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Abstract
The software ^ h c a tio n  POISE, Polymer Objects in a Smalltalk™ Environment, integrates knowledge 

representation, user intofoces, and data management; a system of tools for the materials domain expert 

involved in design. Engineering design solutions initially build from generalisations. POISE represents 

multiple levels of generalisations from classifications of polymer information,

The class-instance paradigm classifies software objects. An object’s behaviour is an exclusive fimction of its 

class. Polymer’s behaviours are a function of multiple wthogonal fectors, like chemistry and processing, 

therefore multiple orthogonal classes must represent polymers. Taxonomy only represents one of these 

foctors. The Enhancer m echanism  resolves this conflict between classification and representation.

Polymer classification is not well established, with new materials evolving. The software compensates by 

evolving the classification schema. Guided with a specialised inta-fiice tool, the domain expert updates the 

schema by adding new polymer fomilies and re-classifying existing classes. Through analysing die 

generalisations in the classification, the domain expert can develop an appropriate classification. This 

analysis relies on the engineering properties differentiating the principal material quahties. Standard 

properties do not distinguish specific structural differences in polymer materials, necessitating new 

properties.

Material properties distinguish materials in the domain i^ereas the classes describe the properties of polymer 

objects. Domain experts add new properties to the polymer classes to distinguish polymer objects. Properties 

are indepaident objects that partially describe the class template; Partial Tenqilate Objects.

Persistence of personal design information and management of shared data requires dichotomous database 

management Shared data requires multi-user access, and consequaitly transaction management Transaction 

management in object-orioited systems often holds resources for a long duration. Transaction declaration 

hinders transparent access to storage, and corrupts the representation. For single-usa" dcsigi infonnation, 

transactions are implicit with access. Database proxies provide transparent per-object transaction 

management to pCTsistent design information. The WorkBase is an object-storage utility that utilises 

Enhancers as proxies.
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Chapter 1 Introduction
Computer Aided Design (cad) often refers only to the geometric design of sh^es. The shape of a design is 

only one perspective on the design problem presented to die design engineer. An extœded CAD system for 

managing all aspects of the design process must address other perspectives. One perspective is the choice of 

material. Within this perspective is CAD support of engineering polymer materials*. This thesis proposes a 

specification of polymer inftirmation, a region of knoi^edge or domain, i\iiich challenges customary 

computer representation. This representation, vfrich includes evolving data types, is of particular interest to 

knowledge engineers. Its implemoitation describes new software patterns that challenge object-oriented 

language concepts that are of interest to software scientists. For similar reasons the database designers will 

find the approach compelling. The resulting application of this representation will interest polymer engineers, 

and potentially all matoials and design engineas, for analysing their domains.

A variety of polymer properties characterises die domain of polymer information. They capture the diversity 

of the material and the dynamic technological advances still occurring within the industry. Each instance of a 

polymer material, a grade, has properties that are a highly complex consequence of the polymerisation 

reaction, chemical mix of additives and processing history. Distinguishing grades by this chonistry and 

history is not helpful to design. Designers need to relate properties to the behaviour of their final product. 

They design tests on samples of each grade fiir quantifying the properties that imply some behaviour of the 

product. The behaviour relates to the design purpose. Although there are behaviours common to many 

designs, such as the behaviour of strength, diverse products require different tests. Therefore, as well as 

developing new grades, the polymer industry dynamically develops new tests to describe the behaviour of 

polymers in diverse products.

A computer representation is a description of some part of the real world, the domain of the representation, 

on a computer. Customary implementations of computer reproentations, such as in many commercial 

relational databases, assume the description of entities in the representation do not change. Changing the 

representation, or “schema evolution”, complicates database management. Logical inconsistencies, evolving 

storage in memory, integrating change with data manipulation tools and applications all gaierate an overhead 

unnecessary for most applications of database management systems (DBMS).

* Engineaing polymas are synfiietically produced solids composed of large molecules built from 
simple repeating chemical units (monomers). They have physical properties useful for many different 
mechanical and electrical engineering iqiplications. References to polyma, for the remainda of this thesis, 
wül imply engineering polymas

1
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Computer representations supporting schema evolution are often object-oriented. Object-orientation is an 

approach to implementing software. Objects tie data widi computer processa that manipulate tibe data. The 

description of the procas is à protocol. Computer processing depends only on the local data and the 

protocol. Together they produce behaviour in the computer that characterisa the object. A schema change in 

individual objects only affects the internal workings of that object. This localisaticm of change is a 

characteristic of objects called encapsulation, and m aka schema evolution simpler to manage.

Schema evolution is still complex, even with encfq)sulation in the language mo(tel. Schema evolution is like 

software programming. The changa require knowledge of die schema to ensure each change is vahd. The 

crator of the schema, the programmer, possasa  this knowledge, not the user of the schema. A changing 

polymer domain needs sdiema evolution throughout its Ufe, not just during programming. Empowering the 

user to manipulate the schema requira specialised software tools. Developing these tools requira a study of 

schema evolution in context of a specific schema fiir matoials information to identify wiiat needs to change 

and how to maintain a valid representation. In particular, die implementaticm of the language and database 

model considers the following general diaracteristia of die schema:

• Materials Classification

• Domain property inheritance

• Abstraction of domain generalisations

Software representations of materials classification exist, but representing the classification procas is novel. 

Inheritance of domain propertia and abstraction of domain genaalisaticns are inference mechanism that 

follows on from classification.

Generahsation perfiirms an impotant role during die conceptual analysis stage of daign. For example, 

plastia and metal are both generalisations from the domain of materials. In the early staga of daign, “the 

crucial decision-making steps [during daign] in being able to deploy domain generalisations effectively are 

substantially qualitative"^ A step such as approximating the daign parameters to test the feasibility of the 

daign concepts. Using the typical valua of property performance to compare plastia versa metals is more 

effective than concluding from the specific value from a material t a t  (like the ta t  result few tensile strength 

of Huels’ VESTOLEN high-density polyethylene).

Each of die listed characteristia is a unique development in the object-orientated representation of materials 

inftirmation. A database capable of evolving in a consistent manna i^hile performing these tasks will

2
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question and challenge the very way objects are organised and communicated. This research presents 

answers to these questions in a chosen object-oriented language. The apphcation developed to demonstrate 

this research, called POISE, includes the evolution of classification, evolves the descriptions of polymers, and 

Tnaintnina storage and user interaction throughout this evolution. To further introduce these issues requires a 

more detailed account of object-orientation.

1.1 Class-instance Object-Orientation
Classification commonly organises die polymer domain. A majority of object-orientation supports 

classification of objects. In class-instance languages and databases, the class groups similar objects. The 

class formally defina the relationship between the structure of data and the protocols for a set of objects. An 

instance is one of these objects.

An object’s behaviour depends only on the local data and the protocol. Eadi instance inherits protocols fi"om 

the class and they add their local data to specialise the behaviour, Those with the same data behave the same. 

Different data produces similar behaviour, since the protocols are the same. The protocols describe die 

abstract behaviour of the class. Instances share this behaviour by inheritance. For software development, die 

motivation for inheritance is the re-use of a common protocol, vhich minimises coding. Inheritance also 

fecilitates representation through the development of abstract behaviours.

Behaviour sharing complicata schema evolution. Instances share the behaviour from their class. A change in 

the class affects all the instances. No change in the class can apply to some objects and not others. The class 

can not define behaviours that only apply to some instances. For this reason, the principle of classification 

must be appropriate to the viiole domain, and not some arbitrary portion. An jqjpropriato classifiGation also 

generates useful generahsations. Classification is important because generahsation is principle to the process 

of design.

Inheritance between classes generaUses behaviours even furtha, forming levels of rqiresentation. Objects of 

different classes maŷ  have common behariours. By placing the protocols for the common behaviours in a 

superclass, many subclasses can share the protocols by inheriting them. The result is a hierarchical 

classification, or taxonomy.

1.2 Object-Oriented Support of Hierarchical Classification
Taxonomy is the process of classification into an ordered hierarchy, forming the frunihar femily-tree shape. 

Each class in the classification groups similar inftirmation. This similarity is general to the members of the 

class and, therefore is a generahsation. The benefit of taxonomy, over arbitrary classification, is die branches
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of the hierarchy differentiate between classes. These differences thœ support comparison. A taxonomic 

classification of materials information can support design decisions by relating similar domain 

generahsations and distinguishing relevant differences.

Often a process of speciahsing generates the classification by distinguish the description of one class firom 

others. Class-instance languages support speciahsation in classification through subclassing. Subclassing 

extends the behaviour of a class. Each subclass inherits ah the behaviour from one other class then adds its 

own specialised behaviours. Eadi subclass is a class that may be subclassed furdier. This forms a tree-shape 

hierarchy with each class branching to many subclasses. For example the subclass Aeroplane, a member of 

the class Flying_machines fi-om wbich it inhoits the general ‘behaviour of flight’, garaates an instances 

DC10_NZ001. Aeroplane could be further subclassed by a class DCIO, which contains behaviours that 

specialise DC 10s fi-om other aeroplanes. The inheritance relationship between classes and their subclasses 

forms a hiaarchical OTganisation. All instances of a class share (inherit) the same protocols, thus share 

similar behaviour and satisfy classification.

The class provides the definition of a rqiresentation and a taxonomic classification. Classes can both 

represent and classify polymer information, such as those polymers considered nydons. The class Nylon is a 

template fia an instance of polymer NylonJSrade. Here an instance models a grade of polymer, a particular 

brand of a suppher’s raw product that conforms to a set of properties. Equally, the Nylon class inherits 

behaviours describing properties from the class of P artia lly _ C ry sta llin e  polymers. The network of 

inheriting polymer classes is a classification. The classes themselves define the structure and protocols for 

representing grades. This research poses the question whether the class can represent polymers exclusively 

without compromising die taxonomic classification.

The class-instance paradigm as interpreted by many object-oriented languages has drawbacks iriien 

representing polymer injformaticn. The drawback stems from the strict nature of inheritance between 

instances and classes. Classes exclusively define the properties of instances; they can not individually extend 

their properties. This limits the instances cfqiabihty to model Nylon_Grade. All instances of a class must 

extend their properties together. An instance can change its monbership to a subclass and add different 

properties to the subclass. Such ad-hock subclassing, solely fia extending property descriptions of instances, 

conflict with the use of the class hierarchy as a taxonomy of the domain. Extending property descriptions will 

require a mechanism fia behaviour sharing orthogonal to inheritance.
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Conversely, Nylon is as much an aitity as a grade. Although Nylon is an abstract concept, abstract materials 

have as much functionality as a grade in calculating a design. The class is not normally a computable object 

like instances. In some languages, die class is an object with the behaviour to create other objects and provide 

those objects with protocols. In addition to providing a description to grades, and evolving diat description, 

the class of a polymer material needs to respond as a generahsed material, giving responses typical of the 

grades it classifies.

A grade describes a brand of material, not the material itself The material results from a common production 

process. It is probably subject to a quality control on a limited set of propertia, a profile selected for the 

grade’s intended use. The r a t  of the propertia are genoalisations that are similar due to the common 

production process. So, is a grade also abstract? Njdon is abstract because it doa  not reference specific 

exampla, and it should even generalise unknown Nylon grada. Nylon is a common chemistry, and the 

principle of the classification is based on the belief that chemical composition strongly a tab lisha  the 

propertia. The grade doa  reference specific exampla. If a new sample of material d o a  not fit the grade 

description, then supplia rejects the material, not the concept of the grade. If a new N>don d o a  not fit the 

abstract description of Nylon thoi the classification rejects the abstract description on principle.

Thae is no epistemological reason to distinguish a grade and an abstract material in the way object- 

orientation distinguisha the functions of classa and instanca. Instanca represent grada because the 

structural function of instanca suitably represents the conaete property^valua that data supplias provide on 

grada.

1.3 Abstraction of Domain Generalisations
The application of domain generahsations, like Nylon as a daign material, is a characteristic of the domain. 

Domain experts typically talk of the propertia of Njdon in comparison to otha goiaal materials. Each 

generahsation from a classification forms an abstract concept. This concept abstracts a general behaviour fra 

each property in the classificaticHi. Since daigners use these abstract concepts, any knowledge base on 

polyma information should contain a representative entity for computaticm in daign. The class Nylon should 

not simply create instanca of grada but also behave as an object that abstracts the propertia of those grada 

and provide them for daign.

For example, a domain expat might consida the use of N)don a  Polypropylene for the manufecture of a 

washing bowl. Hae, N)don genaahsa the charactaistics of the wfrole population of the class Nylon. If the 

propertia of Nylon deem it unsuitable for the daign of a washing bowl, then no grade in the class will be
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suitable. To a less formal degree, if Polypropylene shows desirable strengths in comparison to Nylon, then 

Polypropylene may be a better class to initially search for a solution.

With a populated claoGificationj tho proportiec of domain gmeralisationB can be implicitly inferred through 

analysing the properties of member instances. Distributions of the explicit properties from grades are useful 

indicators of the generic behaviour of the domain goieralisations. Quantitative comparisons of these 

distributions are possible between classes of different polymers, which provide support to qualitative 

decisions^ during die search for a design solution. This process of generalisation is called abstraction, and the 

generalisations created are abstract polymers.

The properties of atetract matoials are also a useful estimate fiir the value of a member grade \riiere the 

property has not been measured. With the continual addition of new properties, the condition of data absence 

or “sparse data”, is intrinsic to an evolving database. If specific data is not available then a defeult value may 

substitute. The defeult value is a property of a classification that sparse instances inherit For a dynamic 

classification this inherited value is the same value the domain abstraction exhibits, eg the propoty of a 

Nylon grade expects a value similar to otha Njdons, which is die value abstracted by the general conc^t of 

Nylon.

This relationship between the abstract concepts in the domain and member grades of a classification also 

strengthens the integrity of the knowledge base. New grades exhibiting a property outside the expected 

deviation of values in a classification are identifiable! The Imowlodge base can thai query these entrisSj dius 

decreasing the chance ©f data entry oitotj and incræsc intcgrit)'.

1.4 Similar Properties
Object orientation supports sparse data dirough inheritance of a defeult \'alue. It also allows processes 

specific to an object. A protocol inhoited by an instance can distinguish a measured value from the sparse 

state and obtain a default value from the class generalisation. Alternatively, it can query the instance for other 

‘sim ila r’ properties, where similar is a subjective quahty the knowledge developer encodes in the protocol. 

With this knowledge, a protocol can generate a specific process or behaviour of the instance that infers 

defeult data from a similar property' or properties of the instance.

Sim ilar properties in materials describe a different test measuring similar physical characteristics. This results 

in different values but similar properties will rank relative performance between materials the same. 

Ooeasionally coirolatim between properties can bo determined within certain material contexts, eg tensile 

strength and hardness ooirclation of some polymer families. In the simplest case  ̂ a similar propertjf may
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substitute for another in analytic calculations. The difficultly with using the correlation between properties of 

polymer materials is their uncertainty, poor accuracy and contextual dependency on die type of material and 

other perspectives, like geometry and environment. Calculaticms using the correlation, or any inherited 

defeult value, need to quahfy their results, eg an audit trail. This element of the design domain has not been 

pursued further in this research, but its importance is identified.

The relationship between properties, such as these conditional correlations, has highUghted that besides the 

values describing grades the properties are themselves entities in the domain. The property contributes to the 

representation of grades, as a class contributes behaviour to instances. Therefiire, representing the 

relationships between properties involves structuring and manipulating relationships witiiin classes. In 

addition to a class structuring and manipulating the protocols of instances, now another representation must 

structure and manipulate the protocols representing properties in the classes, and thereby model the similarity 

between properties and their contextual application.

All class-instance languages manipulate instances. Instances are known as ‘first class values’. Not all 

languages permit the manipulation of the class. The manipulation of classes as first class values permits the 

evolution of the schema for describing grades and permits experiments that relate the material properties. The 

schema describes domain classes as a collection of matoial property descriptions. These describe grades of 

polymers that collect or infer foe values jfor each property. If foe software class can be manipulated then an 

interfece could empower foe domain expert, not just foe programmer, to add and remove property-objects 

that evolve a class, and propagating foe schema change to subclasses and instances.

In many class-instance languages, foe class is not a first class value and the class definition is static. In others, 

foe class is an object capable of change that affects foe schema of foe instances they define. In these 

languages foe classes can represent and evolve a classification of foe domain. Smalltalk-80™^ is a language 

belonging to foe class-instance paradigm that allows classes to evolve their description. Both foe description 

and manipulation of objects occur within a single aivironment without any separation of foe two activities. 

This permits foe development of a computing system that both manipulates and describes objects. Smalltalk 

is foe language chosen for developing POISE, Polymer Objects in a Smalltalk™ Environment

1.5 Smalltalk
Unlike most languages, Smalltalk™ is an interactive programming aivircmment, so programming is an 

activity of small iterative changes to foe definition of objects that are immediately active in foe environmait 

Smalltalk™ is a large library of classes, and foe objects in foe environmoit with foeir source code constitute
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the software itself This resource simpUfies and shortens the software development procas. An esoteric 

feature permits the manipulation of even foe language compila, wfoich is also part of foe library. It is possible 

to extend foe language. Smalltalk has often been used as an experimoital t a t  bed fta language research. 

Exampla include extending Smalltalk for multiple inheritance^ and developing new Actor language 

hybrids*. The research conclusions are not isolated to foe Smalltalk environment but %q)ply to any computing 

envircmment that can develop foe featura studied.

A section of this foais (Quqita 4) is dedicated to language extensions. Although these extensions came 

about because of a need in Smalltalk, they are not believed to be unique requirements of Smalltalk for foe 

support of materials representation. An examination into foe nature of foe behaviour sharing that foe 

extensions apport justifia this belief

The first extension is foe Enhancer, wtiich is a very genaal mechanism for extending foe messaging in 

Smalltalk. In a class-instance language foe control of m asaga  passa along a strict pafo from instance to 

class to supaclass. The Enhancer enabla individual instanca to specify an extension to this existing pafo. 

Messaga alien to foe standard classification of foe object can find meaning in foe extension. The extension 

enhanca foe behaviour of foe individual instanca.

The second extension is foe Partial Template Object (PTO). The PTO is an abstraction of foe class template. 

Each class often defina categoria of behaviours. The ptû defines an abstraet ealcgory o f  bchaviouis 

independent of foe class. The PTO then consistoitly installs itself on any numba of specific classa. Furtha, 

foe PTO maintains changa to foe abstraction on foe specific classa. Alfoough this implementation of PTO 

affects classa, any object paradigm with a rqxwitory of behaviours could take advantage of this kind of 

abstraction. The m echanism is of particular interat to any system supporting schema evolution since it can 

quantify formal changa to foe schema.

1.6 An Alternative Object-OilentatlQn: Prototypes
The class-instance representation of materials is not foe only possible course of action. An alternative 

approach u sa  prototypa. A prototype is an object that managa both data and protocols. Both foe data and 

protocols are available for otha prototypa to inherit. A grade as a prototype can add its own unique 

protocols like a class. An abstract material can rapond wifo its own behaviours like an instance. Zucka‘ 

u sa  prototypa to represent foe purpose of material selection in daign.

The different virtua of class-instance and prototypa^ have been well argued. The consensus is that they 

a c h  describe a different type of behaviour sharing, and neitha limit languaga to these typa. Thaefore, it is

8



Object -Oriented Software Repietentation of Polymer Miteriab Information in Engineering Design

more relevant to study the specifics of the behariour sharing supported by a language. Zucker’s work io 

reviewed for its unique contribution to behaviour sharing, wfoich extends delegation with enforced 

classification. He uses this combination to represent the evolution of the design description, or the 

‘apphcation perspective’. This thesis invatigates the use of the Enhancer to see if it will support Zucker’s 

objectives. The E nhancer extends classification with dynamic inq)hcit empathy, a type of behaviour sharing 

similar to delegation.

An exanq)le of the application perspective of a disposable cup is the description; “Rigidly contains water at 

100®C” and “Connects to a surfece of less than 30®C’ fia a handle. This description of the application is 

independent of the material. It does not convey a restriction on die matoial properties explicitly, ie the 

disposable cup does not specify a material rigidity at 100®C. A prototype of this descr^tion combines 

information fi-om other perspectives, such as a materials perspective, and deduces if die material satisfies the 

design purpose. Consider a polystyrene cup wfoere die thamal conductivity of the material and the thickness 

fi-om the geometry perspective could conclude the outer surfece of the cup remains much lower than 100®C 

and m aintains rigidity at this lower temperature. Other prototypes specialise the geometry, adding ribs to the 

cup, thus reducing the stiJffiiess required of die material at 100®C. Decomposing prototypes into perspectives 

enables each to evolve independently and structures the design problem.

If the object model representing design abstracts design into an p lica tio n  perspective and a materials 

perspective, then the application perspective is an object that shares behaviour fi-om objects representing 

materials. Odia objects also share behaviour fi-om materials, like the user-interfece that displays a matoial. 

These objects are all users of materials’ behaviours. The software design of the materials perspective impacts 

on all diese objects. The software design also depends on the languages ability to traverse these object 

boundaries through behaviour sharing. The software design must also consider the effect schema evolution 

will have on the consistency of behaviours. Overcoming these difficulties in die materials paspective is the 

main modelling issue adcfiesaed in section Chuter 4, as it applies to Smalltalk.

1.7 POISE Tools
POISE provides a number of user interfiice tools for manipulating the classification. One browser empowers 

the user to define new properties. With anotha, the user assigns properties to classes within a hierarchy. The 

same browser also moves classes and defines new classes. A modified Smalltalk engine for schema evolution 

ensures consistency and siqiports the abstraction of new properties added to classes. These abstractions are 

then viewed in a third browser for comparing the general properties of classes, such as the toisile strength of 

Nylon.
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To determine the general tensile strength of Nylon requires a significantly sized population of knowledge on 

N]^ons. A data acquisition tool initially populates poise  by reading information from an existing materials 

database called CAMPUS™^’̂ . cam pus holds data on raw polymers from many major suppliers. CAMPUS was 

readily available and it contains a large peculation of polymer grades and a cemsistent set of properties. A 

class called  Polymer defines these general materials properties, cam pus defina a chemical frimily property 

for each grade. The data acquisition tool u sa  this property to define a class that inherits from Polymer. This 

class generata an instance to represent and initially classify the grade.

With the tools developed and a population of grada, a separate study by Spedding* u sa  POISE to determine 

an “appropriate” taxonomic classification of polymers for engineering daign. The classification abstracts the 

domain generalisations on vfoich foe daigner visualisa foeir qualitative judgements of similarity between 

propertia. Hence, foe nature of foe classification affects foe groiq)ings of similarity within foe domain. An 

appropriate classification is one that groups similar materials icpropriate for foe task, engineering daign, and 

preferably daign in general rather than specific daign.

Speddmg u sa  foe tools to compare foe abstracted propertia of foe cam pus polymer frunilia. One 

observation was foe wide-ranging effect additiva had on foe propertia. So in a single polymer femily 

significant deviation in property valua were due to foe different additiva and masked any expected concept 

of similarity. The Enhancer was a consequence of this discovery. The Enhancer permits gmerahsation over 

secondary groupings orthogonal to foe polymer classificatim. Orfoogcmal classa like Film and Fibre can be 

viewed independently of bulk engineering polymers, wfoich are engineered for extreme geometric conditions. 

These grouping are orthogonal since they are a group of foe wfoole polymer population dedicated to 

supporting a specific property of another perspective.

1.8 Summary of Objectives
The underlying objective is to resolve foe software issua arising from implementing in Smalltalk a 

repraentation of polymer information iataded for daign. The asential requirements for daign are foe 

domain concepts of material propertia, taxonomic and orthogonal classificatioa, and abstraction. The 

domain expert déclara foe polymer classification and agineering propertia, and foe software evolves foe 

schema accordingly. This user-defined sdiema rqiresents a classification from specific grada to generahsed 

polymers.

The intention is to build this representation into a working ^h ca tio n . Ihe POISE application requira a 

management system for foe persistence of daign knowledge contributed by foe user, and effective graphical

10
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user intofeces for driving foe tools, and import fecilities for transforming relational data into foe object- 

oriented representation. These features are significant because they must consistently perform foeir tasks as 

foe schema evolves. Each esoteric phenomenon of foe representation is thoroughly described, but a formal 

study into each is avoided since they are a consequence of performing foe research into foe representation. 

Special attention is given to foe properties of foe language extensions since they are a criticism of foe 

underlying object model supporting foe representation.

1.9 Introduction to the Literature Review
The use of classification in design is foe principle that suggests a class-instance language strong on 

inheritance will provide appropriate support to engineering design decisions. This conceptual model of 

design is reviewed, putting classification in perspective wifo foe task of finding a suitable material 

description to match foe product specification. This in turn demonstrates foe dependence on preconceived 

concepts of similarity because set foeory limits classification. The question is then one of choosing a 

classification, an appropriate classification, for aigmeaing design. Current literature only suggests foe basis 

for a classification is on principles of foe material’s physical characteristics, and not on foe use of foe 

materials, vfoich are only indirectly related to physical characteristics. The review then presents Spedding’s 

in-depth analysis of classification that utihsed foe software product of foe present research.

Substantial literature exists on foe science of representing knowledge from basic computa data. Frames are 

introduced as a sample of this field. They arc also an early applicatimi of inheritance for foe representation of 

generalised descriptions, hfooitmce is not a simple issue in knowledge rqaesentation. Wifo classification, 

there are often exceptions between foe generalised descr^tion and individual entities. If entities inherit 

characteristics from foe generalised descriptions, mechanisms must permit exceptions to foe inheritance of 

properties. This though can lead to logical inconsistoicies in systems wifo multiple inheritance pafos.

Data modelling studies foe structures fra containing data. All computer languaga and databasa are built on 

data models. Many still use simple record structura. Over large quantifia of data, foe relational model 

provida manipulation tiiat is more flexible. In engineering, it has limitations due to foe wide range of typa 

of data. Each polymer property introduca another type of data to relate to foe material.

Data modelling only structura data The m aning of foe structural components is simple and homogenous. 

Semantic data modelling classifia common typa of relations. These typa add more meaning to foe structure 

of the Hatfl The arguments for adding semantia to foe data is equally applicable to developing a semantic 

model for adding propertia to classa of polymers in an object-oriented system.

11
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The concept of the object is addressed thoroughly. Enc^sulation, messages, empathy between objects, and 

delegation are described. These are foen related to foe two main types of languages, foe class-instance and 

foe prototyping languages.

The rest of foe thesis splits into foree parts: Specification, hnplementatian and foe Application.

The specification of POISE details all of foe features built Namely foe data acquisition, grade instantiation, 

classification, generalisation, abstraction, u sa  interfiice design, and data storage.

The implementation specialises on foe language extensions, foe Enhancer and foe pro. A numba of 

applications utilise foe Enhancer in particular, including enhancing grada with orthogonal description, 

enhancing classa with generalisation and abstraction, applying foe Enhancer to a variation of delegatim, and 

enhancing any object wifo persistoice in an object storage. The PTC is part of a larga discussion on foe 

mechanism providing schema evolution to foe polyma classification.

Two chaptas re-enforce foe application of POISE. The first is a walk-through description that demonstrata 

foe u s a  interfiica and foe undalying functionality. The second presents a domain expert’s conclusions 

raulting firom using foe application. This domain expert, Speddmg, examined foe domain fia appropriate 

classifications.

12
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Chapter 2 Literature Review
“The claim foat method may prompt inventive steps [in design] will seem rash, if not ridiculous, to 
some. But argumoits, which can be built on the lines put forward here, will often reduce to a 
marching logic which leads inexorably to a minor but unmistakable invention”^

The representation of polymer materials information fia design is itself a software design problem. The first 

stage of design methodology is to specify the objectives. The objectiva then decompose into a number of 

specific software requirements fia achieving each objective. One objective is to identify suitable mataials. 

This literature review follows the current argument that browsing through a classification of mataials meets 

this objective. Along the way, the review introduca otha works contributing to o tha objectiva in polyma 

materials representation.

Browsing introduca requiremoits on the representation of infiamation. Browsing views groups of 

information. These groups need representing. Browsing travasa  the relationships between groups. These 

relatioudlips need representing. Thae groups and their relationships form a classification. The review 

analysa a conceptual model of the daign problem to collect concepts of similarity to group materials fia the 

d a ig n a  to browse and identify the nature of the classification. The review then proceeds to review work 

defining similarity, abstraction, generalisation, classification, appropriate classificaticm and problems with 

classification.

A fta  specifying the software requirements, a broad solution is sought in terms of representation technology. 

Although the software methodology has already been identified, namely object-orientation, this should not be 

confused with the knowledge representation model. Although many knowledge representation models w ae 

developed in non-object-oriented software languaga, an object-oriented language could implement them 

(and in some casa more effectively). Indeed, the review introduca knowledge representation featura that 

object-oriented languaga adopt in their object model, like inhaitance, and will enhance foe polyma 

information representation.

Finally, foe review introduca in detail foe object model for software development This review provida foe 

necasary background to convey the significance of foe language enhancements found necessary to achieve 

foe representation.

2.1 Polymer Materials Knowledge for Engineering Design
The supplias of materials generate vast quantity of materials knowledge. Supplias tailor much of this 

infiamation to foeir customers, foe daign enginea. Demaid et al*® cfoaractaise materials infiamation as rich 

and complex, and much of it for beyond foe capability of curroit databasa to analyse. In Spedding’s® 

extensive review of materials information available from suppliers, she descnba “a wide variation in foe
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form and level of detail of the information”, usually disseminated by supplier data sheets. Within the 

information there is a subset of materials knowledge that software can help analyse. Supplias of materials 

even tailor some information fia software analysis.

Supplias contributing to the CAMPUS®'  ̂project agreed to a standard of data presentation. EPOS™** is a similar 

standardised system by the supplia ICI. They provide a unifiom data structure and comparable data. This 

enables a database ^proaeh to infiamation storage, rotrie\'al and analysis by query. The CAAffUS database 

software supports materials comparison against a template. The template is a query that describes ranges of 

property values of in taest A query then selects all materials that satisfy all the range conditions. Once the 

selection result reduces to a manageable numba, CAMPUS can retrieve a text description of each material. 

The text recads information too complex to analyse by the query mechanism. At this stage, the domain 

expert must analyse the remaining infiamation.

The quay procedure dictates the extent a database system can analyse information before u sa  intervention. 

The objective of a query procedure is to reduce the numba of candidate materials. At the same time, the 

query should not reject materials that might not be optimal but could satisfy the design criterion through 

compromise.

Plascams-220™*^, a product of the Rubba and Plastics Research Association, has a similar representation to 

CAMPUS but advances on simple numerical comparison, and instead the query procedure ranks materials. The 

ranking could avoid rejecting any material, but in practice, many materials towards the bottom of the hst are 

not useful, so an arbitrary limit is placed on list size to reject those materials.

Ranking mataials against a single property criterion is simple. The difficulty arises Wioi two design 

criterion conflict This is common since optimising one property will rarely optimise anotha. In Plascams^ 

220 the désigna places a weighting on each property the désigna wishes to optimise. The ranking algorithm 

can bias eadi laopoty foen sum the biased values for ranking. Zucka* analysed the ranking algorithms 

ability to promote suitable solutions and found they do not model well the activity of selection by désignas. 

Consequently, potential candidates a e  lost fia down the ranking. Furtha, Hopgood*^ finmd the infiaence 

mechanism gave a poor property with low importance a weaka ranking than a poor property with high 

importance. Hopgood suggests an alternative inference mechanism (aim ) that gives a ranking more in line 

with designa’s expectations.

Others use ‘Tuzzy Logic” ****̂  to define a probability profile for measuring a material’s suitability. Simply 

put, the weighting, or profile changes depaiding on the properties distance from a satisfectory value. All rely
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on the designer’s judgement for weighting one property against another to correctly bias the ranking towards 

the desired design qiecification.

Ashby*® addresses the problem of combining design constraints. First, he converts individual properties 

constraints to Dieter’s merit indices* .̂ A merit index applies the physics of the design problem to relate 

material properties, eg “specific stiffiiess, E/p (Wierc E is Young’s modulus and p is density) ... large values 

of E/p are the best candidates for a light, stiff tie rod”*®. The difficulty is often devising tqjpropriate indices 

for specific design problems*®.

A design can have multiple merit index constraints. Ashby proposes that ‘subjectivity is reduced or 

eliminated by employing the “coupling equation” method and the mediod of “currency exchange”’*®. The 

coupling equation method combines multiple design constraints on the same merit index fimction. More 

commonly, designs have different design objectives, and therefore different unrelated merit indoE foncti<ms. 

For each objective, a judgement of value is given to its m oit index. The judgement of value provides a 

common currency for trading off the design objectives. This currency exchange minimises the subjectivity of 

the judgment

Software technology is still a long way from developing a query procedure that returns a list of ranked 

materials that satisfy a design specification. Judgemait is still required to trade off between different 

criterion. In cases wfrere there is no physical foundation for judgement, Ashby’s currency exchange and 

Sargent’s review of the problem of decisions and selection*® are the only available approaches. Promoting 

judgements with physical foundation, wfrich are always superior, will minimise subjective judgements. 

Although this is the objective of the computer aided design systems, there will always be need to suppôt the 

subjective judgements.

Where the user is not able to specify requirements essential for conducting a database search, foe metaphor of 

browsing*® offers a different approach fia obtaining a soluti<m, Furfoer, browsing infiamation in a way that 

reflects foe physics of the materials will promote judgements wifo physical foundation. Browsing has added 

benefits. It siqyports information both well represented and poorly rqaesented, complete and incomplete. 

Interaction wifo foe user is also more likely to support evolution wifo design.

Browsing to a solution depends on foe presentation of foe information to guide foe designer. Software 

support for browsing needs to present foe infiamation in a useful way. Browsing therefore has different
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demands on information representation. A conceptual model of design identifies the objective of the 

designer, thereby identify ̂ a t  the software needs to present to the designer.

2.1.1 A Conceptual Mode! of Design
An engineering design application starts with a loose description of performance of the desired artefiict. At 

this point, the artefect does not exist What does exist, to a greata or lesser extent, is a Product Design 

Specification (PDS)^®’̂ *. The PDS is a fimctimal and formal statement of requirements, not a description of the 

product itself Inevitably such a specification will be incomplete and contain errors, eg a prototype of a 

kitchen %q)phance attracting dust will trigger realisation that electrostatic propertia of the polymer are 

relevant for the saleable appearance of the appliance and the extra requirement added to the PDS. The use of a 

PDS to categorise title design process is discussed by Pugh^ .̂

As the design activity progresses foe PDS will evolve. When gaining new infiamation and correcting existing 

information foe design problem changes and hence foe PDS changes. Ill defined or iU structured problems 

change during foe procos of solving foe problem, and are notoriously difficult^’̂ *.

Relevant parts of foe PDS forms a Materials Design Specificatiai (MDS), foe materials perspective* of foe 

design. Known material descriptions (MD) matching foe MDS, partially satisfy foe PDS. Demaid and Zucker̂ ® 

describe two measures of confidence wiien matching properties between descr^ticns:

“How close is foe description of an element in foe MDS to foe description of an element in foe MD?
The relative description.
How close is foe value of an element in foe MDS to foe value of an element in foe MD? The relative 
value.”

A material can always furfoa specialise differences in relative description. For both imaginable materials and 

existing material, foe list of materials properties is potentially infinite.

Testing all materials across a large set of different property docriptions is impractical. It is costly fia 

material supplias, so they are selective in foeir choice of properties to test. Different polyma supplias 

inevitably oelect different propertioG oven for similar mataids. Materials wifo diffaœ t lists of properties, 

such as those between different supphas, cannot be compared with equal confidence; they differ in relative 

description. To solve this problem within foe polyma supply industry, four major supphas developed 

CAMPUSj a database wifo a oonsistont hot of poljm a property values. Obabaoh^ describes foe necessity of 

foe CAMPUS development

A consequence of a consistent set of properties is gcnaahly. The pioperties in cam pus are genaal polyma 

tests, wfoich ^)ply to nearly all polyma material.
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“Materials descriptions from different sources are described in such a way that the individual 
attributes they contains are goierally useful. This is done by attempting to make a material property 
as independent of a particular product or application as possible and is reflected in the test conditions 
used to determine that property. The description of a material required for an artefect on the drawing 
board is, however, assaled in terms of the functionality of that artefect not in generally useful terms.
So, my plastic box of computer disks must not break Mhen dropped onto a hard floor: this is not the 
way a general purpose test is formulated.” ’̂

Divorcing tests from any specific application means properties characterising atypical attributes of polymers 

are absent and unusual extranes in applicaticm geometry, processing or environment are not represented but 

these can be of particular importance to a design.

Indeed, the CAMPUS properties, although very general in that die test can apply to most material, are highly 

specific in their “relative description” in order to enable proper comparison between the “relative values”. 

They are therefore not abstract descriptions of design. It is difficult to describe purpose-related MDS in terms 

of t h ^  properties, yet to compare with the generally described MDs within a general query requires this 

compromise.

French values the contribution of abstraction in design, but has tiiis to say about generality:

“More abstract does not always mean more gaieral. If we want to design an elastic beam, the highly 
abstract but very specialised view of a beam as two flanges and a web, the flanges taking all the 
moment and the web all the shear, is immeasurably more useful than the very general theory of 
elasticity. The key to ... die cruder concept here is its greater abstraction (only three areas and a 
depth) and its purpose-related nature.”’

This quote ignwes the design step that occurs before the elastic beam specialises the solution, Wiich 

identifies the gm oal dieory of elasticity as a solution to the design problem. The theory of elasticity 

generalises the specialised behaviour of the beam. Initially, the designer must identify the general theory of 

elasticity as a goieral solution to the problem then infer, from the beam’s association with elasticity, the 

specific beam solution. The details of the beams behaviour distinguish it from other solutions associated with 

the general theory. French’s point is that design benefits from abstract solutions but these solutions may not 

be general. Specific use-related abstract solutions are more usefiil.

Why the specialised view of the beam is a greater abstraction is not so clear. The view of the beam is a 

geometric abstraction. The general theory abstracts over all geometry by applying finite analysis. By the 

reference to four geometric variables, French might be assuming a specific geometry with a simple solution, 

rather than the variables needed to solve an arbitrary geometry using finite analyse. The distinction between 

these cases is an example of generalisation in the geometric pospective of the design.

The beam solution is more usefiil because it specialises the geometry. Progress towards specific instances in 

any perspective is useful to design. Material properties that suggest a specialised class in another perspective
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will appear more useful when that perspective is a free variable in the d^ign. If it is not a free variable then 

the design needs general propaties, \thich have a mœe complex relaticmship with other perspectives.

Zucker* observed the domain expert disregards Wiole categories of properties, “those properties tiiat were 

strictly electrical or load-bearing properties, none had any significance to the selection of kitchen containers”. 

These categories relate to very general purposes. A design specification often addresses only a small number 

of relevant properties out of the many properties that describe materials. The designer makes a decision 

collectively on die categories of property, regarding its relevance to the design problem. Designers base these 

decisions on their physical knowledge of the categories and not from any explicit infiMmation about die 

properties. In die case of beam design, the category of elastic properties in the materials perspective and die 

cross section of the beam geometry perspective describe the application of the beam. The overall jqiplication 

perspective specialises each design perspective.

Specialising each design perspective depends on the level of detail in the application description. Matching 

general properties between MDS and MD identifies the general characteristics of materials, or selects or rejects 

vriiole categories of materials. As the classes of material become more specific, the problem of distinguishing 

materials requires properties that will match the level of detail in the application. Consequendy, properties of 

more specific material classes depend more on die context of the other perspectives.

2J,2 LogicalAtxtuction ofProperges in Classification
Inferring die behaviour of materials from die general behaviour in a class is abduction. Abduction is 

synthetic reasoning in science, engineering, design and even in everyday life, Miich forms and accepts 

explanatory hypothesis that accounts fiir a set of fects. If a material behaves like a polymer (the set of fects) 

then the hypothesis forms that the material is a “member of the class of polymers”. The hypothesis is useful 

for explaining material’s behaviour. If a material is known to be a polymer, then abduction infers the 

behaviour of the material from the behaviour of polymers. Consequendy, the behaviour of polymers is very 

general in order frir the behaviour to apply to many members.

Abduction declares a concept, the class, i\hich accounts for a set of fiicts and is a repository of general 

knowledge. Often fiicts are deduced from observing the members. Statistical fects, such as the minimum and 

HIM X1 III mil values of a numerical prop^ty, can contribute to the description of the class. The designs deduces 

die class relevance to design problems from the class description. A design fiir a furnace, for example, 

exposing the material to a tempaature of 500 degrees Celsius can immediately disregard polymers if die melt 

temperature is always less than 500 degrees.
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The properties in CAMPUS characterise members Mio, as a group, share a concept of similarity; tiiey are 

engineering polymers. By selecting properties common to all polymers, CAMPUS identifies vdiat is similar 

across all polymers in terms of those properties. This selection of properties can define a membersh^ 

fimction. The fimction selectively defines tiie concqit ‘Polymer’ and describes a class of ‘Polymer materials’. 

The process of identifying similar characteristics and fiiai the subsequent use of those characteristics as 

properties fiir grouping members, is classification.

The power of classification fijr infisrring properties is well discussed by Fahlman^^. If the designer knows 

some feet about the Nylon class of polymers, that excludes the material fi-om the design, then this 

immediately excludes any material known as a Njdon. This inference by abduction occurs without referring 

to any physical properties of specific materials. The general concept of Nylon infers the fiict in qu^tion upon

the specific material. A search through all known instances of material is no longer required; instead, an on
!

mass test applies to classes.

There is much more debate on the benefits and pit-fells of classification. Ackerman^*, and Smith and Medin^’ 

both analysis a more complete philosophical definition of classification and concepts. The benefits of 

classification to design are enough to justify representation in a materials database. The computCT 

representation of classification needs a formal description.

Many software systems already represrat classification, and it is a feature of all class-instance object- 

orientated languages. All build on a simple fijrmal model of sets. Even this model uncovers some pit-fells of 

classification, vriiich manifest themselves as conflicts in the representations. This model also characterises 

the limitations existing in contemporary computer data-models, and therefore die limitations of the proposed 

database system.

2.1.3 A Simple Formai Classifiation Mode!
Taxonomy is classification that refines each class into subsequently more specific “levels” of classes. The 

mathematical abstraction of the poset, a partial ordered set̂ ,̂ models the relationship between classes in a 

taxonomic classification system. Category theory is a more complex model of the relationship between 

classes and their properties. Morphisms, the formal description of properties in category theory and 

properties describing classes in computff languages differ significantly. The latter are much more expressive 

and do not obey a formal logic. The simple poset model applies to a category in category theory if restricting

* The use hee  of category is not strictly consistent with mathematical semantics of category theory. The 
theory defines the descriptive functions (Morphisms) as transfiDimations between valid members. This is 
more akin to object-oriented classes transforming the state of instances. Here the category is like a set but 
instead of the descriptive functions defining membership, they only specify membership.
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morphines to membership functions. The membershq) functions of sets suffice to model the relationsh^ 

between classes and their properties. To clarify the description between classes and tiieir members, a member 

is a set of properties, a property-set. A class is a category of members. Therefore, a category is a set of 

property-sets that satisfy a membership fimction.
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Figure 1: Partial ordered set as a hierarchy
Sets and categories related by inclusicm can form posets. Inclusion^’ relates any set to its subsets and relates

categories in taxonomy. The hierarchy in Figure 1 describes a classification of sets categorised by the 

inclusion relationship. The letters firom A to I are categories. The categories’ members are sets. The function 

M returns the monbership, which for category A is all sets in the domain. Consider each set a material with a 

number of elements (the properties) as descriptions (eg, material {1,2,3} has property 1 and 2 and 3). The 

functions A(x) through I(x) specialise, or assert, the membership fiir each category (eg A({ 1,2,3}) is true 

since {1,2,3} is a subset of {1,2,3,4,5}). The properties inherit, so category B is subject to function A(x) and 

B(x). B is said to subsume the properties of A, by the process of subsumption. Category I is subject to all the 

functions. Of all the members in the domain, only {3} satisfies all the fimctions and belongs to category I.

The tc^ portion of die graph in Figure 1 is taxonomic classification because the membership of lower 

(spécifié) categories are exclusively members of one higher (gœeral) category. For example, the members of 

D are exclusively the members of B too, vvhereas the members of E are members of both B and C. A 

consequence of categories B and C not being mutually exclusive. Strictiy, the exclusive categories are a 

requirement of a poset. E is said to mix the pospectives of B and C. If classification decides the subsets of 

{1,2,3} belong exclusively in category B or in C, as in Figure 2, it becomes taxonomic.
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Touretzky^* points out it is goierally fester to search an ordered tree (a poset) than an unordered list The 

efficiency depends on the org^isaticm. “Often we wiU have more than one retrieval task in mind, with each 

task requiring a different organisation of the hiaarchy”. A search is efficient if the categories’ assertions 

conclude which branches should be subsequently searched. A seardi becomes less efficient if the assertions 

are independait of the search critaion.

Membership 
Large

Domain
'A<x):{1,Za4,5 ) 3  X

D(x):{l,3 } 3  X

E(x):{2 } 3  X F(x):{4 } 3 % G (x):{5) 3 *

Instance
Small

Figure 2: Taxonomic classification
For example, compare searches in Figure 1 for the ftiUowing subsets: {3} {1,3,5} and {1,2,3,4,5}. Ihe

set {3} would require a complete search of the i f̂eole tree, tihrough every node, until found in node I. The 

classification does not fector on the property of element 3. Whaeas {1,3,5} is exclusively in categories 

A B or D. The set {1,2,3,4;5} is neitha a memba of B or C so the search can exclude the rest of the tree in 

two decisions. - . i .

For a materials classification, thae is more than, one retrieval task in mind, since many designs will use the 

classification. Thae is not one MDS, but many. At each level of the classification categories identify 

characteristics \sfeich clearly distinguish the categories. Each category must also charactaise properties 

useful for matching MDS, thaeby conclusively narrow the search for a suitable candidate material. The 

categories fiw one MDS may not be useful for. anotha MDS. In practice, optimising the classification ft)r all 

MDS is not possible, but attempts are made to make the classification appropriate ft>r engineering design 

problems. .

2.1.4 Appropriate Classifications
What makes an (qypropriate classification of materials ft)r engineering design? Classification is a process of

. ' _ ■ • 
identifying “similar” characteristics, w ^ae s im i la r  at this point is an arbitrary common concept.

Classification thai uses those characteristics as properties for categorising membas. In one sense, an
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appropriate classification discerns similar characteristics that ultimately result in assations useful for 

searching. Although thae are many retrieval tasks in mind, often the tasks themselves have similarity. One 

approach identifia similar featura in MDSS. MDs then group depending on the MDSs they b a t  match. This 

iqjproach has been fevoured by some^  ̂ as it produca ‘usefiil’ fgiplication specific assertions. Thae are a 

numba of problems with this approach:

1) MDSs do not classify in an exclusive manna. A MD can satisfy more than one MDS.

2) MDSs do not classify aaoss the whole domain. New MDs might not satisfy any of the MDSs.
3) New MDSS can be defined that a e  not simila with any of the existing ategoria , thus needing ad-hoc 

classifiation to introdua a new ategory of MDs, which satisfy the new MDS.

The last point is relevant to a comment of Zucka’s:

“‘Similarity’ is known to philosophy as something of a snae and a delusion and we suggat that it 
cannot be used to group descriptions on an ad hoc basis — it is the context provided by the 
propertia of the artefiict Wiich constrains foe pattan of similarity in a selection system.”

In addition to ad hoc classification, Zucka says the purpose of foe MDS, foe propertia of foe artefect, 

constrains vriiat is simila in materials. Representing similarity between MDS and MDs explicitly in foe 

structae of the classifiation system is imqipropriate. The act of classifiation is not an act in satisfying 

daign critaicm.

2.1.5 Conceptual Schema of the Cambridge Materials Selector (CMS)
Moot Gofhwe systano cataing for polyma information have not developed ad^uncod rcpraontations. They 

ruproaeul malonals us a list ûf property valua and focus on developing inforoncc mcohamoms that select 

materials using some satisfection critaion in some way relating to a daign specifiation. One exception is 

Ashby’s‘® Cambridge Materials Selector (CMS)” , >riiidi represents generalised data and focusa on 

praenting foe information. The CMS demonstrata foe effectiveness of generalised materials infijrmation at 

foe initial stages of daign, The CMS doa not relate foe general data to opaifie data on grada, vfoieh limits 

foe CMS to foe initial staga of daign.

CMS rapidly accases to a wide range of data at low preaision; whieh supports foe prelimintuy selection in 

daign. The CMS diverge firom selecting individual materials, with its precise and narrowly focused data. 

Instead, CMS provida a relevant level of information to questions raised in foe initial staga of daign, so 

answers with broad eatogorios of material; with low precision,

“The nature of the data needed in foe early staga [of daign] differs greatly in its level of precision 
and txadfo fi’om that needed later on”

Whereas a spaific material expressa a praise value fijr each engineering property, a category of materials 

can express a range of valua in foe ategory. The range is of low praision, but it expressa a broader scope 

of materials than foe praise value of foe spaific material. The property profile of such a ategory refiats
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the property profile of the members in a broad and loose manner. In tills way, the category generalise over 

the members it contains, and characterises an abstract material.
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Figure 3: A sketch of an Ashby chart”
The CMS fectors the mataials domain into broad catégorie of mateials, based on conventional material

classe. These classe are ftiunded cm material principle of common chemical and structural compeition, 

and are fam iliar to domain experts. They group similar propèrtie, similar processing route and often similar 

applications. They produce useful abstractions because generalising clusters the propertie of the members 

across many type of propertie. These clusters then differentiate the different abstract materials. This is 

important if the abstraction is to be useful in the selection process.

At the initial stage, it is more appropriate to answer deign quêtions generally with an abstraction than with 

a specific material. CMS achieve this goal by visualising the abstract material femilie through a gnq>hical 

user intefiice (GUI), Figure 3.

The GUI enable the user to plot two dimensions of the selection space. The CMS supports the procès of 

evolutionary deign through tiiis GUI by allowing a progressive refinement of the selection space. The 

complete selection space in the database is multi-dimensional, e c h  dimeision a property distributiag the 

domain of mateials. The GUI displays any plane in this multi-dimensional space by choosing two fimctions 

of the material properties, typically fiictors fi’om merit indices, defining a surface for graphing the abstract 

materials of the domain. An ellipse on the graph represents each abstract material family, mapping the extent
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of property variance witiiin the family. The user can then mark an area of the graph to select or reject 

materials. Then the.user can change the dimensions, graphing tiie selected materials against different 

properties. In this manner, the designer reduces the selection space from the ^ o l e  domain of materials to a 

select few smaller categories of materials.

The information provided with CMS, the classes and generalisations, is the result of professional expertise and 

data analysis done else^^here. The CMS does not support any database functions other than retrie\'al of this 

prc'defrned information. The CMS is not a database system nor supports the process of classification. CMS 

only describes a hierarchy of abstract material based on classes of a classification system.

The main drawback of materials rq>resentati(Hi in tiie CMS is it can not support specialised property 

descriptions. The properties must be geno'al to all materials in order to position each class in the selection 

space. Even some general' properties in the CmS have semantic differences. This cuuld cause sume error in 

the homogenous selection space. For example, the definition of yield point frn: metals and plastic is different, 

yet both share the same selection space. The precision of the general values CMS represents often permits 

minor differences in the relative dœcriptions of the properties within the same selection space.

2.1.6 Managing Property Pedigree and Test Data
CAMPUS, Pascams-220, epos and CMS all describe materials with highly general properties. They do not 

describe the purpose-related properties that fit design descriptions better. This is largely because these 

properties do not ^ l y  across all the materials they represent. A database capable of specialising the 

representation fijr smaller classes of material would be capable of representing properties tiiat are more 

specific. An appropriate classification even needs these properties to distinguish the more specific classes of 

material. In the extreme, new properties will describe specialised classes of material These new properties 

define new tests, and with this comes altogether new problems for database management

Empowering the user to extend the descriptions of materials requires database management of both the 

grades and their descriptions. The M/Vision^^ system supports management fi)r grades and their descriptions 

but docs not support abstraction; Nor is it object orientated^ so the descriptions are just named Wues without 

any computational power. M/Vision tiiough does demonstrate the complexities with managing even “simple” 

property descriptions.

Conditions and procedures qualify each test designed to quantify the physical properties of the material. The 

conditirais normally include the envircmment, physical geometry and manufiicturing technique of the tested 

sample. The procedure includes the technique and physical description of the test apparatus. Tests are

24



Object -Oriented Softwire Reptewntmtion of Polymer Miteriili Infbimition in Engineering Deiign

standardised so the conditions are the same, and hence provide some consistency \riien comparing relative 

descriptions of different materials. Ashby^  ̂also emphasises the consistency of testing.

In ordCT to test consistently, the test must identify all factors that affect the test result. Sometimes the factors 

affecting the result are not known. Lee^  ̂ illustrate this in a case Wiere a hydrogen environmoit, in the 

design for a rocket fuel pump, adversely affceted the embrittlemait of nickel based superalloys. The 

relationship was not known at the conceptual stage of the deign. Later, after the relationship was 

discovered, a new te t  was needed.

A poor t e t  description can result in a poor property. Results of the new hydrogen embrittlement test were 

found to differ from different labs. Slight difference in test specimen microstructure resulting from different 

methods of making t e t  sample caused different reults. The te t  was subsequently modified. Lee coins the 

use of ‘pedigree’ to decribe well-defined and understood property descriptions. Initially the property was not 

well understood. Discovering the new relationship witii hydrogen and tiioi the further refinement of the test 

description to standardise the microstructure of samples improved the test pedigree.

Quality management of test information has particular demands on materials information management, 

especially when acquiring data. Lee used the database management system M/Vision. M/Vision has multiple 

databanks. The test data enters into one data bank then passes through a spreadsheet that filters the test data 

ensuring the data meets the necessary pedigree, before entering a “materials” databank. For each design, 

another spreadsheet selects those properties appropriate to the design, creating the “materials design 

allowable” databank. For example, the mataials design allowable databank could exclude data from an 

embritahnent property that does not take into account of the hydrogen oivironment.

M/Vision is a database system with the purpose to store and disseminate consistait materials data. 

M/Vision’s idea of a material is the tested substance, not die abstractions of the CMS. Data are one of an 

extensive, but limited range of data types, eg numbers through to graphs. M/Vision do% quahfy the 

relationship between mataial and data with a description of the test and the quahty of the result. It supports 

categorisation by relating materials to a named category, but does not infer inheritance or represent abstract 

materials like CMS. Unlike most database systems, M/Vision can extend the description of matenals to 

include new types of properties.
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2.1.7 Capricious Properties
Sargent clearly identifies a difficulty in classification caused by properties known to be capricious.

“The [Ashby] diagrams are most useful for selection at die conceptual stage of design because of the 
reliance on complote data being available fitr e\'ory property, for ê êry material. The sparseness of 
real data implies that data fi*om several closely related materials can be, and must be, merged as a 
material class to get a complete set. This implies that the method only works for those properties fiir 
\riiich it is easy to identify classes of mataials with similar property values. This is true for the 
properties, such as stiffiiess and thermal expansion, but largely false for properties such as corrosion 
or wear-resistance. These [are] capricious properties”

Sparse data benefits fi-om abduction, but the classes must group mataials with similar property values. 

Classes may group die values of some prc^ierties, but capricious properties do not group. If the designer 

browses materials of a class, most properties will have similar values but the ctqiricious properties appear 

random. Capricious properties are a problem fiir classification because the same kinds of materials do not 

have the same kind of properties.

In Lee’ŝ  ̂ case there was difficulty encountered in establishing a pedigree test fiir hydrogen aivironment 

embrittlement Slight changes in microstructure were reported to have significant difference in property 

value fi-om the different labs. Slight change in micretructure between similar materials would have a 

significant effect on the property. Sargent calls this trait the capricious nature of some mataial propertie.

Capricious propertie describe a process that occurs during the te t. An illustrative example is die process of 

crack propagation that must occur during any (successful) impact t e t  The propagation of the crack is subject 

to microstructure as much as the chemistry of the material. A slight change in the micretructure can cause 

very significant change in the development of a crack and its subsequent propagation. Therefiire, the t e t  

result relate more to the specific structure than the material of the sample. Some change in micretructure 

may relate to processing in an unpredictable way, resulting in a chaotic variation in property results. Such 

propertie will never le d  to a property of high pedigre since the description of the te t  can never qualify the 

micretructure to a detail necessary for a repetable result that depends solely on material composition.

In other propertie, the shghl differ cave m chemical composition between mataials can result in radical 

change of property value. Matching capricious propertie is difficult at die initial stage of deign, and b e t  

left for detailed change in composition and procesing. Therefore, despite the property not distinguishing a 

class fi'om any other, the range of a capricious property may still be of mteret.

Propertie should encourage “incremental stability” — slight change to the relative description result in 

acceptable change in the relative value, otherwise confidence in the selection process will be lost* .̂ The
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Stability of a property is useful knowledge for determining the comparability of different relative 

descriptions, which can quantify the confidence a deigner can have in a value comparison.

2.1.8 Classification of Polymer Information
Classification is an important structuring component of a KBS for design. In addition to researching software 

components fiir rqiresenting and managing classifications, the user requires interfiice tools in order to build 

the classification and then use the information it contains. After developing the software components and die 

tools, there remained the issue of how taxonomy of materials should classify. A separate study by Spedding* 

used the tools this present research developed (see Chtqiter 5) to determine an “appropriate” taxonomic 

classification of polymers jfiir engineering design. Spedding provides the high level (human cogmtive) 

judgement of similarity to develop an appropriate classification for d^ign.

After populating the KBS by importing data from the CAMPUS database, Spedding used the KBS to evolve the 

classification by defining higher level classes of polymer. In addition, she extended the description by 

defining new properties and rules for those properties, and adding them to the classification. She also 

generated descriptions of new polymers and perfijnned a number of data analysis on properties of the abstract 

polymers inferred from the classes.

Spedding classifies polymers by charactoistics of chemical structure. The characteristics of simplified 

chemical structure satisfy Simon’ŝ * criterion for fijiming good hio-archies. A hierarchy needs to compose of 

identifiable sub-systems and tiie interactions, or properties, between members of the same sub-system should 

strongly correlate or identify stronger in magnitude than with members from different sub-systems. A 

simplified view of chemical structure composed multiple levels of sub-systems, namely atoms, molecules 

and grains. The interactions include spatial distributi(m and attractive forces. Among sub-systems of the same 

level the magnitude of the interactions, say between atoms within molecule, is similar. The interactions differ 

by an order of scalar magnitude wfroi crossing different levels of sub-systems, say the atoms between 

different molecules. The difference in the attractive fijrcœ defines a molecule, so a hierarchy of chemical 

structure is based on principles of chemical science^ .̂

Chemical structure has fiir-reaching effect on a wide range of properties. Grouping grades by similar 

chemical structure affect the properties in the same way. The groups collect like with like grades as members 

of a class. Since the chemical structure is the basis of standard nomenclature, the goieralisations from these 

classifications are also familiar.
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Through Spedding’s work it transpires that the characterisation of a polymer as a class according to chanical 

structure is, oa its own, insufficient to fully differentiate types of polymer grades. For example, the addition 

of glass reinforcement has strong affects on some properties but not on others and is indepoident of chemical 

structure. These were properties wfierè the mechanism of the internal process leading to the property was 

more dqiendent on the reinforcement than the material class.

In some cases general polymer properties could not predict the performance when the property was in an 

extreme geometric state, eg films and fibres. To the observer, the extreme geometry generates sufficient 

capriciousness in properties to cause tiie prracipticn of a new test. These tests though are only valid to 

materials capable of the geometric state, and not eqiplicable to materials in general, yet chemistry does not 

exclude the property. The tqiplicability of the properties is orthogonal to the materials classification.

A conflict was identified between the classification and the need to reposent these properties on a per 

instance basis. Conventicmal class-instance languages can extend the descriptions of grades by creating 

subclasses or by using multiple inheritance mechanisms to subsume ortiiogonal properties. In multiple 

inheritance a class might have two parents, fiir example, one contributing gœeral properties of Nylon and the 

other adding the film properties to give a subclass N ylon-Film s. The function of this multiply inherited 

subclass is no different to an explicit subclassing of Nylon with a subclass N ylon-F ilm s, Nylon being the 

single parent Although both are computable solutions, for knowledge representation of engineering 

properties of polymers both of these mechanisms are flawed̂ ® hindering the extensibility of the classification.

2.2 Knowledge Representation
Designers requires a taxonomic clafloification hierarchy of polymer materials Imowledge that generalises the 

Imowledge within foe classes and than infers an abstract material useful for initial design, in addition to 

representing foe individual properties of foe specific materials. Frost^’ gives an excellent background 

covering general knowledge representation. This section of foe review specifically examines foe conceptual 

model of knowledge representation that addresses taxonomieal hiawchics and the infijrcnce logic within 

them. This examination starts with defining some of foe underlying concepts, before looking at work on foe 

fi-ame-based systems that introduced early taxonomic hierarchies with inheritance, and foe problems they 

encountered.

2.2.1 Knowledge vs. Data
“Most knowledge bases are distinct fi-om conventional databases in that they typically consist of 
explicitly states general rules as well as explicitly stated simple fiicts.”

A database only describes simple fiicts, such as tuples in a relational database, with implicit data modelling 

rules such as “tuples are unique in a relation”. A knowledge base explicitly stores rules, such as “All N ylons
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are P olym ers” . Just as the computational functions calculate (eg sum and multiply) simple values in a well- 

defined manner, more complex computational processes manipulate the rules, according to a ‘formal 

language’, to infer new facts.

A number of formal computing languages logically process rules. They are formal because rules exist for the 

construction of legal expressions wfao-e the meaning of the expressions ean be derived frOm the meaning of 

the components of those expressions. A formal language with axioms (standard rule of inference) that can 

deduce if  rules in a theory (set of assertions as sœtences of the language) are consistent is known as a formal 

deduction system. Deduction is a form of inference that infers a cause (like consistency) from a number of 

effects (the rules).

Most inference applies to a known set of related rules. A formal deduction system that groups rules need only 

check consistency within each set of rules, thereby reducing the computational load. Adding new knowledge 

is simpler since only the local effect of new rules would need consideration. Attempts have been made to 

structure the knowledge in formal languages. Both simple facts and rules were initially shown graphically 

structured in semantic netŝ ®*̂ ’. The graph in a semantic net allows meaningful groups of rules about a 

common entity. “Slot and filler” representation is another approach to structuring rules in to entities, wfrich 

frame-base systems are an example^.

The knowledge structure in fi-ame based systems complicates foe axioms of foe formal languages on wfoich 

they were originally based. Additional axioms define foe rules for inferaice between entitiw. One of these 

axioms models inheritance of rules between entities. The frame-based system NETL^^’̂ * is an early working 

example that demonstrated inheritance fi)r knowledge representation. As will be shown, inheritance has lead 

to ambiguity and inconsistencies in f o ^  KBSs. These findings are relevant since fiame based systems 

introduce a number of features that closely resemble object-oriented systems.

2.2.2 Frames
A  fiame structures data that represents an entity—a concept or foing being described. A fiame consists of a 

collection of named slots. Values or ‘pointers’, which link to other fiam%, fill each slot. Copying frames 

creates a new fiame of foe same type, in a process called instantiation. In this, foe fiame is similar to a 

relation defining foe structure of tuples (see §2.3.2), but different flames with foe same state are possible and 

identity is not dictated by foe values in foe flame’s slots.

Various kinds of deductive inference are supported through flame ‘matching’. Frames were first developed 

for pattern matching, eg visual identification of an entity from observed properties, and understanding of
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analogies in text The frame structuré also supports deduction of consistency since local modifications to an 

entity only affect rules about the entity, and not the rest of the imo. Matdiing MDS with MDs fits this category 

of inference.

Frame base systems also include a number of implicit rules to simplify knowledge representation. The rules 

include generic properties, defriult values, taxonomic structuring. Explicit rules are supported by slot 

conditions and procedural attachments (o r‘demons’).

Generic properties include universal rules, such as “All polyethylene are constructed from the monomer 

ethjdene”; A generic property is a specific propoty all inotanc^ of the finme must exhibit;

Default properties are sim ilar to generic properties but may be over-ruled by instances. The default “All 

Nylon66 have a melting point of270°C” is copied by all grad% of Nylon66 but may be changed by individual 

Nylon66 grades. ,

Slot conditions are explicit rules wfrose consistœcy depends on the state of the slot The rule: “Material 

impact strength is a number greater than zero or No-Break” is such an example.

A procedural attachment is a mechanism for evoking a computing process upon change to a slot For each 

finme based language the fimctionality can be different, but it is generally expected to aid the structuring of a 

Imuwledge buuui For oAomplC} a component’s material typo might detoniuno the production tjpo for the 

componoit, so wfaen the component’s slot for material is filled, a typo of production frnmc is inctantiatod, cay 

injection mouldci, and entered into the component’s production slot.

2.2.3 Inheritance Hierarchies in Knowledge Base Systems
Frame base systems generalise common slots through hierarchical structuring. Rather than define the slots 

explicitly for each fi-ame, a gœeralised finme, or ‘parent’, can define foe common slots and foe ‘child’ frames 

can inherit foe slots throu^ a special is -a  relationship. All foe slots in foe parent, along with foeir generic 

properties, default properties, conditions and procedural attachments, are implicitly slots of the children by 

foe mechanism of inheritance: For œcomplo, foe child Ni'lon inhcritc the slot of impact strmigth from foo 

parent Polymer through foe “Nylon is -a  Polym er” relation. These is -a  relationships form a generalisations 

hierarchy of frames.

Hierarchies have long been seen as an important structure in knowledge representation. The hierarchy relates 

specific entities wifo more general entities by foe is -a  relationship. Inferring foe behaviour of foe specific 

entitios from foe general entities is inheritance. Alfoough there are often some bohariours inherited that are
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abstract truths, typically they are only generalisations wiiere exceptions are expected. The added 

complication of resolving exceptions clearly identifies that generality hierarchies and inhaitance are not one 

and the same:

“ISA isn’t inhoitance and mheritance isn’t ISA” ^̂

For example, “Clyde i s - a  E lep h an t” is a classification*^. Rarely is there a problem with the explicit

statement that does not contribute any more properties than Clyde's membership to E lep h an t. When

assuming Clyde has large ears, a property logical abduction infers fi-om an abstract E lep h an t, there is a

potential for inconsistencies and ambiguity.

A classification hierarchy describes the relationship of generalisation, and inheritance is only a mechanism 

for enforcing the principle oisubsumption across that relationship (see 2.1.3). Suteumption occurs wfoen one 

concept, say Polymer, collectively describes the properties of anofoer, in this case Nylon, P o ly ca rb o n a te , 

P o ly e th y le n e  etc. Every property that defines Polymer also defines those subsuming Polymer. General rules 

for subsumption are still undo- debate. In particular, defining properties and describing properties are 

distinguished^^. Some properties of Polymer do not define Polymer but are only descriptive; they are typical 

and used as default properties that are still inheritable. As they are only typical, there is cause to define 

contradictory properties in a subsumed concept, ie define an exception. “Crystalline polymers are not usually 

transparent However, PET used in soda bottles, has such small crystallites due to processing conditions that it 

is transparent."

Some inheritance schemes allow for exceptions. Fox argues mandatory inheritance of properties is too 

inflexible for representing real-world knowledge^. Interpreting exceptions logically is complex. Standard 

first-order-predicate logic can not represent exceptions since this logic sees an exception as a contradiction 

with foe inheritance rules. The more difficult nonmonotonic logic*  ̂ provides a semantic that can model 

exceptions.

Exceptions can lead to poor modelling. They can over-ride all inheritance, leading to ludicrous statements 

foat contradict foe very purpose of foe classification hierarchy^. Horty provides an altonative, by suggesting 

a mixing strict logical inheritance, wfaich does not allow for exceptions, wifo a defisasible logical inheritance 

corresponding to a statement of expeetalion, “Birds should fly”^̂ .

Difficulties occur wfooi a concept subsumes more than one otha- concept. Consider a material blown into a 

film. In many contexts film plastics are considered a raw material. A film-plastic subsumes both foe concept 

of plastic and foe concept of a film. In a hierarchical knowledge-representation, such as a semantic net, foe
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film-plastic would be given both properties: is -a  film and is -a  plastic creating an a-cyclic graph. This is 

still consido-ed a hionrchy (but not taxonomic) since a generalisation ordering is maintained. The difficulty 

is to resolve the subsumption of properties fi'om both parents.

2.2.4 Problems with Inheritance In Hierarchical Representations
If multiple parents in a multiple-inheritance hierarchy are truly ordiogonal then the properties of one parent is 

independent of the properties of the other parent If the parents are not completely orthogonal, properties of 

one parent may conffict with the properties of the other.

Conflicting properties are either descriptive or definitions. If definiticms, then conflicts should rule the 

subsumption invalid, eg a mataial can not be both is -a  plastic and is -a  metal. If properties are descriptive, 

then exceptions are possible and the conflicting assertions requires resolving. Resolving these issues is the 

task of die inheritance mechanism.

Semantics (the descriptive rules) for multiple-inheritance with exceptions were first proposed by Touretzky^V 

Earlier techniques for r^olving inheritance in the system NETL̂ **̂ , and many other knowledge repr^entation 

systems, were based on a simple shortest path calculation. The shortest path algorithm assume each link 

between child and parait has a unity weighting of specialisation, reflecting the strength of a parent’s 

assertions. Shortest path algorithms can lead to unexpected results. By adding redundant statements, the 

properties of entities can change. For example, if “Clyde i s a  R oya l_e lephan t i s a  F rom _India i s a  

E le p h a n t” and F ro n u ln d ia  has die property ‘ears = small’ conflicting with E lep h an t ' s ‘ears = big’, and then 

an extra redundant statement “Clyde i s a  E le p h an t” , wiiich changes the distance of ‘ears = big’ fi'om three 

parents distant to one parait, would change the conclusion of the shortest path algorithm from ‘ears = small’ 

to ‘ears = big’. Touretzky defined his inferential distance ordaing to preclude inheritance along sequences if 

contrary intermediate sequences exist, ie precludes the inheritance along Clyde i s a  E lep h an t, wfrile already 

inheriting along F ro n u ln d ia .

Regardless of the system fiir determining the assertions from multiple parents, multiple inheritance with 

exceptions will always be bound by nonmonotonic logic^ ,̂ ie more dian one logical solution can result 

creating ambiguity. Simply put, if film and plastic are equally strong parents and both are descriptors of 

property strength, which property should dominate as the property of film-plastic? Unless explicitly stated, 

there is no way to resolve the description of film-plastics into a single soluticm.
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Touretzky’s mheritance is mœe orthodox, formally describes its semantics and, more importantly, defines 

\riien ambiguity occurs. The implementation comes with the cost of a more complex algorithm for resolving 

inheritance.

Terminological logic studies hierarchical representations of knowledge. It is primarily concerned with 

generalisation by subsumption, wdiich in turn has a strong inheritance flavour. The work has shown foat 

inheritance has many representational problems. One suggestion for handling ambiguity, discards inheritance 

as an implicit mechanism and instead supports foe inference of subsumption directly, by generating 

hierarchies wifo explicitly define inheritance^®. Patel-Schneider points out two other problems wifo 

inheritance:

Expressive problems: Recognising foe most suitable location on a hierarchy to express a specific instance is 

not a fonction of a hierarchy. The hierarchy does not prevent a specific entity fi-om inheriting fi-om a general 

description, and specifically defining properties that are also described in a more suitable subclass of foe 

general description. The hierarchy does not enforce foe recognition of similarity. This recognition is up to foe 

user of foe hierarchy^.

Deductive problems: Inheritance, generally, do not address foe combination of inherited properties. If foe 

logical combination of two properties produces a third, fooi either inheriting or defining foe two should result 

in foe single third property: the two components should not be further inherited. Combining properties is 

necessary for foe function of subsumption, eg subsuming P(x):{l,2,3}2x and P(x): {2,3,4}ax should give 

P(x):{2,3}2x.

2.3 Data Modelling
A data model is an a ttrac t structure fi)r containing data. One way of interpreting foe data model is as a set of 

rules fi)r combining data. These rules limit foe expression of data, so foe choice of data model needs to 

consider foe purpose of foe data. The rules limit expression because they are closely linked to foe sequential 

way computers represent and access data in memory. This link between data model and memory is foe 

physical model.

For foe majority of computerised systems managing data. Data Base Management System (DBMS), foe 

priority is on quickly processing large quantities of data from a storage system wifo slow (arbitrary or 

‘random’) access. Consequently, these conventional DBMS limit foe capabilities of data manipulation in foe 

physical model, to simple access routes and data manipulations, which utilise foe access routes. The data
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models do not support arbitrary computation involving many different types of knowledge, in contrast to the 

computation possible in many computing languages.

Many systems for supporting material selection use one of a number of standard data-models. Examples of 

some com m on models are given later. If a data model is suitable, any number of ‘off the shelf DBMS can be 

selected, optimising development and performance. Knowledge representation also has standard data models, 

such as the production rule representation common in many ‘off the shelf expert system shells.

Demaid and Zucker^ '̂^  ̂ question the appropriateness of adopting any of the common representation 

strategies for the development of systems that supprat the evolving nature of design. Their assessment of the 

common representation strategies is relevant since one component in their schema represents materials. A 

summary of their argument for a concq)tual schema on which they designed their own representation 

strategy leads to the use of classification as a design tool. In goieral, die effect a data model has on the 

application of die data is well documented elsewhere:

“It is inqxirtant when choosing a DBMS that the user is aware of the data model underlying it. This is 
because the user of a DBMS must perceive the universe of discourse according to the view of the 
universe which is the basis of the data model of that DBMS”

Most data models in conventional DBMS do not provide a diversity of modelling constructs. This w eakn^  

makes diem inappropriate for oigineering design’®. Design involves computation with many different types 

of knowledge, eg processing, geometry and materials are all broad categories. These different types of 

knowledge would benefit fi-om semantically richer organisations (see §2.3.4). For example, organisations 

based on knowledge entities (represented by data structures) radiCT than the data structures (representing 

many entities).

2.3.1 Hierarchical and Network Data Models
The automated data processing of the 1960s and 70s represented data as simple character strings and numbers 

and structured this data into hierarchies and networks. The hionrchical structuring of data mapped well into a 

physical model of records sequentially stored in files recorded on sequential storage medium such as 

magnetic tape’*. This organisation oiables quick searching for particular parts of foe structure and simplifies 

automatic processing because of foe unifi^rm file fiirmat

The hierarchy places limits an foe knowledge represented. Only one-to-many relational structure are 

possible, eg a kettle design, wifo a plastic container, with glass hd, wifo a plastic handle wifo.. .etc. If other 

kettle designs were made using foe same handle, foe wdiole handle would need to be copied. Both designs 

could not access foe same entity relating many kettles to one handle. Many to one and many to many
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relationships need a network structure, sudi as in CODASYL systems” . To form a network the CODASYL 

system introduces pointers between records.

Both hierarchical and network data models view information as entities with attributes. Records, physical 

space on disk, represent entities, and the binary information in the records translates into attributes. In a 

hierarchical model, the ordering of records (on secondary storage) describes all one-to-many relations. In a 

CODASYL network the binary data in a record can also be interpreted as a pointer to a set of records (DBTG 

sets, sets defined by the Database Task Group’ )̂ to form a many to one relation. The DBTG set forms a one- 

to-many relaticm as an ordering of records, like in the hierarchical model. '

2.3.2 The Relational Model
The relational data model is more common, and originates firom Codd’s work” . Relational databases 

(rdbms) manage tables of data. Each column of the table contains entities fi-om a particular entity set. 

Entities are unique identifiers such as strings and numbers fi-om an entity set. Entity sets defines all valid 

entity identifiers. The database stores these identifiers in tuples. Each tuple is a unique combination of 

entities fi-om the entity sets in the table. Whereas the entity sets are the columns in the table, the tuples form 

the rows. The relation defines the associations between entity sets, hence the possible tupl% and the 

relationships between entities, wtich gives the database structure.

The CODASYL network model represents many-to-one relations differently to one to many, causing an 

asymmetric performance wfoen accessing. This benefits one use of the database over another. In addition, 

pointCTS make it very difficult to manage the movement of records in memory. In contrast, the relational 

model is ‘flat’, witii entities associated in an equally commutative relation; ie the ‘columns’ of the table can 

be swapped without effect. Each column relates equally to each other column. The tuple easily describes a 

many-to-many relation. The relational model does not use pointers, but uniquely identifiable attribute values 

in the entity sets.

The relational model is suitable for financial records for two reasons. First financial information requires only 

a few simple data structures. Secondly, the number of individual records ‘instantiated’ fi-om each of these 

structures is huge. Many financial database activities manipulate relations, not individual entities, wfoich act 

on this large population of records as a group. These computations are operations of either a relational 

algebra or relational calculus, languages that manipulate relational tables.

Access to individual tuples is possible through a transaction that selects the desired tuple fi-om a relational 

table. Such a transaction is a sequential search and compare of all tuples in the relation. Faster access is

35



Otqect -Oriented Software Repreaentation of Polymer Materiala Infimnation in Engineering Deaign

possible by ‘hash key’ list A hash key list is a special ordering of entities indexing the tuples of a relation. A 

‘hash algorithm’ calculates the position in the list for a particular entity and with the entity the desired tuple. 

Although hash lists aid the access to tuples, they are not part of the relational model, but extensions by 

typical RDBMS to the physical model.

2.3.3 The Relational Model In Engineering
Maier questions the suitability of the relational model for c a d , computer aided design’*"” , in contrast with 

the object-oriented model which will be discussed later. Maio" argura CAD systems define large numbers of 

types with fewer instances. Transactions tend to follow paths fi'om one individual record to the next (eg fi'om 

car to the car’s door — attributes form padis to otho: behaviours).

Frost identifies the same problem in the relational model as a performance asymmetry’ .̂ Information on 

entities is often spread across many relations. Although foe relational model is ‘fiat’ within a relation, 

combining foe infijrmation from different relations requires an algebraic operation, wfoaeas information 

within a tuple do not. The infijrmation on a particular entity spans across relations as well as foe relationships 

within tuples. The asymmetry creates a difference in access performance fijr different attributes of an entity.

According to Maier, CAD tends to traverse between tables. In a relational system, this traversal requires an 

attribute value look-up, optimised throu^ a hash key. The hash key is another source of asymmetry. DBMS 

only index selected entity sets in a relation. Alfoough otho- physical models locate entities through a hash 

table, sucfo as some object-oriented models, foere is no asymmetry if foe table consistently includes all entity 

relations. Object-oriented models optimise foeir access to objects since it is a prominent activity in object 

transactions. In relational systems, any overhead associated wifo each transaction (eg fetching a look-up table 

from secondary memory) effects performance.

Maier concludes foe overhead with each CAD transaction tends to be large in a relational data manipulation 

language. Data processing computations of typical RDBMS applications tend to apply few transactions so foe 

overhead has Uttle impact on peiformance. CAD computations tend to be more complex, and foe overhead has 

a larger impact

This performance difference is at an extreme as foe relations describing an œtity increase. In CAD 

applications entities use many different relations, not one large relation. One reason is foe different types of 

entities have some different associations and some foe same. This forms a type-subtype hierarchy relating foe 

similarity. The relations that are foe same are kept in one table. Those foat are different are in different 

relations. Hence, many relations describe entities wifo many differences.
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An example is a Polymer entity in a relational model. A polymer may be considered a type of entity that 

exhibits the relationships to the properties for tensile strength, elasticity, conductivity and many otho- generic 

materials properties. A table is formed wfoere ^ h  polymer grade is a tuple describing values in the property 

columns. Here a single relation is used. However, a grade may express unique knowledge that is not generic 

to polymer but some more specific classification, eg the C rystalline polymer property of melting point. 

Therefore, a second relaticm is created to record the C rystalline polymer properties. The process continues. 

At foe extreme, properties may be defined to distinguish individual grades creating a large number of 

relations. This demonstrates one problem foe relational model has with describing infinitely extendible 

descripticms of entities. More relevant is foe distribution of information aCTOSS many relations. Relational 

DBMS are gcxxl at managing large relations, not a large number of relaticms, foerefore cmly a few types of 

entity.

Finally, Maier also argues foe strategies for ccmcurrency (data sharing) and recovery protecticm, work well in 

small transacticms over large data populations wfoere Icmking and logging can be applied and optimised, but 

work poorly on CAD data. These features put a lot of overhead on transacticms in multi-user and multi-tasking 

computing systems.

The relational model could represent a polymer grade as an entity in a table foat groups a number of entity- 

sets, cme for each property. Rules could be associated wifo foe table to ensure foe grades correct behaviour. 

Beyond this, foe relational mcxiel does not assist foe knowledge representation of polymers. Developing a 

classification of many types of tables and ensuring they correctly subsume foe rules firom each class wfoile 

evolving foe w&ole representation would recptire a complex interfiice for intopreting foe data in foe mcxiel. 

The prefisrred approach rejects foe relational mcxiel for a data model that supports foe structure of foe 

classification, sucfo as semantic data mcxielling.

2.3.4 Semantic Data Modelling
The relaticmal model fails to capture foe semantics of mi entity; foe meamng of an entity as an atomic concept 

characterised by properties. An entity in foe relational mcxiel is often spread over many relaticms. To display 

all properties of an oitity recpiires an operaticm Icxmting all foe relaticms that attribute properties to foe entity. 

Within tuples attributes and entities are not distinguished, so data manipulating can prcxhice meaningless 

relaticmships, such as between tensile strength and ccmductivity taken from a tuple describing a polymer 

entity. One-to-many relaticms differ from foe many^to-many a tuple represents. The cme-to-many should 

ccmstrain queries, like foe relaticmal operaticm ‘projecticm*. This, and other semantic issues, are addressed by 

‘Semantic Data Mcxiels’ (SDMs). In particular, SDMs focus cm a database as a coUecticm of entities.
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SDMs provide Gtruetural abstraction”  (ao c lo se d  to object oriented behavioural abstraction whidi will be 

addressed later), driven by a need for data representation as opposed to data manipulation, resulting in mere 

complex types of data structure. An early semantic model is the Entity-Relationship model’ ,̂ distinguishing 

entities and relations. The semantics of relations are specialised to identify aggregation from association. 

Semantic modelling extends to distinguish groupings’® from associations and aggregations. Further 

developments add generalisation. For an overview see Peckham and Maryanski’®, or Gardarin and 

Valduriez*®.

Aggregationo and asGociations are semantically similar: They both attribute properties to entities. The 

aggregation though is not viewed as a number of parts, but an atomic semantic unit describing the œtity. The 

polymer grade is an aggregation of engineering property attributes. Forming new relations from parts of the 

aggregation (between engineering prqjerties eg conductivity and tœsile strength of a polymer) is 

meaningless.

Associations are access paths between entities. A material may define a property linking a material to 

successful applications. The relationship does not define the entity. The attributes of associations are entiti% 

themselves. The attributes in associations may be used to fijrm otiier relations to other entities fijrming other 

associations.

A roluüüiiul model etui âuppûx t both aggregation and associations but docs not distinguish them as the sdm 

does. In the relational model, each tuple is set of values, some that aggregate attributes and others that 

Hsy<x:iate with tuples iu other tables. The unique identity of the tuple is a fimction of all values, whether 

contributing to the aggregation or association.

In the SDM an entity changes its idmtit)' if attributes of the aggregation changes: If the change causes all the 

values to equal those of another entity, them fee model will only represent one entity; the two entities become 

one. This is different to the relational model, wfeich will maintain two tuples with the same aggregations if 

there is a difference in the associations.

Unlike changes to aggregations, dianges in association should not affect the identity of the entity. In the SDM 

if two entities describe the same aggregation they should reduce to one, but how feis affects their different 

associations is not so clear. Technically the two entities are the same. King suggests it should triggear some 

process’® to resolve the associations.
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Classification is a specialisaticm of association (also called grouping” ) here the members are all of the same 

type of entity. A type defines the properties of entities, both associations and properties, derived fi-om 

aggregations. A classification groups entities vfeich exhibit the same properties but in a SDM not necessarily 

all entities with those properties, eg Polyeth>dene used at Lucas is a classification.

The generahsation is a classification that giûups together semantic similarities, eg In a classification of 

materials, “ Polymer” is a generahsation \riiich includes fee property tensile strength, exhibited by all N ylons, 

P o ly p ro p y len e  and P o ly ca rb o n a te  classifications since they are all Polym ers. Every type is a 

generahsation. In addition, property intersections of types may define fee similarities between fee types, 

hence more general généralisations.

2.4 Object-orientation: A Background of Principles
Object-orioitation is a technique of abstraction. The technique supports software design, in particular 

Graphical User Interface (Gin) development and knowledge representation, but may also be useful for 

product design. This section looks into object-orioitation in software languages wife a view to modelling 

design descriptions of products. Object-orientation composes descriptions in a similar manner to fee 

composition of product designs. Classification is also predominant in many object-orientated language; its 

relevance to materials infijrmation management has already been mentioned. In object-orientation fee main 

unit of abstraction is fee object. The principle of fee object to fijrmulate software behaviour fijllows.

2.4.1 The Software Abstraction of the Object
Programming is a design problem in itself The problem is to get a compute: to behave in a specified manner. 

An application is a software construction combining abstract behaviours, creating one solution to fee 

problem. If fee abstract behaviours model some ofeer design domain, then within fee constraints of that 

model, fee software soluticm is also a vahd representation of a soluticm in that dcjmain. The questicm is 

vriiefeer fee abstract behaviours a ccjmputing language provides for fee constructicm of programming 

problems could fcjrm suitable mcjdels in other design dcjmains: Are objects a generic representaticm?

Ccjmputer languages define a clcjsed set of atcjmic behaviours. Computing machines ccmstruct atcjmic 

behaviours frcjm bcjolean logic” . Ccjnsecjuently, they are inchvidually invariant, precise and prechctable. 

These quahties make feem suitable fijr mcjdelling fijrmal mathematical logic. The logic of sets, for example, 

provides mechanisms towards generalisation, specialisaticm and abstracticm.

Sequences of behaviours form sentences in fee cemputing language. Although individually the atomic 

behaviours are invariant, fee atcjmic behaviours affect fee state of fee machine, vfeich in turn changes fee
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sequence of behaviours. This allows variation in the behaviour of software. These variations quickly become 

very complex wfeich makes understanding the behaviour of software difficult.

Consider the task of drawing a line between two points on a matrix of points. The computing behaviour 

determines \riiich points in the matrix are between the two given points. The given points are a state of the 

computing machine that affects the computing boha\iour to draw different linoj. Whereas fee programming 

taale producing fee behaviour is complex for fee computer, fee concept of line drawing is simply understood: 

The behaviour is complex in design but simple in concqjt. The concept is simple because fee behaviour is 

limited to fee task of line drawing. The behaviour dianges, if given different points, by drawing a different 

line but always draws a line and, ftjr exanqjle, does not draw curves.

Without fee given points, fee behaviour is abstract An abstract behariour represents a known variation of 

behaviours An abstract bohariour conforming to a simple concqjt, though complex in construction, may be 

reused in further software constructions, such as drawing polygons requires line drawing behaviour. Through 

abstraction, software inoreases complexity vfeile each abstract component may remain reasonably simple in 

concept.

Program design is mainly an activity of decomposing fee design into identifiable abstract concepts. The 

example of drawing a square decomposes into drawing lines, v tich  decomposes into drawing points. 

Programnmig then describes fee behaviours of abstract conc^ts. Often a design encounters fee same abstract 

concqjt many times. Computer languages support abstraction by allowing fee reuse of a programmed 

a ttrac t behaviour.

Once an abstract concept is successfully progranimed, it is desirable to reuse it vfeere possible. Designs 

rarely start from scratdi, and languages supporting reuse of software makes it easier fijr programmers to 

build from previous software design. Such support is not limited to developing software but may a d d r^  

generic design problems.

Support of abstraction by computer language comes in many levels. At fee lower levels fee languages strictiy 

define fee abstract behaviour and maintain tight control over behavioural variations. Each level higher 

provides different kinds of abstraction, gradually increasing fee ways a software abstracticHi can describe 

complex abstract concepts.

In an object-oriented language there ore additional mechanisms of abstraction. The subject is well covered in 

many texts®*. The fijUowing summarises fee reasoning behind fee object-oriented concepts.
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In object-oriented languages, in addition to combining abstract behaviours to form specific behaviours, fee 

behaviours themselves are grouped to form objects. The analogy is feat objects in fee real world are 

identified by a collection of descriptions. The behaviours are fee descriptions of an object. These descriptions 

are in a language feat uses ofeer abstract objects as components in sentences. A behaviour is no longer 

reducible to a single complex combination of atomic behaviours, but depends on relationships wife ofeer 

objects and their behaviours, vfeich can change.

Object-orientation recognises that few objects have unique descriptions. Their descriptions share similarity 

to ofeer objects. This recognition leads to (currently) one of two Idndc of doocriptian sharing: prototyping and 

classification.

There are many ofeer issues in object-orientation besides sharing descriptions. The following section will 

highlight some of them. Two features dominate fee control of object manipulation. Object manipulation 

changes fee state of fee object. A state is a specialised behaviour that depends on fee history of transactions. 

The two features controlling fee manipulation of fee state are encapsulation and messages. Messages are fee 

transactions and fee object’s enc^sulation ensures only proper messages manipulate fee object.

2A.2 Encapsulation
Encapsulation is defined as fee grouping together of various properties associated wife an identifiable entity 

in fee system in a lexical and logical unit, ie fee object.

What encapsulation achieves in terms of modelling and program-structure is its most important benefit. 

Encapsulation provides a boundary called an ‘interface’. This interface defines vfeere an object stops and fee 

rest of fee world begins. The encapsulation defines rules for passing that interface. The rules ensure that fee 

state of fee content results fi-om historical accesses to fee object, vfeere each access abides by fee rules.

In teams of modelling, fee interface enforces fee grouping of related properties feat constitute an object. 

Access to fee properties is subject to fee rules of fee interface, so fee state is well controlled and processes 

outside fee interface can not change fee state inside fee interface. Although an object can be defined without 

encapsulation, it demands discipline fi-om a programmer not to directly access internal componoits of an 

object thereby intertwining fee object’s internal world wife fee external world.

Not all encapsulation is equally effective. Some languages are better at encapsulation than others. A good test 

of fee ‘strength’ is to try and side effect (change fee state) fee properties of an object by breaking fee rules of 

fee interface. Usually a language has weak encapsulation fijr reasons of efficiency. So even in this most 

typical fisature of object-orientation, there can be variations.
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2.4.3 Messages
A messages is a basic means of behaviour sharing between objects. Sharing descriptions of behaviours, 

mentioned earUer, is not the same as Glaring the actual behaviour. To distinguish the difference, a d^cripticm 

of a behaviour, as written in the syntax of the language, is called the protocol. While programming protocols, 

they are often termed behaviours since, when executed, the protocols generate the behaviours. They are very 

similar and subtlety different. The aim of this next section is to describe the message and distinguish this 

difference between behaviour and protocol. Later, the relevance to modelling will be highlighted.

A distinguishing feature of object-oriented systems is the ability to ‘pass messages between objects’. A 

message originates as part of a sentence in a protocol that describes an object. The message specifies another 

behaviour to evoke. The message identifies another object, known as die receiver, vdiere the behaviour 

resides. Additional information identifies the particular behaviour in the receiver.

The message does not directly access the protocols in the receiving object. Messages are received at the 

object’s interfece. At die interfece, die additional information in the message interprets i\hat will happen. 

This is fiilly under the control of the receiver, not the object sending the message. A useful interfece will 

define a known set of possible actions.

The first step in message interpretation is to locate a protocol to continue the computation. The rules used to 

interpret the message differ fi-om language to language, and are a major source of difference between them. 

In some the rules are programmable. The interfece though should remain consistait, well known and 

published since it forms a contract between the receiver and the protocols of message senders. If a receiver 

can not locate an appropriate protocol, either die language genaat^  some kind of error, or the receiver may 

specify a specific defeult protocol for messages it does not understand.

After locating each protocol, the receiver evaluates i t  The evaluation generates the behaviour. The evaluation 

is a process of further message sends. Protocols generate behaviour, which locates further protocols for 

generating more behaviour, infinitum. Ultimately the software evokes m^sages to atomic behaviours that 

generate behaviour without further message sends, terminating the chain reaction.

Each protocol is a specific combinaticm of other abstract behaviours. Additicmal objects augment die message 

evoking the protocol. These “arguments” and the receiver together specialise the behaviour that the protocol 

generates.
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It may have been implied that the receiver of a message is the owner of a protocol. This is not the case. 

Protocols are often shared. This does not necessarily mean the behaviour is the same for all receivers sharing 

the same protocol. Differences in the receivers specialise the behaviours by sending different messages from 

tiie same protocol syntax. The syntax composing a protocol changes semantically by altering any objects in 

each message eg the object receiving the message. Each object sharing the protocol provides a different 

context of available objects, the receivers and arguments, fijr binding to messages in die protocol and 

determines the path of computation \vdien evoking. Thffe can be many differences, each a different path of 

computaticm.

The different paths a protocol generates are descriptively called its ‘pattern of message passing’. A complete 

object-orientation system of objects is a flowing ‘pattern of passing messages’. The nature of this flow is an 

important descriptive characteristic of any object-oriented language. Understanding the potential patterns is 

important for undorstanding the potential behavioural effects a protocol will have, so die semantics of 

protocols depend on the patterns.

Many languages define types of object to simphfy understanding of computation padis. A tjpe describes 

what behaviour a message should evoke, in general terms, for objects of that type. It is then up to the object 

to implement the behaviour (answering how to do it) as a protocol. In coding a protocol, the programmer 

relies cm the specification of types. Protocols can send messages to types of objects (receivers of a type) 

knowing vfeat will happen, not concerning with which object of the type binds to the message or how the 

behaviour is achieved. If all objects obey their type specification, then the protocol will link the correct 

behaviours and the protocol will evaluate correctly.

The difficulty in understanding the patterns of message passing rises as the number of variables affecting the 

pattern rises. The receiver is not the only variable. There are two further fectors. The path can also depend on 

other objects (besides the receiver) sent with the message. Typing can help here by ensuring messages only 

send objects of the type expected by the protocols. In CLOS (Common Lisp Object System) for example, in 

the interfece a messages must match all parameters of a protocol, ^feich includes the type of objects the 

message carries. Smalltalk™ however does not check the arguments. Usually an incorrect argument type 

will, eventually, cause a message to be not understood.

The other frictors affecting the pattern of passing messages depends on how a receiver shares its protocols. 

Recall there is a difference between sharing a behaviour through a message and sharing a protocol 

description of a behaviour. Objects that share protocols are said to have Empathy.
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2AA Empathy
The term empatiiy was coined in a p ^ e r  called the. Treaty of Orlando’. It reports a discussion between 

fections arguing the benefits of one sharing mechanism over another, namely inhoitance and delegation.

In the quote firom die treaty, Wiich follows, the crucial feature is the assignmoit of the variable self .  For 

empathy, this variable binds to the receiver of the message, not the owner of the protocol. This causes the 

receiver, not the owner, to fix the pattern of message passing.

“We say that object A empathises with object B fiir the message M if A does not have its own protocol for 

responding to M, but instead responds to M as though it were borrowing B’s response protocol. A borrows 

just the response protocol, but not the rest of B. That is any time B’s response protocol requires a message to 

be sent to s e l f  (or a variable to be looked up), it is sent to A, not to B; otherwise A and B respond in the 

same way [as if B received the message].

“Formally we say object A empathises with object B fiir M Mien the following holds: If B ’s behaviour in 

response to M is expressed as a protocol fimction P(B, M) — that is, B’s method fiir M can be expressed as a 

fimction that takes s e l f  as an argument along with M — then A’s response to M can be expressed using the 

same fimction P as P(A, M) — A’s behaviour is derived by using A Mierever B would have used itself’’.

The implonentation of empathy is asymmetric. A borrows firom B. B does not borrow fi"om A. The 

behaviour of empathy is symmetric. It does not matter if A borrows fi"om B or B holds the protocol and B 

borrows fi’om A . This raises die question of Mio should manage a protocol. In the case of CLOS®̂ , neither 

holds the protocol.

Where a protocol is stored and managed is not in itself empathy. Empathy only affects how the variable s e l f  

associates with the receiver after locating die protocol. How a message finds and matches a protocol is a 

separate orthogonal issue. Often the two issues are related in particular language models. In a number of 

languages, for the convenience of the programmer, the same mechanism handles both look-up and binding to 

protocols.

If an object can change the set of protocols it shares dynamically, then the object can dynamically changes its 

description, ie the messages it will respond to (locate protocols for) hence the object’s named behaviours or 

properties. Such change comphcates inter-object communicaticms. Delegation is conditional behaviour 

sharing.
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2.4.5 Delegation
Delegation is a form of empathy. Whereas a sender sends a message to a receiver, a client delegates a 

message to a proxy. When a client delegates a message, the same mechanism locates the protocol as if the 

proxy was receiving a message. Instead of evoking a behaviour of the proxy, s e l f  assigns to the client, and 

the protocol binds with the characteristics of the client This produces a specific behaviour of the client, not 

the proxy. The chent is still the receiver, not the proxy.

There are two cases of delegation: Explicit and impUcit. A protocol coding explicit delegation states the 

proxy as Miere to find the protocol, separate fi'om the receiver Miich is the evaluator of the protocol. Implicit 

delegation is part of normal message reception. When a receiver gets a message that does not match any 

specific protocol of the receiver, the receiver can specify a parent proxy. The message then delegates to the 

parent. Imphcit delegation models inheritance.

Consider an extreme case of imphcit delegation: a chent may delegate all messages sent to it, to the parent 

proxy. No other specific characteristics are contributed. Any attempt to locate specific behaviours of the 

chent wiU foil resulting in immediate delegations to the parent proxy. Although any protocol found will have 

s e l f  bound to the chent, the chent stiU contributes nothing, witii ah messages delegating to the parait All 

behaviour is the same as if messages were sent directly to the parent proxy. Now consider adding a single 

new property to the cha it The chent behaves just like the parent, but for the single new property. The choit 

refines the property specification of the parait. The chait is a software “prototype”, an expoiment in 

specification variaticm.

An even more generahsed form of prototyping simplifies message sending. Consida an object receiving a 

message telling the object to do something. Does the object and message not define a more specific object 

representing “this object doing somethin^'! Rather than define complex messages with the description of 

something, prototyping makes it easy to create a new object with the specific behaviour, “doing something!", 

on every message send. The new object is characterised by a behavioural filler dcfiuiug what the object is 

doing. Computing then becomes an activity of reduction. The object should then reduce to the result of tiiat 

action, eg the function object [3 + x] receives the message “assign 5 to x”, creates an object [3 + x , x = 5] 

and reduces to the object [8].

The feature of prototypes as a model fiir objects and messages is derived firom the ACTOR fi^rmalism (see 

§2.4.8). The formalism does not specify delegation, but delegation is a mechanism for implementing tiie 

formalism.
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Delegation has been Aown helpfiil in modelling engineering design interactions^ It permits the submission 

of a query that needs to be answered through accessing some of the properties embodied by objects other 

than the original receiver of tiie message. As a knowledge encoding methodology, this use of delegation 

differs from inhoitance because the latter provides an organisation of objects through anticipated 

connections Miereas the frirmer is a run-time technique to program dynamically established relationships. 

The computational difference between delegation and inheritance ties in the localisation o f processing.

Delegation is but one mechanism providing sharing between objects. Much debate occurred o\w  the virtues 

of various sharing mechanisms. However, a consensus was reached, and the dynamics of sharing in object- 

oriented languages concluded.

2.4.6 Dynamic Behaviour Sharing
‘Dynamic behaviour faring* is a term that describes a language mechanism that allows the patterns of 

computation to change at runtime. The issue was summarised by consensus between three arguing fections in 

the Treaty of Orlando’. The treaty describes three independent dimensions to characterise the nature of 

sharing mechanisms: S t a t i c  vs. D y n am ic , Im p u c it  vs. E x p lic i t ,  P e r  O b je c t  vs. P e r  G ro u p .

The orthogonality of the P e r  O b je c t  v s. P e r  G ro u p  is more easily understood and the ordinate it describes 

is more discreet in the pœsibilities. Protocols are shared, thereby defining behaviour, either for individual 

objects or fiir a group of objects. In the middle, thae are various degrees of a group guaranteeing some 

behaviour, but allowing idiosyncratic behaviour to individuals.

The orthogonality of the STATIC VS. DYNAMIC and iMPUCiT vs. Explicit is less obvious.

S t a t i c  v s. D ynam ic : Static sharing is the fixing of the pattern of message passing. There are two 

possibilities: When ^ecifying an object (protocol compilation), and when instantiating an object (object 

creation, see §2.4.7). All Aaring that is not fixed is considered dynamic, determining the pattern of message 

passing as each message is sent at runtime.

Two different types of messaging mechanisms affect the patterns of message passing: binding and inheriting. 

Binding occurs Mien the message is sent, inheriting (or delegating) occurs on receiving the message. Both, 

either, w none can introduce dynamism to the pattern.

Static sharing is adverse to modelling and only an software optimisation. For developing prototype 

apphcations, static fixtures should be avoided.
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Implicit vs. Explicit: Implicit sharing is M iae a language provides a rule that is generally used Mien 

finding protocols and there is some assumption made in the rule as to how to find the behaviour and continue 

processing. The usual assumptim is the recipient of the message gains control of the process flow. Explicit 

sharing is Mien the sender can specify all details; both die means of searching and Mio evaluates the code. 

Naturally, thae are degrees as to die details provided Mth a message under control of the sender, Miich can 

affect the behaviour found. In systems Miere the searching rule is itself programmable, then both expUcit and 

a pre-programmed implicit searches are possible.

2.4.7 Qass-Instances
In general, diree main features fiirm die “classification paradigm” ’̂ and are often held to be essential to 

object-oriented programming:

• The abihty to construct objects as a set of operations and a memory.

• The classification of objects, ie eadi object as an instance of a class.

• An inheritance mechanism defining superclass-subclass relationships.

This paradigm is synonymous Mth class-instance, object-oriented software mechanisms, ie systems oriented 

to objects as instances of classes Miose definitions fiirm templates from Miich many instances may be 

generated. The instances are intended to correspond to “real-world” information, responding to messages 

about their attributes and behaviours, Miile the classes are abstract specifications.

A class groups objects Mth commcm behaviour for the purpose of classification. The discussion on categories 

and taxonomies are equally valid to the classes in object-oriented languages. Objects belonging to a class are 

instances of that class, and must obey the common behaviour of die class. The instances obey because they 

depend on implicit inheritance from those classes for their behaviour.

Inheritance is a frirm of protocol sharing, as is delegation. Instances receiving messages look to their classes 

for protocols. Ujpon locating the protocol, the instance evaluates the behaviour as if it was its own. 

Inheritance is like implicit delegation, but fqiphed p a  group and may be dynamic or static. Static inheritance 

is quite common and limits the evolution of instance behaviour.

Classification highlights the complex choice of abstraction technique presented to the programmer. The 

choice also exists Mth prototyping but is less obvious.

The behaviour sharing imphcit in classification supports an alternative approach to behavioural abstraction. 

Similar behaviour sharing exists in prototyping languages, but the abstraetian is more obvious in the elass- 

instance languages. Classification emphasises die choice a programmer has Mien abstracting a software
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problem into objects. The choice is between sharing behaviour and sharing protocol. Should an object inherit 

a protocol, or should another objcot be created to exhibit the behaviour? Often the choice is not clear, 

specially Mien multiple inhoitance is possible.

An object composed of three abstract parts could eitha models three objects or a single object inheriting 

from three independent classes. The latta is the philosophy of multiple inheritance. The inheritance 

becomes a mechanism frir mixing behaviours.

Consider a clock as a gauge (display) and a timer. Classification says: “It is -a  kind of timer or is -a  kind of 

gauge”. Altonatively, is it a device that “is -a  timer” that “has-a gauge for display”, or “is -a  gauge” that 

“has-a timer as input”. Altonatively, it could be a clock, an object, that “has-a gauge fiir display” and “has- 

a timer as input”. These are all possible ways of modelling a clock. The first is multiple inheritance and the 

next two are di&rent views of clock in a single inheritance system. The last example is not yet part of a 

classification, so it is just a composition. All provide the same behaviour.

The class originated in on oneeotor of object orientation^ Simula™. The class has existed in many languages 

since, notably Smalltalk, Miich has the longest history of any object-oriented language still in commercial 

use today. The class in these languages is a template. The class generates objects in the image of the 

template. This function provides a guaranteed fixed structure to the objects produced. Fixing the structure 

gives two imporioul advantages: consistency and optimisation.

The consistency provided by the class is more than simply a logical prevention of inconsistaicies leading to 

errors. The class creates a syntactic grouping of concepts that all instances, objects of the class, abide by. The 

programma uses the class as a guarantee that the instance will behave as specified. This simphfies handling 

objects, just as types mentioned earha do Miich, Mthout the enforcement of the class-instance relationship, 

would otherwise require a more exact understanding of the patterns of message passing.

Classes are generally considaed static, in virtue of the assumpticm that real-world specifics change and 

generahsations do not; eg, new cars are designed but the idea of car remains static. Most objects change in 

“state” but are relatively static in their behaviour, described by the class. Cars move, but are still cars.

The assumed static nature of the class has made it the target for optimisation in many class-instance 

languages. Classes are implemented as static templates, and optimised, leaving the instances to represent the 

dynamic aspects of an application. Some languages do not even representing the class as an object. The class
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does not truly exist in the same way as instances exist at runtime. This viewpoint is taken to its extrane by 

the language C++, Miich continues the “C” philosophy of highly optimising code.

Enforcing a static structure has its disadvantages, namely Mien foe structure needs to change. The boundary 

between class and instance is also a boundary between static and dynamic. Since nothing in foe real world is 

truly static, there is always a point, if  a model is to remain consistent with the real world, foe boundary needs 

breaching. In some domains, this is more common than in others. In particular foe domain of design is 

notorious for its dynamic nature of descriptions and specifications.

Many class-instance languages require all dynamic aspects of foe implementation to be handled by instances, 

but this conflicts Mth foe nature of design; a design describes foe behaviour of an entity in foe real world. In 

foe class-instance language, foe property of behaviour descripticm, foe protocol, is only held by classes. The 

only other dynamic changes in behaviour are by changing foe relationships between objects, as recorded in 

instance variables. Therefore, foe implementation of a design must be by an object that has foe property of 

behaviour description and is capable of changing Mth foe design. The Miole point of classes is to provide a 

behaviour description, but one that is static so to guarantee foe interpretation of messages to foe class’s 

instances, ie as a type definition. Classes are in^)propriate for representing design under this criterion. This 

does not preclude a different mechanism, in a language supporting foe class-instance relationship, for 

modelling design specifications.

Not all class-instance languages adhere to foe strict static nature of foe class. Languages allowing their 

classes to change are said to support schema evolution. Language supporting schema evolution carry a large 

overhead in terms of requiring compilers, consistency checkers, and error handling routines to enable foe 

schema change and ensure foe change is sound.

In Niastrasz’s^ review of object-oriented concepts he defines schema evolution as an operation on a class 

hierardiy, not an operation on objects, ie not a consequence of messages. This follows foe analogy of a 

database schema evolution, Miich is not a database transaction. A normal interaction between objects that 

dynamically changes foe inheritance of behaviours Mthin foe object model is dynamic inhoitance. Yet, if a 

class is a generic object, as it is in Smalltalk-80, then schema changes are a consequence of messages. 

Inheritance changes in Smalltalk are considered schema evolution because they involve coercing foe 

underlying object model for each instance, despite foe feet a complex series of normal message interactions 

achieve this coercion.
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Schema evolution is often only available during initial program prototyping, such as in the database 

Gemstone™” . The effects of change on ‘established’ classes have 6 r  readiing consequaices that return to 

the programma as bugs. The reason ftir this fer-reaching effect is the semantics of messages. The effective 

patterns of message passing are rarely well understood by the programma making changes.

The semantics of a behaviour are not only defined by the objects that hold the behaviour, but also by the 

users of the behaviour. Viewing behariours as an input output relationship, message goes into an object and 

the response comes out, tiien tiie implementation of all senders encodes the interpretation of the response. 

That is, the object a message returns is sent messages by the same senda and these messages are all part of 

the pattern that develops the senda’s own behaviour. Theoretically, each message should return an object 

fiilly defining the semantics of the response. This is rare and usually messages return a simple data types with 

little semantic value. Th%e messages rely on the recipients of the result (usually the message senda) to 

correctly interpret the result

It is all very well to say that messages correspond to semantics, ie messages have precise meaning, and are 

separate from protocol implementation, but Mien programming starts, the semantics of a given message 

might differ by the time programming ends. In practice semantics of a program evolve Mth the 

implementation.

Thae are attonpts to sqiaratc tiic implementation of a class from its semantic obligations^. This is believed 

to be a solution that Mil fiirtha prevent schema evolution from affecting otha parts of a system. The 

semantic obligations are described in terms of type requirements fî r messages and message responses. The 

organisation of types can be handled quite separately from class descriptions. Type checking need only occur 

during schema evolution. If a change is made to the type hiaarchy, consistency checks occur once before 

accepting the change. Ultimately the difference made by type checking is the determination of 

inconsistencies at tiie time of change ratha tiian during execution of behaviours, Miich might occur much 

la ta  Mien, tiie source of the error is forgotten. Typing introduces an ovahead on the programma Mio must 

define types to classes and in protocols.

2.4.8 Actor Semantics and Prototype Language
In the late 60*s and early 70’s, HeMtt et al̂  ̂developed the ACTOR formalism as pai t o f  the PLANNER research 

project into natural and effective means fiir embedding knowledge in procedures. They identified the 

m odular nature o f  know ledge and itfl dynamic abihty to combine the abstract to acatc tiic specific. This led 

them to the a c to r , a computational model that allows an extaidible d^cription o f  knowledge. The ACTOR
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formalism is not a language but a computational model describing semantics for the foundation of computer 

languages.

An ACTOR is an active agent that plays a role on cue according to a script. The computational model conveys 

semantics similar to an object: modularity, messages, intentions (a conceptual model of behaviour), 

protectioii âiid privacy (encapsulation). Ilewitt st^es that “control flow and data flow are inseparable in an 

ACTOR. This is a concise description of encapsulation in that the control over processing (the control flow) 

and control of data change (data flow) are m aintained inseparable in an ACTOR. Control passes between 

ACTORS through messages. Under these restrictions, the only way an ACTOR can achieve its intentions 

(behaviours) is either “Every ACTOR should act for himself or delegate the responsibility [pass the buck] to an 

ACTOR who will”®̂. It is through delegating that an ACTOR extends the representation of knowledge.

Experiments in programming stjdes have implemented some of the ACTOR philosophy in T.isp. Ea'ly 

examples include Kahn’s Director^ and Lieberman’s Act 1®’. These experiments are specific 

im plem entations of software machines using ACTOR. The concept of a prototype that delegates to a proxy 

(see §2.4.5) as a method of representing knoMedge, came fi-om these experiments. All prototypes are an 

ACTOR. Each knows a proxy, Miich is an ACTOR. Any message a prototype does not specifically know how 

to resolve will resolve the message by delegating the m^sage to its proxy. This message delegaticm is more 

specific than HeMtt’s “pass the buck” between ACTORS. Before a prototype delegates, control passes to the 

message (also an ACTOR) and assigns the variable ‘client’ to the prototype. Therefiare, languages defining this 

delegation have standardised the intentions of messages.

The standardising of object organisations Mfoin languages has generated a lot of argument Initially 

Lieberman^° argued class-instance inheritance was inferior to prototype-delegation. Stein^  ̂ countered that 

delegation is functionally the same as inheritance. O tha languages implement various otiia organisations; 

Uhgar’s^ Sel^ Macado’ŝ ’ Hybrid, and Agha’ŝ  ̂ACTORS are but a few. The arguments w ae clarified when 

Stien, Lieberman and Ungar produced the Treaty of Orlando’(see §2.4.4), Miich abstracts the concepts of 

behaviour sharing. Each concept exhibits useful characteristics for software modelling. The important issue 

in designing or choosing a language is deciding Miich characteristics best suits tiie knowledge represented.

When Zucka* represented materials design he specified behaviour sharing that supports both soirching 

th ro u gh information and tiioi experimentally combining infiarmation. He sought a classification to orgamse 

his knowledge, Miich supports searching. He sought the expressive description of prototypes to 

experimentally combine information into design solutions. Zucker got both these characteristics by starting
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with Scheme^’, a dialect of the Lisp language that adopts actor semantics. He modified the language to 

provide each object with a strict cloGBificatian with inhoitance, wfiile the delegation of scripts between 

objects allow the dynamic combination of in&irmation from different classifications. This new language he 

called SPLINTER.

2.5 Selecting a Language
This review describes some of the software concepts applicable fiir knowledge representation. For the 

majority of polymer knowledge, these concepts are satisfiictory, but inferring goieral polymer behaviours 

requires a language with highly atetract fimctionality. Object-orientation is reviewed because the philosophy 

of behaviour sharing encourages abstraction and classification, Miidi the class-instance paradigm 

exemplifies.

This review starts by introducing a description of design as a mdhod that uses classification and 

generahsation of information. As discussed, designers first identify suitable goieral materials during the 

initial stages of design. They attempt to generally satisfy the design, possibly by adjusting other design 

parameters, before attempting to satisfy it with materials that are more specific. This is a principle method of 

design, Miich “leads inexorably to a minor but unmistakable invention”, as quoted at the beginning of this 

review. The method reUes on a taxonomic classificaticm, Miere each class generalises materials. The method 

proceeds as long as the daigner can interpret design benefits from the abstract behaviour of the 

généralisations. Therefore, a language implementing this method of design rcqitircs a concept of 

classification and data aWtracticm.

A relational model can describe a hierarchy. Relational algebra can abstract properties of grades to give 

averages, m ax im u m s, m in im u m s and general distributions. Then Miy is object-orientation chosen for 

representing polymer inftirmation rather than a relational model? The distinguishing features of these two 

data models are the way they manipulate data. A relational transaction processes many entities Mth the same 

query, Miile an object transaction evaluates many different messages over a few objects. The benefits of 

these features for representing polymer inftirmation lies in the way designers use polymer inftirmation.

If designers are able to translate a specification for a product into a material specification using general 

material properties, thoi a relational calculus query could represait the matoial specification and a relational 

database could effectively locate grades matdiing the query. This query approach was rejected as an 

uncharactoistic design method.
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Designers can provide a loose specification of a product. Often the désigna can translate tiiem into desu-able 

general material properties. The important difference is the désigna knows the criterion is only approximate, 

and the criterion depends on otha paspectives of the design. Much can change and thaefore change the 

criterion for the material. What the désigna first wants to know is how classes of material behave in gœeral. 

The désigna can then translate the product specification into different material specifications that gives each 

class of mataial the best chance at solving the problem. A new specific criterion then applies to subclasses of 

a class, Miile otha criterion apply to tiie subclasses of o tha classes. The désigna decides on direction at 

each new source of information, which is a style of information browsing. Adjusting inftirmation processing 

according to the type of information is a general foiture of object-oriented messages not supported by 

standard relational manipulation languages.

The object-oriented paradigm provides greata abstraction than the relational model. In a relational model the 

data definition of gratis, their classification, consistoicy rules for inheritance, and rules to infer abstract 

polyma behaviour would all be represented as separate database objects (ie table definitions, tables and 

queries). In the object model, this level of abstraction exists too. Method objects represent the rules, while 

o tha  objects represent the polyma abstraction. Unlike the relational model, tiie object model can abstract all 

these behaviours into a single object. For example, the behaviour of class objects, whose metaclass inherits 

the behaviour of inheritance and object representation (ie the grade-definition), can extoid by the addition of 

new object behaviours to infer abstract polyma.

Of the object-oriented approaches, neitha the class-instance paradigm or the actor formalism prevents 

complex modelling, but specific optimisations of individual languages might Unlike the class-instance 

paradigm, Miich impUes inheritance and classification, the actor paradigm does not naturally support a 

programming structure, though it does not prevent an actor language from developing one. Zucka started 

with a language Mth some actor semantics and enhanced the language Mth a taxonomic structure. In 

Zucka’s case, the qualities of foe m-ototype w ae a dominant benefit fijr his initial choice of language fi>r 

modelling foe evolution of design. The work presented h a e  requires classification, and foae exists many 

very good examples of languages that suppôt classification.

The language will describe complex relationships between grades, classes of polymers and foe abstraction of 

properties, but also evolve foe description since foe classification will continue to grow and develop. The 

language requires schema evolution. The schema includes foe classification hierarchy and foe description of 

polyma classes Mth polyma properties.
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ObjectWorks™ 4.1, a variant of the class-instance language Smalltalk, was seen to be a suitable language for 

the representation of polymer materials information for design. Smalltalk had many charactoistics deemed 

beneficial to the research in Table 1, including an expressive user interfece capability. The interfece to the 

knowledge base is important for browsing the information.

Everything is an object all entities in the language are objects and can evolve.
Classes as objecte As well as define protocols, classes can have their own 

behaviours, e.g. population generalisation and abstraction
Protocols as objects Can define engineering property objects as a kind of protocol

Strict classificatian hierarchy encourages a cleanly principled taxonomy.
R untim e evolution of classes template Grade structure can change at runtime, though not 

efficiently. Changes are per group, not per individual.
Dynamic protocol inheritance Protocols change efficiently.
Large class library Faster development time
Advanced user interfiice tool-kit Encourages effective interfiice development.

Table 1: Known characteristics of Smalltalk deemed beneficial to the research
A suitable language means some of the expeeted fonctions may bo difficult or impossible to achieve. Table 2

lists the charactaistics considered challenging at the beginning. The absence of database support Miidi is 

necessary for an extendable knowledge base, suggests the Smalltalk .data model may not be suitable f a  

database application. Smalltalk supports a single inheritance classification and only implicit protocol sharing, 

so using the class to both classify and describe polymer materials with properties orthogonal to their 

classification will be a challoige. Encountering these barriers and odiers in the representation simply 

identifies how the language does not suit the problem. Where possible barrias are overcome and the research 

continues. Overcoming the barriers is also of interest since it characterises the problems not fi)reseen at the 

beginning of the research.

Only implicit protocol sharing Object interfece does not support explicit protocol sharing.
No prototyping Classes must be used to manage protocols.
No Persistence Require a third party database service.

Table 2: Known challei^es to Smalltalk at the beginning of the research
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Chapter 3 POISE: Polymer Objects in a Smalltalk Environment
Overview of Objectives

For useful representation of polymer information for design sgiplications, the following list identifies issues 

on:

1) managing a rich variety of informative descriptions, each with the potential to extend,

2) m anaging sparse data, and providing suitable defeults where possible,

3) encouraging descriptions that are independoit of a particular purpose, through an appropriate 

classification which generalises similarities aaoss the domain,

4) defining and m anaging many levels of abstractions fi-om the domain generalisaticms.

The following chapter proposes a conceptual description, or loose schema. The schema describes software 

tools for achieving t h ^  objectives. Software confijrming to the object-oriented class-instance paradigm 

provides the principles. (1) Objects encapsulate information, providing an independence that allows the 

information to evolve. (2) Objects share behaviour, typically following a concept of defeult inheritance, fi-om 

more abstract objects. (3) In the class-instance paradigm classes enforce a strict classificaticm of instances.

In addition, the class defines a ccmsistent structure of objects, which is useful for supporting traditional 

informaticm management tcmls, namely: .

5) database support techniques for information storage, in a form that appeals to the organisation of 

informaticm in the polymer industry, and

6) supporting interfece design fiDr reflecting the representations and appealing to the u sa  forough intelligent 

interacticm.

In particular, an implementaticm of Smalltalk™ has characteristics deemed beneficial. The final tqjplicaticm is 

implemented in Smalltalk™ , and named POISE. Following fois chtqjta is a discussion on foe particular 

aspects of this schema that challenges foe object model of Smalltalk™. This schema is not particular to 

Sm alltalk™ , and it should not inq)ly Smalltalk™ is foe cmly possible language fia  foe implementaticm.

The schcmaa follows foe informaticm flows fi-om source through to foe classificaticm. The descripticm, support 

for abstracticm and grade representation of this classification is at foe core of foe schema. Extensicms to this 

core add orthogonal descripticms and database management capabilities. The schema, visualised in Figure 4, 

show s foe data acquisiticm on foe light flowing into foe classification and supported by an object management 

system cm foe left. The rest of this chapta follows this flow.
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Architecture of POISE for object-oriented knowiedge representation and management
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I______________l|
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data/programs)
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Data flow between objects
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Figure 4: An initial architecture of POISE

3.1 Source Data
For experimenting with informaticm management, POISE needs only a minimal strategy for data exchange, 

preferably accessing a single large source. Initially CAMPUS (§2.1.1.) was chosen. In principal, POISE requires 

a more general intofece catering to many sources. To satisfy the principle, a CAMPUS specific interfece 

passes data to a general data structure that may represent data from other sources. This general data structure 

is a binary relational table.

3.1.1 Reading Binary Relational Table from DIF Files
DIF, delimited interchange format, is a simple data file fromat that separates fields in a record with a 

delimiting character, allowing the fields to vary in size. Most spreadsheet ^phcations and relational DBMS 

can produce output of this kind. POISE requires the fields within the records to correspond to the following 

binary relational data schema:
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Polymer
Supplier

jg -a  : OrgMtiZâtioa

: Property ValueGrade

Figure 5: The open-ended relational view of an arbitrary polymer grade
{Unique Polymer Name}— (Unique Property Name}— (Property Value}

In this case, the binary relation maps a ‘Unique Polymer Name’ to a ‘Property Value’ under the named 

relation ‘Unique Property Name’. The schema allows any property relation that is uniquely identified by the 

string in the ‘Unique Property Name’ field. Diagrammatically, this creates a model as shown in Figure 5. A 

P o ly m erS u p p lie r is an object representation of a DIF file containing the source descriptions of grades. The 

grade’s description takes the form of an aggregation of property relations to magnitudes, i^ ich  are often 

numerical and described here as property-values.

The data structure adopts a binary relational data model, but not the infisrence engine that usually comes with 

relational databases. If an information source infers inftirmation firom the data, it must explicitly export the 

infisrred data in relations. For example, a database assuming a closed domain and closed world does not state 

what is felse. po ise  assumes vhat is not stated is unknown, so fidse statements must be given as relations in 

the input The potential exists ftir inftirmation to be lost if the system generating the o u ^ t  makes 

assumptions on the schema of the receiving system.
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The binary relational data structure does not rely on any assumptions or any particular domain. A DIF file 

containing such relations is quite capable of conveying the description of an arbitrary grade as a loose 

grouping of properties, ie the relations as described in Figure S.

The binary relation file does rely on the unique name assumption for both polymer grades and the properties 

used to describe them, but only within defined sub-domains of data. The domain of poise  covers all 

knowledge of polymer materials. Any division of tiie domain creates sub-domains. Each P o lym erS upp lie r is 

considered a sub-domain of grade de^riptions. The boundary of the sub-domain simplifies the scope of an 

individual DIF file or aggregation of files, provided by suppliers. In the case of c a m pu s , there is a separate 

file for describing the semantics of the property relations and anothe* for specifying textual descriptions of 

grades separately (see §3.1.3)

The knowledge content of a relational database will often include constraints over the domain entities 

belonging to an entity set. In particular, each property describes an entity set of property values. The Murce 

could define constraints over the property values hence define acceptable bounds.

Interpreting the ‘Property Value’ mtity from a field in a d if  file relies on the semantic meaning of the 

property relation. In its raw form, tiie DIF field is a string of characters or bytes. In some cases, the entity only 

requires unique identification, in v^hich case a string may be a reasonable representation of the entity. More 

often, the entity is a m agnitude with other specific semantic qpialities. The de&ult behaviour vhcn 

interpreting the ‘Property value’ is to convert the string into a real number. If tiie translation medianism can 

not coerce tiie string to a number then the value is left as a string. This behaviour can change on a per 

property relation basis. The definition of tiie property relation in POISE can include a valid data type for tiie 

value acceptable for representing the property.

3.1.2 CAMPUS
The polymer data used by cam pu s  is available in two difToront file structures: The finmat found with the 

commercial (hstribution of c am pus is a  binary file, cam pus was also a\nilable on request fi-om tiie polymer 

supplioro in î GCli (American Standard Code for Information Interchange) file.

During the period of the project (1990— 1994) the binary format changed vhen a new versions of the 

CAMPUS program, c a ps ®̂, was written. The ASCn format remained consistent, presumably because it is used 

to communicate the data to the CAMPUS software de\'elopers. The difficulty in obtaining the ASCII version 

though made it necessary fiir p o ise  to read either file fimnat
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Both file fimnats contain the same infimnation. c a m p u s  portrays all polymers with the same list of 

properties. It classifies properties by type (eg mechanical vs electrical) and polymers by material 6mily. 

Each polymer includes a textual description.

CAMPUS portrays a concrete aggregation of properti%, so unlike die general schema, a static data structure 

could represent CAMPUS grades, and initially a class did. Instances had a fixed set of attributes, one fur ca d i 

property and one for the text. After the P o lym erS upp lie r, vhich groups property-value associations, there 

was little need fiir die old class except fiir the code generating instances firom the CAMPUS files. A subclass of 

P o ly m erS u p p lie r, Cam pusPolym erSupplier, specialises the general representation with this code.

3.1.3 CAMPUS Data in ASOI Text Format
The text fimnat can be likened to a simplified (or ‘normalised’) binary relational file. The file consists of 

tables, one for each polymer grade. The table has two columns, the first with integers uniquely identifying a 

property, the second associating the property with a value, see Table 3. The integers in the first column 

reference property descriptions in a second ASCn text file fi-om die c a m p u s  disk, see Table 4

301 Vestolen A 3512 F 
19 5 89
101 0.932
102 17
103 10
104 >50
107 550
108 500
109 250
112 50
1 1 3  1 4

Table 3: ASCII Campus data file (edited)
The file differs firom a DIF file. The fields are of fixed character size, rather than field delimited by a special

character. There are also Boolean properties where the identifiers existence rqxresents true, and its absence 

infix's &lse (ie a closed world assumption). The absence of other properties, eg the mechanical (1) property 

(05) Tensile strength’ in Table 4 is absent firom the record in Table 3, infers no measurement exists.

This structure simplifies the task of the PolymerSupplier since the file groups together all the associations of 

one grade in sequence. A jwocess itérées through die file without need to loeate each grade fin- each property. 

A binary relational file does not necessarily group relations by grade. The CampusPolymerSupplier encodes 

this difference.
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Huels Ag r.

3 Families
01 Vestolen (PE-HD) . PE-HD
02 Vestolen (PP) PP ■
03 Vestolen (PP + EP) PP+EP
04 Vestolit (PVC-P) PVC-P
05 Vestolit (PVC-Ü) PVC-Ü
06 Vestolit (PVC-HI) PVC-HI
07 Vestyron (PS) PS
08 Vestyron ( S / B ) S/B
09 Vestamid (PA 612) PA 612
10 Vestamid (P E B A ) PEBA

11 Vestamid (PA 12) PA 12
12 Vestodur (P B T ) P B T

13 Vestoran (PPE) PPE
14 Vestoblend (PPE + PA) PPE+PA
16 Dyflor (PVDF) PVDF
15 Trogamid (PA-6-3) PA-6-3
1 Mechanical Properties ( At: 23/50)
01 Density g/ml Dens
02 Stress At Yield (50mm/Min) N/mm2 Stssyi
03 Strain At Yield (50mm/Min) % Strayi
04 Strain At Break (50mm/Min) % Strabr
58 Stress At 50% Elong.(50mm/Min) N/mm2 Stss50
05 -Tensile Strength (5mm/Min) N/mm2 Strgth
06 Strain At Break (5imn/Min) % Stmijr
07 Young's Modulus (Imm/Min) N/mm2 Ymod
08 Creep Modulus Ih N/mm2 Eel
09 Creep Modulus lOOOh N/mm2 EclOOO
10 Iiî >act Strength (Izod) +238C kJ/m2 Inç+23 .
11 Impact Strength (Izod) -308C kJ/m2 Inp-30
12 Notch.iDÇ.Str. (Izod) +238C kJ/m2 Nirç23
13 Notch.Inç.Str. (Izod) -308C kJ/m2 Nim-30
14 Notch.Tens.Inp.Strength +238C kJ/M2 Tenimp

Table 4: CAMPUS property ffle
The property definition data. Table 4, is read by the Cam pusPolym erSupplier creating an automatic partial

description of the properties. This meta-knowledge includes the full name of the property, a common 

abbreviation, and units. The file also describes a set of mutually exclusive properties corresponding to 

polymer femily membershÿ (die first 15 properties, prefixed with a 3, eg 301 for ‘VESTOLEN (PE-HD)’). Each 

grade defines only one of these properties. The fiimily allows the automatic placemoit of the polymer in the 

POISE classification, see (§3.2.3).

3.1.4 CAMPUS Data in Binary Format
The binary format represents each grade in a record widi a fixed number of bytes. The main numeric 

properties are represented by two bytes each and identified by their index (position) within the record. This 

index corresponds proportionally with the identifying number found in the property file. Unlike the CAMPUS 

text repr^entation, aU properties are rqiresented, even if not applicable or unknown. The two bytes only 

represent discrete values. These values include a range of numbers — both integer and float — and special 

states such as ‘value unknown’, ‘value not applicable’ and property specific states such as ‘no break’ for 

impact tests. The record also contains the name of the grade, in a fixed length field, the femily of the grade, 

by integer corresponding to the property, and an encoded date to idoitify the version of the data.

The binary file uses the same property definition file (Table 4) as the ASCII file.
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3.1.5 The Transitive Data Mode! .
The P o ly m erS u p p lie r reads dif files, the Cam pusPolym erSupplier reads CAMPUS files. Both gaierate 

representations of gradies. The TDM (Transitive Data Model) is the temporary representation of grades 

entering POISE.

On the first attempt at acquiring data from cam pu s , the data was placed in objects that specified each 

CAMPUS property explicitly, so adopting a similar fixed data structure used by CAMPUS itself The objects 

were rigid, requiring a redefinition of the objects data structure whenever new properties were encountered.

As new properties are a characteristic of the ridi property descriptions of materials, a general transitive data- 

model was designed. This model, like the binary relations, adopts a set-like structure that collected relations. 

Any number of relations could be added. The model was not to be used for any inference so there were no 

restrictions on what relations were added since no meaning is attributed to them at this stage.

The requiranents of the TDM are simple than the representation of grades in the classification system of 

POISE, vhich does apply inferoice over the members. The TDM does not ensure consistoicy across properties. 

The concqit of the property relation only requires unique identification.

The TDM model includes some mandatory property descriptions of grades. Most only simplify the 

development of POISE. We believe the software implementing POISE could be re-writtoi so grades could exist 

within POISE without these properties but that it w ould introduce unnecessary difficulties when visually 

identifying grade entities. T h ^  properties are otherwise treated the same as any others. The mandatory 

properties include:

• A name for the grade

• The supplier of the grade.

• A text description

• A validation date.

Rather than enforcing the inclusion of these properties as input requirements, the TDM provides a default 

mechanism fin* each of these properties. The date is set at the current modification date of the file read. The

name is either derived fi-om the supplier as ‘Unknown firom <suppliei>’ or just ‘Unknown*. The text is a

copy of the name. The supplier defiuilts to the file name of the file read.

There is one exceptional property. Grades must belong to a chemical femily. This relationship is the 

beginnings o f  a  taxununtic classificaticn. It is the only mandatory re la tif  for automatic classification in the 

POISE schema. Any grade mtity entoing poise  without this relationship will not be able to take its place with
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other grades in die classification. Since there is little point is defeulting to ‘is-a ' Polym er’, and rather than 

make this relationship the sole input requirônent, a browser was proposed to allow the user to place each 

grade without the property. Since all cam pus grades specify this property, die development of this browser 

was not a high priority.

3.2 System Data Flow
The data flows fi-om source to a TDM, the temporary representation of grades. The TDM lacks any structure to 

support infisrence. The next stqi is to transfer the data in the TDM into a more knowledgeable structure in the 

classification architecture. This structure provides many different infisrences. Restructuring and placing the 

grades requires the eqiplication of infisrence rules and occasionally some interaction firom the user. As POISE 

collates more about polymers, die classification develops character. This section follows the flow of 

infimnation and the effect it has on the classification.

3.2.1 The Grade
A transitive data model (TDM) initially collects the raw data on a polymer grade as arbitrary property-value 

pairs, managing diem as a single groiip. The TDM acts as a flexible interfece between the data acquisition 

system and the classification. The next step is to find a class for the grade. The P o lym erS upp lie r object 

manages a collection of t d m s ,  and defines a mechanism for placing the grade into the classification.

The classification of grades divides into two steps. CAMPUS provides the infimnation for the first step, vhich 

is to group chemically similar polymers into a femily. This is the most specific level of class in the 

classification Using the tools provided the user manually generalises more classes and completes the 

classification. A virtue of an evolutionary structure means these two steps can occur in either ordo*. As soon 

as a CAMPUS grade enters POISE, the grade can automatically migrate to the class representing the femily.

Each class in the classification describes a data structure fisr its member grades. This structure is a more 

formal description of the grade as an instance of a class. Each relation is unique and specifically described, 

unlike the general treatment in the TDM . Figure 6  shows the structure of a single relation, linking a  g r a d e  w i th  

an attribute, with the relation qualified by a P ro p e rty  object. This object is the subject of the next section.

The TDM requests a new empty structure fi-om the polymer femily and fills the structure by matching 

properties in the structure with fee properties in fee property-value pairs. If fee TDM defines a property feat is 

not in fee structure then there is fee potential fiar fee property to be lost.

However, POISE prevents fee loss by checking fee properties of all TDMs before adding. For example, as 

result of reading a CAMPUS file, fee C am pusPolym erSupplier object collects up fee properties fî r each fiimily
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class and compares them witii the classification. Any discrq)anci^ induce a request to modify the 

classification to provide for absent properties in the schema (see §3.3). Only then are the grades added. New 

femilies are also defined vihen not found in the classification. These femilies automatically inherit fi’om the 

general class Polymer.

gioy ttym m ad '???’

Polymer
Supplier

Property

Grade : Property Value

Figure 6: Schema of the CAMPUS polymer object 
3.2.2 The Property Object
The P ro p e r ty  object has the following roles in the implementation of POISE;

• An identifier of an engineering test ^)plied to polymers.

• A unique key for property-value pairs in the TDM.

• Interprets values in the property-value field of a DIF file

• The ability to negotiate with a class on how instance represent grades.

By defeult, any two objects occupying separate locations are identifiable as different, but they may be 

semantically the same. Identifying semantically different properties requires informaticm to differentiate 

between them. Simple attributes can be compared automatically, such as a name string, but a textual 

description of the test requires a user. Two different texts can have fee same semantics, requiring a user to 

read and interpret fee text to detamine differences between properties. Either way, fee information allows 

properties to be differentiated.

A unicjue P ro p e r ty  specialises each asscmiaticm between fee TDM and values of a grade. In fee TDM, fee 

P ro p e r ty  object is a key in a look-up table. This key is fee cmly distinguishable difference between different 

property data in a  TDM.

When a P o lym erS upp lie r reads a DIF file, fee ccmtents of fee seccmd field names a property. The 

P o ly m erS u p p lie r Icx̂ ates fee P ro p e rty  object matching fee name. The third field containing fee property- 

value is a string. The P ro p e r ty  object converts fee string to an object of fee type representing a value of fee
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property. The type is an attribute of the P ro p e rty  object, > ^ch  also provides the behaviour to transform 

from a string. The TDM then associates the P ro p e rty , as a key in a hash table, with the value object.

Properties are not pre-defined. Grades will always require more property descriptions. POISE is able to receive 

new propertira at any time. New CAMPUS properties are no different from any others, cam pus describes all 

die properties in each database in a separate text file. Table 4. Each property in the file is a record with a 

name as a string, unique symbol (a shorter sequence of characters), and a string for the units of the property- 

values. POISE creates a new P ro p e rty  with this information as attributes to identify the property. Defiiults are 

available for all othCT behaviours of a P ro p e r ty  object

CAMPUS mainly defines grade’s property-values as a single rational number. Rational numbers descnbe an 

ordering and ordering is necessary for comparison; a prime function in design. So it is reasonable to assume 

all specific properties can be represented with a rational number, though other ordering representaticms may 

be ftjund more appropriate. It so hq)pœs feat all fee CAMPUS properties are quantitative properties, > ^ch  

means fee rational values are fee result of some principled test For some properties a measurable test has not 

been found, and these properties are often described qualitatively. In principle even these properties can be 

ordered and databases like plascam s-220 use rational numbers as an abstract ranking to represent qualitative 

data. In this form they do not pose any more of a challoige to deifica tion  and abstracting as qualitative 

measures. Their absence in POISE is solely a consequence of fee source of data. Nevertheless, it should be 

remembered that although fee abstract use of rational numbers for measuring qualitative properties has a 

logical basis in ordering, there is no prindple to fee measure of qualitative properties.

The defeult type attributed to a property is an object representing rational numbers. A consequence of this 

defeult can be a loss of information, such as engineering units, in fee representation of fee values. 

Associating a value wife units conveys more infi)rmation. Instead, lost infirmation is maintained as an 

attribute of fee P ro p e rty  object. As POISE developed, fee P ro p e rty  object became a  repository of Tost’ 

infirmation specific to fee values. As fee development of POISE evolves, this information finds a more 

appropriate representation, such as part of a value’s type defimtion.

The defeult P ro p e rty  behaviour also makes it easier for users to define their own properties. Initially only a 

unique name is needed. The user can feen refine fee P ro p e r ty 's  attributes later.

Objects of any language could easily model all fee roles in fee above list All are typical computing 

behaviours except for fee last role. The last role, negotiating wife a class, involves evolving fee description of
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other objects. In a class-instance language, classes define fee behaviour of other objects. The class describes 

fee meaning of each value attributed to a grade of fee class. However, properties also describe fee meaning of 

a value attributed to grade. A class describes many attributes whereas a P ro p e r ty  describes only one. 

Therefore, a materials class is an aggregation of materials properties.

A class describes objects as a single unit of description, or template. The template is not a composite 

structure, but a single description that has been contributed to by many properties. A P ro p e r ty  requires some 

functionality vhere it may define behaviours and include these behaviours into fee class template. The 

P ro p e r ty  is a tool feat adds behaviours to fee class machinery that produce grades. The P ro p e r ty  as a tool 

for constructing object templates is a unique object-oriented issue feat arises fi'om POISE. The P ro p e r ty  is a 

partial-template object^ ,̂ see §4.4.3.

This approach to class definition is sim ilar to fee ‘mixin’ style of multiple mheritance of CLOS^*. It differs as 

it does not enforce a membership behaviour wife fee P ro p e rty . Grades have no relationship wife fee 

P ro p e r ty  entity, only fee behaviours fee P ro p e rty  provides to fee class tenq)late.

The process of installing, moving and removing properties over to classes is furfeCT described in §3.3.2. In 

fee implementation of POISE, §4.4.1, addresses how classes add properties.

The desorption of a P ro p e rty  so fer has been more as a tool in fee machinery of POISE. The P ro p e rty  is also 

an entity of knowledge in fee materials domain. Some of feat knowledge is useful fijr identifying uniquen^s 

across properties. As a representation of part of fee materials infimnatian, a property should also provide:

• a text description of an engineering test, which is feen translated into,

• a rq)ository of behaviours that objects wife fee property may adopt.

The text, useful for identification, is also a repœitory of knowledge, which may be translatable into 

computable rules by a knowledgeable designer. These rules become behaviours of grades, but aggregate by 

property. The P ro p e r ty  adds fee behaviours to fee classes of grades wife fee property. This means if fee 

P ro p e r ty  moves in fee classification, so does its associated behaviours.

3.2.3 Automatic Qassificabon Declaration
Initially POISE does not contain grades or classes except for fee class represented by Polymer, ^ ic h  is fee 

root of the classification hierarchy. By restricting feis experiment to fee domain to polymer entities, POISE

can automatically classify TDMs under Polymer. The only other classification information is fee polymer

femily property. The TDM demands a polymer femily name fi-om «ich entity. Each new name defines a class 

‘polymers belonging to polymer femily named...’ and is subclassed automatically under Polymer.
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Each new polymer femily class is undescribed, with exception of its name and its membership to Polymer. 

Even Polym er initially describes only a name ‘Polymer’. The concept of Polymer is empty and in its empty 

state a poor representation of a polymer category. POISE provides specialisation of the classes through a user 

interfece, whidi is covered later, and by automatic inference feat generalise from fee TDMs.

A P o lym erS upp lie r manage fee first grade POISE adds as TDMs, grouping them by their polymer femily 

“property”. Each group requets fee classification to provide a class wife fee collective propertie of fee 

TDMS. Each request is a transaction between fee class and fee P ro p e rty  object in fee td m s . This ensure that 

classe specify a template cfq)able of storing fee property information rqjresented in fee TDM.

The class template is common to all members of fee class. Adding propertie to fee class modifie fee data 

structure of existing members, feus keeping a unified representation of grade. This unification results in a 

relational de-normalisation by polymer fiunily. Membership of fee classification impose a uniform property 

specification over fee grade that did not exist in fee TDM’s unretricted relational representation.

Ihiretricted addition of propertie aims to preserve all information obtained from fee TDMs. Even if there is 

only one member wife a P ro p e rty , all members of fee class will be modified to represent fee P ro p e rty . The 

automatic addition of propertie assume fee existing grade and any other future grade of fee class not 

specifying a property are simply sparse; fee data is not available but may be specified.

The presence of propertie in a TDM do e  not distinguish A ether fee property is a characteistic specific to 

fee grade, to fee polymer femily or to polymers in general. The assumption of sparse data could be taken 

further; fee absence of fee property in othe femilie is also due to sparse data and fee property should 

characterise all polymers. Given any property, it is potentially a property of all polymers or specific to fee 

polymer femily class, or indeed specific to fee grade itself For a solution, POISE looks towards fee nature of 

fee source, fee P o ly m erS u p p lie r.

3.2.4 Transfer of CAMPUS Grades into the POISE Architecture
The following looks at fee consequence fee primary data source, CAMPUS, has on fee ardiitecture.

CAMPUS uses a fixed unified data structure to represent all engineering properties for all polymer grades. 

CAMPUS maximises fee usage of fee fixed data structure by tending towards generic polymer properties. By 

keeping to properties measurable (but not necessarily measured) fi)r all grades avoids having useless slots 

allocated to properties that can not be measured for a grade.
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In the case of data from CAMPUS, the majority of properties describe all polymers. Since the placement of 

TDMs, hence their properties, is under the control of the C am pusPolym erSupplier object, it can specialise the 

rule for property placement The defeult place for CAMPUS properties is under Polymer. This is \\ha"e 

Cam pusPolym erSupplier puts than. Since the rule is general to all TDMs, Cam pusPolym erSupplier may 

sidetrack die P o ly m erS u p p lie r’s automatic property analysis of TDMs by class described earlier, placing all 

properties directly in the Polymer class

An interesting acception to generic propcrtios in CAMPUS is the property water absorption. This property is 

usually applicable to Nylons. It so happens that many grades in CAMPUS are Nylons, hence its declaration in 

the data structure of all polymers is not inefiBcient If this property is only applicable to Nylons, i\hat do the 

other non-Nylon grades store in the space provided in the data structure? CAMPUS uses a special state, 

represented as a string ‘n a ’ in the ASCII file, for ‘not applicable’. This causes the TDM to specify the property 

with the value ‘n a ’ for non-Nylon grades. To handle such nonsaise, the TDM could be notified the 

property translates the value that it is not an e^jpropriate representaticm of the property. What thai? If the 

property is just removed, then the Cam pusPolym erSupplier will assume the property is just unmeasured.

A state for ‘Not ^ lic a b le ’ is useful to the user ftir developing the classification of polymers. If one grade in 

a class is discovered that should not define a property then the property can not be related to the classification 

principle. Removing the property from the class will modify the data structure of all members, including 

those that define data for the property. Removal will cause loss of this data. It is simpler if the system just 

marks ‘Not Applicable’ until the property moves during re-classification by the user, rather than removed on 

an ad-hoc basis.

Two fiictors contribute to the population of properties settling down at the root of the classification. The 

assumption that the absence of data is sparse and that the CAMPUS database uses generic properties. Although 

the descriptions of the more specific classes are empty, they do not determine the principle of classification. 

The classification is based on a single property: polymer fomily membership. If the classification does indeed 

group like with like, then this similarity should be reflected in the property values of the specific grades 

grouped. This analysis of similarity was part of Spedding’s* work. Generalising over the specific grades, to 

characterise each class, is a function of the hia-archy, §3.5.

All CAMPUS properties initially describe all polymers. This results in all grades sharing a homogenous data 

structure, just like the structure in CAMPUS. This is not surprising, since the infiirmation on classification 

originates from CAMPUS, and the details of this information are yet to enter POISE. Unlike CAMPUS, the
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polymers are not left in Üiis homogenous state. The classification is not intended to remain static. Later, 

mechanisms for evolving the classification are given special consideration in (§3.3.2). The only issue at this 

stage is to prevent loss of data. The user must add knowledge absent fi’om cam pus for further classification 

to occur. , .

A further consequence of choosing CAMPUS is that it leaves the classification as a shallow hierarchy. With no 

other source of inftirmation, it is up to the user to add abstract classes between Polymer and the polymer 

femilies, thereby creating die deep levels of representation found in the polymer domain (§2.1.8). User 

interaction requires, appropriate tools and these are considered in section §3.3.3.

3.2.5 Maintenance of Unknown Data
Sparse data and the concept of incomplete descriptions both have an identifiable state. For completeness, 

POISE considers finir.states exist for data: . .

• Known

• Not applicable

• Sparse

• Unknown

Two states exist fin a property: (P eQ  n(PgC) v^here C is any class tenqilate.and P is a property. If PeC, 

then data fin the property is eitho" known, not applicable or sparse. Unknown corresponds to Pg C.

When a TDM represents a grade, there is no distinction between unknown and sparse data. Sparse data exists 

in the POISE data model because the data model recognises two states of absent data: Pe C and \^fien

PgC. When PeC is true, the property is known to be measurable, and POISE infers a value fijr the property. 

The contrary statement, PeC, does not mean the property is ‘not tqiplicable’ (na ), ie not measurable. The 

domain is not closed and properties will always exist that are measurable but are not yet represented. Until 

represented, infisrring defeults is not possible. Properties with values as n a  are a subset of PgC. For all the 

properties in the domain, POISE expects P e  C is true for all classes that can measure the property. The absence 

of a known property from a class is then assumed NA in that class. Tho^e is initially a period between a 

properti^ definition and its placement in the classification >^ere this assumption is incorrect, ie a property is 

known butPgC.

The absence of a property fi-om the system implies the descriptions are incomplete. If tiie property is absent 

from the grades description (class), but present in the system, then this indicates that the property is NA to the 

grade. When the system adds a new property, by defeult it is NA to all grades until it is cœrectly added to the
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classes. Even then, defeult values are not implicitly inferred until some grades attribute actual values to the 

property.

Requesting a NA property for a grade responds difiSa-ently from a request for a known property of a grade 

vdiich is sparse. A sparse condition results in a defeult value, and NA in an error message. With NA 

properties, it is semantically incorrect to request the property. Sparse data assum es the property has yet to be 

tested against the grade. POISE knows it is semantically correct to request the property of such a grade. The 

problem is how such a request should be handled when POISE does not know the value. These issues are 

addressed either explicitly as a behaviour of a propoty or generally ferough defeult values based on typical 

values of the property within the classification.

A response of a defeult value and a known value should also be recognised, as the two states have different 

accuracy. They both at least produce computable values.

3.2.5.1 Not applicable data
A grade describes a property as ‘Not iqjplicable’ (n a) if the grade is inappropriately grouped in the 

classification or if the property is an inappropriate d^cription in the class. The classification should 

normalise the property specification to remove such states.

The NA state is rare given the initial source of poise. CAMPUS properties are mainly applicable to all 

polymers. The state does exist for a few properties, eg water ateorption, is wplicable only to Nylons.

A property value representing the state n a  is useful for flagging a pœsible feult of the classification as it can 

indicate an unusual grade fiiat deserves a separate subclassing from other grades. Whatever the reason for its 

existence, a property behaviour that returns the state should generate an error, since a proper model would 

not normally respond to the behaviours of the property.

The NA is also useful during the process of property placement, eitha- automated or manual. Placing a 

property in a more general class is possible without inferring all grades exhibit the property. Grades not 

exhibiting the property can be given the n a  state. Later a process of relational normalisation can remove NA 

states.

3.2.5.2 U nstructured datai Text
All grades are partial descriptions. Infixrmation is usually available on individual grades before it is 

understood how the information relates to the polymer femily or polymers in geieral. The informatian can 

also be of a lesser pedigree, and not available fi)r general description. When the infimnation is better 

understood it may describe a POISE property and add to fee description of a class.
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Unstructured information gains nothing more from classificaticm than the association with the classified 

grade, poise  manages the unstructured infisrmation as text in a single collection. Such a collection of text 

descriptions exists in the CAMPUS system as a separate delimited file, with an entry for each polymer 

identified by name. A single text collection is a representation that benefits simple sequential searches 

through the text A s§qu®tial search for a key word is a simple generic tool fin- finding similarity between 

giades. Individual grades are not attributed with the text Instead, the collection maintains an index of grades 

and associates each grade with a block of text in the collection. Sub-collections of text for any group of 

polymer can be created needed.

A user interfece gives the domain expert access to the block of text for individual grades. The interfece 

aUo^vs the user to annotate the grade with unclassified informaticm in a piece-wise manner characteristic of 

prototyping. This inteifece would benefit from a Hypertext extension to the simpler text interfrice. Hypertext 

adds cross-referencing of key words and ^ e n  the user selects one, the view automatically moves to the 

reference. Many other eqjplicatioas have proven Hypertext a very successfully browsing tool, eg 

HyperCard^^. Although not considered an essential feature of the POISE system, it is viewed as being a 

potential future extension to the system. The hypertext fecility could also provide cross-referencing to other 

POISE user interfeces providing immediate access to the knowledge in POISE on polymers and properties 

described in the text

3.3 Evolution of POISE Architecture
3.3.1 Description of the Oassification Architecture.
The hierarchical classification in POISE supports fee management of domain infimnation and generates 

abstractions. However, fee nature of fee domain complicates developing a classification because fee 

principled concepts of similarity feat provide an extendable classification do not always group similar 

engineaing data useful fijr design. Without an acceptable principle for classification, and rather than 

enforcing a controversial classification) on altcsiiati\'e is to inq)lement a classification feat can change and 

evolve according to principles that are learnt from use. A philosophy of change compensates for a certain 

amount of absent knowledge still to be leamt

An empirical decomposition of fee domain aims to consistently classify like wife like. The empirical 

approach considers existing record structures and documentary sources, such as fee annotations from 

CAMPUS; Finding similarity within fee domain is not a tririal exercise. Ltda", some tools are introduced to aid 

this process. Figure 7 shows a fragment of an initial classification. It illustrates an expanded portion of fee 

polymer hierardiy togefeCT wife some of fee knoWedge-domain arguments fevouring fee structure. The
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classifications of the domain, the classes between the polymer femilies and root class Polym er, are chosen 

according to principles of microstructural scale and composition, ie a domain principle suitable fi)r extending 

the representation.
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etfayleae
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At this level in a  geneial materials 
hieiarclWi metals and ceramics 
sq>pear, but not composites due to 
the large scale of mixed 
reinforcements.

A t this level Thermoplastic is factored into 
Amorphous and Crystalline. lnq>licit in this 
division is that nearly all subclasses of Crystalline 
will be expected to benetit from the greater 
chemical and structural integrity of a  crystalline 
phase. The microstructural classification is of the 
same order as the chemical classification which 
follows.

At this level the dorm inis factored into chemical 
classes. The assunq>tion here is that the chemical 
classes subsumed under Crystalline (strictly 
“partially crystalline") and Amorphous will not 
normally violate their ancestry. A policy for 
exceptions is required, as exenq>lified by the strain- 
induced crystallization of PET. This has led to the 
issue of whether a  class ?Aiigae<t?9X.̂ lCù%  level is 
appropriate.

A further deviation with hu^reaching 
consequences, observing the principle of 
fectoring according to molecular scale, 
introduces density as an appropriate way of 
grottying polyetltylenes.

Figure 7: The factoring process
The managemait of the classification, ^riiich is described next, automatically supports:

grade behaviour consistent with classification 
specification of grade implemaitation, including data structure, 
consistent placement within classificaticm of grad% acquired by data accptisiticm system 
gcmcration and management of generahsation 
abstracting defeult property specificaticm fi'om geno-alisation 

vriiilst being able to coerce to a new classificaticm as specified by the user.

11.
111.

IV.
V.

Class-instance object-orientaticm supports tiiis management already as follows: (i) Grades of the same class 

template define common abstract behaviour ensuring consistent properties (ii) and data structure, (iii)
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Currently the placement of grades uses the unique polymer femily name as a key to the polymer class, to 

ensure consistent placement of grades. Class-instance language do not generally support points (iv) and (v), 

vriiich introduce abstract levels of rqiresentation besides specific grades and are discussed later in §3.4. 

Many class-instance language do not support schema evolution, winch is the difficult task of coercing to a 

new classification.

The lack of a computable domain principle means tho-e is no rule to automate classification. Only highly 

specialised chemical classes exist into wiiidi the grades are automatically placed. These femilies geno-ally 

group alike grad% but feere is no guarantee so there may be exceptions where it is necessary for the user to 

manipulate the classification. The user will need to specify any other more general classes as well. The tools 

for supporting evolution of the class hierarchy under user control follows.

3.3.2 Creating the Hierarchicai Classification
POISE adopts the class-instance paradigm to rqiresent classification. The following sections discuss what 

specific functionality POISE requires fi-om the class hierarchy for representing polymer classes, and the tools 

for managing the hierarchy fi-om a domain, rather than software, point of view.

The behaviour of each polymer grade can change and must be modifiable at any time. It follows that the 

language implementing POISE will need to coerce object defmitions at run-time as behaviours change. 

Changing object definitions at run time creates many problems for the stability of programs. If a language 

provides schema evolution, it must also provide consistency rules over change and provides a mechanism for 

handling instability.

POISE provides its own well-mannered mechanisms to govern object definition changes in the class hierarchy. 

From a domain viewpoint, these are the addition of new classy, the movement of class within the 

classification, and the movement of properties in and out of classes. All these issues are inter-related. A new 

class will involve all three. The movement of properties in an existing classificaticm is considered first

3.3.2.1 Adding and removing a property
A property is a partial template descripticm that ccmtributes to the complete template defined in a class. How 

the property achieves this is specific to the implemoitaticm language and not an issue here. Regardless of the 

implementation, the property will abide by rules of inheritance.

Whoi adding a property to a class, POISE ensures the property is not declared mwe than once alcmg the same 

line of inheritance. Besides the more specific declaration being redundant, if allowed by a class the repeated 

property would correspond to a repeated allocation of resources by the class in the grade’s data structure.
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If a specific polymer family specifies a property, and later it is found it £ )̂plie8 to a more general class of 

polymers then the general class should add the propoty. The specific polymer family thai removes the 

property, and instead inherits the property fi'om the general class.

If all the subclasses of a superclass define a property, POISE infers that they should inherit the property fi'om 

the superclass. The activity of moving a property defined in a subclass to its superclass is known in POISE as 

promoting. The infiîrence to promote assumes a closed domain, eg initially the grades may all define yield 

strength, causing the promotion of the property to Polymer. LatCT an addition of a polymer that does not yield 

will invalidate the generality of the property.

TTie ^jpropriate place for a property may be known before adding grades, so the promotion should also be 

under user control. Explicitly promoting each property is labour intoisive, so an explicit denial of promotion 

is more useful than explicit prumulion. Consequently, POISE does automatic promotion wily wfeen addmg a 

property. The user can reverse or prevent this promotion by explicit removal of the propaty.

Removing a property firom a general class of polymers has two possible consequences. Either the class and its 

subclasses no longer exhibit the property or each subclass adds the property so only the general class no 

longer exhibits the property.

Removing a property fi'om a class is not the same as removing a property fi'om the descriptions of all 

members of the class. The class only abstracts properties firom its members. The members still express the 

property. When removing a property fi'om a class, the more specific members of the class should 

automatically add the property. When a property moves fi'om a superclass to its subclasses, the property is 

demoted. Demoting a property never affects the behaviour of grades.

Demoting is only possible if grades are in subclasses, since in most class-instance languages instances can 

not specialise their class description, ie cannot add properties to individual grades. When a property demotes 

firom a class with instances (grades) the property cannot pass to the individual grades. In this case a 

destructive removal occurs. It is destructive because any values the grades maintain fi)r the property will be 

lost, as their data structures will no longer support the property value.

Occasionally, the user wants to remove a property, rather than demote i t  Such as when the user wishes to 

reverse an addition of a property. So both demotion and removal are supported. When removing a property 

from a superclass, it is possible that the user is unaware of the consequence to otho- subclasses. It is possible 

that the property was explicitly added to a subclass earlier and a promotion caused the inheritance of the
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property from a superclass. Removing the property from the superclass, rather than demoting the property, 

will conflict with the earlio- addition of the property to the subclass. A similar case occurs when adding à 

property to a superclass that was earlier removed from a subclass: These actions are in conflict, but not 

directly reversed actions. In sudi cases, the usa* is notified.

For the user’s convenience, the tool providing these facilities should visually convey an add as the reversal of 

a remove and a demotion as the reversal of a promotion. This eases fee reversal of erroneous actions.

33.2.2 Adding abstract classes
Adding an empty polymer class as a specialisation of Polymer extends fee classification. The class can then 

move to inherit from a class other than Polymer. Ofeer classes can move to inherit from fee new class. These 

functions allow fee creation of a taxonomic classification.

The class needs a name, which as text, is a minim al visual representation of fee class. If fee class is a polymer 

fam ily  from CAMPUS, fee nam e will link grades from CAMPUS to their class in POISE.

3.3.2.3 Moving elapses
Moving a class is a major modification to fee classification. A move changes fee superclass-subclass 

relationships and fee subsumed properties. Wife a change of superclass, fee inheritance of properties 

changes. The effect on fee class template is twofold: properties no longer inherited are added to fee class, and 

fee data structure extends to cater for fee addition of newly inherited properties. Commonly inherited 

properties, between new and old siq>erclass, do not cause change.

There are two kinds of move possible. The first moves a class and all its subclasses to a new superclass. The 

second moves a class but all its subclasses remain by inheriting directly from fee old siq>erclass. Moving fee 

whole branch of the classification (fee subclasses wife a class) is thought to be better understood by a user.

Moving whole branches prevents one inconsistency pœsible within a hierarchy: circular inheritance. Circular 

inheritance occurs when a superclass inherits from one of its own subclasses. By moving a whole brmch and 

allowing fee branch to inherit only from classes ofeer fean those in fee branch, prevents circularity.

3.3.2.4 Merging classes
The n am ing of polymer fam ilies is not universal so feCTe is fee potential for fee same real-w^orld polymer 

fam ily  to be declared under two different names, eg Nylon and Polyamide. Merging two classes first requires 

both classes to share fee same property structure. Normally this will be fee umon of fee two property 

structures creating a more complete description. The next stq) coerces fee structure of fee instances (grades) 

to fee unified structure.
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3.3.3 The Interface ,
The hierarchy-editing interface is primarily a visual representation of the hierarchy. The simplest

representation is a tab-indented list of the names of the classifications. The tabs are set according to the level

in the hierarchy. The order of the list is such that any class inherits from the next class above it, which is

printed at a lower level (one less tab space). An example is given in Figure 8 where PA6 and PA12 both inherit

from PA, which is the next polymer class up the list at a lower level.
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Figure 8: POISE hierarchy editing tool
Users select a class by choosing the rqipropriate line in the list with a pointer input-device (eg a ‘mouse’).

The view (an area displayed on a computer screen) then displays the information about properties of the class 

in the subviews below the hierarchy. From these subviews, the user can move properties around the hierarchy 

in an orderly manner.

3.3.4 User Interaction with Properties
Once the user has selected a class, three subviews are updated to display; the properties inherited by the class 

(the left view); the properties specialising the class (the centre view); and a view with all other properties, 

those considered not applicable (the right view). The right list will exclude the properties of orthogonal 

classes (§3.6.2) which can apply to any grade.
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The editor keeps a record of all the property modification, for consistency checks. The interface checks each 

change and determine wfeen the user requests conflicting actions. Pull-down lists marked “added-properties” 

and “removed-properties” display the history of actions on the selected class.

There are four dedicated buttons for manipulating the properties of the class; Add and Remove on the right, 

Promote and Demote on the left. The proximity of these buttons encourages fee user’s understanding of 

movements between fee lists.

33.4.1 Adding a property
Properties listed in fee pane on the right of Figure 8 are not subsumed by fee selected class. The class could 

add these properties by selecting one and pressing the Add button next to fee list. The lists are updated wife 

the property removed from fee right list and added to fee centre list. The list in fee centre pane is fee 

properties declared specific to fee selected class.

The editor checks all subclasses and recursively their subclasses, before adding a property to a class to see if 

any subclass has explicitly removed fee property. If the property has been removed feen iifeeriting the new 

property is a conflicting request This raises a N otifier that provides the option to eifeer abort the add, 

enforce fee add despite the earlier remove (hence adding fee property back via inheritance), or add fee 

property to all subclasses except those in direct descendant from fee class that had fee property removed. 

This last option will cause all subclasses to have the property except fee one that had the property removed.

After adding a property POISE analyses fee complete hierarchy. If fee property is common in all fee 

subclasses of the selected class’s superclass, (fee subclasses will include fee selected class) feen fee editor 

automatically promotes the property to fee superclass. In wfrich case, fee property moves from fee right list 

over to fee left list in Figure 8. This process enriches fee abstract classes and the hierarchy as a wfeole. If a 

record of fee property removal exists for fee superclass then feis automatic promotion will be vetoed.

33.4.2 Removing a property
Removing a property, like adding, starts by selecting fee property in fee centre list and pressing fee remove 

button. The property moves from fee centre list to fee right list The editor first checks subclasses for any 

previous adds of the property that now rely on fee mheritance fix)m the current class. If a conflict occurs a 

N otifier opens wife fee following options: force fee remove despite fee previous add, abort fee remove, or 

remove fee property but add it back to fee subclass that had add fee property previously (like demotion, but 

only to the conflicting subclass).
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Removing a property will eventually lead to loss of data. This has not yet occurred at this point in the 

procedure, but will h^jpen lata" when the user accepts all changes to the hierarchy. Reversal is possible up to 

that point without loss. Any action providing the grades with the property later will maintain the data.

3.3.43 Adding and removing classes
The user can add a new class by selecting the menu bar and choosing the “Add Class”

option. Defining a new class abstraction has two requiranents: a name and a class fi'om which to inherit By 

selecting the menu, a field oitry window opens fi)r fee user to type fee name of fee class. The class inherits 

by default fi'om Polymer. The user can feen add properties and move fee new class.

33.4.4 Moving classes
Moving a class involves selecting it in fee hierarchy and feoi designating a new superclass fi'om which it 

inherits. A select and drag operation by the user can achieve this elegantly. The user selects and holds (keeps 

fee mouse button depressed) a line containing fee text of fee class’s name, feen drags fee mouse. As fee 

mouse moves up wife fee text of fee name, fee classifications above are highlighted, conversely in fee down 

direction. In Figure 8 PVCP can be seen over fee classification pvc. When fee editor highlights fee new 

superclass, fee user releases fee mouse. If fee move passes consistency checks feen fee class becomes a 

subclass of fee new superclass. No changes occur if checks fail, eg releasing fee class on one of its own 

subclasses. The editor updates fee display.

3.3 4.5 Removing classes
By selecting a class feen ordering fee com m an d  via fee menu, fee user can remove classifications. The 

appropriate w arn in g s  are an n ounced  accordingly. The editor does not change fee POISE classification, only 

fee display, until fee user commits all changes. All fee changes can be aborted at any time, including class 

removals. Currently, aborting a single class removal requires aborting all modificatimis.

3.3.5 The Data Model underlying the Hierarchy Interface
A  single change to fee schema of fee polymer data definition can affect fi'om a single class containing tens of 

objects to every object in the schema, an order of thousands of objects. Often a user will not make one 

change but will have a number of modifications. Most of fee changes will affect fee same objects, eg 

removing a property firom C ry sta llin e  and adding one to Polypropylene, both affect Polypropylene. It 

would be sensible feen to use a batch processing technique rather fean fee interactive processing of each 

change.

Batch processing requires a description of all fee changes to be made and feen a single process to optimise by 

reduction and perfijrms those changes in one step. A model, which is descriptively parallel to fee polymer
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hierarchy, records changes entering the user interface and performs the consistency checks as described in fee 

previous sections.

Two parallel hierarchies have two advantages over interacting directly wife fee polymer hierarchy. Firstly, 

fee classes of fee polymer hierarchy have instances that they must represent consistently at all times. So a 

single change requires as much coercion as many changes and, since it is mwe common to evoke many 

changes at once, batching fee changes is more efficient The parallel structure does not have to coerce 

instances. The second advantage is a separaticm of consistency checks and u s c t  interface protocols from fee 

polymer hioarchy. These are properties of fee parallel hierarchy. This leaves fee polymer hierarchy a 

‘cleans’ structure for representing polymer behaviours.

The parallel structure, known in POISE as fee POISEHierarchyChanger, performs fee consistency checks and 

raises a N o tifie r when fee user performs conflicting actions. It collects fee changes from fee editor intafoce 

until fee user commits. The POISEHierarchyChanger only feen updates fee polymer hierarchy.

3.4 Levels of Representation
So far, fee concept of fee class imposes property descriptions on grades. Each class clôtures similar 

behaviour in a template of properties, common to all members. The hierardiy dcplicitly declares many levels 

of classification. Each level classifia a population into exclusive classes of similar grades.

The class template abstracts properties that all members of fee class exhibit. These are fee defining 

properties. Comparing fee class tonplate to a design specification can only establish if all members will meet 

fee design requiremoits. For design, it is more useful to establish if any specific members might meet fee 

requirements of a design. A similar logical statement is if no members meet fee requirements. If this is false, 

it can be assumed a member might meet fee requirements.

Two abstract inference rules determine if fee requirements of a design are not satisfied. They do not 

determine if they are satisfied, but if they are true feen fee requirements are definitely not satisfied. The fii st 

rule fijr an unsatisfiable design is if fea-e is a single property requiremait not satisfied. This is true if a single 

property is not applicable to all members of a class, or fee required value is not found in fee class.

The second rule for an unsatisfiable design is if fee union of all properties will not satisfy a property 

requirement, feen no individual member will satisfy fee requirement The union of properties is a collection 

of ever)' property dcscriptiono exhibited by the grades and a union of the values for each property. The union
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of the values must infer if a given value is definitely not in the union, but does not need to infer if a given 

value is in the union.

This union of properties is a diaracteristic description of a class of grades. The union describes, as opposed to 

defines, the properties of a class. It is an abstraction capturing properties the class can at best satisfy.

The union is an optimistic abstraction of the members in a class. Logically, if the union satisfies any design 

rule thoi there is still a chance a member of the class can satisfy the rule. Additionally, if a member of a class 

satisfies a design rule then the union must also satisfy the design rule. Since the union can substitute for any 

member in a logical design rule, it is an abstract representation of those members. The union is an abstract 

polymer description.

The union of the values in an abstract polymer must infer a given value is definitely not in the union. A 

simple range can satisfy this criterion. If the given value is outside the range then the value is definitely not in 

fee class. The range is a very course measure. Knowing fee distributian of fee values may give a measure of 

probability fee value is in fee class. Whatever fee abstraction technique used, fee abstract value is a function 

of fee set of values fi-om a population of grades. In an object-oriented system, feis function can be specialised 

per property.

Each class abstracts a different population of polymers. A hierarchy organises feese classes and fee 

subclasses inherit defining properties fi-om their siqjerclasses. What is fee relationship between fee describing 

properti^ of subclasses and their superclass^? An inference mechanism similar to inheritance exists fijr 

infiaring fee properties of fee abstract polymers that describe classes, but it tqjplies in fee opposite direction 

to inheritance. RafeCT than subclass inheriting from their superclass, fee describing properties of superclasses 

“inherit” from their subclasses and fee most specific subclasses “inherit” fee descriptive properties of their 

instances.

The class template reprraents fee defining properties of instances. Inheritance infia-s fee class template by 

recursively ^pending fee specific instance variables attributed by each class down fee hierarchy. A template 

for fee describing properties is quite different, but by reversing direction, fee inheritance can also infia* this 

template during abstraction. The descriptive templates from each subclass combine to create fee template 

their supo-class.

In a strict hierarchical classification, fee grades need only be abstracted fr>r feeir immediate classes, which 

produces an abstract polymer. These abstract polymers are furfeer abstracted to produce the abstract polymer
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for their superclasses. The superclass abstracts the lesser abstract repr^entations from its subclasses (eg 

Nylon abstracts all the specific njdon families, Nylon66 and N ylonl2 , etc). Since the hierarchy is strict, a 

superclass’s subclasses are mutually exclusive sets and feere is no duplication of infiarmation. Mutually 

exclusive sets are easy to union, since the intersection is empty.

Abstracting grades for only their mœt specialised class makes it much easier when adding, or changing, a 

grade. POISE need only update the abstractions of the most specialised classes, ie fee class of fee grade. The 

more general classes feen dynamically injfer fee update along fee hiorarchy.

Whai adding a grade, eadi known property-value adds to fee corresponding set of property-values in fee 

abstract polymer. When a property changes, fee set must remove an occurrence of fee old value and add fee 

new value. The greatest effect occurs when a grade adds an orthogonal view. When this first occurs in a 

class, fee abstract polymer descriprion must also add an orthogonal view to represent fee extra properties. 

Whatever property POISE provides to describe a grade of material, it must also be available to describe fee 

abstract polymer.

3.5 Abstracting Knowledge Creating General Concepts
Abstracting reduces information, ciqjturing fee important concqits and discarding fee details. At fee initial 

stages of design, when fee possible approaches to fee problem are at feeir greatest and require assimilation of 

large quantities of infijnnation, feese reductions are important Assimilating abstractions rather than fee large 

quantities of detailed infimnaticm feey ciqiture makes fee initial stages of design easier fi)r fee user.

In statistics, a normal distribution is an abstraction over a population of \'alues, which reduces any number of 

values to only two numbers, a mean and a standard deviation. Comparing means and deviations is easier fean 

population profiles. However, not all populations fit fee characta- of a nmnal distribution. Care is needed not 

to lose important inftirmation in fee process of reduction, so causing mis-representation.

The statiotioal qualit)’ of fee values in polymer populations has not been fee sutgoct of a formal study. A 

study is appropriate only when gi '̂on a quality peculation and an expert statistician detenmnes an ^propriate 

statistical method. Regardless of fee method of reduction, fee gœeration and managemait of the abstraction 

would still be a fimction over fee population. Extaisive statistical analysis for improving accuracy of abstract 

entities would probably be of little value while abstract aitities are only used as approximate selection 

criterion. Consequently, POISE uses a simple representation of fee values in polymer populations.
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The abstraction POISE generates from a collection of single point data, properties with a single number value, 

is a hlstogiam. A class Histogram instantiates objects which manage the set of single point data, and provide 

the behaviour necessary to display histograms and logically calculate with histograms. Although this 

technique is interesting in itself the primary interest is in the management of abstracted general concepts.

A histogram is a set of consecutive intervals along an ordinate, each with a tally of occurrences within tiiat 

interval. The H istogram  constructs the occurroices of values falling into each interval from a population of 

values. The H istogram  is usually viewed graphically as a series of bars on an ordinate, with the length of the 

bars proportional to the tally. The H istogram  is an empirical reduction of a population rather than one based 

on the expert knowledge of the statistician.

3.5.1 Consistency between Histograms of the Same Property
An abstraction is best when it c^tures important information. Two objectives, the ability to compare and to 

query, judge whether an abstraction captures important infi)miaticm. For the Histogram, these two objectives 

depend largely on the ordinate intovals.

Comparing a propoty between two abstract polymers involves comparing H istogram s. When comparing two 

H istogram s the accuracy depends on the alignment. H istogram s are said to be aligned if fee intervals start at 

fee same positions on fee ordinate, and fee intervals are of fee same size. If two H istogram s have different 

alignments, feeir comparison is visually distorted. When aligned, fee tallies of individual bars are 

comparable.

Ofeer visual issues affecting fee accuracy of a comparison is fee size of intervals. A H istogram  wife few 

large intervals has larger tallies. Consequoitly, fee ‘tally height’ by ‘interval width’ area feat a bar covers is 

larger, yet fee data is fee same as wife a H istogram  wife many small intervals and low tallies. A H istogram  

wife large tally seems visually to state feat feo-e is a number of members (‘tally’ of them) of fee population at 

every point along fee interval.

Whether large or small intervals should be used is a question of how accurate an answer is needed. If fee 

interval is 1.0, and a query requires an answer of ± 0.5, feen all members in an interval will satisfy fee 

accuracy requirement and hence fee tally is an £q>propriate response. Each query though has a different 

accuracy requiremoit

The alternative is to derive an interval aj^r(^riate to fee population. An interval too large o-eates one large 

tally. An interval too small ermites a number of tallies equal to one. A visually appropriate interval is
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somewhere in between. Above all, the interval must be fee same for all H istogram s representing fee same 

property. Both fee distribution of the population and generally acceptable levels of accuracy for queries are 

qualities of each P ro p e r ty  object.

Comparisons are always between two H istogram s representing fee same property. To ensure that fee 

alignment is fee same, POISE keq>s fee alignment as an attribute of each P ro p e r ty  object. The attribute is a 

H istogram P aram eter object feat POISE queries whenever it creates a new H istogram  for a particular property. 

Once fee alignment is set on a H istogram  it is impossible to change fee alignment The H istogram  only 

represents property abstraction. A more permanent source of knowledge is always fee grades that make up 

fee population.

Calculating suitable parameters for a particular property is not simple. Initially few values exist for a property 

and there is nothing to infer an alignment. The parameters can not be set untü POISE achieves a suitable 

population. In fee meantime, an ImmatureHistogram maintains fee actual property values of fee members of 

fee population, rather fean a set of interval-tally pairs. From these values, an ImmatureHistogram can 

calculate new interval-tally pairs for any alignment.

Im m atureH istogram  depends on fee H istogram Param eter of fee property feey represent to ensure feey all 

present fee same alignment The H istogram Param eter maintains a reference to all fee Im m atureH istogram . 

As fee population of a given property grows, fee H istogram Param eter object recalculates fee alignment 

using fee record of values in all fee Im m atureHistogram . Once fee population for a property reaches a certain 

size, POISE deems fee alignment accurate and fee im m atureH istogram s mature. Each Im m atureH istogram  

coerces to the mature H istogram  class using fee latest alignment.

3.5.2 Consistency between Histograms and Populations
The general classes infer feeir H istogram s from fee H istogram s of their subclasses. The H istogram s merges 

by summing tallies jfar common intervals. These common intervals must align. For a given property, the 

alignment of fee intervals in histograms must be consistent to support fee recursive subsumption of 

histograms up fee hierarchy.

The p ro p re s  of more general abstract polymera are consistent wife fee population feey subsume by 

dynamically merging histograms of fee mere specific abstract polymers. Each grade in fee population is a 

member of only one specific polymer class. Each grade notifies its class of any change, which also represents 

fee abstract polymer, so fee whole hierardiy of abstract polymers maintain a consistent abstraction over all 

grades.
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Finally, H istogram s are polymorphic with the single-value properties of grades, because the median value in 

the Histogram answers any value-specific queries. Although this is not an accurate repr^entation of an 

abstract value, it demonstrates the necessary polymorphic behaviour. The H istogram  therefore satisfies all 

the objectives of a property-value describing an abstract polymer.

3.5.3 A Summary of Functionality for We Abstract Poiymer 

The following features have been identified;

• At the most specialised level of representation, collect the values for each property exhibited by 
members of the class.

• Reduce the populations of values into abstract Histograms.
• Maintain changes to individual grades and the addition of new grades.
• H istogram s to be polymorphic with any grade’s value and abstract polymers polymorphic with the 

grades.
• A subsumption mechanism that dynamically merges the populations of specialised classes to create 

the populations for the more generalised levels of representation.
The issue of polymorphism has multiple facets. In theory, it means the abstract polymer must respond to any 

message appropriate to any grade it subsumes. The abstract polymer subsumes many types of grades. The 

type of the response to the message must also match the type of response the grade would give.

The requirements for polymorphic behaviour and subsuming the populations fi>r more generalised classes 

both suggest some kind of reversed inhaitance of grade structure to cater for the wide range of property 

aggregations possible. Characteristics at the bottom, or specialised end of the hierarchy, inherit and merge to 

describe the top end of the hierarchy. This reversal reflects the bottom-up nature of generalisation, as 

opposed to the top-down nature of abstract property description imposed on grades.

From the domain viewpoint, the class defining the structure of the grades is the same concept as the abstract 

entity. If this is to be the case in the software model, the behaviour of fee class needs an extension.

3.5.4 Extending Qass Behaviour
The class has two roles within fee poise classification:

• As an abstract description, declaring behaviours and states for polymer grades.

• A domain representation of an abstract polymer.

Wife feese two roles come a number of behaviours to maintain and manage fee population of a class. The 

implementation of fee two roles was found, on fee whole, mutually exclusive. The same entity combines the 

roles because this is how fee domain views them. It is also convenient to share fee same hierarchical 

structure. It does not concur feat fee two roles relate functionally. As result, fee class may be kept in fee 

single hierarchy, ipfeile packaging fee implementation of abstraction into a separate object. The class keeps
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this object as an attribute, and so indirectly keeping its hierarchical pœition. The object in turn provides the 

abstracting services for the class. The standard class-instance relation declares behaviours and states for 

polymer grades, while with m in im al extension to classes, a separate object can extend the classes behaviour 

to include services for generalising and abstracting properties amongst grades of the class.

3.6 Orthogonal Property Classification
An appropriate classification distinguishes difference and similaritie between classes with propertie that 

depend solely due to differences in materials. Therefore, an tqipropriate polymer classification will describe 

propertie that vary solely due to differences in material under test and are independait of other design 

perspectives. Grades inhoit and specialise feese properties. Many properti^ though are not solely dependent 

on a gaieric material pCTSpective, requiring additional extensions to fee grade’s inherited template for feese 

properties. These extensions are rarely unique to a single grade, but describe orthogonal classes of grades 

applicable to all Properties depending on extreme geometry, like films, is an example. The nature of a 

material can prevent rolling into a film. Grades feat can be blown into films forms an orthogonal class. 

Properties describing this extreme geometry should specialise fee template of feese grades.

M ultlple-lnherltonce  

Superclass 1 Superclass 2

Subclass

Single-Inheritance

or
KS3G

principled membership fimctions 
  orthogonal manbership function

Figure 9: MI vs. standard subclassing effect is the same
The problem is how to extend fee description of grades without losing fee taxonomic separation. Orthogonal

descriptions require a mechanism fi)r suteuming different representations independent of taxonomic 

classification. Extending grade descriptions by subclassing and ferough multiple inheritance mixes fee 

orthogonal classes wife fee taxmomic classes. Figure 9 shows multiple inhaitance and subclassing in class 

based languages have fee same effect on classification. Siçerclass 1 and Superclass 2 are orthogonal 

descriptions of fee same domain. Both represent all grades but a grade can only belong to one immediate 

class. Each classification principle carves up fee membership to subclasses differently and in conflict. In

84



Otject -Oriented Softwtie Repieuntation of Polymer Meteriali bfbnnation in Engineering Deiign

single inhoitance, taxcmomic classification chooses one or the ofeer. Consider fee membership function ^  

which includes grades wife both property §  and property § . If Superclass 1 classifies wife single inheritance 

on fee principles of Superclass 2, fee members of ̂  can fium a subclass. Wife multiple-inhoitance, fee 

into^section subclass forms wife manbers of Once members of separate from members of §  (or § )  

by subclitssiug, it is impossible to further classify grades with property §  (or

In an extreme case, it is possible fee properties are very specific and furfeer subclassing is not necessary. In 

an extaidable classification, fee only way to ensure no furfeer subclassing would be to have a unique class 

for each grade (ie remove fee class based premise), since fee potential to furfeer classify always exists in a 

class wife two different entiti%.

Mixing fee representation of grades and fee classification in conjunction wife multiple inheritance dilutes 

each taxonomic perspective. All fee different orthogonal taxonomies mix, combining classes of all 

permutations. This dilutes fee significance of classes that form individual perspectives. Variance within a 

perspective is independait of ofeer perspectives and is feerefiire a valuable path to investigate design 

variation.

To illustrate fee concerns of dilutirai and extensibility, take an example of a film made from a Nylon grade. 

Multiple inheritance would define classes Film  and Itylon feen a subclass N ylon-Film . Now consider if 

taxonomy classifies Nylons into Nylon66 and N ylonl2. An exclusive class of Nylon66 and N ylonl2  is not 

possible since some are members inherit from N ylon-F ilm  and some only from Nylon. The common solution 

is to remove N ylon-F ilm s and add N yon-66-Film s and N y lo n -1 2 -f ilm s. Then consider if fee user classifies 

on N y lo n -F ib re s . What happens if some Nylons fabricate both films and fibre? Are there feen Nylon-66, 

N y lon-66-F ilm , N ylon-66-F ib r e  and N ylon-66-F ib re -F iIm ?  Such a structure complicates simple queries 

on Nylon properties. Moreover, fee pomutations do not stop here wife this small example. Consequently the 

taxonomic classification loses structure on mlroduciug multiple inheritance. What class a grade is finally a 

member of is no longer determinable from a top down search unless its form is known.

In conclusion, POISE requires fee definition of polymer classes that do not completely describe fee grades 

bclougm g to fee class. Some describe fee taxonomic decomposition. Others act as orthogonal classes 

describing properties tonplates for completing fee description of fee grades. Taxonomy requires feese 

descriptions to remain separate. The implementation of grades requires fee two to combine.
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3.6.1 Composite Structure for Orthogonal Descriptors
Objects can altonatively share behaviours th rou^ a composite structure. Considered polymers as a gaieral 

polymer description, “General Poly”, that owns a specific polymer description, “Film properties”, as 

illustrated by Figure 10.

(poly film) tearStrength

1

(^ neral P o l^  #±Lim

?ropert^

t t t e a r s t r e n g t h

Figure 10: Composite tempiate sharing
To access specific details — the film property ‘tearStrength’ — the polymer, “poly”, is first asked fi)r the

set of film properties with the message ‘f i lm ’. The message f i lm  might achieve this by returning the object 

F ilm P ro p e r tie s .  This object is then the receiver of the message te a rS tre n g th .  There are the Allowing 

problems with this representation;

• A G eneralPolym er is not a film. It do% not respond as an object with film properties, ie it is not 

polymorphic with F ilm P roperty . Senders, objects that evoke the behaviour, must know wtere to 

send the message #film .

•  F ilm P ro p e rty  is not a polymer. If asked for the name of the polymer (a property of G eneralPolym er) 

it can not respond. F ilm P ro p e rty  is not polymorphic with polymers.

• The general polymer has no control over the property access of film properties. After the message 

# f ilm  any message may be sent to the F ilm P ro p e rty  object and these messages do not pass through 

the G eneralP olym er’s interfiice. Hence there is a hole in the enc^sulation around die polymer entity. 

It is an association rather than an aggregation. F ilm P ro p e rty  is not a separate part of a polymer, only 

part of the description of one whole entity.

3.6.2 Managementof Orthogonal Descriptors
Polymer classes provide a template tiiat describes the behaviour of grades. An orthogonal descriptor extends 

the descriptions of grades. They too contribute a template of behaviour. In class-inslanoc languages, classes 

are templates of behaviour, so it is common to find classes representing orthogonal descriptors.

POISE extends the fimction of the polymer classes, and similarly classes representing orthogonal descriptors. 

The descr^tims can add and remove properties. They have their own populations of grades and can abstract 

generalisations over those grades. Orthogonal classes difiGsr from polymer classes in that the orthogonal 

classes are only meaningful in the context of a particular materials class. For example, asking Film s for their 

density is only meaningful within the domain of polymers. The query is really the density of polymer films.
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The quay is more meaningful directed at the Polymer class. Efforts were made to extend the abstracting 

mechanism within the Polymer hierarchy rather than extending it to the orthogonal descriptors (§3.6.4).

3.6.3 Adding Orthogonal Descriptors to Grades
There is no such thing as a ‘new’ orthogonal entity. All grades are first classified taxonomically tiien classed 

ordiogonally. Orthogonal descriptions extend existing grades.

Adding an orthogonal description to a grade extends the grade’s existing data model by using the class 

template of the orüiogonal descriptor. This class provides a data structure and methods, which extend the 

grade’s behaviour. The problem of how to merge the templates, one from the polymer hierarchy and any 

number fi-om orthogonal descriptors, under the same object interfece remains.

3.6.4 Aiostraction of POISE Knowledge in Orthogonal Descriptors
Although taxonomic classes of polymers do not define orthogonal properties as part of their template, 

individual grade entities do exhibit orthogonal properties. Although an orthogonal property is not a defining 

requirement of membership to the taxonomic classes, each property is a valid desorption of a subset of 

members in the taxonomic domain. Any property particular to a subset is a valid generahsation of a 

taxonomic class when the property itself fundamentally limits the domain. For example, take the property of 

minimum film tiiickness. The distribution of minimum film thickness over all P o ly e th y le n e  is a valid 

generalisation of P o ly e th y len e . The property does not exist for all kinds of P o ly e th y le n e  but where the 

property does exist, its variance is a measure of p o ly e th y le n e  in general.

When a grade adds an orthogonal extension, there is no need to affect the polymer class abstractions until a 

grade adds an orthogonal property-value. The grade then notifies the class abstraction mechanism as it does 

with all property updates. It is up to the abstraction mechanism to recognise that the property is orthogonal 

and to cater fiar the new property by extending the abstraction’s own structure with the same orthogonal 

template. The abstraction mechanism maintains a separate population fijr each orthogonal view. The user can 

selectively view abstiactiûiis using an orthogonal perspective (ie select fee orfeogfmol subset wifein fee 

taxonomic class).

3.7 User Interrogation
3.7.1 Histogram Visualisation: The Comparator
H istogram s are very easy to display and make good tools for conveying fee abstract knowledge of a general 

polymer. The Com parator allows the display of any combination of H istogram s of the same propoty in a 

resizable window.
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From the C onpara to r, the user can select individual intervals or a single interval of any size across the whole 

Com parator. The tool searches for grades finding those in the selected interval(s). Displayed as a group, the 

user can browse them individually or even as a H istogram  against different properties. This allows the user to 

dynamically specify any arbitrary abstraction besides those in the taxonomic classification.

There are a large number of groups of polymers in POISE, each with different property abstractions. The 

C om parator provides intelligent options to the user fi)r specifying the abstraction to display as a H istogram . 

The initial selection might include all possible polymer classes, OTthogonal classes or properties. If a property 

is chosen, then the Com parator limits further selection to classes supporting the selected property. This limits 

both the classifications and the orthogonal perspectives available fi)r selection. Once a class is chosen only 

the properties in that class become available. The Com parator displays many abstractions but only against 

one property. If the user specifies many class attractions, the only properties available are those common to 

all the abstractions. For this kind of consistency, the Com parator accesses global resources such as the 

Polym er hierarchy, a list of all properties and, more specifically, maintains a reference to the abstract 

polymer, not just fee histogram displayed.

C om parators can scale fee display of histograms, changing the visible size of the intavals. This is not only 

an issue of conveniently fitting windows on a computer screen, but to offeet fee effiscts perception has on 

information. Histograms can be deceptive depending on fee interval size chosen. By modifying fee scale a 

user can visually bias fee interval size and tally for each comparison. Comparing properties feat fee user 

perceives as significant can be made larger. Although fee technique is fer fi-om quantitative, it does provide a 

quick qualitative feeling as to whether polymer selection is satisfying design requirements. The technique 

also identifies polymers not belonging in feeir assumed groupings.

Scaling displayed views is challenging. The axis changes in only one dimension, keeping constant space for 

labelling which relates to fee text size of fee numbers displayed rather fean fee size of the view. The view 

labels more numbers as fee axis gets longer and less labels if space is limited. Given an arbitrary maxim and 

minimum and fee space fi)r display, fee view determines fee numbers on fee axis. Even fee type of number 

on fee axis affects clarity. The view avoids rational numbers preferring integers.

3.8 Database Management
POISE contains a database management system. Throu^ inteUigent management (classification and 

organisation) and through presentaticm wife gnq)hical interfeces, POISE conveys the meaning of new data 

informatively to fee user, hence transforming data into information. Both fee data entering POISE and fee

88



Object -Oriented Sofiwire Reprewnutiom of Polymer Miteriili bfbrmition m Engineering Deiign

organisation transforming the data must persist. A classical program persists as an application stored on 

secondary storage and when the user commands the computer’s operating system, it loads into primary 

memory. The u sc t  supplies the data each time the program activates and returns some result, so neither the 

data nor the result persist Alternatively, the user may store input data on a file. Through iterative changes in 

the data on the file, the user changes the nature of the process. The result may also contribute to fee data in 

the input file. A database is an ^jplication that manages files of persistent data.

One source of data in POISE is fee descripticms of polymer grades. These already reside in files of a simple 

format for easy management although poise also receives complex data fi-om fee user, especially on data 

structuring and organisation. Through fee classification environment within POISE, fee user adds value to fee 

raw data by virtue of the ctructuring and boha\iour associated wife objects molting up fee classifications of a 

domain. The simple format of fee polymer data is incapable of recording all fee infirmation within POISE.

POISE distinguishes between fee format fir- archiving and exchanging data within or between industries 

(suppliers and users) and its own internal representation. For data exchange, fee important fector in fee 

format is its simplicity and universal acceptance. One example is fee DIF structure of binary relations 

(§3.1.1), and although other firmats exist, third party ^phcations can convert data between simple formats. 

For fee internal representation of fee complex objects within POISE, fee important fiictor for storage is an 

expressive structure c£q>able of representing fee diversity of these objects. The expressiveness is contrary to 

simphcity, hence distinguishes between complex internal and simple external rqn-esentations. For persistence 

of the internal representation, a range of existing database management systems (DBMS) were examined. 

Although fee internal representation is fee fiacus for fee remaining discussion, some of the issues fg)ply 

equally to integrating data fi-om external sources.

The search fijr a storage system starts wife two extremes. Storage system functionality ranges fi-om a fully- 

fledged object-oriented DBMS (oODBMS), to Smalltalk’s simplistic file structures for exporting objects 

without any management. The initial prefiarenco was for an ‘off the-shelf commercially available OODBMS, 

which provides program support, and convention. POISE though places high demands on even fee most 

expressive data descripticm language. The altanative, a file storage using the native data description language 

of the clieit, Smalltalk, required major extra development to incorporate a suitable management strategy.

3.8.1 Data Store vs. Datatxtse Management
General purpose OODBMS prcx^ess behaviours remotely in a database server environmoit The envircmment, 

primarily of the class-instance paradigm, features disk-storage management of a class hierarchy. Objects on 

fee database are all instances of feese classes. A m ^ in g  between classes in a client language (eg Smalltalk)
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to classes on the server allows copies of an object to cross from one environment to another. Typically, a 

mapping keeps to simple classes like numbers and strings. A totally aliai language (ie not Smalltalk) 

describes the classes on fee server.

The description language of a database is similar to a programming language. The class description includes 

fee storage requirements of objects, manages versioning and schema evolution control, and interacts with 

system administration, such as memory management and security. The main differences are due to multi-user 

databases access. Policies for locking objects and accepting change are designed to make each user’s 

activities atomic. Most computing activities include a number of intermediate states, wfeich other activities 

could corrupt or misinterpret Computing in a multi-user environment requires composing all computing into 

atomic transactions. Within %ch transaction, fee objects involved are locked and once fee transaction is 

complete the final state of each object accepted and fee objects unlocked for fee next transaction.

Shortcomings of general-purpose OODBMS systems, their language’s modelling power in particular, are 

criticised in an earlier paper*® relating this management to domain modelling.

Data storage relies on fee client’s language for object definition and manipulation. The server for data storage 

stores only fee state of an object When read, it moves the state to a new object in fee client œvironment and 

fee client processes the behaviours. The responsibility of object integrity (valid states within an object) lies 

with the processiiig of behaviour within clioits. An object store exports fee object structure to a foreign 

environment The protocols changing fee states in one client can be different to those in another client; feey 

may not be consistent and semantics can differ fiir different clients. In an OODBMS, clients do not access the 

state of fee object. The OODBMS centralises consistent object behaviour.

A particular advantage of a simple object store over feese large-scale OODBMS is fee ability to reduce data 

administration overheads. For example, a multi-user object store is possible by locking fee record of the 

object on the server until fee client using fee olgect finishes, but is unnecessary for a single user system. 

OODBMS tend to come as multi-user systems wife fee mechanisms tightly integrated in fee server’s language 

as a standard feature.

3.8.2 Evolution in a DBMS
The consequence of object definitions (classes) within fee OODBMS is feat feey must meet poise’s 

requirements on schema evolution. An OODBMS using fee same manipulative object model and environment 

as Smalltalk would suffice. Unfortunately, fee memory management in primary memory, which makes 

Smalltalk’s manipulative model possible, seems to compromise efficient transacticm processing in a
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secondary storage system. Transaction processing is a benchmark, which relational database management 

systems use to judge a DBMS performance. Consequently no DBMS are as manipulative as Smalltalk, and 

contemporary DBMS cannot support the needs of POISE. The main problem is that they do not provide 

mechanisms for manipulating the schema while the databases is in use. Without schema evolution, adding 

and ronoving properties from polymer classes is not possible and the classification can not be re-engineered.

A grade’s tendency to evolve even complicates the specification of a data store. All changes to the property 

structures of classes in poise require automatic respect by the storage mechanism, which stores instances of 

those classes. A data store that returns an out-of-date data structure for an object in POISE is useless, so the 

storage mechanism must be able to migrate such out-of-date structures to the current versions in primary 

memory. For this, some interpretation of each data structure must be recorded, like fee class template records 

fee structure of instances in primary memory.

Schema evolution causes fee same problems for object-storage as it does for languages. The problems 

exasperate when multiple users access fee same evolving objects. Besides changing fee semantics of objects, 

which has fitr-reaching effects in clients, evolving in a multi-user database starts a transaction feat locks all 

active instances of the class and its subclasses. A change to the root class would lock the whole database. 

OODBMS systems, even those with supposed schema-evolution provisions like Gemstone®’, do not allow 

evolution when there are active instances.

The schema evolution in Gemstone lets fee eq)plication programmer evolve class definitions before creating 

any instances. This schema evolution is a development fimction. The migration of a class definition from a 

client into fee server is not a runtime fimcticm of Gemstone. TherefiDre, it is impossible to automatically add 

an object of a class not already on fee server without programmer intervention. Some storage mechanisms 

provide a geno-al object-storage process capable of managing new data types, but such a process is liable to 

fiiil for complex objects with ‘global’ references and cyclic paths in feeir structure. BOSS, see §4.5.3, is one 

mechamsm with little program intervention feat attempts to avoid such pitfrills.

Evolution of fee DBMS objects is not fee only problem. Whereas demonstrating such mechanisms as 

delegation within Smalltalk is possible, it does not necessarily hold that similar mechanisms are possible in 

other object-oriented environments. None of fee current DBMS support delegation, only static class 

hierarchies. Ofeer complex mechanisms like orthogonal descriptws would also be an issue.
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3.8.3 Database Interaction for Memory Management
The data manipulation languages describing a transaction in a relational DBMS limits the manipulation to an 

explicit fixed scope of data, applying the rules of manipulation to eadi tuple in a relational table. This ensures 

that after processing a unit of data, die transaction is complete fiir that part of die data. The locking and 

committing of data is implicit in the structure of the transaction, not part of the manipulation language. 

Object-oriented languages manipulate data through messages, not transactions. A long-Uved message 

generates many shorter messages, wdiich in turn generate shorter messages. The end of a message can be 

conditional, thereby depend on an object to change state, which intum may depend on odier messages. The 

data accessed or the time takœ can not limit die goal of a message. The message is therefore not like a 

transaction in a relational database.

Managemait of limited primary memory is an important fixture of database management systems. All 

transactions occur in primary memory. When diey finiA, the database commits the changes to persistent 

secondary memory. The definition of a transaction has a consequence on the utiUsation of primary memory. 

Defining a transaction as a message to an object requires careful consideration. Committing the state of an 

object to secondary memory after each message sent to the object will not affect the logic of any messages, 

but it is inefficient to commit objects subject to furdier change. Qmcurrently, changes in the primary memory 

are susceptible to loss until the database commits die object to secondary memory wtere it is persistent. Even 

in single-user systems, transactions affect the management of primary memory and the integrity of objects.

Something must trigger the database to commit objects to secondary storage. Since the applications using the 

objects evoke changes, they must also trigger the database. The efficiency of memory utility and object 

integrity depends on the regular commitment of objects by ^iplications. Most OODBMS and data stores 

require an explicit interaction to activate and release objects. This means die appUcation is constantly 

communicating with the database ftir each transaction.

In an object-oriented language messages fiillow an implicit path. They may potentially access any object, 

and the same path may repeatedly cause message to the same object. A message is not a transaction since it 

does not identify i^diich objects to lock. A transaction could span many messages to the same object. In 

object-oriented languages there is no implicit structure to define die scope of a transaction. The protocols, 

which construct the path of processing, must explicitly encode transactions.

Persistent objects now differ fi-om volatile objects, i ^ c h  do not necessitate die specification of processes 

into atomic transactions. The use of the persistent object is also a property of the protocols, i ^ c h  must
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define vt^en the objects are locked and committed. The storage characteristics of objects are not a property of 

domain entities in the POISE application but must provide pre-processing and post-processing behaviours 

implementing the storage characteristics of the object on an object store. Even if objects are otherwise 

polymorphic in their behaviour, the activation of these behaviours within transactions with the object 

destroys the benefits of polymorphism. Protocols must distinguish stored object firom manory resident 

objects that do not require this activity.

The situation who-e users of the objects do not see the interactions with the object store or OODBMS is termed 

‘transparent’ database access. Although an object stores with only single-user access does not define 

transactions for multiple-users, primary memory is still a limited resource requiring the paging of objects 

back and forth fi-om secondary memory. So both systems require transparent access, but OODBMS must also 

define effective transactions for multiple users.

3.8.4 Multiple Interlaces
The specification of a DBMS handling a national source of information is quite different to a DBMS fiir an 

individual designer. Different worlds of information pose different demands on an OODBMS. Differences 

include the number of users, security, data integrity, and the size and scope of information resulting in 

different access mechanisms and data models, all of \siiich affect transition management. POISE on the other 

hand does not need to identify v tere  the data has come fi-om. It is quite possible for POISE to access many 

different DBMS, and extend to add new DBMS at a later point in time.

Heterogeneous database management systems^^ manage the access to many different types of database using 

different data models. Since each DBMS has a different interfiice protocol, the main purpose of this manager is 

to provide a single consistait interfoce protocol for data manipulation in any of the databases. An object- 

oriented model is popular for this interfiice. Although the data model and manipulation language of the 

individual databases limits the behaviour of these objects, the objects provide a consistait, polymorphic 

interface across many different Oiidden) access mechanisms. A managemœt system for heterogeneous 

databases provides a unifiirm object interfiice as a proxy conveying transactions to database objects.

A third party handles proxy votes as though the owners of the vote had voted themselves. Similarly, a 

database proxy receives messages and, from the viewpoint of the message sender, the resulting actions are as 

if the intended object received the message. A message to a proxy triggers the memory management system 

within the DBMS. Within the ensuing communications the message tranqiorts somehow (depending on the 

particular DBMS) to die stœed object, locks the object fro otha- processes and, ^ e n  the message is complete,
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unlocks the object. The user is unaware of the nature of an object’s storage so the DBMS becomes transparent 

to the users of persistait objects.

Current heterogeneous systems rely on œch message to be an atomic transaction. Extending transactions 

beyond a single message requires a standardisation of locking semantics at the interfece of the database 

objects. The standard makes the transaction locking independait of the actual database being accessed but 

protocols still explicitly specify the locking. In vM ck case the proxy is no longer transparent

3.8.5 Summarising the Storage for POISE
Both the persistence of user data and the interchange of data between users require some kind of database 

management The management for both is quite different If client languages support a transparent proxy 

access mechanisms, thei different database management utilities can independently implemoit each of these 

requirements. The following two lists identify the two different storage requirements of POISE. The first hst 

covers the management of private infiirmation gathered by a single user. The second list covers global data 

shared by many users:

1) Private single-user data
a) Minimal transaction management Lifetime of transaction only subject to primary memory 

management
b) Object behaviour integrity guaranteed by a single clioit
c) Complex highly structured data storage model for supporting any arbitrarily complex Smalltalk 

object composition.
d) The evolution of object structures during runtime, trans-migrating class definitions between client 

and server and coercing objects of old versions to new versions witiiin the client.

2) Global multi-user data
a) A consistent protocol for accessing many heterogeneous databases.
b) Object integrity guaranteed by individual server databases (usually read only with respect to Poise).

c) Use simple data structure as the common denominator of many different client ïqjphcations.

d) Client process independent of server transaction management, eg security, locking and versioning.

A transparent interfece between application and storage management is common to both storage mechanisms. 

A transparent interfece is not only consistent with access to native objects but is also consistent between 

private and global stored objects. The interfece, in this case a Smalltalk specific implementation of an object 

proxy, provides different services for each two types of storage:

• Transparent access and içdates, managing transacticms subject to local memory conditions.

• A translation from generic protocols to specific protocols of heterogeneous DBMS.

In order to simphfy the development of POISE, the issues explicitly on global multi-user data were not 

considered furdier, ie issues on access and management of transactions within heterogeneous databases.
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Otiiers*  ̂have already addressed many of these issues. POISE instead imports extonal data and represents it 

with the private data. Issues considering transparent transaction management fqiply to both storage systems.

The behavioural complexity of objects within POISE and their tendency to evolve puts the representation 

beyond even the most advanced commercial OODBMS. Commercial OODBMS focus on the other issues, 

integrity and transaction management. For the private single-user data in puise the objectives are more 

limited, and more powerfully focused on representation, than the objectives of a general-purpose 

managemait system. Consequently, even the simplest of data stores are as capable as the advanced OODBMS 

at representing and evolving POISE objects. Although data stores are less sophisticated, the client language 

implements most of them. Hence the data store gains the language’s manipulation cïçabihties, including 

schema evolution, and it is possible to develop the management principles of these data stores.

In conclusion, the storage needs of POISE involves an investigatifm into foe suitability for development of 

available data stores and an investigation into transparent transaction management Initially foe investigation 

of proxies for transparent intoaction was separate to foe development of a data store. As foe issues involving 

foe representation of complex object-relations became clear, foe proxy was found useful as a representation 

for foe relationship between objects on foe database. The proxy became an integrated part of foe database 

schema, see §4.5.2.
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3.9 Summarising the Schema of POISE
E a c h  a s p e c t  o f  t h e  c o n c e p t u a l  d e s c r i p t i o n ,  o r  l o o s e  s c h e m a ,  s u m m a r i s e d  b e l o w  i n  T a b l e  5 ,  m a p s  t o  a  d e s i g n  

s p e c i f i c a t i o n .  T h e  d e s i g n  s p e c i f i c a t i o n  p h r a s e s  t h e  r e q u i r e m e n t s  i n  t e r m s  o f  o b j e c t - o r i e n t e d  c o n c e p t s ,  t y p e s  o f  

o b j e c t s ,  c l a s s e s ,  p r o t o c o l s  c l a s s i f i c a t i o n  a n d  i n h e r i t a n c e .  D u r i n g  t h i s  r e s e a r c h ,  t h e  s p e c i f i c a t i o n  w a s  

i m p l e m e n t e d  i n  S m a l l t a l k  t o  p r o d u c e  t h e  POISE a p p l i c a t i o n .  T h e  f o l l o w i n g  c h a p t e r  d i s c u s s e s  i n  d e t a i l  t h e  

p r o g r a m m i n g  i s s u e s  t h a t  a r i s e  f i - o m  i m p l e m e n t i n g  t h i s  s p e c i f i c a t i o n  i n  t h i s  c l a s s - i n s t a n c e  l a n g u a g e .

Summary Requirements o f  POISE Schema Design Specification

Adding value to acquired relational data through re
representation in a classification hierarchy with property

Re-jmodelling relational data using principles of object-orientation. For 
example, extending fiie relational description of grades with de&ult y  ■ -

Extend the description o f the polymer domain:
a) Define new engineering properties.
b) Add new computations for describing and interpreting 

the semantics of an engineering property.
c) Add new properties to abstract polymer descriptions.
d)___Add new classifications over the domain of polymers for 

_____ absfracting_s.iiml^ty_ andgengalising properties.................
Support consistent evolution of the schema by the user:
a) Define a language for describing engineering properties.

b) Assign domain properties to classes of grades and 
manipulation of domain organisation

c) Make schema changes persistent.

Instantiate new components o f the schema: , ^
Ah object rqjresents each engineering pfopesrty, ' • ^  . , ' ' • 
Compiling new protocol objects and assigning them to an esngineoring, 
property, - t
Assign the protocols firom the engineering properties to classes o î grades. 
Add new classes, modifying the inheritance structure, ensuring 
wnsistw cy and ujpdating dqjrajdent,^^^
Develop specialised user interlaces apd inlèratce engines, s
Modify the native language programrning tools and compiler for protocols
defined in the context o fa  domain property, not a  specific class. - /  
Reflect the hierarchical structure and inheritance rules witiiin the \   ̂
classification through a graphical inter&ce. ‘ - 
Develop an object storage capable o f  recording the objects in the polymer 
classification and all engineering property's behaviours..............._________

Support both taxonomic classification and orthogonal 
classification for representation extending beyond the

Investigate dyiiarnic behaviour sharing to support orthogonal , ;  j , 
representation in a class-instance languages. v

Support the design process th ro u ^  generalising the properties 
of domain classifications providing abstract levels of

. r?pre_sentati9?i....................... ........................ - ................................
Provides expressive visualisation of generalised polymer

Develop an infWence engine to generalise and abstract properties from â 
class and present these properties as an extension to the behaviours of the J

, à  g n . i g s e . . , ' 1 -

Develop a user interfece to explore the abstractions in the evolving , ,

Support persistence o f design data and the complex evolving Develop an interfece to secondary storage that is transparent, thereby, 
cr<^ting the illusion o f persistence o f knowledge betweai sessions.

Table 5: Mapping requirements to specification.
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Chapter 4 Implementation
The POISE schema presents a number of challenges to the class-instance language Smalltalk. The 

implementation of the POISE application successfully satisfied most of the requirements, like the data 

acquisition, and the user interfece design, t ^ c h  fit well into the class-instance paradigm. This c h ^ ta  

focuses on the main features of the implementation and explains how each of these features was a challoige 

to the class-instance paradigm in general and Smalltalk in particular. This identifies the limits of this 

approach to taxonomic representation of materials infijrination. For a complete summary of the POISE 

appHcation, Chapter 5 describes the functionality fi-om the user’s perspective.

The main features of the implementation found challenging are summarised as follows:

Problem

Mix-in object 

behaviour

Mix-in ciass 

behaviour 

Composition of 

class template 

Delegation

Feature Affected

Orthogonal property classification

Extending behaviour for user 

interrogation

Extending bdiavimu* for transparent 

memory management 

Implementation of levels of 

representation

Properties as class desoiptws

Design as a dynamic composition of 

shared behaviour

Description

Combining polymer taxonomic desorption with 

orthogcmal description in a single lexical unit. 

Protocols of domain oitity with visual modelling 

protocols

Object bdmviour + Database access and management 

(Hotocols

Nwmal class bdiaviour plus abstraction of property 

gaieralisations and population maintenance 

Class bdiaviour encapsulated into shared Property 

Objects

Behaviour dqiendott on a context of objects.

Table 6: Challenging problems to solve
Mix-in” of both object and class behaviour (§4.2.1) and delegation, in Table 6, are all solved using the same

mechanism for oihancing the behaviour sharing capabilities of Smalltalk. The “composition of the class 

template” captures the existing class evolution behaviour in Smalltalk and packages it into an abstract object. 

This abstract object creates a new approadi to change in a class-instance paradigm.

All these problems result somewhat fi-om the limits to sharing between objects in standard Smalltalk. 

Fortunately, the underlying object model is flexible enou^ to implement a programmable extension to the 

standard sharing mechanism of inheritance.

4.1 Sharing in Smalltalk.
Chapter 2 introduced two types of sharing of protocols and behaviours. Instances inherit protocols fi-om 

classes, and the classes inherit fi-om superclasses, thus protocols are shared. The protocols describe the
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behaviours of objects. The behaviour is a composition of other behaviours (procedural abstraction) shared 

from other objects, evoked through messages.

The limits of the standard forms of sharing in Smalltalk are the subject of this next section, starting widi the 

special inhoitance relationship between the instance and the class.

4.1.1 The Smalltalk Object Modd
Inheritance between classes and between a class and an instance is quite different, unlike in prototype 

languages wiiCTe implicit sharing is uniform. The reason for the difference is that the instance is a 

specialisation of an object that optimises processing.

Instances hold specific differences and inherit abstract behaviours from their classes. The typical abstract 

behaviour is a protocol providing instructions on how to do something. The typical specific behaviour is a 

relationship with anodier object, or more simply, an attribute. Two instauccs ean shtuc the same abstiact 

protocol, but behave differently due to specific differences in attributes.

ADORER

nnnn:y+0
nnnn^f+4
nnnnnr+8

nnnn:y+4k

MEMORY
ckm lD  
instVar ] 
instVor 2

instVar ^

(a) MEMORY IMPLEMENTATION 
OF THE INSTANCE, anObJect

ADDRESS

mmmm: anO bjecfsi y 
InstancôlD j 

mmmm: clossID I z

(b) A SMALLTALK OBJECT IDENTITY LIST

nnnniz+O
nnnn:z+4

I metoclœslD 
! nam e 
I format 
■ InstvarNames

(c) MEMORY IMPLEMENTATION 
OF anO bjecfs CLASS

mmmm:
nnnn:

D ata table hield (equivalently) on elttier 
primary or secondary memory.

Look-up processes (see text).

Addresses In either main memory or file 
ondldr.

Location of either memory p a g e  or file 
on disk.

All remaining symbols ore objectlDs. Such IDs are 
flagged to b e  Interpretted etther as Immédiates or os 
offsets In the O bject Identity Ust. ^

Figure 11: Canonical memory representation of static Smalltalk objects, following Goldberg
A contract exists between instances and the class behaviours. A class template contracts names to each 

attribute. The class protocols generate specific behaviour by referring to the attributes by die contracted 

name. Instances iffovide the necessary memory ‘slots’ to store attributes. The class template optimises the 

contract by defining a specific ordering of the names. This ordering generates a record structure for 

representing instances and an index for behaviours to directly access the attributes in instance records.
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Figure 11 shows the basis of the object storage model for the static, record-part of object storage. The model 

can apply to both primary and secondary memory, as will be seen in §4.5.10.

In Smalltalk, the physical model of the object is an indexed table of objectlDs. The table represents named 

relations to other objects. These relafions are collectively called instance variables. Every object has an ID, 

including integers, chonietcrs, any other instance, class Of metaclass. The collection of object representations 

is known as Object Memory.

In order to access the complete description of a stored Smalltalk object (referenced as anObject) the 

following activities occur:

1) Look up anObject's ID in the Object Identity List, as Figure 11 (b), and obtains the address of the 

record (y) giving the location of anObject's record in Object Memory.

2) The first word of the record is an objeçtlD  to a class, foe classlD. Obtain this also by looking up the 

Object Identity List.
3) The remaining task is to obtain foe location (z) of the C lass  record in Object Memory. The C la ss  record 

includes (storage oQ the data definition of anObject. The word marked fo rm a t in this stored data 

definition determines the allocation size of anObject*s record. The data definition also includes 

InstvarN am es. These are the names of the locaticms identified in Figure 11 (a) as in s tV a r l  to 

in s tV a rk . Protocols are compiled to reference directly by index.

The effectiveness of this model as an object will become clearr after introducing how the object receives a 

message, locates a protocol and evaluates behaviour.

4.J.2 The Class as an Object
The C la ss  in Smalltalk is an object constructed like all other objects in the language. It behaves like a C lass  

because it inherits those ‘class like’ behaviours from the class 'C l a s s ' .  One of the behaviours a class 

inherits is the ability to generate ofoer objects, their instances. This is a primitive behaviour (encoded in the 

Smalltalk kernel §4.1.3) that directly accesses the second instance variables of the class record, called the 

fo rm at, and must contain an integer. This integer describes the number of slots for the instance.

The new instance keeps a reference to the generating object (the class) in the instance’s classID  slot; ie the 

instance’s class. For this instance to work as an object, its class must meet two other oiteria. The class has 

anotho" class object (or n il)  in the third instance variable as the superclass, and a M ethodD ictionary  object 

(a hash list of protocols) in the fourth instance variable.

These three instance variables are the basic requirement for getting a class to function as an instance 

template. Other requirements are necessary for the Class to function as expected within the Smalltalk
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enviranmoit, especially to compile protocols, but no more necessary to get an instance functioning in the 

Smalltalk environment

4.1.3 Methods as Protocol Objects
All classes keep a MethodDictionary in die fourth instance variable. The MethodDictionary holds a hashed 

list of symbols (special strings of character that the environment ensures have unique object id’s) known as 

selectors. When an instance receives a message, it searches the dicticnary for a selector matching the 

message. If the search does not find the selector, the search continues in the MethodDictionary of the 

superclass. Each selector in the MethodDictionary nups to a CompiledMethod, and by finding a selector, the 

MethodDictionary returns the CompiledMethod.

CompiledMethod are die essence of Smalltalk protocols. They are objects with code in their first instance 

variable and data in othCTS. The code, at its most basic, is a byte array. The virtual machine , the Smalltalk 

kernel, interprets the meaning of the bytes in the array at runtime. The code may reference three different 

types of variables. As mentioned earlier, instance variables of the receiver are (me type. The (xxle also 

accesses temporary variables for the duration of method execution, which includes the receiver bound in 

source cxxle to the name self .  Finally, there are die global variables, \riiich are a reference to any unique 

object by the method. A global reference does not change with each receiver. The reference is not 

empathetic.

Protcmols in the object-oriented language compose primarily of message sends. Smalltalk behaviours evoke 

these messages through a sequoice of pseudo-c(xle commands encmded in the methcxi representing the 

protocol. The method stores the selector in one of the mediod’s instance variables and refers to it by index. 

First, a command pushes the receiver of the message, some objectID available to the method, onto a stack. A 

second command referring to the index of the selector causes the virtual machine to ‘send die message’. For 

this the virtual machine gets the receiver’s objectID off the stack, locates the record, locates the receiver’s 

class record, locates the method dictionary, and starts the searching for the selector’s objectID in the 

methcxi dicticmary.

Not all protocols result in message sends. There are a select number of primitive protocols, i ^ c h  call 

functions in the virtual machine, operate on simple objects like numbers and byte arrays, and communicate 

with the underlying operating system.

♦ On each computer platform there is a program running which dynamically compiles, caches, and 
executes Smalltalk™ code. This program is called die “Virtual Machine**, as it emulates a hardware device 
which would directly execute Smalltalk™ code.
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Some preparation occurs before evaluating a method, which involves creating a context in which the code 

can reference by index all the objects available to the method. The next section describes the objects used 

represent a single execution of a method.

4.1.4 The Process: Message Sends, Look-ups, and Patterns
Messages are sent causing classes to find protocols, tiiat evaluate causing further message sends, hence 

creating a pattern of processing. An object called the Process follows this pattern through the Smalltalk 

environment The Process represents, at any given time, a sequence of incomplete method evaluations, with 

the last one being currently evaluated. An object called the Context rqiresents each incomplete method 

evaluation.

Once a message said finds a method, tiie virtual machine creates a Context. The Context immediately 

records the receiva, the method located, arguments sent with the m^sage, and the Context which sent the 

message. The pattern returns to tiie sending Context once evaluation of tiie method is complete. During the 

evaluation of a method, the Context also maintains a stack (mentioned earher) and the state of any temporary 

variables geno-ated during the method evaluation. All these objects are accessible by the code evaluating tiie 

method by index.

Memory managemait of Context objects is special A stack space, a sequence of equally sized records in 

memory, is reserved which adds and removes context objects efficiently. Since the virtual machine genoates 

context objects, their data structure is beyond change by the usa. Conceptually the structure fits the standard 

object model and can be viewed and manipulated by Smalltalk code and tools. One tool of importance is the 

exception handling system that will be introduced lata  §4.2.6.1.

4.1.5 Summarising Behaviour Sharing
The empathy between the receiva and the located protocol has been highlighted. The protocol binds s e l f  to 

the receiva and indexes the instance variable locations of tiie receiva. It is essential that all accesses to 

instance variable locations are consistent aaoss every protocol a receiva shares. Ihe class manages this 

consistency by naming tiie variables. These names link to the indexes when compiling methods for the class. 

It is thaefore impossible for a receiva to empathise with methods firom classes otha than those fi'om which 

the receiva inherits. This is only true of method accessing instance variables.

If a representation requires an instance to share behaviours with anotha class (that is not inherited), thai the 

question that arises fi'om the above point is whetha an instance is the propa representation. Instance 

variables are unique properties of instances of a class and are meaningless to any o tha methods but those of
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foe class. Mefoods do not need to access instance variable to represent knowledge, only to represent 

knowledge specific to instances of a class. To demonstrate fois point and to place foe behaviour sharing of 

prototyping languages into perspective, which does not classify and represents knowledge without instance 

variables, an experiment was carried out foat specialised the meta-class, the definition of the class object.

Objects in prototype languages do not have instance variables, all attributes are stored as protocols (ie as a 

method references a global variable), always returning foe same object. Attributes differ between child and 

parent by overloading the name of the protocol, just as methods are overloaded in the class hierarchy. A child 

with a protocol of the same name as foe parent will never implicitly exhibit foe parent’s behaviour. A 

specialisation of the class object defines a class foat is an instance of itself When foe “instance” receives a 

message, the classID points to itself and foe method search starts in foe instance’s own fourth instance 

variable; containing a method dicticmary. This configuraticm successfully models prototypes in Smalltalk. 

The prototype defines its parent by referring to another prototype in the third instance variable (the siq>erclass 

slot). If a selector is not matched in the prototype’s own dicticmary, foe searcfo passes to the second according 

to Smalltalk’s standard lcx)k-up process.

The seccmd point to highhght is that the look-up far methods (protocols) is a strict process. The virtual 

machine dictates wfoat hfqïpens between the point a method in a ccmtext evaluates the ccxle to send a message 

and, the point it creates a new context and evaluation starts. The critical part of this process is the locating of 

the mefood by the recursive search firom class to superclass to superclass is well defined fijr all objects. Since 

the scope of the searcfo is well defined, it is seen as a unifiarm and seamless interface to the objects. Only 

those selectors indexed in the method dictionaries will provide a key to access the receiver.

Since the look-up mechanism is a strict process, the prototype objects described do not give explicit 

delegation capabilities, and instances of a normal class can not expUcitly look-up messages. All behaviour 

sharing in Smalltalk must locate the desired protocol using the standard look-up process. For extending the 

sharing capabilities for grades of polymers^ on alternative scheme was developed fi'om foe “Encapsulator”, 

§4.2.2, for enhancing message passing in Smalltalk.

4.2 Enhancing Message Passing in Smalltalk
A s an introducticm to foe enhanced message passing foat prô ’idcs a solution to a numljcr of problems in 

POISE, foe issue of orthogcmal classification descriptions over grades is re-introduced.
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4.2.1 Mix-in Object Behaviour for Orthogonai Descriptions
Orthogonal classifications describe properties of grades. Objects describing the behaviour of other objects in 

a class-instance language are implemented as classes. Objects described by classes are instances. Therefore, 

the orthogonal classifications are classes and the grades of material are instances.

The relationship between class and instance is a one to one ordinal relation. This would suggest that more 

than one class could not describe a grade, thaeby excluding orthogonal descriptions. ‘Mix-in’ object 

behaviour is foe description given for objects that ‘mix-in’ foe behaviours fi’om multiple sources.

Mix-in object behaviour introduces an additional perspective to foe description of an instance. While still 

only perceiving a single object, a mix-in object behaves as if it is an instance of two separate classes. Two 

interfiices seen as one, two implementations and one unified set of relationships.

The proposal is to place one instance fi'om an orfoogonal class and an instance fi’om foe polymer class under 

a common interfece. The interfece is foe point at which messages are received. When receiving messages 

both instances are searched until a mefood is found. The interfece would exhibit a concatenation of foe 

instance’s behaviours wfoilst each instance remains an inheriting member of their separate classes.

The com m on interfece does not contribute any behaviour but does affect the pattern of message passing. 

Hence, the proposal is an enhancement of foe message passing mechanism in Smalltalk.

4.2.2 The Encapsuiator
Pascoe’s Encapsulators^^ is a mechanism for controlling and extending foe messaging powers of Smalltalk. 

It is not foe first mechanism^ of its kind, but has two advantages. First, it extends foe behaviour of individual 

objects. Encapsulators are classes of objects that have foe behaviour of isolating (encapsulating) another 

object. The degree of isolation and control on access depends on foe implemoitation in different subclasses 

of Encapsulators. The second advantage is foat it uses a standard Smalltalk kernel, so any Smalltalk 

environment can apply the implementation.

Pascoe solves two common operating system problems using foe Encapsulator: queuing requests using a 

monitor®  ̂ philosophy, and committing transactions in an atomic step. Both of these problems occur when 

managing message evaluation in multi-user operating systems to ensure the evaluation of one message does 

not conflict with foe evaluation of a second message fi’om a second concurrent user. These solutions have 

more relevance to foe secondary storage requirements of poise, see §4.5.
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Pascoe applies the Encapsulator to foe Model concept m Smalltalk’s Model-View-Controller (MVC) scheme 

for user interaction. The Model is foe source of information displayed in foe interfece. The View generates the 

screen display. The Controller handles users input The Model has two roles. One role is as an entity in the 

conceptual schema of an apphcation, which is the subject of the object’s purpose. The second role is as a 

servant of the View. The user modifies the Model through hardware inputs mtapreted by the Controller and 

foe model reports changes visually through foe View. The Controller and View send a range of messages to 

foe Model for fois purpose. Usually foe Model mixes these message protocols with foe protocols foat describe 

foe entity’s role as part of some knowledge schema.

The two perspectives of the Model cannot separate through decomposition since foe View requires notification 

when foe apphcation’s entity part changes state. When foe state of foe entity changes foe View içdates. This 

requires extensive integration within foe implementation of the entity, catdiing potential changes to the 

states.

The Encapsulator focuses on foe interfece of the object rather than foe implementation by identifying 

message protocols known to modify the entity’s state. All messages destined to foe entity are sent instead to 

an Encapsulator. The Encapsulator then redirects foe message to a dedicated object representing foe entity. 

If the Encapsulator suspects the message (foanges foe entity thai it notifies foe View after foe entity 

evaluates the message. The implemaitatian of foe entity is fiee of the View’s needs. The View displays only 

information it obtains from the interfece of the entity (foe Encapsulator).

The iqjphcaticm of foe Encapsulator in foe MVC is a better object-oriented model because the object being 

viewed is independent of objects rq>resenting foe View. If foe View needs extra mefoods fi)r combining 

information fi-om the object on display, then they are separately implemented by another object, foe Model. 

The Encapsulator combines foe object on display with foe Model under one object interfece. Not only "are 

the objects on display represented s^anticly fiom the Model but can be classified s^arately. This separates 

foe evolution of the MVC fi-om foe evolution of the objects they View. The separate MVC hierarchy can then 

classify interfeces of different generality, general MVC and specific MVC for viewing the same objects.

In POISE separate classifications represent different perspectives of a polymer grade. An Encapsulator can 

combine taxonomic classes and orfoogonal classes of individual grades. Unfortunately, through common 

coding practices it was possible to break an Encapsulator accidentally. This would compromise foe
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semantics of a polymer composed of different perspectives, and a major improvement was suggested, vfoich 

also resulted in simplifying the Encapsulator as published by Pascoe.

4.2.3 Message Passing in Smaiitaik
The Encapsulator extends the object intofece through an exception in the message passing mechanism in 

Smalltalk. This exception invokes \riien none of the protocols, in any superclass of the receiver, matdies a 

message’s selector. The condition is not well defined by the class-instances paradigm and each language 

must specify some mechanism to handle the condition or ensure the condition never arises. In Smalltalk, the 

particular mechanism provides a very usefiil way for extending the behaviours shared between objects.

When messages are not understood by a receiver in Smalltalk, it generally opens a N otifier informing the 

user, usually foe program developer, of foe ‘type’ error. The mechanism generating this behaviour is not 

specific, as it involves many program controllable steps. After foe feilure of the first message, foe Smalltalk 

virtual machine automatically sends a second message to foe receiver. This message, called 

'doesNotUnderstand: aMessage', is a behaviour of all objects. The general doesNotUnderstand protocol, 

residing in foe class Object, creates foe N otifier fi)r foe user.

Like any other protocol, foe doesNotUnderstand protocol can change. For example, rather than opening a 

N otifier, foe foiled message could be sent elsevfoere. Consider object A sending a message M to object B. If 

object B does not have a protocol for M, B receives the doesNotUnderstand message. The 

doesNotUnderstand protocol ft)r B does not open a N otifier, but instead sends foe same message M to a 

third object C. Any message object A sends to object B can bind with either foe protocols of object B or C. 

From foe viewpoint of object A, the one interfiice at object B presents a subsumption of behaviours from 

object B and C.

Initially object C may be thought of as a proxy to the client object B and foe message passing from B to C as 

delegation. Strictly, for delegation object C needs empathy for the behaviours of object B. Since foe re

direction from B to C is a normal message send, this is not delegation. Object B shares the behaviours of 

object C, not the protocols. Empathy is not necessary for orthogonal descriptions and this extension of the 

interfiice is sufficient.

Changing foe protocol for doesNotUnderstand in a class affects all instances inheriting from foe class. 

Orthogonal descrÿtions require an extension of the interfiice per object, not per class. The Encapsulator 

provides an interfiice extension per object.
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Pascoe’s description of the implementation of the Encapsulator contains a flaw and'involves some 

unnecessary modifications to foe existing Smalltalk environment The flaw allows accMs to foe hidden object 

without passing through Encapsulator. The sender of messages can avoid the flaw if it knows the receiver is 

an Encapsulator. Requiring foe sender to know foe nature of the receiver is paramount to requiring the 

sender to know foe receiver’s implementation, ruining some benefits of encapsulation. Expecting POISE to 

assume any polymer could be a composition of orfoogonal descriptions was unacceptable. The Enhancer is 

an Encapsulator that aims to solve this problem.

4.2.4 The Enhancer
The Enhancer*^ updates, simplifies and généralisés foe Encapsulator. The Enhancer takes a useful tool for 

combining foe behaviour of two object for a specifically designed purpose, and creates a general 

enhancement to the messaging mechanism in Smalltalk-80.

Creating an object foat exhibits foe behaviours of another object it hides, vhile contributing its own 

behaviour is still foe. aim. In addition, the Enhancer attempts to do this as transparently as possible. 

Transparent means a sender will not be able to identify the composition of objects generating foe behaviour, 

and only see a single object The variable - s e l f  is the main reason vhy the Encapsulator foils to achieve 

this objective. When a message binds to a protocol, foe variable se lf, common in code, binds to foe receiver. 

Although the Encapsulator initially receives the message, it re-sends the message to foe hidden object. The 

hidden object is now the receiver and binds to self. Although this binding prevents empathy between the 

Encapsulator and foe hidden object, it has a more serious consequence when foe protocol finishes.

When a protocol finishes, unless otherwise specified by the programmer, it returns foe reference to foe object 

bound to se lf. Unless the Encapsulator intervenes, the variable s e lf  passes back to the sender. The hidden 

object, supposedly encapsulated, by defoult returns to foe sender without foe Encapsulator. A common 

programming practise in Smalltalk worsens foe problem. Cascading messages sends foe next message to the 

object returning fi’om foe previous message, often expecting it to be the same receiver.

An example illustrating foe problem is a grade as an Encapsulator hiding a number of orfoogonal parts. The 

Encapsulator passes any message it receives to each of the parts in turn until foe message binds to one of 

them. A cascade of messages to a polymer could result in the first message binding to one of the orthogonal 

part of the polymer’s description, and the behaviour returns that part to the sender. The cascade caus% a 

second message to be sent to the returned object, in this case foe part foat responded to foe previous message
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in foe cascade, foe message is not sent to foe Encapsulator. Unless the cascade accesses only protocols from 

one part of foe polymer, a message will not bind correctly.

4.2.5 Implementing the Enhancer
Unlike previous attempts to generaUse foe doesNotUnderstand mechanism^ the Enhancer attempts to merge 

seamlessly wifo foe Smalltalk object model with minimal disrption to foe standard Smalltalk environment 

With the exception of a few development tools (debuggers), the Enhancer is undetectable from an equivalent 

object inheriting solely from a single class hierarchy (ie based on foe standard object model).

doesNotündarstand: aMessage
This method is a behaviour specific to Enhancers. The doesNotUnderstand m essage Is 
automatically sent by the Smalltalk ^rtual machine when a  method cannot be found to match tha 
m essage name.
The receiver, referenced by self, Is therefore a variety of Enhancer.
aMessage Is an object describing tfre m essage send which has been Intercepted by tfie receker. 
aMessage comprises the selector (I.e. m essage name) and accompanying arguments."
Temporary varlatXes
hlddenOt)jecL.....................Initially, the object hidden by the receiver.
m e.......................................Will be assigned the receiver.
answ er......................... ......To store tfre result of aMessage."

I hlddenObjact me answer |
"Initial assignments."

me !■ self.hlddenObjeot i> me privateXnhancedObjeot.
"privateEnhancedObject Is the retrieval operation specific to a  particular subclass of Enhancer, that 
the receiver Inherits. "

hlddenObject prlmBecomei me.
"Swapping the receiver and the hidden object, so  a s  to "open tfie door" to the hidden object.

"me" Is now a reference to the hidden object"
[answer t- meperforms aMessage selector 

withXrgnmentst aMessage arguments]
"Executes the behaviour associated with message send dracrlbed by aMessage."

TalueMowOrOntTnwlndOoI [me prlmBeoomei biddenObject]
"Regardless of the behavioir executed when aM rasage Is perfcwmed, the hidden object and me are 
swapped back again. The door Is closed on the hidden otiject, no matter tfie outcome."

*answer
The resuË is returned upon successfiil executfoti"

Figure 12: Message redirection for Enhancer
Consider an object without behaviours except foe doesNotUnderstand behaviour of Figure 12 and one otha 

named 'privateEnhancedObject'.

Any message foat was sent to this Enhancer object (with foe exception of privateEnhancedObject) would 

evoke the doesNotUnderstand message. The hidden object exchanges plac% wifo foe Enhancer and foe

message is re-evoked but with the hidden object as foe receiva. Upon completing, foe exchange is revased.

The only behavioural difference between an object hidden by an Enhancer and the hiddoi object on its own 

is foe Enhancer will respond with foe hidden object if foe m^sage privateEnhancedObject is sent The 

Semantics of this message would appear to be returning a copy o f ‘s e l f ,  the receiva. Since it is unlikely that 

the message privateEnhancedObject will have any otha semantic meaning, this is a minor difference in 

behaviour
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The advantage of the Enhancer is not an absence of behaviour. Semantically the Enhancer, as above, 

contributes nothing to object modelling. The Enhancer though diflBers in its implementation. The Enhancer is 

the sole reference to the hidden object. This allows the hidden object to change in a similar way to the 

message become :. The similarity is that viien the hiddai object changes, all owners of the Enhancer will 

experience die behaviour of a new object:

A become; B

"hidden object changed"

A reference from client to %rver
An object

An Enhancer vith encapsulation

Schema of EnhancerFigure 13:
In Figure 13, the Enhancer (E) can easily change its reference from one object (A) to another (B). This 

simple use of the Enhancer can help strengthen the enc^suladon of all objects in Smalltalk. Currentiy any 

object can be the argument in a become: message. Without permission from eitiio- the object or any of the 

objects referencing the object, the object can be replaced by another. For the objects referencing, the change 

is an unauthorised change in state. With the Enhancer the become: primitive (§4.1.3) can be removed from 

general object behaviour, placed only in parts of the system necessary (eg to coerce instances during schema 

evolution). The Enhancer is then available fiir specific Explications on individual objects that need the 

flexibility in rhanging object identity. For this, the Enhancer will keep its own private behaviour containing 

the become : primitive.

The Enhancer, as above, is an empty shell, into which each application writes a subclass with a different kind 

of behavioural extaision. One Explication is die orthogonEil description of grades.

1.2.6 Implemenijng Orthogonal DesGriptJons of Polymer
The primary description of grEides is from taxcmomic classes. For inEXpropriate properties, the POISE schema 

calls fiir orthogonal descriptions. An orthogonal polymer description is a modular extension of behaviour for 

individuEil gnid^. A cIeiss represents the orthogonEil polymer description and each instance is Ein extoision 

which individual grades may Eubitrarily Eissign as part of dieir description. The grade distributes its
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description across many different instance. An Enhancer passes messages to each descriptive part until the 

message finally binds, thereby constructing the grade under one object interfece.

A variant of the Enhancer combines the intCTfece of two or mwe objects. The behaviours of these objects are 

independent of each other and pre-defined by their corresponding classes. This Enhancer creates the 

perception of a single object that combines the behaviours of the hidden objects. This Enhancer is a subclass 

called a CompositeEnhancer.

4.2.6.1 CompositeEnhancer
The CompositeEnhancer is like ‘multiple inheritance on a per-object basis’, or mix-ins. Multiple inheritance 

allows a single class template to inherit from more tiian one otha- class template. The CompositeEnhancer 

dynamically merges the inteifeces of two (or more) objects without an ojBGcial declaration of a class to unite 

the behaviours.

The CompositeEnhancer does not hide a single object but an wdered collection of objects. Upon receiving 

each m^sage, the Enhancer iterates through each of the objects in order until the message binds 

satisfectorily. The iteration and testing fi)r satisfection are message pre-processing functions, functions quite 

specific to the multiple-hidden object nature of this subclass. The doesNotUnderstand : bdiaviour for the 

CompositeEnhancer requires re-implementation. To simplify the analysis of this behaviour, the following 

example. Figure 14, only com m ents on tiie new aspects of the protocol:

dMBNotumdarstand t aMsBssga
"First I resend aM essage to the first ct^ect In my components. Any m essage that my
does not understand will be caught and sent to the next component until either It Is answered or
have gone through all my components with the current
*1. Set a  temporary pointer named receiver to the first

I reoelver | 
receiver := 1.

"2. Set up the exception handler to pass m essage to next object"
*Object meeeageNotOnderetoodSigmel 
handleI [:en |

"4. A m essage has been sent during evaluation of the do: block that was not understood, 
exception, ex, occured In the context object 'InltlalContexf. Iff the m essage not 
was aM essage sent In the do: block context below (equal to ex handlerContexf), 
there are still objects to pass aM essage to, then Increment the pointer and restart the 
block"
ex initielContaxt sender sender ■■ exhandlerCcntext & (receiver ■■ composite 

sise) not 
ifTruei[receiver i> receiver + 1. 

ex restart]
"5. Else reject this exception handler. The signal will continue a s  If this handler did not 

ifraiseI [ex reject] ]
dot

"3. con r^slte  Is an Instance variable for access to an ordered collection protential m essage 
receivers. The pertormnwlthArguments: se nos a  m essage a s  described by rhe 
the attributes selector" and "arguements" of aM essage.

[(composite at: receiver)perform: aMessage selector 
withRrguments: aMessagearguments].

Figure 14: Message redirection for Composite Enhancer
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The CompositeEnhancer relies on the hidden objects supporting the standard Smalltalk behaviour jfor die 

doesNotUnderstand: message. The standard behaviour raises a signal, named messageNotUnderstood, as 

follows.

A CompositeEnhancer receiving a m^sage will evoke its own doesNotUnderstand: mdhod, in Figure 14. 

Under most circumstances, the do: block evokes and the first object in the OrderedCollection, named 

‘composite’, receives the same message sent to the Enhancer, aMessage. If the message is understood the 

response returns. The Enhancer then appears to have the behaviour of the first object in ‘composite’.

If aMessage was not understood by the first receiver in cowposi te  tiien the Smalltalk virtual machine decrees 

tiiat this receiver will receive the message doesNotUnderstand instead. The first receiver is not an Enhancer 

but a standard Smalltalk object with the standard Smalltalk behaviour fiir the doesNotUnderstand : message, 

which raises a signal. This signal searches past contexts (§4.1.4) and finds the handler in the Enhancer’s 

doesNotUnderstand context which evaluated the poTorm message. The handler is an object that holds the 

cxxle described as step 4 and 5 in Figure 14. This ccxle, unlike step 3 has not yet been evoked, despite the 

ordering in the source ccxle. Now the signal tells the handler to evoke steps 4 and 5.

Getting the message, aMessage, to an Expropriate receiver is the only purpose of the Enhancer. The standard 

Smalltalk behaviour for doesNotUnderstand might evoke for other reasons, at any time, because of another 

object not handling a sent message. There is no guarantee die cause of the signal is due to the attempt by the 

Enhancer to match aMessage to a receiver of the composite. This must be tested explicitiy. This test 

examines the contexts created between re-sending aMessage and raising the signEd.

For clarity, the context evaluating the do: block is the ‘doContext’, which returns to a ‘handlerContext\ the 

context that results fi'om the whole handle:do: m^sage. The ‘sender’ of the doContext is the 

handlerContext. In the doContext the perform: message creates another new context. This third context 

has the doContext as a sender. A chain of contexts is thus described: handler-do-new. If the receiver of the 

new cxmtext understands aMessage, die context will evaluate die protcxxil found for aMessage. If aMessage is 

not understood, the new context will evaluate the doesNotUnderstand protocol, which raises a signal.

‘Raising a signal’ is a message to a signal object. The signal creates an exception object. The signal 

passes the exception the current context (the initialC ontext) from which the exception can obtain the 

chain of parent contexts of the current process, ie the history of message sends leEiding up to the signalling. 

This includes the context that raises the signal, a doesNotUnderstandContext. The chain of contexts also
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includes the handlerContext. The receiver in the handlerContext is a signal object (see step 2 of 

Figure 14). The role of the exception is to search for handlerContexts and match their signal with the 

signal raised. The handler block, held as an argument in the handlerContext, then activates. The 

exception passes to die handlo* block through the argument ex.

In the handler block, tho-e is a condition the Enhancer checks. This check determines if the signal is a 

consequence of a message the Enhancer sent and not some other object. Through die message 

in itia lC ontext to the exception (the ex argument), the handler block accesses die context raising the 

doesNotUnderstand signal. For the condition to be true, the sender of the in itia lC ontext must be executing 

the handlo- “do” block, and its sender must be the handlerContext. The exception determined this context 

when the signal was raised. If the message handlerContext to the exception matches the 

in itia lC ontext'^  sender’s sender, then the Enhancer must have given rise to the signal.

After ensuring that there are still objects in composite diat have not received aMessage, the index increments 

and the do-block is evaluated again after removing (known as unwinding) all the redundant contexts down to 

the handlerContext. The do-block evaluates fiir each receiver until the doesNotUnderstand message and 

signal are no longer triggered, ie tiie message binds correctly. A receiver which binds will shadow the 

rem aining objects in ‘composite’. Any other objects also satisfying the message are not given the opportunity 

to express their behaviour.

The consecjuence of the first-object fiiiling with aMessage and instead a second-object responding is the 

m e rg in g  of two behaviours undo^ a single interfiice, the CompositeEnhancer. To clients the 

CompositeEnhancer is a union of two or more object types. The example given dictates a particular rule for 

behaviour sharing in the intersection of the object types, so high^ ordered objects override completely any 

object lower in the ordering.

4.Z.6.Z CompositeEnhancer for supporting orthogonal descriptions.
The ConpositeEnhancer is a single object interfiice. As such, it is identifiable as a single object, not a 

collection. It subsume the behaviour from a number of other objects, not through inhoitance but by 

delegating messages. Many objects explicitly subsume the behaviours of others through message passing, but 

the ConpositeEnhancer does this implicitly. The types of the objects tiie CompositeEnhancer subsumes are 

unknown. Throughout the life of the CompositeEnhancer new subsumptions dynamically resolve as the 

objects themselves change. In addition, the subsumption is different for each ConpositeEnhancer. The 

description of behaviour is pCT-object.
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Resolving behaviour suteumptioo of orthogonal descriptions is simple since the orthogonality implies any 

inta'section between the parts should be empty. The ordering within the CompositeEnhancer of objects has 

no consequence on sharing across objects with orthogonal pnxerties. A ConpositeEnhancer representing a 

grade can assign the component objects, for example, an instance from one general polymer description and 

one or more instances from orthogonal descriptions, in any order.

Even objects representing orthogonal descriptions of grades are not truly orfoogonal in POISE. They all inherit 

from Object. An example of a common property inherited from Object demcmstrates foe susceptibility of foe 

CompositeEnhancer to foe ordering of objects. The property hash is a primitive behaviour that returns a 

unique integer for every object. It is important when placing and locating an object in a hash-table. Consider 

a CompositeEnhancer in a hash-table subsuming object-1 first then object-2. When foe 

ConpositeEnhancer receives foe hash message, it passes foe message to object-1. The look-up of foe 

selector hash starts in object-l's  class, down foe super classes and locates foe primitive behaviour in 

Object, returning an integer unique to object-1. That integer is used to place foe CompositeEnhancer in foe 

hash-table. If object-1 and object-2 where to swap places in foe ConpositeEnhancer, consider what foe 

behaviour of hash is now. The ConpositeEnhancer receives foe message but now object-2  receives foe 

message first, passes it to object-2's class, superclasses and finds foe same primitive in Object, but this time 

object-2  is foe receiver. A different integer number is returned. A different integer number means foe 

ConpositeEnhancer is now in foe wrong place in foe hash-table. This problem is simply solved by defining 

foe hash primitive as a property of foe ConpositeEnhancer, but it does demonstrate foe related issues of 

orthogonality, property subsumption and empafoy, (note if s e l f  was assigned to foe ConpositeEnhancer 

rather than object-1 or object-2  foe primitive would have worked uniformly despite foe look-up path).

The important aspect of foe Enhancer is its ability to pass on arbitrary messages to individual objects. This 

fiicilitates foe dynamic re-description of individual objects. In foe next section, foe message passing 

mechanism is attributed to foe polymer classes for quite different reasons. Polymer classes are foe sole 

instances of their class (foe meta-class). Individual class can extend their behaviour by manipulating foe 

meta-class, but foe behaviours are subject to inheritance and affect all subclasses. As will be shown, foe 

inheritance of protocols is in foe opposite direction to foe subsumption of property generalisations. The 

message passing mechanism cleanly separates foe different roles of foe class and foe different subsumption of 

property generalisations.
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1.2.7 Polymer Oass Behaviour
The class has two roles (§3.5.4.) within the POISE classification:

• Explicit behaviours: As a definition of an object type, declaring behaviours and states for polymer

grades, a class template.

• Implicit behaviours: Property abstraction for domain representation of an abstract polymer. 

Property generalisations characterising abstract polymers features two complications. As polymer grades 

change their dMcriptions so too the abstract polymers hoice the Polymer subclasses must all evolve their 

implicit property generalisations that compose each polymer abstraction. This evolution is even more 

complex than the evolution of grades, as will be shown later. The second complication is the abstraction 

becomes progressively more specific at every subclass down the hierarchy, and so the implicit properties list 

decreases. Subclasses do not subsume the abstractions of the superclasses rather the siq)erclasses actually 

infer their abstractions fi-om the subclasses. The superclass-subclass protocol inheritance is in the opposite 

direction to the inference by subsumption of property generalisations.

These two roles require separate implementation but represent the same entity. Altiiough the Enhancer excels 

in this activity, it is unnecessary to use an Enhancer since all Polymer classes will exhibit both roles. Since 

the two roles are orfoogonal, two separate objects could represent foe two roles, foe class and another object. 

They are combined by modifying foe doesNotUnderstand protocol of foe class so unbound messages pass to 

foe ofoer object. This allows foe two roles to be kept separate, so allowing an instance of a specialised class 

to represent foe evolving abstract entity wifo an explicit subsumption of foe property generalisations. This 

new object is a PolymerDataAbstraction.

Separating foe implemoitation of foe two roles had a number of benefits. A Polymer class can change foe 

type of PolymerDataAbstraction, whicfo changes foe abstract property subsumption few foe Polymer class. 

There are different subsumption mechanisms for Polymer classes subsuming subclasses, instances and 

orfoogonal classifications.

4.2.7.1 Abstract polymer objects
The PolymerDataAbstraction, or PDA, represents foe abstract polymer part-behaviour of foe Polymer class. 

The Polymer class receives messages pertaining to foe aWtract entity and delegates foem to foe PDA.

The PDA subsumes all properties of all grades in a population. The PDA is polymorphic wifo all grades in that 

population, which subsume foe property descriptions of their Polymer subclasses. The PDA must be able to 

receive the same messages and respond in foe same way as foe grades. An additional complication is foe
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evolution of the grade’s behaviours. If the grades change their subsumption then the behaviour of the PDA 

must also change.

The simplest PDA is a single Polymer class with grades but no subclasses. The grades all subsume the same 

properties from the same class. The only difference between the behaviour of a PDA and the grad^ is the 

values held for each propaty. In foe pda each property holds a population of values. An instance of foe 

Polymer class (not called a grade) could represent foe PDA. This requires polymorphism between an object 

representing foe population of values held by each property of foe PDA and foe specific values held by grades. 

The protocols inherited from foe class behave correctly only if foe object representing foe population behave 

in foe same way as foe specific values.

In addition to presenting populations of values, foe PDA provides foe fallowing management tasks:

• Receive and disseminate update messages when grades modify properties.

• Maintain a membership population over which foe abstraction is valid, including adding and 

removing instances from foe population.

• Merge wifo a fellow subclass’s abstract polymer to provide abstract behaviour for superclasses, (to 

follow in §4.2.7.3).

• Manage foe addition (and removal) of orfoogonal property descriptions as grades in population 

extend their property descriptions, (also to follow in §4.2.7.5).

All these management tasks are additimal to foe behaviour of an abstract polymer instance. The tactics of foe 

Enhancer extend foe behaviour of a Polymer instance without compromising foe classification describing its 

behaviour. Unlike ofoer applications of foe Enhancer, foe management role requires access to foe properties 

of foe abstract polymer instance, ie foe abstract values held by foe abstract polymer instance. The pda is a 

subclass of Enhancer foat extends foe message passing to both suteume and manage foe properties of a 

polymer instance, representing an abstract polymer.

4.2.7.2 Conformity between population and abstract polymers
The PolymerDataAbstraction (PDA) is an Enhancer that embellishes foe aggregation of polymer properties 

wifo a number of data management behaviours, which ensure that foe properti^ of foe aggregation are 

consistent wifo foe population represented by foe class. The PDA maintains a close relationship wifo foe class 

it represents. Indeed, it accesses foe class by simply sending foe message ‘c la ss’ to foe instance that it 

subsumes.

A class does not keep track of all its instances. However a primitive behaviour does exist that searches object 

space (primary memory) for objects wifo a class pointer matching a given class and returns all instances of
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the class in primary memory but not instances represented on secondary memory. It will also include the 

instance the PDA subsumes, which is not a grade. A more explicit apprcmch is taken of recording grades’ 

existence. There are two sources of grades in poise. New grades can be instantiated, and the application can 

connect to a set of existing grades on a database. The Polymer class re-defines the standard instantiation 

protocol to notify the PDA when instantiating a new grade. When the application connects to a new database, 

the database notifies each class of the grades added, and the message passes to the PDA, which keeps a 

standard collection of instance representing grades.

An explicit approach is taken fijr the removal of grades, firom primary memory or fi-om a database. When a 

user directs the removal of a grade using a graphical interfiice (see §5.2.2), the interfece notifies both the 

database concerned and the PDA.

The PDA views the addition oi removal of a grade as foe addition or ranoval of a set of property values. The 

PDA locate the generalisation for each property (see §4.2.7.4) and correspondingly adds or removes an 

occurrence of the value in the grade. On a lesser scale, individual changes in a property value of a grade 

cause a similar change in the PDA. The grade notifies its class of the change. The message passes to the PDA, 

which locates the appropriate property and i^dates by removing the old value and adding the new.

The function of the PDA, so fer, manages the generalisation of data fi-om a single class with instances but no 

subclasses, pdas for Polymer classes with subclasses subsumes property descriptions from objects of 

different sub-types. For these classes, a PDA could subsume more than one instance, one firom each subclass. 

This would complicate population management, so a new type of PDA that can subsume the properties of 

many other pdas was created. Then only subclasses with instances require management with pdas. The 

superclasses subsume the results of this managemait firom the subclasses’ PDAs.

4.2.7.3 Conformity across levels of representation.
The total population of a superclass is its own instances (if any) and the combined population from 

subclasses. The properties of abstract polymers for general classes are likewise the subsumption of the same 

properties from the specialised subclasses. These properties are already subsumed together in PDAs for those 

subclasses. A CombinedDataAbstraction (CDA), subsumes the properties of any number of PDAs. One PDA 

represents the instances of the immediate class (if any) and one from each subclass with an instance.

Semantically there is no difference between a CDA and a PDA. Both are subtypes of any grade in their 

respective populations. Each PDA generalises engineering values (see §4.2.7.4). For the CDA to subsume the 

same property from many pdas, the CDA resolves the subsumption by merging the generalisations of the
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same property from different PDAs. Resolving subsumption is a behaviour of the a ttrac t engineering value. 

In §2.1.8 general subsumption resolution was considered a problem with inheritance representation. Here the 

CDA manages the problem explicitly with a specific merging algcxithm.

The CDA is also an Enhancer. Any message sent to the CDA is sent to all PDAs it subsumes. Each message 

successfiilly binding to a PDA returns an abstract engineering value. Unsuccessful messages are simply
t

ignored. The CDA combines the abstract engineering values and returns a single object as the response.

4.2.T.4 Abstract engineering values
The abstract engineering value (AEV) is an important description of the abstract polymer. In order to support 

the abstract polymer, the abstract engineering value must provide the following functions:

• generalise a population of specific engineering values

• presents an abstract value polymorphic with specific engineering values

• resolve subsumption by creating another abstract engineering value covering a combined population. 

Although an AEV reduces the population into a generalisation in order to present an abstraction, for complete 

generality, it does not reduce the infrnmation content hidden within its own memory. It is not a memory 

saving device. It provides protocols for interrogating the complete population of values. The abstraction 

keeps a record of the engineering values from the population it represents.

The AEV is sim ilar to the PDA. Both add a genoul functionality to a set of different object types. The PDA 

adds population management to different classes of polymer. The AEV adds the above functions to different 

types of engineering values - many of wfoich the users of POISE will develop and are yet unknown. So again 

adding a common behaviour to an unknown type of object is a problem.

Any type could represent an engineering value. The user defines the type of an engineering value when they 

define the Property object. One behaviour of a Property is to return a class for representing the engineering 

value, (a class since Smalltalk doesn’t define types). Strictly, fois is a type specification for foe argumœt of 

foe updator: mefood, and foe expected type of foe accessor mefood response (see §4.4.3). The AEV collects 

several of these value types. Currently POISE assumes foe values are arithmetic, and calculates a medium 

value. Wifo foe aid of foe Enhancer behaviour sharing technique, foe AEV subsumes foe behaviour of foe 

median value.

Whereas foe PDA collects grades, so foe abstract engineering value collects values. The management of foe 

abstract engineering value is foe direct result of a similar activity in foe pda. The abstract engineering value 

receives messages from foe pda to add or remove values as foe population of grades change.
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4.2.7.S Applying orthogonal descriptions to abstract polymers
A grade’s description extends with the addition of an orthogonal description. If a single grade is capable of 

extending its description, then so is the description of the abstract pplymer. The mechanism for extending the 

grade subsumes the existing instance of the Polymer class with an instance from an orthogonal class. Yet, 

another Enhancer fricilitates this subsumption.

A grade extends its description using an Enhancer to subsume two (or more) instances, for example one 

polymer and the others orthogonal descriptions. Since the composition of a PDA includes an instance of the 

Polymer class, the same m echanism  applying to the specific grade also i^ l ie s  to abstract polymers. They 

both compose of an instance of the Polymer class. A PDA with orthogonal representation subsumes an 

Enhancer, vriiich in turn subsumes a Polymer instance (the original abstract polymer) and a new instantiation 

of the orthogonal class. For each new orthogonal class that any instance in the population adds, the PDA must 

also add a single new instance from the same orthogonal class to its Enhancer.

The orthogonal descriptions provide a secondary classification. Unlike the class of the materials hierarchy, 

the members of the secondary classification mix with members from other classifications. A subclass, 

MultipleDataAbstraction (mda), extends the behaviour of the PDA. The extension segregate the 

population according to membership to orthogonal descriptions. This allows queries to focus on grades 

subsuming a particular perspective. Besides some complications in management, there is little difference 

between MDA and the PDA.

4.3 Delegation in Smalitaik
splinter uses delegation to combine the behaviours from multiple perspectives forming the behaviour of an 

artefiict. Delegation is known to satisfy this objective. The question is vhat constitutes delegation. Does the 

behaviour sharing of the Enhancer constitute delegation? If it doesn’t, then does the Enhancer, or some 

variation satisfy the objectives of a multiple perspective artefiict? Bearing in mind complete delegation is not 

a goal of this thesis, though the ScopeEnhanccr is the result of an attempt to csq)ture behaviour sharing 

between multiple perspectives as closely as possible.

Delegation is a feature of a language implementation that supports empathy. Yet even empathy, as defined 

from the Treaty of Orlando®, refers to the variable se lf, which is a common binding that languages 

implement. The variable s e l f  is a very important feature of an object-oriented language linking a protocol to 

the context of the receiver, allowing procedural aWraction of protocols, both abstract and specific, within die 

same entity. If the binding is outside programmable control and bound according to a rule of the language.
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then the binding is standard, a feature of the language implementation. Empathy defines the nature of a 

common binding, so describes a feature of a language implementation.

If both delegation and empathy are descripticms of a language implementation, it is impossible to use them as 

a description for a Smalltalk language where the implementation do^  not enforce such characteristics. 

Smalltalk always binds die variable s e l f  to the receiver of die message and the receiver of the message is 

always an instance of the class holding the code. It is impossible for anotho* object to request a protocol from 

an instance and thoi take the role of the receiver (ie the other object binding to self). In conclusion, it is 

impossible for Smalltalk to support empadiy or delegation beyond the implicit inheritance hierarchy.

Absence of delegation is not specific to Smalltalk but strikes contrary to the success of the class-instance 

paradigm. Even if the variable s e l f  could support empathy in Smalltalk, s e l f  is not the only variable 

associated with the receiver. Each instance variable mtqis to a relation of the receiver. Empathy does not 

define how such variables should bind. The binding of the s e l f  variable infers diese relations should also 

come from the client and not the owner of the protocol. Such bindings simply do not exist in delegating 

languages and there are good reasons. The instance variables are just optimisations that benefit from a 

template-like relationship, such as found between the classes and their instance. They do not extend the 

expressiveness of a language. If a software model chooses to use the class-instance relationship, it must 

comply with the rules of instance variable classification.

If the existing Smalltalk œvironmait, its protocols and message passing mechanisms, can not support 

delegation, could a separate mechanism within the Smalltalk language exhibit the intentions of delegation? 

Whether such a m echanism  is considered to attribute Smalltalk with delegation is not the debate. Arguably, a 

procedural language can generate programs of an object-oriented feshion, but the language is not considered 

object-oriented. The same can apply to Smalltalk and delegation implemented as a language extension.

The implementation of Smalltalk can not change but emulation of delegation is possible. Instead of using tiie 

existing sel f  variable, use a new variable. This variable changes according to who is the client, and in POISE 

the cheat is an Enhancer. If protocols are written using this variable, tiien these protocols may empatiiise 

with other receivers.

4.3.1 SœpeEnhancer: Delegation Emulation
A ScopeEnhancer adopts the sinq)le object description of tiie Enhancer. It shares semantic similarity with the 

CompositeEnhancer but the implementation is different to allow experimentation in behaviour sharing 

managemoit The ScopeEnhancer ' s aims are also much more ambitious.
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The ScopeEnhancer aims to support the sharing of protocols across a community of objects. The community 

forms an ordering from an object containing the most specific protocols to the last and most general object. 

Objects in die community can belong to othff communities, fiirming an acyclic graph of behaviour sharing.

In terms of delegation, the ScopeEnhancer is the client and the objects in the community are proxies. The 

ScopeEnhancer does not contribute any behaviours itself, so the overall behaviour is the same as if the first 

object of the community, the most specific, was the client. The rest of the objects in the community are 

proxies of this client. For simplification, all the objects in the community are called ‘proxies’.

The proxies are standard objects. Separate classes define the behaviour of each proxy. The classes reside in 

the standard inheritance hionrchies. Individually tiiey do not share the protocols of others, yet in order for the 

sharing mechanism to work their protocols send messages to se lf, which are not behaviours of the class. In 

this way, classes of proxies are special

The mechanism starts with a ScopeEnhancer and the proxies in a SequenceableCollection grouping the 

community. Messages to the community are sent to the ScopeEnhancer, which has the responsibility to locate 

the protocol within the community and ‘overview’ the evaluaticm.

Upon receiving a message the ScopeEnhancer sets up an exception handler and re-sends messages just like 

the CompositeEnhancer. Any messages, not just those re-sent messages, not found during evaluation of the 

ScopeEnhancer’s behaviour will be caught by the handler.

If the messageNotUnderstoond signal is raised, the exception handler gains control. The handler identifies 

the message and object (receiver) causing the signal. The handler also identifies if the message was sent 

directly from the ScopeEnhancer, ie if it is the initial ‘delegated’ message re-sent If the initial message 

springs the trap then the ScopeEnhancer re-sends the message to the next object in the community, just like 

the CompositeEnhancer. The ScopeEnhancer differs from the CompositeEnhancer whoi the message raising 

the signal is not the initial message.

When a protocol for the initial message has been found, the trap stays set during evaluation of the protocol. 

For empathy within the community, the ScopeEnhancer relies on the protocol evoking the 

messageNotUnderstood signal to intovene. This will happen if the proxy sends a message to s e l f  that it 

does not understand. The message raising the signal in this case is not the initial message.
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The exception handler of the ScopeEnhancer identifies the message and object (receiver) raising the 

messageNotUnderstood signal. If the receiver is the object fi'om the community that last received the initial 

message (the delegated message), and this message is different, then a new message delegation starts. The 

ScopeEnhancer searches the whole community for a new protocol fijr tiie unbound message. If the receiver is 

not the expected object, the ScopeEnhancer assumes the signal is a genuine type error.

The policy implemented is one of a few variaticms tried. They all rely on the handler trapping signals 

resulting in a protocol search in tiie community of objects. In this way, a message in one object can gain 

access to protocols of other objects within the ‘scope of the Enhancer' whilst the object does not define the 

behaviour itself This final condition is inconvenient since it prevents the ability for proxies to specialise 

behaviours existing in tiie class hierarchy. To fiirther understand tiiis limitation, the specific implementation 

of the ScopeEnhancer follows.

4.3.2 Implementing the SœpeEnhancer
Two separate parts of the ScopeEnhancer implement the interfece and the delegation event The class 

ScopeEnhancer, a subclass of Enhancer, implements the interfece receiving the initial messages. 

ScopeEnhancer changes the doesNotUnderstand method to construct an instance of DelegationEvent with 

the message and tiie ScopeEnhancer ' s community of objects. The DelegationEvent is responsible for 

locating the protocol within the community and ‘overview’ the evaluation.

Separating interfece and management of the delegaticm event allows specialisation of the DelegationEvent 

class. DelegationEvent inherits from Object like most Smalltalk classes. The subclasses create different 

delegation policies.

This scheme allows the ScopeEnhancer to create a copy of the delegation event to handle each message 

mutually exclusively. Each shared protocol has an event to man%e foe e\Tduation of that protocol.
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The ScopeEnhancer ' s interfece evokœ the DelegationEvent as follows:

1) Enhancer receives message.

2) Enhancer does not understand message and receives doesNotUnderstand: message.

3) The Enhancer creates a new DelegationEvent object.

4) The ScopeEnhancer gives the event the message selector to search for and the community as an

ordered collection of objects

5) The Event is told to search and evaluate.

The dominant behaviours of the DelegationEvent are search, evaluate and ‘trap’. The ‘t r ^ ’ is an exception 

handler.

6) When an event receives a message to search it initialises a pointer to the top of foe collection (of

objects to delegate to). This is foe current receiver.

7) An exception handler monitors for a does not understand signal.

8) The do-block is evaluated.
9) The message being delegated is sent to foe curroit receiver.

From this point until foe message is complete, the tnp  is set. The following occurs if any object triggo-s the 

trap by raising the signal.

10) The handle-block is evaluated with an exception object as argument

11) The handle checks if the initial context, foe context sending the message which was not 

understood, is foe do-block context from in step (8).

12) If the same then the receiver is set to foe next proxy receiver. If no more proxies then reject the 

exception (normal does-not-understand behaviour occurs) otherwise re-evaluate the do-block 

(back up to step 8).
13) If not the same, foe handle checks if foe originator of foe exception, foe object which did-not- 

understand, is the current receiver. If not foai reject the exception (normal does-not-understand 

behaviour occur).

If the originator is the curroit receiver, foe ScopeEnhancer directs the message to the whole community.

14) A new message is being sent. Simply pass the message to the ScopeEnhancer (start at step 1) and 

proceed with foe response.

Step (14) causes foe CTeation of a new DelegationEvent. The current event is still active until that event’s 

message is complete.

It is possible for the parts from the community to message each other and send various parts of the 

community as arguments in those messages. The various DelegationEvents handle the situation well, wdth 

each part providing it’s specific behaviour first, then foe communities collective behaviour afterwards.
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The above DelegationEvent was the first implementation. This implementation attempts to extend the 

variable se lf ,  by sending m^sages to s e l f  that are not understood within the local object’s classes. An 

alternative is to define a new variable. A specialisation of the above DelegationEvent demonstrates one way 

of achieving this.

The new variable is named the clien t. Unlike tiie s e l f  variable, which binds to tiie receiver automatically 

by the virtual machine, c lien t  binds explicitly through a message sent to s e l f  in each protocol. The class 

Object defines the message c lien t. All objects (bar Enhancers, which do not inhoit fi'om Object) can bind 

to the protocol. The semantics of the c lien t  message is to return the empathetic se lf ,  the ScopeEnhancer. If 

there is no ScopeEnhancer, c lie n t  simply returns se lf.

A  temporary variable can be assigned to the response to the message:

I c lie n t  I
c lie n t := s e l f  c lie n t.
If c lie n t  is now sent messages instead of s e l f  then the protocol is fully empatiietic. Messages sent to 

c lien t, the ScopeEnhancer, immediately form a new DelegationEvent that directs the message to the first 

object in the community, which is the most specific.

The message ‘s e lf  c lien t’ finds the ScopeEnhancer by raising tiie doesNotUnderstand signal. The 

specialisation of the DelegationEvent detects the clienü-message, and treats it specially. The 

DelegationEvent returns tiie ScopeEnhancer as tiie response to tiie c lien t message. If the 

doesNotUnderstand signal is not handled, tiien there is no ScopeEnhancer. The c lien t  protocol detects this 

situaticm and returns s e l f  in response to the message. Protocols using the c lien t  variable without a 

ScopeEnhancer have all messages sent to s e l f  rather tiian a community. In this case, s e l f  is tiie most 

specific in a community of one.

With c lie n t  the ScopeEnhancer can emulate explicit delegation. In delegation, a cl ient delegates a message 

to a specified proxy. A specialisation of the ScopeEnhancer, with a single object as the community, emulates 

the proxy. The message is sent to this ScopeEnhancer. The specialised behaviour notes the object sending the 

message, the delegating c lien t. The ScopeEnhancer finds this c lie n t  by accessing the message contexts, 

just as exceptions access signal handlers. When the proxy object sends the client-message, rather than 

returns a ScopeEnhancer with just the proxy, this specialised ScopeEnhancer adds the delegating-client to 

the community as the most specific object. The delegating-client then overrides all message sent to the 

c lien t  and the r em ain in g  proxy behaviours in the community acts as defeults.
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Even with c lien t, the programming style needs to change. If the programmer uses the variable se lf ,  then 

the programmer does not expect delegation. If the programmer does expect delegation, tiiai programmmg 

must change to allow the ScopeEnhancer to support the empathy.

4.4 Hierarchical Schema Evolution
Sçhana evolution in POISE is not a common activity. Once the classification is initially set up, only 

occasionally will it change when a user adds new classes of polymers or properties. Even so, user interactions 

must be effective. For example, excessive delay would be unacceptable when processing a change. Excessive 

delays were incurred when making a series of changes using the development system’s mechanism for 

schema evolution, the ClassBuilder. Long waits occur after each change to the schema, so a source of 

optimisation was sought

The development system’s ClassBuilder evolves class specifications; in particular, the scope of variables 

declared by a class and accessible by its instances. Changing the class’s name and global’s scope, such as 

class variables and pool variables, only requires minor changes to foe state of foe class object. Methods too 

only affect foe method dictionary of the class. Subclasses implicitly inherit these changes and they need not 

change themselves. This is not the case for changes to the format of instances. The most common change is 

foe number of instance variables. This changes foe integer fijrmat descriptor (ttiat encodes the storage layout 

of instances) and has much more extœsive consequences.

Subclasses and instances inheriting instance variables, and any other format information, from a superclass 

must explicitly coerce their own format to matdi changes in the superclass. A change in a class can affect a 

number of subclasses and many more instances. The addition of an instance variable, for example, requires 

each subclass to change their format For eadi instance the class generates a new instance under foe new 

format, copies across foe states of the instance variables and makes foe old instance become foe new. With 

the change in instance variable position within instances, each method of the subclasses requires recompiling. 

The ClassBuilder coordinates all these modifications to foe hierarchy.

The schema of foe ClassBuilder shows significant inefficiencies when moving an instance variable from a 

subclass to a superclass. The schema dictate that the name of an instance variable is unique within foe 

inherited scope of a class. The subclass must first remove an instance variable before adding it to a 

superclass. Otherwise adding the same named instance variable to the superclass will conflict with foe 

existing named variable in foe subclass. Removing foe name reduces foe number o f  instance variables 

causing a reduction in data structure of all instances of the subclass. All methods are also recompiled. Only
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then can the superclass add the instance variable. This adds the instance variable back to a subclass, by 

inheriting from the superclass. All the instances of the subclass restructure again. Now the structure holds no 

data for the moved variable. The values were lost when foe instance variable was removed from the subclass 

and foe structure reduced. All foe subclass’s methods are recompiled a second time..

WhCT. properties move, the variable they define move. Moving propaties up and down the inheritance graph 

is called promotion and demotion (§3.3.2.1). Moving instance variables up and down foe inhoitance graph is 

inefficient and causes a loss of data. Since this is a significant activity when modifying foe classification, a 

new schema was developed to schedule foe changes to foe classification.
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Figure 15: Schema- hierarchy editor
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The HierarchyEditor is POlSE’s user intofece fer evolving the polymer classificaticm (§3.3.3). The interfece 

is the user’s view into a mechanism that radically changes Smalltalk’s traditional class evolution. The new 

mechanism boasts the following features:

• Batching changes by class to minimise processing.

• Abstracting inheritance by property radier than by method.

• Prevent loss of data through instance r%tructuring

• Improving re-compilation efficiency by extending metiiod representation.

Figure 15 is a schematic representation of the mechanism supporting the first two points, batching and 

inheritance checking by property. The ChangerClassBuilder does the actual evolution of the polymer 

classification. Improving the re-compilation is addressed later, in §4.4.5.

4A.1 Assigning Properties to Qasses
When a new intafece on the hierarchy opens it initiates a new POISEHierarchyChanger (PHC), the batch 

manager of the session’s changes. The PHC creates and records ClassChangers (cc) upon request. CCs record 

the changes for eadi class. The CCs fiirm a hierarchy transposed fi-om the existing class hierarchy. A 

ChangerEnd object terminates the scope of the PHC at the root of the hiawchy, thereby limiting the range of 

class modifications to some domain in the Smalltalk hierarchy. For the polymer hierarchy, this limit is set to 

the POISE class, the superclass of Polymer.

I h e  Instance varrft>le 'current' Is a  QassChanger currently being checked during recurs he 
behaviours. The Instance verrlble ‘oflendets' are ClassChangere that confflct with the cwreN 
process. The Instance verrlble 'superseders' are ClassChangers that have redurxbnt sta tes (kie to 
the current process. The Instance variable 'originator' is the changer the process wHI act on."

cons1stencydxeckForAddlng
"current Is a  subchanger d  an originator v ^  Is adcBng a property. Has current removed the propert 
explicitly Oils session, causing a  direct conflict?"

(current hasRemoved: property) ifTrue: [offenders add: 
current].

"Does current define the property that It win now Inherit"
(current properties includes: property) ifTrue:[siqierseders 

add: current].
"Recursively check subclasses"

current subChangersDo:
[ :ch I
current := ch.
self cons is tencyCheckForAdding]

coBBlsteacyCbeckForRflo»vlng
"current Is a  subchanger of an originator who Is remoMng a property.
Has ciment added the property explicitly this session, and now should define the property"

(current hasAdded: property) ifTrue: [offenders add: 
current].

"Recursively check s itc leases"
current subCbangersDo:

[ :ch I 
current := ch.
coif concictQncyChaclcS’orRemoving]

Figure 16: Code- ClassChanger consistency checking for adding and removing
Modifications to the schema are directed to the individual CCs concerned. The view requests the CC by class

name in the message changerNamed:. A CC can add, remove, demote or promote a property. A CC can change 

its supa-class or its name. New CCs are seated for non-existent classes that will be added to the hierarchy.
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Each request changing the schema initiates a consistency check. A ClassConsistencyChecker (CCC) is set 

with the £q)propriate check flag: add, remove, promote, or demote. The descriptions of these consistency 

checks are given in §3.3.2.1. Any inconsistency causes a N otifier to open giving the user qipropriate 

options or else for aborting the request for change. After completing foe consistaicy check, foe checker 

updates foe cc. The code implementing foe checks in this schema is given in Figure 16 and Figure 17. Note 

these methods recursively call foemselves as foe check goes through foe hierarchy of ClassChangers.

damoteCheok
T h e  originator Is any one of the sut)clas8es of a superclass that defines property. The demote will 
remove the property Irom that superclass and add the property to It's subclasses such that the 
originator defines the property. Hence all superclasses of the originator will not inherit or define the 
property."
"Current starts a s  the Immedtate superclass (changer) of the originator"
• Any superclass that has had the property explicitly added Is now having the property removed - 
hence a conflict. Add conflicts to offenders"

(current hasAdded: property) ifTrue: [offenders add: current].
"Collect up the superclasses of the originator. Their subclasses (not In the line of Inheritance of tfw 
originator) will require property to be added"

supersodorc addi currant.
"Continue recursion untfi the superclass that defines the property is found"

(current properties includes: property) 
ifFalse:
[current :■ current superChanger. 
self donoteCheclc]

promoteChack
"Current Is a class that will have a property added. (Often It Is InitiaJIt the sam e as originator when 
adding). Check to see If current can Inherit the property from Ifs superclass (superchanger). To dc 
this, all sidx lasses of superchanger must also define property.
Current will be left at the highest superchanger which will accept property"

I superChanger subChangers| 
superChanger := current superChanger.
(superChanger hasRemoved: property) ifTrue:

"Property has been explicitly removed. Do not promote"
[^self] .

"Check the subclasses of this superclass, excluding current which Is ha\4ng the property added.
Check they all define property. If a  single one doesnl, promotion is not possible" 

subChangers := OrderedCollection new: 10.
superChanger subChangersDo:

[ :ch I
ch == current ifFalse:

[(ch properties includes : property) 
ifFalse: [''self].

subChangers add: ch]
] .

"Promotion possible. All these subclasses will need to have the property removed so  they can 
inherit It from superchanger. Add them to supersedere. " 

superseders addAll: subChangers.
"Now recursively check to se e  If the property can be promoted to the next superclass" 

current :■ superChanger. 
self promoteCheck

Figure 17: Code- ClassChanger consistency checking for demoting and promoting
The primary consistency checks are concerned with inheritance conflicts. The checkers are also able to

interact with Property objects to ensure that mutually exclusive properties are not both accessible to the 

same class. Each Property determines foe existmce of other Properties it depends on.

When a class changes its superclass, it affects the inheritance of the class and its subclasses. The properties 

subsumed from foe new superclass are checked against foe properties defined by the class and each subclass. 

Coordinating these checks is a SuperclassConsistencyChecker (scc). Essentially this object iterates
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through all the properties of the class being moved. If the property is not inherited from the new superclass 

then it is defined on the class being moved. The moved class will only increase its property base. The SCC 

then checks each subclass to see if the newly inherited properties conflict with any subclass property 

definitions.

see utilises a number of cecs to ensure the new superclass does not conflict with the class’s properties. 

Unlike user driven property changes, Notif ie rs  are not raised. Instead, defeult actions are taken, such as 

removing properties that are now inhaited and adding properties that were previously inherited. Such 

changes are visible in the hierardiy view before any permanent change is made to POISE, allowing the user to 

make adjustments.

The SCC also checks for an invalid inheritance structure. The new superclass must not be the moved class or 

any of its Subclasses, thereby creating an inheritance loop. At all times foe changes are consistait with foe 

inheritance rules and any other rules imposed by the properties.

4A.2 Building Classes
The benefit of a separate model fiir representing the changes to foe hierarchy is that POISE can control foe 

order foe changes occur in foe classification hierarchy. When foe uso" decides to accept foe changes, POISE 

always begins modifying the most general class first, which are foe classes at foe top of the hierarchy. 

Another benefit is that there is no heed for consistency checks as they have already been made, unlike foe 

ClassBuilder of the Smalltalk development system. Instead a new ChangerClassBuilder, (CCB) does the 

changes. The individual CCs specify the new classes to foe CCB.

Each CC specifies a new class object This specification includes foe superclass and an aggregation of 

property objects. The property objects specify the behaviours and state variables of the new class. The CCB 

collects the instance variables and defines foe new class, but installing foe mefoods is foe responsibility of the 

property objects.

POISE allows behaviours specific to Polymer classes that are not specific to a property. These behaviours use 

standard Smalltalk methods. Any code not derived from a property object, but is specific to foe class, requires 

copying over from the old class’s method dictionary. The builder does this after installing foe properties, 

allowing foe class specific behaviour to over-ride a property specific behaviour.

The CCB starts at foe root of foe hierarchy. Building superclasses occurs before building subclasses and every 

new class built is initially absent of subclasses. After building each class, building starts on its subclasses.
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The subclasses inherit the changes of the newly built supercla^. A subclass will not expect changes in the 

superclass after building the subclass, thereby ending rq>eating evolution of subclass structure and methods. 

Also, there are no subclasses when building a (super) class. The builder does not recursively update any 

subclasses.

Once the new class objects are built, the builder coerces the instances (if any in primary memory, §4.5) of the 

old classes across to new instances of the new classes. Since this is only done once at the end of all schona 

changes, no data is lost. Data associated with an instance variable in the old class moves to the same named 

variable in the new class, regardless of the variables position in the instances data structure.

After accq)ting the hierarchy and foe POISE class hioarchy has been rebuilt, foe new classes substitute foe old 

classes, thoi foe old classes along with foe old instances, foe PHC and all its CCs, are all garbage collected (see 

§4.5.8).

The only part of foe story left to tell is how property objects describe foe methods of foe class. Each CC, 

which collects foe properties, passes foe new class to each property. It is up to foe propaties to install their 

behaviours on foe new class.

4.4.3 Properties and Partial Temf̂ ate Objects
A material class is a template fi)r foe behaviour of grades. This tenq>late comprises of an aggregation of 

properties. Each property contributes a part to the template. Objecta with the ability to partially describe 

classes, and thereby the instances, are abstractly known as Partial Template Objects^^, (PTO).

The Hierarchical Schema interfiice collects the properties as the user directs fijr each class. With PTOs, foe 

user defines the material classes template, and thereby the behaviour of grades. The process of composing the 

material class involves the information in foe PTO, and some coercion of foe instances.

Smalltalk’s development environment provides the programmer with schema evolution for dynamically 

adding instance variables and mefoods to classes. At its simplest, foe PTC is a similar description of change, 

where foe declaration of instance variables and methods using text, as entered by the programmer, generates 

a macro like function.

Each property is an independent collection of behaviours. Instance variables in a property description support 

the implementation of the property’s methods. Usually the variable holds foe specific engineering value for 

each grade and mefoods provide foe interpretaticm. The instance variables are few and specific to the 

property. The description of the mefoods are in turn limited to accessing these instance variables, some global
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variables and accessing other states of the receiver through messages to se lf. Global variables always bind to 

the same objects. S e lf  always binds to the receiver. Instance variables though bind to locations within the 

structure of the receiver. This structure is different for different classes of object. Since the PTO’s protocols 

are not defined for any particular class, the instance variables complicate the compilation of PTO protocols.

For each PTC the scope of variables the methods may access, the instance variables, globals, arguments and 

temporaries etc, are consistent regardless of the class of receiver. Only the physical binding of instance 

variables is unknown. Initially the programmer represents each protocol as text (the source) whidi is then 

compiled. The PTC could keep the text representation though any errors in the text would not become known 

until the text was compiled for a particular class. Instead, POISE extends the compiler to cater for PTO 

protocols. The compiler optimises the protocols, converting text to pseudo code, see §4.4.5.

If die protocols are correct, they are only correct for classes that siqiport the instance variables required by 

the property. Before a Polymer class adds foe protocols of a PTO, the class adds foe instance variables. Then 

foe PTOs can ‘install’ the protocols on foe class and each instance in memory.

With the help of the ChangerClassBuilder, part of the hierarchy schema, PTOs also simplify the addition of 

instance variables. They remove the responsibility fi'om the ClassBuilder and foe rest of foe hierarchy 

system from dealing with foe complexities of foe development system’s compiler, scoping rules and naming 

conventions.

4.4.4 A Mechanism for Partial Template Objects
In POISE any instance of the class PartialTenplate or its subclasses, such as Property, is a PTO. The 

abstract description of PartialTenç)late is:

Object subclass: PartialTemplate 
instance variable names 

templateName
classMahods instanceMethods classSoope instanceScope
prerequisites preclusions classesInstalledOn

instance method for installing 
installOn; aClass

PartialTençilate supphes foe following abstract specification of a PTO:

Ability to insert methods. — A PTO associates a dictionary of instanceMethods and a dictionary of 

classMethods. These mefoods are “partially compiled” (see §4.4.5) for extra portability and efficient 

compilation into any class installing foe PTO. The instanceMethods contribute behaviours of instances, while 

classMethods contribute behaviours to foe Polymer class itself
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Protected scope o f variable r^erence, local to the set o f inserted methods. — instanceScope and 

classScope express variable definitions accessible to tiie instance methods and class metiiods (respectively). 

A class-installing the PTO adds these variables as necessary. The scopes comprise (i) instance variables 

visible to all methods affecting the instances of the class, (ii) community-pool variables visible to all 

instanc^ethods and classMethods of the PTO, (üi) Smalltalk global variables visible to all Smalltalk 

methods generally. The community-pool variables are a local enclosing scope of the PTO behavioural 

“community”. These local variable definitions are not otiierwise available to other methods of the affected 

class.

A record o f all classes that the current pro has been installed. — classesInstalledO n stores this set of 

classes as part of a mechanism ensuring change propagate to them when modifying the PTO.

Any given class template may install more tiian one PTO. In order to control multiple installation the 

specification of PartialTengplate also incorporates the following:

Prerequisites. — These are other ptos which a class must install (or inherit) before installing the current PTO. 

This attempts to provide for control over inter-module dependencies that arise if methods of tiie current PTO 

call metiiods in other ptos.

Preclusions. — These are other ptos with conflicting behavioural definitions.

This specification of PTOs supports a cohesive description of the partial contents of Polymer classes. They 

attempt to provide the classes tiiey affect with a well-composed character, in the sense that each set of 

installed properties observes a scoping regime common to members of the set but othowise private.

4.4.5 Generating a Behaviour of a PartiaiTempiateObject
Within POISE, the Property object implements tiie PTO as part of its role. The user, using a PropertyEditor 

browser, creates a new prqierty. Then a second specialised Propert^ethodBrowser browser adds 

behaviours to the property. See Figure 45 for examples of the browser. Each property behaviour generates a 

PartiallyConpiledMethod (pcm). In Figure 18 the schema of the process generating the PCM fi'om source 

code is the subject of this section.

The schema is a modification of the procMS that compiles standard Smalltalk code. The schema foows both 

compilations, with a different method activating each. A dashed line demarcates the two methods in the 

initial context.
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The behaviour specialising the PCM compilation is mainly in the class PartCodeStream, a subclass of the 

CodeStream that normal class-bound compiled methods use. The PartCodeStream class c^tures the extra 

information that the PCM requires from the source.

Compiling code requires tiie text source code and a NameScope. The NameScope contains the mapping 

between variable names and tiieir storage location. The NameScope is a nested structure, an extendible 

ordering of the variables descriptions. The nesting allows the addition of temporary variables while 

generating code. This ordoing has little effect on the compilation other than when optimising some structures 

in code that do not require access to parts of the NameScope. In mœt cases, only the overall variable visibility 

is of any concern.

NameScope contain two basic types of variable definitifms, which are StaticV ariables and 

InstanceVariables. The StaticV ariables are typically globals. Access to globals is the same for all 

methods, so will not be any different far a classless PCM. InstanceVariables are class dependent 

InstanceVariables define the name and the index within instances of the class. Since a class is not known, 

the PCM compiles for a PTO, and tiie PTO provides the names and indexes of valid instance variables. As long 

as these variables are unique and the indexes are unicpie, the standard compila; will accept them. Later the 

PCM will explicitly modify the indexes to complete tiie compilation ftir given classes.

A compiler is a translator of ‘high-level’ source code to ‘low-level’ code. It typically consists of a lexical 

analyser that converts the source text into tokens, a Parser that converts the sequence of tokens into a syntax 

tree, an attribute collector and distributor tiiat apply the contextual constraints of the source language, and a 

code generator and optimiser that translates the syntax tree into tiie low level code®̂ . In the schema. 

Figure 18, these modules of behaviour can be seen as follows. The lexical analyser is the general behaviour 

of the Parser’s superclass, LexicalScanner. The specific subclass Parser describes the syntax of 

Smalltalk’s one-look-ahead grammar language. Subclassing off the scanner makes the schema amenable to 

other language syntax.

A sentenee in the Smalltalk language composes of a sequence of tokens called terminals. The Parser applies 

rules for groiq)ing terminals with other terminals and other groups of terminals. These rules are called 

production rules.

Production rules generate a ‘syntax tree’, which is a hierarchy with tiie terminals as leaves and the groups as 

nodes. The simplest representation of a syntax tree is a hierarchy of terminal and non-terminal symbols for
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the nodes. Each node is marked by a ‘non-terminal’ name that identifies the production rule used to produce 

the node. These names convey the semantics of the sentence. Lata, they instruct the compila how to 

construct the code in the output language.

The compila applies denotation semantics, which means each component of a sentoice corresponds to a 

component of the language’s semantics. The syntax tree is a decomposition of the sentence into semantic 

components. The production rules identify each node and tiieir corresponding semantic. The language’s 

semantics are rules for constructing low-level code fi’om the components of nodes. Each node combines 

simpla nodes and terminals. At each node, code combines until the compila constructs code for the whole 

sentence.

With the importance of the nodes evident, it become clear why compilers often aeate elaborate syntax trees. 

Each pi oductlon rule in foe Parser nuqis to a type of node. In Smalltalk, ratha than use a symbol, the Parser 

aeates a message corresponding to foe production rule, and sends the message to the interfece of a 

NodeBuilder object. Messages to the NodeBuilder instantiates Node objects and generates foe syntax tree. As 

the Parser scans foe source code, each application of a production rule causes a cascade of message sends to 

the NodeBuilder, which builds foe tree. A fta scanning and all messages to the NodeBuilder are complete, 

foe Parser is left with one distinguished node, or top-node, which is the root of the syntax tree. In Figure 18, 

the syntax tree is the hierarchy rooted in ProgramNode, the top-node of foe hiaarchy. More specifically, this 

hierarchy composes of instance from subclasses of Node, each class distinguishing different types of node.

The NodeBuilder provides an interfiice between foe production rules of the language and the Node objects 

used in the syntax tree. The Parser uses none of the node’s instance behaviours. The NodeBuilder only uses 

instantiation behaviour of the Node classes. This leaves foe behaviour of Node, and its subclasses, a clean 

representation fi)r the language semantics. Thaefi)re, although only syntactic information is used to genaate 

foe syntax tree, it is already a semantically powerful structure.

One abstract Node subclass represents variables. This node is specialised fi)r temporary variables, arguments, 

instance variables and globals. The production rules do not provide the infi)rmation to differentiate between 

them. This information comes from foe variable scope, which foe class usually provides. Instead, foe PTO 

provides foe initial variable declaratiois.

The parser returns foe top node of the syntax tree to the imdalying context, which then initiates checks on 

the contextual validity of foe tree. Smalltalk is not a context-free grammar The choice of production rules at
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a point in a program depends on rules previously applied, eg a temporary variable must be declared before it 

can be assigned a value. The requirement that a variable is declared forms part of the contextual description 

at some point in the program. This ‘program-context’ description is part of the behaviour of the CodeStream 

object. Since the formulation of the program-context is an important part of code generation, the CodeStre^ 

also gffisates code while the contextual checks are being performed by the syntax tree. So, although the 

checks are initiated by underlying compiling context by passing a new CodeStream with the NameScope, 

messages pass back and forth between each node and the code stream, some for checking, some for code 

generation. y

Code generation is a combination of the following activities:

• Binary instructions are sequentially added to a byte array.

• Collect litCTals (objects accessible by any code: integers, characters, selectors, references to global 

variables,) the code uses.

• For each inner-block the code uses the compiler generates a new CodeStream.

The inna-block is a unit of code within a protocol. An example is in Figure 14,‘ (pp 109), which contains a 

handle-block and a do-block inside the main protocol. A separate CodeStream compiles each block. L ata the 

code for these blocks will join the literals as attributes of the main protocol object.

In addition to these activities of the CodeStream, the PartCodeStream collects every reference made in the 

byte array to an instance variable. Two kinds of instructiais in the code refer to instance variables, and they 

are eifoa an accessor or an updator. The NameScope supplies the index of the instance variable, which 

follows the instruction code. The PartCodeStream collects the locaticm in foe code of this index (the ‘location 

in code’ in Figure 19) and associates it with foe name of foe instance variable.

A fta foe checks and foe initial pass of code generation, foe final stq> usually makes the method, a Smalltalk 

protocol. The CodeStream constructs foe components of a method. It do% not presort these components in a 

way the virtual machine can execute. Executing code is foe independait intention of anotha object, the 

ConpiledCode. Each CodeStream makes a ConpiledCode object The CompiledCode presents the components 

simply and uniformly within its own instance variables for foe virtual machine to access. For foe PTO, 

PartCodeStream constructs a PartiallyConçiiedCode (pcc) (Figure 19) that is only partially of the same 

type and do not execute. This object is not a subclass of ConpiledCode but it can goierate a kind of 

CompiledCode when the PTC transfers protocols to a class.
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A PCC defines a subset of CompiledCode behaviour so it can masquerade as a method in code browsers. To 

this behaviour, the PCC adds its own behaviour for re-compiling foe code for a given class. This behaviour 

croates a mapping between instanoe variable names of the PCC and the indexes of instance variables of the 

same names in foe class. A simple recursive Class behaviour collects the ordered lists of instance variable 

names defined by the class and its superclasses. The position of the names in this list provides foe correct 

ordinal number of the slot in foe instances.

Location in code

Property

is -a :
PartiaiTempiateObject

Pjgfaod
d ic t io n a iy
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Compiled C o d ^
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Figure 19: Schema- PTO linking

Like CompiledCode, the PCC can contain inner-blocks of code with foe literals, but they too are PCC, not

CompiledCode. Each separate PCC keeps a mapping of instance variable in their local code. The PCC is 

therefore a hierarchical structure. With foe literals of a root PCC (an attribute not shown in Figure 19) there 

are PCCs as inner-blocks, which in turn can hold other PCCs with their literals. When a PTO installs PCC onto a 

class, it sends a re-compile message with the class as an argument to each root PCC. This creates foe mapping 

for the class. A copy of the local code updates for foe new indexes. The collection of literals in each PCC are 

copied (the literals themselves are not copied). The re-compile message then passes to each pcc found in the 

new collection of literals, which recursively pass on to their inner-blocks down the hierardiy. With the copy
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of litaals and modified copy of code', each inner PCC creates and returns a new CompiledBlock, the subclass 

of CompiledCode representing inner-blocks of code. The exception is the first outer PCC, the root PCC,' which 

generates a MutableCompiledMethod (MCM) object, a kind of CompiledMethod, and not a compiled block. '

The PCC could make a standard CompiledMethod, which is the normal kind of CompiledCode that classes 

manage and code browsers manipulate. The MutableCompiledMethod adds a more efficient re-compilation 

behaviour. When instance variables change, or the class moves to a new superclass, all the mefoods of the 

class re-compile. A standard method re-compiles by sourcing the original text (fi-om secondary storage) and 

going through parsing, syntax tree construction, and compiling. The MutableCompiledMethod, on the other 

hand, keeps a reference of the PCC, which can re-compile foe method for any mapping of instance variables 

by changing instance variable indexes in foe byte stream. When foe MCM receives the message to re-compile 

from a class, it passes the message to foe pcc , which returns a new mcm. The class then replaces foe old MCM 

with the new one.

4.5 Data Storage
Data storage is a broad research topic. The issue at hand though is object storage fi)r POISE. The requirements 

in §3.8.5 summarise foe issues. Attempts to find a commercial system satisfying these recjuirements fiiiled. 

This is due to two fiictors; first, Smalltalk is a particularly expressive object-rented language, suppcating 

large and complex object relations. A database supporting £q>plications in Smalltalk requires an equally 

expressive data descn-ipticm language. Secxmdly, many OODBMS compete with RDBMS. Consequently, their 

design emphasis is on data retrieval not data modelling, so foe expressiveness of foe data description 

languages is secondary to the access speed associated wifo the data manipulation language. The development 

of POISE necessitated research into foe field of database d^ign, though with foe very specific goals specified 

in §3.8.5.

The object storage fia  POISE is an issue of persistence fia  portable objects in foe Smalltalk environment. 

Research into persistence of Smalltalk Objects is a broad topic in itself with contemporary work often 

involving implementing a new Smalltalk kernel̂ ®. These persistent objects will not port between different 

Smalltalk sessions and a choice of Smalltalk kernel had already been made.

An altonative approach implements a storage mechanism within Smalltalk. Smalltalk code manipulates an 

external file structure that is portable .between sessions. Since foe mechanism is in Smalltalk code, foe 

mechanisms benefits firom Sm alltalk  as foe data description language. Any data management POISE needs can
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be added later. The search was for a storage mechanism tiiat satisfies most of poise’s data storage 

requirements.

Within the development œvironment of ObjectWorks 4.0, thae is an Object protocol for representing 

instances on a byte stream. This protocol provides a fimdamental record fiomat fia genoal representation of 

objects similar to the structure mentioned in §4.1.1. It does not provide any management of the 

representation. Applications storing objects in records even need to create the medium for the record (the 

disk file) and remember where the record is in that medium. In contrast, the commercial class library ISAM 

provides for the management of object storage. ISAM is one of many task specific class libraries 

commercially available fia enhancing the productivity of Smalltalk development.

4.5.1 Attempt 1: ISAM
Two different commercial class libraries, or ‘Toolboxes’, supporting storage mechanisms were examined 

The first commercial mechanism was the ISAM—Indexed Sequential Access Mechanism—Toolbox*^. The 

toolbox focuses on managemoit of objects stored in records on a file. The classes in foe toolbox define a 

technique fia creating and accessing records programmable from Smalltalk. The main class defines a set of 

access protocols for collecting and iterating forough records in sequœce and by index on attribute, so ISAM is 

both indexed and sequential access. For example, grades could be sequenced by polymer femily keeping 

similar grades together and indexed by trade name fiar direct access.

In order to store and retrieve an object in a file, stored as a record, ISAM requires them to abide by a type 

specification. All subclasses ISAMrecord class inherit this type specification. Typically, only objects 

inheriting firom ISAMrecord are stored. The type specification includes a specification fia foe structure of 

each record as a template aggregating itons. An item is an attribute that is an instance inheriting fi’om foe 

ISAMitem class. Subclasses of ISAMitem represent basic Smalltalk objects, such as text and numbers, in 

binary form.

The ISAM representation is like a hierarchical data model. The class hierarchy of iSAMrecords form a 

hierarchy of structural description of different records. The CODASYL network model (§2.3.1) extends foe 

hierarchical data model with many to one relaticms represented by pointers between records. Likewise, foe 

first experiment in POISE extends foe expressiveness of ISAMrocords with a pointer item fia representing 

complex structures.

ISAM uses Smalltalk as a data description language but each description is explicit. It stores only objects 

inheriting fi’om ISAMrecord and as a type of ISAM object they explicitly define their behaviour of logical
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representation, ie tiie attributes representing the state of the object. Each subclass of ISAMrecord transforms 

instances into a set of attributes and visa versa. The inheritance between subclasses forms the hierarchical 

relationship between records and is the only relation available to ISAM. The addition of the pointer-item 

allowed other orthogonal relations, but they too must relate to an ISAMrecord. Although ISAM uses 

Smalltalk as a data definition language, tiie specification of behaviour or protocols of the ISAMrecord define 

the syntax and limit the semantics of records. As will be seen, repr^enting the fiill semantics of Smalltalk 

addresses many issues beyond simply the network of relations between objects.

ISAM semantics are those of fixed aggregations of attributes and they are less expressive than the binary 

relational file discussed. ISAM is inoqiable of representing arbitrarily complex data structures on a file, let 

alone supporting diange to those structures. Storing the representations in POISE needs comply data 

representation and transparent access §3.8, so the ISAM toolbox was extended.

In principle, by extending ISAM to include pointa-items, a general mechanism is possible for encoding on 

disk specialised subclass of ISAMrecords, provided each instance variable in the subclass was a type of 

ISAMrecord or ISAMitem. The network of inter-related records on disk directly model the inter-relationships 

of Smalltalk objects in memory. These pointas though introduce a numba of complexities, which will be 

addressed lata. ‘Circular references’ are a particular problem if objects are not idoitified as already stored.

ISAM does not define an independent portable data store. The data model, the subclass defining the structure 

of the records and the semantics of the objects into which the records transftmn, is a property of the 

application, not the data store. Specific £q>plications specify items and record types explicitly, but thoe 

specifications are ;mrt of the application, and not integrated into the data stae. Data stores can port only 

between {applications that share common cl{iss definitions.

ISAM provides both an ordaed access and a random (uxxss interfiice to stored objects. The interfece is a 

characteristic of the data manipulation isam supports. Before an application manipulates an object on the data 

store, it must access the object via the interfiice. This distinguishes the manipulation of objects on ISAM firom 

the munipiilfltion of objects in memory. The access requires the application désigna to identify the pasistent 

objects prima-fecie, to cata  jfor the intafece protocols. A stored object can receive a message, only a fta  

ISAM retrieves the object The task of telling ISAM to retrieve the object fiills on all classes of object, which 

send messages to ISAMrecords. A fta  processing the message, the senders must also tell ISAM to save the 

object.
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‘Transparent access’ is the process of data manipulation of stored objects that does not require explicit 

interaction with the storage management Accessing ISAM is not transparent An initial attempt at 

transparency uses an Enhancer as an object proxy responsible for communicating with foe ISAM storage 

management

4.5.2 The Role of Database Proxies
Just as a proxy vote is handled by a third party as though the voters had voted foemselves, the database proxy 

receives messages in place of an object stored on the database. As a subclass of Enhancer, the proxy is a 

small primary-memory resident object and all messages evoke its doesNotUnderstand: protocol, which 

creates a primary memory representation of foe persistent object and passes it foe original message. The 

proxy communicates with the object storage manager in order to achieve this task.

Objects can only receive messages from foe other memory-resident object that reference them, ie their 

referencers. Therefiae, proxies exist only for stored objects with memory resident referencers. In 

consequence;

• There can be many more objects on foe database referenced by other objects on foe database for 

which there are no proxies.

• Proxies consume less space than foe database objects they represent and so do not compromise foe 

purpose of the database to achieve primary-memory economy.

Evoking only the one behaviour, regardless of the message is a trait of the Enhancer. The employment of

Enhancer as a proxy—usually one per staed object with a memory resident referencer—is transparent to foe

referencer, and hence the qjplication in primary memory, which sends foe messages. Stored objects ^)pear to

receive messages like any otha object.

Upon receiving a message, the proxy requ%ts from foe database management system, a memory resident 

representation of the stored object. The proxy then passes the message on to fois object. Upon completion of 

the message, the proxy requests foe database to store foe curroit state of foe object Both foe importing and 

exporting of the object to foe object manager occurs transparently with respect to the message sender.

The structure of an object in primary memory is as an aggregation of object relations, see Figure 11. In 

accord with other network models, an object on secondary memory is a record of pointers to other records. 

When reading an object into memoy, each of foe objects in the aggregation previously without a memory 

resident referencer now have one; foe object aggregating foose relations is a memory résidait referenca. By 

foe above rule, a proxy represents each relation in primary memory. An inta-record pointa on foe data store
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represents an Enhancer as a future proxy. This finding simplified the problem of object retrieval, and led to a 

re-write of Tigris™®* and BOSS™*®, which were parts of foe second data-store examined

4.5.3 Attempt 2: Tigris and BOSS
ISAM still had foe problem of requiring an explicit declaration the record structure fiir each type of object it 

stored. Tigris staes objects without need for an explicit declaration of object structure. Tigris is an indexed 

access mechanism wifo general object storage capabilities, and in conjunction wifo transparency through 

proxies, initially seemed to satisfy poise’s storage requirements. Unfiotunately, problems were found wifo 

foe identity of objects retrieved.

The strmgfo of the Tigris interfece is its similarity to a Smalltalk Dictionary. Natural language dictionaries 

sorts words by character orda for consistent access and associates foe words with their meaning. A Smalltalk 

Dictionary is a collection of object pairs, one sorted for access with foe ofoa object associated for retrieval. 

Tigris stores each object against a unique name used for retrieving foe stored object.

Transparent access to Tigris uses foe same mechanism, the Enhancer as a database proxy, which extended 

ISAM. The Enhancer keeps the key for looking up foe object in foe Tigris database. When the Enhancer 

receives a message it sends foe key to the database to retrieve the object. The message then passes to foe 

object returned.

Unfortunately, foe Tigris behaviour was found to differ fi’om foe behaviour of a true Smalltalk Dictionary. 

The object a Tigris collection retrieves from may or may not be a copy. A copy is acceptable if the original 

object no longer exists within foe Smalltalk environment (ie it has been garbage collected, see §4.5.8). If the 

original object exists, it is possible to test for foe identity difference between the original and foe copy. A true 

dictionary stores foe original and retrieves the original, so no difference is detectable.

Tigris TTiflinfaina a small cache fia efficiency. If an object is in foe cache, a subsequent request for foe same 

object produce the same object. So, in some cases, a copy is not generated depending on the number of 

different objects requested fi’om Tigris and foe size of foe cache.

Copies have an adverse effect on many to one relatims, converting relations to many-to-many-copies. If two 

different refiaencers both request an object fi’om Tigris they may or may not reference diffiaent objects, 

depending on the cache. If they refisrence the same object, the behaviour of one referencer can influence the 

behaviour of the otha. Othowise, their behaviours are mutually exclusive. Consequently, behaviours differ
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depending on the activity in foe Tigris cache! In addition, writing one copy will over-write foe other, if using 

the same key name to foe dictionary, resulting in possible information loss.

Two parts compose the Tigris toolbox. An outer shell provides the dictionary interfece and object cache. The 

inner part is a version of a public domain toolbox called BOSS*®, Binary Object Storage System.

BOSS receives an object from the interfece. As maitioned, each object can be viewed as a record of foe other 

objects it references. From any given ‘root’ object, BOSS successfiilly traces foe network of object relaticms, 

identifies circularity, and generates a linear sequence of records. A byte stream represents this sequence of 

records.

BOSS stores whole object compositicms and reads whole object compositions. Within each compositicm BOSS 

recognises and assigns to each object a unique identifier. These identify the relaticms between the objects cm 

the stream. BOSS handles multiple references within a composition correctly.

Once a record of an object composition is on the stream, Tigris orders the BOSS to forget all assignments of 

object identifiers. If BOSS remembers these assignments, Smalltalk doa  not garbage collect the original 

objects and release primary memory. Ccmsequently, Tigris does not maintain relaticmships between different 

compositions or between compositicms and primary memory except to the root object, which Tigris explicitly 

asscmiates in its chcticmary interfece.

Tigris stores each object as an independent compœiticmal unit If foe unit is not independait if objects 

elsewhere refer to parts of the composition, then Tigris will not maintain foe relationship. The original part 

will remain in memory and whai BOSS reads the compositicm back into memory, it will return an identifiable 

copy. If  the references elsewhere are also saved to Tigris, then BOSS will recmrd a secxmd copy of the 

cxmimcm part

The proxy, providing the transparaît access to Tigris, is also a potential solution for maintaining object 

identity between different object compositicms within BOSS. The proxy already maintains object identity for 

the compositicms by keeping a single reference between a proxy for each composition and Tigris. The proxy 

is the only object that intoacts with Tigris, so it does not m atta if Tigris returns foe object from the cache or 

from disk, cmly cme copy is ever in memory. The Enhancer logic ensures a secxmd referencer cannot ever 

hold cmto an ‘old’ copy. By applying the same principle to a fina granularity, from object compositicm to 

individual objects, a similar solution is found for BOSS.
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4.5.4 The Use of Proxies to Maintain Object Identity: an Application View
Multiple objects referencing one object is a many-to-one relationship. It is quite difiEerent to multiple copies 

of one-to-one relationships. If each referencer held a copy of the object, and one cc^y changes, the other 

referencers would continue to hold obsolete versions. Mult^le references are generally dependent on the 

changing state of the common object.

However, using Enhancers as database proxies can partially solve the problem. When saving an object with 

multiple references, after copying the object to a record, rq)lace it wife a new Enhancer wife fee £q)propriate 

key. Replacing an existing object wife a new object without referencers causes Smalltalk to garbage collect 

fee original object and therefore preventing a second memory copy from existing. All fee saved object’s 

referencers now access fee same Enhancer. If any of them are feoi subsequently stored, BOSS will discover 

fee Enhancer as part of their composition and can identify fee part already recorded on file. The Enhancer 

m aintains a unique 1:1 relationship to fee stored object. This relationship holds regardless of fee stored 

object’s memory state. Whoi reading a composition, Tigris remembers fee Enhancers it generates. Before 

generating any new Enhancer, Tigris checks fee Enhancers already in memory. If a second composition 

attempts to read fee same Enhancers a second time, Tigris substitutes fee existing Enhancers in fee second 

composition, feus preventing copies of fee Enhancer to fee same object.

By securing uniqueness of fee proxy, if an object changes state, all references both on and off fee database, 

can locate fee new states through fee key kept by fee proxy. The behaviour of fee proxy reflects fee change 

and all fee referencers will reflect fee change in their own behaviour.

4.5.5 Attempts.' The WorkBase
Although fee majority of objects are uniquely owned (ie in one-to-many relations), any object is potoitially a 

future member of a many to one relation. At fee point of storage there is no guarantee an object will not 

multiply share in fee future. A provision fi)r a general object store must preserve fee identity of all objects 

stored. Changing fee BOSS sj^tan to maintain identity of every object throughout fee data store requires a 

major change to fee Tigris-BOSS model. Instead, aspects of fee BOSS system were used in a new custom-built 

database called fee WorkBase. The WorkBase takes advantage of fee proxy concept, introduced to give fee 

store transparency, for maintaining object identity. Who-eas POISE applies fee proxy concept to all databases, 

fee management of proxies fr)r object identity is particular feature of fee WorkBase.
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The object-orioitation and management of database proxies is an original feature the WorkBase contributes to 

object storage systems. From an applications viewpoint of data base storage, the key advantages of the 

Enhancer technique is as a proxy for stored objects:

• The proxy separates all data management activities from the persistent objects. The management of 

the object on secondary storage is not a property of fee object The objects class does not define fee 

behaviour, and objects of fee same class may either be persistent or not

• Database access is transparent to fee applications using fee object Code manipulating objects does 

not specify fee storage conditions of fee objects it is manipulating. Changing fee management of an 

object from primary memory management to a proxy feat accesses secondary storage is transparent 

to fee code manipulating fee object. Smalltalk code %q)pears to handle native objects in fee same way, 

irrespective of vfeefeCT they are memory-resident or a proxy retrieves them secretly.

The data management activities—fee data-retrieval strategy, object caching, object updating, housekeeping

of fee store, etc.—are functions of a database’s storage model. The proxy aids an application’s interaction

wife fee database but do% not improve fee storage model yet. The WorkBase storage model uses fee proxies

in fee design of its storage model to solve many difficult problems feat object data structures introduce. It

helps in maintaining object identity, in handling circularity and in caching.

In fee storage model of Smalltalk, §4.1.1, objects record relationships by reference wife other composing 

objects. The record is physically an ordering of object IDs. The storage model of a WorkBase is fee same. The 

objectID in Figure 11, pp. 98, is a different number but fee WorkBase uses its objectID in fee same way. 

Records representing an object are a list of object IDs. The WorkBase finds fee storage location of any object 

from fee objectID. Proxies reference persistent objects by remembering fee objectID.

4.5.6 The Use of Proxies to Maintain Object Identity: a Database View
Multiple referencers can exist outside fee database, and these hold a common proxy. Multiple referencers can 

also exist within fee database. If fee correct data model to be built >^en reading a referencer, it must hold fee 

same proxy as all other referencers in primary memory, A^hetho" feat proxy is representing an object in 

memory or not. That same proxy will guarantee fee behaviour, ^ i c h  it replaces, is common to all sharing 

referencers.

Consider two database objects feat both reference a common third object. Whei fee database reads fee first 

object into primary memory it creates a proxy feat references the common object. When fee database reads 

fee second object, it cannot create a second proxy to fee common object, since multiple proxies will create 

copies of fee common object. How does fee database find out whether a proxy already exists in memory for 

a given database reference? This question needs to be answered for all references fee database creates vfeoi
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reading an object into primary memory. For the majority of cases, there will not be any other object sharing 

the reference, but every reference is potentially shared. ' '

The WorkBase keeps a record of every proxy in memory. Each request to reference a database object the 

WorkBase searches the records to see if the proxy already exists.

The WorkBaseMapping is responsible for finding existing proxies. Based on a hashed dictionary, the 

WorkBaseMapping keeps an index of proxies against objectID.

When reading an object into memory, the WorkBase,checks each objectID against the WorkBaseMapping. 

Finding the objectID also locates, by association, the current proxy for the object in primary memory, 

otherwise the WorkBase creates a new proxy. Other objects on the data base may share the new proxy, so the 

WorkBaseMapping adds the objectID associated with the new proxy.

Creating a new proxy does not imply that fee WorkBase reads fee persistent object, Wiich fee proxy 

references, into primary memory. Only if fee proxy receives a message will fee proxy read fee object into 

primary memory. The referencing object, fee object currently being read, must send a message to fee proxy. 

For fee majority of fee new proxies, this will not hfqypen. The majority of fee proxies in fee 

WorkBaseMapping, and hence in memory, are passive. They represent a link to an object on fee WorkBase that 

fee patten of message passing has yet to cross.

When repeatedly accessing an object, fee WorkBaseMapping scfeema provides an efficiency benefit. Once a 

passive proxy receives a message and fee object fee proxy represents is in primary memory, fee proxy holds 

fee copy of fee object in primary memory. The proxy is then said to be active. Active proxies do not read 

fi"om secondary storage but use fee memory copy for further messages and so respond much fiister. Locating 

an active proxy in fee WorkBaseMapping is fee same ^  for passive proxies. A passive proxy reads fi-om 

secondary storage, whereas a message passing to fee active proxy uses its ^hnary memory copy.

A special case of active proxies is vfeoi referoicing classes. Every object references a class to provide fee 

data description and behaviour fi)r objects. Like all objects, objectID (specifically called classIDs) identify 

fee memory resident classes. The WorkBaseMapping index them in fee same way as other shared objects. The 

WorkBase finds classes like any other object. The object associated wife fee objectID is not a proxy. The 

p rim itiv e  intoaction of instantiation wife fee class structure prevents fee use of a proxy. Instead, fee 

association is wife either fee class or an object representing an obsolete version of a class. Class versions are 

described later, §4.5.11.2. The WorkBaseMapping cross reference minimises fee retrieval of classes for
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representing objects on the database, and also manages versions of data definition between objects on storage 

and in memory.

Pioüv

Figure 20: Scanning circularities
4.5.7 Object Circularity
Object circularity is a special form of multiple refisrences. An exanq)le is given in Figure 20. Object 

circularity originally arises fi*om practical difficulties with the deepCopy concept within Smalltalk. A 

deepCopy is a recursive copy of an object and all its composite objects. A deepCopy attempts to make a copy 

of an object that is totally independent of the state of the original, down to tiie finest detail. Usually applied to 

strictly hierarchical compositions, the result is a copy of all members of the hierarchy. A strictly hiCTarchical 

composition is one whae each ‘higher’ object composes of ‘lower’ objects. Problems occur ^ e n  an object 

is not a strict hierarchical composition. Since Smalltalk does not guarantee such structures, it is possible for a 

lower component object to refer to a higher object creating a loop, or circularity. When deep copying, the 

higher object is already copied, and unless the recursive copying is coded otherwise, the copy of the lower 

object will request a recursive copy of the highe object. A procedural loop forms, ^\hich runs infinitely—  or 

at least until memory is no longer available.

A sim ilar difficulty exists in the BOSS system. BOSS reads a vshole object composition at a time so creating a 

copy sim ilar to the deepCopy, but differs in the medium the original is on in secondary storage. Circular 

references could exist and an extensive mechanism is necessary for identifying the condition and structuring 

the composition correctly.

The general mechanism using proxies (§4.5.6) manages all shared references, not just circular ones. This 

mechanism manages object identities, and it has made the majority of the BOSS code dealing with circularity
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redundant Instead, the database management was re-developed, adapting ideas from BOSS, to create the 

WorkBase.

An object read from the data store often refers to other objects on the data store. Reading those objects and 

the objects they reference ad irjimtum results in large and proliferate transactions, in comparison to other 

data models^. Instead, the WorkBase substitutes proxies for the object references (except numbers and 

characters and some other special cases), so it only reads the object receiving the messages. Therefijre, 

proxies need only read the next object, never the whole composition.

4.5.8 Proxies and Memory Management
The proxy’s purpose in the architectural design of POISE is to mediate indirect database references at the 

interfrice between Smalltalk jqjplications and persistent data. A further development of this design is to 

augment the definition of proxies with a control strategy for fine-tuning the lifetimes of resident object 

representations. Effectively, this implements rules of permanent versus temporary memory residence.

The underlying memory-reclamaticn controller of the application language monitors the lifetime of objects. 

Generally, an object dies \riien there are no otiier objects referencing it In Smalltalk, this controller is a 

Garbage Collection Manager^*.

The primary memory life of a persistent object dies to free memray. The Garbage Collection Manager role 

extends to keeping track of active proxies occupying primary memory. The manage initiates the removal of 

old, active proxies by requiring that they ‘commit’ fee memory-resident data to fee data storage mechanism. 

Both fee number of message-sends and a FIFO (First In First Out) queue detamine fee expiry choice, or age, 

of active proxies. Overall, fee manager does not fi)rce such a decision until available primary memory runs 

below a threshold. The manager determines fee length of fee FIFO queue according to fee platfi)rm’s main 

memory characteristics, and dynamically adjusts it \^ e n  necessary.

The WorkBaseCache manages fee FIFO queue. It provides tuneable parameters for deciding fee number of 

active proxies to com mit  If they commit too eagerly, it causes run-time penalties. At fee extreme, it commits 

immediately after fee proxy services a message. Objects that receive messages many times within an 

enclosing context^^ will lose fee benefits of caching between messages.

The lifetime starts \feenever a process sends a message to fee proxy. A passive proxy will become active or 

an active proxy will reset its lifetime. Proxies accessed often record a short lifetime, i&hereas proxies that are 

not will quickly grow old in primary memory and return to secondary storage.
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The reason for committing objects is to release main memory, not for transaction integrity. At present, 

WorkBaseCache implements the policy of committing the oldest objects i\henever the Garbage Collection 

Manager notifies a WorkBase that memory is running low. A complementary fecility — implemented as a 

Smalltalk background process — utilises spare processor time to keep occurrences of WorkBase objects down 

to a maximum number. This then lessens the effect of system feilure causing loss of transaction changes.

4.5.9 Implementation of the Database Proxy
The proxy provides a service to any object requiring persistence. The proxy behaviour is inappropriate under 

Object because not all objects will pCTsist and persistence is not a behaviour of an object. Persistence is a 

service the language provides to objects, just as the ability for objects to receive messages is a service of the 

language. An alternative to the proxy would be to re-write the virtual machine so objectlds could point to 

representations on a file in fee same way as feey point to representations in object memory.

The database proxy is fee simplest of fee Enhancers in POISE. Specifically, the Enhancer implementation of 

fee proxy is a subclass called fee WorkBaseEnhancer. Each proxy has two exclusive states, either active or 

passive. The behaviour of fee proxy is significantly different, requiring a diange in protocol depending on fee 

state. When active, messages pass directly to a memory résidait persistent object, but must r^ e t its lifetime. 

The WorkBaseCache can also direct fee active proxy to commit changes, and become a passive proxy. The 

passive proxy intaucts wife fee WorkBase and changes to fee active state. Normally two different classes of 

object define differences in protocol. A proxy could reference different classes of instances to change state. 

The different instances would provide fee differences in service described. Two objects would construct each 

proxy wife a proxy interfece and an associated object for fee different management An alternative was found 

vshich does not require using memory for extra objects. Smalltalk provides a primitive for changing fee class 

of an object. A proxy changes its class and thereby changes fee protocols it inherits.

Thae are two different subclasses of fee WorkBaseEnhancer. One is fee ActiveWorkBaseEnhancer vihen fee 

proxy is active and fee ofea is fee PassiveWorkBaseEnhancer. When fee PassiveWorkBaseEnhancer 

receives a message, it requests fi'om fee WorkBase a memory resident copy of fee object on file and changes 

itself to an ActiveWorkBaseEnhancer to service fee message. The ActiveWorkBaseEnhancer records fee time 

it receives fee message feen passes fee message to fee pasistent object. The active proxy is part of a cache 

system that uses fee last access time to determine vfeich proxies to commit to disk, so releasing primary 

memory. Whoi committing, fee proxy passes fee hidden object to fee WorkBase, Wiich checks if fee hiddoi 

object differs fi'om fee record on file and updates it accordingly. The active proxy feen changes to a passive

147



Object -Oriented Software Repreaentation of Polymer Materiab Infbimation m Engineering Deaiga

proxy. Since the passive proxy no Icnga keeps record of the memory resident object and the active proxy 

was the only referencer, Smalltalk garbage collects the hidden object and releases memory.

4.5.10 File Representation: Adaptations from BOSS
BOSS represents objects in byte arrays. Typically, the arrays of bytes compose a sequence of records on a disk 

file. Each array starts with an identifying signature. The objects on the file can always be found by searching 

for the signatures. Normally the byte cmmt from the start of the file locates the objects. The signatures help 

overcome comçtian, an event common in a developing system.

Bytes support 256 different states and grouping the bytes into sets of four gives 2̂  ̂ states. Each of these 

states in an objectID uniquely identifies a different object. This is a finite number, \diich limits the number 

of objects a WorkBase represents. BOSS groups pairs of bytes, as fee objectlDs are only unique within each 

object record.

After fee signature, fee WorkBase starts fee object record wife fee object’s own objectID. There is a key 

from objectID number to fee location in fee file. If ever this key is corrupt, fee WorkBase can iterate through 

objects in fee file by locating signatures and re-constructing fee key.

The remaining representation is like fee representation in Smalltalk primary memory (§4.1.1). Each referaice 

is an objectID, starting wife fee class of the object or classID. Like fee primary memory model, characters 

and integers have special reforenctô that are uniquely encoded to idoitify the character or integer without 

fiirfea reference. Consequently, numbers and characters do not require proxies.

BOSS differs from fee WorkBase in fee structure of its records. A record contains many objects, each 

contributing to a composition. After representing one object, BOSS immediately represents fee next until it 

completes fee \feole composition. The WorkBase puts each of these objects in their own record since any one 

may be shared in fee future. The consequence is a need for more object IDs and fee increase from 2-byte 

representation of object IDs to 4-bytcâ.

The storage model is a relatively direct extension of fee Smalltalk intonal primary-memory representation 

policy. The internal primary-memory representation derives from fee format in fee class definition of stored 

instance variable. Trans-migrating fee class definition from fee Smalltalk environment into fee database is 

important in automating object-storage.
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4.5.11 Storing Class Information
The storage model discussed so fer cf^tures only the relationships between instances. This is an incomplete 

description of an object as it inherits protocols from its class, Wiidi defines the semantics of each object.

4.5.11.1 Requirements for class data definition storage
In a class-based inheritance language, the tenqilates classes supply the data definition of instances. The 

retrieval of stored instances also require sufficient template information frir interpreting the stored structure. 

A class name is sufficient infrirmation to find a class in a Smalltalk ^iplication and hence the class definition 

with a template and protocols. This is fine if class data definitions are static, but POISE provides for 

evolutionary modification of domain-modelling classes, so classes are not static. The template in monory 

may no Icmger match the structures used in storage.

Maintaining the behavioural integrity of aU objects inheriting from a class throughout its evolution requires 

much more representation than simply the name of the class. The class name rqiresentation is the simplest 

object specification using an application-based class, and it provides the least integrity. Complete integrity is 

possible with a data-based class. Data-based classes completely represent both protocols and structure on the 

database and re-construct the class in primary memory on demand.

Initially the WorkBase only considers objects inheriting from application based classes. These are simpler and 

fester to retrieve but the class name alone provides insufficient integrity. To entertain evolutionary class 

descriptions, the WorkBase supplements the class specification with a version template.

The name of an application-based class is an insufficient representation for an evolving class. When a class 

changes its structure, instances in primary memory immediately coerce to the new structure Awhile both the 

new and old structure are known. The instances in secondary storage remain unchanged. The WorkBase needs 

the information about the old structure vhen it encounters t h ^  obsolete instances. Their data structure 

differs from the current class structure. The order of object ID relations in the record depends on the structure 

of the class vfeen saved and the order can have no correlation with the current class structure. Without a valid 

class template, the ordering of objectID relations is lost, and with it the semantics of records stored on the 

database.

The version template provide integrity, or more correctly a consistency between the behaviour of instances 

in memory and the stored instances of the same application-based class name. The WorkBase coerces stored 

objects to the application’s class structure. The WorkBase stores a version template for each class of any 

stored instance, vvhich encodes:
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• The class’s name.

• The class’s format number.

• A sequence of names of all instance variables defined and inherited.

The version template is only a partial description of the class. For it to be of any use the class’s storage name 

must match the name of a class currently in the ^>plication. The format memorises the size of the object on 

the WorkBase. The instance variable names relate fee stwed object wife its content, fee objectlDs in fee 

record. If names in fee list match names in fee application class specification, fee stored object adopts fee 

semantics for fee name in fee class.

If a class has not evolved, feen fee order and names of instance variables is fee same in fee class template and 

fee class specification in memory. The records on stcffe ordo* fee relations fee same as new instances and a 

simple transcription of information from fee record to a new instance re-creates fee stored object in primary 

memory.

If the data structure of the named class changes feen this causes fee addition, removal and change in 

sequence of named instance variables. A difference means fee records on fee store are old versions 

belonging to an obsolete class definition. Instance variables common between fee version template and fee 

current class specification can map data from fee obsolete object on fee database to a current object in 

memory on retrieval. The stored object is feen correctly consistent in behaviour wife fee current class 

specification. Since this may not have been fee intended behaviour of a stored object, fee integrity may still 

be in question.

4.5.11.2 Version management of evolving data definitions
When encountering an instance of an old version fi)r fee first time, fee WorkBase creates ClassVersion object 

and records it in fee WBMapping under fee old class’s classID. The WorkBase gives fee current class a new 

classID as soon as it saves a new instance to distinguish it from old versions. New instances map to fee class 

in fee WBMapping and furfeff encountos wife fee old version immediately map to fee ClassVersion object.

The ClassVersion object and Class are polymorphic wife respect to protocol for creating new current 

instances from WorkBase records. On instantiation a ClassVersion object compare fee given old class 

definition wife fee current definition and malccs a map between instance variable names. The ClassVersion 

keeps a reference to fee current version of fee class in memory. Wife this inframation, it can generate any 

curroit instance frmn fee obsolete WorkBace record.
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The WorkBase represents all classes by a record containing the version template, even the curroit classes. 

They therefore have objectlDs associated with them or, more specifically, classIDs. When the WorkBase 

reads an object of the class for the first time, it reads the version template first As with all objects the 

database reads, the WorkBaseMapping makes a reference. If the class of the stored object is the same version 

as currently in memory, the WorkBaseMapping keeps a cross-reference between the classID and the memory 

resident class. If the class is an old versicm, it keeps a cross-reference between the classID and the 

ClassVersion. The WorkBase will use the object the WorkBaseMapping associates with the classID to 

generate instances fi'om fee record.

Whenever a class changes, Smalltalk notifies WorkBases through a ‘dependency’ link (a dictionary associated 

relation as opposed to an instance variable). The WorkBase removes fee association between classID and fee 

changed class from fee WorkBaseMapping, because that classID no longa designates fee current class 

version. If fee WorkBase subsequently writes an instance of this latest class version, it will treat fee instance 

fee same as if fee class had never been written to fee WorkBase before. Hence, it writes a new version- 

template and assigns a new classID for fee class.

Consequently, a WorkBace may hold multiple versions of fee same class wife a distinct version template and 

unique classIP  representing each version. The ClassVersion object performs fee translation

9 From the instance variables, fee stored version template describes fee ordering in the arrays of stored 

objects:

• ' To a fresh instance of fee current ^plication’s class, matching whae fee descriptions are similar.

As each version template has a unique classID, it creates a unique ClassVersion instance to poform fee 

conversion of instances that refer to that version template.

4.5.11.3 Data migration of instances
An accidental consequence of fee ClassVersion management is fee longevity of named instance variables. 

The removal and addition of fee same instance variable leads to loss of data in primary memory, §4.1.2,4.4.2. 

This data survives in persistait objects on secondary memory and fee ClassVersion can correctly return fee 

data on return of fee instance variable.

Data migrates from fee record on file to a new instance of a named application class. In most cases, fee 

WorkBase finds fee application-based class matching fee classID in fee record is currait. In this case, fee 

migration is simple. The record, an ordering of object IDs, migrates to an array of fee same orda containing 

PassiveWorkBaseEnhancers, wife fee corresponding objectlDs. The WorkBase feen coerces fee array to fee
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named class by the changeClassToThatOf : primitive method. This changes the classID of the array in 

memory to that of the named class.

If the record is obsolete then, instead of the jqiplicatico-based class, the WorkBase finds a ClassVersion. The 

ClassVersion matches the named instance variable in the version template with those in the current 

representation and associates the names wife fee currait index. Using fee name-index associations, fee 

ClassVersion translates fi-om an ‘old instance index’ to ‘new instance index’, (equivalent to a relational 

projection). The rest of fee process is fee same as current versions, but fee process re-ordos fee proxies in fee 

array according to fee translation. This translation is precisely what happens to instances in memory during 

schema evolution §4.4.

4.5.11.4 Limitations of application inherited classes
The application-based classes are still fee only repository of protocols defining fee semantics of instance 

variables. This is fine if there is only one application. Problems occur if thae is more than one Smalltalk 

session A\hae fee application-based classes in each differ. Since fee WorkBase does not distinguish classes of 

fee same name in different applications thae is fee potential far semantic differences.

Relying on fee definition of classes within fee application can cause behavioural disaepancies in pasistent 

objects in a common data store, accessed by different applications. This can breach fee encapsulation of fee 

stored objects. The greatrat risk is if one application pamits a state in fee object not acceptable to fee 

behaviours in anotha application. Typically, one application’s behaviour assigns a type of object to a named 

relation feat ofea applications do not permit This is possible since alfeough fee two applications must both 

have classes that agree on fee data structure of fee objects, thae is no agreement on fee method code feat 

accesses and changes fee data in fee structure.

Inheriting behaviours fi-om application-based classes is not satisfiictory for a distributed system vfeae 

applications could access fee data structures incorrectly. The WorkBase does not provide any means of 

ensuring correct, consistent access. An alternative is to store a class completely on fee database that defines 

fee complete behaviour of fee objects stored. Complete storage of a class is more in line wife fee object 

representation of fully-fledged OODBMS.

4.5.11.5 Requirements and limitations of behaviour storage
A notable example of OODBMS that stores fee complete class behaviour is within fee architecture of 

Gemstone 2 .l“ . Gemstone runs an object managa on a s a v a  machine. It executes services (in a custom 

language, OPAL) remotely in fee serva, iq)on request by an ^iplication (eg in Smalltalk) running on a client
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machine. In contrast, the WorkBase strategy aims to esc^e the need of a programmer or end-user to establish 

Airiiether a computation occurs as part of an application or part of a remote object manager. A research 

attempt involving this same goal was the Rekursiv project^^ into producing a seamlessly integrated object 

memory and secondary data storage, by developing special hardware. In the absence of a ready hardware 

solution, POISE can execute mrasage-sends to an object only in the main memory occupied by the application, 

since the application contains the appropriate class manager and its the compiled code of its methods. From 

this follows the pragmatic language design decision to manage only structural-definitions of instances as the 

main data managonent task.

The WorkBase is not, essentially, a computational vehicle; it does not provide computation in addition to that 

with a Smalltalk application. Nevertheless, it provides a storage format for byte-compiled Smalltalk code, 

such as the CompiledMethod class discussed in §4.4.5, and for the syntax of a message-send to an object. It 

exploits these formats to provide commands for executing services when under authorisation by an 

£q)plication. In feis way, the WorkBase can store a sequence of code as an object for la ta  evaluation.

A method is a sequence of code associated with a class of objects. In particular POISE provides the option of 

selecting particular methods of a class and makes them persistait along with the class vasion template. This 

selective policy is suitable for the evolutionary information-modelling requirements of POISE, since the major 

part of an application running in Smalltalk will be the behaviours of domain-modelling objects, vfeich in turn 

describe the peculiar activities of that application. This was superseded quickly by the more general 

mechanism of complete class storage.

4.5.11.6 Storage of a Smalltalk class
POISE evolves the description of polyma classes. In orda to make these changes pasist the WorkBase must 

also store the class. The storage of the class is especially complex because of the relationships it has with the 

client image.

Smalltalk constructs the class like all otha objects in the language, §4.1.2. It behaves like a class because it 

inherits those ‘class like’ behaviours from the Class class. One of the behaviours a class inherits is the ability 

to genaate o tha objects using the information contained in the class object. This is a primitive behaviour 

that directly accesses the second instance variable and must contain an intega vriiich describes the format of 

the instance. The instance keeps a reference to the generating object (the class) and it is known as its class. 

For this instance to work as an object the class object must meet two o tha criterion. The class has anotha 

class object (or n il)  in the third instance variable as the supaclass and a method dictionary in the fourfe
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instance variable. This is the most basic requirement for getting a class to fonction. Ofoer requirements are 

necessary for the object to fonction as expected in foe Smalltalk environment, but are not necessary to get the 

class’s instances fonctioning m the Smalltalk environment

The format being an integer, is easily stored. The superclass can use any of the aforementioned class 

representations but not via a proxy. The superclass must inherit directly from the application or the database. 

The method dictionary though contains many difficulties. First a proxy cannot be put in the method 

dictionary place since the virtual machine expects a dictionary. The dictionary links protocols to their names. 

Wife foe list of names, the WorkBase creates a special proxy MethodDictionary.

Reading all the protocols of a class and its superclasses is unnecessary. All objects the WorkBase reads are by 

request from a proxy receiving a message, so the WorkBase need only read the protocol matching the 

message. The proxy MethodDictionary contains all the names of the protocols, but associates them with a 

ConpiledMethod that requests the real protocol from the WorkBase. The message look-up occurs as normal, 

and so causes the WorkBase to inqxjrt the protocol. The rest of the difficulties are with representing protocols 

on the WorkBase.

ConpiledMethods are, at their most basic, a byte array, vhich contains pseudo-code, compiled at runtime, 

and hidden from the user. CoirpiledMethods are simple sequences of code that the WorkBase can easily 

represent, vshich are complicated by references to variables that are outside the scope of the immediate 

calculation: instance variables and global variables.

ConpiledMethods refer to instance variables by an index, A^ich must correctly correspond to the indexes in 

the receiver’s class. It is for fois reason that methods associate uniquely Avith a single class. Smalltalk 

search^ for methods by class and the structure guarantees that the method is compiled fr)r foe class. Without 

the class, the method is meaningless since it refers to instance variables by a number that have arbitrary 

meaning in any other classes.

Globals include class variables and pool variables^. All methods that access a unique global variable share a 

reference to a common associatioi, ^ lich  contains a name for the global in the key and an arbitrary object in 

the value. When a method sends a message to a global association, the value of the association receives the 

message. As this is a primitive function the associaticm must be an association not a proxy. The object, as the 

association’s value, that receive the messages may be a proxy if the global is only Avithin the domain of the 

database. However, a difficulty arises if the global is meant to be an application resident object. In this case.
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the Workbase must find the application global before any messages are sent to the global, ie A&hen the method 

is read into memory.

The most complex issues in storing a class is the class’s relationship to a superclass and any global variables. 

In &ct, the superclass is just another global variable. References to globals should be resolved by a separate 

policy object from foe server that has explicit knowledge of the global name space on every client and foe 

server. Ofoer foan that, foe class is treated like any other object on foe WorkBase.

4.5.12 Summarising the WorkBase
The WorkBase satisfies foe private storage requirements for a single POISE user (§3.8.5). The unique feature of 

foe WorkBase is that vfoen it reads objects it resolves differences in foe schema between client and server, 

Aivhich allows the client schema to change independent of the schema of individual objects represented in foe 

WorkBase. hnplementing this feature was simplified by the single connection policy between foe POISE 

application and foe private single-user WorkBase. Most DBMS focus on supporting multiple connections and 

consequently complicate foe client’s dependence on foe server’s schema, whicfo foe server endeavours to 

maintain consistent for multiple clioits.

An advanced object storage system is a better description of foe WorkBase foan a DBMS because of its single- 

user restriction, and foe %q)plication executes all object behaviours, not foe WorkBase. The WorkBase advances 

object storage because it is capable of rqiresenting complex objects, including foe classes of polymers in foe 

hierarchy and foe behaviours of engineering properties developed by the user. In addition, with the help from 

foe database proxy, the objects maintain their unique identity, usually lost i^hen object storage systems 

remove objects frmn foe application aivircnment

Any object is a candidate for storage by a database management system. The DBMS must retrieve foe object 

back into primary memory before processing any messages directed at foe object. A general proxy Enhancer 

provides a transparent interfece between objects of an iqyplication and objects held in foe DBMS. Messages 

sent to database objects via foe proxy Enhancer activate foe enhanced behaviours for requesting foe DBMS 

bring foe object into primary memory and frxr updating foe database with any changes. This role of the 

database proxy is an abstract feature that can iqxply to any application-database interfru^e.

A specialisation of foe proxy manages object identity on behalf of foe WorkBase. This lets foe WorkBase 

retrieve objects individually, rather foan \riiole compositions. The WorkBase only retrieves foe objects 

necessary for foe active process. The majority of proxies only remain in memory as long as a process using
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them remains active, thereby promoting memory management Other specialisations include an object 

lifetime property of the proxy for collaborating wife the WorkBase’s transaction and memory management

Although the WorkBase is an object storage system, it does adopt many database management features. In 

addition to the requirements of the knovdedge rq>resentation, there are database management requiremaits, 

which manage the limited computing resources. The WorkBase collaborates with the Smalltalk memory 

management, only committing transactions when memory is low thereby maximising the utilisation of 

primary memory, and committing all transactions when the user terminates the application. Transaction 

management is a complex feature of many OODBMS. This simple policy takes advantage of the single-user 

restriction of the WorkBase, since in multi-user applications long transactions prevent other user access.

The one resource foe WorkBase does not manage emotively is foe disk file it uses to store foe state of objects. 

This aspect is not pursued because there was an ample resource for experimenting and many DBMS address 

foe problem adequately.

Another weakness in foe design of foe WorkBase was foe efficiency of the DBMapping. This object provides 

the primary index for foe database. Currently foe DBMapping adopts foe indexing behaviour of foe Set to 

provide a simple hashing algorithm with linear probing. This is known to be one of the least effective 

mechanisms and doesn’t take into account foe future growth of Set like objects. Further research” , concludes 

a dynamic BaaF table^ is more appropriate. It also allows for many smaller WeakArrays of one size, rather 

foan one big array that needs to change size. This advance to foe WorkBase was unnecessary for foe 

experimental purpose of POISE.

4.6 Summarising the Implementation of POISE
A drawback of foe class-instance relationship is that foe class usually defines instance behaviour exclusively. 

The Polymer classes in foe POISE classification do not define grade behaviour exclusively. Grades have foe 

properties fi-om foe taxonomic classes a ta ided  wifo orthogonal properties by a techmque of mampulating 

messages sent to foe grade object. Orthogonal properties are any property not related to foe classification 

based on chemical and molecular structural composition, eg those relating to general geometric shape and 

process. Instead, a separate class template defines orthogonal properties that can apply to any polymer. POISE 

abstracts this manipulation of messages, which makes orthogonal behaviour possible, into a class of objects 

called foe Enhancer.

The Enhancer provides a behaviour sharing that differs fi-om foe explicit dynamic messages between 

individual objects and differs firom foe static implicit behaviour shared between classes and groups of
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instances. The Enhancer provides implicit dynamic empathy between individual objects. These are gaieral 

descriptions of types of behaviour sharing from foe Treaty of Orlando*. The Enhancer is foerefrire a general 

enhancemoit to foe class-instance paradigm, which Smalltalk implements. The implementation of foe 

Enhancer uses foe oror trapping mechanisms built into Smalltalk. Although these details are specific to 

Smalltalk, foe behaviour sharing that foe Enhancer’s charactoises is significant frir representation.

The Enhancer is a general tool for enhancing any object behaviour. Classes inheriting from foe Enhancer add 

specific fimctionality to enhance foe behaviour of a number of objects independent of their classes. The 

inheritance statically binds these specific behaviours to foe class. An Enhancer called foe ScopeEnhancer 

dynamically binds behaviours from multiple objects. The ScopeEnhancer shares behaviours wifo foe 

flexibility often found in languages wifo delegation. Zucker has already demonstrated delegation useful fr)r 

representing foe evolution of foe design description, or foe ‘application pospective’. The ScopeEnhancer 

demonstrates a similarity wifo delegation by sharing an enhanced behaviour between more than one object. 

This initial experiment suggests foe Enhancer can support Zucker’s objectives in a class-instance languages.

Another class inheriting from foe Enhancer resolves deductive inheritance (§2.2.4). The 

CombinedDataAbstraction is (me of a number of objects wifo enhanced behaviour that produce foe abstract 

polymer behaviour. The CombinedDataAbstraction inherits many abstract properties and deduces a single 

abstract property. An enhanced instance from each COTcrete Polymer classes (the ones wifo instances) 

represents their abstract properties. The Polymer classes themselves manipulate their messages so they inherit 

foe abstract properties. The result is a hierarchy of abstract polymers that generalise propoties typical of foe 

grades they classify, from A\hich foe designer can intopret design benefits.

POISE takes advantage of Smalltalk features that are not (foaractoistic of foe class-instance paradigm. 

Smalltalk does not distinguish between foe development and runtime states of software. For this, foe 

Smalltalk envircmment includes tcmls normally associated wifo development, such as a compiler. The 

compiler and ofoer supporting classes let Smalltalk define, declare and instantiate objects during runtime. 

This promotes foe development of software by prototyping, but does not distinguish prototyping during 

development from foe application of prototyping during runtime. POISE uses these features to evolve classes 

through interaction wifo foe user, thereby providing dynamic schema evolution. POISE specialises foe 

software t(X)ls to orientate schema changes around polymer propoties, thereby empowering foe domain 

expert, rather than foe Smalltalk programmer, to manipulate the polymer classification.
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The development tools for evolving Smalltalk classes were found highly inefficient. While specialising these 

tools for the polymer classification, a new type of protocol objects was defined that is independent of a 

physical model. These protocols did not require re-compiling A\hen the physical model changes. Therefore, 

these protocols are independent of the class, which defines the physical model of instances. This permits the 

definition of partial template objects, pros, vhich are a tool for managing protocols outside the class. Partial 

templates are a re-useable set of protocols foat may be installed consistently on many classes. The pro in 

POISE represents polymer properties. They provide a classification independent way of relating the similarity 

between properties and their contextual application.
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Chapter 5 A Populated, Fully Functional POISE.
POISE s u p p o r t s  t h e  u s e r  w i t h  a  n u m b e r  o f  i n t e r f a c e s .  T h e  a i m  o f  t h e s e  i n t e r f a c e s  i s  t o  r e f l e c t  t h e  d a t a  m o d e l s  

d i s c u s s e d .  T h e r e  h a s  b e e n  n o  f o r m a l  c o g n i t i v e  d e s i g n  o f  t h e s e  i n t e r f a c e s ,  a n d  t h i s  i s  n o t  a n  a r g u m e n t  

s u p p o r t i n g  t h e m  a s  t h e  b e s t  w a y  t o  d i s p l a y  t h e  d a t a  m o d e l s .  T h e y  p r o v i d e d  a  w a y  t o  l e a r n  a b o u t  t h e  p o l y m e r  

d o m a i n  a n d  t h e  m o d e l s  u s e d .  T h e y  w e r e  u s e d  i n  t h e  c o u r s e  o f  d e v e l o p i n g  t h e  d a t a  m o d e l  a n d  b y  S p e d d i n g *  i n  

h e r  r e s e a r c h  i n t o  a p p r o p r i a t e  c l a s s i f i c a t i o n s  o f  p o l y m e r  i n f o r m a t i o n .

T h e  f i r s t  u s e r  i n t e r f a c e s  d e v e l o p e d  w e r e  t h e  Comparitor a n d  t h e  H ierarchyE ditor. T h e s e  i n t e r f a c e s  h a d  

d i r e c t  r e l e v a n c e  t o  t h e  r e p r e s e n t a t i o n s  o f  t h e  a b s t r a c t  p o l y m e r  a n d  c l a s s i f i c a t i o n .  I n i t i a l l y  a  c o m m a n d  l i n e  

i n t e r p r e t e r  s t a r t e d  a  S m a l l t a l k  p r o c e s s  t h a t  o p e n e d  t h e s e  i n t e r f a c e s .  C o m m a n d  l i n e s  a r e  v e r y  f l e x i b l e  b u t  

r e q u i r e  a  s p e c i f i c  s k i l l  f o r  u s e .  C o n s e q u e n t l y ,  a  c e n t r a l  i n t e r f a c e  w a s  d e v e l o p e d  f o r  t h e  d e s i g n e r  a n d  o t h e r  

n o v i c e  u s e r s .  T h i s  c e n t r a l  i n t e r f a c e  r e p r e s e n t s  a n  a c t i v e  POISE s e s s i o n .  T h e  f i r s t  t a s k  o f  t h e  n o v i c e  u s e r  i s  t o  

s t a r t  t h e  POISE s e s s i o n .

5.1 Entering the Smalltalk Image_______________________
System Transcript =□= Launcf =[£]=□=
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Figure 21: Smalltalk image start-up state
T h e  a p p l i c a t i o n  k n o w n  a s  poise r e s i d e s  w i t h  t h e  d e v e l o p m e n t  t o o l s  i n  a  c o m m o n  S m a l l t a l k  i m a g e * .  T h e

u s e r ’ s  a c c e s s  t o  t h e  d e v e l o p m e n t  t o o l s  i s  t h r o u g h  a  w i n d o w  k n o w n  a s  t h e  Launcher ( F i g u r e  2 1 ) .  T h e  

Launcher p r o v i d e s  a  l i s t  o f  o p t i o n s  f o r  t h e  u s e r  t o  s e l e c t ,  poise a d d s  a n  e x t r a  o p t i o n  a s  a  g a t e w a y  i n t o  t h e  

w o r l d  o f  POISE. I n  a  S m a l l t a l k  i m a g e  c o n t a i n i n g  o n l y  POISE, a n d  w i t h o u t  t h e  d e v e l o p m e n t  t o o l s ,  l o a d i n g  t h e  

i m a g e  a u t o m a t i c a l l y  e v o k e s  t h i s  o p t i o n .

T h e  s e c o n d  w i n d o w  i n  F i g u r e  2 1  i s  t h e  S y s t e m  T r a n s c r i p t .  T h i s  w i n d o w  p r o v i d e s  a  g e n e r a l  d i s p l a y  o f  

m e s s a g e s  t o  t h e  u s e r .  T h e  w i n d o w  i s  a l s o  a  t e x t  e d i t o r  p r o v i d i n g  t h e  p r o g r a m m e r  w i t h  a  p l a c e  t o  t y p e  a n d  

r e q u e s t  t h e  e v a l u a t i o n  o f  S m a l l t a l k  s y n t a x .  I n  a n  i m a g e  c o n t a i n i n g  o n l y  poise, s u c h  a  t o o l  w o u l d  n o t  b e  

a v a i l a b l e  s i n c e  i t  w o u l d  e n a b l e  t h e  u s e r  t o  m o d i f y  t h e  i m a g e  i n  a n  u n p r e d i c t a b l e  m a n n e r .  L a t e r  w e  i n t r o d u c e  

a  s p e c i a l i s e d  w i n d o w  f o r  n o t i f y i n g  t h e  u s e r  o f  poise’s a c t i v i t i e s .

*  A  S m a l l t a l k  I m a g e  i s  t h e  d e s c r i p t i o n  o f  a l l  o b j e c t s  i n  p r i m a r y  m e m o r y  w h e n  s t a r t i n g  S m a l l t a l k .  T h e  I m a g e  
p l u s  t h e  V e r t i a l  M a c h i n e  m a k e  u p  t h e  w h o l e  S m a l l t a l k  E n v i r o n m e n t .
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O n  e n t e r i n g ,  POISE o p e n s  T i g r e ' s  FileC hooser s c r e e n  { F i g u r e  2 2 ) ,  a s k i n g  t h e  u s e r  t o  l o c a t e  t h e  WorkBase f i l e  

c o n t a i n i n g  t h e  p o l y m e r  i n f o r m a t i o n  a n d  s e s s i o n  d e t a i l s .

S y s t e m  Transcript

C hoose D atab ase  File

Ram Disk

Desktop Folder: 
Trash:
POlSEdababase.dat

Volume

Open b
Cancel

±J

B r o w s e r s >
U t i l i t i e s >
C h a n g e s  - >
S p e c i a l y
POISE
TIGRE ( t m ) >
Quit

Figure 22: Selecting the WorkBase
A t  t h i s  p o i n t  poise l o c a t e s  r e f e r e n c e s  t o  p o l y m e r s  i n  t h e  WorkBase a n d  a d d s  t o  e a c h  Polymer c l a s s e s  a n  i n d e x

o f  t h e i r  p o l y m e r s .  O p e n i n g  t h e  WorkBase c r e a t e s  a  b a c k g r o u n d  p r o c e s s  r e s p o n s i b l e  f o r  m a n a g i n g  t h e  g a r b a g e  

c o l l e c t i n g  i n  t h e  WorkBase f i l e .  A  m e s s a g e  a p p e a r s  i n  t h e  t r a n s c r i p t  n o t i f y i n g  t h e  u s e r  o f  t h i s  p r o c e s s  a n d  

g i v e s  t h e  n u m b e r  o f  g r a d e s  POISE f i n d s .

S y s t e m  Transcript i D i  Launcr 1 0 1 0 1

'Background Garbage Collecting of D B  objects  -  STARTED' 
Final population =943

Open saved windows?

±1

B r o w s e r s >
U t i l i t i e s >
C h a n g e s >
S p e c i a l >
POISE
TIGRE ( t m ) >
Quit

Figure 23: Re-starting POISE
A  n e w  w i n d o w  o p e n s ,  a s k i n g  i f  t h e  u s e r  w i s h e s  t o  o p e n  t h e  w i n d o w s  s t o r e d  i n  t h e  WorkBase ( F i g u r e  2 3 ) .

T h e s e  w i n d o w s  w e r e  s a v e d  i n  t h e  l a s t  s e s s i o n ,  r e c o r d i n g  a n y  l i s t s  o f  g r a d e s  o r  p a r t i c u l a r  c o m p a r i s o n s  o f  

p o l y m e r  f a m i l i e s  t h e  u s e r  w a s  p r o c e s s i n g  d u r i n g  t h e  l a s t  s e s s i o n .
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I f  s c r e e n s  w e r e  n o t  s a v e d ,  o r  t h e  u s e r  o p t s  n o t  t o  o p e n  t h e m ,  t h e n  o n l y  t h e  POISEsession s c r e e n  o p e n s  

( F i g u r e  2 4 ) .  T h e  Launcher a n d  S y s t e m  T r a n s c r i p t  s c r e e n s  c l o s e  a u t o m a t i c a l l y .

POISEsess ion 1 0 1 0 1

POISE
Polymer

Thermoplastic  
Amorphous 

ABS 
ASA 
ASAPC 
CA 
EBA 
EVA 
MABS 

PAF 
PBTASii 
PC 

PCH

W e l c o m e  To POISE

Comparator

Domain P roperties

Domain Hierarchy

Clipboard T

G rade Searcii Quit

Figure 24: The POISEsession window
5.2 POISEsession
T h e  POISEsession w i n d o w  ( F i g u r e  2 4 )  i s  a  c e n t r a l  a c c e s s  p o i n t  t o  a l l  o t h e r  t o o l s  i n  POISE. T h e  POISEsession 

h a s  t h r e e  p a r t s .  O n  t h e  l e f t  i s  a  s u b - v i e w  c o n t a i n i n g  a  h i e r a r c h y  o f  Polymer c l a s s e s .  T o p - r i g h t  i s  a  

s p e c i a l i s e d  s u b v i e w  t h a t  r e p l a c e s  t h e  f u n c t i o n a l i t y  o f  t h e  t r a n s c r i p t .  T h e  t h i r d  p a r t  i s  a  s e t  o f  ' b u t t o n ’  v i e w s ,  

w h i c h  o p e n  v a r i o u s  t y p e s  o f  POISE s c r e e n s  w h e n  t h e  u s e r  s e l e c t s  t h e m .  T h e  b u t t o n  m a r k e d  ‘ c l i p b o a r d ’  a n d  

t h e  b u t t o n  b e l o w  a r e  e x c e p t i o n s ,  p r o v i d i n g  f u n c t i o n a l i t y  t o  t h e  t r a n s c r i p t  p a r t  o f  t h e  POISEsession ( i n  § 5 . 8 ) .  

Q u i t  r e t u r n s  b a c k  t o  t h e  Launcher, o f f e r i n g  t o  s a v e  a n y  o p e n  s c r e e n s .

5.2.1 The User Defines the Classification
T h e  s u b - v i e w  o n  t h e  l e f t  o f  t h e  POISEsession i s  a  c o m p l e t e  h i e r a r c h y .  T h e  h i e r a r c h y  i s  i n s i d e  a  

ScrollingW rapper t h a t  p r o v i d e s  s c r o l l i n g  f u n c t i o n a l i t y .  T h i s  s u b - v i e w  i s  a  f u n c t i o n a l l y  c u t - d o w n  v e r s i o n  o f  

t h e  H ierarchyE dito r w i n d o w  d e s c r i b e d  e a r l i e r  ( § 3 . 3 . 3 ) .  T h e  u s e r  e v o k e s  f u n c t i o n s  b y  s e l e c t i n g  t h e  m e n u 

b a r ,  _ _ -  i n  F i g u r e  2 4 ,  c a u s i n g  a  m e n u  o f  o p t i o n s  t o  a p p e a r .  A  c o m p l e t e  l i s t  o f  t h e  f u n c t i o n s  i s  i n  T a b l e  7 .

F i g u r e  2 5  d e m o n s t r a t e s  t h e  ‘ i n s p e c t ’  o p t i o n .  T h e  i n s p e c t  c o m m a n d  p r o v i d e s  v i s u a l  a c c e s s  i n t o  i n d i v i d u a l  

Polymer c l a s s e s .  I n  t h i s  c a s e ,  t h e  t e x t  f o r  ‘EBA’ w a s  p r e v i o u s l y  s e l e c t e d  i n  t h e  s u b - v i e w ,  p r o v i d i n g  t h e  

c o n t e x t  f o r  t h e  i n s p e c t  c o m m a n d .
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POISE

POISE
Pol

copy
add
accept
cancel
hardcopy

ast ic
phous
BS
SA

save  
load
^B^BXMsAPC
add grad *

J b a
remove

EVA
MABS

^  W e l c o m e  To POISE

Com parator

PO ISEClassChanger  ^ ^ 0 1 0 1
1 V 1

-1 ^ POISEClassChanger on
keif  1 ^EBA
name
superchan
hierarchy
properties
addedProi:
removed?
sub classe

/| v|
Figure 25: POISEsession- viewing the schema

T h e  i n s p e c t  o p t i o n  o p e n s  a  g e n e r a l  i n s p e c t o r  o n  a n  i n s t a n c e  o f  t h e  c l a s s  POISEClassChanger, i n  F i g u r e  2 5 .

T h e s e  o b j e c t s  r e c o r d  t h e  s t a t e  o f  c h a n g e s  t o  t h e  h i e r a r c h y  a n d  t h e  i n s p e c t o r  p r o v i d e s  a  c o n c i s e  r e p o r t  o f  

c h a n g e s  p e r  c l a s s .  A  g e n e r a l  i n s p e c t o r  p r o v i d e s  r e p o r t s  t h e  s t a t e  o f  t h e  o b j e c t ’ s  i n s t a n c e  v a r i a b l e s  f o r  t h i s  

p u r p o s e .  T h e  s u b - v i e w  o n  t h e  l e f t  l i s t s  t h e  i n s t a n c e  v a r i a b l e .  S e l e c t i n g  o n e  d i s p l a y s  t h e  c o n t e n t s  o f  t h e  

i n s t a n c e  v a r i a b l e  i n  t h e  r i g h t  s u b - v i e w  a s  t e x t ,  ( t h e  'p rin tO n: ' t e x t  b e h a v i o u r  a l l  o b j e c t s  h a v e . )

T h e  l i s t  s h o w s  t h e  i n s t a n c e  v a r i a b l e s  t h a t  s t o r e  c h a n g e s  t o  t h e  poise c l a s s e s  w h i l e  t h e  u s e r  o p e r a t e s  o n  t h e

h i e r a r c h y  ( i n  s c h e m a  § 3 . 3 . 2 ,  e d i t o r  w i n d o w  § 3 . 3 . 3 ,  i m p l e m e n t a t i o n  § 4 . 4 ) .  T h e  superchanger r e f e r e n c e s  t h e  

Changer o f  t h e  s u p e r c l a s s  t h e  c l a s s e s  i n h e r i t s .  H ierarchy i s  a  r e f e r e n c e  t o  t h e  o v e r a l l  h i e r a r c h y  m o d e l .  O n

Copy
Add

Accept

Cancel
Hard-copy
Save
Load

Inspect 
Add grade

Remove

A s s i g n s  t h e  v a r i a b l e  ‘ C l i p b o a r d ’  t o  t h e  o b j e c t  c u r r e n t l y  s e l e c t e d  ( i n  § 5 . 8 ) .
A d d s  a  n e w  p o l y m e r  c l a s s  b y  f i r s t  a s k i n g  t h e  n a m e  o f  t h e  p o l y m e r  f a m i l y  a n d  s u b c l a s s i n g  o f f  
t h e  c l a s s  poise.
C o m p i l e s  a l l  c h a n g e s  t o  t h e  h i e r a r c h y .  T o  t h i s  p o i n t  o n l y  a  d e s c r i p t i o n  o f  t h e  c h a n g e s  a r e  
k e p t .  POISE d o e s  n o t  c h a n g e  t h e  c l a s s e s  a n d  i n s t a n c e s  o f  p o l y m e r s  t h a t  t h e  h i e r a r c h y  d e s c r i b e s  
u n t i l  t h e  u s e r  s e l e c t s  t h e  a c c e p t  o p t i o n .
T h e  r e c o r d  o f  c h a n g e s  i s  r e s e t .
T h e  t e x t  i n  t h e  s u b v i e w  i s  s e n t  t o  t h e  p r i n t e r .
A  d i s k  f i l e  s a v e s  t h e  c o n f i g u r a t i o n  o f  c l a s s e s .
T h e  H i e r a r c h y  c o m p a r e s  t h e  c o n f i g u r a t i o n  o f  c l a s s e s  i n  a  d i s k  f i l e  w i t h  t h e  c u r r e n t  
c o n f i g u r a t i o n  a n d  r e c o r d s  t h e  n e c e s s a r y  c h a n g e s .
O p e n s  a  g e n e r a l  o b j e c t  i n s p e c t o r  o n  t h e  r e c o r d  o f  c h a n g e s  f o r  t h e  s e l e c t e d  c l a s s .
C r e a t e s  a n  i n s t a n c e  o f  t h e  s e l e c t e d  c l a s s .  T h e  u s e r  i s  p r o m p t e d  f o r  t h e  n a m e  o f  t h e  n e w  
i n s t a n c e  a n d  l e f t  w i t h  a  Grade i n s p e c t o r  w i n d o w  o n  t h e  n e w  g r a d e  ( i n  F i g u r e  2 6  b e l o w )
M a r k s  t h e  s e l e c t e d  c l a s s  f o r  r e m o v a l  f r o m  t h e  i m a g e .  ( G r a d e s  r e m a i n  o n  t h e  WorkBase b u t  t h e  
k e y  t o  t h e m  i s  l o s t  u n t i l  t h e  u s e r  a d d s  a  c l a s s  o f  t h e  s a m e  n a m e  a n d  r e - o p e n s  t h e  WorkBase.) 

Table 7: User menu-functions over hierarchy editor
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e v e r y  c h a n g e ,  t h e  POISEClassChanger c r e a t e s  a  Checker t o  c o n s u l t  t h e  h i e r a r c h y  a n d  e n s u r e  c h a n g e s  a r e  

c o n s i s t e n t  w i t h  t h e  i n h e r i t a n c e  a n d  c l a s s  n a m i n g  r u l e s  o f  a  S m a l l t a l k  h i e r a r c h y .  P r o p e r t i e s ,  addedProperties 

a n d  rem ovedProperties a r e  u s e d  b y  t h e  H ierarchyE dito r f o r  c o n f i r m i n g  m o d i f i c a t i o n  t o  t h e  p r o p e r t i e s  o f  

t h e  c l a s s .

5.2.2 Adding a Grade
T h e  h i e r a r c h y  i n t e r f a c e  i s  a n  e a s y  p l a c e  t o  i d e n t i f y  a  c l a s s  o f  p o l y m e r .  I f  a  u s e r  s e l e c t s  a  c l a s s ,  t h e y  c a n  a d d  a  

g r a d e  t o  t h e  c l a s s  b y  s e l e c t i n g  t h e  a p p r o p r i a t e  m e n u  i t e m .

W h e n  a d d i n g  a  g r a d e ,  poise p r o v i d e s  a  d e f a u l t  n a m e ;  s i m p l y  t h e  n u m b e r  o f  g r a d e s  k n o w n  p l u s  o n e  

c o n c a t e n a t e d  w i t h  t h e  g r a d e ’ s  f a m i l y  n a m e .  I n  F i g u r e  2 6 ,  a  g r a d e  i n s p e c t o r  v i e w s  t h e  n e w  eba g r a d e .  A t  

t h i s  p o i n t ,  t h e  g r a d e  i n h e r i t s  p r o p e r t i e s  f r o m  t h e  p o l y m e r  f a m i l y ,  b u t  n o  s p e c i f i c  v a l u e s  a r e  k n o w n  e x c e p t  f o r  

t h e  g r a d e s  n a m e .  T h e  v i e w  p r o v i d e s  t h e  l i s t  o f  p r o p e r t i e s  i n  t h e  t o p  s u b - v i e w .  S c r o l l i n g  t o  t h e  p r o p e r t y  

‘ T r a d e n a m e  o f  p o l y m e r ’  a n d  s e l e c t i n g  c a u s e s  t h e  b o t t o m  s u b - v i e w  t o  d i s p l a y  a  t e x t  r e p r e s e n t a t i o n  o f  t h e  

p r o p e r t y ’ s  v a l u e .  T h e  u s e r  c a n  c h a n g e  t h e  n a m e  h e r e .

EBA # 2 3 0ËF1=
V 1
S tress at yield (50m m /m ini ±J
Supplier of polymer
Tensile strength (.5mm/min)
Text description and use
Therm.exp.coef. long. 23-80oC
Therm.exp coef tran. 23-80oC
Thermal conductivity of melt
Tradename of polymer . ;
Vicat A /50  (ION)
Vicat B /5 0  (50N) 1
Viscosity coeff.
Vater absorption (23oC -sat.) 1 L 1
Young’s modulus (sec . 1mm/min) 1̂

EBA * 2 3 ±i

Figure 26: Grade View over new grade EBA 23
T h e  u s e r  c a n  s e l e c t  a n y  o f  t h e  p r o p e r t i e s  i n  t h e  t o p  l i s t ,  m o d i f y  t h e  t e x t  i n  t h e  b o t t o m  t e x t  v i e w  a n d ,  t h r o u g h

t h e  m e n u  o f  t h e  t e x t  v i e w ,  a c c e p t  t h e  c h a n g e .  T h e  v i e w ,  i n  c o n j u n c t i o n  w i t h  t h e  p r o p e r t y  o b j e c t ,  p a r s e s  t h e  

t e x t ,  i n t e r p r e t s  a  v a l u e  f o r  t h e  p r o p e r t y ,  a n d  a s s i g n s  i t  t o  t h e  g r a d e .  I n  t h i s  w a y ,  t h e  u s e r  c a n  f u l l y  s p e c i f y  a  

n e w  g r a d e  o r  m o d i f y  o r  d e l e t e  a n  e x i s t i n g  g r a d e .  A n  e x a m p l e  o f  a  cam pus g r a d e  i s  g i v e n  i n  F i g u r e  3 5 .
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POISEsession

^  W e l c o m e  To POISE

Comparator
 ifh-

Domain P roperties

J
Domain Hierarchy

Property com par iso n m m
Property selection

All Select Polymer #

DwM Û data avalia'blc fo r th û  pr«p«rty

Figure 27: Starting a property comparison
5.3 The Comparator
T h e  h i e r a r c h y  i n  t h e  POISEsession w i n d o w  p r o v i d e s  t h e  u s e r  w i t h  t h e  t o o l s  f o r  d e f i n i n g  t h e  i n i t i a l  d a t a b a s e  

s c h e m a  a n d  d a t a  e n t r y .  A s  t h e  u s e r  c h a n g e s  t h e  s c h e m a  a n d  e n t e r s  d a t a ,  POISE c o n s t a n t l y  m o d i f i e s  

a b s t r a c t i o n s  o v e r  t h e  d o m a i n  o f  k n o w l e d g e .  T h e  ‘ b u t t o n ’  i n  t h e  POISEsession n a m e d  Comparator p r o v i d e s  

a c c e s s  t o  t h e s e  a b s t r a c t i o n s  ( F i g u r e  2 7 ) .

T h e  p r o p e r t y  c o m p a r i s o n  w i n d o w ,  o r  Comparator, i s  a  d i s p l a y  o f  t h e  g e n e r a l i s a t i o n s  d e r i v e d  f r o m  t h e  g r a d e s  

i n  t h e  d o m a i n .  POISE g e n e r a l i s e s  t h e  p r o p e r t i e s  o f  t h e  g r a d e s  f r o m  e a c h  p o l y m e r  f a m i l y ,  f o r m i n g  a n  

a b s t r a c t i o n ,  poise m e r g e s  t h e s e  g e n e r a l i s a t i o n s ,  a n d  w i t h o u t  f u r t h e r  d o m a i n  a n a l y s i s ,  f o r m s  h i g h e r  o r d e r  

a b s t r a c t i o n s  ( § 3 . 5 , § 4 . 2 . 7 . 1 ) .  A n  a b s t r a c t i o n  e x i s t s  f o r  e a c h  Polymer c l a s s  i n  t h e  h i e r a r c h y ,  e a c h  c o n t r i b u t i n g  

t o  a  l i s t  o f  g r a d e  c a t e g o r i e s  a v a i l a b l e  f o r  d i s p l a y .  T h e  l i s t  o f  a b s t r a c t i o n s  a p p e a r s  w h e n  t h e  u s e r  s e l e c t s  t h e  

b u t t o n  ‘ S e l e c t  P o l y m e r ’ ,  F i g u r e  2 7 .  T h e  l i s t  o f  p r o p e r t y  g e n e r a l i s a t i o n s  a p p e a r s  w h e n  t h e  u s e r  s e l e c t s  t h e  

b u t t o n  ‘ P r o p e r t y  S e l e c t i o n ’ . F i n a l l y ,  t h e  w i n d o w  d i s p l a y s  t h e  g e n e r a l i s a t i o n  i n  t h e  m a i n  c e n t r e  s u b - v i e w .  

F i g u r e  2 8 .

I n  t h e  e x a m p l e  o f  F i g u r e  2 8 ,  t h e  p r o p e r t y  Y o u n g ’ s  m o d u l u s  i s  s e l e c t e d  a n d  t h e  c l a s s i f i c a t i o n  C ry s ta llin e  

( m o r e  c o r r e c t l y  p a r t i a l l y  c r y s t a l l i n e ) .  L i k e  a l l  t h e  o t h e r  p r o p e r t y  o b j e c t s ,  t h e  Y o u n g ’ s  m o d u l u s  p r o p e r t y  

s p e c i f i e s  a  g e n e r i c  h i s t o g r a m  s u b v i e w  t o  d i s p l a y  t h e  g e n e r a l i s e d  d a t a .  T h e  Comparator w i n d o w  l o c a t e s  t h e  

g e n e r a l i s a t i o n  f r o m  t h e  C ry s ta ll in e  c l a s s ,  w h i c h  t r a n s p a r e n t l y  a c c e s s e s  t h e  WorkBase. T h e  WorkBase s t o r e s  

t h e  g e n e r a l i s a t i o n  a s  a  s e t  o f  v a l u e  o c c u r r e n c e s .  T h e  v i e w  c o e r c e s  t h e  s e t  i n t o  a  d a t a  t y p e  s u i t a b l e  f o r  d i s p l a y .  

A  h i s t o g r a m  o b j e c t  i n  t h i s  c a s e .
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Figure 28; Abstraction display of Young’s modulus over (partially) Crystalline polymers
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Figure 29: Viewing films only for Young’s modulus over Crystalline
T h e  h i s t o g r a m  s u b v i e w  i s  f u l l y  s c a l a b l e .  W h e n  t h e  u s e r  a d j u s t s  t h e  s i z e  o f  t h e  w i n d o w ,  t h e  s u b - v i e w s  s i z e

s c a l e s  e q u a l l y ,  c h a n g i n g  t h e  s i z e  o f  e a c h  o r d i n a t e  p r o p o r t i o n a l l y .  I n c r e a s i n g  t h e  w i n d o w  s i z e  i n c r e a s e s  t h e  

r o o m  a v a i l a b l e  f o r  d i s p l a y i n g  t h e  o r d i n a t e .  T h e  n u m b e r  o f  l a b e l l e d  i n t e r v a l s  a l s o  i n c r e a s e  a s  r o o m  b e c o m e s  

a v a i l a b l e  t o  a c c o m m o d a t e  t h e  f o n t  s i z e ,  w h i c h  d o e s  n o t  s c a l e .

T h e  a x i s  o n  t h e  l e f t  i s  t h e  u n i t s  o f  t h e  p r o p e r t y ,  d i s p l a y e d  n e x t  t o  t h e  p r o p e r t y  n a m e ,  MPa f o r  M e g a - P a s c a l s  

p r e s s u r e .  T h e  b o t t o m  a x i s  i s  a  t a l l y  o f  o c c u r r e n c e s  s o  i s  u n i t l e s s .

T h e  b u t t o n  l a b e l l e d  ‘ A l l ’  r e f e r s  t o  t h e  w h o l e  c l a s s i f i c a t i o n  o f  C ry s ta llin e . A n y  Polymer c l a s s  w i t h  g r a d e s  

e x h i b i t i n g  o r t h o g o n a l  p r o p e r t i e s  w i l l  g e n e r a l i s e  t h e  o r t h o g o n a l  p r o p e r t i e s  i n t o  M ultip leD ataA bstraction  

(MDA) o b j e c t s ,  a s  d e s c r i b e d  i n  § 4 . 2 . 7 . 5 .  A n  m d a  w i l l  r e p o r t  e a c h  o r t h o g o n a l  c l a s s  t e m p l a t e  i n  u s e  w i t h i n  i n  

t h e  p o l y m e r  c l a s s i f i c a t i o n .  C u r r e n t l y  o r t h o g o n a l  c l a s s e s  i n c l u d e  F ibre, Film a n d  ‘ u s e d - b y  Lucas’. T h e
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s e l e c t i o n  o f  t h i s  b u t t o n  a l l o w s  v i e w i n g  o f  o n e  o f  t h e s e  c l a s s e s  o r ,  a s  s e e n  h e r e ,  a l l .  I n  F i g u r e  2 9  t h e  s e l e c t i o n  

c h a n g e s  s o  t o  v i e w  o n l y  p o l y m e r s  u s e d  a s  f i l m .
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Figure 30: Comparing abstractions strength across four polymer classes
T h e  Comparator a l l o w s  c o m p a r i s o n  a c r o s s  a b s t r a c t i o n s  s h a r i n g  t h e  s a m e  p r o p e r t y  i n  t h e  s a m e  w i n d o w .  B y

s e l e c t i n g  t h e  ‘ + ’  b u t t o n ,  i n  t h e  b o t t o m  r i g h t  c o r n e r ,  t h e  w i n d o w  a d j u s t s  t h e  s i z e  o f  t h e  s u b - v i e w s  t o  

a c c o m m o d a t e  a  s e c o n d  h i s t o g r a m  d i s p l a y .  E a c h  d i s p l a y  h a s  i t s  o w n  c l a s s i f i c a t i o n  b u t t o n s  f o r  s e l e c t i n g  t h e  

a b s t r a c t i o n .  I n  F i g u r e  3 0  f o u r  c l a s s i f i c a t i o n s  c o m p a r e  t h e i r  i m p a c t  s t r e n g t h .  I n  F i g u r e  3 1  t h e  f i l m s  o f  

C ry s ta l l in e  c o n t r a s t  a g a i n s t  a l l  o f  C ry s ta llin e . N o t e  t h e  p r o p e r t y  v a l u e  a x i s  s c a l e s  a c r o s s  t h e  l a r g e s t  

r a n g e  o v e r  a l l  a b s t r a c t i o n s  i n  t h e  d i s p l a y .
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Figure 31: Comparing abstractions
I n  F i g u r e  3 0  t h e r e  a r e  t w o  r e d  l i n e s  a c r o s s  a l l  t h e  h i s t o g r a m s  w i t h  a  b l u e  a r r o w  a t  t h e  e n d s .  T h e s e  b a r s

a p p e a r  w h e n  t h e  u s e r  s e l e c t s  t h e  ‘ B a r ? ’  b u t t o n  T h e  r e d  l i n e s  m o v e  a l o n g  t h e  p r o p e r t y  a x i s  f o r m i n g  a n  u p p e r  

a n d  l o w e r  l i m i t .  W h i l e  t h e s e  b a r s  a r e  a c t i v e ,  t h e  u s e r  c a n  s e l e c t  t h e  g r a d e s  t h a t  f a l l  b e t w e e n  t h e  l i n e s .  W h i l e
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t h e  l i n e s  a r e  n o t  a c t i v e ,  t h e  u s e r  c a n  s e l e c t  t h e  i n d i v i d u a l  b a r s  o f  t h e  h i s t o g r a m s ,  w h i c h  c h a n g e  t h e i r  c o l o u r  t o  

r e d  w h e n  s e l e c t e d .

T h e  s e l e c t e d  g r a d e s  a r e  n o t  c o l l e c t e d  u n t i l  t h e  u s e r  p r e s s e s  t h e  ‘ s e l e c t ’  b u t t o n .  F i n d i n g  t h e  g r a d e s  r e q u i r e s  a  

s e a r c h  t h r o u g h  a l l  t h e  g r a d e s  i n  t h e  a p p r o p r i a t e  c l a s s e s  i n  t h e  c l a s s i f i c a t i o n .  T h e  p r o c e s s  c a n  l i m i t  t h e  s e a r c h  

b y  i n f e r r i n g  t h e  a b s e n c e  o f  g r a d e s  i n  a  s u b c l a s s  t h a t  f a l l s  o u t s i d e  t h e  r a n g e  b e i n g  s e a r c h e d .  I f  t h e  s e l e c t i o n  i s  

a c r o s s  t h e  c l a s s  Polymer t h e n  p o t e n t i a l l y  t h e  s e a r c h  c o v e r s  e v e r y  g r a d e  i n  t h e  WorkBase. T h i s  i s  t i m e  

c o n s u m i n g  c o m p a r e d  w i t h  s e l e c t i o n s  a c r o s s  s p e c i f i c  c l a s s e s ,  e g  PA, w h i c h  a r e  q u i c k .

T h e  s e a r c h  r e s u l t s  i n  a  w i n d o w  l i s t i n g  t h e  c l a s s e s  w h e r e  g r a d e s  m a t c h  t h e  s e l e c t i o n .  S e l e c t i n g  t h e  c l a s s  

d i s p l a y s  a  s u b - l i s t  o f  t h e  g r a d e ’ s  T r a d e n a m e .  T h e  c o m p l e t e  l i s t  o f  g r a d e s  f o r m s  a  s u b - s h o r t l i s t .  F i g u r e  3 4  

p i 6 9 ,  w h i c h  c a n  c o n t r i b u t e  t o  a  g l o b a l  s h o r t l i s t  a v a i l a b l e  t o  a l l  POISE w i n d o w s  w h e n  t h e  u s e r  c l o s e s  t h e  

w i n d o w  ( i n  § 5 . 5  b e l o w ) .

T h e  Comparator c a n  d i s p l a y  t h e  g l o b a l  s h o r t l i s t  a s  a  u s e r - g e n e r a t e d  a b s t r a c t i o n .  I f  t h e  ‘ S ’  b u t t o n  i s  p r e s s e d  

i n  t h e  b o t t o m  l e f t  c o r n e r  o f  t h e  Comparator, i t  d i s p l a y s  o n l y  t h e  g r a d e s  i n  t h e  s h o r t l i s t .  E a c h  a b s t r a c t i o n  v i e w  

s t i l l  l i m i t s  t h e  d i s p l a y  b y  c l a s s i f i c a t i o n  a n d  p r o p e r t y .  T o  d i s p l a y  t h e  w h o l e  s h o r t l i s t ,  t h e  c l a s s i f i c a t i o n  w o u l d  

n e e d  t o  b e  ‘A ll’ a n d  ‘Polymers’ w i t h  t h e  s h o r t l i s t  b u t t o n  s e l e c t e d .

C l i c k i n g  o n  t h e  b a c k g r o u n d  o f  a n y  s u b v i e w  i n  t h e  Comparator s e l e c t s  i t .  T h e  b o r d e r  o f  t h e  s u b v i e w  i n v e r t s  

t o  i n d i c a t e  t h e  s e l e c t i o n .  I n  c o n j u n c t i o n  w i t h  t h e  s c i s s o r s  b u t t o n  t h e  s u b v i e w  c a n  b e  c u t  t o  t h e  c l i p b o a r d ,  o r  

d e l e t e d  w i t h  t h e  m i n u s  ( ‘ - ‘ )  b u t t o n .  T h e  Comparator c a n  p a s t e  i n  a  s u b - v i e w  f i - o m  t h e  c l i p b o a r d ,  w h i c h  h a s  

t h e  s a m e  f u n c t i o n  a s  a d d i n g  a  n e w  s u b v i e w  a n d  s e t t i n g  t h e  c l a s s i f i c a t i o n .

F i n a l l y  t h e  ‘ ? ’  b u t t o n  d i s p l a y s  a  t e x t  w i n d o w  c o n t a i n i n g  h e l p  i n f o r m a t i o n .  H e l p  i s  g e n e r a l l y  s e e n  a s  a n  

i m p o r t a n t  f u n c t i o n  b u t  n o t  c r i t i c a l  t o  t h i s  r e s e a r c h .  T h e  b u t t o n  d e m o n s t r a t e s  t h e  s i m p l i c i t y  o f  i n t e g r a t i n g  a n  

a u x i l i a r y  s u p p o r t  s y s t e m ,  s u c h  a s  h e l p ,  i n t o  POISE.

5.4 Grade Search by Query
T h e  POISEsession s c r e e n  p r o v i d e s  a c c e s s  t o  a n  a l t e r n a t i v e  t o  t h e  Comparator f o r  f i n d i n g  g r a d e s .  T h e  

‘ S e a r c h ’  b u t t o n  o p e n s  a  G r a d e  S e a r c h  w i n d o w .  L i k e  t h e  Comparator i t  i s  p o s s i b l e  t o  l i m i t  t h e  s e a r c h  t o  a  

s e l e c t e d  c l a s s i f i c a t i o n .  T h e  s e a r c h  i s  c u r r e n t l y  l i m i t e d  t o  t h e  d o m a i n  o f  a  s i n g l e  p r o p e r t y  b u t  t h i s  w a s  o n l y  t o  

s i m p l i f y  t h e  t o o l .  T h e  p o t e n t i a l  e x i s t s  f o r  a  c o m p l e x  q u e r y  a t  t h e  s a m e  l e v e l  a s  t h e  PO ISEsession's 

t r a n s c r i p t  w i n d o w  ( i n  l a t e r  § 5 . 8 ) .
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Figure 33:Grade search by query search specification Figure 32: Grade search by query search in progress
I n  t h e  e x a m p l e ,  F i g u r e  3 3 ,  t h e  p r o p e r t y  s e l e c t e d  i s  i m p a c t  s t r e n g t h  a n d  t h e  c l a s s i f i c a t i o n  pa6. T h e  u s e r  e n t e r s

a  q u e r y  i n  t h e  l a r g e r  c e n t r a l  v i e w .  T h e  v i e w  c o m p i l e s  t h e  t e x t  i n t o  v a l u e s ,  a s  i n t e r p r e t e d  b y  t h e  p r o p e r t y  

o b j e c t .  I n  t h i s  c a s e ,  t h e  p r o p e r t y  i n t e r p r e t s  ‘ N B ’ a s  ‘ N o  B r e a k ’ ,  t h e  e x t r e m e  r e s u l t  o f  t h e  i m p a c t  t e s t  w h e r e  

t h e  s p e c i m e n  f a i l s  t o  b r e a k .

T h e  v i e w  d i s p l a y s  t h e  s i z e  o f  t h e  s e a r c h  i n  t h e  b o t t o m  r i g h t  c o m e r  a s  t h e  n u m b e r  s e a r c h e d / t o t a l  t o  s e a r c h .  A s  

t h e  s e a r c h  p r o c e e d s  t h e  n u m b e r  s e a r c h e d  i s  p e r i o d i c a l l y  u p d a t e d  a s  i n  F i g u r e  3 2 .  T h e  u s e r  c a n  t e r m i n a t e  t h e  

s e a r c h  b y  t y p i n g  c o n t r o l  ‘ C ’ .  S u c h  f a c i l i t i e s  a r e  n e c e s s a r y  i n  a  s y s t e m  w i t h  t h e  p o t e n t i a l  f o r  l a r g e  l i n e a r  

s e a r c h e s  f o r  w h i c h  i t  i s  n o t  o p t i m i s e d .

5 . 5  Shortlisting
W h e n  t h e  s e a r c h  i s  c o m p l e t e ,  a  SubShortL ist o p e n s  w i t h  t h e  r e s u l t s .  I n  F i g u r e  34 t h e  o n l y  c l a s s  i s  PA6 s i n c e  

t h e  d o m a i n  o f  t h e  s e a r c h  w a s  l i m i t e d  t o  t h i s  c l a s s .  W h e n  t h e  u s e r  s e l e c t s  pa6, i t  d i s p l a y s  t h e  g r a d e ’ s  

T r a d e n a m e  i n  t h e  s e c o n d  l i s t .  A t  t h i s  p o i n t ,  t h e  m e n u  a b o v e  pa6 a l l o w s  t h e  r e m o v a l  o f  t h e  c l a s s  o r  t h e  

g e n e r a t i o n  o f  a  d i s k  f i l e  c o n t a i n i n g  t h e  s e t  o f  g r a d e s .  T h e  m e n u  a l s o  a l l o w s  t h e  a d d i t i o n  o f  a  w h o l e  

c l a s s i f i c a t i o n  o r  f o r  a l l  c l a s s e s  t o  b e  r e m o v e d  o r  f i l e d  o u t .

T h e  m e n u  a b o v e  t h e  g r a d e s  e n a b l e s  t h e  u s e r  t o  c l e a r  t h e  l i s t  o r  r e m o v e  i n d i v i d u a l  g r a d e s .  G r a d e s  m a y  a l s o  b e  

f i l e d  i n t o  a  t e x t  f i l e  i n  a  dip f o r m a t  ( i n  § 3 . 1 . 1  ) .

W h e n  c l o s i n g  t h e  SubShortL ist w i n d o w ,  POISE a s k s  i f  t h i s  s e t  o f  g r a d e s  i s  t o  j o i n  t h e  g l o b a l  s h o r t l i s t .  T h e  

g l o b a l  s h o r t l i s t  i s  a  s e t  o f  g r a d e s  l i k e  t h e  s u b - s h o r t l i s t ,  b u t  i t  i s  u n i q u e  f o r  a  s i n g l e  poise s e s s i o n .  T h e  u s e r  

m a y  p e r f o r m  v a r i o u s  s e a r c h e s  g e n e r a t i n g  s u b - s h o r t l i s t s ,  w h i c h  a r e  l o g i c a l l y  ORed t o g e t h e r  i n  t h e  g l o b a l  

s h o r t l i s t .  T h e  Comparator c a n  l i m i t  t h e  d o m a i n  t o  j u s t  t h e  g l o b a l  s h o r t l i s t  w h i c h  p r o v i d e s  a  l o g i c a l  AND w i t h
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t h e  Comparator’s o w n  s e l e c t i o n  c r i t e r i o n .  W i t h  t h e s e  b r o w s i n g  t o o l s ,  t h e  u s e r  o b t a i n s  s o m e  b i n a r y  l o g i c  o v e r  

t h e  s e l e c t i o n .

S ubSh or t L is t

Polymer
Grade Select

Grades
V

Add Class t
Remove Class t

PA6 Remove All [
lAPMHWdHcB#
[ F i l e  O u t  ÂÎT

THAN B25TC. 
THAN B 2 5T d , 
THAN B30S c.

ÜUHb l HAN Ü JU3 d.
DURE T HA N  B 3 1 S K C .
DURE T HA N  B 3 1 S K d .
DURE T HA N  B4 0 E  d.
DURE T HA N  B 4 0 S K C .
DURE T HA N  B 4 0 S K d .
DURE T HA N  B4 0 S K W1  c.
DURE T HA N  B4 0 S K W1  d.

d

Inspect]
Figure 34: Sub-shortlist a user defined set of grades

5.6 Grade View
T h e  ‘ i n s p e c t ’  b u t t o n  i n  F i g u r e  3 4  b e c o m e s  a c t i v e  o n  s e l e c t i n g  a  g r a d e ,  a n d  o p e n s  a  g r a d e  v i e w  w i n d o w .  T h i s  

i s  t h e  s a m e  t y p e  o f  w i n d o w  a s  u s e d  i n  F i g u r e  2 6 ,  f o r  c r e a t i n g  a  g r a d e .  F i g u r e  3 5  g i v e s  a  c o m p l e t e  d e s c r i p t i o n  

o f  t h e  D U R E T H A N  B 3 0 S  d  g r a d e .

ID ------------ DURETHAN B3ÜS d. ........ --[g]iE]i
Eff. thermal diffusivity 
Electrolytic corrosion 
Flammability UL94 (1 .6 mm) 
Flammability UL94 (2nd value) 
Flammability UL94 -  5V 
Flow front velocity  
Freeze Temperature 
Heat defl.temp. HDT/A at 1 .8 MPa 
Heat defl.temp. HDT/B at 0 .45  MPa 
Heat defl.temp. HDT/C at 5 .0  MPa 
Impact strength (Izod) +23oC .
Impact strength (Izod) -30oC *
Isotaxie index

±1

NB k J / m 2

Figure 35: Grade view initial text description and specific property
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U n t i l  t h e  u s e r  s e l e c t s  a  p r o p e r t y  t o  v i e w ,  t h e  b o t t o m  s u b v i e w  o f  F i g u r e  2 6  d i s p l a y s  t h e  t e x t  p r o p e r t y  o n  t h e  

g r a d e  ( i n  § 3 . 2 . 5 . 2 ) .  W h e n  t h e  u s e r  s e l e c t s  a  p r o p e r t y ,  t h e  s u b v i e w  d i s p l a y s  t h e  v a l u e .  I n  t h e  c a s e  o f  

F i g u r e  3 5 ,  t h e  p r o p e r t y  i m p a c t  s t r e n g t h  m a t c h e s  t h e  q u e r y .  T h e  b e h a v i o u r  g e n e r a t i n g  a  t e x t  r e p r e s e n t a t i o n  o f  

t h e  v a l u e  b e l o n g s  t o  t h e  p r o p e r t y  o b j e c t  a n d  t h e  v a l u e  o b j e c t ,  n o t  t h e  w i n d o w  o r  t h e  s u b v i e w .  T h i s  a l l o w s  

d i f f e r e n t  t e x t  f o r m a t s  t o  e x i s t  f o r  d i f f e r e n t  p r o p e r t i e s .

5 . 7  Property Definition.
T h e  u s e r  c a n  a d d  p r o p e r t i e s  a n d  m o d i f y  e x i s t i n g  p r o p e r t i e s  u s i n g  a  P ropertyE dito r. R e t u r n i n g  t o  t h e  

POISEsession, t h e  u s e r  o p e n s  a n  e d i t o r  t h r o u g h  t h e  “ D o m a i n  P r o p e r t i e s ”  b u t t o n .  A  m e n u  o p e n s  f o r  s e l e c t i n g  

t h e  s u b j e c t  p r o p e r t y ,  e i t h e r  a  n e w  p r o p e r t y  ( F i g u r e  3 6 )  o r  a n  e x i s t i n g  p r o p e r t y ,  w h i c h  l i s t s  e i t h e r  t h e  c l a s s i f i e d  

d o m a i n  ( F i g u r e  3 8 ) ,  a n  o r t h o g o n a l  c l a s s  ( F i g u r e  3 7 )  o r  u n a s s i g n e d .

Comparator

t D«

I
D

Domain  P r o p e r t i e s  
S p e c i a l i s t  P r o p e r t i e s  > 
U n a s s i g n e d  P r o p e r t i e s >

Grad

Figure 36: Selecting subject property- Start new property

Comparator

D ef i n e  New P ro pe r ty
Domain P r o p e r t i e s  

jU n a ss i g n ed  P r o p e r t i e s  >|UsedBy >|Fil>Ti >

Clipboatrd

S p e c i a l i s t  P r o p e r t i e s  > UsedForO FiAre >

Figure 37:

Crimp Level  
C ros s  S e c t i o n  
E l a s t i c  Re co v er y  
Elongat ion  at  break  
Fibre F i n e n e s s  
Fibre Length  
Mois ture  Rega in  
S t i f f n e s s  
T e n a c i t y
T o u g h n e s s ________

Selecting subject property - orthogonal class used for fibre
POISEsess ion = c h a r a c t e r i s t i c  d e n s i t y  23oC

I c o m e  To POISE

Comparator

D d D e f i n e  N ew  P ro pe r t y
Domain  P r o p e r t i e s
S p e c i a l i s t  P r o p e r t i e s  > 
U n a ss i g n e d  P r o p e r t i e s >

Figure 38:

Creep mo du lu s  1h
Deg. o f  l i g h t  t r a n s m i s s i o n  
D e n s i t y
D e n s i t y  of  m e l t  
D i e l e c t r i c  s t r e n g t h  
D i s s i p a t i o n  f a c t o r  1 MHz
D i s s i p a t i o n  f a c t o r  50Hz
Eff.  th erm al  d i f f u s i v i t y  
E l e c t r o l y t i c  c o r r o s i o n  
F l a m m a b i l i t y  UL94 ( 1.5 mm)  
F l a m m a b i l i t y  UL94 (2nd v a lu e )  
F l a m m a b i l i t y  UL94 -  5V  
F lo w  f ron t  v e l o c i t y  
F r e e z e  T e m p e r a t u r e  
Heat  d e f l . t e m p .  HDT/A at  1,8 MPa 
Heat  d e f l . t e m p .  HDT/B a t  0 . 4 5  MPa 
Heat  d e f l . t e m p .  HDT/C a t  5 . 0  MPa 
Impac t  s t r e n g t h  ( I zod)  +23oC  
Impac t  s t r e n g t h  ( I zod)  - 3 0 o C
I c n +  a  v i  o  i n r l o  v

Selecting subject property- classified domain

Jit

170



Object -O riented Softw are R epresentation o f Polym er M aterials Inform ation in Engineenng Design

Property Editor lE lH i

Name

Symbolic

Create

Units

Figure 39; PropertyEditor- new property
Property Editor

Name

Symbolic

Young’s  m o d u l u s  ( s e c .  Imrn/rnin)

y'iod

Create

Units
M P a

C 3

D atatype T

Add Domain C lass Polymer

Interval = 3 0 0 0
su g g e st j ------- id

_ |  Collectable _J Visible
Attribute;

Comment Methods Remove

Figure 40: PropertyEditor on existing property
S e l e c t i n g  a  n e w  p r o p e r t y  w i l l  o p e n  a n  e d i t o r  w i t h  m o s t  o p t i o n s  g r e y e d - o u t  a n d  i n a c t i v e .  T h e  u s e r  m u s t  f i l l  i n

t h e  a c t i v e  f i e l d s  b e f o r e  a c c e p t i n g  t h e  p r o p e r t y ,  a d d i n g  i t  t o  t h e  d o m a i n .  T h e s e  a c t i v e  f i e l d s .  F i g u r e  3 9 ,  

i n c l u d e ;  t h e  p r o p e r t y  n a m e ,  t h e  s t r i n g  u s e d  b y  i n t e r f a c e s  f o r  p r o p e r t y  s e l e c t i o n ,  e g  F i g u r e  3 8 ;  t h e  p r o p e r t y  

s y m b o l ,  w h i c h  t h e  e d i t o r  c h e c k s  f o r  u n i q u e n e s s  a n d  Polymer c l a s s e s  u s e  t o  n a m e  i n s t a n c e  v a r i a b l e s  a n d  

m e s s a g e  s e l e c t o r s  f o r  t h e  p r o p e r t y .

A f t e r  t h e  u s e r  e n t e r s  t h e  e s s e n t i a l  d e s c r i p t i o n s ,  t h e  c r e a t e  b u t t o n  g e n e r a t e s  t h e  p r o p e r t y  o b j e c t ,  s e t t i n g  o t h e r  

a t t r i b u t e s  t o  t h e  d e f a u l t  s t a t e s .  T h e  r e s t  o f  t h e  w i n d o w  b e c o m e s  a c t i v e  a l l o w i n g  t h e  e d i t i n g  o f  t h e s e  d e f a u l t s .  

T h i s  i s  t h e  s a m e  f o r  w i n d o w s  o n  e x i s t i n g  p r o p e r t i e s ,  e g  Y o u n g ’ s  m o d u l u s  i n  F i g u r e  4 0 .
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E d i t o r s  o n  e x i s t i n g  p r o p e r t i e s  d o  n o t  p e r m i t  t h e  d e s c r i p t i v e  n a m e  s t r i n g  t o  c h a n g e  o r  t h e  n a m e  s y m b o l .  T h e  

s y m b o l  i d e n t i f i e s  t h e  p r o p e r t y  s y n t a c t i c a l l y ,  t h e  s t r i n g  s e m a n t i c a l l y .  O t h e r  p r o p e r t y  a t t r i b u t e s  c a n  c h a n g e  

t h r o u g h  t h e  l i f e  o f  t h e  p r o p e r t y .

I f  i t  i s  p o s s i b l e  t o  g e n e r a l i s e  a  p r o p e r t y  i n t o  h i s t o g r a m s ,  t h e n  t h e  u s e r  c a n  s p e c i f y  t h e  v a l u e  i n  t h e  i n t e r v a l  

f i e l d  f o r  d i s t r i b u t i n g  t h e  h i s t o g r a m  b a r s .  T h e  s u g g e s t  o p t i o n  c a u s e s  t h e  i n t e r f a c e  t o  q u e r y  t h e  Polymer c l a s s  

f o r  t h e  p r o p e r t y - v a l u e s  e x p r e s s e d  b y  a l l  k n o w n  g r a d e s .  I f  a n y  g r a d e s  d e f i n e  t h e  p r o p e r t y  a n d  a s s i g n  v a l u e s ,  

t h e n  t h e  q u e r y  r e t u r n s  a  s e t  o f  t h o s e  v a l u e s .  F r o m  t h i s  s e t ,  a  r u l e  o f  t h u m b  c a l c u l a t i o n ,  d e r i v e d  b y  t r i a l  a n d  

e r r o r ,  s u g g e s t s  a  v a l u e  f o r  d i s t r i b u t i n g  t h e  h i s t o g r a m s .  T h e  i n t e r v a l  f i e l d  d i s p l a y s  t h e  v a l u e .

Property

Name

^  Symbolic

Units

D atatype

Young’s  m o d u l u s  ( s e c .  1m

y Mod

MPa

Number

Add Domain Class

Interval = 3000
su g g e st j ------------

C o lle c t ib le Visible
Attribu

#  Comment Methods ( g *

M u l t i S e l e c t V i e w
Mutab leCompi l edMethod

N a m e S c o p e
N e a r e s t P a i n t
Ni lEnhancer

N oC on tro l l e r
N o n ln te ra c t iv e C o m p i l er E rr o rH a n d le r

N o t i f i e r
N o t i f i e r C o n t r o l l e r

N o t i f i e r V i e w
N u l lS co p e

Nurrfber
NumberLine  

O b je c t  
Gb jec tMem ory  
Gbje c tW rap pe r  
GldChangeSe t  

O l d l i g r i s  
Gpa que lmage  

Gpti mi zedLi ne I n f o r m a t i o n !  ab l e  
G rd er e dC o l l e c t i o n  

GrderedCol  l e c t i o n  I n s p e c to r  
Grdere dDi ther  
OSErrorHolder  

GSHandle  
QtherChange  

G t h e r C h a n g e s V i e w  
PA 

PA 12 
PA12G  

PA6  
P A 6 1 2  
P A 6 3  
P A 6 6  
PAEK 
P ain t  

P a i n t P o l i c y  
P a in tR e n d er er  

P a l e t t e

□ I

Figure 41: Datatype
T h e  d a t a t y p e  a t t r i b u t e  ( F i g u r e  4 1  )  i s  a  S m a l l t a l k  c l a s s .  A  p r o p e r t y  c a n  s e l e c t  a n y  S m a l l t a l k  c l a s s  t o  r e p r e s e n t

t h e  v a l u e .  T h e o r e t i c a l l y ,  t h e  a t t r i b u t e  s h o u l d  b e  a  t y p e ,  n o t  a  c l a s s .  S t a n d a r d  S m a l l t a l k  d o e s  n o t  d i s t i n g u i s h  

t y p e s  b e y o n d  a  s i n g l e  c l a s s  s o  poise u s e s  a  c l a s s .  P o l y m o r p h i c  c l a s s e s ,  o f  t h e  s a m e  t y p e ,  w h i c h  d o  n o t  s h a r e  

a  s u p e r c l a s s ,  c a n  n o t  b o t h  r e p r e s e n t  a  p r o p e r t y  s i n c e  c u r r e n t l y  o n l y  o n e  c l a s s  c a n  b e  s e l e c t e d .
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I f  t h e  d a t a  o f  t h e  p r o p e r t y  c a n  a b s t r a c t  i n t o  h i s t o g r a m s  t h e n  t h e  “ N o t  C o l l e c t a b l e ”  a t t r i b u t e  ( F i g u r e  4 2 )  c a n  b e  

t u r n e d  o f f .  T h e  p o l y m e r  a b s t r a c t i o n  m e c h a n i s m  a n d  t h e  Comparator c h e c k  t h i s  b i n a r y  f l a g .  S t r i c t l y  i t  i s  a n  

a t t r i b u t e  o f  t h e  p r o p e r t y ’ s  d a t a t y p e ,  n o t  o f  t h e  p r o p e r t y ,  b u t  t h e  d e v e l o p m e n t  o f  P O I S E  d i d  n o t  a d d r e s s  u s e r  

d e f i n e d  d a t a  t y p e s  f o r  e n g i n e e r i n g  v a l u e s .

Interval = 3000
su g g e st | -----------

Not Co I lectab le ■  I nv is ib le
Attributes

Comment Methods

Figure 42: Interval, not-collectable, and invisible

T h e  f i e l d s  i n  t h e  P ropertyE dito r a r e  i m m e d i a t e l y  a c t i v e .  C h a n g i n g  t h e  i n t e r v a l  w i l l  c a u s e  a l l  h i s t o g r a m s  o n

t h e  p r o p e r t y  t o  u p d a t e .  A n y  Comparators d i s p l a y i n g  t h e  p r o p e r t y  w i l l  a l s o  u p d a t e .  T h e  i m m e d i a t e  f e e d b a c k  

c a n  m a k e  t h e  s e l e c t i o n  o f  a n  i n t e r v a l  m u c h  e a s i e r ,  a n d  a l l o w s  t h e  u s e r  t o  m o d i f y  t h e  e m p h a s i s  o f  a  p r o p e r t y  

h i s t o g r a m  ( § 3 . 7 . 1 ) .  W h e n  w o r k i n g  o n  a  p a r t i c u l a r  d e s i g n ,  t h e  e m p h a s i s  o f  s p e c i f i c  p r o p e r t i e s  i s  d i f f e r e n t .  

C h a n g i n g  t h e  i n t e r v a l  c a n  r e f l e c t  t h e  d i f f e r e n t  e m p h a s i s .

T h e  “ I n v i s i b l e ”  a t t r i b u t e  p r e v e n t s  v a r i o u s  P O I S E  i n t e r f a c e s  d i s p l a y i n g  t h e  p r o p e r t y  a s  a n  o p t i o n .  M a n y  

p r o p e r t i e s  t h a t  g r a d e s  d e s c r i b e  a r e  o f  n o  i n t e r e s t  t o  a  d e s i g n e r  w i t h  a  p a r t i c u l a r  d e s i g n  p r o b l e m .  R e m o v i n g  

t h e s e  p r o p e r t i e s  f r o m  v i e w  l e t s  t h e  d e s i g n e r  f o c u s  o n  t h e  p r o p e r t i e s  o f  i n t e r e s t .

T h e  s t r i n g  d e s c r i b i n g  t h e  p r o p e r t y  i s  v e r y  b r i e f ,  e n s u r i n g  e a s y  d i s p l a y  t h r o u g h  t h e  i n t e r f a c e s .  A  c o m p l e t e  

d e s c r i p t i o n  o f  t h e  m e a n i n g  o f  a  p r o p e r t y  c a n  t a k e  a  l a r g e  s e c t i o n  o f  t e x t .  T h e  “ C o m m e n t ”  b u t t o n  p r o v i d e s  

j u s t  s u c h  a  s p a c e .  A l t h o u g h  t h e  e x a m p l e  i n  F i g u r e  4 3  i s  o n l y  d i s p l a y i n g  a  s i n g l e  l i n e ,  t h e  c h i l d - w i n d o w  i s  

c a p a b l e  o f  u n l i m i t e d  t e x t .

I _ j  o o i i e c c a D i e _ _ _ _ _ _ _ _ j  v i s i b l e _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Comment I  Methods I  Remove

j o u n g s  m od u l u s  t e s t e d  a t  a s t r a i n  r a te  o f  1 mm  per  mi nute .

Figure 43: Comment, method and remove

P r o p e r t i e s  d e s c r i b e  c l a s s e s .  T h e  l i s t  o f  c l a s s e s  t h i s  p r o p e r t y  d e s c r i b e s  i s  g i v e n  i n  a  l i s t  s u b - v i e w .  I n

F i g u r e  4 0  t h e  p r o p e r t y  d e s c r i b e s  t h e  c l a s s  Polymer. T h e  l i s t  d o e s  n o t  i n c l u d e  c l a s s e s  i n h e r i t i n g  t h e  p r o p e r t y  

f r o m  Polymer. A l t e r n a t i v e l y ,  t h e  p r o p e r t y  c o u l d  l i s t  a n  o r t h o g o n a l  c l a s s .  T h e  “ A d d  D o m a i n  C l a s s ”  a d d s  t h e  

p r o p e r t y  t o  a  c l a s s .  T h e  b u t t o n  l i s t s  t h e  o r t h o g o n a l  c l a s s e s  a n d  a  s e l e c t i o n  t o  o p e n  t h e  H ierarchyE ditor. B y
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d e f i n i t i o n ,  a  p r o p e r t y  c a n  n o t  b e l o n g  t o  b o t h  a n  o r t h o g o n a l  c l a s s  a n d  a  t a x o n o m i c  c l a s s .  T h e  v i e w  w i l l  n o t  

a d d  a  p r o p e r t y  t o  a n  i n c o n s i s t e n t  c l a s s  u n t i l  t h e  o t h e r  o r t h o g o n a l  c l a s s  r e m o v e s  t h e  p r o p e r t y .

A  c l a s s  r e m o v e s  a  p r o p e r t y  b y  s e l e c t i n g  t h e  c l a s s  i n  t h e  l i s t .  A  r e m o v a l  o p t i o n  i s  f o u n d  i n  t h e  m e n u  o f  t h e  

l i s t .  A  p r o p e r t y  c a n  b e  r e m o v e d  f r o m  t h e  w h o l e  d o m a i n  b y  s e l e c t i n g  t h e  “ R e m o v e ”  b u t t o n  ( F i g u r e  4 4 ) .  N o t  

o n l y  d o  a l l  c l a s s e s  r e m o v e  t h e  p r o p e r t y  b u t  a l s o  t h e  Property  c l a s s  r e m o v e s  t h e  p r o p e r t y  f r o m  a  l i s t  o f  a l l  

a s s i g n e d  d o m a i n  p r o p e r t i e s .

u a i a i y p e  Numi>er I

Add Domain C lass Fibre
iFi lm

UsedBy >
POISE h i era rc hy 1

:  J Polymer

Interval = 3 0 0 0
su g g est | ----------

± 1

ZJ

Figure 44: Add to orthogonal classification / remove from polymer classification
Polym er Class Bromser

------------------------------ 1 V

> Ins tance I > c l a s s

Density
Water absorption (23oC-sat .)  1L 
Young's modulus (sec.  1 mrn/rniti) 
Strain at yield (50mm/min)

I iT a stTc i'tiiPërRas s ~ 
J  yMod 
±1 yMod:

^elastic! tyPerMass
‘s e l f  yMod /  ( se l f  volume * s e l f  density)

Property M ethod Bromser 10101
Vicat B /5 0  (SON)
Vicat Softening Point (Lucas Ê1 .2) 
Viscosity coeff.
V iscosity-shear rate 
V ater absorption (23oC -sat.) 11 
"Water vapour permeability 
Young’s modulus (s^c. Imm/min)

e l a s t i c i t y P e r M a s s
yMod:
yMod

instance c la ss

e lastic i tyPerMass
‘s e l f  yMod /  ( se l f  volume * s e l f  density)^

Figure 45: Property method browser

T h e  P roperty  i s  a  s p e c i a l  pto  ( § 4 . 4 . 3 ) .  E a c h  Property  h a s  a  s i n g l e  i n s t a n c e  v a r i a b l e .  T h e  d e f a u l t  b e h a v i o u r

i s  t w o  m e t h o d s .  A n  accessor; m e t h o d  r e t r i e v e s  t h e  c o n t e n t s  o f  t h e  i n s t a n c e  v a r i a b l e ,  a n d  a n  updator t o  s e t  

t h e  c o n t e n t s .  B o t h  u s e  t h e  s y m b o l  n a m e  o f  t h e  Property, t h e  updator a d d i n g  a  c o l o n  a s  i s  t h e  c o n v e n t i o n  f o r  

m e t h o d s  w i t h  o n e  a r g u m e n t .  T h e  Property  m e t h o d s  f o r  Y o u n g ’ s  m o d u l u s  s h o w n  i n  F i g u r e  4 5  ( b o t t o m
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w i n d o w )  a r e  t h e  accessor: (yMod), updator (yMod:) a n d  a  u s e r  d e f i n e d  b e h a v i o u r  e las tic ity P erM ass , a  u n i t  

o f  e n e r g y  a b s o r p t i o n .

Y o u n g ’ s  m o d u l u s  i s  a  p r o p e r t y  o f  t h e  Polymer c l a s s .  W h e n  a  p r o p e r t y  c o m p i l e s  a  b e h a v i o u r ,  t h e  b e h a v i o u r  

i m m e d i a t e l y  i n s t a l l s  o n  t h e  Polymer c l a s s .  F i g u r e  4 5  s h o w s  t h e  m e t h o d  i n  Polymer t h r o u g h  a  s t a n d a r d  

S m a l l t a l k  b r o w s e r  ( t o p  w i n d o w ) .  T h e  b r o w s e r  g r o u p s  p r o t o c o l s ,  n a m i n g  e a c h  g r o u p  a n d  l i s t i n g  t h e  n a m e s  i n  

t h e  t o p - l e f t  l i s t .  A l l  t h e  m e t h o d s  f r o m  t h e  Y o u n g ’ s  m o d u l u s  p r o p e r t y  a r e  t o g e t h e r  u n d e r  t h e  n a m e  o f  t h e  

p r o p e r t y .

5.8 Transcript
T h e  t r a n s c r i p t  p a r t  o f  t h e  POISEsession w i n d o w  p r o v i d e s  t h e  d e s i g n e r  w i t h  a  c o m p u t a t i o n a l  i n t e r f a c e .

EBA -  added to Clipboard POISEsession i

POISE
Polymer

Thermoplast ic
Amorphous

ABS
ASA
ASAPC
CA
EBA
EvJf
MABS 

PAF 
PBTAS/  
PC 

PCM

W e l c o m e  To POISE

POISEsession I

^  W e l c o m e  To POISE
se l f  
EBA

C om parator

Domain Properties

Ml 
J21J

Domain Hierarchy C om parator

Transcript- selecting abstract polymer 
for clipboard

Figure 47: Transcript- self
binds to clipboard contents

Figure 46:

A c c e s s  t o  o b j e c t s  f o r  c o m p u t a t i o n  i s  t h r o u g h  a  c l i p b o a r d .  I n  F i g u r e  4 6 ,  t h e  a b s t r a c t  p o l y m e r  c l a s s  eba i s  

p l a c e d  o n  t h e  c l i p b o a r d  b y  s e l e c t i n g  t h e  n a m e  i n  t h e  h i e r a r c h y .  T h e  Conparator c a n  a l s o  p l a c e  p o p u l a t i o n s  

o f  p o l y m e r s  o n  t h e  c l i p b o a r d .  T h e  c l i p b o a r d  n o t i f i e s  t h e  u s e r  w h e n e v e r  a n  o b j e c t  i s  p u t  t h e r e  b y  o p e n i n g  a  

s m a l l  N o tif ie r  w i n d o w  w i t h  t h e  p r i n t - s t r i n g  o f  t h e  o b j e c t ,  a n d  t h e  w o r d s  ‘ a d d e d  t o  C l i p b o a r d ’ .

T h e  v a r i a b l e  ‘ s e l f ’  a u t o m a t i c a l l y  b i n d s  t o  t h e  o b j e c t  o n  t h e  c l i p b o a r d ,  w h e n  c o d e  e v a l u a t e s  i n  t h e  

T ran sc rip t. I n  F i g u r e  4 7  c o d i n g  ‘s e l f  r e t u r n s  t h e  o b j e c t  EBA. T h e  T ran sc rip t p r i n t s  t h e  p r i n t - s t r i n g  o f  

t h e  r e t u r n i n g  o b j e c t .
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PO ISEsession [ 0 1 0 1

l o p l a s t i c

W e l c o m e  To POISE
s e l f  
EBA
P r o s p e c t C l a s s e s  := S e t  w i t h :  s e l f

P r o s p e c t C l a s s e s  i s  u n de c la i r ed .  Do you w a n t  to  add It  to  th e  POISE Cl ipboard?

I n 2 I
EBA 
EVA 
MABS 

PAF 
PBTA S/

Figure 48:

Comparator Clipboard T
Domain Properties

Transcript- self is EBA, then select variable for clipboard, changes self
POISEsession 10101

^  W e l c o m e  To POISE

I s e l f  
EBA

P r o s p e c t C l a s s e s  ;= S e t  w i t h :  s e l f
S e t  (EBA ) 
s e l f  
EBA

m
Comparator

n n m A in  P r n n A r t iA «
Figure 49: Transcript- define your own variables

PO ISEsession 10101

^  ProspectClasses := Set with: s e l f
# S e t  (EBA )
I s e l f  
* EBA 

se l f
S e t  (EBA )
ProspectClasses
S e t  (EBA )

ConporatDr

Figure 50: Transcript- self and ProspectClasses bound to Set with EBA

A n y  v a r i a b l e  t h e  T ran sc rip t d o e s  n o t  r e c o g n i s e  r a i s e s  a  N o tif ie r  ( F i g u r e  4 8 )  a s k i n g  i f  t h e  v a r i a b l e  i s  t o  b e

‘ a d d e d  t o  t h e  poise C l i p b o a r d ’ .  T h e  c l i p b o a r d  c a n  r e c o r d  a  n u m b e r  o f  d i f f e r e n t  o b j e c t s  u n d e r  d i f f e r e n t  

n a m e s ,  a n d  o n e  ‘ a c t i v e ’  o b j e c t  u n d e r  t h e  n a m e  “ C l i p b o a r d ” . T o g e t h e r  w i t h  g l o b a l  v a r i a b l e s ,  t h e  c l i p b o a r d  

f o r m s  t h e  v a r i a b l e  s c o p e  o f  t h e  c o d e  c o m p i l e d  i n  t h e  T ran sc rip t. I n  F i g u r e  4 8 ,  a  v a r i a b l e  ProspectC lasses 

a s s i g n s  t o  a  s e t  w i t h  s e l f  ( t h e  E B A ) .  N o t  r e c o g n i s i n g  t h e  v a r i a b l e  ProspectC lasses, t h e  u s e r  i s  g i v e n  t h e  

o p p o r t u n i t y  t o  a d d  i t  t o  t h e  c l i p b o a r d .
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A f t e r  a s s i g n i n g  a  v a r i a b l e ,  t h e  c l i p b o a r d ’ s  a c t i v e  v a r i a b l e  i s  l e f t  u n c h a n g e d  ( e g  s t i l l  EBA). T h e  a c t i v e  v a r i a b l e  

c h a n g e s  f r o m  t h e  v a r i a b l e  ‘ C l i p b o a r d ’  t o  a n o t h e r  v a r i a b l e  ( e g  ProspectC lasses) b y  s e l e c t i n g  t h e  b u t t o n  

c u r r e n t l y  m a r k e d  ‘ C l i p b o a r d ’  ( F i g u r e  4 9 ) .  T h e  v a r i a b l e  s e l f  b i n d s  t o  t h e  v a l u e  i n  P rospectC lasses a n d  t h e  

b u t t o n  d i s p l a y s  t h e  n e w  a c t i v e  v a r i a b l e ’ s  n a m e ,  i n  F i g u r e  5 0 .

5.9 Summary
T h e  w a l k t h r o u g h  i l l u s t r a t e s  t h e  f u n c t i o n a l i t y  b u i l t  i n t o  POISE a s  p r e s e n t e d  t o  t h e  d o m a i n  e x p e r t .  T h e  d o m a i n  

e x p e r t  c a n  d e f i n e  n e w  s c h e m a  c o m p o n e n t s :  g r a d e s ,  p r o p e r t i e s  a n d  c l a s s e s .  T h e  u s e r  c a n  r e - d i s t r i b u t e  a n d  r e 

d e f i n e  a n y  o f  t h e s e  c o m p o n e n t s .  W h i l e  POISE c h a n g e s ,  t h e  e f f e c t s  o f  t h e s e  c h a n g e s  i m m e d i a t e l y  a f f e c t  t h e  

i n f e r e n c e  m e c h a n i s m s  i n c l u d i n g  t h e  S m a l l t a l k  s t a n d a r d  i n h e r i t a n c e  o f  g r a d e  p r o p e r t i e s  a n d  t h e  POISE s p e c i f i c  

a b s t r a c t i o n  o f  a b s t r a c t  p o l y m e r  b e h a v i o u r .

T h e  Comparator, a l s o  i l l u s t r a t e d ,  i s  a  w i n d o w  f o r  b r o w s i n g  a b s t r a c t  p o l y m e r  b e h a v i o u r .  T h e  f o l l o w i n g  

c h a p t e r  d i s c u s s e s  S p e d d i n g ’ s  u s e  o f  t h i s  w i n d o w  t o  c o n t r a s t  t h e  p o l y m e r  f a m i l i e s  w h i l e  i n v e s t i g a t i n g  

a p p r o p r i a t e  c l a s s i f i c a t i o n .

T h e  POISEsession l e t s  t h e  d e s i g n e r  e v o l v e  a  c o m p l e x  q u e r y  i n  a  T ra n sc rip t, a n d  a  s i m p l e  e x a m p l e  i s  g i v e n .

P O I S E  r e c o r d s  t h e  s t a t e  o f  a n y  a c t i v i t y  i n  t h e  Workbase w h e n  t h e  d e s i g n e r  l e a v e s  t h e  s e s s i o n  a n d  r e - i n s t a t e s  

t h e  s e s s i o n  w h e n  t h e  d e s i g n e r  r e t u r n s .  T h e  d e s i g n e r  c a n  c o n t i n u e  d e v e l o p i n g  t h e  c o m p l e x  d e s i g n  q u e r i e s ,  

s e a r c h e s ,  s h o r t l i s t s ,  a n d  v i e w s  o n  p o l y m e r s  o n  r e t u r n  t o  t h e  s e s s i o n .
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Chapter 6 Using POISE to  Analyse the Polymer Domain
S p e d d i n g *  u s e s  t h e  POISE a p p l i c a t i o n  d u r i n g  h e r  a n a l y s i s  o f  t h e  p o l y m e r  d o m a i n .  A l t h o u g h  h e r  o b j e c t i v e  o f  

d e t e r m i n i n g  a n  a p p r o p r i a t e  c l a s s i f i c a t i o n  d i f f e r s  f r o m  t h e  o b j e c t i v e s  o f  a  d e s i g n e r ,  t h e y  b o t h  r e q u i r e  a  s i m i l a r  

a n a l y s i s  o f  t h e  d o m a i n ,  w h i c h  i d e n t i f i e s  s i m i l a r i t i e s  a n d  d i f f e r e n c e s  b e t w e e n  p o l y m e r  g r a d e s .  A  n u m b e r  o f  

t h e  r e l a t i o n s h i p s  a n d  c h a r a c t e r i s t i c s  o f  t h e  p o l y m e r  d o m a i n  s h e  r e p o r t s  f i - o m  h e r  a n a l y s i s  i l l u s t r a t e  d i f f e r e n t  

w a y s  o f  u s i n g  t h e  p o is e  t o o l s  n o t  i n i t i a l l y  c o n c e i v e d  w h e n  t h e y  w e r e  d e s i g n e d .  T h e s e  w a y s  o f  u s i n g  t h e  t o o l s  

a r e  l i k e l y  t o  b e n e f i t  t h e  d e s i g n e r  s i n c e  t h e  a n a l y s i s  i s  s i m i l a r .

T h e  Comparitor w a s  i n i t i a l l y  i n t e n d e d  t o  d e t e r m i n e  r e l a t i o n s h i p s  b e t w e e n  a b s t r a c t  p o l y m e r s .  F o r  e x a m p l e ,  

S p e d d i n g  i l l u s t r a t e s  t h e  t e n s i l e  s t r e n g t h  o f  Thermosets i s  g e n e r a l l y  l e s s  t h a n  t h e r m o p l a s t i c s .  U n f o r t u n a t e l y ,  

t h i s  p a r t i c u l a r  a p p l i c a t i o n  o f  t h e  Comparitor w a s  n o t  a s  e f f e c t i v e  a s  e x p e c t e d  a t  e x t e n d i n g  t h e  c l a s s i f i c a t i o n  

b e y o n d  t h e  p o l y m e r  f a m i l i e s .  O f t e n  t h e  n a t u r e  o f  t h e  d a t a  o b t a i n e d  f r o m  CAMPUS r e s t r i c t e d  f u r t h e r  

c o m p a r i s o n s .  A n a l y s i s  b e t w e e n  a m o r p h o u s  a n d  p a r t i a l l y  C ry s ta lin e  s h o w e d  f e w e r  d i f f e r e n c e s  t h a n  

e x p e c t e d  w h e r e a s  t h e  Comparitor d i d  d i s t i n g u i s h e s  c l a s s e s  a t  t h e  c h e m i c a l  l e v e l .  T h e  s t a n d a r d  p o l y m e r  t e s t s  

m a y  n o t  m e a s u r e  t h e  e f f e c t  o f  c r y s t a l i n i t y ,  p o s s i b l y  t o  p r e v e n t  c a p r i c i o u s n e s s .  D e s p i t e  t h e  i n a b i l i t y  t o  f u r t h e r  

c l a s s i f y ,  S p e d d i n g  f o u n d  o t h e r  u s e s  f o r  t h e  c o m p a r i s o n s .

A l t h o u g h  CAMPUS p o p u l a t e s  POISE w i t h  o v e r  1 0 0 0  p o l y m e r s ,  e a c h  d e s c r i b i n g  5 0  p r o p e r t i e s ,  t h e r e  a r e  a  l a r g e  

n u m b e r  o f  Polymer c l a s s e s  a n d  t h e  g r a d e s  a r e  n o t  e v e n l y  d i s t r i b u t e d  a m o n g s t  t h e m .  A d d i t i o n a l l y ,  m a n y  

p r o p e r t i e s  a r e  u n i v e r s a l l y  u n p o p u l a r ,  i e  o f t e n  s p a r s e  o f  d a t a ,  w i t h  o n l y  1 2  g i v i n g  a d e q u a t e  p o p u l a t i o n s .  

F u r t h e r ,  t h e  s u p p l i e r s  o f  p o l y m e r s  p r o d u c e  g r a d e s  f o r  s p e c i f i c  m a r k e t s .  S u p p l i e r s  g e n e r a t e  m o r e  g r a d e s  f o r  

p r o f i t a b l e  m a r k e t s ,  t h e r e f o r e  t h e  n u m b e r  o f  g r a d e s  w i t h  a  c e r t a i n  p r o p e r t y  p r o f i l e  i s  n o t  a  m e a s u r e  o f  t h e  

p o l y m e r ’ s  t y p i c a l  p r o p e r t i e s  b u t  a  m e a s u r e  o f  t h e  m a r k e t  t h a t  u s e s  t h e  p o l y m e r .  T h e r e f o r e ,  t h e  a b s t r a c t  

b e h a v i o u r  o f  Polymers, f o r  e x a m p l e ,  i s  h i g h l y  d i s t o r t e d  b y  t h e  b e h a v i o u r  o f  Polyamides, w h i c h  a r e  h i g h l y  

p o p u l a t e d .  T h e  Comparitor d o e s  n o t  h i d e  t h i s  b i a s ,  b u t  t h e  m e d i a n  o r  a v e r a g e  v a l u e  f r o m  a n  a b s t r a c t  p r o p e r t y  

w i l l  h i d e  t h e  d i s t o r t i o n .  A  c o m p a r i s o n  o f  t h e  p o p u l a t i o n s  o f  Polyamide a n d  a l l  p o l y m e r s  f o r  a n y  p r o p e r t y  w i l l  

s h o w  Polyamide a s  a  s t r o n g  c o n t r i b u t o r .

A l t h o u g h  p o p u l a r  m a r k e t s  d i s t o r t  t h e  t o t a l  n u m b e r  o f  g r a d e s  w i t h  a  p a r t i c u l a r  p r o p e r t y  p r o f i l e s ,  t h e  r a n g e  o f  

p r o p e r t y  p r o f i l e s  o f  g r a d e s  i s  r e a s o n a b l y  r e p r e s e n t e d .  I t  i s  p o s s i b l e  a  m a r k e t  d r i v e n  s o u r c e  o f  d a t a ,  s u c h  a s  

p o l y m e r s  f o r  t h e  a u t o m o t i v e  i n d u s t r y ,  w i l l  o n l y  r e p r e s e n t  p a r t i c u l a r  p r o p e r t y  p e r f o r m a n c e  p r o f i l e s .  A  r a n g e  

o f  d i f f e r e n t  m a r k e t s  f o r  p o l y m e r s  e n s u r e s  t h e  d a t a  s o u r c e  r e p r e s e n t s  a  r a n g e  o f  p r o p e r t y  p r o f i l e s .
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S p e d d i n g  i l l u s t r a t e s  a n  e x a m p l e  o f  a  s i g n i f i c a n t l y  d i f f e r e n t  a p p l i c a t i o n  o f  p o l y m e r s  w h i l e  u s i n g  t h e  

o r t h o g o n a l  c l a s s i f i c a t i o n  i n  poise. S p e d d i n g  u s e d  t h e  s e a r c h  u t i l i t y  t o  f i n d  t h e  w o r d s  “ f i l m ”  a n d  “ f i b r e ”  i n  t h e  

t e x t  d e s c r i p t i o n  o f  CAMPUS g r a d e s .  B e s i d e s  t h e  c o m p l i c a t i o n  o f  l o c a t i n g  “ F i b r e - r e i n f o r c e m e n t ” ,  t h e  s e a r c h  

l o c a t e d  a  s i g n i f i c a n t  n u m b e r  o f  t h e s e  g r a d e s .  S p e d d i n g  d e c l a r e d  a n  o r t h o g o n a l  c l a s s  f o r  f i l m s ,  i n i t i a l l y  w i t h  

n o  p r o p e r t i e s .  S h e  t h e n  a d d e d  e a c h  o f  t h e  g r a d e s  l o c a t e d  w i t h  t h e  “ f i l m ”  t e x t  t o  t h e  o r t h o g o n a l  c l a s s  Film.

W i t h  t h e  g r a d e s  c l a s s i f i e d  u n d e r  Film t h e  Comparitor c a n  d i s p l a y  j u s t  t h o s e  g r a d e s .  F r o m  t h e  Film c l a s s ,  

S p e d d i n g  f o u n d  t h e y  g e n e r a l l y  h a d  r e l a t i v e l y  p o o r  m e c h a n i c a l  p r o p e r t i e s .  A  c l a s s  w i t h  a  r a n g e  o f  a p p l i c a t i o n s  

w i l l  i n c l u d e  g r a d e s  w i t h  a n  e x t r e m e  i n  a  p r o p e r t y ’ s  p e r f o r m a n c e ,  a n d  g r a d e s  w h e r e  t h e  s a m e  p r o p e r t y  

p e r f o r m a n c e  i s  n o t  s i g n i f i c a n t ,  w h i c h  w i l l  d i s t r i b u t e  t h e  p r o p e r t y .  T h e  l a c k  o f  d a t a  p r e v e n t e d  a n y  f u r t h e r  

g e n e r a l i s a t i o n ,  b u t  a g a i n  t h e  Comparitor a n d  t h e  c l a s s i f i c a t i o n  d e m o n s t r a t e d  t h e i r  r o l e s  i n  d e t e r m i n i n g  t h i s  

c a s e .

A d d i t i v e s  a r e  a n o t h e r  d i s t o r t i n g  e f f e c t  o n  t h e  a b s t r a c t i o n s .  S o m e  p r o p e r t i e s  a r e  m o r e  s i g n i f i c a n t l y  a f f e c t e d  b y  

t h e i r  a d d i t i v e s  t h a n  t h e  p o l y m e r  c h e m i s t r y .  F u r t h e r  o r t h o g o n a l  c l a s s i f i c a t i o n  c o u l d  r e m o v e  t h i s  f a c t o r ,  b u t  

o f t e n  t h e  e x a c t  c o m p o s i t i o n  o f  a d d i t i v e s  i s  a  p o l y m e r  s u p p l i e r ’ s  s e c r e t .  S p e d d i n g  h i g h l i g h t e d  t h e  i n c l u s i v e  

n a t u r e  o f  t h e  p o l y m e r  c l a s s i f i c a t i o n  p r e v e n t s  t h e  Comparitor f r o m  e x c l u d i n g  a n  o r t h o g o n a l  c l a s s  o f  

p o l y m e r s ,  w h i c h  i s  n e c e s s a r y  t o  r e m o v e  a  d i s t o r t i n g  f a c t o r .  F o r  e x a m p l e ,  t h e  Comparitor d o e s  n o t  s u p p o r t  

b r o w s i n g  f o r  “ s t r o n g e s t  p o l y m e r  n o t  g l a s s  f i l l e d ” .

W h i l e  b r o w s i n g  a  p r o p e r t y  w i t h  t h e  Comparitor, S p e d d i n g  f o u n d  t h e  t e x t  c o m m e n t s  u s e f u l  f o r  r e l a t i n g  t h e  

e x t r e m e  g r a d e s  t o  o t h e r  p r o p e r t i e s .  T h i s  i s  h o w  s h e  d e t e r m i n e d  t h e  e f f e c t  o f  a d d i t i v e s .  T h e  t e x t  c o m m e n t s  c a n  

a l s o  i n c l u d e  t h e  a p p l i c a t i o n  o f  t h e  g r a d e ,  a n d  t h e r e f o r e  a  t y p e  o f  p r o p e r t y  p r o f i l e ,  o r  e v e n  s p e c i f i c  p r o p e r t y  

p r o f i l e s .  F o r  e x a m p l e ,  w h i l e  b r o w s i n g  t h e  d e n s i t y  o f  P olyvynalch lo rides, t h e  t e x t  o f  g r a d e s  w i t h  h i g h  

d e n s i t y  h a d  l e a d  s t a b i l i s a t i o n .  I n  t h e  c l a s s  o f  Polystyrene h i g h  d e n s i t y  g r a d e s  w e r e  n o t e d  f o r  s t a b i l i t y  a n d  

r i g i d i t y  i m p l y i n g  a  h i g h  Y o u n g ’ s  m o d u l u s ,  w h i c h  w a s  c o n f i r m e d  i n  a n o t h e r  c o m p a r i s o n .  B y  r e l a t i n g  t h e  

d i f f e r e n t  i n t e r f a c e  t o o l s ,  S p e d d i n g  i n f e r r e d  d i f f e r e n t  t y p e s  o f  p r o p e r t y  c o r r e l a t i o n s ,  s u c h  a s  a  s p e c i f i c  

c o r r e l a t i o n  b e t w e e n  d e n s i t y  a n d  Y o u n g ’ s  m o d u l u s  f o r  PVCs.

I n  a n o t h e r  c a s e ,  t h e  Comparitor c l e a r l y  i d e n t i f i e d  m i s s - p l a c e d  g r a d e s  a n d  c l a s s e s .  W h i l e  i n v e s t i g a t i n g  t h e  

e x t r e m e  i m p a c t  s t r e n g t h s  o f  Polyethylene, S p e d d i n g  f o u n d  t h e  t w o  g r a d e s  o f  t h e  pesu s u b c l a s s  h a d  a  h i g h e r  

i m p a c t  s t r e n g t h .  T h e  t e x t  c o n f i r m e d  t h e y  w e r e  n o t  a  p o l y e t h y l e n e  b u t  a  Polyethersulphone, w h i c h  g i v e s  a  

h i g h e r  i m p a c t  s t r e n g t h .
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Chapter 7 Conclusions
T h e  r e p r e s e n t a t i o n  p r e s e n t e d  f o c u s e s  o n  t h e  c l a s s i f i c a t i o n  a n d  a b s t r a c t i o n  o f  p o l y m e r  g r a d e s .  C l a s s i f i c a t i o n  

a n d  a b s t r a c t i o n  p r e c e d e  a b d u c t i o n ,  a n  i n f e r e n c e  m e t h o d  c o m m o n l y  u s e d  d u r i n g  d e s i g n ,  w h i c h  i n f e r s  f a c t s  

a b o u t  m e m b e r s  o f  a  c l a s s  f r o m  i n f o r m a t i o n  a b s t r a c t e d  f r o m  t h e  c l a s s .  C o n c l u s i o n s  a b o u t  l a r g e  v o l u m e s  o f  

i n f o r m a t i o n  a r e  i n f e r r e d  f r o m  a  f e w  a b s t r a c t  f a c t s .  T h e r e f o r e ,  b o t h  c l a s s i f i c a t i o n  a n d  g e n e r a l i s a t i o n  a r e  

i n t r i n s i c  t o  t h e  r e p r e s e n t a t i o n  o f  p o l y m e r  m a t e r i a l s  f o r  d e s i g n .  A l t h o u g h  i n f o r m a t i o n  r e p r e s e n t a t i o n  

c o m m o n l y  i n c l u d e s  a  c l a s s i f i c a t i o n ,  t h e  s c h e m a  i n  POISE b u i l d s  a  c l a s s i f i c a t i o n  a n d  a b s t r a c t s  g e n e r a l  

p r o p e r t i e s  f r o m  t h e  c l a s s i f i c a t i o n  i n t o  m a n y  l e v e l s  o f  r e p r e s e n t a t i o n .

A n  o b j e c t - o r i e n t e d  s o f t w a r e  m o d e l  w a s  a d o p t e d  t o  i m p l e m e n t  POISE. T h e  o b j e c t  i s  a  h i g h l y  a b s t r a c t  

c o m p u t i n g  e l e m e n t  t h a t  p r o v i d e s  a  n u m b e r  o f  b e n e f i t s  t o  k n o w l e d g e  r e p r e s e n t a t i o n .  B e h a v i o u r  s h a r i n g  

b e t w e e n  o b j e c t s  e n c o u r a g e s  a b s t r a c t i o n  a n d  c l a s s i f i c a t i o n  o f  k n o w l e d g e  a n d  o b j e c t  e n c a p s u l a t i o n  s i m p l i f i e s  

t h e  e v o l u t i o n  o f  a  k n o w l e d g e  r e p r e s e n t a t i o n .  C l a s s - i n s t a n c e  l a n g u a g e s  s p e c i a l i s e  o n  t h e  c l a s s i f i c a t i o n  o f  

o b j e c t s ,  a n d  S m a l l t a l k  i s  a n  e x a m p l e .  C l a s s - i n s t a n c e  l a n g u a g e s  i m p l e m e n t  a  s t r i c t  c l a s s i f i c a t i o n  f o r  e x p l i c i t l y  

d e s c r i b i n g  s o f t w a r e ,  w h e r e a s  r e a l  c l a s s i f i c a t i o n  i s  s t e r e o t y p i c a l ,  a n d  m a i n t a i n s  a  l e v e l  o f  g e n e r a l i t y .  T h i s  

d i f f e r e n c e  r a i s e d  t h e  q u e s t i o n  w h e t h e r  t h e  c l a s s - i n s t a n c e  c l a s s i f i c a t i o n  c a n  r e p r e s e n t  r e a l  c l a s s i f i c a t i o n ,  o r  i s  

i t  o n l y  a  s o f t w a r e  d e s i g n  m e c h a n i s m ?

T h e  m a j o r i t y  o f  p o l y m e r  g r a d e  i n f o r m a t i o n  d e p e n d s  o n  t h e  g r a d e ’ s  c h e m i s t r y ,  b u t  t h e r e  i s  a l s o  i n f o r m a t i o n  

r e l a t i n g  t o  a d d i t i v e s ,  p r o c e s s i n g  a n d  a p p l i c a t i o n s  o f  t h e  g r a d e .  S i n c e  a n  i n s t a n c e  i n h e r i t s  f r o m  o n e  c l a s s ,  

w h i c h  d o m i n a t e s  t h e  i n s t a n c e ’ s  b e h a v i o u r ,  a n  i n s t a n c e  c a n  o n l y  r e p r e s e n t  d a t a  f r o m  o n e  c l a s s  o f  i n f o r m a t i o n .  

T h e r e f o r e ,  t h e  c l a s s - i n s t a n c e  l a n g u a g e  c a n  r e p r e s e n t  s e p a r a t e  o r t h o g o n a l  p a r t s  o f  a  g r a d e ,  b u t  n o t  a  c o m p l e t e  

r e p r e s e n t a t i o n  o f  a  g r a d e  b e c a u s e  t h e  c o m p l e t e  g r a d e  d o e s  n o t  b e l o n g  t o  a  s i n g l e  c l a s s i f i c a t i o n .  T h e  o b v i o u s  

s o l u t i o n  i s  t o  u n i t e  t h e  o r t h o g o n a l  p a r t s  i n t o  a  s i n g l e  o b j e c t .  T h e  b e h a v i o u r  o f  t h i s  o b j e c t  d e p e n d s  o n  t h e  

c o m p o n e n t s  a n d  n o t  a  c l a s s ,  t h e r e f o r e  d o e s  n o t  f i t  t h e  c l a s s - i n s t a n c e  m o d e l .

A  s i n g l e  m a t e r i a l s  c l a s s i f i c a t i o n  d o e s  n o t  d e f i n e  a l l  t h e  i n f o r m a t i o n  o n  g r a d e s .  T h e r e f o r e ,  t h e  c l a s s - i n s t a n c e  

r e l a t i o n s h i p  i s  t o o  r e s t r i c t i v e  f o r  a n  i n s t a n c e  t o  r e p r e s e n t  a  g r a d e .  I n s t e a d  a  n u m b e r  o f  i n s t a n c e s  f r o m  d i f f e r e n t  

c l a s s i f i c a t i o n s  c o u l d  c o n t r i b u t e  t o  a  g r a d e  r e p r e s e n t a t i o n ,  b u t  t h i s  d e p e n d s  o n  t h e  l a n g u a g e s  a b i l i t y  t o  t r a v e r s e  

t h e s e  o b j e c t  b o u n d a r i e s  t h r o u g h  b e h a v i o u r  s h a r i n g .  POISE e n h a n c e s  t h e  b e h a v i o u r  s h a r i n g  i n  S m a l l t a l k  w i t h  

a n  o b j e c t  c a p a b l e  o f  u n i f y i n g  t h e  b e h a v i o u r  f r o m  m u l t i p l e  o b j e c t s ,  t h e r e b y  e x t e n d i n g  t h e  l a n g u a g e s  

r e p r e s e n t a t i o n a l  a b i l i t y .  T h i s  u n i q u e  o b j e c t  i n h e r i t s  t h e  a b i l i t y  t o  s h a r e  o t h e r  o b j e c t ’ s  b e h a v i o u r s  f r o m  t h e  

c l a s s  c a l l e d  Enhancer.
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I m p r o v i n g  t h e  r e p r e s e n t a t i o n a l  a b i l i t i e s  o f  a  c l a s s - i n s t a n c e  l a n g u a g e  i s  n o t  t h e  o n l y  b e n e f i t  o f  t h e  Enhancer. 

A  s p e c i a l i s a t i o n  o f  t h e  Enhancer e x t e n d s  t h e  e m p a t h y  b e t w e e n  t h e  o b j e c t s  i t  u n i f i e s .  T h e  Enhancer p r o v i d e s  

b e h a v i o u r  s h a r i n g  t h a t  d i f f e r s  f r o m  t h e  e x p l i c i t  d y n a m i c  m e s s a g e s  b e t w e e n  i n d i v i d u a l  o b j e c t s  a n d  d i f f e r s  

f i - o m  t h e  s t a t i c  i m p l i c i t  b e h a v i o u r  s h a r e d  b e t w e e n  c l a s s e s  a n d  g r o u p s  o f  i n s t a n c e s .  T h e  Enhancer p r o v i d e s  

i m p l i c i t  d y n a m i c  e m p a t h y  b e t w e e n  i n d i v i d u a l  o b j e c t s .  T h e s e  a r e  g e n e r a l  d e s c r i p t i o n s  o f  t y p e s  o f  b e h a v i o u r  

s h a r i n g  f i - o m  t h e  T r e a t y  o f  O r l a n d o ^ .  T h e  Enhancer i s  t h e r e f o r e  a  g e n e r a l  e n h a n c e m e n t  t o  t h e  c l a s s - i n s t a n c e  

p a r a d i g m .

L i k e  t h e  Enhancer, d e l e g a t i o n  i s  a n  e x a m p l e  o f  i m p l i c i t  d y n a m i c  e m p a t h y  b e t w e e n  o b j e c t s .  W o r k  b y  Z u c k e r  

i d e n t i f i e s  d e l e g a t i o n  a s  a n  i m p o r t a n t  r e p r e s e n t a t i o n a l  t o o l  f o r  p r o t o t y p i n g  d e s i g n .  T h e r e f o r e ,  o p p o r t u n i t y  

e x i s t s  t o  r e p r e s e n t  d e s i g n  p r o t o t y p i n g  i n  a  c l a s s - i n s t a n c e  l a n g u a g e  u s i n g  t h e  Enhancer. O t h e r  r e s e a r c h  

c o m b i n i n g  d e l e g a t i o n  w i t h  t h e  c l a s s - i n s t a n c e  r e l a t i o n s h i p  c a l l s  t h i s  l a n g u a g e  h y b r i d i s a t i o n ,  s i n c e  t h e y  a r e  

n o r m a l l y  c o n t r a r y  a p p r o a c h e s  c o n t e n d i n g  f o r  t h e  r i g h t  t o  d e s c r i b e  a n  o b j e c t .  T h e  Enhancer i s  a n  

e n h a n c e m e n t  s i n c e  i t  l e a v e s  t h e  e x i s t i n g  S m a l l t a l k  c l a s s - i n s t a n c e  o b j e c t s  u n a f f e c t e d  b y  t h e  i n t r o d u c t i o n  o f  

i m p l i c i t  d y n a m i c  e m p a t h y .  O b j e c t s  m u s t  e x p l i c i t l y  p e r m i t  i m p l i c i t - b i n d i n g ,  b y  u s i n g  t h e  c l ie n t  m e s s a g e  

r a t h e r  t h a n  s e lf .

T h e  Enhancer i s  n o t  e q u i v a l e n t  t o  d e l e g a t i o n .  T h e  n a m e  s e l f  a l w a y s  r e f e r s  t o  t h e  p r o x y  o b j e c t  t h a t  o w n s  a  

b e h a v i o u r .  I n  d e l e g a t i o n ,  s e l f  r e f e r s  t o  t h e  d e l e g a t i n g  o b j e c t .  U s i n g  t h e  Enhancer, t h e  p r o x y ’ s  b e h a v i o u r  

m u s t  l o o k  f o r  t h e  d e l e g a t i n g  o b j e c t  w i t h  t h e  m e s s a g e  s e l f  c l ie n t  b e f o r e  t h e r e  i s  a n y  e m p a t h y .  A l t h o u g h  a n  

a l t e r n a t i v e  a p p r o a c h  w a s  i n v e s t i g a t e d ,  w h e r e  a  S m a l l t a l k  c l a s s  m o d e l s  a  p r o t o t y p e  b y  b e c o m i n g  a n  i n s t a n c e  

o f  i t s e l f ,  t h e  u s e  o f  t h e  c l ie n t  m e s s a g e  w a s  n o t  c o n s i d e r e d  a  p r o b l e m  f o r  e x p l o r a t i v e  d e s i g n .  T h e  Enhancer’s 

a b i l i t y  t o  r e - p r o g r a m  t h e  w a y  i t  h a n d l e s  m e s s a g e s  w a s  a  d o m i n a n t  a d v a n t a g e  o v e r  t h e  a l t e r n a t i v e .

A n  i n i t i a l  e x p e r i m e n t  s u g g e s t s  t h e  Enhancer c a n  s u p p o r t  Z u c k e r ’ s  o b j e c t i v e s  o f  m o d e l l i n g  e x p l o r a t i v e  d e s i g n  

i n  a  c l a s s - i n s t a n c e  l a n g u a g e s .  I n  t h i s  e x p e r i m e n t ,  t h e  c l a s s - i n s t a n c e  s t r u c t u r e  r e p r e s e n t e d  c o n c r e t e  k n o w l e d g e  

o n  m a t e r i a l s ,  p r o c e s s e s  a n d  g e o m e t r y  w h i l e  a n  Enhancer r e p r e s e n t s  t h e  d e s i g n ,  w h i c h  d y n a m i c a l l y  e x p l o r e s  

w a y s  o f  c o m b i n i n g  t h e  k n o w l e d g e .  T h e  POISEsession l e t s  t h e  d e s i g n e r  e v o l v e  a  c o m p l e x  q u e r y  i n  a  

T ran sc rip t. A n  e x a m p l e  q u e r y ,  r e p o r t e d  e l s e w h e r e ^ ” ,  t e s t e d  t h e  d e s i g n  p r o p e r t y  o f  co st, a  f u n c t i o n  o f  a l l  t h e  

p e r s p e c t i v e s .  T h e  t e s t  d e s i g n  w a s  s p e c i a l i s e d  b y  r e f i n i n g  t h e  m a t e r i a l s  p e r s p e c t i v e ,  t h u s  d e m o n s t r a t i n g  t h e  

d y n a m i c  b i n d i n g  b e t w e e n  d e s i g n  a n d  t h e  p e r s p e c t i v e .  E x p e r i m e n t s  o t h e r  t h a n  c o s t  w e r e  h i n d e r e d  b y  t h e  l a c k  

o f  a b s t r a c t  k n o w l e d g e  i n  t h e  p u b l i c  d o m a i n  t h a t  c o m b i n e s  i n f o r m a t i o n  f i - o m  d i f f e r e n t  p e r s p e c t i v e s .
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A n o t h e r  s p e c i a l i s a t i o n  o f  t h e  Enhancer r e s o l v e s  d e d u c t i v e  i n h e r i t a n c e  ( § 2 . 2 . 4 ) .  T h e  

Polym erD ataA hstraction i n h e r i t s  a n y  n a m e d  p r o p e r t y  f r o m  t h e  i n s t a n c e s  o f  a  c l a s s ,  i n c l u d i n g  a n y  

o r t h o g o n a l  p r o p e r t i e s  t h e  i n s t a n c e s  m a y  h a v e .  T h e  a b s t r a c t i o n  b e h a v i o u r  t h e n  d e d u c e s  a  s i n g l e  a b s t r a c t  

r e p r e s e n t a t i o n  o f  t h e  p r o p e r t y  f r o m  a l l  t h e  v a l u e s  i t  i n h e r i t s .  T h e  CombinedDataAbs t r a c t  ion i s  a  s i m i l a r  

o b j e c t ,  b u t  i n f e r s  a n  a b s t r a c t  r e p r e s e n t a t i o n  f r o m  o t h e r  Polym erD ataA bstraction. I n  t h e  h i e r a r c h y ,  t h e  

CombinedDataAbstraction i n f e r s  t h e  a b s t r a c t  p r o p e r t i e s  o f  a  s u p e r c l a s s  f r o m  i t s  s u b c l a s s ’ s  

Polym erD ataA bstractions. T h e  Polymer c l a s s e s  t h e m s e l v e s  m a n i p u l a t e  t h e i r  m e s s a g e s  s o  t h e y  i n h e r i t  t h e i r  

a b s t r a c t  b e h a v i o u r  f r o m  e i t h e r  a  CombinedDataAbstraction o r  a  Polym erD ataA bstraction. T h e  r e s u l t  i s  a  

h i e r a r c h y  o f  a b s t r a c t  p o l y m e r s  t h a t  g e n e r a l i s e  p r o p e r t i e s  t y p i c a l  o f  t h e  g r a d e s  t h e y  c l a s s i f y ,  f r o m  w h i c h  t h e  

d e s i g n e r  c a n  i n t e r p r e t  t h e  d e s i g n  b e n e f i t s  o f  t h e  c l a s s .

T h e  d y n a m i c  e m p a t h y  o f  t h e  e n h a n c e r  w a s  a  d i s t i n c t  a d v a n t a g e  w h e n  e v o l v i n g  t h e  s c h e m a .  T h e  S m a l l t a l k  

e n v i r o n m e n t  m a y  e v o l v e  c l a s s  i n h e r i t a n c e  h i e r a r c h i e s ,  w h i c h  h a s  a  c o n s e q u e n c e  o n  a b s t r a c t i o n .  W h e n  

Polymer c l a s s e s  c h a n g e  t h e i r  i n h e r i t a n c e  p a t t e r n s ,  t h e y  a l s o  c h a n g e  t h e  p a t t e r n  o f  a b s t r a c t i o n .  

CombinedDataAbstraction d y n a m i c a l l y  c o m p o s e  t h e i r  a b s t r a c t i o n s  f r o m  t h e  s u b c l a s s e s ,  w h i c h  e n s u r e s  t h e  

a b s t r a c t i o n s  a r e  a l w a y s  c o n s i s t e n t  w i t h  t h e  c l a s s i f i c a t i o n  h i e r a r c h y .

S c h e m a  e v o l u t i o n  i n  S m a l l t a l k  i s  a  c o m p l e x  m a n i p u l a t i o n  t h a t  s u b s t i t u t e s  a l l  a f f e c t e d  c l a s s e s  a n d  i n s t a n c e s  

w i t h  a  n e w  m o d i f i e d  c o p y .  T h e  d e v e l o p m e n t  t o o l s  f o r  e v o l v i n g  S m a l l t a l k  c l a s s e s  w e r e  f o u n d  h i g h l y  

i n e f f i c i e n t ,  o f t e n  r e p l a c i n g  t h e  s a m e  h i e r a r c h i e s  f o r  e a c h  c h a n g e .  W h i l e  s p e c i a l i s i n g  t h e s e  t o o l s  f o r  e v o l v i n g  

t h e  p o l y m e r  c l a s s i f i c a t i o n ,  a  n e w  t y p e  o f  p r o t o c o l  o b j e c t s  w a s  d e f i n e d  t h a t  i s  i n d e p e n d e n t  o f  a  p h y s i c a l  

m o d e l .  T h e s e  p r o t o c o l s  a r e  i n d e p e n d e n t  o f  t h e  c l a s s ,  w h i c h  d e f i n e s  t h e  p h y s i c a l  m o d e l  o f  i n s t a n c e s  p r o t o c o l s  

t h e r e f o r e  t h e y  d o  n o t  r e q u i r e  r e - c o m p i l i n g  w h e n  t h e  c l a s s  s c h e m a  c h a n g e s .

T h e  i m p r o v e m e n t  o n  s c h e m a  e v o l u t i o n  w a s  a  b o n u s  f e a t u r e  o f  t h e  i n d e p e n d e n t  p r o t o c o l s .  T h e s e  p r o t o c o l s  

h a v e  a  r e p r e s e n t a t i o n a l  r o l e  a b s t r a c t l y  d e s c r i b i n g  p o l y m e r  p r o p e r t i e s .  A  p a r t i a l  t e m p l a t e  o b j e c t ,  p to , c o l l e c t s  

a n y  s e t  o f  i n t e r a c t i n g  i n d e p e n d e n t  p r o t o c o l s .  A  PTO c o l l e c t s  a  r e - u s e a b l e  s e t  o f  p r o t o c o l s  t h a t  m a y  b e  i n s t a l l e d  

c o n s i s t e n t l y  o n  m a n y  c l a s s e s .  T h e  PTO i n  POISE r e p r e s e n t s  p o l y m e r  p r o p e r t i e s  i n d e p e n d e n t  o f  Polymer c l a s s e s  

a n d  e n c a p s u l a t e s  t h e  c o m p u t i n g  c o n c e p t s  o f  p r o t o c o l s  w i t h  a  c o n c e p t  f a m i l i a r  t o  t h e  d o m a i n  e x p e r t .

T h e  PTOs t r a n s l a t e  t h e  c o n c e p t s  o f  t h e  Polymer c l a s s  a n d  t h e  p o l y m e r  p r o p e r t y  i n  t h e  Polymer d o m a i n  t o  t h e  

c l a s s  a n d  p r o t o c o l s  i n  t h e  s o f t w a r e  d o m a i n .  M o v i n g  p r o p e r t i e s  b e t w e e n  c l a s s e s  i s  a  t a x o n o m i c  f i m c t i o n ,  

w h i c h  n o w  h a s  a n  e q u i v a l e n t  p r o c e s s  i n  t h e  s o f t w a r e  d o m a i n .  P r e s e n t i n g  a  h i e r a r c h y  p o p u l a t e d  w i t h  d o m a i n  

c o n c e p t s ,  a n d  w i t h o u t  s o f t w a r e  c o n c e p t s ,  l e t s  t h e  d o m a i n  e x p e r t  e v o l v e  t h e  c l a s s i f i c a t i o n .  P r e s e n t e d
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appropriately, the domain expert can create and position specific properties in classes and specific classes 

into a hierarchy, and POISE translates these actions into a manipulation of the software schema.

POISE s u p p o r t s  t h e  c l a s s i f i c a t i o n  p r o c e s s  w i t h  a  v i s u a l  a n a l y s i s  t o o l  c a l l e d  t h e  Comparator. T h e  Comparator i s  

a  w i n d o w  f o r  b r o w s i n g  a b s t r a c t  p o l y m e r  b e h a v i o u r ,  w h i c h  d i s p l a y s  t h e  d a t a  a b s t r a c t e d  b y  t h e  c l a s s i f i c a t i o n  

h i e r a r c h y  a s  h i s t o g r a m s .  S p e d d i n g ’ s  r e s e a r c h ^  u t i l i s e s  t h e  Comparator e x t e n s i v e l y  t o  a n a l y s e  t h e  p o l y m e r  

d o m a i n  f o r  s i m i l a r i t i e s  a n d  d i f f e r e n c e s  b e t w e e n  c l a s s e s  o f  p o l y m e r  g r a d e s .  T h e  Comparator s h o w e d  t h a t  

a d d i t i v e s  h a d  a  d i s t o r t i n g  e f f e c t  o n  t h e  a b s t r a c t i o n s  s u p p o r t i n g  t h e  n e e d  f o r  o r t h o g o n a l  c l a s s e s .  U n f o r t u n a t e l y  

t h e  d a t a  o n  p o l y m e r s  d i d  n o t  c o n s i s t e n t l y  i n d i c a t e  t h e  n a t u r e  o f  a d d i t i v e s ,  a n d  a  h i g h  m a j o r i t y  h a d  s o m e  k i n d  

o f  a d d i t i v e ,  s o  c l a s s i f y i n g  t o  r e m o v e  t h e  e f f e c t  o f  a d d i t i v e s  f i - o m  ‘ n a t u r a l ’  p o l y m e r s  w a s  n o t  p o s s i b l e .  S i n c e  

t h e  a d d i t i v e  c l a s s e s  w e r e  n o t  c r e a t e d ,  t h e  Comparator w a s  n e v e r  p r o g r a m m e d  t o  e x c l u d e  o r t h o g o n a l  c l a s s e s .  

F o r  e x a m p l e ,  t h e  Comparator d o e s  n o t  s u p p o r t  b r o w s i n g  f o r  “ s t r o n g e s t  p o l y m e r  n o t  g l a s s  f i l l e d ” .  T h e r e  i s  n o  

t e c h n i c a l  r e a s o n  p r e v e n t i n g  o r t h o g o n a l  c l a s s  e x c l u s i o n .

T h e  c o n c u r r e n t  r e s e a r c h  i n t o  a p p r o p r i a t e  c l a s s i f i c a t i o n s  t e s t e d  a n d  a d v a n c e d  poise a s  a  c o m p l e t e  s y s t e m .  

O r t h o g o n a l  c l a s s e s ,  n e w  p r o p e r t i e s  a n d  n e w  g r a d e s  w e r e  a d d e d  f o r  Films a n d  F ib res a n d  ‘ U s e d  b y  Lucas’. 

T h e  a b s t r a c t i o n  m e c h a n i s m  a u t o m a t i c a l l y  u p d a t e d  t o  i n c l u d e  t h e  d e s c r i p t i v e  p r o p e r t i e s  c o n t r i b u t e d  b y  t h e  

n e w  o r t h o g o n a l  c l a s s e s  a n d  p r o p e r t i e s ,  s o  f o r  e x a m p l e ,  t h e  Comparator c o u l d  d i s p l a y  t h e  Polymer c l a s s  

a g a i a s t  f i l m  te a r - s t r e n g th s  f r o m  g r a d e s  e n h a n c e d  w i t h  t h e  p r o p e r t y ,  a l t h o u g h  t h e  p o l y m e r  h i e r a r c h y  d o e s  

n o t  d e f i n e  t h e  p r o p e r t y .

POISE i m p o r t e d  t h e  b u l k  o f  t h e  d a t a  f r o m  CAMPUS. T h e  n a t u r e  o f  d a t a  f r o m  CAMPUS i d e n t i f i e d  s o m e  p r o b l e m s  

f o r  d i s t i n g u i s h i n g  c l a s s e s  a t  d i f f e r e n t  l e v e l s  o f  g e n e r a l i s a t i o n .  T h o u g h  a  p r o p e r t y  d i s t i n g u i s h e d  p o l y m e r s  a t  

t h e  c h e m i c a l  l e v e l ,  t h e y  d i d  n o t  d i s t i n g u i s h  t h e  p o l y m e r s  s i g n i f i c a n t l y  a t  h i g h e r  l e v e l s  o f  g e n e r a l i t y ,  w h i c h  

c h a r a c t e r i s e d  t h e  m a t e r i a l  s t r u c t u r e .  N o  o t h e r  p o l y m e r  r e p r e s e n t a t i o n  r e p r e s e n t s  m a t e r i a l s  a t  d i f f e r e n t  l e v e l s  

o f  g e n e r a l i s a t i o n .  C o n s e q u e n t l y ,  t h e  p r o p e r t i e s  c u r r e n t l y  d e s c r i b i n g  p o l y m e r s  t e n d  t o  g e n e r a l i s e  o v e r  a l l  

p o l y m e r s ,  a n d  o f t e n  o v e r  a l l  m a t e r i a l s .  T h e s e  g e n e r a l  p r o p e r t i e s  a r e  u n a b l e  t o  d i s t i n g u i s h  t h e  s p e c i f i c  

s t r u c t u r a l  d i f f e r e n c e s  i n  p o l y m e r  m a t e r i a l s ,  h e n c e  c l a s s i f i c a t i o n  b y  s t r u c t u r e  a r e  n o t  d i s t i n g u i s h e d  b y  t h e s e  

g e n e r a l  p r o p e r t i e s .

A l o n g  w i t h  a  p o p u l a t i o n  o f  o v e r  1 0 0 0  g r a d e s  i m p o r t e d  f r o m  CAMPUS, n e w  Polymer c l a s s e s  a n d  p r o p e r t i e s  

w e r e  g e n e r a t e d ,  w h i c h  t e s t e d  t h e  d a t a b a s e  m a n a g e m e n t .  POlSE’s d a t a b a s e  f a c i l i t y  s t o r e d  a l l  t h e  n e w  o b j e c t s ,  

a n d  t h e  s t o r a g e  r e m a i n e d  t r a n s p a r e n t  t o  a l l  POISE a c t i v i t i e s ,  t h e r e b y  h i d i n g  m e m o r y  m a n a g e m e n t  i s s u e s  f r o m  

t h e  k n o w l e d g e  r e p r e s e n t a t i o n  a n d  t h e  d o m a i n  u s e r .  A  g e n e r a l  p r o x y  Enhancer p r o v i d e s  a  t r a n s p a r e n t
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i n t e r f a c e  b e t w e e n  o b j e c t s  o f  a n  a p p l i c a t i o n  a n d  o b j e c t s  h e l d  i n  t h e  DBMS. M e s s a g e s  s e n t  t o  d a t a b a s e  o b j e c t s  

v i a  t h e  p r o x y  Enhancer a c t i v a t e  t h e  e n h a n c e d  b e h a v i o u r s  f o r  r e q u e s t i n g  t h e  DBMS t o  b r i n g  t h e  o b j e c t  i n t o  

p r i m a r y  m e m o r y  a n d  f o r  u p d a t i n g  t h e  d a t a b a s e  w i t h  a n y  c h a n g e s .  C l a s s e s  d o  n o t  d e f i n e  t h i s  b e h a v i o u r ,  

t h e r e b y  m a k i n g  d a t a b a s e  s t o r a g e  a v a i l a b l e  t o  o b j e c t s  o f  a l l  c l a s s e s .  O b j e c t s  u s i n g  d a t a b a s e  o b j e c t s  a s  p a r t  o f  

t h e i r  o w n  b e h a v i o u r  d o  n o t  n e e d  t o  d e f i n e  t r a n s a c t i o n s .  T h e y  c a n  t r e a t  t h e  d a t a b a s e  o b j e c t  l i k e  a n y  o t h e r  

o b j e c t  o f  t h e  s a m e  t y p e .

A  d a t a b a s e  p r o x y  s u b s t i t u t e s  f o r  a n y  r e l a t i o n s h i p  b e t w e e n  t h e  a p p l i c a t i o n  a n d  t h e  d a t a b a s e .  T h e  d a t a b a s e  i s  

o b j e c t - o r i e n t e d ,  o n l y  e v e r  r e a d i n g  o n e  o b j e c t  a n d  s u b s t i t u t i n g  a l l  i t s  r e l a t i o n s  w i t h  p r o x i e s .  A  p r o x y  o n l y  

r e t r i e v e s  a n  o b j e c t s  i f  a  p r o c e s s  s e n d s  a  m e s s a g e  t o  i t .

POISE s p e c i f i c a t i o n  i d e n t i f i e s  a  d i c h o t o m y  i n  d a t a b a s e  m a n a g e m e n t  r e q u i r e m e n t s .  D a t a b a s e  m a n a g e m e n t  f o r  

p e r s i s t e n c e  o f  u s e r  d a t a  d i f f e r s  f r o m  t h e  i n t e r c h a n g e  o f  d a t a  b e t w e e n  u s e r s .  T h e  m a i n  d i f f e r e n c e  i s  p e r s i s t e n c e  

i s  s i n g l e - u s e r  d a t a ,  a n d  d a t a - i n t e r c h a n g e  i s  m u l t i - u s e r  d a t a .  M a n a g i n g  m u l t i p l e  u s e r s  r e q u i r e s  t h e  d e f i n i t i o n  o f  

a  t r a n s a c t i o n ,  a n d  a  t r a n s a c t i o n  d i s t i n g u i s h e s  a  d a t a b a s e  p r o c e s s  f r o m  o t h e r  c o m p u t i n g  p r o c e s s e s ,  w h i c h  

c o m p l i c a t e s  t r a n s p a r e n c y .  T h i s  t y p e  o f  d a t a b a s e  m a n a g e m e n t  i s  c o m m o n  t o  c o m m e r c i a l  OODBMS, w i t h  a  

f o c u s  o n  t r a n s a c t i o n  m a n a g e m e n t  a n d  i t s  i n t e g r i t y .  S c h e m a  e v o l u t i o n  i s  a  t y p e  o f  t r a n s a c t i o n  t h a t  i s  t y p i c a l l y  

v e r y  l a r g e  a n d  c a u s e s  p r o b l e m s  f o r  t h e s e  t r a n s a c t i o n  b a s e s  s y s t e m s .  T h e  b e h a v i o u r a l  c o m p l e x i t y  o f  o b j e c t s  

w i t h i n  POISE a n d  t h e i r  t e n d e n c y  t o  e v o l v e  p u t s  t h e  r e p r e s e n t a t i o n  b e y o n d  e v e n  t h e  m o s t  a d v a n c e d  c o m m e r c i a l  

OODBMS. F o r  t h e  p r i v a t e  d a t a  o f  t h e  s i n g l e - u s e r  i n  POISE t h e  o b j e c t i v e s  a r e  m o r e  l i m i t e d ,  a n d  m o r e  

p o w e r f u l l y  f o c u s e d  o n  r e p r e s e n t a t i o n ,  t h a n  t h e  o b j e c t i v e s  o f  a  g e n e r a l - p u r p o s e  m a n a g e m e n t  s y s t e m .  

C o n s e q u e n t l y ,  POISE h a s  a  s i n g l e - u s e r  d a t a b a s e  f o r  o b j e c t  p e r s i s t e n c e  c a l l e d  a  WorkBase, w h i c h  a d o p t s  

S m a l l t a l k ’ s  m a n i p u l a t i o n  c a p a b i l i t i e s ,  i n c l u d i n g  s c h e m a  e v o l u t i o n .

T h e  u n i q u e  f e a t u r e  o f  t h e  WorkBase i s  t h a t  w h e n  i t  r e a d s  o b j e c t s  i t  r e s o l v e s  d i f f e r e n c e s  i n  t h e  s c h e m a  b e t w e e n  

c l i e n t  a n d  s e r v e r ,  w h i c h  a l l o w s  t h e  c l i e n t  s c h e m a  a n d  s e r v e r  s c h e m a  t o  i n d e p e n d e n t l y  u p d a t e  i n d i v i d u a l  

o b j e c t s .  I m p l e m e n t i n g  t h i s  f e a t u r e  w a s  s i m p l i f i e d  b y  t h e  s i n g l e  c o n n e c t i o n  p o l i c y  b e t w e e n  t h e  POISE 

a p p l i c a t i o n  a n d  t h e  p r i v a t e  s i n g l e - u s e r  WorkBase. M o s t  DBMS f o c u s  o n  s u p p o r t i n g  m u l t i p l e  c o n n e c t i o n s  a n d  

c o n s e q u e n t l y  c o m p l i c a t e  t h e  c l i e n t ’ s  d e p e n d e n c e  o n  t h e  s e r v e r ’ s  s c h e m a ,  w h i c h  t h e  s e r v e r  e n d e a v o u r s  t o  

m a i n t a i n  c o n s i s t e n t  f o r  m u l t i p l e  c l i e n t s .

A n  a d v a n c e d  o b j e c t  s t o r a g e  s y s t e m  i s  a  b e t t e r  d e s c r i p t i o n  o f  t h e  WorkBase t h a n  a  DBMS b e c a u s e  t h e  

a p p l i c a t i o n  e x e c u t e s  a l l  o b j e c t  b e h a v i o u r s ,  n o t  t h e  WorkBase. T h e  WorkBase a d v a n c e s  o b j e c t  s t o r a g e  b e c a u s e  

i t  i s  c a p a b l e  o f  r e p r e s e n t i n g  c o m p l e x  o b j e c t s  w i t h o u t  p r i o r  d e c l a r a t i o n  o f  f i l e  s t r u c t u r e ,  i n c l u d i n g  t h e  c l a s s e s
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o f  p o l y m e r s  i n  t h e  h i e r a r c h y  a n d  t h e  b e h a v i o u r s  o f  e n g i n e e r i n g  p r o p e r t i e s  d e v e l o p e d  b y  t h e  u s e r .  I n  a d d i t i o n ,  

w i t h  t h e  h e l p  f r o m  t h e  d a t a b a s e  p r o x y ,  t h e  o b j e c t s  m a i n t a i n  t h e i r  u n i q u e  i d e n t i t y ,  u s u a l l y  l o s t  w h e n  o b j e c t  

s t o r a g e  s y s t e m s  r e m o v e  o b j e c t s  f r o m  t h e  a p p l i c a t i o n  e n v i r o n m e n t .

T h e  p r o x y  m a n a g e s  t h e  a c t i v e  l i f e t i m e  o f  t h e  o b j e c t .  T h e  WorkBase i n  c o l l a b o r a t i o n  w i t h  t h e  S m a l l t a l k  

m e m o r y  m a n a g e m e n t ,  c o m m i t s  t h e  o l d e s t  p r o x i e s  w h e n  m e m o r y  i s  l o w  t h e r e b y  m a x i m i s i n g  t h e  u t i l i s a t i o n  o f  

p r i m a r y  m e m o r y .  T h i s  s i m p l e  m e m o r y  m a n a g e m e n t  p o l i c y  i s  a  c o n s e q u e n c e  o f  t h e  s i n g l e - u s e r  t r a n s a c t i o n  

r e s t r i c t i o n  o f  t h e  WorkBase.

T h e  WorkBase a l s o  c o m m i t s  a l l  p r o x i e s  w h e n  t h e  u s e r  t e r m i n a t e s  t h e  a p p l i c a t i o n .  POISE r e c o r d s  t h e  s t a t e  of 

a n y  a c t i v i t y  w h e n  t h e  d e s i g n e r  l e a v e s  t h e  s e s s i o n  a n d  r e - i n s t a t e s  t h e  s e s s i o n  w h e n  t h e  d e s i g n e r  r e t u r n s .  T h e  

d e s i g n e r  c a n  c o n t i n u e  d e v e l o p i n g  t h e  c o m p l e x  d e s i g n  q u e r i e s ,  s e a r c h e s ,  s h o r t l i s t s ,  a n d  v i e w s  o n  p o l y m e r s  o n  

r e t u r n  t o  t h e  s e s s i o n .

T h e  o n e  r e s o u r c e  t h e  WorkBase d o e s  n o t  m a n a g e  e f f e c t i v e l y  i s  t h e  d i s k  f i l e  i t  u s e s  t o  s t o r e  t h e  s t a t e  o f  o b j e c t s .  

A n o t h e r  w e a k n e s s  i n  t h e  d e s i g n  o f  t h e  WorkBase w a s  t h e  e f f i c i e n c y  o f  t h e  DBMapping. T h i s  o b j e c t  p r o v i d e s  

t h e  p r i m a r y  i n d e x  f o r  t h e  d a t a b a s e .  I m p r o v i n g  t h e  DBMapping a n d  m a n a g i n g  t h e  d i s k  f i l e  w e r e  b o t h  

u n n e c e s s a r y  f o r  t h e  e x p e r i m e n t a l  p u r p o s e  o f  POISE.

T h e  f o c u s  o f  t h i s  t h e s i s  h a s  b e e n  t h e  s o f t w a r e  d e v e l o p m e n t  o f  POISE. T h e  s o f t w a r e  d e m o n s t r a t e s  t h e  

f e a s i b i l i t y  o f  t h e  t h e s i s  b u t  i t s  o v e r a l l  s u c c e s s  o f  s u p p o r t i n g  d e s i g n ,  w h i c h  i s  t h e  r e a s o n  b e h i n d  i t s  

d e v e l o p m e n t ,  d e p e n d s  l a r g e l y  o n  t h e  i n f o r m a t i o n  i t  c o n t a i n s .  T h e  s o f t w a r e  p r i n c i p l e s  a r e  w e l l  e s t a b l i s h e d  

w i t h  t h e  CAMPUS d a t a ,  b u t  i t s  g e n e r a l  n a t u r e  w i l l  n o t  t h o r o u g h l y  t e s t  t h e  d e s i g n  p r i n c i p l e s .  T h e  i n f o r m a t i o n  

POISE c o n t a i n s  m u s t  s t a r t  t o  a n s w e r  d e s i g n  q u e s t i o n s .  T h i s  m a y  r e q u i r e  s p e c i f i c  p r o p e r t i e s  t h a t  b e t t e r  

d i s t i n g u i s h  c l a s s e s  f o r  s p e c i f i c  a p p l i c a t i o n s  o r  p r o p e r t i e s  t h a t  n e g o t i a t e  w i t h  o t h e r  p e r s p e c t i v e s  t o  

c o m p r o m i s e  t h e  d e s i g n .  A t  l e a s t  t h e  s o f t w a r e  n o w  e x i s t s  t h a t  e q u i p s  t h e  d o m a i n  e x p e r t  w i t h  t o o l s  t o  p e r f o r m  

t h e s e  e x p e r i m e n t s .
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Chapter 8 FutureWork
T h i s  t h e s i s  h a s  f o l l o w e d  t h e  a r g u m e n t  t h a t  d e s i g n e r s  r e q u i r e  a d v a n c e d  s o f t w a r e  d e s c r i p t i o n s  o f  c l a s s i f i c a t i o n  

a n d  a b s t r a c t i o n  t o  s u p p o r t  t h e i r  d e c i s i o n  t a s k s .  A l o n g  t h e  w a y  t h e  r e s e a r c h  r a i s e d  m a n y  q u e s t i o n s  w i t h i n  t h e  

c o m p u t e r  a n d  m a t e r i a l  s c i e n c e s .  O n e  q u e s t i o n  i s  t h e  s u i t a b i l i t y  o f  m a t e r i a l  p r o p e r t i e s  t o  d e s c r i b e  a b s t r a c t  

m a t e r i a l s .  T h e  l a c k  o f  d i s t i n c t i o n  b e t w e e n  a m o r p h o u s  a n d  c r y s t a l l i n e  p o l y m e r s  w a s  c i t e d  a s  a  v i s u a l l y  

i n d i s t i n g u i s h a b l e  e x a m p l e .  T h e  n e e d  f o r  f u r t h e r  r e s e a r c h  i n t o  t h e  r e l a t i o n s h i p  b e t w e e n  c l a s s i f i c a t i o n  a n d  

p r o p e r t i e s  d e s c r i b i n g  i t s  m e m b e r s  i s  n o t  c o n c l u s i v e  w i t h o u t  d e t a i l e d  r e s e a r c h  i n t o  h o w  d e s i g n e r s  u s e  

i n f o r m a t i o n .  O n e  r e a s o n  f o r  t h i s  l a c k  o f  r e s e a r c h  i s  t h e  a b s e n c e  o f  a n  h i s t o r i c a l  l i n k  b e t w e e n  p r o p e r t y  u s e  a n d  

d e s i g n  o u t c o m e  t o  m e a s u r e  t h e  e f f e c t i v e n e s s  o f  p r o p e r t i e s  i n  d e s i g n .  S o f t w a r e  l i k e  P O I S E  t h a t  i s  c a p a b l e  o f  

m a n i p u l a t i n g  c o m p l e x  m a t e r i a l s  i n f o r m a t i o n  c o u l d  h e l p  t o  d e t e r m i n e  t h e  e f f e c t i v e n e s s  o f  s p e c i f i c  d e s i g n  

m e t h o d s  u s i n g  p r o p e r t i e s .  T h e  s o f t w a r e  c a n  r e c o r d  t h e  h i s t o r i c a l  a p p l i c a t i o n  o f  m e t h o d s  t o w a r d s  a  d e s i g n .  I t  

i s  p o s s i b l e  t h a t  s u c h  r e s e a r c h  w a l l  f i n d  g e n e r a l  p r o p e r t i e s ,  l i k e  t h o s e  i n  C A M P U S ,  d o  n o t  a n s w e r  d e s i g n  

q u e s t i o n s  e f f e c t i v e l y  a n d  l e a d  t o  m o r e  a p p r o p r i a t e  m a t e r i a l s  r e s e a r c h .

8.1 Extentions For Further Design Support.
D e s i g n  r e q u i r e s  c o n t r i b u t i o n s  o f  i n f o r m a t i o n  f r o m  m a n y  p e r s p e c t i v e s .  T h e  d e s i g n  b e h a v i o u r  i s  a  c o m p l e x  

c o m b i n a t i o n  o f  b e h a v i o u r  f r o m  d i f f e r e n t  p e r s p e c t i v e s .  P O I S E  o n l y  a d d r e s s e s  t h e  r e p r e s e n t a t i o n  o f  m a t e r i a l s  

i n f o r m a t i o n  p r i n c i p l e d  u p o n  t h e  m a t e r i a l ’ s  c h e m i s t r y  ( a n d  c o m p o s i t i o n  i n  t h e  c a s e  o f  f i l l e d  p o l y m e r s )  a n d  i t  

l i m i t s  i t s  d e s i g n  s u p p o r t  t o  p r o v i d i n g  a n  e x a m p l e  o f  t o o l s  f o r  c l a s s i f y i n g  a n d  v i s u a l i s i n g  a b s t r a c t  m a t e r i a l s .  

E a c h  n e w  d e s i g n  p e r s p e c t i v e  i n t r o d u c e s  i t s  o w n  c h a l l e n g e s .  F u r t h e r  r e s e a r c h  i s  r e q u i r e d  t o  r e p r e s e n t  t h e  o t h e r  

p e r s p e c t i v e s ,  w h i c h  c o n t r i b u t e  t o  a  d e s i g n ,  a n d  d e v e l o p  u s e f u l  d e s i g n  m e t h o d s  t h a t  i n t e g r a t e  t h e i r  v a r i o u s  

s o u r c e s  o f  i n f o r m a t i o n .  O n l y  t h e n  w i l l  c o m p u t e r s  a i d  t h e  p r o c e s s  o f  d e s i g n  a n d  p r o p e r l y  r e c o r d  t h e  d e s i g n  

h i s t o r y ,  w h i c h  c o u l d  m e a s u r e  d e s i g n  e f f e c t i v e n e s s  f o r  s t u d y i n g  c a s e  b a s e d  r e a s o n i n g  i n  d e s i g n .

8.2 Furthering the Role of Object Orientation in Knowledge Representation
P O I S E  i s  a n  e x a m p l e  o f  a  k n o w l e d g e  r e p r e s e n t a t i o n  t o o l  t h a t  d o e s  n o t  b u i l d  o n  t r a d i t i o n a l  e x p e r t  s y s t e m s  

t h e o r y .  P O I S E  r e p r e s e n t s  m o r e  s p e c i f i c  m a n i p u l a t i o n  r u l e s  t h a n  r u l e  b a s e d  e x p e r t  s y s t e m s  w h e r e  t h e  g e n e r a l  

m a n i p u l a t i o n  l o g i c  i s  e n c o d e d  i n  a n  i n f e r e n c e  e n g i n e .  P O I S E  i s  n o t  r e s t r i c t e d  i n  s t r u c t u r i n g  i n f o r m a t i o n  f o r  

t h e  e n g i n e .  T h e  m a n i p u l a t i o n  r u l e s  i n  P O I S E  a r e  o b j e c t  o r i e n t a t e d .  C l a s s e s  c o n t a i n  t h e  r u l e s  d e v e l o p e d  f o r  

e a c h  t y p e  o f  o b j e c t ,  w h i c h  c o n t a i n  t h e  i n f o r m a t i o n  s o  i n f e r e n c e  i s  a  s p e c i f i c  r e l a t i o n s h i p  b e t w e e n  a n  o b j e c t  

a n d  i t s  c l a s s  e v o k e d  t h r o u g h  w e l l - d e f i n e d  p a t t e r n s  o f  m e s s a g e  p a s s i n g .  P O I S E  d e m o n s t r a t e s  t h e  d i v e r s e  

p a t t e r n s  g e n e r a t e d  b y  o b j e c t  o r i e n t e d  s y s t e m s  f o r m s  a  h i g h l y  e x p r e s s i v e  k n o w l e d g e  r e p r e s e n t a t i o n .  F r o m  t h i s  

d i r e c t i o n ,  o b j e c t  o r i e n t a t i o n  n e e d s  m o r e  s t u d y  i n t o  t h e  r o l e  d i v e r s e  m e s s a g e  h a n d l i n g ,  w h i c h  d r i v e s  t h e  

p a t t e r n s  o f  b e h a v i o u r ,  c o u l d  h a v e  i n  k n o w l e d g e  r e p r e s e n t a t i o n .
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P O I S E  h a s  a l s o  i n t r o d u c e d  s o m e  u n i q u e  p a t t e r n s  o f  o b j e c t  b e h a v i o u r .  P a t t e r n s  a r e  q u i c k l y  b e c o m i n g  

i m p o r t a n t  d e s c r i p t i o n s  o f  a b s t r a c t  o b j e c t  o r i e n t e d  s o f t w a r e  s o l u t i o n s .  P a t t e r n s  o f t e n  h a v e  s o m e  i n t e r e s t i n g  

a t t r i b u t e s  t h a t  m a k e  t h e m  p a r t i c u l a r l y  s u i t a b l e  f o r  s o l v i n g  c e r t a i n  k i n d s  o f  s o f t w a r e  p r o b l e m s .  T h e  p a t t e r n s  i n  

P O I S E  a r e  i n t e r e s t i n g  b e c a u s e  t h e y  d y n a m i c a l l y  c o m p o s e  o b j e c t  i n t e r f a c e s .  M o s t  o b j e c t s  h a v e  a  s t a t i c  t y p e ,  

w h e r e a s  t h e  E n h a n c e r  p e r m i t s  d y n a m i c  t y p e  c o n s t r u c t i o n ,  a s  d e m o n s t r a t e d  b y  t h e  o r t h o g o n a l  d e s c r i p t i o n  o f  

g r a d e s .  T h e  P T O  p e r m i t s  t h e  r u n t i m e  r e - e n g i n e e r i n g  o f  o b j e c t  t y p e s .  P O I S E  i s  a b l e  t o  c r e a t e  t h e s e  p a t t e r n s  i n  

S m a l l t a l k ,  w h i c h  i s  a  n o n - t y p e d  l a n g u a g e .  T y p e d  l a n g u a g e s  r e q u i r e  s p e c i f i c  t y p e  d e f i n i t i o n s  t o  v a l i d a t e  

p r o g r a m  e x e c u t i o n .  C u r r e n t l y  v a l i d  e x e c u t i o n  o f  t h e s e  p a t t e r n s  i s  n o t  g u a r a n t e e d  a n d  v a l i d  e x e c u t i o n  r e q u i r e s  

c a r e f u l  i m p l e m e n t a t i o n  a n d  a p p l i c a t i o n .  F u r t h e r  r e s e a r c h  w o u l d  b e  n e c e s s a r y  t o  d e t e r m i n e  h o w  a  t y p e d  

l a n g u a g e  m i g h t  s u p p o r t  d y n a m i c  t y p i n g  g e n e r a t e d  b y  a  s i m i l a r  p a t t e r n .

T h i s  t h e s i s  h a s  a  h i g h l y  f o c u s e d  a g e n d a  f o r  r e p r e s e n t i n g  m a t e r i a l s  i n f o r m a t i o n  i n  a  c l a s s  i n s t a n c e  l a n g u a g e .  

T h i s  f o c u s  t a c k l e s  s o m e  o f  t h e  m o r e  c o m p l e x  i s s u e s  i n  r e p r e s e n t i n g  t h e  d o m a i n .  T h e r e  a r e  m a n y  o t h e r  i s s u e s  

t h a t  f i t  t h e  o b j e c t - o r i e n t e d  p a r a d i g m  v e r y  w e l l  t h a t  a t  f i r s t  a p p e a r  t o  b e  l e s s  o f  a  c h a l l e n g e .  O b j e c t  o r i e n t a t i o n  

h a s  m u c h  m o r e  t o  o f f e r  C A D  d e v e l o p m e n t .  T h e s e  i n c l u d e  m a n a g i n g  e n g i n e e r i n g  m e a s u r e m e n t s  t h a t  i n c l u d e  

u n i t s  a n d  a c c u r a c y

E n g i n e e r i n g  d e s i g n  a l s o  i n v o l v e s  t h e  a p p l i c a t i o n  o f  d e s i g n  c a l c u l a t i o n s .  O b j e c t s  c a n  r e p r e s e n t  n o t  j u s t  a  

r e s u l t ,  b u t  t h e  w h o l e  c a l c u l a t i o n  a s  a  m e t h o d  t h a t  c o m b i n e s  o t h e r  c a l c u l a t i o n s  w i t h  n e w  i n p u t  p a r a m e t e r s .  T h e  

r e s u l t s  o f  c a l c u l a t i o n s  a r e  n o  l o n g e r  s u b j e c t  t o  e x t e r n a l  i n t e r p r e t a t i o n .  I r o n i c a l l y ,  t h e  r e s u l t  d o e s  n o t  n e e d  t o  

d e r i v e  a  s p e c i f i c  v a l u e  u n t i l  t h e  d e s i g n e r  n e e d s  i t .  S i n c e  m o s t  d e s i g n  d e c i s i o n s  a r e  a  t r a d e  o f f  b e t w e e n  

p a r a m e t e r s ,  t h e  s p e c i f i c  v a l u e s  a r e  n o t  i m p o r t a n t  u n t i l  t h e  d e s i g n e r  c o n t r a s t s  s p e c i f i c  c o m b i n a t i o n s  o f  d e s i g n  

a t t r i b u t e s .  T h e  o b j e c t  c a l c u l a t e s  t h e  r e s u l t  d y n a m i c a l l y  w h e n  n e e d e d  a n d  n o t  j u s t  w h e n  t h e  i n p u t  p a r a m e t e r s  

a r e  a v a i l a b l e  s i n c e  t h e s e  p a r a m e t e r s  m a y  c h a n g e .

T h e  b e n e f i t s  o f  a  c o m p l e t e l y  o b j e c t  o r i e n t e d  r e p r e s e n t a t i o n  o f  a  d e s i g n  m e t h o d  i s  t h a t  t h e  d e s i g n  p r o c e s s  i s  

r e c o r d a b l e  a n d  r e u s a b l e .  I f  t h e  d e s i g n e r  d e c i d e s  t h a t  t h e  i n p u t  p a r a m e t e r s  o r  m e t h o d  m u s t  c h a n g e ,  a  t r a c e a b l e  

r o u t e  o f  d e p e n d e n t  d e s i g n  d i s c u s s i o n s  c a n  b e  d e t e r m i n e d ,  w h i c h  i n  t u r n  c a n  b e  r e - e v a l u a t e d .

F r o m  t h i s  s c e n a r i o ,  w e  c a n  s e e  t h a t  a n  e v o l v i n g  d a t a b a s e  o f  m a t e r i a l s  m i g h t  i n  f a c t  n o t i f y  t h e  d e s i g n e r  w h e n  

p o t e n t i a l l y  b e t t e r  m a t e r i a l s  h a v e  e n t e r e d  t h e  d a t a b a s e  f o r  s p e c i f i c  d e s i g n s ,  s i m p l y  b e c a u s e  t h e  s y s t e m  r e c o r d s  

t h e  m e t h o d s  u s e d  t o  i n  d e s i g n  c o n c l u s i o n s .
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8.3 Extensions Within the Materials Domain
P O I S E  a s s u m e s  t h e  d o m a i n  o f  e n g i n e e r i n g  p o l y m e r s  c a n  b e  c l a s s i f i e d  i n t o  a  h i e r a r c h y .  T h i s  a s s u m p t i o n  

i g n o r e s  s o m e  c o m p l e x  m a t e r i a l  c o n c e p t s ,  w h i c h  c h a l l e n g e  a  h i e r a r c h i c a l  c l a s s i f i c a t i o n ,  a s  h i g h l i g h t e d  i n  

S p e d d i n g ’ s  a n a l y s i s  o f  t h e  d o m a i n .  C o - p o l y m e r i s a t i o n  a n d  a l l o y i n g  o f  p o l y m e r s  g r e a t l y  c o m p l i c a t e  t h e  

r e l a t i o n s h i p  b e t w e e n  a  m a t e r i a l ’ s  p a r e n t a g e  a n d  t h e  m a t e r i a l ’ s  p h y s i c a l  p r o p e r t i e s .  W h e t h e r  t h e  p a r e n t a g e  

s h o u l d  i n f l u e n c e  t h e  c l a s s i f i c a t i o n  o f  t h e s e  k i n d s  o f  m a t e r i a l  i s  s t i l l  s u b j e c t  t o  f u r t h e r  w o r k  t h a t  m a y  s u g g e s t  

a l t e r n a t i v e  s o f t w a r e  m e c h a n i s m s  f o r  r e p r e s e n t i n g  t h e s e  c o n c e p t s .

T h e  P O I S E  d e s i g n  c o u l d  e x t e n d  t h e  d o m a i n  t o  i n c l u d e  m e t a l s .  T h e  c h a r a c t e r i s t i c s  o f  m e t a l s  p r o p e r t i e s  a r e  

p r o b a b l y  b e t t e r  u n d e r s t o o d  t h a n  p o l y m e r s  a n d  t h e  d o m a i n  i s  a l s o  h i g h l y  c h a r a c t e r i s e d  b y  a l l o y s .  B o t h  t h e s e  

c h a r a c t e r i s t i c s  o f  t h e  d o m a i n  w o u l d  l e n d  t o  e x p e r i m e n t i n g  w i t h  t h e  c l a s s i f i c a t i o n  o f  a l l o y s  a n d  t h e  

d e v e l o p m e n t  o f  m o r e  c o m p l e x  b e h a v i o u r a l  d e s c r i p t i o n s  o f  m e t a l s .  F o r  e x a m p l e  w o r k  h a r d e n i n g  a n d  

a n n e a l i n g  a r e  w e l l  s t u d i e d  i n  m e t a l s ,  a n d  a r e  p o s s i b l y  s u i t a b l e  f o r  c o m p u t e r  m o d e l l i n g .  T h e  b e n e f i t  o f  

i n t e g r a t i n g  t h e  m o d e l l i n g  w i t h  a  d a t a b a s e  i s  t h a t  i t  i s  m u c h  e a s i e r  t o  r e l a t e  t h e  t e s t  d a t a  t o  t h e  c o m p u t e r  

m o d e l s  a n d  t h e r e f o r e  d e r i v e  w h e r e  t h e  m o d e l  d e v i a t e s  f i - o m  r e a l i t y .

M e t a l s  a l s o  h a v e  a  s i m p l e r  c h e m i c a l  d e s c r i p t i o n  t h a n  p o l y m e r s ,  b a s e d  o n  c r y s t a l l i n e  a t o m i c  a r r a n g e m e n t s  

r a t h e r  t h a n  m o l e c u l e s .  T h i s  m e a n s  a b s t r a c t i o n  t e c h n i q u e s  m i g h t  b e  m o r e  p r e c i s e .  E x a m p l e s  c o u l d  i n c l u d e  

a b s t r a c t i n g  t h e  p h a s e  d i a g r a m s ,  c o m m o n l y  u s e d  b y  m e t a l l u r g i s t s ,  f i - o m  e x p e r i m e n t a l  d a t a  a s  a n  a l t e r n a t i v e  t o  

h i s t o g r a m s .

C e r a m i c s  a r e  p r o b a b l y  t h e  l e a s t  w e l l  u n d e r s t o o d  o f  m a t e r i a l s .  T h e i r  p r o p e r t i e s  a r e  d o m i n a t e d  b y  t h e  k i n d s  o f  

l a t t i c e  s t r u c t u r e s  t h e  c h e m i s t r y  p r o d u c e s ,  w h i c h  i s  s u b j e c t  t o  t h e  p r o c e s s  u s e d  t o  c r e a t e  t h e  m a t e r i a l  a s  m u c h  
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