Open Research Online

The Open University's repository of research publications and other research outputs

Consistent Relationship between Field-Measured Stomatal Conductance and Theoretical Maximum Stomatal Conductance in C_{3} Woody Angiosperms in Four Major Biomes

Journal Item

How to cite:
Murray, Michelle; Soh, Wuu Kuang; Yiotis, Charilaos; Spicer, Robert A.; Lawson, Tracy and McElwain, Jennifer C. (2019). Consistent Relationship between Field-Measured Stomatal Conductance and Theoretical Maximum Stomatal Conductance in C3 Woody Angiosperms in Four Major Biomes. International Journal of Plant Sciences (Early Access).

For guidance on citations see FAQs.
© 2019 The University of Chicago
Version: Version of Record
Link(s) to article on publisher's website:
http://dx.doi.org/doi:10.1086/706260

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page.

oro.open.ac.uk

CONSISTENT RELATIONSHIP BETWEEN FIELD-MEASURED STOMATAL CONDUCTANCE AND THEORETICAL MAXIMUM STOMATAL CONDUCTANCE IN C ${ }_{3}$ WOODY ANGIOSPERMS IN FOUR MAJOR BIOMES

Michelle Murray, ${ }^{1, *}$ Wuu Kuang Soh,* Charilaos Yiotis,* Robert A. Spicer, $\dagger^{\prime} \neq$ Tracy Lawson,§ and Jennifer C. McElwain*
*Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland; +Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China; \ddagger School of Environment, Earth and Ecosystem Sciences, Open University, Milton Keynes, United Kingdom; and §School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, United Kingdom

Guest Editor: Juliana Medeiros

Premise of research. Understanding the relationship between field-measured operating stomatal conductance $\left(g_{\mathrm{op}}\right)$ and theoretical maximum stomatal conductance $\left(g_{\max }\right)$, calculated from stomatal density and geometry, provides an important framework that can be used to infer leaf-level gas exchange of historical, herbarium, and fossil plants. To date, however, investigation of the nature of the relationship between $g_{\text {op }}$ and theoretical $g_{\max }$ remains limited to a small number of experiments on relatively few taxa and is virtually undefined for plants in natural ecosystems.
Methodology. We used the $g_{\text {op }}$ measurements of 74 species and 35 families across four biomes from a published contemporary data set of field-measured leaf-level stomatal conductance in woody angiosperms and calculated the theoretical $g_{\text {max }}$ from the same leaves to investigate the relationship between $g_{\text {op }}$ and $g_{\text {max }}$ across multiple species and biomes and determine whether such relationships are widely conserved.
Pivotal results. We observed significant relationships between $g_{\text {op }}$ and $g_{\text {max }}$, with consistency in the $g_{\text {op }}: g_{\text {max }}$ ratio across biomes, growth habits (shrubs and trees), and habitats (open canopy and understory subcanopy). An overall mean $g_{\text {op }}: g_{\text {max }}$ ratio of 0.26 ± 0.11 (mean \pm SD) was observed. The consistently observed $g_{\text {op }}: g_{\text {max }}$ ratio in this study strongly agrees with previous hypotheses that an ideal $g_{\text {op }}: g_{\text {max }}$ ratio exists.

Conclusions. These results build substantially on previous studies by presenting a new reference for a consistent $g_{\text {op }}: g_{\text {max }}$ ratio across many levels and offer great potential to enhance paleoclimate proxies and vegetation-climate models alike.

Keywords: biome, habitat, operational stomatal conductance, theoretical maximum stomatal conductance, woody angiosperms.

Online enhancements: appendix tables and figure.

Introduction

Stomatal conductance is the exchange of carbon dioxide for photosynthesis and water vapor via transpiration through microscopic pores called stomata on the areal parts of plants, principally the leaf surface. Diffusion of water vapor through stomata is 1.6 times that of carbon dioxide; therefore, transpirational water loss from the leaf is a costly but unavoidable trade-off between plants' photosynthetic gain and productivity (Farquhar and Sharkey 1982) and their instantaneous water
${ }^{1}$ Author for correspondence; email: mnmurray40@gmail.com.
Manuscript received June 2019; revised manuscript received September 2019; electronically published December 5, 2019.
use efficiency (ratio of rate of transpiration to CO_{2} uptake; Katul et al. 2009; Manzoni et al. 2011; Buckley and Schymanski 2014; Franks et al. 2015).
Stomata are highly sensitive to fluctuating environmental conditions such as light, temperature, and CO_{2}. The stomatal pore is surrounded by two guard cells that are highly sensitive to environmental signals such as changes in light intensity, temperature and humidity, soil moisture and nutrient status, and internal guard cell and mesophyll signals. Resulting changes in turgor pressure in the guard cells adjust the stomatal opening to regulate gaseous exchange, maximize CO_{2} uptake, and minimize water loss (Farquhar and Sharkey 1982; Schulze et al. 1994; Hutjes et al. 1998; Hetherington and Woodward 2003;

Mott 2009; Franks et al. 2013; Lawson and Blatt 2014; McAusland et al. 2016). Through their short-term critical openingclosing response to rapid environmental change, as well as the longer-term developmental downregulating in response to rising atmospheric CO_{2}, stomata have potential to greatly influence ecosystem function and the global carbon and hydrologic cycles. Therefore, they play a pivotal role in Earth system and plantclimate feedbacks (Hetherington and Woodward 2003; Gedney et al. 2006; Betts et al. 2007; Berry et al. 2010; Keenan et al. 2014; Schlesinger and Jasechko 2014; Lin et al. 2015; Ukkola et al. 2015; Engineer et al. 2016; Li et al. 2016) and are critical in determining vegetation response to environmental change (Leakey et al. 2009; Medlyn et al. 2011).
Stomatal conductance, referred to here as "operational stomatal conductance" ($g_{\text {op }}$; McElwain et al. 2016b), is a function of the stomatal density (D) and the depth and degree of openness of the stomatal pore ($\mathrm{pa}_{\max }$) in response to internal and environmental signals (Berry et al. 2010; Drake et al. 2013). The theoretical maximum stomatal conductance $\left(g_{\max }\right)$ is calculated from measurements of the stomatal density and geometry according to a diffusion equation (eq. [1] in "Material and Methods"; Parlange and Waggoner 1970; Franks and Beerling 2009). These same stomatal traits ultimately determine $g_{\text {op }}$ (Franks and Beerling 2009), yet the nature of the relationship between g_{op} and $g_{\text {max }}$ remains largely unquantified beyond a small number of growth chamber and greenhouse studies (Franks et al. 2009; Dow et al. 2014; McElwain et al. 2016b).

It has been observed that measured $g_{\text {op }}$ in field conditions rarely achieves the maximum theoretical $g_{\text {max }}$ limits, as defined by leaf anatomical traits (Körner 1995; Lawson and Morison 2004; Dow and Bergmann 2014). Furthermore, because it is a purely theoretical measurement, theoretical $g_{\text {max }}$ is usually greater than the observed $g_{\text {op }}$ by a large degree (Sack and Buckley 2016). This disparity has propelled many areas of botanical research into establishing the basis for this (Franks et al. 2009; Dow et al. 2014; McElwain et al. 2016b). For example, studies have explored the extreme variability in stomatal distribution across a leaf surface (Casson and Gray 2008) and how stomatal development and, therefore, stomatal density are heavily influenced by environmental conditions, particularly light (Lake et al. 2001; Lomax et al. 2009) and CO_{2} (Woodward 1987; McElwain and Chaloner 1995; Woodward and Kelly 1995; Wagner et al. 1996). Alternatively, the mismatch between $g_{\text {op }}$ and $g_{\text {max }}$ might be due to the short-term behavioral responses of stomata to minimize transpiration and increase water use efficiency by rapidly reducing their aperture, particularly when evaporative demands are high during drought conditions (Buckley 2005; Katul et al. 2012; Kollist et al. 2014). In addition, over the longer term, $g_{\text {max }}$ of a leaf can be altered via changes in size and density in response to protracted drought (Franks et al. 2009, 2015) and/or rising atmospheric carbon dioxide concentrations (Woodward 1987; Ainsworth and Rogers 2007; Franks and Beerling 2009; Lammertsma et al. 2011; Gray et al. 2016). This, in turn, imposes constraints on $g_{\text {op }}$ (McElwain et al. 2016b). The sheer diversity of species-specific $g_{\max }$ and $g_{\text {op }}$ responses to abiotic factors and their relationship to one another also prompts us to ask whether a consistent relationship between $g_{\text {max }}$ and $g_{\text {op }}$ exists. A coordinated trade-off between physiological ($g_{\text {op }}$) and anatomical $\left(g_{\text {max }}\right)$ control of stomatal conductance has been suggested (Haworth et al. 2013), imply-
ing that, if there is coordination, defining a relationship between theoretical $g_{\text {max }}$ and physiological $g_{\text {op }}$ should be possible. Studies have observed that measured $g_{\text {op }}$ is between 20% and 25% of theoretical $g_{\text {max }}$, or in other words, the $g_{\text {op }}: g_{\text {max }}$ ratio is between 0.2 and 0.25 (Franks et al. 2009, 2014; Dow et al. 2014; McElwain et al. 2016b). It has been speculated that this is an ideal level of $g_{\text {op }}$, at which stomata are enabled to respond rapidly to environmental flux by opening or closing as conditions dictate (Franks et al. 2012; Dow et al. 2014).

Over the past 10 years, experiments to determine a reliable relationship between $g_{\text {op }}$ and $g_{\text {max }}$, or the $g_{\text {op }}: g_{\text {max }}$ ratio, have yielded broadly consistent results (Dow et al. 2014; Franks et al. 2014; McElwain et al. 2016b); however, these studies have been taxonomically limited and rarely included both measured $g_{\text {op }}$ and calculated theoretical $g_{\text {max }}$ parameters from the same leaves. The aim of this study was to advance our current understanding of the nature of the relationship between $g_{\text {op }}$ and $g_{\text {max }}$ across multiple species and biomes to determine whether such relationships are widely conserved. More simply put, we asked whether theoretical $g_{\text {max }}$, which is calculated from stomatal anatomy according to the diffusion equation (eq. [1]; Parlange and Waggoner 1970; Franks and Beerling 2009), is a good predictor of $g_{\text {op }}$ measured in the field.

We explored the relationship between $g_{\text {op }}$ and $g_{\text {max }}$ by measuring $g_{\text {op }}$ in a wide range of woody angiosperm species in natural ecosystems and then calculating $g_{\text {max }}$ from the same leaves on which the $g_{\text {op }}$ measurements were taken to establish the nature of the relationship at biological and ecological levels. Therefore, we tested the relationship across many species, plant growth habits (trees and shrubs), habitats (open canopy and understory subcanopy), and biomes (boreal forest, temperate rain forest, tropical rain forest, and tropical seasonal [moist] forest). If we can establish consistency in the nature of the relationship between $g_{\text {op }}$ and $g_{\text {max }}$, this would be valuable for historical herbarium studies and deep-time fossil studies because it would allow estimation of physiological stomatal conductance from observations of anatomical stomatal traits. It would also have an important application for climate and Earth system models in which $g_{\text {op }}$ can be estimated from the stomatal traits and, in turn, open up the possibility of studying vegetation feedbacks on the hydrologic cycle.

Material and Methods

Biome and Species Selection

For this study, we used a published field data set of stomatal conductance measurements of C_{3} woody angiosperm species from seven biomes called STraits (Murray et al. 2019). We chose the following four out of the seven biomes included in the STraits data set for our current study on the basis that they spanned wide geographic, climatic, and species ranges and are the least well represented in the literature: boreal forest, temperate rain forest, tropical seasonal (moist) forest, and tropical rain forest. We selected 74 species from a total 136 species included in the STraits data set across these biomes (Murray et al. 2019; table 1). Based on the APG IV system of flowering plant classification (APG et al. 2016), our study covers 35 woody angiosperm families and 16 orders, all of which are from the Eudicot clade, which includes the Rosid and Asterid clades. Phylogenetic coverage in this study excludes the basal angiosperm Magnoliids,
the Chloranthales, gymnosperms, monocots, and ferns (APG et al. 2016). One species, Sambucus racemosa, occurred in both the boreal forest and the temperate rain forest and was therefore counted as two separate species occurrences, resulting in 75 separate species analyzed (table 1).

Leaf-Level Operational Stomatal Conductance Data

The term "operational stomatal conductance" $\left(g_{\text {op }}\right)$ used here refers to stomatal conductance as it performs under natural field conditions, following the definition of McElwain et al. (2016b). The $g_{\text {op }}$ data used in this study are taken from the published STraits data set of Murray et al. (2019). In Murray et al. (2019), stomatal conductance measurements were obtained by the author using an SC-1 steady-state leaf porometer (Decagon Devices, Pullman, WA) over the course of three summer growing seasons between 2013 and 2015, when atmospheric CO_{2} concentrations ranged from 396.5 to 400.8 ppm . Measurements were made on the abaxial surface of sun leaves located at the canopy edge or, in the case of naturally occurring understory shrub species, on the abaxial surface of leaves exposed to sun flecks. Mean species $g_{\text {op }}$ was calculated from an average total of $12 g_{\text {op }}$ measurements per species (i.e., a single $g_{\text {op }}$ measurement taken from one leaf of each of three individuals on three or four consecutive days). This yielded a total 854 measurements on 243 individual leaves (table 1). Measurements were taken between 0830 and 1400 hours at each site under ambient environmental conditions to capture natural day-to-day variability in photosynthetically active radiation (PAR), temperature, and vapor pressure deficit (VPD), a modification of the variance protocol described in McElwain et al. (2016b). Detailed methods are available in Murray et al. (2019).

All mean conductance values reported in Murray et al. (2019) were subsequently corrected using a relationship established between stomatal conductance measurements taken by porometry and measurements on the same individuals taken by infrared gas analysis (IRGA).

Measurement of Morphological Traits and Calculation of Theoretical $g_{\text {max }}$

The same 243 leaves on which $g_{\text {op }}$ was measured were used for measurement of stomatal morphology (density and size) and for calculation of theoretical $g_{\text {max }}$. A leaf section of $1-\mathrm{cm}^{2}$ area was cut from approximately the same location on the leaf where $g_{\text {op }}$ measurements were made, yielding a total 243 leaf sections. These were fixed abaxial side up on glass slides without mounting medium and gently secured with a cover slip and tape. Six photomicrographs per leaf section were captured using a Leica DFC300 FX digital color camera mounted on a Leica DM2500 microscope with a $\times 20$ objective lens ($\times 200$ magnification; Leica Microsystems, Wetzlar, Germany). Visualization of the stomatal anatomy of most species was achieved via autofluorescence of stomatal complexes under epifluorescence using a range of excitation fluorescence filters (green: $500-570 \mathrm{~nm}$; yellow and orange: $570-610 \mathrm{~nm}$). In the very few instances in which epifluorescence did not yield clear images, leaf epidermal impressions were made by applying clear nail varnish to the abaxial leaf surface of each leaf, approximately where
$g_{\text {op }}$ measurements were taken. The resulting epidermal impression was then peeled off the leaf using clear Sellotape, transferred directly to microscope slides, and photomicrographed under transmitted light. Leaves on which stomata were obscured by dense trichomes, thick cuticle wax, and/or papillae that could not easily be removed and leaves with stomata not clearly visible under microscopy were not included in the study. Micrographs were generated using Auto-Montage Pro Syncroscopy software (Synoptics, Frederick, MD). A $0.09-\mathrm{mm}^{2}$ grid and scale bar were superimposed on each micrograph using AcQuis (ver. 4.0.1.10, Syncroscopy, Cambridge, UK). Stomatal density was estimated using the Cell Counter in ImageJ version 1.49 software (http:// imagej.nih.gov/ij) following Poole and Kürschner (1999). Stomatal dimensions-pore length ($\mu \mathrm{m}$) and guard cell width $(\mu \mathrm{m})$-were measured on 10 open stomata randomly selected from the six photomicrographs of each species using ImageJ and converted to meters for $g_{\text {max }}$ calculation. Calculations of theoretical $g_{\text {max }}$ were then made using the following equation (Parlange and Waggoner 1970; Franks and Beerling 2009):

$$
\begin{equation*}
g_{\max }=\frac{\left(d_{\mathrm{w}} / v\right) \cdot D \cdot \mathrm{pa}_{\max }}{\mathrm{pd}+(\pi / 2) \cdot \sqrt{\left(\mathrm{pa}_{\max } / \pi\right)}} \tag{1}
\end{equation*}
$$

where d_{w}, diffusivity of water vapor at $25^{\circ} \mathrm{C}\left(0.0000249 \mathrm{~m}^{2} \mathrm{~s}^{-1}\right)$, and v, molar volume of air $\left(0.0224 \mathrm{~m}^{3} \mathrm{~mol}^{-1}\right)$, are constants; D is stomatal density $\left(\mathrm{m}^{-2}\right) ; \mathrm{pa}_{\text {max }}$ constitutes maximum stomatal pore area $\left(\mathrm{m}^{2}\right)$ calculated as an ellipse (Lawson et al. 1998) using stomatal pore length (m) as the long axis and $l / 2$ as the short axis; and pd is stomatal pore depth (m), assumed to be equivalent to the width of one fully turgid guard cell (Franks and Beerling 2009b).
Because the dried leaves for this study were not rehydrated by any means, it is possible that leaf area reduced in some species because of shrinkage caused by the drying process (Blonder et al. 2012). The degree of leaf shrinkage varies with plant functional type (PFT; Blonder et al. 2012). We tested for shrinkage in the two PFTs in this study-woody angiosperm evergreen and deciduous-by applying the correction mean shrinkage suggested by Blonder et al. (2012) for these PFTs of 15% for evergreen leaves and 27% for deciduous leaves to the individual leaf stomatal morphological (guard cell width and pore length) and density measurements. We then calculated the new $g_{\text {max }}$ (table S1; tables S1-S8 are available online). It is worth noting that the mean area shrinkage for evergreen types is also the reported mean for all woody species (15%; Blonder et al. 2012). A Kruskal-Wallis test for equal medians determined no significant difference between the $g_{\text {max }}$ used in this study and the $g_{\text {max }}$ calculated from the applied shrinkage factors (table S1). Therefore, all analysis was carried out using $g_{\text {max }}$ calculated from the original uncorrected stomatal morphological and density data.

Statistical Analysis

All statistical analysis was carried out using IRGA-corrected species mean $g_{\text {op }}$ (as outlined above). Each species mean $g_{\text {op }}$ value in a given biome was weighted against the total number of individual $g_{\text {op }}$ measurements for that biome according to the following:
n species $g_{\text {op }} / n$ biome $g_{\text {op }} \cdot$ species $g_{\text {op }}$,
Table 1
Mean (\pm SD) Stomatal Conductance, Stomatal Density (D), and Stomatal Geometry Data

Biome	Species	Family	Leaves (n)	$g_{\text {op }}(n)$	$D\left(\mathrm{~mm}^{-2}\right)$	Pore length ($\mu \mathrm{m}$)	Pore depth ($\mu \mathrm{m}$)	$\begin{aligned} & \mathrm{pa}_{\text {max }} \\ & \left(\mu \mathrm{m}^{-2}\right) \end{aligned}$	$\begin{gathered} g_{\max } \\ \left(\mathrm{mmol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right) \end{gathered}$	$\underset{\left(\mathrm{mmol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right)}{g_{\mathrm{op}}}$	$g_{\text {op }}: g_{\text {max }}$
BF	Alnus alnobetula	Betulaceae	4	16	158 ± 6.1	$9.3 \pm .4$	$6.1 \pm .3$	34.2 ± 2.7	488 ± 21.6	128 ± 5.2	. 26
BF	Amelanchier alnifolia	Rosaceae	3	12	128 ± 8.4	$16 \pm .6$	$5.4 \pm .4$	100.4 ± 7.8	922 ± 102.2	170 ± 3.8	. 18
BF	Betula neoalaskana.	Betulaceae	3	12	153 ± 25.2	17 ± 2.7	$6.3 \pm .7$	115.6 ± 36.7	1127 ± 253.7	131 ± 3.5	. 12
BF	Linnaea borealis	Caprifoliaceae	4	16	403 ± 34.6	$6.2 \pm .7$	$7.8 \pm .7$	15.3 ± 3.5	553 ± 103.4	94 ± 5.2	. 17
BF	Menziesia ferruginea	Ericaceae	3	12	72 ± 6.5	$14.9 \pm .1$	$6 \pm .2$	86.6 ± 1.3	445 ± 43.5	131 ± 1.9	. 29
BF	Oplopanax horridus	Araliaceae	3	12	90 ± 11.8	14.3 ± 1.1	$5.6 \pm .4$	81 ± 12.1	553 ± 133.1	150 ± 4.1	. 27
BF	Populus balsamifera	Salicaceae	3	12	142 ± 34.3	18.1 ± 1.8	$6.9 \pm .3$	129.2 ± 24.7	1077 ± 158.9	217 ± 4.6	. 2
BF	Populus tremuloides	Salicaceae	4	16	138 ± 20.4	17.4 ± 1.6	7.2 ± 1.4	119.7 ± 23	1011 ± 287.6	232 ± 7.4	. 23
BF	Ribes laxiflorum	Grossulariaceae	4	15	109 ± 26.4	11.1 ± 1.1	$6.4 \pm .8$	48.7 ± 9.1	423 ± 64.5	109 ± 2.8	. 26
BF	Sambucus racemosa	Adoxaceae	3	8	65 ± 14.8	17.1 ± 3	12.6 ± 2.5	117 ± 38.4	350 ± 117.8	201 ± 2.6	. 57
BF	Shepherdia canadensis	Elaeagnaceae	3	5	143 ± 21.5	$8 \pm .4$	$7.9 \pm .1$	25.4 ± 2.4	301 ± 54.1	$114 \pm .8$. 38
BF	Sorbus scopulina	Rosaceae	5	20	137 ± 34.2	17.7 ± 3.9	7.2 ± 1.2	127.1 ± 55.3	966 ± 126.4	221 ± 7.3	. 23
BF	Viburnum edule	Adoxaceae	4	16	84 ± 4.9	15.2 ± 1.1	6.8 ± 1	91.1 ± 13.4	511 ± 48.4	143 ± 5.4	. 28
TRF	Alnus rubra	Betulaceae	3	9	296 ± 37.2	$7.9 \pm .3$	$7.2 \pm .3$	24.2 ± 2	630 ± 69.7	146 ± 4	. 23
TRF	Arbutus menziesii	Ericaceae	3	9	138 ± 25.2	16.6 ± 3.3	$10.9 \pm .6$	111.1 ± 41.5	767 ± 276.6	209 ± 3.6	. 27
TRF	Arctostaphylos columbiana	Ericaceae	3	9	157 ± 1.2	$9.3 \pm .6$	$11.8 \pm .5$	34.3 ± 4.4	324 ± 36.4	149 ± 2	. 46
TRF	Baccharis pilularis	Asteraceae	3	7	94 ± 11.6	$10.4 \pm .7$	11 ± 1.1	42.3 ± 5.8	242 ± 30	97 ± 2	. 4
TRF	Berberis nervosa	Berberidaceae	3	9	94 ± 14.5	$8.8 \pm .8$	$6.8 \pm .4$	30.7 ± 5.8	250 ± 31.2	49 ± 1.7	. 2
TRF	Frangula purshiana	Rhamnaceae	3	9	248 ± 18.8	8.8 ± 1.7	$6.7 \pm .9$	30.9 ± 12.1	656 ± 93.5	176 ± 4.4	. 27
TRF	Garrya elliptica	Garryaceae	3	9	130 ± 3.2	10.9 ± 1.5	$9.5 \pm .7$	46.8 ± 13	395 ± 71	199 ± 1.8	. 5
TRF	Gaultheria shallon	Ericaceae	3	6	223 ± 31	$9.2 \pm .5$	$8.7 \pm .3$	33.4 ± 3.6	552 ± 91.5	93 ± 4	. 17
TRF	Gaylussacia baccata	Ericaceae	3	9	120 ± 20.6	7.7 ± 1.8	$4.1 \pm .6$	24.2 ± 10.8	350 ± 143	57 ± 2.2	. 16
TRF	Holodiscus discolor	Rosaceae	3	9	141 ± 16.7	$7.6 \pm .2$	$7 \pm .3$	22.9 ± 1	295 ± 34.7	82 ± 2.4	. 28
TRF	Lonicera bispidula	Caprifoliaceae	3	9	200 ± 11.6	$9.9 \pm .4$	$5.5 \pm .3$	38.6 ± 3.3	719 ± 70.6	63 ± 1.7	. 09
TRF	Lonicera involucrata	Caprifoliaceae	3	7	250 ± 14	$11.1 \pm .3$	$6.3 \pm .3$	48.7 ± 2.2	999 ± 49.8	132 ± 3.6	. 13
TRF	Myrica californica	Myricaceae	3	9	196 ± 18.5	8.6 ± 1.2	$9.2 \pm .8$	29.2 ± 8.2	409 ± 49	164 ± 1.9	. 4
TRF	Rhododendron macrophyllum	Ericaceae	3	9	112 ± 22.4	11 ± 1.3	7.3 ± 0	47.7 ± 10.7	414 ± 140.2	39 ± 2.6	. 09
TRF	Ribes sanguineum	Grossulariaceae	3	9	154 ± 36.8	$10.5 \pm .6$	6.3 ± 1.1	43.3 ± 5.1	568 ± 162.9	132 ± 2.7	. 23
TRF	Rubus parviflorus	Rosaceae	3	9	202 ± 44.5	7.6 ± 1.2	$4.2 \pm .5$	22.8 ± 7.3	543 ± 85	132 ± 3.1	. 24
TRF	Rubus spectabilis	Rosaceae	3	8	264 ± 52.4	7.9 ± 1.2	$3.8 \pm .1$	24.6 ± 7.5	782 ± 123.1	139 ± 5.9	. 18
TRF	Salix hookeriana	Salicaceae	3	9	273 ± 35.7	$11.2 \pm .6$	$6 \pm .3$	49.4 ± 5.2	1124 ± 135.3	273 ± 3.7	. 24
TRF	Sambucus racemosa	Adoxaceae	3	9	119 ± 20.6	$17.5 \pm .9$	$14.4 \pm .9$	120.7 ± 13	599 ± 60.9	120 ± 3.6	. 2
TF	Acacia richii	Fabaceae	3	12	253 ± 5.3	$6.3 \pm .5$	$5.7 \pm .2$	15.7 ± 2.3	441 ± 54.6	158 ± 3.1	. 36
TF	Aglaia basiphylla	Meliaceae	3	12	122 ± 24.9	12.7 ± 2.4	10 ± 1.2	64.7 ± 24	462 ± 136.1	101 ± 1.2	. 22
TF	Alstonia costata	Apocynaceae	4	16	644 ± 186.6	$5.4 \pm .8$	5.2 ± 1.2	11.7 ± 3.4	913 ± 197.6	190 ± 4.9	. 21
TF	Amaroria soulameoides	Simaroubaceae	3	12	448 ± 39.8	$8.5 \pm .5$	$7.6 \pm .6$	28.7 ± 3.6	1066 ± 146.4	117 ± 3.3	. 11

 $+1$

 $+1$

[^0]where n species $g_{\text {op }}$ is the total number of individual $g_{\text {op }}$ measurements per species, n biome $g_{\text {op }}$ is the total number of species $g_{\text {op }}$ measurements for a given biome, and species $g_{\text {op }}$ is the mean $g_{\text {op }}$ for a given species. The $g_{\text {op }}: g_{\text {max }}$ ratios were thus calculated from the weighted mean $g_{\text {op }}$ and mean $g_{\text {max }}$ values (weighted $g_{\text {op }} / g_{\text {max }}$). Normality tests (Shapiro-Wilk W-test and Anderson-Darling A-test) and post hoc tests (Levene's test for homogeneity of variance from means, Tukey's honest significant difference test for normal data, and the Kruskal-Wallis test for equal medians for nonnormal data) were carried out as necessary on all data and data groups. Reduced major axis (RMA) regressions were performed to investigate the relationship between $g_{\text {op }}$ and $g_{\text {max }}$ and to determine r^{2} and statistical significance ($P<0.05$). Boxplots were generated to determine data distribution and differences between groups. All statistical analyses were performed using Past version 3.14 (http://folk.uio.no /ohammer/past/). Figures were generated using R statistical package version 3 (R Core Team 2015).

Results

$$
\text { The } g_{\text {op }}: g_{\max } \text { Ratio across Biomes }
$$

Overall, across 74 species and four biomes, the $g_{\text {op }}: g_{\text {max }}$ ratio was 0.26 (see table 2 for a comparison of recent investigations into the $g_{\text {op }}: g_{\text {max }}$ ratio). The tropical seasonal (moist) forest displayed the smallest mean $g_{\text {op }}: g_{\text {max }}$ ratio (0.23), while the highest $g_{\text {op }}: g_{\text {max }}$ ratio was found in the tropical rain forest (0.31 ; table 1). High variability in species-level $g_{\mathrm{op}}: g_{\text {max }}$ ratio was observed between species within and across all biomes, from a minimum 0.08 in Neea buxifolia from the tropical seasonal (moist) forest to a maximum 0.6 in Sambucus racemosa from the boreal forest (table 1). There was no significant difference in median biome $g_{\text {op }}: g_{\text {max }}$ ratios $\chi^{2}=4.976$, $P=0.17$) with mean and median values among biomes in close agreement (fig. 1A; tables 3, S2).

$$
\text { The } g_{\text {op }}: g_{\max } \text { Ratio in Habitat Groups }
$$

Species data were categorized according to two habitat groups: open canopy and understory subcanopy. Overall, the biome-wide mean $g_{\text {op }}: g_{\text {max }}$ ratio in both the open-canopy ($n=26$) and the understory-subcanopy ($n=49$) habitats was the same, with a calculated ratio of $0.28(P=0.319$; fig. 1; tables 3, S3).
In the open-canopy habitat, there was no significant difference in overall mean $g_{\text {op }}: g_{\text {max }}$ ratio between biomes ($F=0.157$, $P=0.924$; fig. 1 ; table S4). In the understory-subcanopy habitat, there was a significant difference in mean $g_{\text {op }}: g_{\text {max }}$ ratio between the tropical rain forest and both the temperate rain forest and the tropical seasonal (moist) forest biomes ($P=0.005$ and $P=0.026$, respectively; Tukey's honest significant difference test), with the tropical rain forest displaying the highest mean $g_{\text {op }}: g_{\text {max }}$ ratio in both habitats across all biomes at 0.32 (fig. 1 ; table S5).
In the boreal forest, tropical seasonal (moist) forest, and tropical rain forest, there was no significant difference between the mean $g_{\mathrm{op}}: g_{\text {max }}$ ratio of the open-canopy habitat and that of the understory-subcanopy habitat ($P>0.05$; fig. 2). Only the
temperate rain forest displayed a significant difference between habitat groups ($F=6.692, P=0.02$).

$$
\text { The } g_{\text {op }}: g_{\max } \text { Ratio in Growth Habit Groups }
$$

Species data were also categorized according to plant growth habit (tree and shrub) within each biome. The overall mean $g_{\text {op }}: g_{\text {max }}$ ratio was 0.25 for shrubs $(n=34)$ and 0.27 for trees ($n=41$; table S6). Overall, there was no significant difference in the $g_{\text {op }}: g_{\text {max }}$ ratio between shrub and tree growth habits $\chi^{2}=0.509, P=0.476$; table S6).

No significant difference was observed in either the mean shrub $g_{\text {op }}: g_{\text {max }}$ ratio or the mean tree $g_{\text {op }}: g_{\text {max }}$ ratio between biomes (ANOVA $P=0.2789$ and Kruskal-Wallis $\chi^{2}=3.768$, $P=0.288$, respectively; fig. $1 C$; tables $3, \mathrm{~S} 7$). Within biomes, there was no statistically significant difference between mean/ median shrub and tree $g_{\text {op }}: g_{\text {max }}$ ratios $(P>0.05)$.

$$
\text { Relationship between } g_{\text {op }} \text { and } g_{\max }
$$

Linear regressions were performed using RMA to account for errors in both x and y variables. Across the total $75 \mathrm{C}_{3}$ woody angiosperm species and four biomes, the best-fit linear relationship between $g_{\text {op }}$ and $g_{\text {max }}$ was $g_{\text {op }}=0.26 \cdot g_{\text {max }}-$ $5.56\left(r^{2}=0.304, P<0.001\right.$; table 3; fig. 1). Within each of the four study biomes, there was a significant positive relationship between $g_{\text {op }}$ and $g_{\text {max }}$, with no significant difference between slopes $\chi^{2}=5.375, P=0.146$; table 3; fig. 2).

Relationships between $g_{\text {op }}$ and $g_{\text {max }}$ in both the opencanopy and understory-subcanopy habitat groups were significant $\left(r^{2}=0.262, P=0.009\right.$ and $r^{2}=0.238, P<0.001$, respectively; table 3 ; fig. 2). In both the tree and the shrub groups, the relationships between $g_{\text {op }}$ and $g_{\text {max }}$ were also significant ($r^{2}=0.209, P<0.001$ and $r^{2}=0.318, P=0.007$, respectively; table 3; fig. 2), with no difference between slopes $\chi^{2}=3.252, P=0.07$; table 3). There was significant difference in the slopes of the open-canopy and understorysubcanopy habitats $\chi^{2}=3.986, P=0.0459$; table 3; fig. 2).

Stomatal Traits

Stomatal density. There was wide species variation in the range of estimated D across all four biomes, from a minimum average D of $\sim 65 \mathrm{~mm}^{-2}$ in the boreal forest (S. racemosa) to a maximum average of $928 \mathrm{~mm}^{-2}$ in the tropical seasonal forest (Eugenia axillaris; table 1). There was no statistically significant difference in mean D between boreal forest and temperate rain forest species ($P=0.172$). There was also not a significant difference in D between the tropical rain forest and the tropical seasonal (moist) forest ($P=0.72$). A significant difference was observed between the boreal forest and both the tropical rain forest ($P=0.0002$) and the tropical seasonal (moist) forest ($P=0.0004$) and, likewise, between the temperate rain forest and both the tropical rain forest and the tropical seasonal (moist) forest ($P=0.001$ and $P=0.002$, respectively; table 1).
Stomatal pore area. Overall, stomatal pore length ranged from a mean minimum $2.9 \mu \mathrm{~m}$ (E. axillaris) in the tropical seasonal (moist) forest to a mean maximum $18.1 \mu \mathrm{~m}$ (Populus
Table 2
Most Recent Investigations of the Relationship between Operational Stomatal Conductance $\left(g_{\text {op }}\right) \quad$ Ratios

Study	Study type	Plant type	Environment/protocol	Species (n)	Pore (calculated as)	$g_{\text {op }}: g_{\text {max }}$	Equation
Franks et al. 2009	Single species	Woody angiosperm (Eucalyptus globulus seedlings and coppice shoots)	Field experiment	1	Circle	. 2	$g_{\mathrm{w} \text { max }}=\left(d \cdot D \cdot a_{\text {max }}\right) /\left(\nu \cdot\left(l+(\pi / 2) \cdot \sqrt{\left(a_{\text {max }} / \pi\right)}\right)\right)$
Dow et al. 2014	Single species	Herbaceous (Arabidopsis thaliana mature rosette leaves)	Growth chamber	$\begin{aligned} & 1 \text { (6 geno- } \\ & \text { types) } \end{aligned}$	Ellipse	. 2	Anatomical $g_{\text {max }}=\left(d \cdot D \cdot a_{\text {max }}\right) /\left(v \cdot\left(l+(\pi / 2) \cdot \sqrt{\left(a_{\text {max }} / \pi\right)}\right)\right)$
Franks et al. 2014	Theoretical model			\ldots	Circle	. 2	$g_{\mathrm{w} \text { max }}=\left(d \cdot D \cdot a_{\text {max }}\right) /\left(v \cdot\left(l+(\pi / 2) \cdot \sqrt{\left(a_{\text {max }} / \pi\right)}\right)\right)$
$\begin{aligned} & \text { McElwain et al. } \\ & 2016 b \end{aligned}$	Multispecies	Mixed phylogenies: angiosperm (woody and herbaceous); gymnosperm (conifer and cycad)	Glasshouse and growth chamber	18	Ellipse	. 25	$g_{\max }=\frac{\left(d_{\mathrm{w}} / v\right) \cdot D \cdot \mathrm{pa}_{\max }}{\left.\mathrm{pd}+(\pi / 2) \cdot \sqrt{(\mathrm{pa}} \mathrm{a}_{\text {max }} / \pi\right)}$
Murray et al. 2019	Multispecies, multibiome	Woody angiosperms (evergreen and deciduous)	Natural (variance protocol)	74	Ellipse	. 26	$g_{\max }=\frac{\left(d_{\mathrm{w}} / \nu\right) \cdot D \cdot \mathrm{pa}_{\max }}{\mathrm{pd}+(\pi / 2) \cdot \sqrt{\left(\mathrm{p} \mathrm{a}_{\max } / \pi\right)}}$

Fig. 1 Boxplots showing the ratio of operational stomatal conductance to theoretical maximum stomatal conductance ($g_{\text {op }}: g_{\text {max }}$) for biomes (A), habitats (B), and plant growth habits (C). Boxes represent the interquartile range (IQR), horizontal lines within the boxes represent medians, red circles represent means, whiskers extend to 1.5 times the IQR , and black circles are outliers. In B, letters above boxplots indicate pairwise comparison for the understory-subcanopy habitat across biomes (Tukey's honest significant difference test), and letters below boxplots indicate significant differences in the two habitats for temperate rain forest. All other comparisons show no significant difference across or within biomes.
balsamifera) in the boreal forest. Stomatal pore length differed significantly between all biomes except between the tropical rain forest and the tropical seasonal (moist) forest, which shared the same mean and median stomatal pore length values ($P=0.6796$). Calculated mean maximum stomatal pore area $\left(\mathrm{pa}_{\text {max }}\right)$ values
reflected mean stomatal pore length values and ranged from a mean minimum pa max of $3.3 \mu \mathrm{~m}^{2}$ (E. axillaris) in the tropical seasonal (moist) forest to a mean maximum of $\sim 129 \mu \mathrm{~m}^{2}$ (P. balsamifera) in the boreal forest. There was a significant difference in pa ${ }_{\text {max }}$ between most biomes ($P=3.25 \times 10^{-8}$) except

Table 3
Calculated Ratios of Operational Stomatal Conductance to Maximum Theoretical Stomatal Conductance ($g_{\mathrm{op}}: g_{\text {max }}$) and Reduced Major Axis Regression Equations for the Relationship between $g_{\text {op }}$ and $g_{\max }$ at Biome, Habitat, and Plant Growth Habit Levels

Regression level, data group	n	$g_{\text {op }}: g_{\text {max }}$ ratio	$g_{\text {op }}$	r^{2}	P	P (same slope)
Overall	75	. 26	. $256 \cdot g_{\max }-5.561$. 304	. 000	
Biome:						
Boreal forest	13	. 27	. $155 \cdot g_{\text {max }}+52.845$. 326	. 042	$\chi^{2}=5.375$
Temperate rain forest	19	. 25	. $245 \cdot g_{\text {max }}-7.809$. 323	. 011	$P=.146$
Tropical rain forest	22	. 31	. $2997 \cdot g_{\text {max }}-7.587$. 244	. 019	\ldots
Tropical seasonal forest	21	. 23	. $309 \cdot g_{\text {max }}-41.366$. 463	. 001	\ldots
Habitat:						
Open canopy	26	. 28	. $265 \cdot g_{\text {max }}-2.603$. 262	. 009	$\chi^{2}=3.986$
Understory subcanopy	49	. 25	. $310 \cdot g_{\text {max }}-24.222$. 238	. 000	$P=.046$
Plant habit:						
Tree	41	. 27	. $222 \cdot g_{\text {max }}+17.237$. 318	. 000	$\chi^{2}=3.252$
Shrub	34	. 26	. $323 \cdot g_{\text {max }}-40.385$. 209	. 007	$P=.071$

Fig. 2 Scatterplots showing the scaling relationship between species' averaged operational stomatal conductance ($g_{\text {op }}$) and maximum theoretical stomatal conductance $\left(g_{\max }\right)$ of C_{3} woody angiosperms for biomes (A), habitats (B), and plant growth habits (C). Lines corresponding to the legend color are the fitted reduced major axis regressions. The dashed line is the $1: 1$ relationship (refer to table 3 for the regression equations and P values). Only in C is there significant difference in slope between shrub and tree, but all other comparisons in A and B show no significant difference in slopes ($P<0.05$).
between the tropical rain forest and the tropical seasonal (moist) forest where there was no significant difference ($P=0.51$).

Relationship between Anatomical Measurements and Calculated $g_{\text {max }}$

A significant strong relationship between $g_{\text {max }}$ and D was found among tropical rain forest taxa ($g_{\max }=1.2185 \cdot D+$ 121.91; $r^{2}=0.684, P<0.0001$), and a moderately strong and significant relationship between $g_{\max }$ and D was found in the temperate rain forest $\left(g_{\max }=3.7912 \cdot D-122.01 ; r^{2}=\right.$ $0.518, P=0.001$; fig. 3). No significant relationship between $g_{\text {max }}$ and D was observed in either the boreal forest ($g_{\max }=$ $3.526 \cdot D+176.87 ; r^{2}=0.009, P=0.77$) or the tropical seasonal (moist) forest ($g_{\max }=0.817 \cdot D+226.13 ; r^{2}=0.15$, $P=0.085$; fig. 3). Overall, when all taxa from all biomes were lumped together, no relationship was evident. There was no difference in slopes between the boreal forest and the temperate rain forest or between the tropical rain forest and the tropical seasonal (moist) forest ($P=0.84$ and $P=0.113$; fig. 3).
There was a moderately strong but significant relationship between $g_{\text {max }}$ and $\mathrm{pa}_{\text {max }}$ in the boreal forest $\left(g_{\max }=7.439\right.$.
$\left.\mathrm{pa}_{\text {max }}+46.884 ; r^{2}=0.452, P=0.012\right)$; however, no relationship between $g_{\text {max }}$ and pa max $_{\text {mas }}$ was established in the other biomes: temperate rain forest ($r^{2}=0.073, P=0.262$), tropical rain forest $\left(r^{2}=0.022, P=0.508\right)$, and tropical seasonal (moist) forest ($r^{2}=0.0192, P=0.55$; fig. 3). There was no difference in slopes between the boreal forest and the temperate rain forest or between the tropical rain forest and the tropical seasonal (moist) forest ($P=0.56$ and $P=0.99$, respectively; fig. 3).

Relationship of $g_{\max }$ to Environmental Data

Correlation regressions between all species' $g_{\text {max }}, g_{\text {op }}$, and $g_{\text {op }}: g_{\text {max }}$ ratios and environmental variables of temperature, PAR, and VPD showed no significant relationships (fig. S1, available online).

Discussion

$$
g_{\text {op }}: g_{\max } \text { Ratios and Relationships }
$$

We find a consistent relationship between theoretical $g_{\text {max }}$ calculated from stomatal anatomy and field-measured $g_{\text {op }}$,

Fig. 3 Scatterplots of theoretical maximum stomatal conductance $\left(g_{\max }\right)$ and stomatal density $(D ; A)$ and maximum stomatal pore area ($\mathrm{pa}_{\max } ; B$) for biomes. Lines corresponding to the legend color are the fitted reduced major axis regressions. In both A and B, there are no significant differences in relationships between the boreal forest and the temperate rain forest ($D: P=0.84$; pa max $: P=0.56$, respectively) or between the tropical rain forest and the tropical seasonal (moist) forest ($D: P=0.11$; pa max $: P=0.99$, respectively).
with an overall mean $g_{\text {op }}: g_{\max }$ ratio of 0.26 . At the biome level, woody angiosperm species in the field tend to operate between 23% and 31% of their calculated $g_{\max }$, which is in good agreement with previous, but less taxonomically extensive (~ 15 species), studies in a mix of glasshouse, chamber, and field experiments (Franks et al. 2009, 2014; Dow and Bergmann 2014; McElwain et al. 2016b; see table 3 for the most recent studies). This is significant, considering the diversity in species and climate/environments covered in this study and between all studies to date. It confirms the existence of an apparent ideal $g_{\text {op }}: g_{\text {max }}$ ratio, as was suggested in previous studies (Dow et al. 2014; Franks et al. 2014; McElwain et al. 2016b). The wide-ranging interspecific variation in $g_{\text {op }}: g_{\text {max }}$ ratios we observed (between 0.08 and 0.57) is also consistent with reported maximum $g_{\text {op }}: g_{\text {max }}$ ratios of between 0.15 and 0.98 across species using a variance protocol (McElwain et al. $2016 b$). Despite such wide-ranging $g_{\text {op }}: g_{\text {max }}$ ratios across species within each biome, no statistical difference between overall biome-level $g_{\text {op }}: g_{\text {max }}$ ratios was observed.

Habitat Groups

This pattern of consistency in the $g_{\text {op }}: g_{\text {max }}$ ratio was also noted in two habitat groups: open canopy and understory subcanopy. Considering the different environmental conditions experienced by plants in these two habitats, including lower PAR and VPD values exhibited in the understorysubcanopy habitat than in the open-canopy habitat, as well as lower $g_{\text {op }}$ demonstrated by the understory-subcanopy plants (Murray et al. 2019), the consistency in the $g_{\text {op }}: g_{\text {op }}$ ratio between these two habitats is noteworthy. It is surely interesting that such consistency has emerged from this study despite high environment-driven species variability in each and further supports the theory that plants operate at an ideal $g_{\text {op }}: g_{\max }$ ratio.

Plant Growth Habit

The $g_{\text {op }}: g_{\text {max }}$ ratio was again demonstrated between tree and shrub plant growth habits. Previous studies have investigated in total around 20 different species comprising different growth habits, including herbaceous plants, woody shrubs, and trees (table 3). It is not clear from these studies, however, whether growth habit had any influence on the $g_{\text {op }}: g_{\text {max }}$ ratio. This study of 33 shrub and 42 tree species determined that growth habit does not appear to have any influence on overall $g_{\text {op }}: g_{\text {max }}$ ratio. This once again reinforces our discovery of a consistent macrolevel $g_{\text {op }}: g_{\text {max }}$ ratio.

Stomatal Morphological Traits

In the cool higher-latitude biomes of the boreal forest and the temperate rain forest, stomatal pore size influences $g_{\text {max }}$ to the greatest extent (fig. 3B). On the other hand, in the warmer biomes of the tropical rain forest and the tropical seasonal forest, this is not the case, and stomatal density is most influential in these biomes (fig. 3A). The much larger pore size observed in the boreal forest may reflect greater overall genome size in the boreal biome taxa than in the other biomes, as guard cell size frequently scales with genome size (Beaulieu et al. 2008). Our results may reflect the pressures that climate exerts on leaf stomatal development in each biome. For instance, in the hotter biomes, which require greater evaporative cooling, this is clearly attained via higher D and smaller stomata (fig. 3): smaller stomata have been observed to respond more rapidly to environmental stimuli (Drake et al. 2013). Our results from the tropical rain forest corroborate findings in Eucalyptus globulus, in which higher rates of gas exchange were achieved by a greater density of small stomata (Franks et al. 2009). The opposite is true for the most northern latitude biomes, where fewer larger stomata ensure high
$g_{\text {max }}$ to exploit the short window of opportunity for carbon gain experienced in the boreal forest.

Species-Level Variability in the $g_{\text {op }}: g_{\max }$ Ratio

In competition and in association with neighboring species, plants can optimize physiological processes, such as stomatal conductance, toward proper growth, development, and reproduction; this results in their occupying a particular niche space (Sterck et al. 2011; McElwain et al. 2016b). This might account for the diversity of species-specific $g_{\text {op }}: g_{\max }$ ratios that we find within each biome investigated here. While a single species experiment in the "natural" environment may yield a low $g_{\text {op }}: g_{\text {max }}$ ratio, such a monocultural ecosystem may function very differently from the truly natural environment of very mixed vegetation types in unmanaged forests. From our results, such ecosystems yield widely diverging species $g_{\text {op }}: g_{\text {max }}$ ratios, which may also be constantly changing in dynamic response to environmental fluxes. The minimum $g_{\text {op }}: g_{\text {max }}$ ratio we observed in our study was 0.08 (Neea buxifolia) in the tropical seasonal (moist) forest, and the highest value was 0.57 (Sambucus racemosa) in the boreal forest. Despite wide species-level variability, however, at the biome level, the average $g_{\text {op }}: g_{\text {max }}$ ratio is highly consistent across all four biomes investigated. The variety of stomatal density and size combinations among species appears to facilitate each species’ $g_{\text {max }}$ requirements in response to localized community composition and microenvironmental fluxes (Franks and Beerling 2009) and, perhaps, enables the coexistence of diverse species (McElwain et al. 2016), as in the tropical rain forest.

The $g_{\text {op }}: g_{\text {max }}$ data presented here is a broad representation of C_{3} woody angiosperm species common within each biome (Murray et al. 2019). We set out to investigate the nature of the relationship between $g_{\text {op }}$ and $g_{\text {max }}$ in as many biomerepresentative species as possible within the limits of the study; however, a complete picture of g_{op} may not have been captured, since it was not possible to measure the diurnal courses of $g_{\text {op }}$ for every measured leaf. Nonetheless, despite these limits to our sampling and the wide interspecies variability in the relationship between $g_{\text {op }}$ and $g_{\text {max }}$, there is consistency in the $g_{\text {op }}: g_{\text {max }}$ ratio across biomes, habitats, and growth habits presented here, providing an important new reference for studies at the biome, habitat, and growth habit levels of woody angiosperm species of unknown $g_{\text {op }}: g_{\text {max }}$ ratio in the natural environment. A potential future study might incorporate relative abundance data to quantify a community-weighted $g_{\mathrm{op}}: g_{\max }$ ratio to further under-
stand whether there is any departure from the $g_{\text {op }}: g_{\text {max }}$ ratio so far observed.

Conclusion

Until now, there were few reference points for the relationship between $g_{\text {op }}$ and $g_{\max }$ and no studies in natural ecosystems. This study using the variance protocol (McElwain et al. 2016b; Murray et al. 2019) presents in one data set the $g_{\text {op }}: g_{\max }$ ratios of 74 woody angiosperm species in their natural habitats from across four biomes. We have shown compelling evidence for consistency in the ratio between physiological $g_{\text {op }}$ and anatomical $g_{\max }$ among biome-representative woody angiosperms at the levels of biome, habitat, and plant growth habit. This new data set provides a valuable contemporary calibration reference for woody angiosperms in vegetation-climate and paleoclimate models. For paleobotanists striving to understand plant macroevolutionary patterns and paleoecophysiological function from measurable fossil traits (Franks et al. 2014; McElwain et al. $2016 a$) where no modern equivalents exist, our results now offer a valuable reference for the $g_{\text {op }}: g_{\text {max }}$ ratio at the biome, habitat, and plant growth habit levels for woody Eudicots. In such cases, the discovery of a best estimate of the $g_{\text {op }}: g_{\text {max }}$ ratio is a good starting point for the foundation of sound paleoclimate proxies for further understanding plants' role in mediating climate past and present. In their chapter on the capture of CO_{2} by leaves and stomata, Williams et al. (2004), while conceding a large degree of uncertainty, suggested that species-level differences, though great, may not ultimately be important considering the observed conformity in $g_{\text {max }}$ response found at the PFT level (Williams et al. 2004). We argue the same for the relationship between $g_{\text {op }}$ and $g_{\text {max }}$: while there is almost the full breadth of disparity among species, at the levels of growth habit, habitat, and biome, the relationship is consistent.

Acknowledgments

We thank research assistant Ciara Egan and student interns Marion Lestienne and Louise Flanagan for assistance with slide preparation and Amanda Porter and Crissy Evan-Fitzgerald for many discussions on anatomical $g_{\max }$. We acknowledge University College Dublin School of Biology and Environmental Science for facilitating all lab work carried out for this project. This project was made possible by funding from a Science Foundation Ireland (SFI) Principal Investigator Award (PI) 11/PI/1103.

Literature Cited

Ainsworth EA, A Rogers 2007 The response of photosynthesis and stomatal conductance to rising $\left[\mathrm{CO}_{2}\right]$: mechanisms and environmental interactions. Plant Cell Environ 30:258-270.
APG (Angiosperm Phylogeny Group), MW Chase, MJM Christenhusz, MF Fay, JW Byng, WS Judd, DE Soltis, et al 2016 An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1-20.
Beaulieu JM, IJ Leitch, S Patel, A Pendharkar, CA Knight 2008 Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179:975-986.

Berry JA, DJ Beerling, PJ Franks 2010 Stomata: key players in the earth system, past and present. Curr Opin Plant Biol 13:233240.

Betts RA, O Boucher, M Collins, PM Cox, PD Falloon, N Gedney, DL Hemming, et al 2007 Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448: 1037-1041.
Blonder B, V Buzzard, I Simova, L Sloat, B Boyle, R Lipson, B AguilarBeaucage, et al 2012 The leaf-area shrinkage effect can bias paleoclimate and ecology research. Am I Bot 99:1756-1763.

Buckley TN 2005 The control of stomata by water balance. New Phytol 168:275-292.
Buckley TN, SJ Schymanski 2014 Stomatal optimisation in relation to atmospheric CO_{2}. New Phytol 201:372-377.
Casson S, JE Gray 2008 Influence of environmental factors on stomatal development. New Phytol 178:9-23.
Dow GJ, DC Bergmann 2014 Patterning and processes: how stomatal development defines physiological potential. Curr Opin Plant Biol 21:67-74.
Dow GJ, DC Bergmann, JA Berry 2014 An integrated model of stomatal development and leaf physiology. New Phytol 201:1218-1226.
Drake PL, RH Froend, PJ Franks 2013 Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. IExp Bot 64:495-505.
Engineer CB, M Hashimoto-Sugimoto, J Negi, M IsraelssonNordström, T Azoulay-Shemer, WJ Rappel, K Iba, JI Schroeder $2016 \mathrm{CO}_{2}$ sensing and CO_{2} regulation of stomatal conductance: advances and open questions. Trends Plant Sci 21:16-30.
Farquhar GD, TD Sharkey 1982 Stomatal conductance and photosynthesis. Annu Rev Plant Phvsiol 33:317-345. https://doi.org/10 .1146/annurev.pp.33.060182.001533.
Franks PJ, MA Adams, JS Amthor, MM Barbour, JA Berry, DS Ellsworth, GD Farquhar, et al 2013 Sensitivity of plants to changing atmospheric CO_{2} concentration: from the geological past to the next century. New Phytol 197:1077-1094.
Franks PJ, DJ Beerling 2009 Maximum leaf conductance driven by CO_{2} effects on stomatal size and density over geologic time. Proc Natl Acad Sci USA 106:10343-10347.
Franks PJ, TW Doheny-Adams, ZJ Britton-Harper, JE Gray 2015 Increasing water-use efficiency directly through genetic manipulation of stomatal density. New Phytol 207:188-195.
Franks PJ, PL Drake, DJ Beerling 2009 Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus. Plant Cell Environ 32:1737-1748. https://doi.org/10.1111/j.1365-3040.2009 .002031.x.
Franks PJ, IJ Leitch, EM Ruszala, AM Hetherington, DJ Beerling 2012 Physiological framework for adaptation of stomata to CO_{2} from glacial to future concentrations. Philos Trans R Soc B 367:537-546.
Franks PJ, DL Royer, DJ Beerling, PK van de Water, DJ Cantrill, MM Barbour, JA Berry 2014 New constraints on atmospheric CO_{2} concentration for the Phanerozoic. Geophys Res Lett 41:4685-4694. https://doi.org/10.1002/2014GL060457.
Gedney N, PM Cox, RA Betts, O Boucher, C Huntingford, PA Stott 2006 Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439:835-838.
Gray SB, O Dermody, SP Klein, AM Locke, JM Mcgrath, RE Paul, DM Rosenthal, et al 2016 Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat Plants 2:16132.
Haworth M, C Elliott-Kingston, JC McElwain 2013 Co-ordination of physiological and morphological responses of stomata to elevated $\left[\mathrm{CO}_{2}\right]$ in vascular plants. Oecologia 171:71-82.
Hetherington AM, FI Woodward 2003 The role of stomata in sensing and driving environmental change. Nature 424:901-908.
Hutjes RWA, P Kabat, SW Running, WJ Shuttleworth, C Field, B Bass, MF da Silva Dias, et al 1998 Biospheric aspects of the hydrological cycle. LHydrol 212/213:1-21. https://doi.org/10.1016/S0022-1694 (98)00255-8.

Katul G, S Manzoni, S Palmroth, R Oren 2009 A stomatal optimization theory to describe the effects of atmospheric CO_{2} on leaf photosynthesis and transpiration. Ann Bot 105:431-442. https://doi.org /10.1093/aob/mcp292.
Katul GG, R Oren, S Manzoni, C Higgins, MB Parlange 2012 Evapotranspiration: a process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Rev Geophys 50:RG3002. https://doi.org/10.1029/2011RG000366.

Keenan TF, J Gray, MA Friedl, M Toomey, G Bohrer, DY Hollinger, JW Munger, et al 2014 Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat Clim Chang 4:598-604. https://doi.org/10.1038/nclimate2253.
Kollist H, M Nuhkat, MRG Roelfsema 2014 Closing gaps: linking elements that control stomatal movement. New Phytol 203:4462.

Körner C 1995 Leaf diffusive conductances in the major vegetation types of the globe. Pages 463-490 in ED Schulze, MM Caldwell, eds. Ecophysiology of photosynthesis. Springer, Berlin. https://doi .org/10.1007/978-3-642-79354-7.
Lake JA, WP Quick, DJ Beerling, FI Woodward 2001 Signals from mature to new leaves. Nature 411:154.
Lammertsma EI, HJ de Boer, SC Dekker, DL Dilcher, AF Lotter, F Wagner-Cremer 2011 Global CO_{2} rise leads to reduced maximum stomatal conductance in Florida vegetation. Proc Natl Acad Sci USA 108:4035-4040.
Lawson T, MR Blatt 2014 Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol 164:1556-1570.
Lawson T, W James, J Weyers 1998 A surrogate measure of stomatal aperture. IExp Bot 49:1397-1403.
Lawson T, JI Morison 2004 Stomatal function and physiology. Pages 217-242 in AR Hemsley, I Poole, eds. The evolution of plant physiology: from whole plants to ecosystem. Elsevier, Cambridge.
Leakey ADB, EA Ainsworth, CJ Bernacchi, A Rogers, SP Long, DR Ort 2009 Elevated CO_{2} effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. IExp Bot 60:2859-2876. https://doi.org/10.1093/jxb/erp096.
Li Z, Y Chen, Y Wang, G Fang 2016 Dynamic changes in terrestrial net primary production and their effects on evapotranspiration. Hydrol Earth Syst Sci 20:2169-2178.
Lin Y-S, BE Medlyn, RA Duursma, IC Prentice, H Wang, S Baig, D Eamus, et al 2015 Optimal stomatal behaviour around the world. Nat Clim Chang 5:459-464.
Lomax BH, FI Woodward, IJ Leitch, CA Knight, JA Lake 2009 Genome size as a predictor of guard cell length in Arabidopsis thaliana is independent of environmental conditions. New Phytol 181:311-314.
Manzoni S, G Vico, G Katul, PA Fay, W Polley, S Palmroth, A Porporato 2011 Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates. Funct Ecol 25:456-467. https://doi.org /10.1111/j.1365-2435.2010.01822.x.
McAusland L, S Vialet-Chabrand, P Davey, NR Baker, O Brendel, T Lawson 2016 Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytol 211:12091220.

McElwain JC, WG Chaloner 1995 Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Palaeozoic. Ann Bot 76:389-395. https://doi.org/10.1006/anbo.1995.1112.
McElwain JC, IP Montañez, JD White, JP Wilson, C Yiotis 2016a Was atmospheric CO_{2} capped at 1000 ppm over the past 300 million years? Palaeogeogr Palaeoclimatol Palaeoecol 441:653-658. https://doi.org/10.1016/j.palaeo.2015.10.017.
McElwain JC, C Yiotis, T Lawson $2016 b$ Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution. New Phytol 209:94-103.
Medlyn BE, RA Duursma, D Eamus, DS Ellsworth, IC Prentice, CVM Barton, KY Crous, P De Angelis, M Freeman, L Wingate 2011 Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob Chang Biol 17:2134-2144.
Mott KA 2009 Opinion: stomatal responses to light and CO_{2} depend on the mesophyll. Plant Cell Environ 32:1479-1486.
Murray M, WK Soh, C Yiotis, S Batke, AC Parnell, RA Spicer, T Lawson, et al 2019 Convergence in maximum stomatal conductance
of C_{3} woody angiosperms in natural ecosystems across bioclimatic zones. Front Plant Sci 10:558.
Parlange JY, PE Waggoner 1970 Stomatal dimensions and resistance to diffusion. Plant Physiol 46:337-342.
Poole I, WM Kürschner 1999 Stomatal density and index: the practice. Pages 257-260 in TP Jones, NP Rowe, eds. Fossil plants and spores: modern techniques. Geological Society, London.
R Core Team 2015 R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
Sack L, TN Buckley 2016 The developmental basis of stomatal density and flux. Plant Physiol 171:2358-2363.
Schlesinger WH, S Jasechko 2014 Transpiration in the global water cycle. Agric For Meteorol 189/190:115-117.
Schulze ED, FM Kelliher, C Körner, J Lloyd, R Leuning 1994 Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: a global ecology scaling exercise. Annu Rev Ecol Syst 25:629-660.

Sterck F, L Markesteijn, F Schieving, L Poorter 2011 Functional traits determine trade-offs and niches in a tropical forest community. Proc Natl Acad Sci USA 108:20627-20632.
Ukkola AM, IC Prentice, TF Keenan, AIJM van Dijk, NR Viney, RB Myneni, J Bi 2015 Reduced streamflow in water-stressed climates consistent with CO_{2} effects on vegetation. Nat Clim Chang 6:75-78. Wagner F, R Below, PD Klerk, DL Dilcher, H Joosten, WM Kürschner, H Visscher 1996 A natural experiment on plant acclimation: lifetime stomatal frequency response of an individual tree to annual atmospheric CO_{2}. Proc Natl Acad Sci USA 93:11705-11708.
Williams M, FI Woodward, DD Baldocchi, D Ellsworth $2004 \mathrm{CO}_{2}$ capture from the leaf to the landscape. Pages $1-30$ in WK Smith, TC Vogelmann, C Critchley, eds. Photosynthetic adaptation: chloroplast to landscape. Springer, New York.
Woodward FI 1987 Stomatal numbers are sensitive to increases in CO_{2} from pre-industrial levels. Nature 327:617-618.
Woodward FI, CK Kelly 1995 The influence of CO_{2} concentration on stomatal density. New Phytol 131:311-327.

[^0]: Note. $\mathrm{BF}=$ boreal forest, $\mathrm{TRF}=$ temperate rain forest, $\mathrm{TF}=$ tropical rain forest, $\mathrm{TSF}=$ tropical seasonal (moist) forest, $g_{\text {op }}=$ operational stomatal conductance, pa max $=$ maximum stomatal
 pore area, $g_{\max }=$ theoretical maximum stomatal conductance, leaves $(n)=$ number of leaves used for the calculation of mean $g_{\text {max }}$, and $g_{\text {op }}(n)=$ number of $g_{\text {op }}$ measurements on the same leaves for calculation of mean $g_{\text {op }}$ (mean $g_{\text {op }}$ values are weighted mean values). All errors are standard deviation.

