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Abstract: Trotter–Suzuki decompositions are frequently used in the quantum simulation of quantum
chemistry. They transform the evolution operator into a form implementable on a quantum device,
while incurring an error—the Trotter error. The Trotter error can be made arbitrarily small by
increasing the Trotter number. However, this increases the length of the quantum circuits required,
which may be impractical. It is therefore desirable to find methods of reducing the Trotter error
through alternate means. The Trotter error is dependent on the order in which individual term
unitaries are applied. Due to the factorial growth in the number of possible orderings with respect to
the number of terms, finding an optimal strategy for ordering Trotter sequences is difficult. In this
paper, we propose three ordering strategies, and assess their impact on the Trotter error incurred.
Initially, we exhaustively examine the possible orderings for molecular hydrogen in a STO-3G
basis. We demonstrate how the optimal ordering scheme depends on the compatibility graph of the
Hamiltonian, and show how it varies with increasing bond length. We then use 44 molecular
Hamiltonians to evaluate two strategies based on coloring their incompatibility graphs, while
considering the properties of the obtained colorings. We find that the Trotter error for most for systems
involving heavy atoms, using a reference magnitude ordering, is less than 1 kcal/mol. Relative to
this, the difference between ordering schemes can be substantial, being approximately on the order
of millihartrees. The coloring-based ordering schemes are reasonably promising—particularly for
systems involving heavy atoms—however further work is required to increase dependence on the
magnitude of terms. Finally, we consider ordering strategies based on the norm of the Trotter error
operator, including an iterative method for generating the new error operator terms added upon
insertion of a term into an ordered Hamiltonian.

Keywords: quantum simulation; electronic structure theory; quantum computing

1. Introduction

Computational chemistry is the use of computers to answer outstanding questions in chemistry.
Various algorithms have been developed to calculate the properties of molecules and reactions. The
predictions of these methods are used in many fields. For example, they are frequently used to aid
development of synthetic processes [1] and target searches in drug discovery [2]. Similarly, they can
be used to characterize molecular configurations which are difficult to study experimentally, such as
transition states of chemical reactions.

Entropy 2019, 21, 1218; doi:10.3390/e21121218 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/1099-4300/21/12/1218?type=check_update&version=1
http://dx.doi.org/10.3390/e21121218
http://www.mdpi.com/journal/entropy


Entropy 2019, 21, 1218 2 of 30

The initial step of most computational approaches to chemistry involves some form of electronic
structure theory calculation: the determination of molecular electronic wavefunctions and their
corresponding energies [3,4]. Many methods for the solution of this problem have been established.

The most conceptually simple approach within this category is the full configuration
interaction (FCI) approach. Here, a finite basis set of spin-orbitals is used to describe the Hilbert space
of the electronic wavefunction. Typically, this is initially a localized basis of atomic orbitals. Molecular
orbitals are found using an algorithm such as the Hartree–Fock method, with the Hamiltonian in a
basis of Slater determinants formed from these molecular orbitals giving the configuration interaction
(CI) matrix. The eigenstates and eigenvalues of the CI matrix then give electronic eigenstates and their
corresponding energies. Such a technique is numerically exact, to within the limitations of the basis set
and the assumption that relativistic effects are negligible. However, the computational expense of this
technique scales factorially with the number of basis functions used [3]. This limits the application to
extremely small molecules [5], and thus is typically used as a benchmark for other methods.

Approximate methods such as coupled cluster theory [6] or Møller–Plesset perturbation theory [7]
are often used to obtain results with practical computational resources; however, exact methods are
required for benchmarking these. Additionally, for any approximation applied, a system can be found
wherein such an approximation breaks down. These facts reinforce the necessity for computationally
feasible numerically exact methods.

It has been established that a scalable quantum computer would be capable of providing full
configuration interaction level electronic structure results in polynomial time [8–10]. As quantum
chemistry is expected to be a key application of developing quantum devices [11], there has been
a great deal of theoretical development on the algorithms that would be used to perform quantum
chemical calculations on a scalable quantum computer. Algorithms to describe various chemical
processes have been developed, including energy spectra [8], reaction rates [12–14] and reaction
dynamics [15]. Experimental demonstrations have been shown on a variety of quantum computing
architectures, including photonic [16], nuclear magnetic resonance [17], superconducting [18,19] and
trapped-ion [20,21] systems.

The variational quantum eigensolver (VQE) algorithm [22,23] is a hybrid quantum-classical
scheme, where a classical variational approach is taken with a quantum device used to determine
accurate expectation values. This approach has obtained much attention in the recent literature,
although other hybrid quantum-classical schemes for the simulation of quantum systems [24,25] and
other purposes [26–28] have been reported. Although repeated Ansatz preparation and the need for
multiple variational steps increases the overall asymptotic cost of these algorithms, they do not require
coherency to be maintained throughout the entire circuit, instead requiring many short coherent
evolutions. As such, while not providing full configuration interaction level accuracy, these methods
can efficiently provide results that are more accurate than classical equivalents. These methods allowed
for the simulation of beryllium hydride in a minimal basis in 2017, albeit with low accuracy [19].

Although recent experimental approaches have focused on the variational quantum eigensolver,
open questions remain in the study of approaches based on a phase estimation algorithm [8,29–31].
This requires coherency to be maintained for a time that scales exponentially with the desired precision.
While this is not asymptotically prohibitive due to the required precision being fixed, it is markedly
less practical for implementation on noisy devices. However, this does result in eigenvalues which are
numerically exact.

Trotterization is the use of Trotter–Suzuki formulae to simulate evolution under a given
Hamiltonian which comprises a sum of many terms, by sequentially simulating the evolution under
each term. In both phase estimation and VQE, Trotterization of the qubit Hamiltonian is a basic
tool. It can be used for the time evolution required by phase estimation and for Ansatz preparation
in VQE. In doing this, a degree of error—the Trotter error—is introduced. This error can be made
arbitrarily small by increasing the Trotter number, i.e. the number of times the terms are iterated
through. However, this increases the quantum computational cost of the procedure. As it is likely that



Entropy 2019, 21, 1218 3 of 30

quantum computational resources will be highly limited in the foreseeable future, it is useful to find
methods to reduce this overhead in order to enable the simulation of larger systems. This is particularly
relevant when considering phase estimation approaches, as Trotter error in these translates to the only
source of algorithmic error in the simulation, whereas the impact of this error in a variational scheme
is minimized through optimization of Ansatz parameters [32].

It has been shown [33,34] that the error incurred in the use of a Trotter–Suzuki approximation
is dependent on the order in which individual terms are simulated. However, the use of a Trotter
ordering scheme is not determined by the Trotter error effects alone. Differing Trotter ordering can
have an effect on the length of the circuit required to simulate one Trotter step, as identical gates
between terms can be canceled [33], with the degree of cancellation being dependent on the ordering
of terms. Several ordering schemes have been reported to this end [33–36]. Nonetheless, it is possible
that this effect could be outweighed by the minimization of Trotter error, and the consequent reduction
in the overall number of Trotter steps—especially where the Trotter number necessary for chemically
accurate predictions is low, or the ordering impact on Trotter error is high. In this paper, we thus focus
on attempts to reduce the single-Trotter-step Trotter error, instead of considering other effects that
impact circuit length. To this end, we report and characterize two new ordering strategies.

It is possible to derive an analytic expression for the Trotter error operator [35], of which the
expectation value in the ground state yields the Trotter error. As finding the exact ground state is
exponentially hard, finding the exact Trotter error with this approach is similarly difficult. However,
the norm of the Trotter error operator can be determined without diagonalizing the full Hamiltonian.
This serves as an upper bound to the true Trotter error, although this bound can be extremely loose [36].
It has been observed [36] that, despite the looseness of this bound, it does replicate some qualitative
trends of the true Trotter error. As such, it is possible that using this information to guide an ordering
scheme could result in an effective strategy. In Section 5, we report and assess an ordering scheme in this
vein. While the Trotter error operator can be computed in polynomial time, it remains computationally
intensive. We therefore derive a Trotter term insertion error operator, which yields the terms that are
added to the Trotter error operator upon insertion of a new term into the Hamiltonian. This allows
direct and efficient comparison of the impact upon the Trotter error operator, of inserting a term
into the Hamiltonian in different positions. This is of use in the greedy ordering scheme discussed
in Section 5.

We begin by providing a brief overview of the theory underpinning the canonical methods of
the quantum simulation of electronic structure theory, and particularly the theory of Trotterization [8].
We then consider three approaches to the development of Trotter ordering schemes. Firstly, in Section 3,
we discuss the hydrogen molecule in a minimal basis as a simple case study. Although this system
has been extensively studied, including the consideration of all possible Trotter orderings in an
experimental context [18], an examination of the distribution of Trotter errors across varying Trotter
orderings is yet unreported in the literature. We consider this here, along with a discussion of the
geometry dependence of the optimal Trotter ordering. Secondly, in Section 4, we propose two ordering
schemes based on subdividing the molecular Hamiltonian into mutually commuting subsets of terms,
and report their performance across a dataset of 44 systems. Finally, in Section 5, we propose and
assess a final ordering scheme based on minimizing the norm of the Trotter error operator.

2. Trotterization—Theoretical Background

The electronic Hamiltonian in the second quantized formalism is given by:

Ĥ = ∑
i,j

hija†
i aj +

1
2 ∑

i,j,k,l
hijkla†

i a†
j akal (1)

where hij and hijkl are Coulombic overlap and exchange integrals determined by the basis set
chosen [3,4]. The overall goal of the simulation process is to determine the eigenstates and
corresponding eigenvalues of this Hamiltonian. Letting the number of spin-orbitals included in
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the basis set be N, there are O(N4) terms in the Hamiltonian in Equation (1). In practice, molecular
symmetries and orbital localization result in many of these terms having a zero or negligible coefficient.
Regardless, the determination of the hij and hiijkl integrals is classically efficient, and thus these
weighting constants can be considered as input data when performing the calculation on either a
classical or quantum device.

Classically, the matrix elements of the electronic Hamiltonian in a basis of Slater determinants
may be obtained. The eigenvalues of the full configuration interaction matrix can then be determined,
for instance by direct diagonalization. However, the dimension of the Fock space which Ĥ acts upon
grows exponentially with N. This can be reduced by excluding the subspace with the incorrect number
of electrons; however, this still results in a growth of (N

n ), where n is the number of electrons. As such,
it is intractable to perform this process for more than a handful of tens of spin-orbitals. Conversely,
N qubits span the entire Fock space that Ĥ acts upon—a quantum computer thus circumvents the
exponential cost of the simulation procedure.

Performing a similar procedure on a quantum device differs from a classical full configuration
interaction calculation. Having calculated the hij and hijkl integrals, a mapping scheme to transform
the creation and annihilation operators of Equation (1), along with the electronic states they act upon,
to operations upon and states of qubits must be found. This is typically performed through the
Jordan–Wigner transformation, the Bravyi–Kitaev transformation, or other constructions [34,37–41] .
In this paper, we primarily utilize the Jordan–Wigner transformation, although we present some results
using the Bravyi–Kitaev mapping in Section 4. The result of performing this mapping procedure is the
generation of a qubit Hamiltonian, which consists of a sum of weighted strings of qubit Pauli operators.

From here, two approaches to finding molecular eigenstates and eigenvalues are common.
In quantum phase estimation [29,42], a circuit corresponding to the the evolution operator U =

exp
(
−itĤh̄

)
of the qubit Hamiltonian is repeatedly applied, with a second register of qubits used to

store a binary expansion of the true eigenvalue. In a variational quantum eigensolver, a parameterized
Ansatz state which is classically hard to store is generated. The expectation value of the qubit
Hamiltonian with this state is measured, and a classical optimizer used to vary the Ansatz parameters
until the expectation value is variationally minimized [22,23]. Typically, the unitary coupled cluster
Ansatz [32]—or a form derived from it [43]—is used. Here, an exponentiated form of the unitary
cluster operator is applied to a reference state.

In both cases, a circuit that implements an exponentiated sum of Pauli operators must be found.
In general, such a circuit is difficult to find. However, standard circuits exist to simulate individual
Pauli strings—Ui = exp

(
−iti Ĥi h̄

)
. As such, we invoke a Trotter–Suzuki approximation to break the

overall evolution operator into a product of individual terms.
A first-order Trotter–Suzuki approximation is given by [44]:

e−iĤt ≈
(

m

∏
k=1

e−iĤkt/NT

)NT

. (2)

where the Hamiltonian Ĥ is a sum of m terms Ĥk. Intuitively, this states that the Hamiltonian
can be approximated by rapidly switching between each term, across the desired evolution
time. The exponential of a single Hamiltonian term can be described easily. Increasing NT , the
Trotter number—the number of Trotter steps—deterministically reduces the error incurred by this
approximation, but with commensurate increase in circuit length.

A second-order Trotter–Suzuki approximant

e−iĤt ≈
(

m

∏
k=1

e−iĤkt/2NT
1

∏
k=m

e−iĤkt/2NT

)NT

(3)

can be obtained by symmetrizing the first-order approximant. Higher-order approximants can be
obtained recursively [45]. Increasing the approximation order will yield reductions in error. However,
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the overall length of the quantum circuit required to simulate higher-order Trotter approximants
increases exponentially with the order used. Choosing an appropriate strategy for simulation is then a
three-way trade-off among the order of Trotter–Suzuki approximant, the number of time steps, and
the need to minimize the overall circuit length. For consistency with other work, we mostly restrict
ourselves here to use of a second-order Trotter approximant (Equation (3)), although we additionally
use a first-order Trotter approximant in Section 3.

To bound the error incurred in the use of this approximation, Poulin et al. [35] introduced
the Trotter error operator, which gives the Trotter error for a given Trotterized Hamiltonian. For a
second-order Trotter–Suzuki approximant, the expectation value of this with an eigenstate is given
by [36]:

∆Ei = −
∆2

t
12 ∑

α≤β
∑
β

∑
γ<β

〈ψi|
[

Ĥα

(
1−

δα,β

2

)
,
[
Ĥβ, Ĥγ

]]
|ψi〉 , (4)

where ∆Ei is the expected error (ignoring higher-order terms), ∆2
t is the Trotter step size, |ψi〉 is the

ground state , δ is the Kronecker delta function and Ĥi are Hamiltonian terms [36].
Examining this, it is evident that two factors primarily affect the degree of error introduced by the

use of the Trotter–Suzuki approximation. Firstly, the error will decrease with the number of time steps
used. Additionally, as the sums in Equation (4) are ordered—being sums over conditional indices,
rather than the whole range—the order in which terms are applied will impact the error incurred.
Indeed, previous work has suggested that the Trotter ordering can dramatically impact the number of
Trotter steps required for constant precision [33,39]. It is thus desirable to find an ordering strategy
which minimizes this error, motivating this paper.

In this section, we have discussed the underlying theory of Trotterization and the impact of Trotter
ordering schemes. For most molecular systems, the space of possible orderings is sufficiently vast as to
inhibit direct statistical analysis. We proceed to consider a small test case—molecular hydrogen in a
minimal basis—both to justify the generalized ordering schemes presented in Section 4 and to study
the role of molecular geometry in a small example.

3. Molecular Hydrogen

Molecular hydrogen in an STO-3G basis is the smallest and simplest chemically interesting
electronic structure problem—barring its cationic form, which lacks two-electron interactions. Due to its
simplicity, this example has been widely used both experimentally and theoretically [8,16–18,20,39,41].
It was recently shown that this example is in a sense not quantum mechanical, as it lacks measurement
contextuality [46]; however, the simplicity of the system makes it a good candidate for initial studies.

The qubit Hamiltonian for the hydrogen molecule in an STO-3G basis, using a Jordan–Wigner
transformation, with a bond length of 0.7414 Å, is given by:

Ĥq =− 0.81262I + 0.17120σz
0 + 0.17120σz

1 − 0.22279σz
2

− 0.22279σz
3 + 0.16862σz

1 σz
0 + 0.12054σz

2 σz
0 + 0.16587σz

3 σz
0

+ 0.16587σz
2 σz

1 + 0.12054σz
3 σz

1 + 0.17435σz
3 σz

2

− 0.04532σ
y
3 σ

y
2 σx

1 σx
0 + 0.04532σx

3 σ
y
2 σ

y
1 σx

0

+ 0.04532σ
y
3 σx

2 σx
1 σ

y
0 − 0.04532σx

3 σx
2 σ

y
1 σ

y
0 . (5)

where the lower index of each Pauli operator corresponds to the index of the qubit it is applied to.
This consists of 15 terms. Unfortunately, even a Hamiltonian of this small size provides on the order of
1012 possible orderings. It is thus infeasible to consider all orderings for the full Hamiltonian, even
for the hydrogen molecule in a minimal basis. The second-order Trotter error operator (Equation (4))
consists of a sum of many triple commutators between Hamiltonian terms. As such, it is prudent
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to consider the commutativity of the terms in the Hamiltonian. Inspecting Equation (5) shows that
the terms with only two Pauli Z operators commute with all terms in the Hamiltonian. Along with
the identity term, these form a totally commuting set. Because they commute with all terms, their
exponentials commute with the exponentials of all other terms, and consequentially they can be freely
moved around a Trotterized evolution operator. As such, all terms in this set can be moved to the front
of the operator, combined, and simulated as an entirely independent operator

e
−iĤt

h̄ ≈ e
−iĤC

h̄ T
(

ĤA
)

, (6)

where ĤC is the sum of all totally commuting terms, and T
(

ĤA
)

is a Trotterization of the other terms.
In other words, we only need to Trotterize the terms that do not commute with all terms.

This analysis has two principal advantages. Firstly, as the totally commuting set does not require
a Trotter–Suzuki approximation, these terms can be simulated in one time step. This dramatically
cuts down on the number of gates required for implementation on a quantum device. It should be
noted here that for larger systems the size of the totally commuting set rapidly drops to one term (the
identity operator). As such, this advantage is not scalable, and therefore this technique cannot be used
directly in the analysis of larger systems.

More importantly for the purposes of this discussion, as we do not need to Trotterize the terms in
the totally commuting set, the space of possible orderings is dramatically reduced to 40, 320. As the
simulation of each ordering takes less than 1 s on an average laptop computer, it is thus feasible to
simply brute force search the entire space of orderings in order to study the distribution of errors.

In our simulations, integral data were generated using the Psi4 [47] quantum chemistry package
and OpenFermion [48], with a standard Hartree–Fock basis used to express the molecular Hamiltonian.
Our Python code was used to generate both Jordan–Wigner and Bravyi–Kitaev Hamiltonians. The exact
ground state and its corresponding energy were then determined. Similarly, the Trotter error for every
possible ordering was determined, with the overall evolution time and the number of Trotter steps set
to unity.

Figure 1 is a cumulative density plot showing the distribution of Trotterization errors which are
obtained as a result of ordering variations. Errors are given relative to the true eigenvalue of the
Hamiltonian with totally commuting terms removed. The same distribution is obtained regardless of
whether the Jordan–Wigner or Bravyi–Kitaev Hamiltonian is simulated. The distribution is heavily
weighted towards the low error region. This is promising, as it implies that a random choice of
ordering is likely to introduce a small amount of ordering-dependent error. There is, however, over an
order of magnitude difference between the optimal and poorest orderings. In this case, the difference
is such that only three Trotter steps are required to reach an accuracy of 0.0001 a.u. for the optimal
ordering, whereas seven Trotter steps are required for the worst ordering. This implies that—if we
extrapolate solely from the hydrogen molecule in a minimal basis—picking a bad ordering could
result in a dramatically increased gate count in actual quantum simulations. This is important despite
the high likelihood of random orderings being accurate, as if a systematic approach to ordering is
taken, it must be ensured that this does not result in bad orderings being selected. It should be noted
here, however, that the results of Section 4 show that this difference is lessened in systems involving
heavier atoms.
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Figure 1. Cumulative density plot of hydrogen ordering errors for one Trotter step, using a bond
length of 0.7414 Å and an STO-3G atomic basis. The vertical line denotes an error of 1 kcal/mol.
Approximately 20% of the orderings achieve this error or lower for the first-order Trotter–Suzuki
approximation. Around 80% of orderings achieve an error of 0.005 Hartree, approximately half that of
the worst possible ordering.

We now consider the optimal ordering strategy for the hydrogen molecule, by re-examining the
commutativity structure graph (the incompatibility graph) discussed above. Figure 2 shows this with
totally commuting terms removed. Here, it is apparent that the incompatibility graph is bipartite. As
such, the Hamiltonian can be subdivided into two sets of terms. Within each set, all terms mutually
commute. No term in a given set commutes with any term in the other set. One set consists of
all of the terms with Pauli Z operators, whereas the other set consists of terms with Pauli X and Y
operators. We label the former of these sets the Z-set and the latter the XY-set. Using the Jordan–Wigner
transformation, the optimal ordering using a first-order Trotter expansion is given by

Ĥ1 =0.04532σx
3 σ

y
2 σ

y
1 σx

0−0.22280σz
2−0.04532σ

y
3 σ

y
2 σx

1 σx
0

−0.22280σz
3−0.04532σx

3 σx
2 σ

y
1 σ

y
0+0.17120σz

1

+0.04532σ
y
3 σx

2 σx
1 σ

y
0+0.17120σz

0 ,

where the leftmost term is simulated first, the second term is simulated second, and so on. Here, the
first, third, fifth and seventh terms are members of the XY-set, while the remaining terms are members
of the Z-set. Examining this, it is evident that the optimal ordering strategy is given by alternating
between completely commuting sets in order of descending coefficient magnitude. This strategy
is optimal for both Jordan–Wigner and Bravyi–Kitaev Hamiltonians. However, other systematic
approaches to ordering strategies for this Hamiltonian produce differing results for the two mapping
techniques. This emphasizes the need for a systematic ordering scheme which is mapping agnostic.
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Figure 2. The incompatibility graph of the Jordan–Wigner and Bravyi–Kitaev Hamiltonians, with
the totally commuting set removed. Nodes correspond to Hamiltonian terms, edges correspond to
non-commutativity between terms. Two independent sets are clearly revealed, with the XY-set colored
blue and the Z-set colored red.

Geometry Dependence

Molecular hydrogen allows for the specification of the entire molecular geometry with a single
parameter; the bond length of the molecule. This allows for the consideration of how the Trotter
error varies with the molecular geometry. Figure 3 demonstrates this. To contrast the results above
and for consistency with prior work, we here use a second-order Trotter expansion. Increasing the
bond length results in a substantially reduced Trotter error. This is likely due to the increased locality
of the electronic eigenstates, resulting in increased degeneracy, and thus in increased symmetry in
the coefficients of the Z-set terms. At asymptotic separation, the Z-set terms have equal coefficient.
This additional symmetry reduces the dependence of the Trotter error on ordering choice. It also allows
for increased cancellation in the terms of the Trotter error operator, resulting in a reduction in Trotter
error overall at higher bond lengths.

Table 1 shows how the Pauli Hamiltonian and optimal Trotter ordering varies with bond length.
We first observe that the optimal ordering has changed at equilibrium bond length, due to the use of
the second-order Trotter–Suzuki formula. The strategy of alternating between commuting sets remains.
However, within each set, the terms are ordered in descending magnitude order, likely due to the
symmetrization of the second-order approximant.

For small bond length, we observe substantially increased difference in the coefficients of the
Z-set terms, due to the increased relative stability of the bonding orbitals. The strategy of alternating
between Z-set and XY-set terms is optimal at all pre-asymptotic separations. However, the particular
choice of Z-set terms differs at higher bond lengths, due to the increasing similarity of the coefficients
of the Z-set terms. At asymptotic separation, a different ordering is preferable. Here, as the Z-set
terms are equal, the Trotter error can be reduced to zero by placing all XY-set terms at the start of
the expansion.
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Figure 3. Distribution of Trotter errors by ordering for varying bond lengths for H2 in a minimal
basis. (a): versus absolute Trotter error. As the bond length decreases, both the Trotter error and the
dependence of the Trotter error on the ordering chosen increase. (b): versus the Trotter error as a
percentage of the ground state energy. The same trend as with the absolute Trotter error is observed,
although the ordering dependence at extremely low bond length is accentuated.

Table 1. Optimal Trotter orderings for the Hydrogen molecule in a STO-3G basis, for varying bond
length, using a second-order Trotter–Suzuki approximation and a Jordan–Wigner mapping. Each
ordering proceeds from top to bottom. The ordering changes as bond length increases, although,
prior to the asymptotic limit, all orderings are of the form of alternating between commuting sets.
At asymptotic separation, it is preferable to simulate sets in sequence, due to the symmetry of the
coefficients.

Bond length (Å)

0.3707 0.7414 1.1121 1.4828 10.000

0.24197 σz
1 0.17120 σz

1 −0.10205 σz
2 −0.03780 σz

2 0.09021 σ
y
3 σx

2 σx
1 σ

y
0

0.04084 σ
y
3 σx

2 σx
1 σ

y
0 0.04532 σ

y
3 σx

2 σx
1 σ

y
0 0.05100 σ

y
3 σx

2 σx
1 σ

y
0 0.05711 σ

y
3 σx

2 σx
1 σ

y
0 0.09021 σx

3 σ
y
2 σ

y
1 σx

0
0.24197 σz

0 0.17120 σz
0 −0.10205 σz

3 −0.03780 σz
3 −0.09021 σx

3 σx
2 σ

y
1 σ

y
0

−0.04084 σ
y
3 σ

y
2 σx

1 σx
0 −0.04532 σ

y
3 σ

y
2 σx

1 σx
0 0.05100 σx

3 σ
y
2 σ

y
1 σx

0 0.05711 σx
3 σ

y
2 σ

y
1 σx

0 −0.09021 σ
y
3 σ

y
2 σx

1 σx
0

−0.48079 σz
3 −0.22279 σz

3 0.12533 σz
0 0.09462 σz

0 0.03964 σz
0

−0.04084 σx
3 σx

2 σ
y
1 σ

y
0 −0.04532 σx

3 σx
2 σ

y
1 σ

y
0 −0.05100 σ

y
3 σ

y
2 σx

1 σx
0 −0.05711 σ

y
3 σ
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In this section, we discussed the small case study of molecular hydrogen, observing that the
optimal ordering is described by alternating between fully commuting sets of terms. We proceed to
present two generalized ordering schemes derived from this heuristic, and analyze their performance
across a variety of molecular systems.

4. Generalized Ordering Strategies

While analysis of the hydrogen molecule yielded interesting results regarding the spread of
ordering strategies, it would be desirable to find an ordering strategy that is effective in the general
case. For this, we require an analysis of a variety of systems, and ideally those of a chemically
interesting size. While the hydrogen study does not provide this, the optimal ordering at equilibrium
bond length does provide us with a potential starting point for our investigation.

4.1. Methods

To contrast our ordering schemes against other possible alternatives, it is necessary to briefly
review the conventions we use to describe other ordering schemes, previously discussed in
Reference [34].

Perhaps the most immediately obvious ordering scheme is the magnitude ordering. Here, terms
are ordered according to the magnitude of their coefficient, from largest to smallest—the term with the
largest magnitude coefficient is simulated first, followed by the second largest magnitude coefficient,
and so on. This ordering scheme has the immediate appeal that high magnitude terms are simulated
first. As a result, one could expect a reduction in the number of high magnitude terms in the error
operator. Loosely, this is due to implementing high magnitude terms first, as opposed to later in
the sequence where they may compound earlier errors. However, this approach does not take into
consideration the structure of the error operator—high magnitude terms may not result in a meaningful
increase in error if, for example, they commute with many other terms.

The lexicographic ordering is an ordering scheme which attempts to maximize the similarity
of the Pauli strings of adjacent terms. This is essentially a numerical ordering with respect to the
Pauli strings. While this scheme may seem arbitrary, it is known to result in a maximum amount
of gate cancellation, with commensurate reduction in overall quantum computational cost [33].
However, there is little reason to suspect that this ordering would be beneficial for the purposes
of Trotter error. Such an increase could lead to the requirement for a greater number of Trotter steps,
undermining its advantages. It should be noted that our strategy for ordering terms lexicographically
is a small modification from that used in other work [33]. Whereas other approaches have grouped the
qubit Hamiltonian terms by their fermionic operator, our approach does not maintain this structure,
and instead stores the qubit Hamiltonian as a list of individual weighted Pauli string terms. As such,
we do not treat any terms based on their fermionic role. Similarly, our ordering is based purely on the
structure of the individual Pauli strings, rather than the fermionic terms they correspond to.

Testing on random Hamiltonians [49] proved relatively optimistic for the prospects of some
of the ordering schemes described in later sections of this paper. However, it has been established
that testing on random Hamiltonians does not realistically capture the behavior of real molecular
Hamiltonians when considering Trotter errors. A more rigorous analysis requires the use of real
chemical Hamiltonians. We therefore used a set of 44 molecular Hamiltonians, largely using the
same dataset as in Reference [34]. Table 2 shows a breakdown of these systems. Equilibrium
molecular geometries were gathered from the NIST CCCBDB database optimized at the Hartree–Fock
level [50]. Molecular orbital integrals in the Hartree–Fock basis were obtained from Psi4 [47] and
OpenFermion [48]. As in Reference [34], the procedure for determining the exact Trotter error was to
directly calculate the expectation value of the Trotterized Hamiltonian with the exact ground state,
using our Python code. The Trotter evolution time for each Hamiltonian was set
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t =


1, where |EFCI | < 2π

1

2π

⌊
|EFCI |

2π

⌋ , otherwise (7)

using the full configuration interaction energy for computational convenience. In a real simulation, the
energy provided by a lower level of theory would be used.

Table 2. The molecular dataset used. Note that most of the systems involving a non-minimal basis set
were H2 and HeH+ systems, as specified in Appendix B. The polyatomic category includes molecules,
ions and radicals.

Qubits 1–10 11–20 21–30 Total

Polyatomic 1 14 5 20
Atoms 4 6 0 10
Ions 2 2 0 4
Other bases 4 4 2 10
Total 11 26 7 44

4.2. Results—Magnitude Ordering

To provide some context for our discussion of Trotter ordering strategies, we first consider the
Trotter error incurred for our systems using a magnitude ordering. Figure 4 demonstrates this against
a variety of properties. The majority of the systems demonstrated Trotter error below the threshold
for chemical accuracy. While there is little indication of increasing Trotter error with the number
of spin-orbitals, it should be noted that the systems studied are all within the regime that can be
practically simulated on modern classical computers. It is unclear as to whether this trend will persist
beyond this regime. Nonetheless, this is encouraging for experimental studies in the near future, where
the number of available qubits will be highly constrained.

There is no obvious correlation between the Trotter error and either the number of spin-orbitals
or the number of terms in the Hamiltonian. However, when plotted against the maximum nuclear
charge (i.e., the nuclear charge of the heaviest atom in the system)—as suggested by the previous
work of Babbush et al. [36]—there is a notable, albeit loose, trend. All of the systems with single step
magnitude ordering Trotter error insufficient for chemical accuracy involve only H and He nuclei.
This could be affected by the special handling of the Trotter time for low energy systems in Equation (7).
The results here reinforce the need for benchmarks of quantum approaches to electronic structure
theory problems to consider systems with heavy atoms.

Beyond these systems, there is a peak in Trotter error around a maximum nuclear charge of 11.
This is in agreement with the results of Babbush et al. [36], where it is observed that systems with
mostly full spin-orbitals will incur low Trotter error. The peak in our data is due to the presence of Na
or Mg, which in an STO-3G basis have many unfilled spin-orbitals.

4.3. Statistics of Commuting Hamiltonian Subsets

One approach to using commutativity structure to inform ordering strategy is to consider coloring
of the incompatibility graph of the qubit Hamiltonian. As in Figure 2, we can consider this structure
by representing the commutativity of the terms in the Hamiltonian as a graph, with terms in the
Hamiltonian corresponding to nodes and an edge representing the case where terms do not commute.
Generating such a graph requires O

(
N2

terms
)

time, as calculating the commutator of two arbitrary
terms is classically efficient.
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Figure 4. Trotter errors for the dataset of molecular Hamiltonians using a magnitude ordering.
The vertical bar indicates chemical accuracy. Most of the systems achieve chemical accuracy with
one Trotter step. (a): versus the number of spin-orbitals. Most of the high-error results are for low
numbers of spin-orbitals. (b): versus the number of terms in the Hamiltonian. Again, most of the
high-error results are for low numbers of terms. (c): versus the maximum nuclear charge. All of the
high-error systems are for systems with exclusively light atoms, and the overall trend roughly follows
the predictions of prior literature.



Entropy 2019, 21, 1218 13 of 30

Following our example of the Hydrogen molecule, a strategy of dividing the Hamiltonian into sets
of mutually commuting subsets—sets of terms where all members commute—can be followed. This is
equivalent to finding a coloring of the incompatibility graph. Unfortunately, it is well known that
finding a coloring with a minimal number of colors is NP-hard [51]. However, heuristics—often using
a greedy approach—have been developed [52]. There is no immediately obvious reason to suspect
that coloring the Hamiltonian using a heuristic is problematic for the purposes of our analysis. Indeed,
these heuristics have seen frequent recent use for partitioning electronic structure Hamiltonians, for the
purpose of measurement reduction in variational quantum algorithms [53–56]. Nonetheless, it does
suggest that caution should be used when considering the generalizability of the results presented.

Graphs representing the Hamiltonians in our dataset were generated using the NetworkX Python
package [57]. Due to the relative computational ease of this procedure, our dataset here was extended
by 16 additional systems, as indicated by Appendix B. From here, colorings were generated using
the greedy coloring method provided by the same package, using an independent set strategy [52].
Coloring schemes for both Jordan–Wigner and Bravyi–Kitaev Hamiltonians were generated. Figure 5
shows the number of independent sets found with regard to both the number of terms in the overall
Hamiltonian, and the number of spin-orbitals describing the Hamiltonian. As is to be expected, the
number of sets increases with the number of terms in the Hamiltonian.

There are O(N4) terms in the initial electronic Hamiltonian. Of these, terms that do not share any
indices with each other will clearly commute, even in the absence of the use of the Jordan–Wigner or
Bravyi–Kitaev transformations. As such, it is reasonable to expect the number of independent sets to
be O(N3). Therefore the ratio of the number of terms and independent sets found can be expected to
scale roughly linearly with the number of spin-orbitals involved. This scaling is shown in Figure 5,
outside the smallest Hamiltonians. Notable outliers are present, likely due to molecular symmetries.
Little difference is observed between the Jordan–Wigner and Bravyi–Kitaev Hamiltonians. This is to be
expected, as the commutativity structure is defined by the physical electronic Hamiltonian; there is no
obvious reason to expect that the mapping technique used would significantly affect this. Our results
here are in agreement with those in Reference [56], where the same scaling was observed for the dual
problem (i.e., coloring the compatibility graph of the Hamiltonian).

Figure 5 also demonstrates the average and standard deviation of the size of the independent sets
found for each Hamiltonian. The increased average size of the groups is unsurprising, as the number
of terms increases faster than the number of sets. The increasing variance in the size of the sets may
be undesirable. This is due to the fact that evenly-sized groups could be advantageous for ordering
schemes, due to an increased ability to distribute the placement of terms. It is possible that the use of
an alternative coloring strategy could circumvent this, and further work is required to assess whether
this has an impact on the ordering schemes presented in Section 4.4.

4.4. Subset-Based Ordering Schemes

The purpose here of dividing the Hamiltonian into mutually commuting subsets is to examine
how a Trotter ordering which takes this into account will perform. The above analysis of the hydrogen
molecule suggested that alternating between commuting sets may be an effective scheme for Trotter
ordering. With Hamiltonians partitioned into commuting subsets as above, this scheme can be
extended to larger systems. In this method, an ordered Hamiltonian is generated by sequentially
picking terms from each subset until all subsets are depleted.

Two methodologies for this ordering algorithm were considered. In the first—the depleteGroups
strategy—the sets were cycled through, picking the highest magnitude term from each and appending
this to the ordered Hamiltonian. The second—the equaliseGroups strategy—at each stage picked the
highest magnitude term in the largest subset, appending it to the ordered Hamiltonian. Where there
were multiple “largest subsets", the highest magnitude term in the union of all largest subsets was
used. Whereas the former strategy ensures that the sets are consistently cycled through until depletion,
the latter ensures that the sets are evenly distributed throughout the Trotterized Hamiltonian.
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Figure 5. Statistics of the fully commuting sets of terms found in the coloring of the Hamiltonians
in the dataset. (a): number of fully commuting sets versus the number of terms in the Hamiltonian.
(b): number of independent sets divided by the number of terms, versus the number of spin-orbitals.
A roughly linear trend is observed, indicating a Θ

(
N3) scaling. (c): average number of terms in each

fully commuting subset for a given Hamiltonian. (d): standard deviation of number of terms in each
fully commuting subset for a given Hamiltonian. The increasing variance in group sizes could be
problematic for ordering purposes.

The Trotter error for one Trotter step (using a second-order Trotter approximation) was calculated
for each Hamiltonian using both ordering strategies, using the approach discussed in Section 4. Clearly,
as this includes systems requiring more than 8 qubits, an exhaustive search of all possible orderings is
not possible for all but the smallest of the systems included. Instead, we compare the depleteGroups
and equaliseGroups orderings against other ordering schemes described above. We consider the
performance of each ordering in terms of the number of spin-orbitals considered in the molecular
system, and in the maximum nuclear charge.
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Figure 6 shows the results of this analysis. High variance in ordering performance is associated
with systems with only light atoms, but for most systems with heavier atoms, there is only a roughly
0.0001 a.u. difference in Trotter error between the orderings. This is a large variance in comparison to
the absolute Trotter error. However, Figure 4 shows that using a magnitude ordering for these systems
yielded an error that is sufficient for chemical accuracy. The observed difference between orderings
is insufficient to increase the error above this threshold. As such, these results suggest that ordering
choice when performing VQE can be determined by other factors, such as circuit length minimization.
This is in sharp contrast to the results in Section 3 on the hydrogen molecule in an STO-3G basis, where
the Trotter error was dramatically impacted by the Trotter ordering, resulting in a differing amount of
Trotter steps required for chemical accuracy. This reinforces the need to consider larger systems when
benchmarking methods. Conversely, if phase estimation is to be performed, it is likely that this error
would be compounded due to applications of higher powers of the Trotterized unitary. In this context,
an optimal ordering scheme in terms of Trotter error would be more necessary.

The equaliseGroups and depleteGroups strategies appear reasonably promising. The depleteGroups
scheme is superior to the equaliseGroups strategy in all bar one of the systems with more than 20
spin-orbitals, and performs roughly commensurately elsewhere. We conclude that of the depleteGroups
and equaliseGroups strategies, the depleteGroups strategy should be favored, although it is possible
that this is a result of the uneven group sizes shown by Figure 5. An inspection of Figure 6 shows that
the depleteGroups strategy is better than the magnitude ordering in eighteen cases.

More consistency is observed with respect to the maximum nuclear charge. Highly variable
performance is observed with light atoms; however beyond this, the difference in Trotter error is
relatively minor. For several of the systems consisting of the most (22) spin-orbitals, the depleteGroups
strategy begins to dramatically outperform all other orderings considered—including the magnitude
ordering. For systems involving period three atoms, there is only one exception to this result. More
data are required to assess whether this trend consistently extends to other, and larger, systems.

It should be noted that the process reported here to color the Hamiltonian commutativity
graph was relatively simple, examining only one possible ordering strategy using a standard library.
Future work could investigate the impact of altering the details of this scheme. A variety of factors
could be considered here. For example, it is not immediately obvious whether it would be preferable
to split the graph into few large independent sets, or many smaller ones. As mentioned above, various
schemes of Hamiltonian term partitioning have been developed to reduce the cost of variational
quantum algorithms, by combining sets of commuting or anticommuting terms [53–56]. It remains
an open question as to whether Trotter ordering schemes based on graph coloring heuristics can be
applied to Hamiltonians with terms combined in such a fashion.

The results of the depleteGroups strategy are encouraging, although they do not achieve
improvement over a magnitude ordering in all cases. Further work examining larger systems is
required to test whether the observed improvement with the depleteGroups strategy is maintained at
larger numbers of spin-orbitals, although this may prove computationally difficult.

In complement to the above discussion, an entirely different approach to ordering could be
considered, which relies upon the Trotter error operator. As the norm of this can be efficiently
(albeit slowly) determined classically, it is possible that this information could be used to directly
inform an ordering strategy—rather than indirectly through the commutation relations of terms.
For completeness, we consider such an approach now.
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Figure 6. Trotter error of the depleteGroups and equaliseGroups orderings relative to a magnitude
ordering. Upper plots are linear within ±10−6. (a): by number of qubits. (b): by maximum nuclear
charge. Again, the magnitude ordering is preferable in most cases; however, for systems with period
three atoms, the depleteGroups and equaliseGroups are best. (c): frequency of “ordering orders”, being
the sequence of ordering performance. The distribution here is relatively flat.



Entropy 2019, 21, 1218 17 of 30

5. Error Operator Strategies

5.1. Small Systems

As discussed above, the Trotter error operator can be used to determine the Trotter error of a
given Trotterization scheme, with the norm of this operator giving a (loose) upper bound on the Trotter
error. This information could be used to guide an ordering strategy.

To this end, we first examine how the Trotter error operator norm varies with respect to the
Trotter ordering. The Trotter error operator norm of each ordering for the hydrogen molecule in a
minimal basis was calculated, using a second-order Trotter approximation, with the fully commuting
terms removed as in Section 3. Similarly, the Trotter error operator norm for 100,000 randomly
chosen orderings of the helium hydride ion—also in a minimal basis—was calculated, along with the
expectation of the Trotterized unitary with the exact ground state for each. As there are 27! ≈ 1028

possible orderings for this Hamiltonian, our sample is only a small fraction of the entire ordering space.
The results of this analysis are shown in Figure 7. The two systems display different trends.

For the hydrogen molecule, there is a loose correlation between the Trotter error operator norm and the
the true Trotter error. The worst possible orderings—incurring an approximate factor of 5 increase in
Trotter error versus the best orderings—also obtain a low error operator norm. This is encouraging, as
it suggests that relying on the Trotter error operator norm will not result in an extremely poor ordering,
at least for the hydrogen molecule in a STO-3G basis. However, it should be noted that within the low
Trotter error region (below 0.001 a.u.), there is a broad spread of error operator norms, indicating that
this approach may not be effective for finding truly optimal orderings. The helium hydride results are
less clear. Indeed, the worst orderings tested in terms of true Trotter error have a relatively low error
operator norm. Nonetheless, in both cases, the lowest true Trotter error orderings also resulted in a
low Trotter error operator norm. As for the hydrogen molecule shown here and discussed above, the
helium hydride results show a high density of orderings in the low Trotter error region—suggesting
that most ordering schemes will be “good enough “, provided they do not systematically result in
falling into the high Trotter error region.

5.2. Term Insertion Error Operator

While the Trotter error operator can be determined in polynomial time on a classical computer,
the triple sum of triple commutators present in Equation (4) nonetheless presents some computational
difficulty. An examination of the Trotter error operator suggests that it can be calculated in O(N3

terms)

time. Assuming that there areO(N4
o ) terms in the Hamiltonian (where No is the number of spin-orbitals

involved), the calculation of each Trotter error operator requires O(N12
o ) time. Where the Trotter error

operator is calculated a constant number of times, this is surmountable for low numbers of spin-orbitals,
due to the sparsity of the coefficients in the electronic Hamiltonian. However, an ordering scheme
based on the calculation of the Trotter error operator may require repeated calculation of varying
Hamiltonians. If the error operator must be evaluated an average of Nterms

2 times for each of Nterms

terms, the strategy would require time that scales roughly as the twentieth power of the number of
orbitals. This is somewhat problematic.

In comparing the Trotter error operator of two orderings, it is therefore preferable to consider the
difference between their error operators, thereby reducing the triple sum to a double sum. For clarity,
we define the term operator

Cαβγ =
−∆t

2

12

[
Hα

(
1−

δα,β

2

)
,
[
Hβ, Hγ

]]
. (8)
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Figure 7. The Trotter error operator norm versus true Trotter error, for various orderings. (a): hydrogen
molecule in a minimal basis. Two hundred and fifty bins are used. Loose correlation is observed,
although there is ambiguity for a true Trotter error of less than 0.001 a.u. (b): helium hydride in a
minimal basis, using 100,000 random orderings. One thousand bins are used. Little obvious correlation
is observed.
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If we insert a term Hi at index i into a given Trotterized Hamiltonian, and divide the β sum into
β < i, β = i and β > i components, the new Trotter error operator Vi is then:

Vi = ∑
α≤β

∑
β<i

∑
γ<β

Cαβγ + ∑
α≤i

∑
γ<i

Cαiγ + ∑
α≤β

∑
β>i

∑
γ<β

Cαβγ. (9)

We separate the terms where α = i or γ = i from the final sum to yield:

Vi = ∑
α≤β

∑
β<i

∑
γ<β

Cαβγ + ∑
α≤i

∑
γ<i

Cαiγ + ∑
β>i

∑
α≤β
α 6=i

∑
γ<β
γ 6=i

Cαβγ + ∑
α≤β
α 6=i

Cαβi + ∑
γ<β

Ciβγ

 (10)

The difference between Vi and V—the terms added to the error operator by the insertion of term
Hi at index i—will be the terms that contain either Ciβγ, Cαiγ or Cαβi. This is true of all terms in the
single and double sums in Equation (10), and none of the terms in the triple sums. Replacing Cαβγ we
therefore have

V′i =
−∆t

2

12

(
∑
α≤i

∑
γ<i

[
Hα

(
1− δα,i

2

)
, [Hi, Hγ]

]

+ ∑
β>i

∑
γ<β

[
Hi,
[
Hβ, Hγ

]]
+ ∑

α≤β
α 6=i

[
Hα

(
1−

δα,β

2

)
,
[
Hβ, Hi

]]
 (11)

the Trotter term insertion error operator, which consists of the terms added to the error operator
upon inserting a term Hi at index i. Provided a reference error operator, this is substantially easier to
compute than the calculation of the entire error operator afresh.

5.3. Error Operator Based Ordering Schemes

We can now define a Trotter error operator based ordering scheme, following the logic of an
insertion sort. We begin with the unsorted Hamiltonian. The highest magnitude term is then removed
from the unsorted Hamiltonian, and forms the first term in the sorted Hamiltonian. The Trotter term
insertion error operator (Equation (11)) is calculated in the cases where the second term is inserted
either before or after the initial term. The norm of this operator is calculated in both cases. The scenario
wherein the term insertion Trotter error operator norm is minimized is chosen as the correct branch,
and the term is placed in the corresponding location. The third highest magnitude term is then tested
in each of the three new potential locations and placed in the one which minimizes the term insertion
Trotter error operator norm. This process is repeated until the unsorted Hamiltonian is depleted.
The procedure for ordering the Hamiltonian in this manner is depicted as Figure 8.

Despite eliminating the need to calculate the Trotter error operator at every step in the
optimization, the procedure remains extremely slow, requiring O

(
N4

terms
)

time. As such, this ordering
scheme was applied to a subset of 36 of the Hamiltonians in our dataset, and the one-step Trotter error
calculated. Appendix B shows which systems are included in this subset.
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Figure 8. The procedure for performing the error operator norm minimization ordering.
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Figure 9 shows the results of this analysis. Again, for large numbers of qubits or the inclusion
of heavy atoms, the difference in Trotter error between the orderings is relatively minor. For systems
with more than 12 qubits, the errorOperator ordering results in an approximately ±10−4–±10−5 a.u.
difference in error relative to a magnitude ordering. This is similar to that observed for the other
ordering schemes considered. While outperforming the magnitude ordering in around half of the
systems with maximum nuclear charge greater than 6, it does not consistently reach the performance
of the depleteGroups ordering. Two possible inferences could be drawn from this. Firstly, the greedy
optimization heuristic used to minimize the Trotter error operator norm may be at fault. This is
particularly evidenced by the decreased performance of the errorOperator ordering for systems with
20 or more spin-orbitals, due to the large problem space. Alternatively, it could be simply due to the
Trotter error operator norm being a loose bound on the actual Trotter error. While it is regrettable
that this ordering does not appear to systematically outperform the other orderings considered,
these factors—coupled with the computational difficulty of repeated calculations of the Trotter error
operator—suggest that it will be difficult to find an effective and scalable ordering strategy reliant
upon the Trotter error operator.

In several systems, most notably within those involving 18 spin-orbitals, the depleteGroups and
errorOperator strategies result in extremely similar errors—a similarity which is not observed for the
other ordering strategies. This indicates some replicated behavior, although further work is required
to determine what this may be.

Other work has defined a term importance metric by considering the impact of a given fermionic
term on the Hartree–Fock ground state [33,35]. To prevent dependence on the accuracy of the
Hartree–Fock state, we do not consider this approach here. However, given the performance of
the error operator ordering compared to a magnitude ordering, it is likely that such an approach could
yield improvement with regard to the Trotter error incurred. Future work could aim to assess whether
this is indeed the case.

In this section, we present an ordering scheme based on minimizing the Trotter error operator
norm. The approach did not yield consistent improvement upon the depleteGroups strategy, which—in
addition to the high computational difficulty of the task—suggests that approaches to ordering by use
of the Trotter error operator norm may prove difficult.
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Figure 9. Trotter error of the errorOperator ordering relative to a magnitude ordering. Upper plots
are linear between ±10−6. (a): by number of qubits. (b): by maximum nuclear charge. As with
the previous orderings, the variance between Trotter ordering schemes is low for systems involving
heavy atoms. In these cases, the errorOperator ordering performs roughly commensurately with the
magnitude ordering. (c): frequency of “ordering orders”, being the sequence of ordering performance.
The distribution here is relatively flat.
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6. Discussion and Conclusions

In this paper, we discussed ordering schemes for Trotterization from a variety of perspectives.
Brute-force analysis on the STO-3G molecular hydrogen Hamiltonian and inspection of the Trotter
error operator show that the commutativity structure of the Hamiltonian is of vital importance in
determining the Trotter error incurred by a given ordering. The commutativity structure—represented
by the incompatibility graph—can be efficiently found on a classical computer. Greedy coloring
heuristics can be used to partition this graph into commuting or anticommuting sets, a technique which
has been used recently in the context of term reduction in variational quantum algorithms [53–56].
It remains an open question as to how these term reduction techniques can be related to Trotter
ordering strategies when implementing variational quantum algorithms.

We reported two ordering schemes dependent on the term commutativity structure, which operate
by partitioning the Hamiltonian into totally commuting sets of terms. Applying a greedy coloring
heuristic results in a number of sets that scales approximately as O(n3). By using these groups to
inform placement of terms, this approach led to the best ordering scheme studied—the depleteGroups
strategy. This strategy had the lowest Trotter error of all orderings in a plurality of Hamiltonians,
although for systems involving heavy atoms, the difference when compared to a magnitude ordering
was below the threshold for chemical accuracy.

Finally, we considered the use of the Trotter error operator norm to guide ordering strategies.
A greedy algorithm aiming to minimize the norm of the Trotter error operator achieved performance
consistent with magnitude ordering, though did not improve upon it in most cases. However, analysis
of the Trotter error operator norm for very small molecules suggested that there is a high density of
orderings which incur relatively low—if suboptimal—Trotter error.

Although the depleteGroups strategy showed promise, our analysis has indicated that finding
an optimal Trotter ordering is a difficult task, due to the vast space of possible orderings. However,
two results are of interest. Relative to the Trotter error, the difference between orderings can be
substantial—in several cases, the difference in Trotter error incurred by the best and worst orderings
was over two orders of magnitude. However, for the majority of systems studied, the overall Trotter
error is extremely low. For all except four of the systems with more than 12 spin-orbitals, an ordering
could be found that incurred a Trotter error below the threshold for chemical accuracy. Particularly for
variational quantum algorithms—where Trotter decompositions are used to implement a variational
Ansatz—this implies that Trotter error will not dominate the computational difficulty of simulations in
the NISQ era.

Determining exact Trotter error on a classical computer is exponentially hard, due to the need
to find an exact ground state. Therefore, there are two ways to scale examinations of Trotter error to
systems involving larger numbers of spin-orbitals. The first is the use of efficient classical heuristics to
compute approximate estimates of the Trotter error which outperform the Trotter error operator norm.
In particular, the development of classical approximations which reproduce the relative performance of
differing Trotter ordering strategies would be a useful direction for future work. The second—similar
to other techniques using a quantum device to improve the quantum algorithm [58]—would be the
use of NISQ devices themselves to directly evaluate ordering strategies through determination of exact
Trotter errors in bulk. It is likely that a combination of each of these approaches will be necessary in
order to determine ordering schemes that minimize Trotter error for large systems.
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CI configuration interaction
FCI full configuration interaction
VQE variational quantum eigensolver
JW Jordan–Wigner
BK Bravyi–Kitaev

Appendix A. Alternative Ordering Schemes

Appendix A.1. Commutator Ordering

In this appendix, we discuss an additional two ordering schemes based on the commutativity
structure of the Hamiltonian terms. We observe in Section 3 that the optimal ordering strategy for
molecular hydrogen at equilibrium bond length was to divide the Hamiltonian into two mutually
commuting subsets, and intersperse them so as to minimize the number of non-zero terms in the error
operator, ordering each subset by magnitude. We present a general ordering scheme based on this
approach in Section 4. However, generalizing this approach to larger systems is more difficult, as many
decompositions of the Hamiltonian into mutually commuting subsets will be possible. For this reason,
we now consider simpler ordering schemes.

This scheme—the commutator ordering—is still inspired by the optimal hydrogen ordering at
equilibrium bond length. However, rather than attempting to find specific sets, it instead attempts to
order by minimizing the amount of commutativity in the ordered Hamiltonian at each step.

We begin by ordering the Hamiltonian by coefficient magnitude. The highest magnitude term
is then assigned to be the first term in the ordered Hamiltonian. We then consider the terms that do
not commute with this, and the highest magnitude of these is appended to the ordered Hamiltonian.
We keep track of the number of terms in the ordered Hamiltonian with which each term in the
unordered Hamiltonian commutes, and we consider the subset of unordered Hamiltonian terms
that minimize this number. Of these, the term with highest magnitude is chosen as the next term
in the ordered Hamiltonian. This process is repeated until the unordered Hamiltonian is exhausted.
Figure A1a demonstrates this process diagrammatically.

It should be noted that this process does not reproduce the exact optimal strategy for the molecular
hydrogen test case, as in this instance the lower magnitude XY-set instead begins the ordering process.
Nonetheless, it does produce an ordering which performs almost as well.

Appendix A.2. Reverse Commutator Ordering

In addition to this scheme, a slightly modified scheme was considered. In this scheme—the
reverseCommutator ordering—we again start with an unordered Hamiltonian comprising of a list of
terms. At each stage, instead of counting the number of terms in the ordered Hamiltonian that the
candidate terms commute with, we count the number of terms in the unordered Hamiltonian that the
candidate terms commute with. We then pick the terms that maximize this number, and append the
highest magnitude of these. This process is depicted in Figure A1b.

Both algorithms are essentially greedy. The commutator ordering at each stage attempts to
maximize the non-commutativity of the ordered Hamiltonian, whereas the reverseCommutator
ordering at each stage attempts to minimize the non-commutativity of the unordered Hamiltonian.
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(a) (b)

Figure A1. Flowcharts representing the commutator (a) and reverseCommutator (b) ordering schemes.

Appendix A.3. Performance of Commutator and ReverseCommutator Orderings

Figure A2 demonstrates the results of these simulations. We first note that, in most cases,
the ordering schemes did not outperform a magnitude ordering. Versus the number of spin-orbitals,
the commutator and reverseCommutator orderings do not fare well. While the reverseCommutator
ordering outperformed other orderings by several orders of magnitude in some cases, the improvement
is not consistent. However, assessing the orderings against the maximum nuclear charge indicates
that in all bar two instances involving heavy atoms, the reverseCommutator ordering is the best of the
three non-magnitude orderings considered. This suggests that, while the magnitude ordering (or the
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depleteGroups ordering discussed in the main text) should be preferred for the reduction of Trotter
error, there remains potential for ordering schemes based on commutativity structure.
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Figure A2. Trotter error of the commutator and reverseCommutator ordering relative to a magnitude
ordering. Upper plots are linear within ±10−6. (a): by number of qubits. (b): by maximum nuclear
charge. The reverseCommutator ordering is best for almost all systems including heavy atoms, however
in almost all cases, a simple magnitude ordering outperforms all orderings considered. (c): Frequency
of “ordering orders”, being the sequence of ordering performance, ignoring the magnitude ordering.
(d): as lower left, but with the magnitude ordering.

The reliability of a magnitude ordering scheme does suggest improvement here. Our schemes
used the magnitude of terms as only a tie-breaker in cases where candidate terms yielded a common
level of non-commutativity against the ordered or unordered terms. The fact that the magnitude
ordering yielded comparatively low error in most cases emphasizes the importance of the magnitude
of the resultant terms in the error operator, rather than their mere presence. Our results here confirm
the need for a more sophisticated effort at ordering selection, if minimization of Trotter error is desired.
Additionally, the vast difference in ordering behavior between systems with light and heavy atoms
reinforces the need to look at systems beyond STO-3G molecular hydrogen.
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Appendix B. Systems in Dataset

Table A1. The systems included in the dataset. Geometries were obtained from the NIST CCBDB
database [50], and molecular orbital integrals in the Hartee–Fock basis obtained from Psi4 [47] and
OpenFermion [48].

System Multiplicity Charge Basis Qubits

B1 2 0 STO-3G 10
Be1 1 0 STO-3G 10
C1O1 1 0 STO-3G 20
C1 3 0 STO-3G 10
Cl1 2 0 STO-3G 18
F2 1 0 STO-3G 20
H1Cl1 1 1 0 STO-3G 20
H1F1

1 1 0 3-21G 22
H1F1 1 0 STO-3G 12
H1He1 1 +1 3-21G 8
H1He1 1 +1 6-311G 12
H1He1 1 +1 6-31G 8
H1He1 1 +1 STO-3G 4
H1Li1O1

1 1 0 STO-3G 22
H1Li1 1 0 STO-3G 12
H1Na1 1 0 STO-3G 20
H1O1 1 -1 STO-3G 12
H2Be1 1 0 STO-3G 14
H2C1O1

1 1 0 STO-3G 24
H2C1 3 0 STO-3G 14
H2C1 3 0 STO-3G 14
H2C2

1 1 0 STO-3G 24
H2Mg1 1 0 STO-3G 22
H2O1 1 0 STO-3G 14
H2S1 1 0 STO-3G 22
H2 1 0 3-21G 8
H2

1 1 0 6-311G** 24
H2 1 0 6-311G 12
H2 1 0 6-31G** 20
H2 1 0 6-31G 8
H2 1 0 STO-3G 4
H3N1 1 0 STO-3G 16
H3 1 +1 3-21G 12
H3 1 +1 STO-3G 6
H4C1 1 0 STO-3G 18
H4N1

1 1 +1 STO-3G 18
Li1 2 0 STO-3G 10
Mg1 1 0 STO-3G 18
N2 1 0 STO-3G 20
Na1 2 0 STO-3G 18
O2 3 0 STO-3G 20
P1 4 0 STO-3G 18
S1 3 0 STO-3G 18
Si1 3 0 STO-3G 18
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Table A2. The additional systems used for examining the statistics of fully commuting sets of terms
in Section 4. Geometries were obtained from the NIST CCBDB database [50], and molecular orbital
integrals in the Hartee–Fock basis obtained from Psi4 [47] and OpenFermion [48].

System Multiplicity Charge Basis Qubits

Ar1 1 0 STO-3G 18
C1O2 1 0 STO-3G 30
Cl1 1 -1 STO-3G 18
F1 2 0 STO-3G 10
H1He1 1 +1 6-31G** 20
H1Li1 1 0 3-21G 22
H1 2 0 STO-3G 2
H2C1 3 0 3-21G 26
H2O2 1 0 STO-3G 24
H4C2 1 0 STO-3G 28
He1 1 0 STO-3G 2
K1 2 0 STO-3G 26
N1 4 0 STO-3G 10
Ne1 1 0 STO-3G 10
O1 3 0 STO-3G 10
O2 1 0 STO-3G 20
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