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ABSTRACT 
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Amyotrophic lateral sclerosis (ALS) is a fatal disease with fast progression. 

Patients usually die three to five years after diagnosis. The main 

characteristics are progressive neurodegeneration, following muscular 

weakness, and atrophy. The most common cause of death is respiratory 

muscle failure. Studies have shown that the highlight of the disease is 

TDP-43 inclusions in neuronal cytoplasm. The symptoms of ALS can be 

recapitulated in Drosophila melanogaster. The Drosophila‘s ortholog is 

called TBPH. TBPH knockout flies show locomotion problems, shorter 

lifespan, and anatomical changes in the neuromuscular junction (NMJ). 

Our studies aimed to reveal the function of TBPH in muscles. We took 

advantage of RNA interference and silenced the protein exclusively in 

muscles. Moreover, we expressed TBPH in tbphΔ23/- fly and tried to 

understand whether it can rescue reduced mobility, lifespan, and 

anatomical properties of NMJ. We observed changes in lifespan, motility, 

and NMJ structure when TBPH was silenced in muscles. Expression of 

the protein in tbphΔ23/- Drosophila completely recovered the motility of 

larvae and the level of proteins located in the postsynaptic compartment 

of NMJ. One of the proteins was Disc large (Dlg), known as scaffold protein 

involved in NMJ development and maintenance of NMJ structure. 

Expression of Dlg recovered the phenotype in terms of mobility, lifespan, 

and NMJ formation. We also demonstrated that the drop of Dlg levels 
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could be seen in neuroblastoma cells and differentiated iPS cells of ALS 

patients. With that been discovered, not only have we confirmed the 

relevance of our studies, but we have also opened a new possibility for 

drug development and treatment. Moreover, with the research, we 

contributed to a recent hypothesis that muscles can be involved in the 

onset of ALS.  
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1. INTRODUCTION  
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1.1. Amyotrophic Lateral Sclerosis 

Amyotrophic lateral sclerosis (ALS), also known as Lou Gherig or Charcot 

disease, is a fatal neurodegenerative disease with rapid progression. The 

incidence is 1 in 100,000 people and the prevalence of 6 – 8 in 100,000 

people per year (Pasinelli and Brown, 2006; Shaw et al., 2001).  

With rare exceptions, the onset of ALS occurs at the age of 45 – 60 years, 

with higher prevalence in men. However, some reports indicate similar 

prevalence between the genders (Worms, 2001; Zoccolella et al., 2008).  

1.1.1. The symptoms and stages of the disease 

The disease mainly affects upper and lower motoneurons. Its progress is 

divided into three stages. In the early stage, symptoms are usually limited 

to one body region. The initial symptoms depend on the onset of the 

disease. There are two types of onset: limb onset, where lower 

motoneurons (LMN) are affected, and bulbar onset, where upper 

motoneurons (UMN) are degenerated first (Figure 1). Patients with the 

limb onset first notice changes in lower or upper limbs. Their muscles are 

weak and soft or stiff, tight and spastic, often presenting cramping and 

twitching. Patients feel fatigued, poor balance, weak grip, and tripping. 

Patients with the bulbar onset experience dysarthria of speech. In rare 

cases, dysphagia occurs before speech problems (Wijesekera and Leigh, 

2009).  
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Figure 1: Two onsets of the disease. Patients can experience different early symptoms of ALS, depending on the 

onset. 

During the middle stage, the symptoms spread to other parts of the body. 

Muscles can be either paralysed, weakened, or unaffected. Patients 

experience stiff, painful, and sometimes deformed joints, difficulties in 

eating, respiratory insufficiency, and some of them may be uncontrollably 

and inappropriately laughing or crying (pseudobulbar symptoms).  

Finally, in the late stage, most voluntary muscles are paralysed. Breathing 

muscles are more and more affected. Patients are incapable of moving. 

Breathing is hard. Speech, eating, and drinking are barely possible. 
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Eventually, most ALS patients die of respiratory failure (Vijayakumar et al., 

2019).  

The involuntary nervous system, sensory nerves, and cognitive function 

are, in most cases, preserved and unaffected. Even though, some people 

with sporadic cases can suffer from dementia or cognitive dysfunction 

(Phukan et al., 2007; Strong and Yang, 2011). The involvement of 

cognitive dysfunction has been poorly investigated and probably 

underestimated. The biggest problem is a difficult diagnosis (Strong and 

Yang, 2011). 

1.1.2. The pathogenesis of ALS 

ALS is classified into two major groups: familial ALS (FALS) and sporadic 

ALS (SALS). 90% of all patients diagnosed with ALS have SALS. The 

remaining 10% suffer from FALS, which is caused by the inheritance of an 

autosomal dominant mutation.  

Since 1990, pieces of the research described up to 30 mutated genes that 

cause ALS. However, mutations are present just in 66% of patients with 

FALS and approximately 15% of patients with SALS. The most frequent 

are mutations of c9orf72 (23% of FALS mutations and 3% of SALS 

mutations), sod1 (19% of FALS mutations and 1% of SALS mutations), fus 

(3% of FALS mutations and 0,4% of SALS mutations), and tdp-43 (3% of 
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FALS mutations and 0,5% of SALS mutations) genes (van Es et al., 2017; 

Vijayakumar et al., 2019; Zou et al., 2017) (Figure 2).  

Figure 2: Proteins carrying the mutations in patients diagnosed with FALS and SALS, and their frequencies (Zou et 

al., 2017). 

• C9orf72 mutations 

C9orf72 is a gene coding for C9 protein. The role of the protein in the cells 

is not entirely known. There are some evidence that show one of the two 

isoforms of the C9 protein being involved in autophagy, endosomal 

trafficking, modulation of actin dynamics, immune pathway regulation, and 

glutamate signalling (Fomin et al., 2018; O’Rourke et al., 2016; Sellier et 

al., 2016; Sivadasan et al., 2016; Webster et al., 2016). 

In 2011, two research groups (DeJesus-Hernandez et al., 2011; Renton 

et al., 2011) discovered that the most common genetic cause of ALS was 

a hexanucleotide GGGGCC repeat expansion. The ALS-nonaffected 



34 

 

people have around 11 or less repeats, while ALS patients have from 700 

to up to 1,600 repeats. The abnormality is linked to three different 

hypotheses of how the pathology is triggered.  

The first one is a loss-of-function hypothesis. The expansion of the repeats 

can cause lower levels of transcription and consequently lower levels of 

the protein.  

The second hypothesis describes a toxic gain of function of sense and 

antisense c9orf72 repeat RNA. These RNAs form secondary structures 

(hairpins, G-quadruplexes, DNA-RNA heteroduplexes, RNA duplexes, 

and i-motifs), which sequestrate RNA-binding proteins, which are not 

available for other functions in the cell (Balendra and Isaacs, 2018).  

Thirdly, repetitive RNAs can be transcribed in every reading frame and 

form five different dipeptide repeat proteins (DPRs) via a mechanism 

called repeat-associated non-ATG (RAN) translation (Zu et al., 2013). 

DPRs form neuronal cytoplasmic inclusions, which are hypothetically toxic 

for the neurons (Balendra and Isaacs, 2018). 

• Superoxide dismutase (SOD1, CuZnSOD) mutations 

Copper-zinc superoxide dismutase is an antioxidant enzyme located in the 

cytosol, nucleus, peroxisomes, and mitochondrial intermembrane space. 

It is a 32-kDa homodimer with one zinc- and one copper-binding site. Its 
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essential role is to catalyse disproportionation of superoxide into dioxygen 

(O2) and hydrogen peroxide (H2O2) (Valentine et al., 2005).  

The first mutation of the gene for SOD1 protein in FALS patients was 

observed in 1993 (Rosen et al., 1993). Up until now, more than 

180 mutations have been recorded (Mathis et al., 2019). Different 

mutations cause difference in the severity of the disease: A4V mutated 

cases have a disease course of fewer than 12 months, while in cases with 

G93C or D90A mutations, the disease usually lasts more than five or even 

ten years. However, patients with sod-1 gene mutation ALS show some 

common characteristics such as the earlier onset of the disease and legs 

are predominantly affected (Andersen et al., 1997; Corcia et al., 2012). 

However, it is debatable whether all mutations express as ALS (Mathis et 

al., 2019). 

Several mechanisms have been proposed to describe how SOD1 

mutations can affect neuronal cells and trigger ALS. In SOD1 mutant mice 

(transgenic model of ALS), the excessive glutamate release was found, 

which caused excitotoxicity (Milanese et al., 2011). Moreover, loss of 

glutamate receptors GluR2 increase the influx of Ca2+, which is also toxic 

for the cell (Van Damme et al., 2007). 

The next mechanism proposed is increased oxidative stress. SOD1 

functions typically as an antioxidative enzyme. However, oxidative stress 
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is not the consequence of a lack of enzymatic activity. Mutated SOD1 

increases the production of reactive oxygen species (ROS) and 

consequently promotes oxidative stress (Harraz et al., 2008). 

Furthermore, it has been found that endoplasmic reticulum (ER) stress 

can contribute to the loss of neurons in mice with mutated SOD1 protein 

(Saxena et al., 2009). SOD1 mutant mice also show mitochondria 

dysfunction. By releasing cytochrome C, the neuronal cell undergoes the 

apoptosis (Hayashi et al., 2016). 

Three more mechanisms have been recently mentioned. These are axonal 

transport disruption, prion-like propagation, and non-cell autonomous 

toxicity of neuroglia. Recent pieces of evidence also suggest that 

misfolded wildtype SOD1 protein promotes ALS in sporadic cases 

(Hayashi et al., 2016). 

• Fused in sarcoma / translated in liposarcoma (FUS/TLS or FUS) 

mutations 

FUS / TLS is a DNA / RNA ribonucleic binding protein that plays a role in 

the maintenance of dendritic integrity and neuronal plasticity (Fujii and 

Takumi, 2005; Fujii et al., 2005). It is involved in processes such as RNA 

biogenesis, regulation of transcription by binding to the chromatin, 

immediate response to DNA damage, embryogenesis, and transcription of 

basal levels manganese sod gene (Mathis et al., 2019). 
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FUS-positive and TDP-43-positive inclusions have been found in both, 

sporadic and familial ALS patients, and represent a hallmark of the 

disease. The accumulation of the aggregates in the cytoplasm reduces the 

levels of FUS in the nucleus, and consequently, one can obtain loss of 

function of FUS (Ishigaki and Sobue, 2018). Studies have shown several 

mutations of FUS protein in the patients ( 

Figure 3). Some of them are used to replicate ALS symptoms in animal 

models (Shang and Huang, 2016). 

 

 

Figure 3: Regions of FUS where mutations were found (marked with arrows) in ALS patients. NES = nuclear export 

signal, RRM = RNA recognition motif, RGG = Arg-Gly-Gly repeat region, ZNF = zinc-finger motif, NLS = nuclear 

localisation signal 

 

• Other causes 

Most of ALS cases do not possess any mutations. It is predicted that 

environmental exposure (epigenetic modification, viral infections) can 

have a contribution to the development of the disease. 
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One cannot exclude the combination of different parameters. However, all 

changes lead to cellular dysfunctions of motor neurons and surrounding 

cells. The most common defects are abnormal protein aggregations, which 

became a synonym for ALS. Furthermore, dysregulation of RNA 

processing, secretion of neurotoxic vesicles from astrocyte and muscles, 

glutamate excitotoxicity and mitochondrial disorganisation and dysfunction 

can be observed in an affected organism. Consequently, all the 

pathological changes lead to motor neuron death (Vijayakumar et al., 

2019) (Figure 4). 

 

Figure 4: Potential factors that could lead to motor neuron death – the main characteristic of ALS. Gene mutations 

and environment could contribute to cellular dysfunctions, which cause cell death (The image modified by 

(Vijayakumar et al., 2019)). 
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1.1.3. The diagnosis of ALS 

El Escorial World Federation of Neurology set the criteria for the diagnosis 

of ALS (Brooks et al., 2000). The diagnosis of ALS requires the presence 

of LMN degeneration, confirmed by clinical, electrophysiological or 

neuropathological examination, or clinical examination evidence of UMN 

degeneration, or progressive spread of symptoms within a region or to 

other regions, proved by history or examination. Furthermore, the 

diagnosis also requires the absence of other disease confirmed by 

electrophysiological, pathological indications, and neuroimaging (Brooks 

et al., 2000).  

First, patients are clinically examined. Depending on the presence of LMN 

or UMN signs, they are classified into 5 different groups: clinically definite 

ALS, clinically probable ALS, clinically probable ALS – laboratory-

supported ALS, clinically possible ALS, and clinically suspected ALS 

(Brooks et al., 2000). 

After clinical examination, several studies should be done in order to 

define the diagnosis more precisely (Wijesekera and Leigh, 2009). To 

begin with, patients with the diagnosis of ALS should undergo 

electrophysiological studies to confirm LMN dysfunction in clinically 

affected regions, to detect electrophysiological evidence of LMN 

dysfunction in clinically uninvolved regions, and to exclude other 
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pathophysiological processes (Brooks et al., 2000). The studies performed 

are nerve conduction studies, conventional electromyography, 

transcranial magnetic stimulation and central motor conduction studies, as 

well as quantitative electromyography (Wijesekera and Leigh, 2009). 

Another type of studies is neuroimaging studies. The primary purpose of 

these studies is to exclude the presence of structural lesions, which 

resemble ALS and can be treated. However, patients diagnosed with 

clinically definite ALS with bulbar or pseudobulbar involvement do not 

undergo these studies (Brooks et al., 2000). 

Moreover, other examinations can be done, but are not essential. They 

include muscle biopsy, levels of muscle enzymes (serum creatine kinase), 

levels of serum creatinine, bicarbonate levels, and elevation of 

cerebrospinal fluid (CSF) protein (Brooks et al., 2000; Wijesekera and 

Leigh, 2009). 

1.1.4. The treatment and management of ALS 

There is no cure for ALS. The only drugs available are riluzole (2-amino-

trifluoromethoxybenzotiazole) (Figure 5) and edaravone. Riluzole 

prevents the release of glutamate by blocking sodium channels. Though it 

slows down the progression of the disease, it does not cure it completely 

(Rowland and Shneider, 2001).  
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Figure 5: The structure and the mechanism of riluzole. A) The chemical structure of riluzole. B) Riluzole acts 

neuroprotective. It blocks the influx of sodium ions and prevents the release of glutamate. It also increases the 

reuptake of glutamate in glial cells. It is adapted from http://www.mdpi.com/1420-3049/20/5/7775/htm. 

Edaravone was approved in May 2017 after six months of clinical studies 

by the FDA. It is a potent antioxidant and reduces the oxidative stress in 

neurons. It slows down the progression of the ALS in patients (Bhandari 

et al., 2018; Traynor, 2017). However, it is licensed just in Japan and under 

considerations in the USA (Ng et al., 2017). 

Many of the symptoms arising during the development of the disease can 

be cured, and so the quality of patients’ life can be improved (Table 1). 
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Table 1: The list of symptoms and symptomatic treatments (Andersen et al., 2005; Ng et al., 2017). 

symptom drugs other treatments 

pain • non-steroidal anti-

inflammatory drugs 

• opioids (later stages) 

- 

cramps • quinine sulphate 

• alternatives: Mg2+, 

carbamazepine, 

phenytoin, verapamil, 

gabapentin 

• physiotherapy 

• physical exercise 

• hydrotherapy 

spasticity • baclofen 

• tizanidine 

• dantrolene 

• gabapentin 

• memantine 

• botulinum toxin type a 

• physiotherapy 

• hydrotherapy in heated 

pools 

depression • amitriptyline 

• selective serotonin 

reuptake inhibitor 

• psychological support 

insomnia • amitriptyline 

• zolpidem 

• diphenhydramine 

• comfort 

anxiety • bupropion 

• diazepam or lorazepam 

• psychological support 

sialorrhea • amitriptyline 

• atropine 

• hyoscine 

• glycopyrrolate 

• the mechanical home 

suction device 

• irradiation of the 

salivary glands 
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bronchial secretions • n-acetylcysteine 

• propranolol 

• metoprolol 

• assisted cough 

insufflator – exsufflator 

• home suction device 

pseudobulbar emotional lability • Only if necessary! 

• amitriptyline 

• fluvoxamine 

• citalopram 

- 

 

Apart from symptomatic drug treatments, ALS patients also require 

ventilatory and nutritional management (Wijesekera and Leigh, 2009). 

Patients with ALS usually suffer from dysphagia. Difficulty in swallowing is 

common. They choke and cough. The problems arise with time, and the 

most common result is weight loss, which additionally promotes muscle 

loss (Reich-Slotky et al., 2013). It has been recommended that when the 

patient loses 10% of their weight, they should undergo gastrostomy, to 

enable feeding and drug intake (Stavroulakis et al., 2016). 

Gradually with time, patients develop difficulties in breathing. Therefore, 

non-invasive ventilation is recommended (van Es et al., 2017). With a 

randomised controlled trial with patients who have ALS without severe 

bulbar dysfunction, non-invasive ventilation improved survival with an 

improvement in the quality of life. The survival benefit with this type of 

management was much higher than with currently available 

neuroprotective therapy (Bourke et al., 2006).  
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1.1.5. Role of the muscles in ALS 

For a long time, ALS was considered a motor neuron degradation disease. 

With time, it has been shown that the surrounding tissue may also 

contribute to the progression of the disease (Tsitkanou et al., 2016). It has 

been proposed that the degeneration starts in the neuromuscular junction. 

One of the hypothesis was that muscles could contribute to retrograde 

signalling and consequently, to the degeneration of motor neurons 

(Moloney et al., 2014). Mechanisms responsible for maintaining healthy 

skeletal muscle mass and functions are disturbed in ALS. Three main 

processes are satellite cell (SC) activity, mitochondrial biogenesis, and 

miRNA regulation (Tsitkanou et al., 2016). 

Satellite cells are responsible for muscle regeneration and reside under 

the basal lamina of muscle fibres (Ehrhardt and Morgan, 2005; Pradat et 

al., 2011). Manzano et al. checked the SCs activity during the progress of 

ALS in SOD1 mutant mice (Manzano et al., 2013). The difference in the 

number of SC and their activation depends on the stage of disease and 

muscle fibre type. In the early presymptomatic stage, 40 days of age (post-

natal 40 (p40)), the number of SCs is reduced in both fibre types (slow and 

fast). In the late presymptomatic stage (p60), the number of SCs in slow 

muscle fibres is increased, and the number is unchanged in fast muscle 

fibres comparing to the wildtype control. In the symptomatic stage (p90), 
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the number of SCs in slow fibres is decreased, and on the contrary, in fast 

fibres, the number of SCs increased. Finally, at the end stage (p120), the 

SC count resembled the observations in the p60 stage. Every 

measurement was controlled with wildtype mouse muscle fibres. In terms 

of activation, in p90, SCs were more active in both fibre types than in the 

wild type control, but at the p120 stage, the activation was unchanged in 

comparison with the wildtype control (Manzano et al., 2012, 2013; 

Tsitkanou et al., 2016). The hypothesis of increased activity and the 

number of SCs describes the attempt of muscles to repair the damage 

caused by mitochondrial dysfunction, oxidative stress, protein aggregation 

and denervation (Manzano et al., 2013; Tsitkanou et al., 2016). However, 

there was no difference in the number of SCs in ALS patients, yet their 

activity was reduced compared to healthy age-matched control (Pradat et 

al., 2011). 

The second feature observed in ALS mouse models and patients is 

mitochondrial dysfunction and along with that also oxidative stress. 

Defects in morphology and biochemical properties of mitochondria were 

found in both familial and sporadic ALS cases (Zhou et al., 2019). Muscle 

samples and SOD1G93A ALS mouse model show significantly reduced 

levels of mRNA and protein peroxisome proliferator-activated receptor-γ 

coactivator-1α (PGC-1α), which is responsible for mitochondrial 
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biogenesis and enhances mitochondrial function (Russell et al., 2013; 

Tsitkanou et al., 2016). What is more, several effectors of mitochondrial 

function (nuclear respiratory factor (NRF-1), estrogen-related receptor α 

(ERRα) and cyclooxygenase subunit IV (COX IV)) downstream of PGC-

1α, are downregulated in ALS patients (Russell et al., 2013). The 

downregulation of the proteins causes defective mitochondrial respiratory 

chain complex and elevates oxidative stress (Zhou et al., 2019). 

The third observed change in ALS patients and ALS mouse models is 

connected to microRNA (miRNA) expression and their regulation of other 

processes in skeletal muscles such as regulation of myogenesis, 

mitochondrial biogenesis and NMJ innervation (Tsitkanou et al., 2016). 

miRNAs are essential for the regulation of protein expression. Either they 

participate in post-transcriptional modification or bind directly to target 

mRNA and enhance its stability or degradation (Di Pietro et al., 2018). The 

primary miRNAs found in muscles are miR-1, miR-133a, miR-133b, miR-

206, miR-208a, miR-208b, miR-499, and miR-486 (Nie et al., 2015). 

However, only miR-206 was consistently upregulated in the SOD1G93A 

mouse model (Williams et al., 2009) and ALS patients (Toivonen et al., 

2014). miR-206 suppresses muscular histone deacetylase 4 (HDAC4) 

protein levels (Williams et al., 2009). It has been proposed as a prominent 

marker for ALS (Di Pietro et al., 2018; Toivonen et al., 2014).  
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1.2. TDP-43 

TAR DNA binding protein 43 (TDP-43) belongs to the family of 

heterogeneous ribonucleoprotein (hnRNP). It is very well conserved 

among different species such as Rattus norvegicus, Mus musculus, 

Drosophila melanogaster, Xenopus laevis or Caenorhabditis elegans 

(Ayala et al., 2005; Wang et al., 2004). High level of sequence 

conservation suggests that TDP-43 may play an essential role in the 

regulation of fundamental cellular mechanisms. Apart from the brain, TDP-

43 is also present in other tissues such as muscles, heart, pancreas, 

spleen, testis, ovary, lung, placenta, and kidney (Buratti & Baralle, 2001). 

In physiological conditions, the protein predominantly localises in the cell 

nucleus. However, it can also be found in the cytoplasm, because it can 

shuttle between the nucleus and cytoplasm (Ayala et al., 2008b). 

Even though the tdp-43 gene may be transcribed in eleven different 

isoforms, results of western blots and immunoprecipitation from a variety 

of human tissues and cell lines show only one major protein of 43 kDa 

(Wang et al., 2004). Complex post-translational modifications such as 

hyperphosphorylation, abnormal ubiquitination or protein cleavages were 

described in pathological conditions indicating that these alterations may 
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affect TDP-43 metabolism or function (Arai et al., 2006; Buratti et al., 2001; 

Neumann et al., 2006). 

1.2.1. TDP-43 structure 

Figure 6: The main parts of the TDP-43 protein. NLS = nuclear localisation sequence, RRM1 and RRM2 = RNA 

recognition motive 1 and 2, NES = nuclear export sequence and GRR = glycine-rich region. (customised by (Cohen 

et al., 2011)) 

The N-terminal part of the protein contains two highly conserved RNA 

Recognition Motifs RRM1 and RRM2. It also has a nuclear localisation 

signal (from residue 82 to 98) and a nuclear export signal, which is located 

at the end of the RRM2 domain (Cohen et al., 2011). The C-terminal 

domain consists of a glycine-rich area and a low complexity region that is 

more variable among species (Figure 6) (Buratti & Baralle, 2008). 

RRMs domains of TDP-43 are essential for RNA-protein interactions and 

are highly conserved domains. The amino acid identity of RRM domains 

is 79% between human and Drosophila’s ortholog (Ayala et al. 2005). It 

was demonstrated that they could bind single-stranded TG nucleotide 

stretches with high-affinity (Buratti & Baralle, 2001). The RRM1 domain is 

the only one necessary and sufficient for the binding of the protein to its 

target. Moreover, it was demonstrated that two point mutations, leading to 
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corresponding changes in the amino acid sequence (from Phenylalanine 

to Leucine in position 147 and from Phenylalanine to Leucine in position 

149, F147L and F149L) in the RRM1 region, prevented the interaction of 

the protein with its target RNA (the same construct is also available in 

Drosophila melanogaster, called TBPHF/L). On the contrary, similar 

mutations or complete deletion of the RRM2 domain did not affect the 

functionality of the protein (Buratti et al., 2001).  

The C-terminal part of the protein is, as mentioned above, less conserved. 

It contains a glycine-rich region, which is responsible for protein-protein 

interactions. The most common interactions are with other proteins of the 

hnRNP family, especially hnRNP A2/B1 and hnRNP A1 (Buratti et al., 

2005; D’Ambrogio et al., 2009). It was found that 2 – 3% of ALS patients 

carry specific missense mutations in this region (Banks et al., 2008; 

Sreedharan et al., 2008; Van Deerlin et al., 2008).  

1.2.2. TDP-43 function 

TDP-43 has many roles. It interacts with RNAs, DNA, and some proteins. 

It is mainly involved in RNA metabolism, which includes RNA transcription, 

RNA splicing, mRNA transport and stability, stress granules formation and 

microRNA processing (Figure 7) (Budini et al., 2017). 
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Figure 7: TDP-43 functions in the cell. 1) TDP-43 binds directly to the promoter regions and regulates the 

transcription. 2) TDP-43 is involved in the alternative splicing by binding to introns or exons and recruiting specific 

proteins. 3) TDP-43 stabilises mRNA and is involved in the transport. 4) TDP-43 controls the assembly of stress 

granules. 5) TDP-43 binds to Drosha and Dicer, and controls microRNA processing (customised by (Budini et al., 

2017)).  
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• Transcription and Pre-mRNA splicing 

TDP-43 directly binds to multiple promotor regions and regulates the 

transcription of the corresponding genes. However, the most known role 

of TDP-43 is alternative splicing. TDP-43 binds to introns or exons and 

recruits other hnRNP proteins, preferably hnRNPA1 (heterogeneous 

nuclear ribonucleoproteins) and serine-arginine proteins (SRs proteins) 

(Budini et al., 2017). The first record of TDP-43 regulation of pre-mRNA 

splicing was in connection to exon 9 in the CFTR gene. This gene plays a 

crucial role in the development of cystic fibrosis. However, it is highly 

unlikely that the regulation of this particular gene is involved in neuronal 

metabolism (Buratti et al., 2001; Ratti and Buratti, 2016). Over time, there 

were more direct targets identified, such as POLDIP3/SKAR (Fiesel et al., 

2012; Shiga et al., 2012), SORT1 (Prudencio et al., 2012), STAG2 and 

MADD (De Conti et al., 2015).  

Moreover, TDP-43 autoregulates its splicing by binding to its 3’UTR 

region. This autoregulation is fundamental to keep protein levels within a 

physiological range (Ayala et al., 2011; Ratti and Buratti).  

• mRNA stability and transport 

TDP-43 is mainly present in the nucleus, but it also shuttles to the 

cytoplasm where it exerts an essential role in mRNA regulation, 

particularly in controlling mRNA stability. TDP-43 interacts with the 3’UTR 



52 

 

region of mRNAs, and so influences their half-life either positively or 

negatively (Colombrita et al., 2012; Gerstberger et al., 2014; Sephton et 

al., 2011). Loss of function of TDP-43 may affect levels of mRNA or their 

products and consequently, have adverse effects on neuronal viability 

(Ratti and Buratti, 2016). 

TDP-43 interacts with mRNAs, and together they form ribonucleoprotein 

granules, which transport the mRNA to the most peripheral parts of the 

cells, such as axons and dendrites (Prasad et al., 2019). The mRNA 

transport in neurons is crucial to maintain neuronal activity and synaptic 

plasticity (Swanger and Bassell, 2011). It has been shown that TDP-43 is 

actively transported along the axons and colocalises with other transport 

RBPs in RNA granules (Fallini et al., 2012).  

Moreover, mRNAs encoding for proteins involved in synaptic function bind 

directly to TDP-43 (Narayanan et al., 2013). The impairment of mRNA 

transport in neurons and TDP-43 loss of function can be one of the 

reasons for neuronal loss. TDP-43 seems to be essential for synapses’ 

formation, which is impaired in ALS patients (Alami et al., 2014).  

• TDP-43 and stress granules 

Stress granules form upon exposed stress and act like sorting stations for 

mRNAs. They determine whether mRNA will be either translated, 

sequestrated, or degraded. The involvement of TDP-43 in the regulation 
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of stress granules depends on cell and stressor type. Stress granule 

assembly is affected when TDP-43 is either overexpressed or knocked 

down. In the first case, stress granules are more prominent and form 

faster, while in the second case, stress granules assembly is delayed 

(Dewey et al., 2012).  

• miRNA processing 

TDP-43 was found in Drosha complex together with FUS/TLS (Gregory et 

al., 2004). This is in agreement with the hypothesis that TDP-43 could be 

involved in miRNA processing. Several reports describe the dysregulation 

of multiple miRNAs when TDP-43 is depleted (Ratti and Buratti, 2016). 

Furthermore, some reports claim that TDP-43 stabilises the Drosha 

protein during neuronal differentiation (Di Carlo et al., 2013). However, 

overall, the contribution of TDP-43 to the regulation of miRNAs and how 

that contributes to the diseases remain unknown. 

1.2.3. TDP-43 and muscles 

TDP-43 is ubiquitously expressed in the organism. It can be found in 

muscles. In cells C2C12 (Vogler et al., 2018) and Drosophila muscles 

(Diaper et al., 2013), TDP-43 is predominantly localised in the nucleus. In 

the study in 2018, Vogler (Vogler et al., 2018) discovered that TDP-43 

forms amyloid-like myo-granules (amyloids are long fibres made up of 

building blocks of the misfolded disease proteins arranged in a highly 
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organised manner (Becker and Gitler, 2018)) that are located in the 

cytoplasm during the muscle recovery after an injury. Granules are also 

involved in the regulation of healthy skeletal muscle formation. Moreover, 

his group proved that TDP-43 binds to the exons of mature sarcomere 

mRNAs and localises them to newly forming sarcomeres. 

Another role of TDP-43 in muscles that has recently been observed is 

involved in the metabolism of glucose. Over-expression of TDP-43 can 

lead to significant weight gain, increased fat deposition, adipocyte 

hypertrophy, and abnormal insulin-mediated Glut4 translocation in skeletal 

muscle in A315T TDP-43 mutant mice (Stallings et al., 2013). The 

supporting hypothesis proposes the regulation of Tbc1b1, which has 

already been linked to human familial obesity (Chiang et al., 2010; 

Stallings et al., 2013). 

In 2014, additional TDP-43 function in muscles was discovered (King et 

al., 2014). As described above, consistent downregulation of miR-206 was 

reported in the muscles of ALS mouse models and ALS patients (Williams 

et al., 2009). Targeted deletion of miR-206 prevents efficient reinnervation 

of the neuromuscular junction after an injury. The cause of inefficient 

regeneration is upregulation of histone deacetylase 4 (HDAC4) 

(Bruneteau et al., 2013; Williams et al., 2009). King et al. (King et al., 2014) 
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proposed a mechanism in which TDP-43 negatively regulates miR-206 by 

preventing the bound miRNAs to the RISC complex (King et al., 2014). 

In 2018, Cykowski et al. (Cykowski et al., 2018) showed that 

phosphorylated TDP-43 aggregates can be found in muscles of SALS and 

FALS patients. They tracked more aggregates in axial muscle group than 

in appendicular. Additionally, they reported colocalisation of pTDP-43 

aggregates with the protein p62 and suggested the autophagic processes 

in muscles of ALS patients, which is also a characteristic of inclusion-body 

myositis (IBM).  

 

1.3. TDP-43 and neurodegeneration 

Neurodegenerative diseases include a large group of disorders. They are 

all characterised by a progressive loss of neurons and their dysfunction in 

both the central nervous system (CNS) and the peripheral nervous system 

(PNS). They tend to progress with aging. Among them, the most common 

are the Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic 

lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and 

Huntington's disease (HD) (Gao et al., 2018).  

TDP-43 was linked to neurodegenerative diseases when found as a 

component of ubiquitin-positive protein inclusions in patients with ALS and 

frontotemporal lobar degeneration (FTLD) (Arai et al., 2006; Gao et al., 
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2018; Neumann et al., 2006). Later on, there were reports about genetic 

mutations of TDP-43 in patients affected by these two disorders (Gao et 

al., 2018; Kabashi et al., 2008; Kwiatkowski et al., 2009; Vance et al., 

2009).  

1.3.1. TDP-43 pathology in ALS 

The main characteristic observed in neurons from patients diagnosed with 

ALS is TDP-43 cytoplasmic inclusions. Analysis of these formations 

showed abnormal C-terminal fragments of TDP-43 that were ubiquitylated 

and phosphorylated (Mackenzie and Rademakers, 2008).  

In most cases, TDP-43 was not mutated. Mutations were found just in 

3 – 6% of all cases. Mutations were recorded mainly in the glycine-rich 

region and the C-terminal domain (Mackenzie and Rademakers, 2008). 

Two hypotheses potentially explain the onset of the symptoms. The first 

one is centred on the loss of function of the protein. If TDP-43 is 

aggregated and trapped in the cytoplasm, it is not present in the nucleus 

where its primary function cannot be exerted (Budini et al., 2015; Feiguin 

et al., 2009) (Figure 8). 
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Figure 8: The main characteristic of ALS is TDP-43 cytoplasmatic aggregates. There are two hypotheses of how 

these aggregates affect cell function. Either TDP-43 aggregates prevent the protein from functioning, or the 

aggregates are toxic for the cell.  

On the other hand, some studies support a gain-of-function hypothesis. 

These works show that TDP-43 inclusions are toxic and therefore cause 

cell death (Johnson et al., 2008, 2009; Zhang et al., 2009) (Figure 8). 
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1.4. TBPH: the ortholog of TDP-43 in Drosophila 

melanogaster 

Human TDP-43 is highly conserved in Drosophila melanogaster, even 

though these two species are phylogenetically distant (Figure 9). The 

ortholog of TDP-43 in flies is called TBPH, and its gene is located on the 

second chromosome (2R: 19746589-19750104). There are six transcripts 

reported that code for six different protein isoforms by alternative splicing 

(Figure 10). However, western blot reports show only one protein of 

approximately 58 kDa (www.flybase.org). 

 

  

Figure 9: Comparison between human TDP-43 and TBPH. The difference between the two is mainly in C-terminal 

part. TBPH C-terminal is longer than the one of TDP-43. (The image is customized by (Romano et al. 2012).)  
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Figure 10: Chromosomal location of tbph gene (second chromosome), and representation of its transcripts and the 

relative coding sequence (CDS). It is adapted from www.flybase.org. 

 

The overall homology between the fruit fly and the human proteins is 

11.8%, while the identity is 34.4%. hTDP-43 and TBPH show higher 

conservation of the region that includes RRM1 and RRM2 than of the C-

terminal region. RRM regions have 59% identity and 77% similarity, while 

C-terminus has 18% identity and 22% similarity (Figure 11) (Romano et 

al., 2012). 
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Figure 11: The parallel between human TDP-43 (upper line) and TBPH Drosophila amino acid sequence (bottom 

line). Amino acids, identical (*) or similar (:), between the two proteins are indicated. Red squares indicate the RNA 

recognition domains, RRM1 and RRM2. (Uniprot accession no. Q13148 and O97468 resp.) 

The degree of conservation between human and Drosophila orthologs is 

not only at the level of the sequence but also includes functional properties 

(Ayala et al., 2011; Buratti et al., 2001). Both proteins have the same 

tendency to bind (UG)n rich region of RNA sequences (Ayala et al., 2005). 

Additionally, in vivo studies have confirmed that C-terminals of both 

proteins (TBPH and hTDP-43) can interact with the same nuclear partners 
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(hnRNPA2, hnRNPA1, hnRNPC, and hnRNPB1) (D’Ambrogio et al., 2009; 

Romano et al., 2012). 
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1.5. Drosophila melanogaster 

Drosophila melanogaster is a Diptera and belongs to the family of 

Drosophilidae. The common name is a fruit fly or vinegar fly, and it is 

widely used as a model in biology. These insects were introduced to the 

laboratory by Thomas Hunt Morgan. He and his students were the first 

ones who identified the first genetic mutations in the early 1900s (Morgan, 

1910). This studies and others set the basis of modern genetics. 

1.5.1. Drosophila life cycle 

The development of Drosophila depends on the temperature. At 25°C, the 

whole transformation from an egg to an adult fly takes 9 – 10 days (Figure 

12).  
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Figure 12: The Drosophila life cycle. Three different stages of larva follow the egg stage, and then larva eventually 

develops in a pupa and forms an adult fly. Customised by http://www.zoology.ubc.ca/~bio463/lecture_13.htm.  

 

The embryogenesis in Drosophila starts with the deposition of eggs. 18 to 

22 hours after egg laying embryos develop into first instar larvae, followed 

by the second and third stage, respectively occurring at 48 and 72 hours 

after laying eggs. The larvae then transform into pupae during the 

subsequent three to four days. After completion of the metamorphosis, the 

adult fly breaks the pupal shall case. Newly born flies have wings still 
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closed, and the body pigmentation is evident. A few hours later, the wings 

open and the body gets normal pigmentation. The females sexually 

mature approximately 12 hours after hatching. Wild-type Drosophila has 

red eyes, and the body is segmented with transversal black rings across 

the abdomen. Because of sexual dimorphism, male and female flies can 

be easily distinguishable. Male flies have a sex comb, a row of dark bristles 

on forelegs. Female flies have a long abdomen composed of seven 

segments pointed towards the anus. Males have a dark tip of the 

abdomen, and their body size is smaller than the one of females. They 

only have five segments ( 

Figure 13).  
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Figure 13: Female versus male Drosophila melanogaster. The two most identifiable features in males are claspers 

at the tip of the abdomen and sex comb at the front leg. Females are usually bigger and have a light tip of the 

abdomen. 

1.5.2. Drosophila in biology 

The use of cell lines in experimental biology is the easiest and cheapest 

approach, which can provide relevant information in multiple instances. 

However, cell lines are not always enough to explain complex processes 

in the context of an intact organism. Mammalian models offer several in 

vivo opportunities and extensive similarity to the human organism. The 

main disadvantage of this type of model is the time required to perform 

experiments. Drosophila melanogaster, on the contrary, is a model with 

relatively short generation time and many descendants in one single cycle. 

Drosophila also possesses a small annotated genome, with the absence 

of genetic redundancy. Moreover, their genetic is simpler. There are only 

four pairs of chromosomes and 12,000 genes (humans have 23 pairs 

of chromosomes and 25,000 genes) (Johnston, 2002). 

Even though the number of chromosomes and genes is significantly lower 

than in humans, the conservation with vertebrates is very high. 

Approximately 75% of the human genes involved in diseases have 

Drosophila ortholog (Fortini et al., 2000). This fact allows the research of 

complex mechanisms behind human pathologies like neurological 
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disorders, cancer, metabolic diseases, cardiovascular diseases, and 

immune system deficits (Bier, 2005). 

In neurobiology, the nervous system of Drosophila (~200,000 neurons) is 

simpler than the human brain (1 billion neurons). Flies can perform 

complex motor behaviours such as flying, climbing, and walking 

(Ambegaokar et al., 2010). The fly’s brain is organised into different areas 

that perform specialised functions and includes zones for learning, 

memory, vision, and olfaction. Moreover, the synaptic connections are well 

and extensively characterised, thus allowing the identification of 

pathological modifications occurring in diseased animals (Menon et al., 

2013). Several genetic and molecular tools allow manipulating part of the 

Drosophila genome to determine the role of different molecules in 

development and diseases. 

1.5.3.  Genetic in Drosophila melanogaster 

Several genetic approaches in Drosophila melanogaster offer the 

opportunity to study the molecular function of genes involved in human 

disease.  

MUTAGENESIS IN DROSOPHILA 

The genetic screens became possible when methods for creating 

mutations were developed. The first and the most efficient one is feeding 

the flies with ethyl methanesulfonate (EMS). EMS induces point mutations 
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and disrupts gene function. In the past, it was difficult to map point 

mutations, but with time single nucleotide polymorphism (SNP) maps were 

created and facilitated the recognition of the SNPs (Berger et al., 2001). 

The second disadvantage is that the progeny of mutagenised males is 

often mosaic, and the mutation is not passed to a second generation (F1). 

Therefore, the screenings of F1 often include x-ray irradiation that causes 

double-stranded DNA brakes and so do not cause the mosaicism 

(Johnston, 2002). 

Another well-known strategy for mutant screening uses P-element 

insertions. P-elements are transposable elements found in Drosophila 

melanogaster and can cause the germline transformation (Castro and 

Carareto, 2004). The method allows the specific insertion of DNA 

segments into a germline and results in their stable inheritance in 

subsequent generations (Rubin and Spradling, 1982). With the P-element, 

chosen genes can be disrupted or tagged. Moreover, it can be used for 

inducible gene expression or repression. In the case of P-element 

mutation, mutated gene can be easily and also quickly identified 

(Johnston, 2002). 

P-elements are divided into two groups, autonomous and 

nonautonomous. Autonomous P-elements are 2912 bp long and encode 

for a protein transposase that is in charge of P-element translocation. 



68 

 

Nonautonomous P-element can also move to a new genomic location but 

needs a transposase from autonomous P-element. It consists of the first 

200 bp and final 200 bp of the autonomous element and includes the 

sequence that the transposase needs to recognise for transposition. 

Moreover, any DNA sequence inserted in between the ends will be 

transposed, as well (Anthony J.F. Griffiths, 2015) (Figure 14). 

 

 

Figure 14: Schematic presentation of autonomous and nonautonomous P-elements. Nonautonomous P-element 

has the majority of the transposase gene deleted (customised by Anthony J.F. Griffiths, 2015). 

 

For a transgenic fly creation, two types of bacterial plasmids need to be 

injected into the early Drosophila embryo. One carries an autonomous P- 

element (P helper plasmid) that can express the transposase. The second 

is an engineered nonautonomous P-element with incorporated cloned 
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DNA of the transgene (between the two P-element ends) (Figure 15). The 

P transposase expressing from autonomous P-element catalyses the 

insertion of the chosen gene. Only one copy of the gene of interest is 

inserted at a specific location (Anthony J.F. Griffiths, 2015). 

 

 

Figure 15: The bacterial vector with nonautonomous P-element containing a DNA segment of interest. After injection 

with the autonomous vector, transposase integrates DNA with the P-element into Drosophila chromosome 

(customised by Anthony J.F. Griffiths, 2015). 

 

REGULATION OF GENE EXPRESSION 

Gene expression can be reduced, eliminated, or increased, with obvious 

consequences on the levels of the corresponding protein product. As a 
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result, new phenotypes can be obtained. The most commonly used fly 

models are using the GAL4/UAS (upstream activating sequence) system. 

The system enables the expression of a particular protein in a tissue-

specific manner (Brand and Perrimon, 1993). The yeast transcriptional 

factor GAL4 controls the expression of the gene of interest. In front of the 

gene, upstream activating sequence (UAS) is inserted. In the absence of 

GAL4, the transgene is not active, and it is not expressed. When crossing 

two flies, one with GAL4 expressed in a specific tissue and one with the 

transgene under the control of a UAS sequence, the transgenic protein 

can be expressed, and the phenotype generated easily analysed (Figure 

16).  
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Figure 16: GAL4/UAS system. In the GAL4/UAS system, two transgenic fly lines are created. In the responder 

strain, the transgene is placed downstream of a UAS activation domain that consists of binding sides where GAL4 

binds when present. Driver strain has GAL4 protein, yeast transcriptional activator. The progeny of the cross has 

GAL4 and UAS combined, so the gene or RNAi is expressed (modified by https://smallscienceworks.com/tag/uas-

gal4/.) 
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TEMPORAL CONTROL OF THE GAL4 SYSTEM 

One approach regulating the expression of UAS-gene with GAL4 system 

is the use of the GAL80 yeast protein. This protein is regulating the 

expression in yeast when there is no galactose. It binds to a specific amino 

acid sequence on GAL4 protein and prevents the transcription of the 

genes responsible for galactose catabolism (Ma and Ptashne, 1987). 

Lee and Luo (Lee and Luo, 1999) first introduced the GAL80 regulation of 

the GAL4/UAS system in Drosophila. They ubiquitously expressed GAL80 

under control of tubulin 1α, repressing the activity of GAL4 in all tissues. 

The main problem was that GAL80 repressed the expression of the genes 

regarding the conditions flies were exposed to. 

The promising step towards efficient gene expression control was the 

development of the temporal and regional gene expression targeting 

(TARGET) technique (McGuire et al., 2003). The group developed a 

thermosensitive GAL80 protein (GAL80ts) under tubulin 1α promotor. The 

expression of the gene was blocked when flies were kept at 19°C and the 

gene was expressing when flies were exposed to high temperature (30°C) 

(McGuire et al., 2003) (Figure 17). 
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Figure 17: GAL80ts and GAL 4 are expressed independently. At lower temperature, GAL80ts binds to GAL4 and 

blocks its promotion of gene transcription. When the temperature is higher, Gal80 ts no longer binds to GAL4, and 

tissue-specific transcription is possible (Image customized by McGuire et al., 2003). 

 

1.5.4. Drosophila neuromuscular junction 

NMJs in Drosophila larvae are similar to the synapses in the central 

nervous system in vertebrates. NMJs are glutamatergic and use ionotropic 

glutamate receptors. They are orthologs of AMPA-type glutamate 

receptors found in the mammalian brain. They also have postsynaptic 

densities (PSDs) – large protein complexes, located in the postsynaptic 

part – containing orthologs of mammalian scaffold proteins, including 

PSD-95 (Menon et al., 2013). 

Drosophila larval body is divided into seven segments labelled from A1 to 

A7 (Figure 18). They present a group of 30 different muscles that are 

precisely arranged, reproducing the same arrangement in every segment. 
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Muscles are innervated by specific motoneurons that target individual 

muscle fibres (Gramates and Budnik, 1999; Keshishian and Chiba, 1993). 

The relatively small number of muscles and neurons allows us to study the 

interactions present at the NMJs in detail and with high reproducibility. On 

average, there are six nerve branches with 32 motoneurons in total that 

innervate a specific muscle (Hoang and Chiba, 2001).  

 

Figure 18: Larval body wall. The wall is divided into seven segments. Each segment presents a group of 

30 different muscles that are precisely arranged.  
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During the embryonic development, motor neurons extend their axons into 

the musculature. They create three different pathways leading from CNS 

to the muscles: segmental nerve root (SN), which splits into SNa, SNb, 

SNc and SNd, intersegmental nerve root (ISN), and transverse nerve (TN) 

(Menon et al., 2013) (Figure 19). Every pathway and root innervates their 

specific group of muscles (Hoang and Chiba, 2001). 

 

 

Figure 19: A scheme of muscles and three primary nerve roots (ISN, SN, and TN). The scheme represents a group 

of 30 muscles and their distribution (muscle 7 and 6 are specially marked) in one half of one segment. The position 

of the muscles in larvae is shown in the bottom left corner. Three primary roots innervate different groups of the 

muscles in the segment. The image was customised by (Hoang and Chiba, 2001).  

 

All roots form structures of functional connections between an axon of a 

motoneuron and the surface of a muscle called neuromuscular synapse. 
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The axon reaches the muscle through synaptic boutons. These structures 

are well characterised based on their size; they can be classified into four 

major categories: 

• Type Ib boutons are the largest found in all muscles (3 – 6µm). 

The neurotransmitter is glutamate (Johansen et al., 1989). 

• Type Is are smaller (2 – 4µm) and are present in all muscles, 

similar to Ib, and are glutamatergic (Johansen et al., 1989). 

• Type II are the smallest among all bouton types (1 – 2µm), 

they have developed branches and cannot be found in all 

muscles. They use either glutamate or octopamine as 

neurotransmitters (Monastirioti et al., 1995). 

• Type III are medium in size (2 – 3µm). They are present only 

in muscle 12 and contain glutamate and insulin, as putative 

hormone neurotransmitter (Gorczyca et al., 1993). 

In the thesis, we examined NMJ innervating muscles 6 and 7 (Figure 19). 

The NMJ originates from the SNb root. The single motoneuron axon 

innervates the cleft of muscles 6 and 7 with Ib boutons. SNb/d root has 

one single Is motoneuron axon that innervates all SNb/d muscles groups, 

consequently also 6 and 7. Our results are the outcomes of Ib analysis, so 

the largest boutons innervating larval body wall are using glutamate as a 

neurotransmitter (Hoang and Chiba, 2001; Menon et al., 2013). 
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• Glutamate receptors  

There are two families of glutamate receptors. Ones are ionotropic 

receptors, ligand-gated channels. The second type is a metabotropic 

glutamate receptor, and it is coupled with G-protein. Ionotropic receptors 

are further divided into N-methyl-D-aspartate (NMDA), a-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainate receptor 

subfamilies. Their names refer to the chemical agonist that selectively 

binds to the subfamily (Willard and Koochekpour, 2013). In D. 

melanogaster, both types can be found. Metabotropic glutamate receptors 

have mainly neuromodulatory role, and ionotropic receptors mediate fast 

synaptic transmission, resulting in muscle depolarisation. The last-

mentioned is the most studied in this particular model (DiAntonio, 2006). 

Based on sequences of the genome, all types of ionotropic receptors can 

be found in Drosophila (Littleton and Ganetzky, 2000). However, the 

majority of the literature describing Drosophila NMJ receptors deals with 

AMPA/kainate receptors (DiAntonio, 2006).  

Muscles express five different subunits: GluRIIA (IIA), GluRIIB (IIB), 

GluRIIC (IIC, also called GluRIII), GluRIID (IID), and GluRIIE (IIE). The 

progeny with the absence of IIA or IIB separately is viable. Double 
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mutation induces embryonic paralysis, and the progeny die at that stage 

(DiAntonio et al., 1999). 

GluRIIC, D, and E form the receptor and are essential for its function. In 

particular, IIC is essential for the transmission of the signal, IID, and IIE 

are essential for viability (DiAntonio, 2006). The studies show that iGluR 

in Drosophila consists of four different subunits: IIC, IID, IIE, and either IIA 

or IIB. Depending on the last two subunits, GluRIIA (IIA, IIC, IID and IIE 

subunits) and GluRIIB (IIB, IIC, IID and IIE subunits) compete with each 

other for synaptic localisation, differ in synaptic currents (IIB channels 

desensitise ten times faster than IIA), second messenger regulation and 

localisation patterns (DiAntonio, 2006; DiAntonio et al., 1999). In our study, 

we analysed the levels of GluRIIA receptors that are in high levels present 

opposite to Ib boutons (Marrus et al., 2004).  

• Dlg protein 

The disc-large protein belongs to a family of membrane-associated 

guanylate kinases (MAGUKs). It shares high homology with the major 

protein component of the brain postsynaptic density, PSD-95. Dlg protein 

is expressed at septate epithelial junctions in insects, which are similar to 

tight junctions in vertebrates, but can also be found in the fly central 

nervous system (CNS) and muscles. The absence of Dlg results in a 

neoplastic growth of larval imaginal disc, poor adhesion between epithelial 
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cells, and abnormal cell polarity. Mutations of dlg locus in the brain result 

in brain tumour (Lahey et al., 1994). 

The most characterised product of dlg gene, Dlg-A, contains 3 PDZ 

(postsynaptic density 95 (PSD-95)/Disc large (Dlg)/zona ocludens-1 (ZO-

1)) domains, Src homology 3 (SH3) domain and a guanylate kinase-like 

domain (Woods and Bryant, 1991) (Figure 20).  

 

Figure 20: The structure of Dlg-A protein. It contains 3 PDZ domains, SH3 domain, and GUK domain, which however 

is not active. (The image customised by (Woods and Bryant, 1991)). 

 

Most of the Dlg protein is located postsynaptically in boutons type I. The 

findings that mutation of dlg locus causes poorly developed and much 

simpler subsynaptic reticulum (SSR) support the model that Dlg is involved 

in the development of synaptic structure (Guan et al., 1996). It has been 

characterised as a scaffold protein. PDZ domains are responsible for 

binding proteins and deliver them to the NMJ. The first characterised 

protein that Dlg binds is a shaker-type K+ channel following with Fasiciclin 

II and glutamate receptors (reviewed by (Koh et al., 2000)). 
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Dlg appears a few hours before the first larval stage when the SSR is 

generated. It is in larval development, particularly at the beginning of the 

third instar larval stage, when the SSR undergoes a dramatic expansion. 

However, Dlg mutants do not have any misshaped boutons (Guan et al., 

1996). In general, hypomorphic dlg alleles display underdeveloped 

subsynaptic reticulum, larger glutamate receptor fields, and increased size 

of synaptic boutons, active zones, and vesicles (Astorga et al., 2016). 

1.6. tbphΔ23/- Drosophila model 

The starting point of our laboratory research was a mutant fly with deletion 

of tbph gene. Two different stocks were created, with different parts of the 

protein deleted. The tbphΔ23/- flies possess deletion of 1616 bp with break 

points from base pair 19748477 to 19750093. tbphΔ142/- deletion is located 

from base pair 19749289 to 19750093 in total with deletion of 1138 bp. 

Both deletions resulted in the complete absence of TBPH protein (Feiguin 

et al., 2009). The lines were named after the corresponding number of the 

tube, from where the stock was created.  

The tbphΔ23/- and tbphΔ142/- flies had the same body characteristics as 

W1118 flies (wild type). However, the phenotype was quite different. Both 

mutant flies lived significantly shorter time. They died already on day three 

after hatching. When TBPH or human TDP-43 were expressed in neurons, 

the phenotype was recovered (Figure 21) (Feiguin et al., 2009).  
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Figure 21: Mutant flies had the same body characteristics as wildtype control, but they lived a significantly shorter 

time. When expressing TBPH or human TDP-43 in neurons, the life span was partially recovered (Feiguin et al., 

2009). 

 

Not only life span, but also locomotion was affected. Mutant adult flies 

were tested for climbing and walking. Climbing the glass cylinder demands 

strength and motoric skills that mutant flies did not possess. The 

performance was also evaluated with walking. TBPH-/- walked a 

significantly shorter distance than wildtype control. Flies expressing TBPH 

or human TDP-43 in neurons recovered the abilities of climbing and 

walking (Figure 22) (Feiguin et al., 2009). 
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Figure 22: Mutant adult flies did not climb, and their walking was significantly impaired. When TBPH was expressed 

in neurons, the phenotype was recovered (Feiguin et al., 2009). 

 

The phenotype was evident also in larvae (Figure 23). They moved 

significantly slower with 30 peristaltic waves in two minutes. Their NMJ 

had on average two to three branches and 10 to 15 boutons less than wild 

type control. However, the phenotype was reversible, since expressing 

TBPH or human TDP-43 in neurons recovered all tested aspects of a larval 

phenotype (Feiguin et al., 2009). 
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Figure 23: The characterisation of the larval phenotype. (A) Confocal images of motoneurons presynaptic terminals 

at muscles 6 and 7 (abdominal segment III) in wild type third instar larvae stained with anti-HRP antibodies reveal 

the branching pattern and the presence of big (arrowhead) and small (arrow) synaptic boutons. (B) and (C) Similar 

staining and anatomical position for TBPHΔ23 and TBPHΔ142 homozygous larvae respectively show reduced 

axonal branching pattern and the number of synaptic boutons. (D) TBPHΔ23 third instar larvae rescued by 

expressing UAShTDP-43 in motoneurons with D42-GAL4 shows recovery of presynaptic complexity with increased 

formation of synaptic boutons and axonal terminal branching. (E) The number of peristaltic waves observed for two 

minutes. (F) Quantification of big synaptic boutons present in consecutive abdominal segments. (G) Analysis of 

small synaptic boutons. (H) Quantification of presynaptic terminals branches in wild type, TBPHΔ23 and hTDP-

43/TBPH rescued third instar larva. Scale: 10μm. (Feiguin et al., 2009). 
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2. AIMS AND OBJECTIVES 
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The aim of the project was to investigate the role of TBPH in muscles and 

its contribution to neuromuscular junction development and onset in ALS. 

To address this aim, we used several objectives: 

• To determine the phenotype and NMJ shape and function, when 

TBPH in muscles is silenced; 

• To investigate whether expression of TBPH in muscles can recover 

the ALS-like phenotype; 

• To track the proteins that are regulated by TBPH and determine their 

role in NMJ development, shape and function. 
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3. RESULTS 
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3.1. Silencing TBPH in muscles 

3.1.1. Flies show locomotive problems and shorter lifespan 

In order to explore the phenotype connected to TBPH silencing in muscles, 

in the different development stages of Drosophila, an RNA interference 

sequence formed by a long hairpin construct specific for TBPH (TBPH IR) 

and positioned under the control of UAS sequences was expressed with 

two muscle-specific drivers: Myosin heavy chain-Gal4 (MHC-GAL4) and 

Myocyte enhancer factor 2-Gal4 (Mef2-GAL4).  

Myosin heavy chain is a muscle-expressing protein. It is essential for 

muscle contraction through its ATP-dependent interaction with actin 

filaments (Sellers, 2000). Myocyte enhancing factor 2 is a transcriptional 

factor involved in muscle development. Its mRNA can be located in 

visceral, somatic, and heart muscles (Nguyen et al., 1994; Sandmann et 

al., 2006). Therefore, their promoters are active mainly in muscles. 

Our first observations focused on possible alterations of larval movements 

as a consequence of TBPH silencing in muscles. In a wild type 

background for TBPH, we expressed its RNAi with the MHC-GAL4 driver, 

and only by increasing the temperature at 29°C to enhance the expression 

of the RNAi we managed to detect the impairment in larval motility (Figure 

24). Larvae with silenced TBPH performed significantly worse than the 

wildtype. While the number of peristaltic waves for the wildtype reached 
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an average of 95 peristaltic waves in a time interval of two minutes, the 

peristaltic waves in TBPH-silenced larvae dropped to 80. 

 

Figure 24: Larval movement was significantly impaired when TBPH in muscles was silenced. Counting 

peristaltic waves significantly dropped in larvae expressing UAS-TBPH-IR comparing to larvae expressing UAS-

GFP-IR. *p<0.05 calculated by T-test, error bars SEM. N=20 larvae per genotype.  

 

We wondered if the statistical significance would have been more 

considerable in a heterozygous background for TBPH, where one copy of 

TBPH is deleted. Since tbphΔ23/+ flies do not manifest any phenotype of 

the null fly tbphΔ23/- (Feiguin et al., 2009), we were sure that any 

phenotypical effect would be a consequence of silencing. 

Also, in this analysis, crosses were kept at 29°C to enhance the 

expression of silencing RNA (UAS-TBPH-IR and UAS-GFP-IR), and we 
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compared them versus the previous experiment performed in wild type 

background. The quantification of the peristaltic waves showed a stronger 

statistical difference between control and silencing (Figure 25). Moreover, 

we observed behaviour for TBi (tbphΔ23/+; MHC-GAL4/UAS-TBPH-IR) 

larvae, very similar to the tbphΔ23/- larvae. While controls moved straight 

forward with little or no stops, silenced larvae stopped frequently, searched 

the surroundings, and remained mainly in the same position on the plate 

because of frequent turnings.  

 

 

Figure 25: Larval motility was impaired in animals with silenced TBPH. Counting peristaltic waves significantly 

dropped in larvae expressing UAS-TBPH-IR comparing to larvae expressing UAS-GFP-IR. ***p<0.001 calculated 

by T-test, error bars SEM. N=20 larvae per genotype.  
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The reduction of larval waves reached 35%, an average of 95 waves in 

two minutes for controls compared to the 61 waves of larvae with silenced 

TBPH. We could conclude that even if a phenotype is already detectable 

in larvae with wildtype background for TBPH, a much stronger effect can 

be seen in the heterozygous background. 

However, to further confirm the results and to explore if a stronger 

phenotype could be obtained, we used another muscle-specific driver 

Mef2-GAL4. Also, with this driver, all crosses were set at 29°C. We 

followed the same pattern of experiments. First, we analysed the larval 

movement phenotype in a wildtype background for TBPH. 
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Figure 26: Larvae with silenced TBPH in wild type background performed worse than the control group. 

Counting peristaltic waves significantly dropped in larvae expressing UAS-TBPH-IR comparing to larvae expressing 

UAS-GFP-IR. ***p<0.001 calculated by T-test, error bars SEM. N=20 larvae per genotype. 

 

A 33% reduction in larval waves was scored in TBi (+/+; Mef2-GAL4/UAS-

TBPH-IR) larvae comparing to the control group (Figure 26), a result 

comparable to the one obtained using the MHC driver in heterozygous 

condition for TBPH, and also, in this case, the behaviour of larvae was 

very similar to the one of the null allele TBPH larvae, with very frequent 

stops and turning. We proceeded to test the effect of silencing in 

heterozygous conditions for TBPH with Mef2-GAL4, but the tbphΔ23/+ 

background showed a phenotype comparable to the wild type background. 
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Figure 27: Larvae with TBPH silenced have impaired mobility. Counting peristaltic waves significantly dropped 

in larvae expressing UAS-TBPH-IR comparing to larvae expressing UAS-GFP-IR. ***p<0.001 calculated by T-test, 

error bars SEM. N=20 larvae per genotype. 

 

The average number of larval waves was 31% lower than the control 

(Figure 27).  

Our experiments performed both in wild type and heterozygous condition 

for TBPH confirmed that TBPH silencing in muscles affects larval mobility. 

The phenotype seen in larvae rose the question whether it could also be 

observed in adult flies. We decided to test the phenotypes triggered by 

both drivers. Since the most robust larval phenotype using MHC-GAL4 

was observed in heterozygous background tbphΔ23/+, we decided to test 

adult flies only in this background. To keep it consistent, we used the same 

background also in flies where Mef2-GAL4 drove expression of TBPH-IR. 

The temperature was fixed at 29°C. The phenotype in adult flies was 

characterised by performing a climbing assay and tracking days of 

survival. The TBPH silenced flies resulted in being impaired in their 

climbing ability, as well as their survival (Figure 28 and Figure 29). 
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Figure 28: Flies' ability in climbing was impaired. The percentage of flies that reached the top of the cylinder 

significantly dropped in flies expressing UAS-TBPH-IR comparing to flies expressing UAS-GFP-IR on day 4, 7 and 

14. On day 21, the difference was not significant. ***p<0.001 calculated by two-way ANOVA, error bars SEM. N=200 

flies per genotype. 

  

The climbing ability was measured at four time points: day 4, 7, 14, and 

21. Even if silenced flies did not show the poor leg coordination observed 

for the tbphΔ23/- flies and walked normally, their climbing resulted impaired. 

Silenced flies fell onto the bottom of the cylinder after trying to climb. 

Quantification of fly performance showed a significantly smaller 

percentage of TBPH-silenced flies being able to climb already on day 4. 
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With time the ability of climbing declined. At every time point less flies with 

silenced TBPH reached the top in comparison to wild type control (Figure 

28).  

In parallel with climbing, we also tracked days of survival. It must be 

underlined that 29°C temperature is already a stressor by itself and 

consequently, as expected, the heat shortened the lifespan to 

approximately 30 to 40 days when most wildtype flies die (Linford et al., 

2013).  

 

 

Figure 29: Flies had a significantly shorter lifespan when TBPH in muscles was silenced in early time points. 

The percentage of death events in silencing flies compared to their control was higher at the beginning of the 
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measurement. The statistical difference was calculated by the Gehan-Breslow-Wilcoxon test, *p<0.05. N=200 flies 

per genotype. 

 

The comparison of the survival curves calculated by Log-rank test that 

takes into account the whole follow up period (Bland and Altman, 2004) 

was not significant, while the Gehan-Breslow-Wilcoxon test that gives 

more weight to early time points (Martinez and Naranjo, 2010) defined the 

two samples significantly different. To sum up, in the beginning, more flies 

with silenced TBPH died compared to the wildtype control (Figure 29). 

Following the flow of larval phenotypisation, we decided to determine the 

phenotype of adult flies also using Mef2-GAL4 driver. As mentioned 

above, only tbphΔ23/+ background was used, and crosses were set at 

29°C. Unfortunately, even if larvae pupated, they did not hatch. A detailed 

inspection of pupae confirmed that they remained intact and no breaks nor 

opening on the shell was noticed. Keeping in mind that from our previous 

experiments done on the larva, the Mef2-GAL4 driver resulted much 

stronger, we concluded that the RNAi expression was too robust at 29°C, 

so crosses were moved at 25°C. With the lower temperature, even if some 

flies remained trapped in the pupa shell, we could collect a decent number 

of flies for further tests. 
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The stronger effect of Mef2-GAL4 driver forced us to adapt the time points 

for testing climbing abilities slightly. Since half of the collected flies died 

within the first days, we evaluate climbing ability on day 1, 4, 7, and 14. 

The measurement of day 21 was not possible, because only control group 

survived up to that day. 

 

 

Figure 30: Flies climbed significantly less when TBPH in muscles was silenced. The percentage of flies that 

reached the top of the cylinder significantly dropped in flies expressing UAS-TBPH-IR comparing to flies expressing 

UAS-GFP-IR on day 1, 4, 7 and 14. **p<0.01 and ***p<0.001 calculated by two-way ANOVA, error bars SEM. 

N=200 flies per genotype. 
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Similarly to what was observed for the MHC-GAL4 driver, flies with 

silenced TBPH in muscles did not show any abnormality in leg 

coordination, but they were just not strong enough to climb. Even if they 

started to climb, a lot of them fell onto the bottom of the cylinder. We 

statistically evaluated the percentage of flies that reached the top of the 

cylinder in the fixed two-minute time period. Flies with silenced TBPH in 

muscles performed statistically worse than the control group, and this 

unfitness was observed already on day 1; however, it was clear that their 

climbing ability worsened over time also on day 4, 7 and 14, when silenced 

flies performed worse than the wildtype control (Figure 30).  

In parallel with the climbing assay, the same set of flies were observed to 

characterise their lifespan and evaluate any possible difference. 
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Figure 31: Flies lived a significantly shorter time when TBPH in muscles was silenced. Silencing of TBPH 

affects the overall life span (log-rank test), including with early events evaluation (Gehan-Breslow-Wilcoxon test). 

***p<0.001. N=200 flies per genotype. 

 

With Mef2-gal4 driver both, log-rank test (the overall statistical difference) 

and Gehan-Breslow-Wilcoxon test (statistical difference at the beginning 

of the tracking), showed a statistically significant difference between 

silenced flies and the control group. As mentioned above, 50% of the flies 

died in the first four days, and the survived flies did not reach 20 days 

(Figure 31). 

To sum up, flies with silenced TBPH in muscles show significant 

phenotype described by larval movement, adult climbing ability, and 
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survival. The observed differences in larvae allowed us to test whether 

there might be any changes in the structure of the neuromuscular junction 

(NMJ). We decided to take the genotype that showed the most robust 

phenotype. Therefore, we compared and statistically evaluated all larval 

movement data from larvae with silenced TBPH. We used one-way 

ANOVA with Bonferroni correction to analyse the results and focused 

mainly on the differences between the silencing and the corresponding 

control. 
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Figure 32: With one-way ANOVA test statistically the strongest difference show TBPH silencing with MHC-

GAL4 in heterozygous background. ns = not significant **p<0.01 and ***p<0.001 calculated by one-way ANOVA. 

Error bars SEM. N=20 larvae per genotype. 

 

With this statistical approach, we obtained different strengths of statistical 

difference. The genotype with MHC-GAL4 driver in tbphΔ23/+ background 

showed the most robust difference. We used this genotype for subsequent 

analysis on NMJs. 

3.1.2. Boutons are misshaped, and Futsch level drops with TBPH 

silencing in muscles 

We wanted to see whether the NMJs are somehow affected when TBPH 

was silenced in the muscle. 

NMJ consists of a presynaptic part, a synaptic cleft, and a postsynaptic 

part. The presynaptic part is represented by the axon of a neuronal cell, 

while the postsynaptic one is represented by the muscle (Slater, 2017). It 

has already been published that tbphΔ23/- flies have deprived growth of 

NMJ (Feiguin et al., 2009). The objective was to check whether silencing 

TBPH in muscles could trigger the same or similar phenotype. To address 

this question, we stained larval carcasses with αHRP antibody, which 

labels glycoproteins present in the neuronal membrane explicitly. We 

quantified the number of branches of the NMJs innervating muscles 6 and 

7 located in the second segment of the larval body.  
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Figure 33: In larvae with silenced TBPH in muscles number of branches did not significantly change. 

Confocal images of the third instar NMJ terminals in muscle 6 / 7, second segment stained with anti-HRP (in green) 

are represented. The representative terminals are shown, together with the quantification. ns= not significant, 

calculated by T-test, error bars SEM. N = 20 larvae per genotype. 

 

Silencing of TBPH in muscles did not affect the neuromuscular growth. 

NMJs of silenced larvae were comparable to the wildtype control, and the 

branches quantification showed TBi larvae with a slightly higher number 

of branches on average, but not statistically significant, with approximately 

seven branches per neuromuscular junction for both, control and TBi 

larvae (Figure 33). 

A hallmark of the synapsis of the null allele tbphΔ23/- larvae was the 

misshaped boutons. In mutants, a higher percentage of irregular boutons 
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and consequently lower percentage of the regular ones were detected 

compared to the W1118 genetic background (Feiguin et al., 2009).  

 

 

Figure 34: Silencing TBPH in muscles affected the bouton shape. Confocal images of the third instar NMJ 

terminals in muscle 6 / 7, second segment stained with anti-HRP (in green). The representative bouton shapes are 

shown, together with the quantification. **p<0.01, calculated by T-test, error bars SEM. N = 20 larvae per genotype. 

 

Similarly, silencing TBPH in muscles caused alteration in bouton shape. 

Boutons were wrinkled and, in some cases, fused. The quantification 

showed a significant difference in the percentage of two groups: the 

percentage of regular boutons was lower in TBPH silenced larvae, and in 

parallel, the percentage of irregular boutons was higher than control 

(Figure 34). 
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An increased percentage of irregular boutons implies an alteration in the 

process of bouton forming, and one of the proteins known to be involved 

in this process is Futsch (Roos et al., 2000). Since it has been already 

reported that in tbphΔ23/-, flies possess a downregulation of Futsch 

(Godena et al., 2011), we decided to check Futsch levels also in larvae 

with silenced TBPH in muscles. 

 

 

Figure 35: Futsch was significantly reduced in flies with silenced TBPH in muscles. Confocal images of third 

instar NMJ terminals in muscle 6 / 7 second segment stained with anti-HRP (in green) and anti-Futsch (in red) in 

MHC-Ctrl (tbphΔ23/ +; MHC-GAL4/UAS-GFP-IR) and MHC-TBi (tbphΔ23/+; MHC-GAL4/UAS-TBPH-IR). Arrows 

show boutons with reduced levels or absence of Futsch in boutons. Quantification of Futsch intensity was 

normalised on control. ***p<0.001, calculated by T-test, Error bars SEM. N=20 larvae per genotype.  

 

We observed deficiency of Futsch protein both in terminal and middle 

boutons, and a precise quantification revealed a reduction of Futsch level 
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for approximately 15%, which was statistically different from the control 

sample (Figure 35). 

3.1.3. Dlg and glutamate receptors are downregulated 

Observing the alteration in the presynaptic structures of NJM by TBPH 

silencing, we decided to investigate the organisation of the postsynaptic 

structures in NMJ, represented by muscles. Several proteins are required 

to ensure a functional neuronal transmission, among which Dlg and 

glutamate receptors (GluRIIA) are essential. The levels of these 

postsynaptic proteins have been already well characterised in tbphΔ23/- 

flies, and significant downregulation of Dlg and GluRIIA was recorded 

(Romano et al., 2014). These experiments aimed to verify if silencing 

TBPH in muscles affected Dlg and GluRIIA levels. 

 

 

Figure 36: Dlg protein level was reduced by TBPH silencing in muscles. Confocal images of the third instar 

NMJ terminals in muscle 6 / 7 second segment stained with anti-HRP (in green) and anti-Dlg (in red) in MHC-Ctrl 
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(tbphΔ23/ +; MHC-GAL4/UAS-GFP-IR) and MHC-TBi (tbphΔ23/+; MHC-GAL4/UAS-TBPH-IR) together with the 

quantification of Dlg intensity normalised on ctrl. Arrows point to the absence of the protein in the postsynaptic part 

of NMJ. ***p<0.001, calculated by T-test, Error bars SEM. N=20 larvae per genotype. 

 

The wildtype control's boutons, marked with HRP (in green), are 

surrounded with the signal of the Dlg protein (in red) shaped like a circle, 

and not discontinued in any part of the synapsis. On the contrary, larvae 

expressing TBPH-IR revealed an altered protein distribution. We noticed 

that formed circles were discontinued, and most of the disruptions were 

located around the boutons lying in the middle of the branch (Figure 36). 

Moreover, Dlg signal quantification showed a reduction of about 25% on 

average in TBPH silenced larvae.  

The other protein located in the postsynaptic part of the NMJ that we 

checked was the glutamate receptor, specifically the subunit A (GluRIIA). 

In the wildtype control, we could detect clusters of receptors (in red) 

forming a circle of the size of boutons (in green). In the TBi larvae, the 

glutamate receptor clusters were visibly reduced and, in some cases, even 

absent (Figure 37). By confocal microscopy quantification, the intensity of 

GluRIIA dropped by 30% in TBi larvae. 
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Figure 37: Glutamate receptors (subunit GluRIIA) are downregulated by TBPH silencing in muscles. Confocal 

images of the third instar NMJ terminals in muscle 6 / 7 second segment stained with anti-HRP (in green) and anti-

GluRIIA (in red) in MHC-Ctrl (tbphΔ23/ +; MHC-GAL4/UAS-GFP-IR) and MHC-TBi (tbphΔ23/+; MHC-GAL4/UAS-

TBPH-IR) together with the quantification of GluRIIA intensity normalised on ctrl. ***p<0.001, calculated by T-test, 

Error bars SEM. N=20 larvae per genotype. 
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3.2. TBPH rescue in tbphΔ23/- flies 

To confirm the previously described results and to get new insights into 

the role of TBPH in muscles, we decided to express TBPH protein in the 

muscles of tbphΔ23/- flies and characterise both, the phenotype and the 

NMJ of these animals. My thesis work focused on the characterisation of 

the expression of UAS-TBPH with the Mef2-GAL4 driver in order to 

implement some preliminary data previously done with the MHC-GAL4 

driver in our laboratory. 

A crucial step was to verify a possible toxic effect due to the combination 

of Mef2-GAL4 driver and UAS-TBPH. Since the combination of Mef2-

GAL4 and UAS-TBPH at 25°C resulted in being lethal (all progeny died in 

the stage of the first instar larva), we required reducing the protein 

expression level and took advantage of the co-expression of a regulatory 

protein, GAL80ts, which blocks the expression of GAL4 protein at lower 

temperatures (19°C). Therefore, the protein is expressed in lower 

quantities, when the animals are exposed to 25°C.  Thanks to GAL80ts, it 

was possible to achieve full development, and the progeny fully developed 

reached adulthood at 25°C. 

The peristaltic movements of larvae expressing both the Drosophila TBPH 

or the human TDP-43 did not show a significant difference, compared to 

UAS-GFP as the wild-type control. With that examined, we confirmed that 
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GAL80ts co-expression and the 25°C temperature are conditions that 

ensure no toxicity at all in a gain of function and can therefore be used for 

rescuing a TBPH null phenotype larva (Figure 38). 

 

 

Figure 38: TBPH and hTDP expression with co-expression of GAL80ts did not affect larval phenotype at 

25°C. Calculated by one-way ANOVA with Bonferroni correction, error bars SEM. N=20 larvae per genotype. 

 

3.2.1. The motility in larvae but not in adult flies is recovered 

With the conditions set, we characterised both the larval and adult flies' 

phenotype. In all experiments, we had as control animals with tbphΔ23/+ 

background, GAL80ts, and Mef2-GAL4 driver. For rescuing the tbphΔ23/- 
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background, GAL80ts and Mef2-GAL4 driver were used to express the 

UAS-GFP as the negative control and UAS-TBPH or UAS-TDP-43 as 

crosses of interest.  

 

 

Figure 39: Larval motility was recovered by expressing TBPH or hTDP2 in muscles. The number of peristaltic 

waves significantly raised in larvae expressing UAS-TBPH and UAS-TDP-43. **p<0.01, ***p<0.001 calculated by 

one-way ANOVA with Bonferroni correction, error bars SEM. N=20 larvae per genotype. 
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While wild-type larvae reached an average of 90 peristaltic waves in two 

minutes, larvae with null alleles for TBPH presented a reduced number of 

peristaltic waves of approximately 50%. The expression of UAS-TBPH 

exclusively in muscles rose up the number of peristaltic waves to the level 

of wild-type control rescuing the tbphΔ23/- background (Figure 39, purple 

column). 

Moreover, human TDP-43 statistically recovered larval mobility compared 

to GFP. Human TDP-43-expressing larvae exhibited motility like the wild 

type control. The result implies that both proteins, TBPH, and human TDP-

43, present the molecular features that allow larval movement recovery 

when expressed in muscles. 

The larval movement recovery was apparent, because larvae expressing 

TBPH and TDP-43 never stopped or searched the surroundings like a 

tbphΔ23/- larvae expressing GFP. They moved straight forward, with very 

little or no stops.  

Even if both rescued genotypes, TBPH and TDP-43, reached the adult 

stage, they did not reveal a significant recovery. They resembled the 

phenotype showed by the null allele tbphΔ23/-. The leg coordination was 

weak, and only a few flies walked normally. Moreover, their climbing 

performance was not outstanding. 
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Figure 40: TBPH and TDP-43 expressing in muscles do not improve the climbing ability. The percentage of 

flies that reached the top of the cylinder was not significantly higher in flies expressing UAS-TBPH or UAS-TDP-43 

comparing to the negative control group (UAS-GFP) on day 4 and 7. *p<0.05 and ***p<0.001 calculated by one-

way ANOVA with a Bonferroni correction, error bars SEM. N=200 flies per genotype. 

 

Although on day 4 of the climbing assay, flies expressing TBPH in muscles 

climbed significantly better than the ones expressing GFP (Figure 40), on 

day 7, TBPH-expressing flies were too weak to climb. Moreover, human 

TDP-43 did not rescue climbing ability at all. 

Thinking that a walking assay may be less demanding than a climbing one, 

we challenged rescued flies to perform a walking assay. Flies with TBPH 
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expression in muscles performed significantly better (Figure 41), they 

walked almost 9 cm, whereas the negative control reached a maximum 

length of 2 cm. 

 

 

Figure 41: Flies expressing TBPH in muscles walked a greater distance. Walking assay analysis of flies 

expressing UAS-GFP and UAS-TBPH using Mef2-GAL4 at day 2. ***p<0.001 calculated by t-test, error bars SEM. 

N = 50 flies per genotype. 

 

Even though the expression of TBPH or TDP-43 respectively rescued the 

climbing ability of the adult flies only partially or not at all, we tracked the 

events of deaths. We aimed to evaluate whether a prolong life span can 

be seen – neither the muscular expression of TBPH nor the one of TDP-

43 prolonged the lifespan (Figure 42).  
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Figure 42: TBPH and TDP-43 expression in muscles did not rescue the phenotype. The lifespan of flies 

expressing TBPH, TDP-43, and GFP. Statistical analysis was calculated with the log-rank test. ***p<0.001. N=200 

flies per genotype.  

 

All the three genotypes in tbphΔ23/- background, expressing any of the 

UAS-gene (UAS-GFP, UAS-TBPH or UAS-TDP-43), lived significantly 

shorter than the wild-type control. The statistics were done with Log-rank 

test for overall survival and Gehan-Breslow-Wilcoxon test for early death 

events. In both cases, the p-value was less than 0.001.  

Intriguing, we also found a significant difference between flies expressing 

GFP and flies expressing TBPH or TDP-43. Accordingly to the Log-rank 
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test, with a p-value less than 0.001, the expression of both TBPH or TDP-

43 shorten the lifespan overall, which implies a toxic effect of both proteins 

when expressed in adult phase (Figure 42 red, purple, and blue lines). To 

check this hypothesis, we overexpressed TBPH and TDP-43 in wild-type 

background for TBPH, using Mef2-GAL4 as a driver and GAL80ts at 25°C, 

evaluating whether the expression of proteins by itself caused shorter 

lifespan and reduced climbing activity.  

 

 

Figure 43: Flies expressing TBPH or TDP-43 climbed worse than the wild type. The percentage of flies that 

reached the top of the cylinder is significantly lower in flies expressing UAS-TBPH or UAS-TDP-43 comparing to a 

positive control group (UAS-GFP) on day 4. *p<0.05 and **p<0.01 calculated by one-way ANOVA with a Bonferroni 

correction, error bars SEM. N=200 flies per genotype. 
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The climbing assay performed on day 4, had already shown defects in 

climbing performance of flies that, in wild type background, expressed 

TBPH and TDP-43 in muscles. A reduction of approximately 15% and 

20%, for flies expressing TDP-43 and TBPH, respectively, was observed 

(Figure 43). Climbing results showed a slightly higher level of toxicity for 

TBPH compared to TDP-43, and the toxicity was much more evident 

comparing the lifespan of adult flies expressing TBPH and TDP-43 in 

muscles. 
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Figure 44: Lifespan was significantly shorter in flies expressing TBPH and TDP-43 in muscles. The lifespan 

of flies expressing TBPH, TDP-43, and GFP in a wild-type background. Statistical analysis was calculated with the 

log-rank test. **p<0.01 and ***p<0.001. N=200 flies per genotype. 

Calculated by both statistical tests, log-rank test, and Gehan-Breslow-

Wilcoxon test, the difference was significant between TBPH and TDP-43 

versus GFP expression, but also between TBPH and TDP43 (Figure 44).  

In conclusion, impaired climbing in adult flies allowed us to deduce the 

toxicity of TBPH or TDP-43 expression in adult muscles. However, the 

level of toxicity was not as high as to explain the missed rescue of TBPH 

null adult flies expressing either TBPH or TDP-43 in muscles. 

Consequently, since TBPH expression in larvae did not induce any toxicity 

and, moreover, the TBPH null phenotype was rescued, we decided to 

further investigate the mechanism of rescue by immunostainings of NMJs 

in larvae. 

3.2.2. NMJ growth and shape are recovered 

Our previous experiments revealed some aspects of TBPH role in 

muscles. Its silencing-induced impairment of larval movements and 

alterations at the NMJ level, as summarised in Table 2. Thus, we were 

wondering if the rescue of the peristaltic waves obtained by the TBPH 

expression in muscles could be explained by a recovery of NMJ features 

like the number of branches, bouton shapes or Dlg and GluIIRA 

distribution. 



117 

 

Table 2: Characterisation of larvae with silenced TBPH. While the number of branches remained unmodified, 

the percentage of regular boutons dropped, and thus Dlg and GluRIIA levels. 

 

We characterised NMJ growth by counting branches marked with αHRP 

antibodies. We compared wild-type larvae to tbphΔ23/- flies expressing or 

UAS-TBPH, for rescuing, or UAS-GFP, as a negative control, in muscles. 

Statistical analysis of confocal images showed significant recovery in the 

number of branches when expressing TBPH (Figure 45). We obtained 

eight branches on average, as in the wild-type control, while tbphΔ23/- 

larvae expressing GFP had a reduced number of branches matching the 

previously reported number for mutants (Feiguin et al., 2009).  
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Figure 45: The number of branches was recovered in larvae expressing TBPH in muscles. Confocal images 

of the third instar NMJ terminals in muscle 6 / 7, second segment stained with anti-HRP (in green). The 

representative terminals are shown, together with the quantification. ***p<0.001, calculated by one-way ANOVA 

with Bonferroni correction, error bars SEM. N = 20 larvae per genotype. 

 

On the same samples, on which branching was evaluated, we performed 

quantification and characterisation of bouton shape. Even if a small 

number of irregular boutons could be detected in wild type larvae, the 

percentage of misshaped boutons significantly increased in TBPH null 

larvae (Figure 46). The NMJ of mutant larvae presented about 40% more 

irregular boutons in comparison to the wild type control. The regular ones 

that are around 70% of all boutons in wild-type larvae reach only to 30% 

in the case of the TBPH null larvae. 
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Figure 46: The percentage of regular boutons increases when TBPH was expressed in larval muscles. 

Confocal images of the third instar NMJ terminals in muscle 6 / 7, second segment stained with anti-HRP (in green). 

The representative bouton shapes are shown, together with the quantification. ***p<0.001, calculated by one-way 

ANOVA, error bars SEM. N = 20 larvae per genotype. 

In the case of muscular rescue with TBPH in null larvae, the percentage 

of regular boutons almost matched the wild-type control. Therefore, a 

significant recovery in terms of the number of regular boutons was 

achieved. 

Therefore, even if the silencing of TBPH in muscles did not alter the 

branches of NMJ and made us believe that the TBPH level present in 
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muscles did not control NMJ branching, the rescue performed in muscles 

demonstrates the opposite. TBPH expressed in muscles may influence 

the branches of the synapsis.  

3.2.3. Dlg and glutamate receptors are recovered, as well as NMJ 

function 

In our previous results, we demonstrated, that TBPH silencing, exclusively 

in muscles, affected Dlg and glutamate receptors levels in the postsynaptic 

region of NMJ and the same was true for TBPH mutant larvae (Romano 

et al., 2014). We wondered whether muscular TBPH expression in mutant 

larvae could influence the levels of Dlg and GluRIIA and augment them. 

To characterise these synaptic markers, we double-stained NMJ with 

αHRP and antibodies αDlg or αGluRIIA.  

The Dlg level in mutants expressing GFP was reduced for approximately 

50% with an altered distribution compared to the wild-type ones. Gaps in 

the Dlg pattern were frequent, and moreover, some boutons did not 

present any Dlg signal. TBPH rescue in muscles induced a complete 

recovery of the signal pattern (Figure 47). The intensity of the quantified 

Dlg signal was statistically higher in the TBPH rescue compared to the 

GFP control reaching almost a wild-type level. 
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Figure 47: Dlg protein level was recovered after overexpression of TBPH in muscles. Confocal images of the 

third instar NMJ terminals in muscle 6 / 7 second segment stained with anti-HRP (in green) and anti-Dlg (in red) in 

Ctrl (tbphΔ23GAL80ts/+; Mef2-GAL4/+), Δtb-GFP (tbphΔ23 GAL80ts/tbphΔ23; Mef2-GAL4/UAS-GFP) and Δtb-TBPH 

(tbphΔ23 GAL80ts/tbphΔ23UAS-TBPH; Mef2-GAL4/+), together with the quantification of Dlg intensity normalised on 

ctrl. ***p<0.001, calculated by one-way ANOVA with Bonferroni correction, Error bars SEM. N=20 larvae per 

genotype. 

Staining glutamate receptors in wild type synapsis showed clustered 

receptors (red signal) distributed as circles in the bouton area (green 

signal), while there was a significant drop of signal intensity in TBPH 

mutants, together with an alteration of the distribution with less or no 

clusters per bouton (Figure 48). Recover of the signal intensity and the 

distribution was observed in the larvae rescued with TBPH in muscles, 

compared to the GFP expressing ones. Nevertheless, the intensity of the 

GluIIRA signal was still statistically lower than the one of the wild-type 

controls. 
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Figure 48: Level of glutamate receptors was recovered in mutant larvae expressing TBPH in muscles. 

Confocal images of the third instar NMJ terminals in muscle 6 / 7 second segment stained with anti-HRP (in green) 

and anti-GluRIIA (in red) in Ctrl (tbphΔ23GAL80ts/+; Mef2-GAL4/+), Δtb-GFP (tbphΔ23 GAL80ts/tbphΔ23; Mef2-

GAL4/UAS-GFP) and Δtb-TBPH (tbphΔ23 GAL80ts/tbphΔ23UAS-TBPH; Mef2-GAL4/+) together with the 

quantification of GluRIIA intensity normalised on ctrl. ***p<0.001, calculated by one-way ANOVA with Bonferroni 

correction, Error bars SEM. N=20 larvae per genotype. 

Overall, expressing TBPH in muscles of TBPH null mutants manifested in 

the phenotypic recovery of peristaltic waves, complete recovery of 

branching, regular bouton percentage, Dlg levels, and partial rescue of 

GluIIRA levels. Therefore, our interest moved to investigate whether the 

evoked junctional potential (EJP) was recovered in the rescued genetic 

background. All EJP experiments were done in collaboration with Aram 
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Megighian from University of Padova, Department of Biomedical 

Sciences. 

The EJP of wild type larvae was about 40mV and dropped to 10mV in 

TBPH null larvae. The TBPH muscular rescue of mutant larvae effectively 

increased the EJP, but only partially. The average value did not reach wild 

type values. Partial recovery of EJP in the TBPH muscular rescue reached 

approximately 50% of the wild-type value (Figure 49). This could be 

explained by partial recovery of the GluIIRA, and this may be true also for 

other synaptic components causing a lower EJP in the rescued larvae. 

 

 

Figure 49: Evoked junctional potential in mutant larvae expressing TBPH was recovered. Representative 

EJPs evoked by segmental nerve stimulation of Ctrl (tbphΔ23GAL80ts/+; Mef2-GAL4/+), Δtb-GFP (tbphΔ23 

GAL80ts/tbphΔ23; Mef2-GAL4/UAS-GFP) and Δtb-TBPH (tbphΔ23 GAL80ts/tbphΔ23UAS-TBPH; Mef2-GAL4/+) in 
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muscle fibre 6 / 7 of A3 in third instar larvae. For each fibre 5, EPPs following 0.5Hz stimulation were considered. 

**p<0.01, ***p<0.001 calculated by one-way ANOVA with Bonferroni correction, error bars SEM. N = 10 larvae per 

each genotype. 

 

3.3. Dlg rescues tbphΔ23/- flies  

Alterations of Dlg levels in NMJs of both TBPH mutants and TBPH 

muscular silenced larvae have been observed in already published data 

(Romano et al., 2014) and the results previously presented here, 

respectively. Therefore, we wondered if the expression of Dlg exclusively 

in muscles might have influenced the neuromuscular growth. In order to 

proceed with this analysis, our first step was to check any possible toxicity 

related to UAS-DLG expression with Mef2-GAL4 driver in a wild type 

background.  
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Figure 50: UAS-DLG expression with Mef2-GAL4 did not affect larval phenotype at 25°C. Calculated by t-test, 

error bars SEM. N=20 larvae per genotype. 

Crosses were set at 25°C, and peristaltic movements of 20 third instar 

larvae per genotype were recorded. No differences in peristaltic 

movements were detected comparing to UAS-GFP expressing control. 

We concluded that there was no toxic effect expressing Dlg in muscles 

with Mef2-GAL4 driver at 25°C, which allowed us further rescue 

experiments (Figure 50). 

3.3.1. Expression of Dlg in muscles rescues the phenotype in larvae, 

as well as in adult flies 

After having confirmed the absence of toxicity for muscular expression of 

Dlg, we aimed to check whether a Dlg rescue in muscles could recover 
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the impaired phenotype of tbphΔ23/- larvae and adult flies. Peristaltic waves 

of a positive (tbphΔ23/+ larvae with driver Mef2-GAL4), a negative (tbphΔ23/- 

larvae expressing UAS-GFP in muscles) control and an experimental 

genotype (tbphΔ23/- larvae expressing UAS-DLG in muscles) were counted 

and it turned out that Dlg expressing larvae moved statistically faster in 

comparison with GFP expressing animals (Figure 51). Muscular Dlg 

expressing larvae moved steadily, with little or no stops and no searching 

of direction. 

 

 

Figure 51: Dlg expression in muscles rescued the larval phenotype. The number of peristaltic waves 

significantly raised in larvae expressing UAS-DLG comparing to larvae expressing UAS-GFP. **p<0.01, ***p<0.001 

calculated by one-way ANOVA with Bonferroni correction, error bars SEM. N=20 larvae per genotype. 
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Nevertheless, the total number of peristaltic movements was not 

comparable to the one detected in positive control. While a Dlg expressing 

larvae reached up to 70 peristaltic waves, the control moved about 110-

times in two minutes (Figure 51). 

Despite a partial rescue, we decided to characterise the phenotype in adult 

flies testing climbing ability and tracking the aging. Indeed, we managed 

to see the improvements in the climbing assay. The flies expressing Dlg 

protein performed better in climbing than control flies expressing GFP 

(Figure 29). We measured the climbing abilities at four different time 

points: day 4, 7, 14, and 21. At day 4, we obtained a statistically significant 

recovery in the climbing ability of Dlg expressing flies compared to GFP 

expression that just barely climbed and mainly remained at the bottom of 

the cylinder. The climbing ability of Dlg expressing flies reduced with 

aging; nevertheless, on day 21, 5% of flies managed to reach the top of 

the cylinder. However, it must be underlined that the climbing performance 

of Dlg rescued flies did not reach the wildtype control values even if we 

could observe the improvement of leg coordination, which in some cases 

was not different from the wild type. 
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Figure 52: Climbing performance was significantly improved when Dlg was expressed in muscles. The 

percentage of flies that reached the top of the cylinder was significantly higher in flies expressing UAS-DLG 

comparing to the negative control (UAS-GFP) on day 4. ***p<0.001 calculated by one-way ANOVA with a Bonferroni 

correction, error bars SEM. N=200 flies per genotype. 

In parallel with the climbing assay, we tracked the survival rate of all three 

genotypes. Wildtype control survived for approximately 60 days while flies 

expressing GFP lived for only 15 days. More than 50% of them died 

already within ten days. The flies in tbphΔ23/- background rescued with Dlg 

lived significantly longer than the GFP control; yet, Dlg expressing flies 

lived significantly shorter (considering both statistical tests) than the 

wildtype control. They lived for 49 days in total. The statistical significance 

calculated by log-rank test and Gehan-Breslow-Wilcoxon test was in both 

cases with a p-value less than 0.001 (Figure 53). 
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Figure 53: Flies expressing Dlg had a longer lifespan than mutant flies. The lifespan of flies expressing only 

driver Mef2-GAL4, UAS-GFP and UAS-DLG. Statistical analysis was calculated with the log-rank test. ***p<0.001. 

N=200 flies per genotype. 

 

3.3.2. Expression of Dlg in muscles contributes to NMJ growth and 

function 

The improved crawling ability of muscular Dlg rescued larvae induced us 

to perform immunostainings of NMJ to evaluate pre- and postsynaptic 

features of the NMJs of muscles 6 / 7 in the second segment. The 

branching and characterisation of bouton shape highlighted by HRP 

staining defined the organisation of the presynaptic part of the NMJ while 

the postsynaptic sector was characterised by glutamate receptor staining. 
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We counted seven to eight branches on average for each NMJ in a wild 

type control. The number significantly dropped to approximately four in the 

tbphΔ23/- larvae expressing GFP. The tbphΔ23/- larvae rescued in muscles 

by Dlg had branching recovered. We counted six to seven branches on 

average. Almost doubling the ones of the GFP expressing larvae and 

reaching a wild type level (Figure 54). 

 

 

Figure 54: NMJ shape was recovered by Dlg expression. Confocal images of the third instar NMJ terminals in 

muscle 6 / 7, second segment stained with anti-HRP (in green). The representative terminals are shown, together 

with the quantification. ***p<0.001, calculated by one-way ANOVA with Bonferroni correction, error bars SEM. N = 

20 larvae per genotype. 
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The same NMJs subjected to branch-counting were evaluated for bouton 

shape, to check whether Dlg might improve the percentage of adequately 

shaped boutons compared to tbphΔ23/- larvae expressing GFP.  

In wildtype larvae, we evaluated 70% of the boutons per NMJ as regular 

and 30% as irregular while the negative control (tbphΔ23/- larvae 

expressing GFP) presented a reversed situation. More than 70% of NMJ 

boutons were classified as irregular and less than 30% as regular. 

Muscular expression of Dlg improved the percentage of regular and 

decreased the percentage of irregular boutons. On average, 50% of 

boutons resulted in being regular while the remaining 50% were irregularly 

shaped. Nevertheless, the outcome of regular boutons in Dlg-rescued 

larvae was still significantly lower than the wildtype control (Figure 55). 

To complete the NMJ characterisation of larvae rescued with Dlg in muscle 

tissues, we evaluated the level of the GluIIRA in the postsynaptic 

compartment of NMJs at the second segment, muscles 6 / 7. 
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Figure 55: Larvae expressing Dlg had a higher percentage of regular boutons and a lower percentage of 

irregular ones. Confocal images of the third instar NMJ terminals in muscle 6 / 7, second segment stained with 

anti-HRP (in green). The representative bouton shapes are shown, together with the quantification. ***p<0.001, 

calculated by one-way ANOVA, error bars SEM. N=20 larvae per genotype. 

 

As previously reported, tbphΔ23/- larvae manifest lower level of GluIIRA, 

and similarly, the muscular GFP rescued larvae appeared with significantly 

less glutamate receptors comparing to the wildtype control. In wild type 

background, glutamate receptors formed clusters right under boutons, yet, 

in mutants and, similarly in GFP rescued larvae, clustering of glutamate 

receptor was not so evident than in wild type control. The Dlg rescue in 

muscles resulted in statistically higher GluIIRA compared to the GFP 
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negative control, although it did not reach the intensity measured in wild 

type conditions (Figure 56). 

 

 

Figure 56: Dlg expression in muscles recovered the glutamate receptors level. Confocal images of the third 

instar NMJ terminals in muscle 6 / 7 second segment stained with anti-HRP (in green) and anti-GluRIIA (in red) in 

Ctrl (tbphΔ23/+; Mef2-GAL4/+), Δtb-GFP (tbphΔ23/tbphΔ23; Mef2-GAL4/UAS-GFP) and Δtb-Dlg (tbphΔ23 /tbphΔ23UAS-

DLG; Mef2-GAL4/+), together with the quantification of GluRIIA intensity normalised on ctrl. ***p<0.001, calculated 

by one-way ANOVA with Bonferroni correction, Error bars SEM. N=20 larvae per genotype. 

 

Consistent with this result, higher EJP was observed in larvae rescued 

with Dlg in muscles. Even if the rescued muscular Dlg larvae did not reach 

the 40 mV of the wild type control, they resulted in statistically higher 

values to one of the TBPH mutant larvae expressing GFP as control 
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(10mV) (Figure 57). Additionally, the Dlg rescue and TBPH rescue in 

muscles ended up with comparable EJP values (compare with Figure 49). 

 

 

Figure 57: The evoked junctional potential was rescued when Dlg was expressed in muscles. Representative 

EJPs evoked by segmental nerve stimulation of tbphΔ23/+; Mef2-GAL4/+, tbphΔ23/tbphΔ23; Mef2-GAL4/UAS-GFP 

and tbphΔ23 /tbphΔ23UAS-DLG; Mef2-GAL4/+ in muscle fibre 6 / 7 of A3 in third instar larvae. For each fibre 5, EPPs 

following 0.5Hz stimulation were considered. **p<0.01, ***p<0.001 calculated by one-way ANOVA with Bonferroni 

correction, error bars SEM. N = 10 larvae per each genotype. 

 

3.3.3. Expression of Dlg in neurons improve the mobility of larvae 

Since it is known that Dlg protein can be found in both muscles and 

neurons in Drosophila (Astorga et al., 2016), and additionally, our previous 

results of TBPH silencing in muscles demonstrated a direct correlation 
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with Dlg protein level, we tried to explore the interactions between TBPH 

and Dlg also in neurons. For this reason, we performed a western blot on 

adult heads of both TBPH null flies and a TBPH rescued flies performed 

with the pan-neural driver Elav-GAL4 (Figure 58).  

 

 

Figure 58: In TBPH mutants, Dlg levels were downregulated. Expression of TBPH recovered the intensity. 

Western blot analysis of lane 1 (w1118), lane 2 (tbphΔ23/tbphΔ23), lane 3 (tbphΔ142/tbphΔ142) and lane 4 (tbphΔ23UAS-

TBPH /tbphΔ23 Elav-GAL4). Adult brains, one day old, were probed with anti-Dlg and alpha-tubulin antibodies. The 

same membrane was probed with the two antibodies, and the bands of interest were cropped. Quantification of 

normalised amounts was reported below each lane. n=3 (biological replicates). 
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The level of Dlg in the adult brain of TBPH-/- flies dropped to less than 50% 

compared to W1118 flies, and the result was consistent for both TBPH 

mutants, tbphΔ23/- (lane 2) and tbphΔ142/- (lane 3). The difference with W1118 

was significant. When TBPH was expressed in neurons with Elav-GAL4 

driver, Dlg levels were significantly recovered to the level obtained at W1118 

(Figure 58). 

According to western blot results, we decided to express Dlg in neurons 

and examine the phenotype and some characteristics of NMJs in the third 

instar larvae. 

We used a pan-neuronal driver nSyb-GAL4. Before we began with the 

experiment, we set the conditions. We set two experimental crosses. One 

progeny expressed GFP and the second Dlg, both with the driver 

mentioned above. The crosses were set at 25°C. To check the toxicity of 

the gene-driver combination, we performed the larval movement. 
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Figure 59: UAS-DLG gene expression with nSyb-GAL4 did not affect larval phenotype at 25°C. Calculated by 

t-test, error bars SEM. N=20 larvae per genotype. 

 

By counting the peristaltic waves, we did not obtain any significant 

difference in the number of peristaltic waves when GFP or Dlg is 

expressed with nSyb-GAL4 driver (Figure 59). The average numbers were 

not significantly different. Therefore, we decided to use nSyb-GAL4 

without regulatory protein GAL80ts and to set all subsequent experiments 

at 25°C. 

We aimed to check if the expression of Dlg protein might change the 

phenotype obtained in tbphΔ23/- larvae. To begin with, we characterised 

larval phenotype by counting peristaltic waves.  
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Figure 60: Dlg expression in neurons rescued the larval phenotype. The number of peristaltic waves 

significantly raised in larvae expressing UAS-DLG comparing to larvae expressing UAS-GFP. ***p<0.001 calculated 

by one-way ANOVA with Bonferroni correction, error bars SEM. N=20 larvae per genotype. 

 

We tested three different genotypes, following the pattern used in muscle 

rescue. The positive control (wild type) had a heterozygous background 

(tbphΔ23/+), expressing only the driver. Negative control had tbphΔ23/- 

background, expressing UAS-GFP in neurons, and finally, the 

experimental genotype had tbphΔ23/- background, expressing UAS-DLG 

gene. Wildtype larvae reached 90 peristaltic waves in two minutes. GFP 

expressing larvae performed 40 peristaltic waves on average. The 
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expression of Dlg improved mobility for around 30 peristaltic waves 

comparing to GFP expressing larvae and reached 70 peristaltic waves 

(Figure 60). The performance was statistically different. Thus, the values 

did not reach wildtype larvae result. 

Laval movements of larvae expressing Dlg was different to the way 

negative control moved. The movements were fluent, without stopping and 

twisting to multiple directions. However, they moved slower as the 

wildtype.  

The recovery of the phenotype led us to investigate the effect of Dlg on 

NMJ shape and structure. The first experiments were focused on the 

presynaptic part of NMJ of 6 / 7 muscle at the second segment (the third 

instar larvae). With the help of αHRP staining, we evaluated the number 

of branches per NMJ as a marker of NMJ growth.  
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Figure 61: Dlg expressed in neurons recovered the number of branches. Confocal images of the third instar 

NMJ terminals in muscle 6 / 7, second segment stained with anti-HRP (in green). The representative terminals are 

shown, together with the quantification. **p<0.01 and ***p<0.001, calculated by one-way ANOVA with Bonferroni 

correction, error bars SEM. N = 20 larvae per genotype. 

 

Ten branches on average were counted in wildtype control. Consistently, 

the number of branches in tbphΔ23/- larvae, expressing GFP was 

significantly reduced, to seven branches per NMJ. We obtained a 

significantly higher number of branches in larvae expressing Dlg, 

comparing to the GFP control. Moreover, the recovery was complete. 

There was no significant difference between numbers of wild type larvae 

and larvae expressing Dlg (Figure 61).  
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To assess whether Dlg expression in neurons can also rescue some 

characteristics in the postsynaptic compartment of NMJ, we quantified the 

glutamate receptor levels. 

The results were normalised on the wildtype control that represented the 

maximal intensity obtained in the experiment. In the negative control, we 

consistently observed a significant drop in intensity, for 65% on average, 

comparing to the wildtype control. Dlg expression elevated the glutamate 

receptor level for 20% in comparison to larvae expressing GFP (Figure 

62). The clusters of glutamate receptors were downregulated or absent in 

the negative control. On the contrary, Dlg expressing larvae held visible 

clusters, yet, the signal was weaker than in the wildtype control. 
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Figure 62: Glutamate receptor level was higher when expressing Dlg. Confocal images of the third instar NMJ 

terminals in muscle 6 / 7 second segment stained with anti-HRP (in green) and anti-GluRIIA (in red) in Ctrl 

(tbphΔ23/+;nSyb-GAL4/+), Δtb-GFP (tbphΔ23/tbphΔ23;nSyb-GAL4/UAS-GFP) and Δtb-Dlg (tbphΔ23 /tbphΔ23UAS-

DLG;nSyb-GAL4/+), together with the quantification of GluRIIA intensity normalised on ctrl. **p<0.01 and 

***p<0.001, calculated by one-way ANOVA with Bonferroni correction, Error bars SEM. N=20 larvae per genotype. 

 

3.4. TBPH directly binds dlg mRNA 

We demonstrated that the TBPH alteration of TBPH caused alterations in 

Dlg levels. Regardless of the tissue, neuronal or muscular, when TBPH 

was missing, Dlg levels dropped and when TBPH was expressed, Dlg 

levels rose. 

It has been reported that TBPH is RNA binding protein and binds with 

higher affinity to (TG)n repeats (Ratti and Buratti, 2016). dlg DNA sequence 

contains sequences that have three or more repeats of TG nucleotides. 

Based on our results and theoretical background, we wanted to see if 

TBPH could directly bind dlg mRNA. To address that question, we perform 

co-immunoprecipitation, followed by the real-time PCR. We compared 

levels of dlg mRNA in TBPH gain of function and TBPHF/L (TBPH with two 

modified amino acids in the RRM1 domain, Phe147 and Phe149 are 

mutated to Leu and the RNA binding ability is fully abrogated (Buratti and 

Baralle, 2001)) gain of function flies.  
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We used thoraces to study the binding of dlg mRNA to TBPH in muscles. 

As a housekeeping gene, we used rpl11, and as a positive control hdac6. 

In flies expressing TBPHF/L, the levels of mRNAs of dlg were not elevated. 

On the contrary, TBPH expression highly enriched levels of dlg mRNA, 

indicating the binding of that mRNA to TBPH protein in muscles (Figure 

63). 

 

 

Figure 63: Dlg mRNA levels were enriched in flies’ muscles overexpressing TBPH. qRT-PCR analysis of 

mRNAs immunoprecipitated by Flag-tagged TBPH (UAS-TBPH/+; Mef2-GAL4/+, IP-TBPH) and its mutant variants 

TBPHF/L (+/+; UAS-TBPH F/L/Mef2-GAL4, IP-TBPHF/L) in adult thoraces. The dlg enrichment-folds was referred to 

as rpl-11 (negative control), hdac6 has been used as a positive control. n=3 (biological replicates). 

 

mRNA levels of dlg gene were also measured in adult's heads. The UAS-

genes expressed were the same as in the case of thoraces (TBPH and its 

mutant TBPHF/L), under control of Elav-GAL4 driver. As a housekeeping 
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gene, we used rpl11, and as a positive control syntaxin. Syntaxin mRNA 

was enriched around 9-times, and in the case of dlg mRNA, the 

enrichment reached to 25-fold in samples with TBPH overexpression. The 

enrichment was minimal for both mRNAs in brains with TBPHF/L 

overexpression (Figure 64). 

 

Figure 64: Dlg mRNA levels were enriched when TBPH was overexpressed in flies' neurons. qRT-PCR 

analysis of mRNAs immunoprecipitated by Flag-tagged TBPH (Elav-GAL4/UAS-TBPH/+;+/+, IP-TBPH) and its 

mutant variants TBPHF/L (Elav-GAL4/+; UAS-TBPH F/L/+, IP-TBPHF/L) in adult heads. The dlg enrichment-folds was 

referred to rpl-11 (negative control), syntaxin has been used as a positive control. n=3 (biological replicates). 

 

The results showed that overexpression of TBPH results in increased 

levels of dlg mRNA in both, thoraces and brain, relative to housekeeping 

gene rpl11. Moreover, we showed that this enrichment requires the RNA 

binding domains of TBPH, seeing that TBPHF/L overexpression did not 

cause significant enrichment of dlg mRNA.  
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3.5. TDP-43 in human cells regulates Dlg levels 

To extrapolate our discovery to humans, we aimed to investigate the 

influence of TDP-43 on the levels of Dlg in neuroblastoma cell line 

SHSYS5 and differentiated neuronal cells from ALS patients. We 

observed alterations in Dlg protein when TBPH is knockout, silenced, or 

overexpressed in flies. Therefore, we silenced TDP-43 and measured Dlg 

level by western blot in SHSYS5 cells. 

Silencing of TDP-43 in cells was controlled with the silencing of GFP 

protein in the same cell line. The intensity of the band in TDP-43 silenced 

cells was 75% lower than the intensity obtained in the cells expressing 

siRNA against GFP. With that been observed, we could confirm that the 

silencing of TDP-43 was efficient (Figure 65A and C). 

Further, we checked Dlg levels in the same cells. The intensity of Dlg band 

was reduced in the samples where TDP-43 was silenced, comparing to 

GFP silencing samples (Figure 65A). The intensities were weighed over 

GAPDH (loading control) and statistically analysed. On average, we 

obtained a 70% reduction of Dlg protein when TDP-43 is silenced, 

comparing to siGFP control (Figure 65B). 
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Figure 65: Dlg levels were downregulated when TDP-43 was silenced. A) Western blot analysis on human 

neuroblastoma (SH-S5Y5) cell line probed for anti-Dlg, anti-GAPDH, and anti-TDP-43 in siGFP (GFP ctrl) and 

siTDP-43 (TDP-43 silenced). The same membrane was probed with the three antibodies, and the bands of interest 

were cropped. B) Quantification of normalised protein amount (Dlg). C) Quantification of normalised protein amount 

(TDP-43). ****p=0.0001, using t-test. n=3 (biological replicates). 

We eventually checked the relevance of Dlg levels in disease conditions, 

specifically in patient-derived neuronal cells. Differentiated iPSc cells were 

provided by Monica Nizzardo University of Milan, Dino Ferrari Centre. 

Cells were differentiated as described in (Ng et al., 2015). We examined 

cells of two patients with TDP-43 mutations (ALS #1 had G294V and ALS 

#2 had G376S mutation) and two healthy controls (not affected by any 

neurodegenerative disorder). The levels of Dlg were analysed by western 

blot. 
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Figure 66: ALS patients have decreased levels of Dlg in differentiated neuronal cells. Western blot analysis 

probed for anti-Dlg and anti-GAPDH on human differentiated motoneurons derived from iPSCs of an ALS patient 

(ALS patient #1 and ALS patient #2) and a non-ALS affected control (Ctrl #1 and Ctrl #2). The same membrane 

was probed with the two antibodies, and the bands of interest were cropped. Quantification of normalised protein 

amount was reported below each lane. **p<0.01, ***p<0.001, ****p< 0.0001 calculated by one-way ANOVA, error 

bars SEM. 

We observed a significant drop in the intensity of Dlg levels in both patients 

comparing to both controls. The reduction of measured intensities was 

more than 75% in both cases (ALS #1 and ALS #2) comparing to non-ALS 

controls. 

These results presented the relevance of the alterations seen in flies. This 

gave additional credibility to our system and possibilities for further 

investigations and possible therapies. 
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4. DISCUSSION 
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4.1. Silencing of TBPH in muscles affects locomotion, life span, 

NMJ shape and function 

Muscles are a part of NMJ. Therefore, we wanted to investigate whether 

TBPH somehow contributes to NMJ growth and function, and 

consequently, if the effect is shown as a specific phenotype. Moreover, we 

wanted to investigate whether the ALS-like symptoms that are evident in 

tbphΔ23/- fly can be mimicked by silencing TBPH selectively in muscles. 

We silenced TBPH in muscles by RNA interference and observed 

impaired locomotion both in larvae and adult flies. Larvae resembled 

tbphΔ23/- animals, although they moved slightly faster. In adult flies, the 

phenotype was more evident. Most of the flies did not hatch. For the ones 

that fully developed, the climbing assay had to be carried out on day 1, 

since most flies died on day 4. All flies were dead on day 14. While 

climbing, flies could control the movement of their legs, but they were not 

strong enough to climb. They started climbing and after some time fell onto 

the bottom of the cylinder. The cause of early death was not thoroughly 

investigated. It is likely that the absence of TBPH compromises some vital 

functions connected to muscles (heart muscle, smooth muscles, and 

skeletal muscles) and thus results in premature death. One published 

study already investigated the effect of silencing in muscles (Diaper et al., 

2013). However, they did not describe anything more than the phenotype. 



150 

 

They observed impaired mobility like we did, but the lifespan was not 

affected. Indeed, they silenced TBPH with Mef2-GAL4. However, they 

investigated flies with wildtype background and not with tbphΔ23/+ 

conditions like we did. The different background could contribute to slightly 

different results.  

Since the phenotype was significantly different from the wild type control, 

NMJ shape and structure were investigated. A presynaptic and 

postsynaptic compartment of NMJ were characterised by immunostaining. 

From the neuronal point of view, there were no changes in the number of 

branches. However, the shape of the boutons was different. Observed 

NMJ had a higher proportion of irregularly shaped boutons. They were 

bigger than the wild type, without a defined shape, deformed with a 

wrinkled membrane. 

The irregular bouton shape implies to disturbances in the cytoskeleton. 

We analysed protein Futsch, which is a structural protein involved in 

cytoskeleton organisation, dendritic, and axonal growth (Hummel et al., 

2000). Reduced levels of Futsch protein were observed in tbphΔ23/- flies 

(Godena et al., 2011), and thus in our model. The reduction was 15%, but 

significant and seemingly enough to affect the bouton shape, although not 

for branching.  



151 

 

Intact branches could be the consequence of the maternal contribution of 

TBPH. Therefore, despite the silencing, TBPH can remain in small 

quantities and execute its role. The second possible explanation why 

boutons but not branches were affected may be the backup pathways that 

compensate for the absence of muscular TBPH. In TBPH mutants, the 

protein was absent in all tissues, but in our case, surrounding tissues might 

partially rescue the phenotype. 

Further, we investigated the postsynaptic part of NMJ. Past analysis in our 

laboratory showed that Dlg protein and glutamate receptors were 

downregulated in tbphΔ23/- fly (Romano et al., 2014). Therefore, we 

decided to quantify the levels of these proteins in our model. Both proteins 

resulted in being downregulated, although at a different extent (25% and 

50%, respectively).  

Overall, the results indicated that TBPH in muscles plays a vital role in 

NMJ formation and function by regulating Dlg protein, glutamate receptors, 

and formation of the boutons. Alteration in NMJ is shown on a phenotypical 

level. The phenotype in adult flies is more prominent than in larvae. A 

possible explanation is above-mentioned maternal contribution of TBPH 

in larvae, and therefore, we do not see changes in branching but in the 

bouton shape. To confirm this, we should investigate NMJ in adult flies. 

The animals are dependent on their endogenous protein production, so 
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the silencing should be more efficient and the effect more significant. Still, 

we cannot exclude compensatory mechanisms. After all, we are dealing 

with the entire organism. 

Interestingly, our experimental outcome can be compared to the results 

obtained in TBPH neuronal silencing. Lack of TBPH in neurons manifested 

in locomotion problems, shorter life span, higher percentage of irregularly 

shaped boutons, downregulation of Dlg protein and glutamate receptor 

levels (Feiguin et al., 2009; Romano et al., 2014). The comparison of the 

two tissues lead us to a hypothesis that there should be communication 

between neurons and muscles through NMJ. The two tissues might 

communicate through signalling pathways or physical connection between 

proteins from both sides. TBPH needs to be present in muscles and 

neurons so that the NMJ can develop and function properly. 

4.2. Expression of TBPH in muscles rescues TBPH-/- phenotype, 

NMJ function, and structure 

To confirm the results obtained by silencing TBPH in muscles and getting 

some new insights into the TBPH role, we decided to express the protein 

in tbphΔ23/- flies exclusively in muscles. We mainly concentrated on the 

characteristics that were altered in silencing.  

A significant difference was already evident at the phenotypical level. 

Larvae recovered the phenotype in contrast to GFP-expressing larvae with 
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tbphΔ23/- background. TBPH-expressing larvae moved straight forward 

and fast without searching for a direction. The recovery in adult flies was 

less efficient than in larvae. During the first few days, they climbed better 

than tbphΔ23/- flies but worse than wild type animals. We also performed a 

walking assay. Flies expressing TBPH in muscles moved more efficiently 

than mutants. However, the lifespan was not significantly longer.  

We wanted to explain why adult fly's phenotype did not show a substantial 

improvement. To further investigate the TBPH-expression phenotype, we 

expressed TBPH in wild type background and saw no effect on larval 

movement, but a significantly lower climbing ability in adult flies. Moreover, 

flies reached a lower age compared to the control, GFP-expressing flies. 

Thus, we can conclude that excessive expression of TBPH in muscles is 

toxic for the organism, particularly at a late stage of the insect's 

development, which can be complemented with the study where 

researches observed TBPH inclusions in muscles while overexpressing 

the protein with Mef2-GAL4 driver. They also reported a shorter life span 

and locomotive problems (Diaper et al., 2013).  

Nevertheless, we decided to investigate the effect at an anatomical level 

in the third instar larvae, because at that stage, the phenotype was 

completely recovered. Compared to the TBPH silencing model, we 

observed utterly opposite results that further extended our knowledge of 
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the protein's function in muscles. We observed a recovery of NMJ growth. 

Junctions recovered the number of branches, which were not reduced 

when we silenced TBPH selectively in muscles. The result indicates that 

TBPH in muscles is essential, but not the main factor responsible for NMJ 

growth. With that been observed, the hypothesis about compensatory 

mechanisms is more probable. In TBPH-expressing model, we do not 

have endogenous protein. The muscles are the only source of the protein. 

Nevertheless, NMJ grew, and the bouton shape was recovered. 

In the postsynaptic compartment of NMJ, we measured levels of Dlg 

protein and glutamate receptors. We observed an opposite effect 

compared to the silencing model. The Dlg level was fully recovered, and 

the glutamate receptors level was improved only partially. The outcome of 

the experiments implies a closer relationship between TBPH and Dlg than 

between TBPH and glutamate receptors. A probable explanation would be 

that the levels of glutamate receptors are not strictly dependent on 

processes taking place in muscles. Furthermore, we suspect that neurons 

are partially responsible for full development and proper location of 

receptors at the postsynaptic site. It has been demonstrated that when 

TBPH is silenced in neurons, syntaxin (responsible for the regulation of 

neurotransmitter release (Wu et al., 1999)), Dlg and glutamate receptors 

are downregulated. The rescue of tbphΔ23/- larvae with neuronal 
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expression of syntaxin, only partially rescued Dlg level, but fully 

recuperated glutamate receptor level (Romano et al., 2014). Joining the 

results, it is evident that glutamate receptors are not regulated only from 

muscles. In this case, muscles cannot replace neuronal contribution. 

We proceed our investigation with the measuring of excitatory junctional 

potential. It has been reported that the neurotransmission was impaired in 

ALS patients (Maselli et al., 1993). We observed the same in tbphΔ23/- 

larvae. Muscular expression of TBPH partially recovered the EJP. The 

result matches the previous results, showing partial recovery of glutamate 

receptors. We cannot exclude other mechanisms that do not depend on 

glutamate receptor levels being responsible for the recovery of EJP.  

Collectively, TBPH expression in muscles can rescue the phenotype of 

TBPH mutants at the level of the entire organism, as well as at the level of 

NMJ structure and function.  

4.3. Dlg protein regulates NMJ shape and function  

Dlg is expressed pre- and postsynaptically (Lahey et al., 1994) and for the 

proper function, it is required on both sides (Budnik et al., 1996). 

Therefore, we decided to check whether overexpression in one of the two 

compartments at least partially rescues the tbphΔ23/- phenotype. 

Expressing Dlg in muscles or neurons partially recovered larval motility. 

When expressed in the presynaptic part, all measurements tended to be 
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improved at a greater extent, although we could not detect a significant 

difference between the two tissues. Expression of Dlg in muscles was 

further characterised in adult flies, by a climbing assay and tracking the 

survival of animals. The climbing abilities of adults were partially 

recovered, and the survival rate was significantly improved comparing to 

tbphΔ23/- flies expressing GFP, which confirms a significant contribution of 

the protein to the function of the organism in general. Furthermore, we 

confirmed the effect of Dlg on NMJ shape and function by characterising 

the branching and bouton shape. It is known that Dlg is a scaffold protein 

and clusters glutamate receptors (Chen and Featherstone, 2005), so the 

idea was to see whether this effect can also be seen in tbphΔ23/- animals. 

Dlg expression partially rescued the glutamate receptors level. Partial 

recovery was obtained in both tissues. The results suggest that Dlg is 

essential in both tissues for full functioning. Either muscular or neuronal 

expression can fully recover NMJ shape, but not the function. The EJP 

was recovered partially. Interestingly, when we compared results of EJP 

in larvae expressing TBPH versus larvae expressing Dlg, the recovery was 

not significantly different (data are not shown). Based on that, we could 

claim that TBPH in muscles regulates Dlg. 

Finally, we checked if TBPH in muscles or neurons directly binds the dlg 

mRNA, since its DNA sequence contains several (TG)n repeats that might 
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mediate the binding to TBPH protein (Buratti and Baralle, 2001). Indeed, 

by the immunoprecipitation, we observed a high enrichment of dlg mRNA 

compared to housekeeping genes. TBPH binds to dlg mRNA and may 

regulate its expression at the level of mRNA metabolism. It controls the 

proper amount of Dlg protein in the cellular compartment where the protein 

must exert its function. To determine the exact role of TBPH in dlg mRNA 

metabolism, some additional investigations need to be done. 

4.4. Dlg1 (SAP79) is downregulated in SH-SY5Y cells and ALS 

patients 

The majority of glutamatergic synapses are located in the central nervous 

system. They are involved in sensory processing and cognitive function 

(Volk et al., 2015). Glutamate receptors (AMPA and NMDA) are located in 

the postsynaptic compartment of the synapse stabilised by postsynaptic 

density (PSD) (Howard et al., 2010; Muller et al., 1995). The major PSD 

components are proteins belonging to the MAGUK family. The four main 

representatives are PSD-95/SAP90, PSD-93/Chapsyn-110, SAP102, and 

SAP97 (Howard et al., 2010; Muller et al., 1995; Woods and Bryant, 1991). 

SAP97 is an ortholog of Drosophila Dlg (Figure 67). They share 44% 

identity and 58% similarity (https://www.uniprot.org/). Studies report that 

SAP97 binds AMPA receptors and promotes dendrite growth (Goodman 

et al., 2017; Howard et al., 2010; Zhou et al., 2008). 
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Figure 67: The alignment of D. melanogaster Dlg and human Dlg1. Equal amino acids (*) and similar amino acids 

(:) are marked (Source: https://www.uniprot.org/)  

 

In our studies, we used two different models to check SAP97/Dlg1 levels 

– a cell line SH-SY5Y and iPS cells differentiated into neurons from ALS 

patients and healthy (non-ALS affected) donors. We saw that Dlg1 levels 
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are indeed downregulated in neuroblastoma cells when TDP-43 was 

silenced. What is even more striking, the same result was observed in 

samples from ALS patients. Not that we have just confirmed the relevance 

of our studies and model, but also discovered a new protein that is 

dysregulated. Dlg1 downregulation in neuroblastoma cell is connected to 

TDP-43 silencing, because we measured levels of both proteins in the 

same samples. However, we cannot claim that for the iPSCs, because we 

did not check the levels of TDP-43. 

One of the reasons for impaired dendrite growth in ALS may be connected 

to the downregulation of SAP97. 

4.5. Conclusions and future perspective 

Animals with silenced TBPH in muscles had problems with mobility and 

shorter life span, which is also observed in TBPH knockout flies. Moreover, 

they had changes in neuromuscular junction shape and levels of the 

proteins. Most of the characteristics were recovered when TBPH was 

expressed exclusively in muscles of tbphΔ23/- flies.  

When TBPH levels were altered, the alteration of Dlg protein was 

observed. We showed that TBPH directly bound dlg mRNA. Additionally, 

we checked whether Dlg expression could recover the phenotype 

observed in tbphΔ23/- flies. Indeed, it recovered regardless of the tissue 

where the protein was expressed (either neurons or muscles). The results 
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imply a physical connection between the two compartments of NMJ 

necessary for proper function. 

Based on our research, we hypothesise that TBPH is responsible for the 

formation of Dlg protein. Dlg is located at the NMJ where it clusters the 

proteins and physically connects both compartments of NMJ (Figure 68). 

When the connection is formed, NMJ develops, grows, and partially 

contributes to the function. However, we cannot claim that this is the only 

mechanism needed in the process of NMJ formation and function.  

We proved that Dlg could recover the phenotype of tbphΔ23/- larvae 

regardless of where it is expressed (in muscles or neurons). We propose 

the explanation that overexpression of the protein in one of the tissues 

(muscular or neuronal) is adequate to attract and to anchor the residues 

of Dlg on the other side and so the execution of Dlg roles is possible. 

Nevertheless, one needs to keep in mind that in tbphΔ23/- animals Dlg 

protein in NMJ is not entirely erased. However, its levels are too low to 

function in mutant background.  
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Figure 68: The model of TBPH function in NMJ. TBPH in muscles and neurons binds dlg mRNA and regulates 

mRNA metabolism. Dlg is expressed and located in NMJ, whereby to-Dlg-bound proteins anchor the Dlg protein on 

the other side of NMJ, and so their functions can be executed. 
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In the future, we would like to determine the mechanism through which 

presynaptic and postsynaptic compartments are communicating and 

affecting one another. Additionally, we would like to determine the role of 

TBPH in dlg mRNA metabolism. Perhaps, TBPH has any other roles in 

NMJ formation and controls other pathways. Manipulation of these 

pathways could also present a potential target for the ALS therapies. 

Translational potential for patients 

For long years it has been believed, that ALS is a neuronal disease. 

However, the involvement of surrounding tissues in disease progression 

is now considered. Our studies show the potential involvement of muscular 

tissue in ALS development and progression. We show, that NMJ can be 

manipulated via expression of certain proteins in muscles. Therefore, one 

can predict, that muscles are potential target in receiving a therapy for the 

disease. The advantage of this type of treatment is accessibility of 

muscles. Drug delivery to muscles is easier and less invasive than to 

neurons.  
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5. MATERIAL AND METHODS 
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5.1. Fly strains 

The following genotypes were used: 

w[1118] (Feiguin et al., 2009) 

w[1118]; TBPHΔ23/Cyo-GFP (Feiguin et al., 2009) 

w[1118]; TBPHΔ142/Cyo-GFP (Feiguin et al., 2009) 

w[1118]; Mef2-GAL4/TM3-Sb (#27390, BDSC) 

w[1118]; MHC-GAL4/TM3-Sb (#55133, BDSC) 

w[1118]; UAS-mCD8::GFP/Cyo (#5137, BDSC) 

w[1118]; UAS-TBPH/Cyo (Feiguin et al., 2009) 

w[1118]; UAS-TBPHF/L/TM3-Sb (Romano et al., 2014) 

w[1118]; UAS-hTDP/TM3-Sb (Feiguin et al., 2009) 

w[1118]; UAS-DLG(egfp)/UAS-DLG(egfp) (Budnik et al., 1996) 

w[1118]; UAS-TBPH RNAi (#ID38377, VDRC) 

w[1118]; UAS-GFP RNAi (#9330, BDSC) 

w[1118]; UAS-GFP RNAi (#9331, BDSC) 

w[1118]; Dicer(X) (#60009, VDRC) 
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Table 3: Primary antibodies used in experiments. 

Primary Antibodies 

Name (supplier) Host Dilution 

(NMJ) 

Dilution 

(WB) 

αGFP (#A11122, Invitrogen) rabbit 1 : 200 - 

αHRP (#323-005-021 Jackson) rabbit 1 : 150 - 

αDlg (#4F3c, DSHB) mouse 1 : 250 1 : 10,000 

αGluRIIA (#8B4D2c, DSHB) mouse 1 : 15 - 

αFutsch (#22C10s, DSHB) mouse 1 : 50 - 

αTBPH (home-made) rabbit - 1 : 4,000 

Αtubulin DM1A (#CP06, 

Calbiochem) 

mouse - 1 : 4,000 

αTDP-43 (#10782-2-AP, 

Proteintech) 

rabbit - 1 : 4,000 

αDlg (#2D11, Santa Cruz) mouse - 1 : 1,000 

αGAPDH (#47724 SC, Santa Cruz) mouse - 1 : 2,000 
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Table 4: Secondary antibodies used in experiments. 

Secondary Antibodies 

Name (supplier) Host Dilution 

(NMJ) 

Dilution 

(WB) 

Alexa Fluor® 488 αmouse 

(#A11001) or αrabbit 

(#A11008), (Life 

Technologies) 

goat 1 : 500 - 

Alexa Fluor® 555 αmouse 

(#A21422) or αrabbit 

(#A21428), (Life 

Technologies) 

goat 1 : 500 - 

Alexa Fluor® 647 αmouse 

(#A21241, Life 

Technologies) 

chicken 1 : 500 - 

αmouse-HRP (#32430, 

Pierce) 

goat - 1 : 30,000(flies) 

1 : 10,000(cells) 

αrabbit-HRP (#32460, 

Pierce) 

goat - 1 : 10,000 
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5.2. Drosophila techniques 

5.2.1. Fly stocks and crosses 

Drosophila stocks were purchased from the Bloomington Drosophila Stock 

Center (Indiana; https//bdsc.indiana.edu/), the Drosophila Genetic 

Resource Center (Kyoto; https://kyotofly.kit.jp/cgi-bin/stocks/index.cgi), 

and Drosophila Stock Center (Vienna; 

https://stockcenter.vdrc.at/control/main). Additional stocks were kindly 

provided by colleagues and other laboratories or were generated as part 

of this project. Stocks were stored at room temperature or at 18°C and 

were flipped into new tubes, weekly or every 14 – 21 days, depending on 

the temperature settled. Experimental crosses were maintained in an 

incubator with controlled conditions (60% humidity, 25°C, 12 hours light 

and 12 hours dark cycles). Flies were grown in small tubes filled with fly 

food, prepared as reported in Table 5. 
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Table 5: Fly food ingredients and the quantity for the preparation 

Ingredients of fly food Quantity 

yeast 1,000g 

agar 100g 

cornflour 466g 

sugar 666g 

propionic acid 66ml 

water 17l 

 

5.2.2. Phenotypic analysis in Drosophila 

• LARVAL MOVEMENT 

Wandering third instar larvae (about 120 hours old) were picked from 

tubes and washed in a drop of demineralised water (DEMI water). If 

necessary, they were selected against different markers such as tubby or 

CyoGFP and placed into 6cm diameter dishes, filled with 0.7% agar. A 

single larva at the time was transferred into a 10cm diameter dish, filled 

with 0.7% agar. After 30s of adaption period, the number of peristaltic 

waves was counted for two minutes. The tested larvae were subsequently 

transferred to a fresh fly tube to check them, both for hatching (after three 

to four days) and correct genotype selection. Generally, 20 – 25 larvae per 

genotype were tested. 
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• SURVIVAL RATE 

One- to two-day-old adult flies were collected from the fly tube of an 

experimental cross in a 1 : 1 proportion of female and male, transferred to 

a fresh fly tube and stored in the incubator under controlled conditions 

(suitable temperature and humidity, 12h light and 12h night). Every 

second-day flies were transferred into a fresh fly tube without anaesthesia, 

and the number of deaths was scored. Approximately 200 flies per 

genotype were tested.  

• CLIMBING ASSAY 

One- to two-day-old adult flies were collected from the fly tube of an 

experimental cross in a 1 : 1 proportion of female and male, transferred 

into a fresh fly tube and maintained in an incubator as previously 

described. The day of the setting of the experiment was counted as day 0. 

Flies were tested on day 4, 7, 14, and 21. A 50ml glass cylinder was 

divided into three parts, as the bottom, middle and top (5cm each part) 

(Figure 69), and flies were carefully flipped into the cylinder from the fly 

tube without any anaesthesia and gently dropped to the bottom. After 30s 

of adaptation period, flies were dropped onto the bottom of the cylinder 

again, and after a time interval of 15s, the number of flies present in each 

part of the cylinder were scored. For each genotype, three trials per each 

tube were done, and the average of the scored fly numbers was 
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considered the final score. A minimum of 200 flies was tested for each 

genotype. 

 

Figure 69: Divided glass cylinder prepared for the climbing assay. 

• WALKING ASSAY 

Young flies, two- to three-day old, were tested for walking ability. A 145mm 

dish was used. The bottom surface was divided into a grid of 1cm x 1cm 

squares (Figure 70) to facilitate the measuring of the distance walked by 

the flies. The fly without any anaesthesia was placed in the middle of the 

dish, and after 30s of adaptation to the environment, the distance covered 

by the fly was recorded for 30s, counting the number of squares. A 

minimum of 50 flies was individually tested for each genotype.  
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Figure 70: Walking assay plate with the 1cm x 1cm grid beneath it. 

5.2.3. Immunohistochemistry studies 

• LARVAL NMJ IMMUNOHISTOCHEMISTRY 

Wandering third instar larvae were picked from a fly tube, in a drop of 

demineralised water, selected for the genotype and maintained during the 

time of dissection in a 6cm diameter dish filled with 0.7% agarose 

dissolved in water. Individually picked larva was dissected on Sylgard 

plates, in Dissection Solution (128mM NaCl, 2mM KCl, 4mM MgCl2, 

0.1mM CaCl2, 35.5mM Sucrose and 5mM Hepes (pH 7.2)). Larvae were 

pinned at both ends with minute pins (Austerlic Insect Pins 0.1mm 

diameter, Fine Science Tools, Germany) and opened on the dorsal site 

with Spring scissors (Fine Science Tools, Germany). Once larva was 

opened, internal organs were removed, and the interior was extensively 

washed with Dissection Solution leaving muscle wall opened, pinned flat 
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on the surface. The subsequent step was a fixation, generally done with 

4% PFA in PBS for 20min; however, in the case of glutamate receptors 

staining, a methanol fixation of 5min at -20°C was performed. Fixation 

solution was removed with three washes in PBS-T (PBS 1x supplemented 

with 0.1% (v/v) Tween20) for 5min each. After a blocking step of 30 min in 

blocking solution (5% NGS (Normal Goat Serum, Chemicon in PBS-T 

buffer), larvae were incubated overnight at 4°C in primary antibodies 

(Table 3) diluted in blocking solution. The day after, the primary antibody 

was removed with three washes of 10min each with PBS-T and a further 

blocking step of 30min was performed before adding secondary antibodies 

(Alexa Fluor® Secondary antibodies, Life Technologies) (Table 3). All 

secondary antibodies were diluted in blocking solution. An incubation was 

2h long, performed at the room temperature (RT). Antibody excess was 

removed by three subsequent washes of 20 minutes each in PBS-T. 

Finally, dissected-stained larvae were incubated overnight at 4°C in 

Slowfade®Gold antifade (Life Technologies) reagent, before being 

mounted on a glass slide and scanned with a confocal microscope (Carl 

Zeiss LSM 510 Meta).  

• BOUTON SHAPE 

Boutons were stained with an anti-HRP antibody that recognises five 

glycoproteins located in the neuronal membrane (Jan and Jan, 1982). The 



173 

 

shape of boutons was evaluated as regular if they were round and with a 

smooth surface, with an equal diameter on both axes (Figure 71). On the 

other hand, boutons were considered as irregular if the shape was not 

round, the membrane was wrinkled, and the diameter of one axe was 

different compared to the other one (Figure 71). 

 

Figure 71: When an equal diameter on both axes of the bouton is observed, the bouton is considered regular. 

Irregular boutons come in different sizes and shapes, with a different diameter on both axes.  

• NUMBER OF BRANCHES 

The protocol of processing larvae used for this analysis was 

immunohistochemistry. Images of an anti-HRP antibody stained branches 

were acquired with the same settings. All branches were counted together 

(primary, secondary, tertiary) (Figure 72).  
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Figure 72: Scheme of branches in NMJ and their hierarchy. 

 

• QUANTIFICATION OF PRE- AND POSTSYNAPTIC MARKERS 

Larvae were processed with the protocol for immunohistochemistry. 

Double labelled samples with anti-HRP and antibodies against pre- and 

postsynaptic proteins were analysed on the confocal microscope and 

acquired under the constant settings. Images were further processed with 

ImageJ software and boutons from NMJs of the 2nd larval segment, 

muscles 6 and 7, were quantified. Both the HRP and the pre- or 

postsynaptic markers intensity were quantified. The obtained signal of the 

synaptic markers was normalised on HRP intensity. Results were 

statistically analysed by the Prism Graphpad software. 
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5.2.4. Electrophysiology on NMJ of the third instar larva preparation 

Larval body wall preparations were dissected out in Ca2+-free HL3 

solution from third instar larvae pinned on Sylgard coated Petri dishes. The 

central nervous system was excised by cutting segmental nerves roots. 

After replacing Ca2+ free HL3 solution with Ca2+ 1 mM HL3, postsynaptic 

potentials at the neuromuscular junction of fibre 6 / 7 of abdominal 

segments A3 / A4 were intracellularly recorded, at room temperature in 

current-clamp condition, using an intracellular microelectrode (tip diameter 

0.5μm, 15MΩ resistance). The recorded signal was amplified by a current-

clamp amplifier (SEC 05, NPI, Tamm, Germany), digitised at 10kHz 

sampling rate using an A / D interface (National Instruments, Austin, TX, 

USA) and fed to a computer for display and storage using an appropriate 

software (Win EDR, Strathclyde University, Glasgow, UK). 

Fibres with a resting membrane potential below -60mV were considered 

for the experiment. In these fibres, membrane potential was set at -70mV 

throughout the experiment by injecting current through the intracellular 

electrode. Evoked postsynaptic potentials (EPSPs or Excitatory Junctional 

Potentials or EJPs) were recorded by stimulating at 0.1Hz (pulse duration 

0.4ms; 1.5 threshold voltage) the segmental nerve using a suction 

electrode (tip diameter ~10μm) connected to a stimulator (S88, Grass, 

Pleasanton, CA, USA) (Figure 73) through a stimulus isolation unit (SIU5, 

Grass, Pleasanton, CA, USA). Intracellular recordings were analysed 
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offline using pClamp software (pClamp, Axon, Sunnyvale, CA, USA). 

Statistical comparisons and graphs were made using the Graphpad 

software (Graphpad, La Jolla, CA, USA) or MATLAB (Matworks, Natick, 

MA, USA). 

 

Figure 73: The scheme of measuring the EJPs. 

5.3. Biochemical techniques 

5.3.1. Immunoprecipitation 

Protein G magnetic beads (Invitrogen) were washed two times, with 

PBS+0.02% Tween and coated with anti-FLAG M2 monoclonal antibody 

(Sigma). Thoraces or heads of adult flies were cut and stored in lysis buffer 

containing 20mM Hepes, 150mM NaCl, 0.5mM EDTA, 10% Glycerol, 

0.1% Triton X-100, 1mM DTT, and protease inhibitor. Samples were 

homogenised with a Dounce homogeniser, and major debris was removed 
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by centrifugation step of 5 min at 0.4g at 8°C. The pretreated beads and 

tissue extracts were mixed and incubated for 30min at 4°C. After this 

binding step, beads were washed five times with washing buffer (20mM 

Hepes, 150mM NaCl, 0.5mM EDTA, 10% Glycerol, 0.1% Triton X-100, 

1mM DTT, protease inhibitor, 0.2% DOC, 0.5M Urea) using DynaMagTM-

Spin (Invitrogen). RNA transcripts bound by TBPH-Flag-tagged were 

extracted. The beads were treated with Trizol (Ambion) and precipitated 

with isopropanol adding glycogen (Thermo scientific). Retro-transcription 

with Superscript III First-Strand Synthesis (Invitrogen #18080051) was 

performed with Oligo-dT primers on resuspended RNA. Real-time PCR 

was carried out with gene-specific primers, the sequences of which are 

listed below. 
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rpl11 

fw 5’-CCATCGGTATCTATGGTCTGGA-3’  

rev 5’-CATCGTATTTCTGCTGGAACCA-3’ 

syntaxin  

fw 5’-TGTTCACGCAGGGCATCATC-3’  

rev 5’-GCCGTCTGCACATAGTCCATAG-3’ 

hdac-6  

fw 5’-CGAGCGGCTGAAGGAGAC-3’ 

rev 5’-ACCAGATGGTCCACCAATTCG-3’ 

dlg:  

fw 5’-ACTGGGCTTCTCAATTGCCG-3’  

rev 5’-CCAGTTCGTGCGTTACGTTC-3’ 

In order to calculate the enrichment fold, initially, all data were normalised 

to the respective inputs. The signal was represented by how many more 

fold increase was measured compared to the control signal. The 

enrichment was calculated according to the following equation:  

𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 = 2−∆∆𝐶𝑡 

∆∆𝐶𝑡 =
∆𝐶𝑡 (𝑇𝐵𝑃𝐻)

∆𝐶𝑡 (𝑇𝐵𝑃𝐻𝐹 𝐿⁄ )
=

𝐶𝑡 (𝐼𝑃 𝑇𝐵𝑃𝐻) − 𝐶𝑡 (𝑖𝑛𝑝𝑢𝑡 𝑇𝐵𝑃𝐻)

𝐶𝑡 (𝐼𝑃 𝑇𝐵𝑃𝐻𝐹 𝐿⁄ ) − 𝐶𝑡 (𝑖𝑛𝑝𝑢𝑡 𝑇𝐵𝑃𝐻𝐹 𝐿⁄ )
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The results were derived from three independent immunoprecipitation 

experiments.  

5.3.2. Protein extraction 

To collect adult heads, flies were flash-frozen in liquid nitrogen for 

10 seconds and immediately vortexed to easily detach heads from bodies. 

Heads were subsequently transferred into Lysis buffer (150mM Tris, 5mM 

EDTA, 10% glycerol, 5mM EGTA, 50mM NaF, 4M urea, 5mM DTT and 

protease inhibitors). After a squeezing step, performed both manually and 

mechanically, the homogenised samples were gotten rid of major debris 

by centrifugation at 0.5 x g for 6 min on 4°C. The protein concentration of 

the collected supernatant was quantified with Quant-iTTM Protein Assay Kit 

(Invitrogen), following supplier protocol. 

Transfected neuroblastoma cell line SH-SY-5Y were resuspended in iced 

RIPA buffer added of Protease Inhibitors (Roche) and subjected to 

sonication (Biorupture sonication system, Diagenode). 

Lysates were quantified (BCA Protein kit #23225 Thermo Scientific), 

following supplier protocol. 

5.3.3. SDS-PAGE 

Protein samples were diluted in 1x Laemmli buffer (the composition of 5x: 

0.3M Tris-HCl pH 6.8, 50% glycerol, 10% SDS, 25% β-mercaptoethanol, 

0.05% bromophenol blue) to reach the same concentration among all and 
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then boiled at 95°C for 5min. Afterwards, they were loaded on a 

polyacrylamide gel (Table 6). 

Table 6: The ingredients and the concentrations of gels used in SDS-PAGE. 

Preparation 

Ingredients Resolving gel Stacking gel 

Acrylamide M-BIS 40% 4% – 10% (v/v) 5% (v/v) 

Tris-HCl pH 8.8 0.37M - 

Tris-HCl pH 6.8 - 0.125M 

Ammonium persulphate 0.1% (w/v) 0.1% (w/v) 

SDS 0.1% (w/v) 0.1% (w/v) 

TEMED 0.02% (v/v) 0.02% (v/v) 

 

The loaded gel was placed into the chamber with 1x running buffer (10x 

running buffer: 30.28g Tris, 114.13g Glycine, 10g SDS in 1l water). The 

conditions set were 25mA per gel. 

5.3.4. Western blot 

When the electrophoresis separated proteins, they were transferred to a 

nitrocellulose membrane AmershamTM ProtranTM 0.2µm NC (GE 

Healthcare, Life Science). The western blot sandwich was put into the 

chamber, filled with transfer buffer 1x containing 20% methanol (transfer 
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buffer 10x: 30g Tris, 144g glycine in 1l water). The transfer lasted 1 hour 

at 350mA. 

The membrane was incubated with a solution of 5% milk in 1x TBS 0.01% 

Tween (TBS-T) for 30min at room temperature on a shaker (TBS buffer 

10x: 24.2g Tris, 80g NaCl in 1l water, pH 7.6). After blocking, the 

membrane was set into dilution of antibodies with TBS-T with 5% milk. It 

was placed at 4°C overnight. 

When the incubation with primary antibodies was over, five washes with 

TBS-T followed for 5min each. Next, the membrane was incubated with 

the secondary antibody diluted in TBS-T with 5% milk for 1hour at room 

temperature. The protein detection was performed with 

SuperSignal®West Femto Maximum Sensitivity Substrate (ThermoFisher 

Scientific).  

5.4. Cell culture techniques 

5.4.1. Cell culture and RNA interference 

SH-SY-5Y neuroblastoma cell line was cultured in standard conditions in 

DMEM-Glutamax (Thermo Fisher Scientific) supplemented 10% fetal 

bovine serum and 1X antibiotic-antimycotic solution (Sigma). RNA 

interference of TDP-43 was achieved using HiPerfect Transfection 

Reagent (Qiagen) and siRNA specific for human TDP43 (5’-

GCAAAGCCAAGAUGAGCCU-3’); as control siRNA for GFP was used 
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(5’-GCACCAUCUUCUUCAAGGA-3’; Sigma). Immediately before 

transfection, 2-4x105 cells were seeded in 6-well plates in 1.4ml of medium 

containing 10% fetal serum. A volume of 3µl of each siRNA (40µM solution 

in water) was added to 91µl of Opti-MEM I reduced serum medium 

(Thermo Fisher Scientific); after a 5-minute incubation at room 

temperature, 6µl of HiPerfect Transfection Reagent was added. The 

mixture was drop-wise poured onto the cells after a 10-minute room 

temperature incubation to allow the formation of the complexes. The 

silencing procedure was performed again after 24 hours, for a total of two 

rounds of silencing.  

5.5. Statistical analysis 

All statistical analysis was performed with Prism (GraphPad, USA) version 

5.1. One-way ANOVA with Bonferroni correction, two-way ANOVA or t-

test with Man-Whitney correction was applied as a statistical test. In all 

figures, all the values were presented as the mean and the standard error 

of the mean (SEM). Statistical significance was portrayed as *p<0.05, 

**p<0.01, ***p<0.001. 
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