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els that Contain Covariates
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Paul H. Garthwaite
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Summary. This paper addresses the task of forming a prior distribution to represent
expert opinion about a multinomial model that contains covariates. The task has not
previously been addressed. We suppose the sampling model is a multinomial lo-
gistic regression and represent expert opinion about the regression coefficients by a
multivariate normal distribution. This logistic-normal model gives a flexible prior dis-
tribution that can capture a broad variety of expert opinion. The challenge is to (i) find
meaningful assessment tasks that an expert can perform and which should yield ap-
propriate information to determine the values of parameters in the prior distribution,
and (ii) develop theory for determining the parameter values from the assessments.
A method is proposed that meets this challenge.

The method is implemented in interactive user-friendly software that is freely avail-
able. It provides a graphical interface that the expert uses to assess quartiles of sets
of proportions and the method determines a mean vector and a positive-definite co-
variance matrix to represent the expert’s opinions. The chosen assessment tasks
yield parameter values that satisfy the usual laws of probability without the expert
being aware of the constraints this imposes. Special attention is given to feedback
that encourages the expert to consider his/her opinions from a different perspective.
The method is illustrated in an example that shows its viability and usefulness.

Keywords: Elicitation method; Interactive graphical software; Logistic normal
prior; Multinomial logit model; Multinomial logistic model; Prior distribution

1. Introduction

The purpose of an elicitation method is to help an expert quantify his or her opinions
in a mathematically useful form. The expert performs meaningful assessment tasks
and a probability distribution is formed from the elicited assessments. In a Bayesian
analysis this distribution would be the prior distribution, but the distribution might
also be used to express uncertainty about parameters in a decision analysis, or
to communicate an expert’s opinion succinctly. Different elicitation methods are
required for different situations depending, in particular, on the sampling model
and the model used to represent opinion. Here we consider the important case
where the sampling model is a multinomial model with covariates.
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Multinomial models arise when there is a set of complementary and mutually
exclusive categories and each observation falls into one of these categories. In the
simplest case, the probability of falling into any specified category is the same for
each observation and observations are independent of each other. Then observations
follow a multinomial distribution with, say, probability p; that an observation falls
in the ith category. A number of papers have addressed the task of quantifying an
expert’s opinions about the p; so as to form a prior distribution for this situation.
Early work focused on representing expert opinion by a Dirichlet distribution, which
is the natural conjugate prior distribution for multinomial sampling; reviews of
this work may be found in Garthwaite et al. (2005) and O’Hagan et al. (2006).
Modelling opinion by a Dirichlet distribution has continued to attract attention
(Zapata-Vazquez et al., 2014; Evans et al., 2017), but methods for eliciting more
flexible prior distributions have also been proposed. Elfadaly and Garthwaite (2013)
give a method for quantifying expert opinion as both a Dirichlet distribution and
a Connor-Mosimann distribution, and give an example to illustrate the greater
flexibility of the latter. More flexible models have also been obtained through the use
of copulas. Elfadaly and Garthwaite (2017) use a Gaussian copula prior distribution
to model expert opinion and Wilson (2018) uses a D-vine copula. With the latter
copula, specification of the multivariate prior distribution can be separated into
assessments about univariate marginal distributions and unconditional bivariate
copulas, thus simplifying the assessment tasks that the expert performs (Wilson,
2018). Recent applications in which experts have assessed prior distributions for a
multinomial model include Németh et al. (2017), who quantify the opinions of three
experts about treatments for schizophrenia, representing their opinions by Dirichlet
distributions, and Wilson et al. (2017), who elicited expert opinion about disease
progression of untreated melanoma, representing opinions by Connor-Mosimann
distributions.

Previous work has not addressed the task of eliciting a prior distribution for the
common situation where covariates influence the values of the p; (the multinomial
probabilities), other than in the special case where there are only two categories and
the sampling model reduces to logistic regression (Al-Labadi et al., 2018; Bedrick
et al., 1996, 1997; Garthwaite et al., 2013; Tsutakawa and Lin, 1986). Here we
develop an elicitation method for quantifying opinion about a multinomial model
when there are covariates and any number of categories. We take a multinomial
logistic regression as the sampling model, which is the most common form of multi-
nomial model with covariates. A linear regression links the covariates to functions
of the multinomial probabilities (Agresti, 2002).

While the Dirichlet distribution is the standard prior distribution for a multi-
nomial sampling model when there are no covariates, using the logistic normal
distribution as the prior distribution has also been considered (see, for example,
O’Hagan and Forster (2004), Sections 12.14 to 12.19). However, ways of choosing
its parameters to model an expert’s opinions have not been proposed and in this
paper we first develop an elicitation method to rectify this deficiency. It does not
seem to have been suggested before, but it is easy to expand the scope of the logis-
tic normal prior so that it is a suitable prior distribution for a multinomial logistic
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regression model. We extend our elicitation method so it elicits the parameters of
the resulting logistic normal prior.

Eliciting parameters of multivariate distributions is not, in general, an easy task,
especially if variates are not independent (O’Hagan et al., 2006). The assessed sub-
jective distribution must satisfy the usual laws of probability and, with multinomial
models, these include additional requirements because the probabilities of the dif-
ferent categories must sum to one. The elicitation method proposed here uses as-
sessment tasks and a task structure that leads to coherent assessments without the
expert having to be conscious of coherence constraints. The method has been imple-
mented in interactive graphical user-friendly software that aims to help the expert
quantify his/her opinion effectively and as painlessly as possible. This software is
free and is available on the web at http://statistics.open.ac.uk/elicitation.
It has an online Help facility and its output includes files for running prior-posterior
analysis in standard Bayesian packages.

Use of the elicitation method is illustrated through an application that concerns
the potential cost to Malta of a new drug for diabetes. In Malta, the standard treat-
ments for diabetes could be classified into four groups, as Metformin, Sulfonylureas,
Metformin plus Sulfonylureas, and Insulin. A fifth new treatment, Gliptins, is to be
introduced. However, this will increase the overall cost of treating diabetes, as the
new treatment is more expensive per patient. In order to estimate the future cost,
an expert quantified his opinion about the proportions of patients in Malta who
would be on each treatment. The diagrams we use in describing the new elicitation
method are screen shots from this example.

In Section 2 we consider multinomial models that do not contain covariates; we
define the logistic normal prior model and consider its assumptions. The required
assessments and their use to elicit the prior and obtain feedback is given in Section 3.
In Section 4 we consider the case where the sampling model does contain covari-
ates and extend our elicitation method to model opinion about a logistic normal
distribution. Section 5 illustrates application of the method through the example
concerning diabetes treatments. Some concluding comments are made in Section 6.

2. Elicitation for a multinomial sampling model

The flexibility of a logistic normal distribution makes it an attractive means of
representing expert opinion about a multinomial sampling model. Here we quantify
opinion as an additive logistic normal prior distribution, which is the form most
widely used [see, for example, Aitchison (1986)]. We suppose there are k categories
and that each observation in a sample belongs to exactly one category. Under a
multinomial sampling model, observations are independent of each other and the
probability that an observation belongs to any specified category is the same for
each observation.

Let p; denote the probability that an observation is in the ith category (i =
1,...,k) and put p = (p1,...,pk). For i =2,... k, define r; and Y; by

T = pi/p1 (1)
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and
Y; = log(pi/p1); (2)

so r; is the probability ratio of the i¢th category relative to the first category and Y;
is the log probability ratio. From equation (2),

1 exp(Y;)
= ) bi =
1+ Z?:Q exp(Y}) 1+ Z§:2 exp(Y})

Let Y1 = (Yz,...,Y%)’, where the first category is suppressed. Then equation (3)
defines the additive logistic transformation from Y}/, to p. Also, from equation (3),

p1 L i=2.. k(3

it follows that Zle p; = 1, which will be referred to as the unit sum constraint.
The vector p is said to have a logistic normal distribution if

Yy1 ~ MVN(py /1, Eg /1) (4)

and X/, is positive-definite. We assume the prior distribution takes this form.

In the above formulae, p; seems to be treated differently to the other p; variables.
However, the additive logistic normal distribution is permutation invariant. That
is, whatever the ordering of the elements of the vector p, the density function given
above is invariant. For a theoretical proof of this property see Aitchison (1986).
Hence, any order of the elements of p can be considered. With the representation
given in equations (2)—(3), p; is referred to as the fill-up variable and the first cate-
gory as the fill-up category. (In multinomial logistic regression, the standard choice
for the fill-up category is the first or last category.) However, while in principle the
choice of fill-up category is arbitrary and the assessed prior distribution should be
invariant to its choice, in practice the assessed prior distribution would typically
vary if the expert repeated the elicitation process but with a different category cho-
sen as the fill-up category. We favour choosing the most common category as the
fill-up (first) category, because we believe that choice makes the assessment tasks
easier for the expert.

O’Hagan and Forster (2004, Sections 12.15 to 12.18) give the prior-posterior
analysis for a (k — 1) x 1 vector ® whose components are a set of log contrasts.
Their results can be applied to the prior distribution that we elicit by equating ®
to Yj,; and taking the distribution of Yj,; as the prior distribution of ®.

3. Elicitation method without covariates

An expert should be asked only meaningful questions, so he will not be asked directly
about the Y; = log(r;) = log(p;/p1), as the Y; are not easily interpretable. (We will
use he/his rather than she/her because the expert in the example we give is male.)
However, his assessments must provide information about the Y;. Our approach is
to ask him to focus on two categories at a time, one of which is the fill-up category.
Thus, for the ith category we ask the expert to consider all the items that fall in the
1th category or the first category. The expert is then asked about the proportion of
those items that fall in the ith category relative to the proportion that falls in the
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Fig. 1. Assessing medians of probability ratios. The proportion of a bar that is blue is the
assessed median of r; (i = 2,...,5).

first category. He makes his assessments on a bar chart using a graphical interface
(see Fig. 1) and may think about this proportion as the volume in the lower (blue)
part of a box relative to the volume in the upper (orange) part of the box. (Labels
naming colours have been added to figures in this paper to assist understanding
with black-and-white copies.) That is, he focuses on r;. Alternatively, if he finds it
easier he can consider p;/(p1 + p;i), the proportion of the complete bar that is blue.
The expert assesses medians and quartiles (medians are being assessed in Fig. 1)
and in both cases we treat his assessments as values of r;.

As the log transformation from r; to Y; is strictly monotonic increasing, quantile
assessments of r; provide the corresponding quantiles of Y;. We will make substantial
use of this approach and have found that it gives a viable means of eliciting opinion
about Y;. Where possible, feedback is also given to the expert in the form of
unconditional marginal quantiles of each probability p; (i = 1,...,k), so as to
improve the quality of the elicitation method (cf. Section 3.3).

3.1.  Eliciting the mean vector p;,;, using median assessments
For i = 2,...,k, let m} denote the median of ; = p;/p1 and let m; denote the
median of Y;. (With this notation, deletion of an asterisk ‘transforms’ a median of
ri to a median of Y;.) We use C(.) to denote the centre (median) of the quantity
in braces.

Here we relate p,, = (2, ..., p)" to the my. Using the symmetry of the
distribution of Y; (i = 2,...,k), together with equations (1)—(4), we have that
pi = E(Y;) = C(Y;) = Cllog(r;)]. Hence, the components of p,/; are given by

w; =log(mj) fori=2,... k. (5)
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Using this approach, py/; is assessed in a simple direct way. The expert as-
sesses unconditional medians, m}, of r; for each category. These assessments do not
need to be constrained at all. However, based on these assessments, unconditional
marginal medians of p; that sum to 1 are approximated and presented as feedback
to the expert who is invited to revise them until they form an acceptable represen-
tation of his opinion. More than one iteration is seldom needed. Our approach to
approximate the marginal medians of p; (i = 1,...,k) is discussed in Section 3.3.

The expert uses interactive graphics to give his median assessments, m;, of
the probability ratio r;. The screen shot given earlier in Fig. 1 illustrates the
process. The expert has assessed his median of the probability ratio for each of
the four categories relative to the first category. He did this by clicking the mouse-
pointer on each (blue/orange) stacked bar to divide it in two according to his median
assessment for the ratio of p;, represented by the lower (blue) area of each stacked
bar, to p1, which is represented by the upper (orange) area of each bar. Fig. 1 and
all other figures in this paper are from the example reported in Section 5, in which
an expert quantified his opinion about the potential cost of a new drug in Malta.

3.2.  Eliciting the variance matrix 3/, using conditional assessments
Kadane et al. (1980) give a method of eliciting the “spread” matrix of a vector-
variate that has a multivariate-t distribution. We adopt their method with minor
modifications and with the degrees of freedom (df) set equal to infinity, so that the
multivariate-t distribution becomes an MVN distribution and the spread matrix
becomes a variance-covariance matrix. Kadane et al. (1980) use S(.) to denote the
spread of a ¢ distribution but here S(.) will be the variance of a normal distribution.
Our procedure for determining 3, /; = S(Y},/1) requires the following quantities.

1. C(Y;) fori=2,...,k.
. S(Yz) and S(Yiq |Yo=4sS,....Yi=y7) fori=2,... k- 1.

2
3. CYj | Ya=v3,....Yica=y> 1, Yi=y) fori=2,....k—1;j=i+1,...,k,
where 5, ...,y¢ ; and y! are chosen as detailed below.

The quantities in 3 provide information about the off-diagonal elements of 3, —
the degree to which the conditions change the median assessment of Y; reflects the
correlation between Y and the conditioning variables.

The purpose of Section 3.1 was to elicit py,/;, whose ith component is C(Y;).
Hence the quantities in 1 have already been assessed. The processes for assessing
the other quantities are described next.

3.2.1. Assessing S(Y2) and S(Yiy1|Yo =9S,....Yi=97)

To obtain S(Y2) the expert is asked to assess the lower and upper quartiles for the
probability ratio ro = pa/p1, which we denote by L3 and Uj. Then the upper and
lower quartiles of Y5 are

Ly =log(L3) and Uz =log(Uy), (6)
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since the log transformation from 75 to Y3 is monotonic strictly increasing. As the
interquartile range of a standard normal distribution is 1.349, we put
2
Uz — Loy
(7)

S(2) = [ 1.349

So as to define the assessment tasks involving conditional spreads, values must
be specified for y3,...,yp_,;. Kadane et al. (1980) set them equal to the expert’s
assessment of upper quartiles. We prefer to give them values from the middle of the
expert’s subjective distribution, when possible, because of the unit sum constraint.
Otherwise, conditioning can imply that some categories have a tiny probability of
occurring, even though the expert initially thought their occurrence is quite likely.
For this reason we choose each y; so that the corresponding condition on 7; is
ri = m;. Hence, y; = m; for ¢ = 2,...,k — 1. To shorten notation, we replace
S(Yit1| Yo =ma,....Y; =m;) by S(Yiy1]|Ya,...,Y;) as, for any MVN distribution,
the values actually specified for Ya,...,Y; do not affect S(Y;11|Y2,...,Y;).

To obtain S(Yj4+1|Y2,...,Y;) the expert assesses quartiles of r;4; conditional on
rj =m; for j = 2,...,i. Let L7, and U}, denote the expert’s lower and upper
quartile assessments. The log transformation from r;41 to Y;41 is monotonic strictly
increasing. Also, rs,...,r; determine Y3,...,Y;. Hence,

Lit1 =log(Liy,) and Uiy = log(Ujyy) (8)

7

are the lower and upper quartiles of Y; 11 |Ya,...,Y;. We put,

Uis1 — Lit1

(Vi | ) = | P

2
} , fori=2,...,k—1. 9)
The interactive graphical interface is used to elicit the required quartile assess-
ments. Help messages describe the meaning of quartiles to the expert and explain
how to use the method of bisection to assess them. The expert first clicks the com-
puter’s mouse on the left-most stacked bar to assess L3 and U;. Then, for each
remaining r;11 (i = 2,...,k — 1), he assesses quartiles L, and U/ ; given that
ro = mj,...,r; = m;. This is illustrated in Fig. 2, where the expert has assessed
the two quartiles of r4, represented by the two short (dark blue) horizontal lines
on the third (blue/orange) bar, conditional on ry and r3 having the median values
given by the two leftmost (purple/orange) bars. To assist the expert, the software
presents a separate graph showing the pdf curve of the lognormal distribution of
(rig1lre =m3,...,ry =m}), for i =2,--- |k —1; see Fig. 2. The expert can change
his assessed conditional quartiles of ;11 until the conditional pdf curve forms an
acceptable representation of his opinion.

3.2.2. Assessing C(Y;|Ya=195,....Yie1 =5 1, Yi = 1))

The value we give to y? must cause the expert to revise his opinions, so it must
differ from m; by a reasonable amount. In particular y? must not equal ¥ = m,,
as in that case the conditional centre would exactly equal m;. We set y? = L; for
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Fig. 2. Assessing conditional quartiles of probability ratios. The expert is asked to assume
that the proportions in the first two (purple/orange) bars are correct. These give r, and rs.
Conditional on this assumption, the expert assesses quartiles L; and U; for the proportion
in the third (blue/orange) bar.

i =2,...,k—1. The condition Ys = L9 is equivalent to ro = L3 and, the condition
Y; = L; is equivalent to 7; = Lj. The expert has earlier assessed L3, ..., L;_,, giving
Lo, ..., Li_;1 from equations (6) and (8). Here the expert first assesses the median
of (rj|ry = L3) for j = 3,...,k, and we let mj; denote the assessments. He next
assesses the median of (rj|ro =m3,...,ri-1 =m;_,r; =L}) fori=3,... k-1,
j=14+1,...,k and we let mfj denote the assessments.

Let C(Y;]y9) denote C(Y;|Ya = ¥3) and let C(Yj|vS,...,4y> 1,v)) denote
CY;|Ya=y5,....Yie1 =y 1,Yi =3). We have

C(Yj|ys) = log(ms;) for j=3,....k (10)
and
C(Y; |ys, - ys 1, ud) =log(m;;) fori=3,....k=1j=di+1,....k (11

To implement this part of the elicitation process, the interactive program dis-
plays a bar-chart with a pair of stacked bars for each category (except for the first
category), as illustrated in Fig. 3. The left-hand stacked bars show the expert’s
unconditional median assessments; the right-hand bars relate to the conditional
assessments, some giving conditions and the remainder showing the expert’s condi-
tional assessments. The expert is first asked to assume that Lj is the actual value of
ro. This condition is specified by the right-hand stacked bar in the first pair of bars.
Taking this information into account, he clicks the mouse on the right-hand bar in
each remaining pair to re-assesses his medians of r3,...,rg, giving m3,, ..., ms,.
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Fig. 3. Assessing conditional medians. The expert is asked to assume that the proportions
in the first two (purple/orange) bars are correct; only the second of these differs from his
unconditional median assessment. Conditional on these assumptions, the expert assesses
medians m3, and mj for the proportions in the third and fourth (blue/orange) bars.

These conditional median assessments, as with the unconditional median assess-

ments m; (i =2,...,k), are not constrained and may take any positive value.
Then, in each successive step i (for i« = 3,--- ,k — 1), the expert is asked to
suppose that the true values of 7o,...,7_1 and r; are mj,...,m;_; and L}, re-

spectively. In Fig. 3, these conditions are shown by the right-hand (purple/orange)
stacked bars in the first two categories. Given this information, the expert is asked
to revise his earlier unconditional assessments of the medians of 7;11,...,7r;. His
new medians are m;; (j =1i+1,...,k). The left-hand (dark-grey/light-grey) bars in
Fig. 3 are his unconditional median assessments from Fig. 3 and they are displayed
to aid the expert.

3.2.3.  Determining 3,
Conformably partition 3, = S(Y}1) as

S = [E(kc—,n/l UC]%] , (12)
where 3;,_1y1 = S(Ya,..., Y1) A slight variant of the method of Kadane et al.
(1980) is used to estimate all the elements of 3 /;. Differences between our method
and that of Kadane et al. (1980) arise from the choices of 3, ...,y;_;. The required
spreads and centres are obtained from the elicited assessments, using equations (7)
and (9)-(11). Our procedure gives the desired property that 3/, is certain to be
positive-definite. Details are given in on-line supplementary materials.
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3.3. Feedback using marginal quartiles

After initial hyperparameter values of the logistic normal distribution have been
assessed, the expert is given feedback about his prior distribution through a bar-
chart. This displays the unconditional median and unconditional quartiles of p;
(j =1,...,k) that are implied by his prior distribution. This form of feedback has
two clear benefits.

(i) It encourages the expert to examine his assessed opinions from a different
perspective. The feedback requires the expert to consider the probabilities p;,
rather than the probability ratios r; = p;/p1.

(ii) Conditional assessment tasks are generally harder to perform than uncondi-
tional tasks. Other than for the probability ratio 79, all assessments of up-
per and lower quartiles have been conditional assessments for the remaining
probability ratios. The feedback asks the expert to consider unconditional
assessments.

An example of the bar-chart is shown in Fig. 4, where the left-hand (grey) bar in each
pair and the associated short (black) horizontal lines show the median and quartile
values given as feedback. When the feedback is displayed, the expert is invited to
change the median and/or quartiles of any categories he wants by adjusting the
right-hand (blue) bars and the short (dark blue) horizontal lines.

[ Feedback =[=] =

File Edit Tools Help

Unconditional medians and quartiles already assesed for each category at the reference point

grey

o

=

=

0.00 L ﬁ ﬂ ﬂ ﬂ
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@ Chonaetieders g covsoeeoors | NN SRS
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Fig. 4. Feedback giving marginal medians and quartiles of the p;. The right-hand (blue)
bars and the short (dark blue) horizontal lines should be adjusted by the expert if the
feedback values in the left-hand (grey) bars are not a satisfactory representation of his
opinions.

To add this feedback to the software, a method is required for estimating uncon-
ditional quartiles from the elicited hyperparameters p;,/; and 3j/;. Unfortunately,
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a closed-form method for estimating the unconditional moments, or quartiles, of
the logistic normal distribution does not exist. This is only a minor inconvenience
though — we simply generate a large sample of, say, 100000 random observations
of Y},1 from MVN(uk/l, 3i/1)- Each observation gives a value of (pi,...,pk), so
the generated observations yield a random sample of each p; (i = 1,...,k), from
which quantiles of each p;’s marginal distribution can be calculated. Further detail
is given in the supplementary materials.

If the expert revises the quantiles of the p;, we also require a method of de-
termining gy, and X/, from the new quantiles. This is a trickier problem and
the procedure we construct is also described in the supplementary materials. An
important feature of the procedure is that the different categories are treated sym-
metrically. In particular, no category has the distinction of being classified as the
‘fill-up category’. To achieve this we define the k£ x (k — 1) matrix H by

~1/k 1k -1k ... —1/k

(k—-1)/k —1/k —1/k ... —1/k

He | -1k (k=1)/k -1k ... —1/k
i —f/k 1k 1k ... (k—1)/k|

That is, each element of the top row of H is —1/k, while its other & — 1 rows form
a square matrix whose diagonal elements are (k — 1)/k and whose non-diagonal
elements are —1/k, We transform from Yy to the k x 1 vector T = (T1,...,T})’
by putting T'=HY} /. Then

k
1
T; = log(pi) — Z Zlog(pj) fori=1,... k. (13)
j=1

The distribution of T is a singular normal distribution (Z§:1Ti = 0). We let
I'= (71,...,7%)" = Hpy)y denote its mean and write its variance matrix, HX , H',

as AQA, where A is a diagonal matrix with ith diagonal element a; = {Var(T;)}/?
and  is the correlation matrix of T. Aitchison (1986) refers to AQA as the centred
logratio covariance matriz.

In modifying the prior distribution to reflect an expert’s re-assessments of quan-
tiles of py,...,pr, we treat €2 as fixed and only revise the estimates of A and I'. It
is because we want to take the correlation matrix as fixed that we must transform
to variables that treat the different categories symmetrically. From equation (13),
revision of the quantiles of p; primarily affect ~; and a;.

If the expert revises quantiles of pi,...,pk, we determine I" and A (using the
method described in the supplementary materials), re-estimate py, 51 and 3y q, and
generate a large sample of observations from MVN(gy, /1, 3y/1). From the sample,
we calculate quantiles of the p; that mimic any asymmetry in the expert’s previ-
ous quantile assessments. The quantiles are unlikely to exactly match the expert’s
previous assessments, as the expert gave more assessments than the number of
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parameters, so his assessments will seldom satisfy the requirements for statistical
coherence. The expert is invited to revise the suggested quantiles and the cycle
is repeated until the suggested quantiles form an acceptable representation of his
assessments. On completion of the elicitation, the software outputs the elicited hy-
perparameters of the logistic normal prior distribution, u,, N and 3/, in a suitable
format for further Bayesian analysis.

4. Elicitation method with covariates

We now turn to the situation that motivated the work in this paper, where the
multinomial sampling model contains one or more covariates that influence the
membership probabilities of different categories. We suppose the sampling model is
a multinomial logistic regression, which is a generalisation of logistic regression. In
Section 4.1 we define the multinomial logistic model and also the form of our prior
distribution for its parameters, which is a multivariate normal distribution.

In the context of ordinary logistic regression (when there are only two categories),
there are disadvantages in using diffuse normal distributions as the prior distribu-
tions for the regression coefficients (see, for example, Al-Labadi et al., 2018). In
particular, the probabilities of each category are usually the quantities of primary
interest and the resulting marginal prior distributions of these probabilities will be
concentrated at 0 and 1. This would also happen with a multinomial logistic model
if diffuse priors were used, giving further motivation for eliciting an informative
prior distribution for its regression coefficients.

Our method of quantifying opinion to obtain the parameters of the prior dis-
tribution is given in Sections 4.2 and 4.3. The method makes extensive use of
the elicitation procedure developed in Section 3, repeatedly using the procedure to
quantify opinion when the covariates take specified values, for a variety of values.

4.1. Sampling and prior models

If a covariate is a factor with ¢ levels, we assume that it has been re-expressed as i —1
dummy 0/1 variables: these all equal 0 for the first level of the factor and a different
one of them equals 1 for each other factor level. We suppose the dummy variables
and continuous covariates give m variables in total. Let x = (z1,...,2,,)" be the
vector that they form and let p;(x) denote the probability that an observation
with covariate values x falls in the ith category (i = 1,...,k). The sampling
model is obtained by setting Y; equal to «; + x'B; in equation (3), where a; and
Bi = (Bii,---,Bm,) are the constant and vector of regression coefficients for the
ith category (i = 2,...,k). This gives

1
k =
143 i sexp(a; +x'B;)
pi(x) = / "
exp(a; +x'B;) i=2,...,k,

1+ 2?22 exp(a; + X’ﬂj)7
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which defines the multinomial logistic (logit) model. To simplify the notation, we
henceforth denote p;(x) by p;. As defined earlier, Y3, = (Y2,...,Y})’, where
Y; = log(pi/p1) for i = 2,..., k. While the prior distribution for the «; and B,
(1 =2,...,k) is a multivariate normal distribution, the prior model for (p1,...,pk)
is referred to as a logistic normal distribution.

It is convenient to rearrange the regression coefficients into a matrix, say B, of

the form
o=[() - ()] )

because we will be focusing on one row of B at a time. We define the new set of

vectors a, ﬂ(h), for h=1,...,m, as the rows of B, so that
a = (OZQ, Qag, -, ak)lv (16)
Bry = (Br2 Bnzs- s Bur)- (17)
We assume that the prior distribution for (o, ﬂ’(l), e ﬁ’(m))’ is a multivariate nor-

mal distribution, MVN(u, 3). The task is to elicit g and 3.
To make the elicitation problem manageable we shall assume that, given the
value of a, the vectors By and B, are a priori conditionally independent for all

h and g (h # g). Thus, |, = S(ﬁl(l), . ,,B'(m) | @) is a block-diagonal matrix:

Spge 0 .. 0
0 Spoe -
Z|oz = : 13'72‘ . 0 ) (18)
0 ... 0 g

where 3g o = S(Bpla). We do not make further independence assumptions for
the following reasons.

(i) As in ordinary linear regression, changing the origins of the z-variables will
change the correlation between a; and B; (i = 1,...,k). Hence, as there
is no reason to believe that the z-variables each have a natural origin, it is
unreasonable to assume that a; and B, are uncorrelated in the prior model.

(ii) If we only consider items that have some specified covariate values, x* say,
then these items follow a simple multinomial distribution with membership
probabilities pq, ..., pg. Thus, if changing the value of the A*th component of
X increased one of these probabilities, then it must decrease one or more of
the other probabilities, because of the unit sum constraint. It follows that the
components of ,B(h*) cannot be independent of each other.

In the next subsections we give procedures for eliciting;:
1. E(a) and S(a).
2. E(ﬂ(h)) and Eﬁ,h\a for h = 1, cee, M.
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3. Yo for h=1,...,m, where 3, g is the covariance matrix for the covari-
ances between a and ().

Details for determining g and 3 from the quantities in 1, 2 and 3 are given in the
supplementary material.

4.2. Assessment of E(a) and S(«)

To make the assessment tasks easier for the expert, each covariate is given a reference
value and, in the elicitation procedure, only one covariate at a time is varied. All
other covariates are assumed to be at their reference values/levels. By doing this
for each covariate in turn, the expert can concentrate on revising his assessments as
a result of the change in just one variable. For notational convenience, we assume
that the scale of each continuous covariate has been centred so that 0 is its reference
value. For a factor, its first level is taken as its reference level, so that its dummy
variables each equal 0 at the reference level. Let xg be the m x 1 vector of 0s. When
X = Xg, all variables take their reference value (0), so we refer to xg as the reference
point and the reference subpopulation consists of those items whose covariate values
equal xg.

To elicit E(a) and S(a), the expert is asked to restrict attention to items in
the reference subpopulation. Considering just this subpopulation, he performs the
same assessment tasks as in Section 3. In that section, the expert’s assessments
yielded pyy = E(Y})1) and 3y, = S(Yy/1). Now they yield E(Y}) | x0) and
S(Y})1|x0), which are the quantities F(a) and S(a), since X is a vector of Os.

4.3. Assessment of E(B ) and X p)

In this phase of the elicitation process, one covariate at a time is varied from its
reference value/level and the remaining covariates are set equal to their reference
values, so that only one component of x is non-zero. For h = 1,...,m, let x} denote
a m X 1 vector whose elements are 0 apart from its hth element, which equals some
value that we specify, x} say. (For a factor level, zj is set equal to 1.)

For each value of h, E(,B(h)) and g, can be elicited through full assessment
or through a short-cut option. With either choice, the expert is asked to make
assessments for the subpopulation of items for which x = x;. The expert may
choose to use the full-assessment procedure for some values of h and the short-cut
option for others.

Full assessment procedure
The expert performs the same assessment tasks as in Section 3 (and Section 4.2)
except that:

(i) He is asked to restrict attention to items in the subpopulation with covariate
values xj .

(ii) In making assessments he should primarily consider the difference between the
medians of the subpopulation of current interest and the medians of the refer-
ence subpopulation. When making assessments about probability ratios, he is
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Fig. 5. Assessing medians of probability ratios for specified covariate values. The expert is
asked to assume that the left-hand (light-grey/dark-grey) bar in each pair gives the actual
probability ratio for the reference subpopulation. Conditional on this assumption, the expert
assesses medians for the subpopulation with covariate values xj. These assessments are
the blue/orange bars on the right of each pair.

also asked to assume that his assessed medians for the reference subpopulation
are the true probability ratios for that subpopulation (which fixes the value
of @). For the feedback screen showing probabilities, he is asked to assume
that his median assessments equaled the true probabilities for the reference
subpopulation (which also fixes the value of a).

The assessment tasks that the expert performs are illustrated in Fig. 5, Fig. 6 and
two figures given in the supplementary material, Figs. S1 and S2. Each figure shows
a bar chart with pairs of bars. The bars to the left in each pair (the light-grey/dark-
grey bars) show the expert’s medians for the probability ratios (or, in Fig. 6, the
probabilities) for the reference subpopulation. In other respects, the information
contained /elicited in Figs. 5, S1, S2 and 6 corresponds to the information in Figs. 1,
2, 3 and 4, respectively.

A table showing levels/values for the reference subpopulation and the subpopula-
tion of current interest is displayed in all assessment screens but can be re-positioned
or closed. To avoid obscuring the main figure, it is only shown in Figs. 5 and S1.

Short-cut option

Using the full procedure requires quite a number of assessments if there are several
covariates. As a short-cut, for any xj (but not for x¢) the expert may choose to skip
the assessment of probability ratios (the tasks illustrated in Figs. 5, S1 and S2) and
just give assessments for the feedback screen. The feedback screen contains pairs
of bars (cf. Fig. 6). The left-hand bars show the expert’s unconditional median
probabilities when all the covariates are at their reference values, xg. Conditional
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Fig. 6. Feedback screen for both the full procedure and the short-cut option. The left-
hand (dark-grey) bars show the expert’s unconditional median probabilities when all the
covariates are at their reference values, xy. The expert is asked to assume that these are
the true membership probabilities for the reference subpopulation. Under that assumption,
the expert assesses medians and quartiles for the membership probabilities of the sub-
population whose covariate values are xj, (rather than x(). These assessments form the
right-hand (sky-blue) bars and short (dark-blue) horizontal lines.

on these being the correct values, in the right-hand bars the expert assesses medians
and quartiles for membership probabilities when the values of the covariates are xj .
In making these assessments, the expert should focus on the difference between the
left-hand and right-hand bars in a pair, as his assessments should reflect the change
in probabilities as the covariate values change from x¢ to x;.

The short-cut option can shorten the elicitation procedure significantly, but re-
quires the assumption that prior knowledge gives the same correlation structure
to changes in membership probabilities as to the membership probabilities them-
selves. With both the full procedure and the short-cut option, assessments for the
subpopulation with covariate values x;, yield E( Y}/, [x;) and S(Y},1|x}, ). In
the supplementary material we show that

E(Bny) ={E(Yi1|x3) — E(a)}/zn (19)
and
Bg e = S(Yip | x5, 0) /a3 (20)

where, as defined earlier, xj, is the only non-zero component of xj.

4.4. AssessmentofX, 3},
After the assessments in Section 4.3 have been elicited for the subpopulation with
covariate values x;, the elicitation procedure continues to focus on this subpopu-
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Fig. 7. Assessing correlations between o and 3. The left-hand (light-grey/dark-grey)
bars have narrow inner (purple/yellow) bars within them. The expert is asked to assume
that the inner bars give the correct proportions for the reference population while the bars
behind them show the expert’'s medians for those proportions. The largest difference be-
tween the inner and outer bars is marked with a red arrow (fourth bar). The expert gives
his medians for the subpopulation with covariate values x;, in the right-hand bars.

lation and the covariance between a and its S-coefficients (B ;) are elicited. The
strategy for this task is to choose k£ — 1 different values for a*, say a3, ..., aj; and,
for each @], obtain assessments from the expert that determine E(B|a = o).
The covariance between a and B4 is reflected in the changes in B ;) as a* varies.
The values chosen for a3, . .., aj are derived from F(a) and S(a), the prior mean
and prior variance of &, which were elicited in Section 4.2. To form a] (i = 2,...,k),
each of its components is set equal to the corresponding component of E(a), apart
from its ith component, which is set equal to the upper quartile of the marginal
distribution of a;y;. (The ith component of a is «a;11.) This upper quartile is
equated to piqi41 + 0.674&,11, where jiq ;41 and 52-2“ denote the ith component of
E(a) and the ith diagonal element of S(a), respectively. (0.674 is the upper quartile
of the standard normal distribution.)
Under the condition that a = «, the probability ratios for the reference popu-
lation are
rj(x0) = exp(a; ;) forj=2,...k, (21)

where a7 ; is the jth component of ;. The expert is asked to assume that these
are the true probability ratios for items whose covariate values are at their reference
values. Conditional on this assumption, he then assesses the medians of ro,..., 7%
for the subpopulation of current interest. These give E(Y}/1[x}, @ = af), from
which E(B()la = a;) is obtained.

Fig. 7 illustrates the assessment tasks that the expert performs. Within each of
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Fig. 8. Flow diagram showing the main steps of the elicitation method when the sampling
model has covariates.

the left-hand bars is a narrower (purple/yellow) bar. The expert is asked to assume
that these narrower bars give the true probability ratios for items with covariates
at their reference value. These ‘true’ ratios correspond to the condition a = «o.
The right-hand (blue/orange) bars are the expert’s conditional median assessments
of probability ratios (given a = «) for items with covariate values x = x}. To help
the expert with this assessment task, we suggest median values for the conditional
probability ratios that the expert may accept or change. The suggested values are
calculated under the assumption that B,y and a are independent a priori.

In supplementary materials, detail is given for calculating ¥, g, from E (B, |a =
a3),..., E(By)la = a;) and quantities obtained in Sections 4.2 and 4.3. After all
the required assessments have been elicited for the population with covariate values
x;, the procedure moves on to the next subpopulation. Fig. 8 gives a flow diagram
that summarises the complete elicitation process.
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5. Example: Potential cost of a new drug

As noted in the introduction, in Malta there were four standard treatments for dia-
betes — Metformin (Mtf), Sulfonylureas (Sul), Metformin plus Sulfonylureas (M+S),
Insulin (Ins) — and a fifth treatment, Gliptins (Glip), is to be introduced. The new
treatment is more expensive per patient, so the overall cost to Malta of treating dia-
betes will increase, which is a concern to Malta’s Ministry for Health and also to its
Ministry of Finance. In order to estimate the future cost, an expert quantified his
opinion about the proportions of patients in Malta who would be on each treatment.
The expert, Dr Neville Calleja, is Director of Health Information and Research in
Malta’s Ministry for Health. Dr Calleja is both a medical doctor and has a PhD
in statistics that was supervised by one of this paper’s authors. Consequently,
Dr Calleja has a high level of expertise in statistics and was enthusiastic about the
concept of quantifying an expert’s background knowledge as a prior distribution.

The elicitation session was conducted with both authors acting as facilitators.
In preparatory discussion, the expert described his problem of interest and the
facilitators gave an overview of the elicitation procedure. The expert was also given
some practice at assessing the median and quartiles of a scalar quantity (such as
the distance from Manchester to Edinburgh). The elicitation program was then
loaded and the expert input his answers and assessments to the computer, first
defining the sampling model. He thought that body-mass index (BMI) and co-
morbidity would affect which treatment a diabetic patient was likely to take, where
co-morbidity is a binary yes/no variable, with ‘yes’ meaning the patient also suffers
from hypertension or has a history of heart disease. Thus BMI and co-morbidity are
the covariates in this example. The categories in our multinomial model are the five
diabetes treatments Mtf, Sul, M+S, Glip, and Ins, with membership probabilities
P1,---,Ps5, respectively. The task is to quantify the expert’s opinions about the
membership probabilities for these five categories and how the probabilities are
affected by the covariates. We take Mtf as the fill-up category. The following
describes the assessments that the expert made.

5.1. Assessments at the reference point
As a reference point (xg), the expert chose patients who had a BMI of 22.5 and no
co-morbidity diseases, and he was asked to consider the subpopulation of patients
with these characteristics. Unconditional median assessments of the probability
ratios for each of the last four categories were first elicited. Fig. 1 shows these
assessments. He then assessed upper and lower quartiles of probability ratios (i)
unconditionally for the second category, and (ii) conditionally for the third, fourth
and fifth categories, under the assumptions that the true values of some probability
ratios actually equalled their median assessments. Table 1 summarizes this set of
assessments. A screen shot showing assessments for the fourth category is given in
Fig. 2.

Conditional median assessments were elicited next, under the assumption that
the true values of some probability ratios equalled their assessed lower quartiles.
These sets of conditional median assessments are summarized in Table 2. Fig. 3
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Table 1. Median and conditional quartile assessments at the reference point
P P p P
p1 +2pz p1 -Spa p1 -lfpg D1 fps)
Upper quartile  0.18  0.317  0.362 0.253

Median 0.13 0.25 0.31 0.22

Lower quartile  0.08  0.18'  0.292 0.15°

T Given p/(p1 + p2) = 0.13.

2 Given pa/(p1 + p2) = 0.13 and p3/(p1 + p3) = 0.25.

% Given pa/(p1 + p2) = 0.13, p3/(p1 + p3) = 0.25 and p4/(p1 + ps) = 0.31.

Table 2. Conditional median assessments at the reference point!

P2 p3 P4 ps
P1+p2 P1+ps3 P1+pa P1+ps
Given pa/(p1 + p2) 0.08 0.27 033 022
Given po/(p1 + p2) and p3/(p1 + p3) 013 018 035 0.24

Given pa/(p1 + p2), p3/(p1 +p3) and pa/(p1 +ps) 013 025 029  0.25
T Underlined values are the conditions; assessments are not underlined.

is a screen shot taken as the expert assessed medians for the last two categories,
conditional on the second and third categories having probability ratios (p2/(p1+p2)
and p3/(p1 + p3)) of 0.13 and 0.18.

The expert was then shown the feedback graph in Fig. 4, which displays the
unconditional median and quartile values that were calculated by the software based
on his assessments at the reference point. He accepted the suggested unconditional
medians and quartiles as a reasonable representation of his opinions. This completed
the assessments that determine E(a) and S(a).

5.2. Assessments at different covariate values

During the rest of this elicitation process, for each covariate in turn, the expert
was asked to consider people who had a specified value for one covariate (a value
not equal to its reference value), while the other covariate was at its reference
value/level.

The expert gave 40 as a value of BMI for which he could make reasonable as-
sessments and which differed markedly from the reference BMI value of 22.5. To
quantify his opinions about E(ﬂ(l)) and Xg 1o, the expert made modifications to
the feedback screen that had resulted from his assessments at the reference point.
He was asked to suppose that his median assessments at the reference point were
correct and to assess medians and quartiles for a person who had a BMI of 40 in-
stead of the reference value of 22.5 (but who still had no co-morbidity). This step
is illustrated in Fig. 6 — his new median assessments were 0.29, 0.06, 0.10, 0.35 and
0.16. The computer then suggested values for the unconditional quartiles and the
expert found them an acceptable representation of his opinions.

To obtain X, g1, the expert again assessed probability ratios for just the sub-
population with BMI=40 and the other covariate at its reference level (i.e. no
co-morbidity). These assessments were conditional assessments, where the condi-
tions specified the probability ratios at the reference point. Most of the specified
values equalled his assessed medians at the reference point, but for one category
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at a time (starting with the second category) a slightly larger value was specified.
This information could change the expert opinions about the subpopulation with
BMI=40, and he was invited to revise his median assessments of the probability
ratios for that subpopulation. He only wanted to make changes when the fourth or
fifth category had the larger value and gave the following as his median probability
ratios for the subpopulation with BMI=40 and no co-morbidity:

P2 Ps3 P4 Ps

P1+p2 P1+ps P1+pa p1+ps
ay increased 0.23  0.37 0.56  0.36

as increased  0.15 0.27  0.34  0.28

Fig. 7 is a screen shot of the assessments when a value larger than the expert’s
median assessment was specified for as (the probability ratio at the reference point
for the fifth category).

The assessment tasks for the subpopulation with BMI=40 and co-morbidity at
its reference level (i.e. no co-morbidity) were repeated for the subpopulation that
had co-morbidity and had BMI at the reference level of 22.5. Conditional on the
probability ratios at the reference point equalling the expert’s median assessments,
the expert gave 0.14, 0.11, 0.10, 0.40 and 0.20 as his medians for this new subpopu-
lation. All other values suggested by the computer were accepted by the expert as
a fair reflection of his opinions, except when conditioning specified that the fourth
category had a larger value at the reference point than his median assessment. This
larger value affected the expert’s opinions about some of the probability ratios of
this new subpopulation — he set the conditional medians for the fourth and fifth
categories to 0.64 and 0.46.

5.3. Results
The output from the software gives the hyperparameters (p and ¥) of a multi-
variate normal distribution that corresponds to the expert’s assessments. These
hyperparameters are given in the supplementary material, Tables S1 and S2. The
output also presents the correlations corresponding to the off-diagonal elements of
3. Fig. S3 in the supplementary material shows the correlations of the hyperparam-
eters given by ¥ in a graphical display developed by Murdoch and Chow (1996).
The reason for quantifying the expert’s opinion was to estimate the cost of treat-
ing diabetes in Malta when Gliptins can be prescribed through its national health
service. To this end, the expert’s opinions were combined with data from a survey
that had been conducted in Malta as part of the European Health Interview Survey,
2008 (Ministry for Social Policy, 2008). The survey was conducted on a sample of
5500 individuals aged 15 years or over. It was drawn from a population register for
the Maltese islands and was stratified by age, gender and locality. The survey gave
complete data on the required covariates (BMI and co-morbidity status) for 217
diabetics, so for each of these individuals we have the vector x in equation (14). A
summary of these data is given in Table 3. The other information that was needed
were the average monthly costs per patient of each treatment. To the nearest five
euros, these were Mtf: 65; Sul: 40; M+S: 85; Glip: 230 and Ins: 30.
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Table 3. BMI and co-morbidity status of 217
diabetics from the European Health Interview

Survey
BMI Co-morbidity Total
Yes No
<20.0 4 3 7
20.0 < 22.5 3 0 3
22.5 < 25.0 20 14 34
25.0 < 30.0 56 38 94
30.0 < 40.0 50 22 72
> 40 6 1 7
Total 139 78 217

A vector was randomly generated from the multivariate normal distribution that

represented the expert’s opinions. This vector gives the values of aj and B, say oz;#

and ,Bj# (j =2,...,5). Applying equation (14), we determined p;(x), ..., p5(x) for
each of the diabetics with covariate data. These probabilities were multiplied by
the costs of each treatment to give the expected cost for that person, and hence the
average cost per patient for the people surveyed could be determined. The number
of people with diabetes in Malta is known reasonably accurately (approximately
20000 adult diabetics), so scaling up gave the cost of diabetes treatments in Malta
when «; :a}éé and 3, :,3;-# for j=2,...,5.

The calculation was repeated for 10000 randomly selected vectors from the ex-
pert’s multivariate normal distribution, each giving an estimate of the cost of di-
abetes treatments in Malta. Their average was 2.38 million euros per month and,
based on 250th smallest and 250th largest estimates, a 95% credible interval for
the monthly cost is (1.29, 3.77). R code that performed these calculations is given
in supplementary material. Without introduction of the new drug treatment, the
corresponding cost is 1.26 million euros per month, based on estimates of the pro-
portions of diabetics in Malta on the other four treatments (Mtf, Sul, M+S and
Ins) at the time the expert assessed his prior distribution.

6. Concluding comments

Different sampling models require different forms of prior distribution and, until
now, no prior distribution had been proposed for a multinomial sampling model
that contains covariates. However, in this context a logistic normal distribution has
commonly been used as the sampling model, making it a natural choice as a prior
model for representing expert opinion. The distribution contains a large number
of parameters and we made reasonable independence assumptions to reduce their
number and make the elicitation problem manageable. Nevertheless, quantifying
expert opinion as a logistic normal distribution would be well nigh impossible with-
out the use of interactive computing, but the use of interactive graphics leads to a
viable elicitation method.

In most of the elicitation tasks that the expert performs, assessments are required
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of a probability ratio: the proportion of items that fall in a specified category relative
to the proportion that fall in the fill-up category. It may seem simpler to ask the
expert about the actual proportion of items that fall in the category (i.e. ask about
p; rather than p;/p1). Indeed, that was the assessment task we tried to use in a
prototype version of the elicitation method developed here. Unfortunately, it led to
assessment tasks in which the expert was asked to assume that p; took a specified
value and his opinion about the distribution of Y;|p; was elicited. This caused
problems, because the value of p; does not determine the value of Y;, so while the
distribution of Y; | ¥; would be a normal distribution, ¥; | p; does not follow a normal
distribution, making mathematics intractable. The problem does not arise when a
value of 7; = p;/p1 is specified, as r; does determine Y; (we have Y; = log(r;)), so
that Y; | r; follows a normal distribution.

The people intending to use the prior distribution that is assessed by an expert
will typically include one or more people with good knowledge of statistics. If the ex-
pert’s background in statistics is limited, then a facilitator who has good knowledge
of statistics should guide the expert through the elicitation process. Features from
the Sheffield elicitation framework (SHELF) might also form part of the elicitation
process if a transparent record is required. SHELF contains a protocol for cap-
turing information about an elicitation exercise including an expert’s backgrounds
and potential conflicts of interest and any reasoning or key sources of information
that underpin the expert’s judgements (Gosling, 2018). The elicitation method
has been implemented in interactive software that is freely available on the web at
http://statistics.open.ac.uk/elicitation. All screens include help buttons
to assist the expert and facilitator. There is also a User Guide that includes some
training material to give the expert practice at quantifying his/her opinion. The
output available from the software includes files that can be run in WinBUGS (Lunn
et al., 2000), OpenBUGS (Lunn et al., 2009) or rJAGS (Plummer, 2015), making
it straightforward to combine the prior distribution with data. The output also
gives a file that documents the assessments elicited at each step of the process and,
using a second file that is also provided, the software can sequentially reproduce
screen shots of the elicitation process. As the example in Section 5 indicates, the
elicitation software provides a practical means of quantifying expert opinion about
a multinomial model that includes covariates, and the assessed prior distribution
may be readily exploited to yield useful inferences.
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