) comprehensively reviewed the 13 

topic, summarising the various theories proposed on granulation, which they 14 

categorised as physical, microbial or thermodynamic. However, none has been 15 

solely accepted as a ‘unified theory on anaerobic granulation’ (9). The only 16 

consensus seems to be that Methanosaeta concilii, an acetoclastic methanogen, is a 17 

key organism in the process (8) due to its filamentous morphology. These archaea 18 

can either (i) aggregate together, (ii) attach to suspended particles, or (iii) potentially 19 

form a bridge between existing microflocs – aiding in the critical first step of forming 20 

granule precursors (10–12). Moreover, whilst several theories have been promoted 21 

on granulation mechanisms, the growth, development and evolution of AnGs has 22 

been largely overlooked. 23 

 24 
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An intensive characterisation of anaerobic granules by (13) produced a granular 1 

growth hypothesis and life-cycle model, built upon pragmatic observations of 2 

previous studies suggesting small granules are ‘young’ and large granules are ‘old’ 3 

or mature (14–16). The granular growth hypothesis proposed small granules grow by 4 

cell accumulation and replication – which is similar to classical biofilm growth models 5 

(2, 17) – into medium-sized, intact, and highly-active granules. These grow into large 6 

granules, but the structure weakens as external shear stresses, and gas diffusion 7 

from the interior of the biofilm, cause cracks and voids in the biofilm structure (16). 8 

The hypothesis proposes the fate of the largest, oldest granules, as breaking apart 9 

into smaller biofilm ‘bits’ or layers. The broken parts, however, are still comprised of 10 

active biomass and eventually round over to form the basis for new, small granules – 11 

the entire process being cyclical (Fig 1). Such a model for granule growth along a 12 

predictable life-cycle inside anaerobic bioreactors could not only provide 13 

opportunities for precision management of sustainable, efficient wastewater 14 

treatment applications, but also improve our understanding of microbial community 15 

assembly and succession in dynamic biofilms.  16 

 17 

Many studies have focused on granulation (8), and associated dynamics of physico-18 

chemical properties and microbial community structure. Fewer studies, however, 19 

have attempted to follow the fate of granular biofilms over their entire life. Indeed, 20 

microbial aggregates provide potentially fascinating opportunities as “parallel 21 

evolutionary incubators”, as previously suggested (18). Intense interest now 22 

surrounds the study of granular biofilms as playgrounds to investigate fundamental 23 

concepts in microbial ecology (19). Recent studies (20, 21) have used granules – 24 
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albeit aerobic, and not anaerobic, granules – to study the roles of phenomena, such 1 

as immigration and species sorting, driving microbial community assembly. 2 

 3 

The purpose of this study was to test the granular growth and life-cycle hypothesis; 4 

to determine whether granules do, indeed, grow and develop in a predictable way, 5 

from small to medium and, finally, to large. This is the first experiment, of which we 6 

are aware, to compartmentalise granules into size-resolved fractions (small, medium 7 

and large), which were then used to separately start up bioreactors to investigate the 8 

granule life cycle. Moreover, undisturbed sludge, providing a ‘meta-community’ and 9 

full complement of size fractions, was used as a comparator. The extent, nature and 10 

ecology of ‘new’ granules emerging in the experiments was monitored. 11 

 12 

RESULTS 13 

 14 

Bioreactor performance.  15 

 16 

The twelve laboratory-scale bioreactors set up across the four conditions tested – i.e. 17 

RS1-RS3 containing only ‘S’ granules (Ø, 0.6-1.0 mm), RM1-RM3 containing only ‘M’ 18 

granules (1.0-1.4 mm), RL1-RL3 containing only ‘L’ granules (1.4-1.8 mm), and RN1-19 

RN3 containing a full complement of unfractionated, naturally distributed (N) sludge 20 

(S, M and L, as well as XS and XL) – allowed the emergence of new granules to be 21 

detected and studied. The operating conditions were selected to mimic, as closely as 22 

possible, the conditions of the original full-scale bioreactor with respect to mean 23 

temperature, upflow velocity, organic loading rate and feed type (Table 1). Each of 24 

the three sets of bioreactors performed similarly. During the first week (Phase 1), 25 
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influent pH decreased (mean, pH 4.1) in each of the bioreactors. After 1 

supplementation of the influent with sodium bicarbonate, the pH stabilised (mean, pH 2 

7.8) over the remainder of the experiment. Biogas methane concentrations were low 3 

during the initial acidification experienced during Phase 1 but increased during 4 

Phase 2 (Fig 2). 5 

 6 

Measurements of total chemical oxygen demand (tCOD) include both soluble 7 

(sCOD) and particulate COD (pCOD), and so the difference between tCOD and 8 

sCOD measurements indicates the concentration of pCOD. During Phase 1, more 9 

COD left the bioreactors than was fed to them (Fig 2). However, only soluble COD 10 

(and no pCOD) was fed to the bioreactors (sCOD was equal to tCOD in influent) and 11 

most of the tCOD in effluent during Phase 1 appeared as pCOD (Fig 2), indicating 12 

the COD mostly reflected sludge washout during the first week. This was largely 13 

reversed for the remainder of the trial, and COD removal improved significantly over 14 

the subsequent approximately four weeks (Phase 2), culminating in roughly 50% 15 

sCOD removal efficiencies by each of the bioreactors. Nonetheless, COD removal 16 

was lower again during the final approximately two weeks of the trial (Phase 3; Fig 17 

2). Acetate, propionate and butyrate contributed to 50-90% of effluent sCOD (Fig 2).  18 

 19 

Biomass washout was observed from each bioreactor variously over the course of 20 

the 51-d experiment, including from the ‘naturally-distributed’ condition (RN1-3). 21 

Bioreactor RN2 failed – and was stopped – on day 22, due to the loss of 52% of the 22 

sludge. The remaining 11 bioreactors experienced losses reaching up to 50%. 23 

Washout of biomass was noted throughout the trial, but increased during Phase 3 24 
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(as evidenced by higher pCOD concentrations; Fig 2). A net gain in biomass was 1 

observed in only two bioreactors, RL1 and RL3 (Fig S1).  2 

 3 

Shifts in granule size distribution. Size fractionation of biomass at the conclusion 4 

of the trial showed that the distribution of granule sizes had changed, and new 5 

granules – or ‘emerging sizes’ – were apparent in all of the bioreactors (Fig 3). 6 

Whereas granules were initially only one size, many new sizes had emerged after 51 7 

days. In all three of the RL bioreactors, and in two of the RM bioreactors, a full range 8 

of sizes (from the XS, S, M, L, XL classifications) had emerged (Fig 3). In the two 9 

surviving RN bioreactors, granules each of the five size classifications were still 10 

present, although the proportion of granules in M or above had increased. In fact, 11 

with only the exception of L granules in RS2 and RM2, and XL granules in RS2 & RS3, 12 

all five sizes emerged from all bioreactors (Fig 3).  13 

 14 

Microbial community structure of emerging granules. Alpha diversity 15 

measurements, using Shannon Entropy, indicated similar trends for emerging 16 

granules from the RM and RL bioreactors (Fig 4). A linear reduction in alpha diversity 17 

– similar to the trend previously observed (13)– was apparent from S through to XL 18 

granules (i.e. there was more diversity in the microbial communities found in S 19 

granules than in bigger ones). Nonetheless, the alpha diversity in XS granules was 20 

significantly lower than in S granules – rather than higher as might have been 21 

expected based on previous findings (13). In fact, the diversity found in XS granules 22 

was similar to the diversity in XL granules (Fig 4).  23 

 24 
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The initial (Day 0) community structure comprised of a mix of hydrogenotrophic 1 

(Methanobacterium, Methanolinea) and acetoclastic (Methanosaeta) methanogens 2 

(archaea). At the same time, the bacteria found to be relatively most abundant were 3 

generally all heterotrophic fermenters. Over the course of the trial, the make-up of 4 

the most abundant taxa shifted considerably. Across all of the new (or growing) 5 

granules – i.e. the emerging sizes from the bioreactors – the community structure 6 

was dominated by four operational taxonomic unit (OTU) classifications of 7 

Methanobacterium, in many cases accounting for 25-50% of the relative abundance 8 

of all taxa (Fig 4). Interestingly, Methanosaeta completely disappeared from amongst 9 

the 25 most abundant OTUs. Other highly abundant taxa included Aminobacterium, 10 

Propionibacteiraceae and Desulfovibrio. 11 

 12 

Multivariate integration (‘MINT’) algorithms used for study-wise discriminant analyses 13 

(see Supplemental Material) identified a total of 38 ‘discriminant’ OTUs from two 14 

selected ‘components’ (Fig S2). Discriminant OTUs formed two phylogenetic clades 15 

from 11 distinct phyla. Mean relative abundances of these OTUs showed two 16 

general groupings: (i) those OTUs more abundant in either, or both, of the emerging 17 

XS and XL sized granules, and (ii) those OTUs which were more abundant in the 18 

emerging S, M, and L granule sizes. 19 

 20 

DISCUSSION 21 

 22 

Emerging sizes: granules grow. This study demonstrates that methanogenic 23 

granules in anaerobic digesters do, indeed, ‘grow’. In each of the nine bioreactors 24 

started up with granules from a discrete size classification (Fig 5), the final 25 
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distribution of granule sizes shifted to include new (or ‘grown’) granules that were 1 

either larger or smaller than the original granules (Fig 3, Fig ). The emergence of 2 

larger granules almost certainly indicates the growth of granules due to cell 3 

replication and the accumulation of formerly planktonic cells from the surrounding 4 

environment. The emergence of granules smaller than the original biomass might be 5 

explained in two ways: that (i) completely new granules formed from planktonic cells 6 

in the wastewater and the granulation process was continually initiated inside the 7 

digester, or (ii) bits and pieces of older, larger granules broke away and provided the 8 

foundation for new, small granules. The second explanation also points to a potential 9 

life-cycle of methanogenic granulation. What is actually likely, we suggest, is that 10 

both phenomena proceed simultaneously. 11 

 12 

An important component of the experiment was the set of bioreactors (RN) started up 13 

with a full complement of granule sizes, representing a sort of ‘meta-community’ of 14 

individual ecosystems (individual granules) – inspired in part by the recent 15 

description (18) of soil aggregates as parallel incubators of evolution. In the RN 16 

bioreactors, the size distribution shifted during the experiment toward larger 17 

granules. This could be due to growth, and/or the operational conditions of the 18 

bioreactors selecting for larger sizes (i.e. the hydraulic regime and shear stresses 19 

applied). Another possible explanation could be that the sludge lost from the RN 20 

bioreactors during the experiment included smaller granules although there was no 21 

indication that smaller granules were preferentially lost from any of the other (RS, RM 22 

or RL) bioreactors. Indeed, for example, many XS granules, which emerged in the RS 23 

bioreactors, appeared to resist washout and were retained in those bioreactors. 24 

 25 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/667386doi: bioRxiv preprint first posted online Jun. 11, 2019; 

http://dx.doi.org/10.1101/667386
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Page 13 

Emerging pathways: dominance of hydrogenotrophic methanogenesis. The 1 

predominant members of the emerging microbiome across all of the samples 2 

included Methanobacterium, Aminobacterium, Propionibacteriaceae and 3 

Desulfovibrio species. Hori et al. (22) that found low pH and increasing VFA 4 

concentrations in anaerobic digesters resulted in more abundant Methanosarcina 5 

(acetoclastic & hydrogenotrophic methanogens) and Methanothermobacter 6 

(hydrogenotrophic methanogens) but fewer Methanoculleus (also hydrogenotrophic), 7 

concluding that VFA accumulation strongly influences archaeal community structure. 8 

Kotsyurbenko et al. (23) subsequently expounded this generalised conclusion, 9 

finding temporally falling pH in an acid peat bog shifted community structure from 10 

acetoclastic to hydrogenotrophic methanogens, concluding that pH shapes 11 

methanogenic pathways. 12 

 13 

This was also supported by our experiment. Methanosaeta – an acetoclastic 14 

methanogen, which was abundant in the granules on Day 0 – was not detected in 15 

the emerging granules, whilst Methanobacterium – autotrophic, H2-using 16 

methanogens (24–28) also capable of formate reduction (29) – were dominant and 17 

likely feeding on increased dissolved hydrogen resulting from the accumulating VFA 18 

(30). Propionibacteriaceae – a family of heterotrophic glucose fermenters, producing 19 

propionate and acetate as primary products (31) – were also abundant in new 20 

granules, likely as VFA-producing acetogens. It is, of course, interesting to observe 21 

that granules emerged in this experiment without the apparent dominant involvement 22 

of the filamentous Methanosaeta spp., which tends to contradict the conventional 23 

understanding of granulation microbiology. 24 

 25 
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Emerging ecology: supporting syntrophic relationships. The dominance of 1 

hydrogenotrophic methanogens (Fig S3) in the emerging granules appeared to 2 

support the abundance of syntrophic bacteria, including Aminobacterium – 3 

heterotrophic fermenters of amino acids that grow well with methanogenic, H2-4 

consuming partners, such as Methanobacterium (32, 33) – and Desulfovibrio – 5 

sulfate-reducing bacteria (SRB) widespread in the environment (34), where they 6 

respire hydrogen or organic acids (35) often in syntrophy with methanogens (36). 7 

Interspecies metabolite exchange and hydrogen transfer (37) between syntrophic 8 

partners is critical in AD because the oxidation of organic acids and alcohols by 9 

acetogens may be thermodynamically feasible only when hydrogenotrophic 10 

methanogens (in this case, likely the Methanobacterium) consume, and maintain 11 

sufficiently low concentrations of, H2. It is clear that the microbial community – 12 

including in the emerging granules – responded to the prevailing environmental 13 

conditions within the bioreactors. Indeed, had there not been an accumulation of 14 

VFA in the bioreactors and a striking dominance of the H2-oxidising methanogens, a 15 

different community – perhaps characterised more strongly by the acetoclastic 16 

methanogens, such as Methanosaeta – may have developed. 17 

 18 

Emerging discriminants: size-specific OTUs. In general, the communities of all 19 

emerging granules were very similar with some, though few, significant differences in 20 

alpha diversity and rarefied richness. Nonetheless, 32 study-wise discriminants could 21 

be identified, using MINT-sPLS analysis, which were responsible for minor 22 

community shifts across the emerging granules from each bioreactor set. 23 

Phylogenetically, these discriminants formed two distinct clades – the first made up 24 

primarily of the phyla Firmicutes, Synergistetes and Chloroflexi, and the second 25 
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clade comprising of Proteobacteria, Spirochaetae, Bacteroidetes, and 1 

Euryarchaeota. Many of the discriminant OTUs were generally upregulated in the 2 

emerging S, M or L granules, or were upregulated in either or both XS and XL 3 

granules. For example, Lactococcus, a glucose fermenter and primary member of 4 

the lactic acid bacteria group, and Stenotrophomonas, a likely nitrate reducer, were 5 

both upregulated in XS and XL granules, but rare in emerging S, M and L granules. 6 

Conversely, other taxa, such as the Phycisphaerae, Leptospiraceae and 7 

Bdellovibrio, were upregulated in the emerging S, M and L granules but infrequent in 8 

XS or XL granules.  9 

 10 

Rather than observing a linear trajectory in diversity – from the smallest toward the 11 

largest granules – and a clear grouping of discriminants according to granule size 12 

(13), a more puzzling pattern manifested from this study. Coupling the patterns 13 

followed by the discriminant OTUs with patterns in alpha diversity, the microbial 14 

communities of XS and XL granules appeared to be more similar than previously 15 

observed (Fig 4) – thus pointing towards closing the loop on a life-cycle model for 16 

granular biofilms.  17 

 18 

Granular growth hypothesis and biofilm life-cycle. The granular growth 19 

hypothesis and biofilm life-cycle model proposes that granules start small, and 20 

through cell replication and biomass accumulation, swell into medium and then large 21 

aggregates. However, it postulates, based on previous evidence (16), that the larger 22 

the granule becomes, the more structurally unstable it is, and that it eventually 23 

breaks apart. These broken bits, still containing an active microbial community 24 

eventually round off (due to shear forces within the digester) and become the basis 25 
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for new, small granules, so that the process is cyclical (Fig 1). The main objective of 1 

this experiment was to arrive closer to determining whether a life-cycle applies to 2 

methanogenic granules.  3 

 4 

To accept the granular growth hypothesis we would need to see that bioreactors 5 

initially containing only small granules, would eventually contain medium, then large 6 

and, finally, extra-large granules. An equivalent scenario would be observed for each 7 

bioreactor set. Equally, clear trends in microbial community structure might be 8 

observed across the different sizes. For example, an XL granule would have a 9 

similar community structure to an XS granule, but may be significantly different to an 10 

S or M granule. 11 

 12 

This study provides evidence for ‘growing' granules and for the emergence of de 13 

novo granules. Granule growth was apparent in all nine of the RS, RM and RL 14 

bioreactors. Indeed, most contained granules – albeit, sometimes very few – from 15 

each of the five size classifications used. What remains unclear is the rate at which 16 

this happened, the mechanisms driving this process, and whether the process really 17 

is cyclical. For example, even if granules do break apart to form smaller, ‘new’ ones, 18 

whether there is a critical point (e.g. size or age) at which this happens is 19 

unresolved. This study would suggest, based on emergence of XS granules in the 20 

RS bioreactors (Fig 3), that even small granules can break apart. 21 

 22 

Analyses of the microbiomes of the emerging granules found, in some instances, a 23 

cyclical pattern in which the alpha diversity of XS and XL granules was similar (Fig 24 

4). However, likely due to bioreactor operation, which shifted the community 25 
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structure across all of the experiments, it remains unclear how the microbiome of 1 

anaerobic granules changes as they grow. 2 

 3 

Meanwhile, although this experimental design provides an interesting perspective 4 

and means to uncover the trajectory and fate of granular biofilms, each size-5 

controlled set of bioreactors started with a different, and constrained, microbial 6 

consortium. Thus, emerging granules from different bioreactor set-ups, although 7 

perhaps similarly sized, are not necessarily comparable. 8 

 9 

In summary, granules were demonstrated to be dynamic aggregates inside 10 

anaerobic digesters, appearing to follow a progressive growth pattern from S, to M to 11 

L. XS granules emerged in all bioreactors, regardless of the starting size distribution. 12 

These either formed de novo, from the aggregation of free cells, or as a result of 13 

larger granules breaking apart. Further experiments should be done, under more 14 

stable bioreactor conditions, and with more intensive sampling regimes, to provide 15 

more evidence. The results of experiments based on innovative approaches to track 16 

the fate of growing granules will provide invaluable information to environmental 17 

engineers running bioreactors and to microbial ecologists studying community 18 

assembly phenomena, alike.  19 

 20 

MATERIALS AND METHODS 21 

 22 

Source and fractionation of biomass. Anaerobic sludge was obtained from a full-23 

scale (8,256 m3), mesophilic (37ºC), EGSB bioreactor, inoculated with sludge 24 

granules from the Netherlands and treating potato-processing wastewater, in Lurgan, 25 
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Northern Ireland. The full-scale bioreactor was operated at an upflow velocity of 1.2 1 

m h-1 and an HRT of 6.86 h. 2 

 3 

A comprehensive analysis of the granules across a highly resolved size distribution 4 

was previously performed (13). The ten size fractions (A-J) characterised in that 5 

study were grouped, for this study (Fig 5), into five distinct size classifications: extra-6 

small (XS), small (S), medium (M), large (L), and extra-large (XL). Granules were 7 

size-separated by passing the biomass through stainless steel sieves.   8 

 9 

Bioreactor design and operation. Twelve, identical laboratory-scale (2L) glass, 10 

EGSB bioreactors were constructed, and operated in four sets of triplicates: the first 11 

set (RS1–RS3) containing only S granules (0.6–1.0 mm); the second set (RM1–RM3) 12 

containing only M-sized granules (1.0–1.4 mm); the third set (RL1–RL3) containing 13 

only L granules (1.4–1.8 mm); and the fourth set (RN1–RN3) started with the 14 

unfractionated, naturally distributed (N) sludge (Fig 5).  15 

 16 

Apart from granule size in the starter biomass, the 12 bioreactors, each inoculated 17 

with15 gVS Lbioreactor
-1, were operated identically for 51 days. The biomass was 18 

allowed a 48-h acclimatisation period at 37ºC, regulated using built-in water jackets 19 

and recirculating water baths (Grant Optima, T100-ST12), before feeding and 20 

recirculation were commenced, which were controlled using peristaltic pumps 21 

(Watson and Marlow 2058 and 300 series, respectively). Influent was introduced at 22 

the base of each bioreactor, and bioreactor liquor was recirculated through the 23 

system to achieve the superficial upflow velocity required (Table 1), according to the 24 

same set-up, and approach, as described previously (38, 39). 25 
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 1 

The saccharide-rich, synthetic feed (Table 2), based on recommendations (40), and 2 

supplemented with trace elements (41), was prepared freshly every other day and 3 

fed to the 12 bioreactors from a single, thoroughly mixed reservoir to ensure 4 

homogeneity. 5 

 6 

Sodium bicarbonate was added to the influent on day 6, and for the remainder of the 7 

experiment to act as a pH buffer, as the pH of the bioreactor liquor had dropped to 4 8 

during the first week (Phase 1). Some biomass washout was observed over the final 9 

two weeks of the trial. Upon take-down, on day 51, biomass was re-fractionated to 10 

determine the distribution of granule sizes, and stored for DNA extractions and 11 

sequencing. 12 

 13 

Sampling and analytical techniques to monitor bioreactor performance. Biogas 14 

concentrations of methane, and effluent concentrations of total COD (tCOD), soluble 15 

COD (sCOD), volatile fatty acids (VFA) and pH, were monitored three times a week 16 

throughout the 51-d trial. Biogas methane concentrations were determined using a 17 

VARIAN CP-3800 gas chromatograph (Varian, Inc., Walnut Creek, CA). pH was 18 

measured using a benchtop meter (Hanna Instruments, Woonsocket, RI). COD was 19 

measured using pre-prepared COD test kits (Reagacon, Shannon, Ireland) and 20 

following the recommendation of the manufacturer. Samples for tCOD assays were 21 

each prepared by adding an homogenous sample directly to the test kit, whilst for 22 

sCOD, the sample was first centrifuged for 10 min at 14,000 rpm and the 23 

supernatant was added to the test kit. COD tests were incubated for 2 h at 150ºC 24 

and concentrations were determined using a spectrophotometer (Hach Dr/4000) at 25 
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435 nm. VFA contents of supernatant from effluent samples were separated, and 1 

quantified, using gas chromatography (Varian 450-GC). 2 

 3 

DNA extraction. For each sample investigated, a mass of 0.1 g wet sludge was 4 

transferred to respective, sterile tubes in triplicate. DNA was extracted on ice 5 

following the DNA/RNA co-extraction method (42), which is based on bead beating 6 

in 5% (w/v) cetyl trimethylammonium bromide (CTAB) extraction buffer, followed by 7 

phenol-chloroform extraction. Integrity of nucleic acids was assessed using a 8 

NanoDropTM spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA), and 9 

concentrations were determined using a Qubit fluorometer (Invitrogen, Carlsbad, CA, 10 

USA) and normalised to 5 ng DNA µl-1 for storage at -80ºC. 11 

 12 

High-throughput DNA sequencing. Partial 16S rRNA gene sequences were 13 

amplified using the universal bacterial and archaeal primers, 515F and 806R (43), as 14 

previously described (13), and with amplicon sequencing on an Illumina MiSeq 15 

platform (at FISABIO, Valencia, Spain).  16 

 17 

Bioinformatics and statistical analysis. Abundance tables were generated by 18 

constructing OTUs (as a proxy for species). Statistical analyses were performed in R 19 

using the combined data generated from the bioinformatics as well as meta data 20 

associated with the study. An OTU table was generated for this study by matching 21 

the original barcoded reads against clean OTUs (a total of 2,793 OTUs for n = 49 22 

samples) at 97% similarity (a proxy for species-level separation). Alpha diversity 23 

analyses included the calculation of Shannon entropies and rarefied richness. 24 
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Further multivariate integration (MINT) algorithms identified study-wise discriminants 1 

with additional detail available in Supplemental Material. 2 

 3 

Data Availability. The sequencing data from this study are available on the 4 

European Nucleotide Archive under the study accession number PRJEB28212 5 

(http://www.ebi.ac.uk/ena/data/view/PRJEB28212). 6 

 7 

Supplementary Information 8 

Supplementary information has been uploaded in a separate document for review. 9 

 10 
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LEGENDS TO THE FIGURES 20 

 21 

Figure 1. Granular growth hypothesis and biofilm life-cycle model. (a) operation of 22 

the model inside an anaerobic bioreactor; (b) size fraction parameters; and (c) the 23 

generalised growth model.  24 

 25 
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Figure 2. Methane yield efficiency; COD conversions; and key VFA (acetate, 1 

propionate and butyrate) contributions to effluent sCOD in each of the four bioreactor 2 

sets: (a) RS1 – RS3; (b) RM1 – RM3; (c) RL1 – RL3; (d) RN1 – RN3.  3 

 4 

Figure 3. Changes in distribution of granules sizes in the RS, RM, RL and RN 5 

bioreactors during the trial (day 0 and each of the respective bioreactors at day 51), 6 

showing: (a)  RS1 – RS3; (b) RM1 – RM3; (c) RL1 – RL3; (d) RN1 and RN3 bioreactors. 7 

Colours indicate the size of the emerging granules and their proportion of the total 8 

biomass present. (e) Map indicating frequency of observations of emerging sizes 9 

across the experiment.. No sequencing data available for samples marked with (*). 10 

 11 

Figure 4. Box plots (a-d) of rarefied richness of ‘emerging sizes’ from across the four 12 

bioreactor sets: (a) RS1 – RS3; (b) RM1 – RM3; (c) RL1 – RL3; (d) RN1 and RN3 ; and bar 13 

chart (e) showing the top 25 relatively most abundant OTUs in original and new 14 

granules. 15 

 16 

Figure 5. Schematics illustrating: (a) the AD pathway of organic matter degradation 17 

in the context of a granule; (b) theoretical distribution of the main trophic groups 18 

catalysing the process; (c) the engineered bioreactor system used to apply granules 19 

for wastewater treatment and biogas generation; (d) size distribution of biomass 20 

whereby the ten size fractions used by (Trego et al., 2018) were binned for this study 21 

into five size groups: extra-small (XS), small (S), medium (M), large (L), and extra-22 

large (XL); and (e) the experimental set-up used to test granular growth where 23 

bioreactors were inoculated with either S, M, L or the naturally distributed (mixed) 24 

biomass.  25 
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 1 

Figure S1. Bar plot of the biomass yield, calculated on Day 51, for each bioreactor 2 

(asterisk indicates RN2 bioreactor, which was stopped on day 22). 3 

 4 

Figure S2. MINT study-wise discriminant analysis where (a) shows the first two 5 

components of samples (MINT PLS-DA) using all the OTUs with ellipse representing 6 

95% confidence interval and percentage variations explained by these components 7 

in axes labels; (b) shows the optimum number of discriminating OTUs found for 8 

these 2 components identified as diamonds; and (c) is similar to (a) but the samples 9 

are drawn only using the 38 discriminant OTUs (MINT sPLS-DA); (d – g) show the 10 

MINT sPLS loading vectors 𝑎1 and 𝑎2 with non-zero weights for component 1 and 11 

component 2 where (d) shows contributions by emerging granules from RS; (e) from 12 

RM; (f) from RL and (g) from RN studies. Loading vectors are coloured by emerging 13 

size with maximal abundance (note: while interpreting this figure, focus should be on 14 

the colour of the bars and not the positive/negative projections); (h) shows the 15 

phylogenetic tree (extracted from the global tree) of the discriminant OTUs; (i) 16 

indicates which MINT sPLS component each OTU is extracted from; (j) the heatmap 17 

with mean relative abundance values (drawn using EvolView 18 

http://www.evolgenius.info/evolview/); and (k) the taxonomic classification of 19 

discriminant OTUs coloured by unique phyla to which they belong. 20 

 21 

Figure S3. Top 25 most abundant taxa from the emerging sizes, ordered by size and 22 

based up on variances in the 16S rRNA gene 23 
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OTU_7 Bacteria;Chloroflexi;Anaerolineae;Anaerolineales;Anaerolineaceae
OTU_331 Archaea;Euryarchaeota;Methanomicrobia;Methanosarcinales;Methanosaetaceae;Methanosaeta
OTU_3 Bacteria;Bacteroidetes;Bacteroidia;Bacteroidia Incertae Sedis;Draconibacteriaceae
OTU_16 Bacteria;Proteobacteria;Deltaproteobacteria;Syntrophobacterales;Syntrophobacteraceae;Syntrophobacter
OTU_465 Archaea;Euryarchaeota;Methanomicrobia;Methanosarcinales;Methanosarcinaceae
OTU_11 Bacteria;Chloroflexi
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OTU_8 Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae;Peptoclostridium;Eubacterium acidaminophilum DSM 3953
OTU_15 Archaea;Euryarchaeota;Methanobacteria;Methanobacteriales;Methanobacteriaceae;Methanobacterium
OTU_1 Archaea;Euryarchaeota;Methanomicrobia;Methanosarcinales;Methanosaetaceae;Methanosaeta
OTU_155 Bacteria;Firmicutes;Clostridia;Clostridiales;Peptostreptococcaceae;Peptoclostridium;Eubacterium acidaminophilum DSM 3953
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OTU_298 Archaea;Euryarchaeota;Methanobacteria;Methanobacteriales;Methanobacteriaceae;Methanobacterium
OTU_20 Archaea;Euryarchaeota;Methanomicrobia;Methanomicrobiales;Methanoregulaceae;Methanolinea
OTU_39 Bacteria;Hyd24−12
OTU_46 Bacteria;Firmicutes;Clostridia;Clostridiales;Family XII;Acidaminobacter;Acidaminobacter sp. CJ5
OTU_7 Bacteria;Chloroflexi;Anaerolineae;Anaerolineales;Anaerolineaceae
OTU_331 Archaea;Euryarchaeota;Methanomicrobia;Methanosarcinales;Methanosaetaceae;Methanosaeta
OTU_3 Bacteria;Bacteroidetes;Bacteroidia;Bacteroidia Incertae Sedis;Draconibacteriaceae
OTU_16 Bacteria;Proteobacteria;Deltaproteobacteria;Syntrophobacterales;Syntrophobacteraceae;Syntrophobacter
OTU_465 Archaea;Euryarchaeota;Methanomicrobia;Methanosarcinales;Methanosarcinaceae
OTU_11 Bacteria;Chloroflexi
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Table 1. Full- and laboratory-scale bioreactor operating parameters. 

 
Parameter Full-scale bioreactor  Laboratory-scale 

Influent pH 6.3 3.9 – 9.5   
Operating Temperature 37ºC 37ºC 

Upflow velocity 1.2 m h-1 1.2 m h-1 

Influent COD Concentration 4.5 g L-1 15.7 g L-1 

Organic loading rate 15.7 g COD L-1 d-1 ~15.7 g COD L-1 d-1 

Hydraulic retention time 6.86 h 24 h  
Wastewater type Potato-processing  Synthetic (Table 2)  
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Table 2. Composition of synthetic feed 

Component Concentration (g L-1) 

Glucose 3.75 
Fructose 3.75 

Sucrose 3.56 
Yeast Extract 1.45 

Urea 
Sodium Bicarbonate 

2.15 
10.0* 

*After Day 6 
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