The Open
University

Open Research Online

The Open University's repository of research publications
and other research outputs

Object-Oriented Software Representation of Polymer
Materials Information in Engineering Design

Thesis

How to cite:

Ogden, Sean Paul (1999). Object-Oriented Software Representation of Polymer Materials Information in Engineering
Design. PhD thesis. The Open University.

For guidance on citations see FAQs!

(© 1998 Sean Paul Ogden

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies

page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

UNRESTRCTER
Ob]ect-Orlented Software Representatlon

of Polymer Materials Information in

Engineering .Des'ign

'Sean Paul Ogden, BE (elec)

 Submitted as requirements for a Doctorate-of Philosophy in the
Discipline of Computer Science, Materials Engineering and

Design

3 March, 1998

RETE Of SUBMISSKNG. 31 MBBCA (98¢
INTE Of SLKED. 2 RNVWRY |9qq

ProQuest Number: 27696793

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 27696793

Published by ProQuest LLO (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLO.

ProQuest LLO.

789 East Eisenhower Parkway
P.Q. Box 1346

Ann Arbor, M 48106- 1346

Object -Oriented Software Representation of Polymer Materiabs Information in Engineering Design

Abstract , , ,
- The software application POISE, Polymer Objects in a Smalltalk™ Environment, integrates knowledge

representation, user interfaces, and data management; a system of tools for the materials domain expert
involved in design. Engineering design solutions initially build from generalisations. POISE represents

multiple levels of generalisations from classifications of polymer information.

The class-instance paradigm classifies software objects. An object’s behaviour is an exclusive function of its
class. Polymer’s behaviours are a function of multiple orthogonal factors, like chemistry and processing,
therefore multiple orthogonal classes must represent polymers. Taxonomy only represents one of these

factors. The Enhancer mechanism resolves this conflict between classification and representation.

Polymer classification is not well established, with new materials evolving. The software compensates by
evolving the classification schema. Guided thh a specialised interface tool, the domain expert updates tﬁe .
schema by adding new polymer families and re-classifying existing classes. Through analysing the
generalisations in the classification, the domain expert can develop an appropriate classification. This
analysis relies on the engineering ﬁroperti&s differentiating the principal material qualities. Standard
properties do not distinguish specific structural differences in polymer materials, necessitating new

properties.

Material properties distinguish materials in the domain whereas the classes describe the properties of polymer
dbjecfs. Domain experts add new properties to the polymer classes to distinguish polymer objects. Properties

are independent objects that partially describe the class template; Partial Template Objects.

Persistence of personal design information and management of shared data requires dichotomous database
management. Shared data requires multi-user access, and consequently transaction management. Transaction
management in object-oriented systems often holds resources for a long duration. Transaction declaration
hinders transparent access to sturage, and corrupts the representation. For single-user design information,
transactions are implicit with access. Database proxies provide transparent per-object transaction
management to persistent. design information. The WorkBase is an object-storage utility that utilises

Enhancers as proxies.

Object -Oriented Soﬁmkmnm ofl"olymu’Muﬂ:inh Information in Engineering Design
Acknowledgments . |
This research was conducted in conjunction with research at the Open University between November 1990
and June 1994, funded by the research grant IED 4/1)1416. The research team included Adrian Demaid, Dr.
John Zucker and Vanessa Spedding. I thank these people both as invaluable colleagues and as friends.

Finally, this thesis would not have been completed without the emotional and financial support of
Anne Culhane,

Contents

Object -Oriented Software Representation of Polymer Materials Information i Engineering Design

Chapter 1 Introduction
1.1 Class-Instance Object—Orientation
1.2 Object—Oriented Support of Hierarchical Classification
1.3 Abstraction of Domain Generalisatians
1.4 Similar Properties
1.5 Smalltalk .
1.6 An Alternative Object—Orientation: Prototypes
1.7 POISE Tools
1.8 Summary of Objectives
1.9 Introduction to the Literature Review
Chapter 2 Literature Review
2.1 Polymer Materials Knowledge for Engineering Design -

2.11
212
213
214
2.15
2.1.6
2.1.7
2.1.8

A Conceptual Model of Design

Logical Abduction of Properties in Classification

A Simple Formal Classification Model

Appropriate Classifications

Conceptual Schema of the Cambridge Materials Selector (CMS)
Managing Property Pedigree and Test Data

Capricious Properties

Classification of Polymer Informatlon

2.2 Knowledge Representation

221
222
223
224

Knowledge vs. Data

Frames

Inheritance Hierarchies in Knowledge Base Systems
Problems with Inheritance in Hierarchical Representations

2.3 Data Modelling

23.1
23.2
233
234

Hierarchical and Network Data Models

"The Relational Model

The Relational Model in Engineering
Semantic Data Modelling

24 Object—orientation: A Background of Principles

24.1
242
243
244
245
2.4.6
24.7
2438

The Software Abstraction of the Object
Encapsulation

Messages

Empathy

Delegation

Dynamic Behaviour Sharing
Class-Instances

Actor Semantics and Prototype Languages

2.5 Selecting a Language
Chapter 3 POISE: Polymer Objects in a Smalltalk Environment

3.

1

3.11
3.1.2
3.13
3.14
3.15

Source Data

Reading Binary Relational Table from DIF Files
CAMPUS

CAMPUS Data in ASCII Text Format
CAMPUS Data in Binary Format

The Transitive Data Model

3.2 System Daia Flow

3.21
3.2.2
3.23
3.24
3.25
3.25.1
3.25.2

The Grade
The Property Object
Automatic Classification Declaration
Transfer of CAMPUS Grades into the POISE Architecture
Maintenance of Unknown Data
Not applicable data
Unstructured data: Text

3.3 Evolution of POISE Architecture

331

332
3.3.21
3322
3.3.23
3.3.24

Description of the Classification Architecture.
Creating the Hierarchical Classification -
Adding and removing a property
Adding abstract classes
Moving classes
Merging classes

iii

Object -Oriented Soft Rep jon of Polymer Materials Infk jon in Engi

3.33 The Interface
334 User Interaction with Properties
3.3.4.1 Adding a property
3.3.4.2 Removing a property
3.3.43 Adding and removing classes
33.44 Moving classes
3.3.45 Removing classes
335 The Data Model underlying the Hierarchy Interface
3.4 Levels of Representation
3.5 Abstracting Knowledge Creating General Concepts
3.5.1 Consistency between Histograms of the Same Property
352 Consistency between Histograms and Populations
3.5.3 A Summary of Functionality for the Abstract Polymer
3.54 Extending Class Behaviour
3.6 Orthogonal Property Classification
3.6.1 Composite Structure for Orthogonal Descriptors
3.62 Management of Orthogonal Descriptors
3.63 Adding Orthogonal Descriptars to Grades
3.64 Abstraction of POISE Knowledge in Orthogonal Descriptors
3.7 User Interrogation
3.7.1 Histogram Visualisation: The Comparator
3.8 Database Management
3.8.1 Data Store vs. Database Management
3.82 Evolution in a DBMS
3.83 Database Interaction for Memory Management
3.84 Multiple Interfaces
3.85 Summarising the Storage for POISE
39 Summarising the Schema of POISE
Chapter 4 Implementation
4,1 Sharing in Smalltalk.
4.1.1 The Smalltalk Object Model
4.1.2 The Class as an Object
4.13 Methods as Protocol Objects
414 The Process: Message Sends, Look-ups, and Patterns
4.1.5 Summarising Behaviour Sharing
4.2 Enhancing Message Passing in Smalltalk
42.1 Mix-in Object Behaviour for Orthogonal Descriptions
422 The Encapsulator
423 Message Passing in Smalltalk
4.24 The Enhancer
425 Implementing the Enhancer
4.2.6 Implementing Orthogonal Descriptions of Polymer
4.2.6.1 CompositeEnhancer }
4.2.6.2 CompositeEnhancer for supporting orthogonal descriptions.
4.2.7 Polymer Class Behaviour
4.2.7.1 Abstract polymer objects
4.2.7.2 Conformity between population and abstract polymers
4.2.7.3 Conformity across levels of representation.
4274 Abstract engineering values
4.2.7.5 Applying orthogonal descriptions to abstract polymers
43 Delegation in Smalltalk
4.3.1 ScopeEnhancer: Delegation Emulation
4.3.2 Implementing the ScopeEnhancer
44 Hierarchical Schema Evolution
44.1 Assigning Properties to Classes
4.4.2 Building Classes
443 Properties and Partial Template Objects
444 A Mechanism for Partial Template Objects
445 Generating a Behaviour of a PartialTemplateObject
4.5 Data Storage
4.5.1 Attempt 1: ISAM
452 The Role of Database Proxies
453 Attempt 2: Tigris and BOSS

iv

75
76
76
77
77
77
77
77
78

81
82
83
83
84

87
87
87
88
88
89
90
91
92
93
94
96
97
97
98
99
100
101
101
102
103
103
105
106
107
108
109
111
113
113
114
115
116
117
117
118
120
123
125
127
128
129
130
136
137
139
140

Object -Oriented Software Representation of Polymer Materials Inft jon i Engineering Design

454 The Use of Proxies to Maintain Object Identity: an Application View
4.5.5 Attempt 3: The WorkBase

4.5.6 The Use of Proxies to Maintain Object Identity: a Database View
4.5.7 Object Circularity .

458 Proxies and Memory Management

459 Implementation of the Database Proxy

4,5.10 File Representation: Adaptations from BOSS

4.5.11 Storing Class Information

45.11.1 Requirements for class data definition storage
4.5.11.2 Version management of evolving data definitions
4.5.11.3 Data migration of instances

45.11.4 Limitations of application inherited classes
4.5.11.5 Requirements and limitations of behaviour storage
4.5.11.6 Storage of a Smalltalk class

4.5.12 Summarising the WorkBase

4.6

Summarising the Implementation of POISE

Chapter S A Populated, Fully Functional POISE.

5.1
52

Entering the Smalltalk Image
POISEsession

5.2.1 The User Defines the Classification
522 Adding a Grade

53
54
5.5
5.6
5.7
5.8
59

The Comparator

Grade Search by Query
Shortlisting

Grade View

Property Definition.
Transcript

S

Chapter 6 Using POISE to Analyse the Polymer Domain
Chapter 7 Conclusions
Chapter 8 FutureWork

8.1
8.2
83

Extentions For Further Design Support.
Furthering the Role of Object Orientation in Knowledge Representation
Extensions Within the Materials Domains ~ °

142
142
143
145
146
147
148
149
149
150
151
152
152
153
155
156
159

159

161
161
163
164
167
168
169
170
176
177
179
181
187
187

187

189

Object -Oriented Software Representation of Polymer Materils Informstion in Engimeering Design

Table of Figures

Figure 1: Partial ordered set as a hierarchy 20
Figure 2: Taxonomic classification 2]
Figure 3: A sketch of an Ashby chart 23
Table 1: Known characteristics of Smalitalk deemed beneficial to the research 54
Table 2: Known challenges to Smalltalk at the beginning of the research 54
Figure 4. An initial architecture of POISE . 56
Figure 5: The open-ended relational view of an arbitrary polymer grade 57
Table 3; ASCII Campus data file (edited) 59
Table 4: CAMPUS property file 60
Figure 6: Schema of the CAMPUS polymer object : 63
Figure 7. The factoring process 71
Figure 8: POISE hierarchy editing tool 75
Figure 9: MI vs. standard subclassing effect is the same 84
Figure 10: Composite template sharing ‘ 86
Table 5: Mapping requirements to specification. 96
Table 6: Challenging problems to solve 97
Figure 11: Canonical memory representation of static Smalltalk objects, following Goldberg 98
Figure 12: Message redirection for Enhancer 107
Figure 13: Schema of Enhancer 108
Figure 14: Message redirection for Composite Enhancer 109
Figure 15: Schema- hierarchy editor 124
Figure 16: Code- ClassChanger consistency checking for adding and removing 125
Figure 17: Code- ClassChanger consistency checking for demoting and promoting 126
Figure 18: Smalltalk 80 compiler schema - 131
Figure 19: Schema- PTO linking 135
Figure 20: Scanning circularities - 145
Figure 21: Smalltalk image start-up state 159
Figure 22: Selecting the WorkBase 160
Figure 23: Re-starting POISE 160
Figure 24;: The POISEsession window 161
Figure 25: POISEsession- viewing the schema ' 162
Table 72 User menu-functions over hierarchy editor 162
Figure 26: Grade View over new grade EBA 23 163
Figure 27: Starting a property comparison 164
Figure 28: Abstraction display of Young’s modulus over (partiaily) Crystalline polymers 165
Figure 29: Viewing films only for Young’s modulus over Crystalline 165
Figure 30: Comparing abstractions strength across four polymer classes 166
Figure 31: Comparing abstractions 166
Figure 32: Grade search by query search in progress . 168
Figure 33: Grade search by query search specification 168
Figure 34: Sub-shortlist a user defined set of grades 169
Figure 35: Grade view initial text description and specific property 169
Figure 36: Selecting subject property- Start new property 170
Figure 37: Selecting subject property - orthogonal class used for fibre 170
Figure 38: Selecting subject property- classified domain 170
Figure 39: PropertyEditor- new property 171
Figure 40: PropertyEditor on existing property 171
Figurc 41: Datatype 172
Figure 42: Interval, not-collectable, and invisible 173
Figure 43: Comment, method and remove 173
Figure 44: Add to orthogonal classification / remove from polymer classification 174
Figure 45: Property method browser 174
Figure 46: Transcript- selecting abstract polymer for clipboard 175
Figure 47: Transcript- self binds to clipboard contents 175
Figure 48: Transcript- self is EBA, then select variable for clipboard, changes self 176
Figure 49: Transcript- define your own variables 176
Figure 50: Transcript- self and ProspectClasses bound to Set with EBA 176

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

Trademarks

CAMPUS is a trademark of the CAMPUS consortium, Germany.
EPOS is a trademark of ICI Ltd.

-Gemstone and OPAL are trademarks of Gemstone Ltd, California.

ISAM is a trademark of Georg Heeg, Dortmund.

PLASCAMS-220 is a trademark of the Rubber and Plastics Research Association, Plascams Technology
Ltd, Shawbury, Shrewsbury, Shropshire, UK. '

Smalltalk—80, Objectworks 4.0, and BOSS are trademarks of Xerox Intellegent Systems Laboratory, Palo
Alto, California.

Tigre and Tigris are tradmarks of Tigre Object System; Santa Cruz, CA 95060.

Object -Oriented Software Representation of Polymer Materials Infi ion in Engineering Design

Chapter 1 Introduction

Computer Aided Design (CAD) often refers only to the geometric design of shapes. The shape of a design is
only one perspective on the design problem presented to the design engineer. An extended CAD system for
managing all aspects of the design process must address other perspectives. One perspective is the choice of
material. Within this perspective is CAD support of engineering polymer materials’. This thesis proposes a
specification of polymer information, a region of knowledge or domain, which challenges customary
computer representation. This representation, which includes evolving data types, is of particular interest to
knowledge engineers. Its implementation describes new software patterns that challenge object-oriented
language concepts that are of interest to software scieptists. For similar reasons the database designers will
find the approach compelling. The resulting application of this representation will interest polymer engineers,

and potentially all materials and design engineers, for analysing their domains.

A variety of polymer properties characterises the domain of polymer information. They capture the diversity
of the material and the dynamic technological advances still occurring within the industry. Each instance of a
polymer material, a grade, has properties that are a highly complex consequence of the polymeriéation
reaction, chemical mix of additives and processing history. Distinguishing grades by this chemistry and
history is not helpful to design. Designers need to relate properties to the behz.aviorur of their final product.
They design tests on samples of each grade for quantifying the properties that imply some behaviour of the
product. The behaviour relates to the design purpose. Although there are behaviours common to many
designs, such as the behaviour of strength, diverse products require different tests. Therefore, as well as
developing new grades, the polymer industry dynamically develops new tests to describe the behaviour of

polymers in diverse products.

A computer representation is a description of some part of the real world, the domain of the representation,
on a computer. Customary implementations of computer representations, such as in many commercial
relational databases, assume the description of entities in the represc.mtation do not change. Changing the
representation, or “schema evolution”, complicates database management. Logical inconsistencies, evolving
storage in memory, integrating change with data manipulation tools and applications all generate an overhead

unnecessary for most applications of database management systems (DBMS).

* Engineering polymers are synthetically produced solids composed of large molecules built from
simple repeating chemical units (monomers). They have physical properties useful for many different
mechanical and electrical engineering applications. References to polymer, for the remainder of this thesis,
will imply engineering polymers

Object Oriexted Software Kepeesentaton of Polymer Materahs Information in Eagiaeering Design
Computer representations supporting schema evolution are often object—oriented. Object—orientation is an
approach to implementing software. Objects tie data with computér' processes that manipulate the data. The
description of the process is a protocol. Computer processing depends. only on the local data and the
protocol. Together they produce behaviour in the computer that characterises the object. A schema change in
individual objects only affects the internal workings of that object. This localisation of change is a

characteristic of objects called encapsulation, and makes schema evolution simpler to manage.

Schema evolution is still complex, even‘ with encapsulation in the language model. Schema evdlut.ion i8 like
software programming. The changes require knowledge of the schema to ens.ure each change is valid. The
creator of the schema, the programmer, possesses this knowledge, not the user of the schema. A ;:hangipg
polymer domain needs schema t_:volution throughout its life, not just during programming. Empowering,th‘e
user to manipulate the schema requires specialised software tools. Developing these tools requires a study of
schema evolution in context of a specific .schema for materials information to identify what needs to change
and how to maintain a valid represcntation.‘ In barﬁcular,.ﬂxe implementation of the language and database

model considers the following general characteristi;:s of the schema:
e Materials Classification

e Domain property inheritance

e Abstraction of domain generalisations

Software representations of materials classification exist, but representing the classification process is novel.
Inheritance of domain properties and abstraction of domain generalisations are inference mechanism that

follows on from classification.

Generalisation performs an important role during the conceptual analysis stage of design. For example,
plastics and metal are both generalisations from the domain of materials. In the early stages of design, “the
crucial decision-making steps [during design] in being able to deploy domain generalisations effectively are
substantially qualitative””" A step such as approximating the design parameters to test the feasibility of the
design concepts. Using the typical values of property performance to compare plastics verses metals is more
effective than concluding from the specific value from a material test (like the test result for tensile strength

of Huels’ VESTOLEN high-density polyethylene).

Each of the listed characteristics is a unique development in the object—orientated representation of materials

information. A database capable of evolving in a consistent manner while performing these tasks will ‘

2

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
question and challenge the very way objects are organised and communicated. This research presents
answers to these questions in a chosen object—oriented language. The application developed to demonstrate
this research, called POISE, includes the evolution of classification, evolves the descriptions of polymers, and
maintains storage and user interaction throughout this evolution. To further introduce these issues requires a

more detailed account of object—orientation.

1.1 Class-Instance Object—Orientation

Classification commonly organises the polymer domain. A majority of object-orientation supports
classification of objects. In class—instance languages and databases, the class groups similar objects. The
class formally defines the relationship between the structure of data and the protocols for a set of objects. An

instance is one of these objects.

An object’s behaviour acpmds only on the local data and the protocol. Each instance inherits protocols from
the class and they add their local data to specialise the behaviour. Those with the same data behave the same.
Different data produces similar behaviour, since the protocols are the same. The protocols describe the
abstract behaviour of the class. Instances share this behaviour by inheritance. For software development, the
motivation for inheritance is the re-use of a common protocol, which minimises coding. Inheritance also

facilitates representation through the development of abstract behaviours.

Behaviour sharing complicates schema evolution. Instances share the behaviour from their class. A change in
the class affects all the instances. No change in the class can apply to some objects and not others. The class
can not define behaviours that only apply to some instances. For this reason, the principle of classification
must be appropriate to the whole domain, and not some arbitrary portion. An appropriate classification also
generates useful generalisations. Classification is important because generalisation is principle to the process

of design.

Inheritance between classes generalises behaviours even further, forming levels of representation. Objects of
different classes may have common behaviours. By placing the protocols for the commen behaviours in a
superclass, many subclasses can share the protocols by inheriting them. The result is a hierarchical
classification, or taxonomy.

1.2 Object—Oriented Support of Hierarchical Classification

Taxonomy is the process of classification into an ordered hierarchy, forming the familiar family-tree shape.
Each class in the classification groups similar information. This similarity is general to the members of the

class and, therefore is a generalisation. The benefit of taxonomy, over arbitrary classification, is the branches

Object -Oricuted Software Represeatation of Polymer Materials Information in Engineering Design
of the hierarchy differentiate between classes. These differences then support comparison. A taxonomic
classification of materials information can support design decisions by relating similar domain

generalisations and distinguishing relevant differences.

Often a process of specialising generates the classification by distinguish the description of one class from
others. Class—instance languages support specialisation in classification through subclassing. Subclassing
extends the behaviour of a class. Each subclass inherits all the behaviour from one other class then adds its
own specialised behaviours. Each subclass is a class that may be subclassed further. This forms‘ a tree-shape
hierarchy with each class branching to many subclasses. For example the subclass Aeroplane, a member of
the class Flying_mac.:hines from which it inherits the general ‘behaviour of flight’, generates an.instances
DC10_N2z001, Reroplane could be further subclassed by a class DC10, which contains behaviours that
specialise DC10s from other aeroplanes. The inheritance relationship between classes and their subclasses
forms a hierarchical organisation. All instances of a class share (inherit) the same protocols, thus share

similar behaviour and satisfy classification.

The class proyidm the definition of a representation .and a taxonomic classification. Classes can both
represent and classify polymer information, such as those polymers considereq nylops. The class Nylon is a
template for an instance of polymer Nylon Grade. Here an instance models a grade of polymer, a particular
brand of a supplier’s raw product that conforms to a set of properties. Equally, the Nylon class inherits
behaviours describing properties from the class of Partially Crystalline polymers. The network of
inheriting polymer classes is a classification. The classes themselves define the structure and protocols for
representing grades. This resedrch poses the question whether the class can represent polymers exclusively

without compromising the taxonomic classification.

The class-instance paradigm as interpreted by many object-oriented languages has drawbacks when
representing polymer information. The drawback stems from the strict nature of inheritance between
instances and classes. Classes exclusively define the properties of instances; they can not individually extend
their properties. This limits the instances capability to model Nylon Grade. All instances of a class must
extend their properties together. An instance can change its membership to a subclass and add different
properties to the subclass. Such ad-liock subclassing, solely for extending property descriptions of instances,
conflict with the use of the class hierarchy as a taxonomy of the domain. Extending property descriptions will

require a mechanism for behaviour sharing orthogonal to inheritance.

e,

Object -Oriented Software Representstion of Polymer Materials Infi jon in Engineering Design

Conversely, Nylon is as much an entity as a grade. Although Nylon is an abstract concept, abstract materials
have as much functionality as a grade in calculating a design. The class is not normally a computable object
like instances. In some languages, the class is an object with the behaviour to create other objects and provide
those objects with protocols. In addition to providing a description to grades, and evolving that description,
the class of a polymer material needs to respond as a generalised material, giving responses typical of the

grades it classifies.

A grade describes a brand of material, not the material itself. The material results from a common production
process. It is probably subject to a quality control on a limited set of properties, a profile selected for the
grade’s intended use. The rest of the properties are generalisations that are similar due to the common
production process. So, is a grade also abstract? Nylon is abstract because it does not reference specific
examples, and it should even generalise unknown Nylon grades. Nylon is a common chemistry, and the
principle of the classification is based on the belief that chemical composition strongly establishes the
properties. The grade doés reference specific examples. If a new sample of material does not fit the grade
description, then supplier rejects the material, not the concept of the grade. If a new Nylon does not fit the

" abstract description of Nylon then the classification rejects the abstract description on principle.

There is no epistemological reason to distinguish a grade and an abstract material in the way object;
orientation distinguishes the functions of classes and instances. Instances represent grades because the

structural function of instances suitably represents the concrete prop'erty-valués that data suppliers provide on

grades.

1.3 Abstraction of Domain Generalisations

The application of domain generalisations, like Nylon as a design material, is a characteristic of the domain.
Domain experts typically talk of the properties of Nylon in comparison to other general materials. Each
generalisation from a classification forms an abstract concept. This concept abstracts a general behaviour for
each property in the classification. Since designers use these abstract concepts, any knowledge base on
polymer information should contain a representative entity for computation in design. The class Nylon should
not simply create instances of grades but also behave as an object that abstracts the properties of those grades

and provide them for design.

For example, a domain expert might consider the use of Nylon or Polypropylene for the manufacture of a
washing bowl. Here, Nylon generalises the characteristics of the whole population of the class Nylon. If the

' properties of Nylon deem it unsuitable for the design of a washing bowl, tﬁen no grade in the class will be

Object -Oriented S. fware R v i of Polymer Materialy Infi jon in Engineering Design
suitable. To a less formal degree, if Polypropylene shows desirable strengths in comparison to Nylon, then

Pol'ybropylene may be a better class to initially search for a solution.

With a populated classification, the properties of domain generalisations can be implicitly mfened tﬁrough
analysing the properties of member instances. Distributions of tile explicit properties from grades are useful
indicators of the generic behaviour of the domain generalisations. Quantitative coméarisons of these
distributions are possible between classes of different polymers, which provide support to qualitative
decisions' during the search for a design solution. This process of generalisation is called abstraction, and the

generalisations created are abstract polymers.

The properties of abstract materials are also a useful estimate for the value of a member grade where the
property has not been measured. With the continual addition of new properties, the condition of data absence
or “sparse data”, is intrinsic to -an evolving database. If specific data is not available then a detauit value may-
substitute. The default value is a property of a classification that sparse instances inherit. For a dynamic
clas_siﬁcation this inherited value is the same value the domain abstraction exhibits, eg the property of a
Nylon grade expoots a value similar to other Mylons, which is the value abstracted by the general concept of

Nylon.

_ This relationship between the abstract concepts in the doma.m and member grades of a classification also
strengthens the integrity of the knowledge base. New grades exhibiting a property outside the expected
deviation of values in a olassification are identifiable. Tho lmowledge base can then query thece entries; thus
decreasing the chance of data eatry crror, and incroasc intogrity:

1.4 Similar Properties

Objcet orientation supports gparse data through inheritance of a default value. It also allows proceeses
specific to an object. A protocol inherited by an instance can distinguish a measured value from the sparse
state and obtain a default value from the class generalisation. Alternatively, it can query the instance for other
‘similar’ properties, whe_re similar is a subjective quality the knowledge developer encodes in the protocol.
With this knowledge, a protocol can generate a specific process or behaviour of the instance that infers

dofoult data from a similar property or properties of the instance.

Similar properties in materials describe a different test measuring similar physical characteristics. This results
in different values but similar properties will rank relative performance between materials the same.
Oocecasionally oorrclation botwoon propertias can be determined within certain material contexts, eg tensile

ostrongth and hardness coreclation of come polymer families. In the cimplest case; a similar property may

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
substitute for another in analytic calculations. The difficultly with using the correlation between properties of
polymer materials is their uncertainty, poor accuracy and gontextual dependency ‘on the type of material and
other perspectives, like geometry and environment. Calculations using the correlation, or any inherited
default value, need to qualify their results, eg an audit trail. This element of the design domain has not been

pursued further in this research, but its importance is identified.

The relationship between properties, such as these conditional correlations, has highlighted that besides the
values describing grades the properties are themselves entities in the domain. The property contributes to the
representation of grades, as a class contributes behaviour to instances. Therefore, representing the
relationships between properties involves structuring and manipulating relationships within classes. In
addition to a class structuring and manipulating the protocols of instances, now another representation must
structure and manipulate the protocols representing properties in the classes, and thereby model the similarity

between properties and their contextual application.

All class-instance languages manipulate instances. Instances are known as ‘first class values’. Not all
languages permit the manipulation of the class. The manipulation of classes as first class values permits the
evolution of the schema for describing grades and permits experiments that relate the material properties. The
schema describes domain classes as a collection of material property d&ecriptidns. These describe grades of
polymers that collect or infer the values for each property. If the software class can be manipulated then an
interface could empower the domain expert, not just the programmer, to add and remove property-objects

that evolve a class, and propagating the schema change to subclasses and instances.

In many class-instance languages, the class is not a first class valuc and the class definition i3 static. In others,
the class is an object capable of change that affects the schema of the instances they define. In these
languages the classes can represent and evolve a classification of the domain. Smalltalk-80™ is a language
belonging to the class—instance paradigm that allows classes to evolve their description. Both the description
and manipulation of objects occur within a single environment without any separation of the two activities.
This permits the development of a computing system that both manipulates and describes objects. Smalltalk

is the language chosen for developing POISE, Polymer Objects in a Smalltalk™ Environment.

1.5 Smalltalk
Unlike most languages, Smalltalk™ is an interactive programming environment, so programming is an

activity of small iterative changes to the definition of objects that are immediately active in the environment.

Smalltalk™ is a large library of classes, and the objects in the environment with their source code constitute

Object -Oriented Software Representation of Polymer Materials Information in Engineering Deaign
the software itself This resource simplifies and shortens the software development process. An esoteric
feature permits the manipulation of even the language compiler, which i8 also part of the library. It is possible
to extend the language. Smalltalk has often been used as an experimental test bed for language research.
Examples include extending Smalltalk for multiple inheritance’ and developing new Actor language
hybrids*. The research conclusions are not isolated to the Smalltalk environment but apply to any computing

environment that can develop the features studied.

A section of this thesis (Chapter 4) is dedicated to language extensions. Although these extensions came
about because of a need in Smalltalk, they are not believed to be unique requirements of Smalltalk for the
support'of materials representation. An examination into the nature of the behaviour sharing that the

extensionssupport justifies this belief.

The first extension is the Enhancer, which is a very general mechanism for extending the messaging in
Smalltalk. In a class—instance language the control of messages passes along a strict path from instance to
class to superclass. The Enhancer enables individual instances to specify an extension to this existing path.
Messages alien to the standard classification of the object can find meaning in the extension. The extension

enhances the behaviour of the individual instances.

The second extension is the Partial Template Object (PTO). The PTO is an abstraction of the class template.
Each class often defines categories of behaviours. The r10 defines an abstract calegory of behaviouss
independent of the class. The PTO then consistently installs itself on any number of specific classes. Further,
the PTO maintains changes to the abstraction on the specific classes. Although this implementation of PTO
affects classes, any object paradigm with a repository of behaviours could take advantage of this kind of
abstraction. The mechanism is of particular interest to any system supporting schema evolution since it can

quantify formal changes to the schema.

1.6 An Alternative Object—Orientation: Prototypes
The class—instance representation of materials is not the only possible course of action. An alternative

approach uses prototypes. A prototype is an object that manages both data and protocols. Both the data and
protocols are available for other prototypes to inherit. A grade as a prototype can add its own unique
protocols like a class. An abstract material can respond with its own behaviours like an instance. Zucker'

uses prototypes to represent the purpose of material selection in design.

The different virtues of class—instance and prototypes® have been well argued. The consensus is that they

each describe a different type of behaviour sharing, and neither limit languages to these types. Therefore, it is

Object -Oriented Software Representation of Polymer Material Information in Engineering Design
more relevant to study the specifics of the behaviou.r. sharing supporwd by a language. Zucker’s work io
reviewed for its unique contribution to behaviour sharing, which extends delegation with enforced
classification. He uses this combination to represent the evolution of the design description, or the
‘application perspective’. This thesis investigates the use of the Enhancer to see if it will support Zucker’s
objectives. The Enhancer extends classification with dynamic implicit empathy, a type of behaviour sharing

similar to delegation.

‘An example of the application perspective of a disposable cup is the description; “Rigidly contains water at
100°C” and “Connects to a surface of less than 30°C” for a handle. This description of the application is
independent of the material. It does not convey a restriction on the material properties explicitly, ie the
disposable cup does not specify a material rigidity at 100°C. A prototype of this description. combines
information from other perspectives, such as a materials perspective, and deduces if the material satisfies the
design purpose. Consider a polystyrene cup where the thermal conductivity of the material and the thickness
from the geometry perspective could conclude the outer surface of the cup remains much lower than 100°C
and maintains rigidity at this lower temperature. Other prototypes specialise the geometry, adding ribs to the
cup, thus reducing the stiffness required of the material at 100°C. Decomposing prototypes into perspectives

enables each to evolve independently and structures the design problem.

If the object model representing design abstracts design into an application perspective and a materials
perspective, then the application perspective is an object that shares behaviour from objects representing
materials. Other objects also share behaviour from materials, like the user-interface that displays a material.
These objects are all users of materials’ behaviours. The software design of the materials perspective impacts
on all these objects. The software design also depends on the languages ability to traverse these object
boundaries through behaviour sharing. The software design must also consider the effect schema evolution
will haQe on the consistency of behaviours. Overcoming these difficulties in the materials perspective is the
main modelling issue addressed in section Chapter 4, as it applics to Smalltalk.

1.7 POISE Tools

POISE provides a number of user interface tools for manipulating the classification. One browser empowers
the user to define new properties. With another, the user assigns properties to classes within a hierarchy. The
same browser also moves classes and defines new classes. A modified Smalltalk engine for schema evolution
ensures consistency and supports the abstraction of new properties added to classes. These abstractions are
then viewed in a third browser for comparing the general properties of classes, such as the tensile strength of

Nylon.

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
To deteni;ine the general tensile strength of Nylon requires a significantly sized population of knowledge on
Nylons. A data acquisition tool initially populates POISE by reading information ffom an existing materials
database called CAMPUS™®’. CAMPUS holds data on raw polymers from many major suppliers. CAMPUS was
readily available and it contains a large population of polymer grades and a consistent set of properties. A
class called Polymer defines these general materials properties. CAMPUS defines a chemical family property
for each grade. The data acquisition tool uses this property to define a class that inherits from Polymer. This

class generates an instance to represent and initially classify the grade.

With the tools developed and a population of grades, a separate study by Spedding® uses POISE to determine
an “appropriate” taxonomic classification of polymers for engineering design. The classification abstracts the
domain generalisations on which the designer visualises their qualitative judgements of similarity between
properties. Hence, the nature of the classification affects the groupings of similarity within the domain. An
appropriate classification is one that groups similar materials appropriate for the task, engineering design, and

preferably design in general rather than specific design.

Spedding uses the tools to compare the abstracted properties of the CAMPUS polymer families. One
observation was the wide-ranging effect addiﬁvm had on the properties. So in a single polymer family
significant deviation in property values were dué to the different additives and masked any expected concept
of similarity. The Enhancer was a consequence of this discovery. The Enhancer permits generalisation over
secondary groupings orthogonal to the polymer classification. Orthogonal classes like Film and Fibre can be
viewed independently of bulk engineering polymers, which are engineered for extreme geometric conditions.
These grouping are orthogonal since they are a group of the whole polymer population dedicated to
supporting a specific property of another perspective.

1.8 Summary of Objectives

The underlying objective is to resolve the software issues arising from implementing in Smalltalk a
representation of polymer information intended for design. The essential requirements for design are the
domain concepts of material properties, taxonomic and orthogonal classification, and abstraction. The
domain expert declares the polymer classification and engineering properties, and the software evolves the
schema accordingly. This user-defined schema represents a classification from specific grades to generalised

polymers.

The intention is to build this representation into a working application. 'The POISE application requires a

management system for the persistence of design knowledge contributed by the user, and effective graphical

10

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
user interfaces for driving the tools, and import facilities for transforming relational data into the object-
oriented representation. These features are significant because they must consistently perform their tasks as
the schema evolves. Each esoteric phenomenon of the representation is thoroughly described, but a formal
study into each is avoided since they are a consequence of performing the research into the representation.
Special attention is given to the properties of the language extensions since they are a criticism of the
underlying object model supporting the representation.

1.9 Introduction to the Literature Review

The use of classification in design is the principle that suggests a class-instance language strong on
inheritance will provide appropriate support to engineering design decisions. This conceptual model of
design is reviewed, putting classification in perspective with the task of finding a suitable material
description to match the product specification. This in turn demonstrates the dependence on preconceived
concepts of similarity because set theory limits classification. The question is then one of choosing a
classification, an appropriate classification, for engineering design. Current literature only suggests the basis
for a classification is on principles of the material’s physical characteristics, and not on the use of the
materials, which are only indirectly related to physical characteristics. The review then presents Spedding’s

in-depth analysis of classification that utilised the software product of the present research.

Substantial literature exists on the.science of representing knowledge from basic computer data. Frames are
introduced as a sample of this field. They arc also an early application of inheritance for the representation of
generalised descriptions. Inheritance is not a simple issue in knowledge representation. With classification,
there are often exceptions between the generalised description and individual entities. If entities inherit
characteristics from the generalised descriptions, mechanisms must permit exceptions to the inheritance of

properties. This though can lead to logical inconsistencies in systems with multiple inheritance paths.

Data modelling studies the structures for containing data. All computer languages and databases are built on
data models. Many still use simple record structures. Qver large quantities of data, the relational model
provides manipulation that is more flexible. In engineering, it has limitations due to the wide range of types

of data. Each polymer property introduces another type of data to relate to the material.

Data modelling only structures data. The meaning of the structural components is simple and homogenous.
Semantic data modelling classifies common types of relations. These types add more meaning to the structure

of the data. The arguments for adding semantics to the data is equally applicable to developing a semantic

model for adding properties to classes of polymers in an object—oriented system.

11

Object -Oriented Software Representation of Polymer M ials T ion in Engineering Design

The concept of the object is addressed thoroughly. Encapsulation, messages, empathy between objects, and
delegation are described. These are then related to the two main types of languages, the class—instance and

the prototyping languages.
The rest of the thesis splits into three parts: Specification, Implementation and the Application.

The specification of POISE details all of the features built. Namely the data acquisition, grade instantiation,

classification, generalisation, abstraction, user interface design, and data storage.

The implementation specialises on the language extensions, the Enhancer and the PTO. A number of
applications utilise the Enhancer in particular, including enhancing grades with orthogonal description,
enhancing classes with generalisation and abstraction, applying the Enhancer to a variation of delegation, and
enhancing any object with persistence in an object storage. The PTO is part of a larger discussion on the

mechanism providing schema evolution to the polymer classification.

Two chapters re-enforce the application of POISE. The first is a walk-through description that demonstrates
the user interfaces and the underlying functionality. The second presents a domain expert’s conclusions
resulting from using the application. This domain expert, Spedding, examined the domain for appropriate

classifications.

12

Object -Oriented Software Representation of Polymer Materials Information i Engmeering Design

Chapter 2 Literature Review
“The claim that method may prompt inventive steps [in design] will seem rash, if not ridiculous, to
some. But arguments, which can be built on the lines put forward here, will often reduce to a
marching logic which leads inexorably to a minor but unmistakable invention™

The representation of polymer materials information for design is itself a software design problem. The first
stage of design methodology is to specify the objectives. The objectives then decompose into a number of
'speciﬁc software requirements for achieving each objective. One objective is to identify suitable materials.
This literature review follows the current argument that browsing through a classification of materials meets
this objective. Along the way, the review introduces other works contributing to other objectives in polymer

materials representation.

Browsing introduces requirements on the representation of mmﬁm. Browsing views groups of
information. These groups need representing. Browsing traverses the relationships between groups. These
relationships need representing. These groups and their relationships form a classification. The review
analyses a conceptual model of the design problem to collect concepts of similarity to group materials for the
designer to browse and identify the nature of the classification. Tile review then proceeds to review work
defining similarity, abstraction, generalisation, classification, appropriate classification and problems with

classification.

After specifying the software requirements, a broad solution is sought in terms of representation technology.
Although the software methodology has already been identified, namely object-orientation, this should not be
confused with the knowledge representation model. Although many knowledge representation models were
developed in non-object—oriented software languages, an object-oriented language could implement them
(and in some cases more effectively). Indeed, the review introduces knowledge representation features that
object—oriented languages adopt in their object model, like inheritance, and will enhance the polymer

information representation.

Finally, the review introduces in detail the object model for software development. This review provides the
_necessary background to convey the significance of the language enhancements found necessary to achieve

the representation.

2.1 Polymer Materials Knowledge for Engineering Design

The suppliers of materials generate vast quantity of materials knowledge. Suppliers tailor much of this

information to their customers, the design engineer. Demaid et al'® characterise materials information as rich

and complex, and much of it far beyond the capability of current databases to analyse. In Spedding’s®

extensive review of materials information available from suppliers, she describes “a wide variation in the

13

Object Oriented Softwre Rep ion of Polymer Materials Information in Engineering Design
form and level of detail of the information”, usually disseminated by supplier data sheets. Within the
information there is a subset of materials knowledge that software can help analyse. Suppliers of materials

even tailor some information for software analysis.

Suppliers contributing to the CAMPUS® project agreed to a standard of data presentation. EPOS™ ! is a similar
standardised system by the supplier IC1. They provide a uniform data structure and comparable data. This
enables a database approach to information storage, retrieval and analysis by query. The CAMPUS database
software supp.orts materials comparison against a template. The template is a query that describes ranges of
property values of interest. A query then selects all materials that satisfy all the range conditions. Once the
selection result reduces to a manageable number, CAMPUS can retrieve a text description of each material.
The text records information too complex to analyse by the query mechanism. At this stage, the domain

expert must analyse the remaining information.

The query procedure dictates the extent a database system can analyse information before user intervention.
The objective of a query procedure is to reduce the number of candidate materials. At the same time, the
query should not reject materials that might not be optimal but could satisfy the design criterion through

compromise.

Plascams—220™12 g product of the Rubber and Plastics Research Association, has a similar representation to
cAMPUS but advances on simple numerical comparison, and instead the query procedure ranks materials. The
ranking could avoid rejecting any material, but in practice, many materials towards the bottom of the kst are

not useful, so an arbitrary limit is placed on list size to reject those materials.

Ranking materials against a single property criterion is simple. The difficulty arises when two design
criterion conflict. This is common since optimising one property will rarely optimise another. In Plascams—
220 the designer places a weighting on each property the designer wishes to optimise. The ranking algorithm
can bias each property then sum the biased values for ranking. Zucker' analysed the ranking algorithms
ability to promote suitable solutions and found they do not model well the activity of selection by designers.
Consequently, potential candidates are lost far down the ranking. Further, Hopgood' found the inference
mechanism gave a poor property with low importance a weaker ranking than a poor property with high
importance. Hopgood suggests an alternative inference mechianism (AIM) that gives a ranking more in line

with designer’s expectations.

Others use “Fuzzy Logic” **"* to define a probability profile for measuring a material’s suitability. Simply

put, the weighting, or profile changes depending on the properties distance from a satisfactory value. All rely

14

Object -Oriented Software Representation of Polymer Materials Information in Engieering Design
on the designer’s judgement for weighting one property against another to correctly bias the ranking towards

the desired design specification.

Ashby'® addresses the problem of combining design constraints. First, he converts individual properties
constraints to Dieter’s merit indices'’. A merit index applies the physics of the design problem to relate
material propertes, eg “specific stiffness, E/p (where E is Young's modulus and p is denaity) ... large values
of E/p ar;e the best candidates for a light, stiff tié rod”'®. The difficulty is oﬁm devising appropriate indices

for specific design problems'®.

A design can have multiple merit index cqnslraints. Ashby proposes that ‘subjectivity is reduced or
eliminated by employing the “coupling equation” method and the method of “currency exchange”"‘.' The
coupling equation method combines multiple design constraints on the same merit index function. More
commonly, designs have different design objectives, and therefore different mir¢lated merit index functions.
For each objective, a judgement of value is given to its merit index. The judgement of value provides a
common currency for trading off fhe design objectives. This currency exchange minimises the subjectivity of

the judgment.

Software technology is still a long way from developing a query proceduré that returns a list of ranked
materials that satisfy a design specification. Judgement is still required to trade off between different
oriterion. In cases where there is no physical foundation for judgement, Ashby’s currency exchange and
Sargent’s review of the problem of decisions and selection'” are the only available approaches. Promoting
judgements with physical foundation, which are always superior, will minimise subjective judgements.
Although this is the objecﬁve of the computer aided design systems, there will always be need to support the

subjective judgements.

Where the user is not able to specify requirements essential for conducting a database search, the metaphor of
hrowsing'® offers a different approach for obtaining a solution, Further, browsing information in a way that
reflects the physics of the materials will promote judgements with physical foundation. Browsing has added
benefits. It supports information both well represented and poorly represented, complete and incomplete.

Interaction with the user is also more likely to support evolution with design.

Browsing to a solution depends on the presentation of the information to guide the designer. Software

support for browsing needs to present the information in a useful way. Browsing therefore has different

15

Object -Oriented Software Representation of Polymer Materiahs Information in Engineering Design

demands on information representation. A conceptual model of design identifies the objective of the
designer, thereby identify what the software needs to present to the designer.

2.1.1 A Conceptual Model of Design

An engineering design application starts with a loose description of performance of the desired artefact. At
this point, the artefact does not exist. What does exist, to a greater or lesser extent, is a Product Design
Specification (PDS)**?'. The PDS is a functional and formal statement of requirements, not a description of the
product itself. Inevitably such a specification will be incomplete and contain errors, eg a prototype of a
kitchen appliance attracting dust will trigger realisation that electrostatic properties of the polymer are
relevant for the saleable appearance of the appliance and the extra requirement added to the PDS. The use of a

PDS to categorise the design process is discussed by Pugh®.

As the design activity progresses the PDS will evolve. When gaining new information and correcting existing
information the design problem changes and hence the PDS changes. Il defined or ill structured problems

change during the process of solving the problem, and are notoriously difficult™®?*,

Relevant parts of the PDS forms a Materials Design Specification (MDS), the materials perspective' of the
design. Known material descriptions (MD) matching the MDS, partially satisfy the PDS. Demaid and Zucker”®

describe two measures of confidence when matching properties between descriptions:

“How close is the description of an element in the MDS to the description of an element in the MD?
The relative description.

How close is the value of an element in the MDS to the value of an element in the MD? The relative
value.”

A material can always further specialise differences in relative dmﬁpﬁm. For both imaginable materials and

existing material, the list of materials properties is potentially infinite.

Testing all materials across a large set of different property descriptions is impractical. It is costly for
material suppliers, so they are selective in their choice of properties to test. biﬁ'erent polymer suppliers
inevitably select difforent propertios even for similar materials: Materials with different liots of propertics,
such as those between different suppliers, cannot be compared with equal confidence; they differ in relative
description. To solve this problem within the polymer supply industry, four major suppliers developed
CAMDIUS, a database with a oonsistent list of polymer property values. Oberbach’ describes the necessity of

the CAMPUS development.

A consequence of a consistent set of propertics is generality. The properties in CAMPUS are general polymer

tests, which apply to nearly all polymer material.

16

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
“Materials descriptions from different sources are described in such a way that the individual
attributes they contains are generally useful. This is done by attempting to make a material property
as independent of a particular product or application as possible and is reflected in the test conditions
used to determine that property. The description of a material required for an artefact on the drawing
board is, however, asserted in terms of the functionality of that artefact not in generally useful terms.

So, my plastic box of computer disks must not break when dropped onto a hard floor: this is not the
way a general purpose test is formulated.”*

Divorcing tests from any specific application means properties characterising atypical attributes of polymers
are absent and unusual extremes in application geometry, processing or environment are not represented but

these can be of particular importance to a design.

Indeed, the CAMPUS properties, although very general in that the test can apply to most material, are highly
specific in their “relative description” in order to enable proper comparison between the “relative values”.
They are therefore not abstract descriptions of design. It is difficult to describe purpose-related MDS in terms
of these properties, yet to compare with the generally described MDs within a general query requires this

compromise.

French values the contribution of abstraction in design, but has this to say about generality:

“More abstract does not always mean mare general. If we want to design an elastic beam, the highly
abstract but very specialised view of a beam as two flanges and a web, the flanges taking all the
moment and the web all the shear, is immeasurably more useful than the very general theory of
elasticity. The key to ... the cruder concept here is its greater abstraction (only three areas and a
depth) and its purpose-related nature.”

This quote ignores the design step that occurs before the elastic beam specialises the solution, which
identifies the general theory of elasticity as a solution (o the design problem. The theory of elasticity
generalises the specialised behaviour of the beam. Initially, the designer must identify the general theory of
elasticity as a general solution to the problem then infer, from the beam’s association with elasticity, the
specific beam solution. The details of the beams behaviour distinguish it from other solutions associ#ted with
the general theory. French’s point is that design benefits from abstract solutions but these solutions may not

be general. Specific use-related abstract solutions are more useful.

Why the specialised view of the beam is a greater abstraction ig not 8o clear. The view of the beam is a
geometric abstraction. The general theory abstracts over all geometry by applying finite analysis. By the
reference to four geometric variables, French might be assuming a specific geometry with a simple solution,
rather than the variables needed to solve an arbitrary geometry using finite analyse. The distinctioﬁ between

these cases is an example of generalisation in the geometric perspective of the design.

The beam solution is more useful because it specialises the geometry. Progress towards specific instances in

any perspective is useful to design. Material properties that suggest a specialised class in another perspective

17

Object -Ormmd Soﬂwlte Representation of Polymer Materialy Information in Engineering Design
will appear more useful when that perspective is a free variable in the design. If it is not a free variable then

the design needs general properties, which have a more complex relationship with other perspectives.

Zucker' observed the domain expert disregards whole categories of properties, “those properties that were
strictly electrical or load-bearing properties, none had any significance to the selection of kitchen containers”.
These categories relate to very general purposes. A design speciﬁcation often addresses only a small number
of relevant properties out of the many properties that describe materials. The designer makes a decision
collectively'on the categories of property, regarding its relevance to the design problem. Designers base these
décisions on their physical knowledge of the categories and not ffom any explicit information about the
properties. In the case of beam design, the category of elastic properﬁ;as in the materials perspective and the
cross section of the beam geometry pérspective describe the application of the beam. The overall application

perspective specialises each design perspective.

Specialising each design perspective depends on the level of detail in the application description. Matching
general properties between MDS and MD identifies the general characteristics of materials, or selects or rejects
whole categories of materials. As the classes of material become more specific, the problm of distinguishing
matérials requires propert}i&s that will match the level of detail in the application. Consequently, properties of
more specific material classes depend more on the context of the other perspectives.

2.1.2 Logical Abduction of Properties in Classification

Inferring the behaviour of materials from the general behaviour in a class is abduction. Abduction * is
synthetic reasoning in science, engineering, design and even in everyday life, which forms and accepts
explanatory hypothesis that accounts for a set of facts. If ﬁ material behaves like a polymer (the set of facts)
then the hypothesis forms that the material is a “member of the class of polymers”. The hypothesis is useful
for explainilig material’s behaviour. If a material is known to be a wlﬁa, then abduction infers the
behaviour of the material from the behaviour of polymers. Consequently, the behaviour of polymers is very

general in order for the behaviour to apply to many members.

Abduction declares a co;lcept, the class, which accounts for a set of facts and is a repository of general
knowledge. Often facts are deduced from observing the members. Statistical facts, such as the mmlmum and
maximum values of a numerical property, can contribute to the deseription of the class. The designer deduces
the class relevance to design problems from the class description. A design for a furnace, for example,
exposing the material to a temperature of 500 degrees Celsius can immediately disregard polymers if the melt

‘temperature is always less than 500 degrees.

18

Object Oriented Software Representation of Polymer Materials Information in Engineering Design
The properties in CAMPUS characterise members who, as a group, share a concept of similarity; they are
engineering polymers. By selecting properties common to all polymers, CAMPUS identifies what is similar
across all polymers in terms of those properties. This selection of properties can define 2 membership
function. The function selectively defines the concept ‘Polymer’ and describes a class of ‘Polymer materials’.
The process of identifying similar characteristics and then the subsequent use of those characteristics as

properties for grouping members, is classification.

The power of classification for inferring properties is well discussed by Fahlman®’. If the designer knows
some fact about the Nylon class of polymers, that excludes the material from the design, then this
immediately excludes any material known as a Nylon. This inference by abduction occurs without referring
to any physical properties of specific materials. The general concept of Nylon infers the fact in question upon
the specific materi'al. A search through all known instances of material is no longer required; instead, an on

mass test applies to classes.

There is much more debate on the benefits and pit-falls of classification. Ackerman?®, and Smith and Medin®
both analysis a more complete philosophical definition of classification and concepts. The benefits of
classification to design are emough to justify representation in a materials database. The computer

representation of classification needs a formal description.

Many software systems already represent classification, and it is a feature of all class-instance object—
orientated languages. All build on a simple formal model of sets. Even this model uncovers some pit-falls of
classification, which manifest themselves as conflicts in the representations. This model also characterises
the limitations existing in contemporary computer data-models, and therefore the limitations of the proposed
database system.

2.1.3 A Simple Formal Classification Model

Taxonomy is classification that refines each class into subsequently more specific “levels” of classes. The
mathematical abstraction of the poset, a partial ordered set'’, models the relationship between classes in a
taxonomic classification system. Category theory’ is a more complex model of the relaﬁonship between
classes and their properties. Morphisms, the formal description o'f properties in category theory and
properties describing classes in computer languages differ significantly. The latter are much more expressive

and do not obey a formal logic. The simpler poset model applies to a category in category theory if restricting

* The use here of category is not strictly consistent with mathematical semantics of category theory. The
theory defines the descriptive functions (Morphisms) as transformations between valid members. This is
more akin to object-oriented classes transforming the state of instances. Here the category is like a set but
instead of the descriptive functions defining membership, they only specify membership.

19

Object -Oriented Software Representaion of Polymer Magerials Information in Engineering Design

morphines to membership functions. The membership functions of sets suffice to model the relation.;xhip
between classes and their properties. To clarify the description between classes and their members, a member
is a set of properties, a property-set. A class is a category of members. Therefore, a category is a set of '

property-sets that satisfy a membership function.

Property list Domain Membership

SmO" A(x):(l.2.3.45 }ax Lorge MA)={{1,2.3,4,5}

‘ 1.2.3.4){1,2.3,5}
B:(1.235 } ax 01.351.2.3}23.4)
) S 1.3)2.3
Taxonomic classification @ CO041.234) 2% %3))"Z }
i F):{23.4 } ax

Incluslon
uojsnjou|
diysiequiein

Delegation or
multi-inheritance

Mixed perspectives
Large

Instance

Figure 1: Partial ordered set as a hierarchy
Sets and categories related by inclusion can form posets. Inclusion®® relates any set to its subsets and relates

categories in taxonomy. The hierarchy in Figure 1 describes a classification of sets categorised by the
inclusion relationship. The letters from A to I are categories. The categories’ members are sets. The function
M returns the membership, which for category A is all sets in the domain. Consider each set a material with a
number of elements (the properties) as descriptions (eg, material {1,2,3} has property 1 and 2 and 3). The
functions A(x) through I(x) specialise, or assert, the membership for each category (eg A({1,2,3}) is true
since {1,2,3} is a subset of {1,2,3,4,5}). The properties inherit, so category B is subject to function A(x) and
B(x). B is said to subsume the properties of A, by the process of subsumption. Category I is subject to all the

functions. Of all the members in the domain, only {3} satisfies all the functions and belongs to category I.

The top portion of the graph in Figure 1 is taxonomic classification because the membership of lower
(specifit) categories are exclusively members of one higher (general) category. For example, the members of
D are exclusively the members of B too, whereas the members of E are members of both B and C. A
consequence of categories B and C not being mutually exclusive. Strictly, the exclusive categories are a
requirement of a poset. E is said to mix the perspectives of B and C. If classification decides the subsets of

{1,2,3} belong exclusively in category B or in C, as in Figure 2, it becomes taxonomic.

20

Object -Oriented Software Representation of Polymer N ials Inf ation in Engineering Design

Touretzky®' points out it is generally faster to search an ordered tree (a poset)_than an unordered list. :I‘he
efficiency depends on the organisation. f’Oﬁcn we will have more than one retrieval task in mind, with each
task requiring a different organisation of the hierarchy”. A search is efficient if ‘thc categories’ assertions
concludc which branches should be subsequently searched. A search becomes less efficient if the assertions

are independent of the search criterion.

Membership

0 . Large
. 5 Q . MA)={{1.2.3.45}
e A():{1.2345 Jax - {1.2,344.5){1.3}
) {(1H2{3}4} 5

B():{1.23 }o x

DG0:{1.3 } 2x

3
o
c
g
@]
3

HOO{1 } 2x KO:3 } 2 x
Instance

v

Figure 2: Taxonomic classification - '
For example, compare searches in Figurel for the followigg subsets: {3} {1,3,5} and {1,2,3,4,5}. The

set {3} would require a complete search of the whole tree, through every node, until found in node I. The
classification does not factor on the property of element 3. Whereas {1,3,5) is exclusively in categories
A B or D. The set {1,2,3,4;5} is neither a member of B or C so the search can exclude the rest of the tree in

two decisions. ..- - . .

Fora matenals class:ﬁcatlon there is more than one retrieval bask in mmd, since many clwlgno w111 use the
classification. There is not one MDS, but many At each level of the classification categories identify
characteristics which clearly distinguish the categories. Each category must also characterise properties
useful for matching MDS, thereby conclusively narrow the scarch for a suitable candidate material. The
categories for one MDS may not be useful for, another MDS. In practice, optimising the classification for all
MDS is not possible, but attempts are made to make the classification appropriate for engineering design
problems. . : .

2.1.4 Appropriate Classifications .

What makes an appropriate clasmﬁcauon of materials for engineering design? Classification is a process of
1dent1fy1ng “snmllar" charactenstlcs where similar at this point is an arbitrary common concept

Clasgification then uses ﬂlose characteristics as propertles for categonsmg members In one sense, an

¢

21

Objet':t-OrimtedSoﬁmkmﬂﬁunofPolymu" ials Information in Engineering Design

appropriate classification discerns similar characteristics that ultimately result in assertions useful for
searching. Although there are many retrieval tasks in mind, often the tasks themselves have similarity. One
approach identifies similar features in MDSs. MDs then group depending on the MDSs they best match. This
approach has been favoured by some’? as it produces ‘useful’ application specific assertions. There are a
number of problems with this approach:

1) MDSss do not classify in an exclusive manner. A MD can satisfy more than one MDS.

2) MDss do not classify across the whole domain. New MDs might not satisfy any of the MDSs.

3) New MDSs can be defined that are not similar with any of the existing categories, thus needing ad-hoc
classification to introduce a new category of MDs, which satisfy the new MDS.

The last point is relevant to a comment of Zucker’s:

“Similarity’ is known to philosophy as something of a snare and a delusion and we suggest that it
cannot be used to group descriptions on an ad hoc basis — it is the context provided by the
properties of the artefact which constrains the pattern of similarity in a selection system.”*

In addition to ad hoc classification, Zucker says the purpose of the MDS, the properties of the artefact,
constrains what is similar in materials. Representing similarity between MDS and MDs explicitly in the
structure of the classification system is inappropriate. The act of classification is not an act in satisfying
design criterion.

2.1.5 Conceptual Schema of the Cambridge Materials Selector (CMS)

Most software systems catering for polymer information have not developed advanced representations. They
rupresvnt malurials us & liot of property values and foous on developing inference mechanisms that seleot
materials using some satisfaction criterion in some way relating to a design specification. One exception is
Ashby’s'® Cambridge Materials Selector (CMs)”, which represents generalised data and focuses on
presenting the information. The CMS demonstrates the effectiveness of generalised materials information at
the initial stages of design, The CMS does not relaic the general data te specific data on grades, whieh limits

the cMS to the initial stages of design.

cms rapidly accesses to a wide range of datn at low preeision; which supperts the preliminary selection in
design. The cms diverge from selecting individual materials, with its precise and narrowly focused data.
Instead, CMS provides a relevant level of information to questions raised in the initial stages of design, so

anowers with broad eategorios of material, with low precision.

“The nature of the data needed in the early stages [of design] differs greatly in its level of precision
and breadth from that needed later on”*’.

Whereas a specific material expresses a precise value for each engineering property, a category of materials
can express a range of values in the category. The range is of low precision, but it expresses a broader scope

of materials than the precise value of the specific material. The property profile of such a category reflects

22

Object -Oricnted Software Representation of Polymer Materials Inft jon in Engineering Denign

the property profile of the members in a broad and loose manner. In this way, the category gencralises bver

the members it contains, and characterises an abstract material.

' B ,// jneering]
1000 pz/ ; ics
Li rod
-y ¥l
100
Young’s
Modulus, ,
E (Gpa) 10. // ,
e .
Al Engineering
;o
[/ , Pqlymers
Lol s
/ ’ ' ?
! Flexible
01 &
0.1 1.0 10.
Density, p , Mg/m’),

Figure 3: A sketch of an Ashby chart*
The cMS factors the materials domain into broad categories of materials, based on conventional material

classes. These classes are founded on material principles of common chemical and structural composition,
and are familiar to domain experts. They group similar properties, similar processing routes and often similar
applications. They produce useful abstractions because generalising clusters the properties of the members
across many types of properties. These clusters then differentiate the different abstract materials. This is

important if the abstraction is to be useful in the selection process.

At the initial stages, it is more appropriate to answer design questions generally with an abstraction than with
a specific material. CMS achieves this goal by visualising the abstract material families through a graphical

user interface (Gur), Figure 3.

The Gul enables the user to plot two dimensions of the selection space. ﬁe CMS supports the process of
evolutionary design through this GuI by allowing a progressive refinement of the selection space. The
complete selection space in the database is multi-dimensional, each dimension a property distributing the
domain of materials. The GUI displays any plane in this multi-dimensional space by choosing two functions
of the material properties, typically factors from merit indices, defining a surface for graphing the abstract

materials of the domain. An ellipse on the graph represents each abstract material family, mapping the extent

23

Object -Oriented Softwars Regresentation of Polymer Matesials Information in Engineering Design
of property variance within the family. The user can then mark an area of the graph to select or reject
materials. Then the, user can change the dimensions, ‘graphing the selected materials against different
properties. In this manner, the dwigner reduces the selection space from the whole domain of materials to a

select few smaller categories of materials.

The information provided with CMS, the classes and generalisations, 18 the result of protessional expertise and
data analysis done elsewhere. The CMS does not support any databése functions other than retrieval of this
pre-dofined information. The CMS5 i3 not a dnmbase'systcm nor supports the process of clagsification. CMS

only describes a hierarchy of abstract material based on classes of a classification system.

The main drawback of materials representation in the CMS is it can not support specialised property
descriptions. The properties must be general to all materials in order to position each class in the selection
space. Even some ‘general’ properties in the Cm$ have semantic differences. This could cuuse sume error
the homogenous selection spacc For example, the definition of yield point for metals and plastic is different,
yet both share the same selection space. The precision of the géneral values CMS represents often permits
minor differences in the relative descriptions of the properties within the same selection space.

2.1.6 Managing Property Pedigree and Test Data -

CAMPUS, Pascams—220, EPOS and CMS all describe materials with highly general properties. They do not
describe the purpose-related properties that fit design descriptions better. This is largely because these
properties do not apply across all the materials they represent. A database capable of specialising the
representation for smaller classes of material would be capable of representing propqties that are more
specific. An appropriate classification even needs these properties to distinguish the more specific classes of
material. In the extreme, new properties will describe specialised classes of material. These new properties

define new tests, and with this comes altogether new problems for database management.

Empowering the user to extend the descriptions of materials requires database management of both the
grades and their descriptions. The M/Vision™ system supports management for grades and their descriptions
but does not support abstraction: Mor is it object-orienuited, 50 the deseriptions are just named values without
any combutational power. M/Vision though does demonstrate the complexities with managing even “simple”

property descriptions.

Conditions and procedures qualify each test designed to quantify the physical properties of the material. The
conditions normally include the environment, physical geometry and manufacturing technique of the tested

sample. The procedure includes the technique and physical description of the test apparatus. Tests are

24

Object -Oriented Software Represeatation of Polymer Materials Information in Engineering Design
standardised so the conditions are the same, and hence provide some consistency when comparing relative

descriptions of different materials. Ashby* also emphasises the consistency of testing.

In order to test consistently, the test must identify all factors that affect the test result. Sometimes the factors
affecting the result are not known. Lee®® illustrates this in a case where a hydrogen environment, in the
design for a rocket fuel pump, adverscly affected the embrittlement of nickel-based superalloys. The
relationship was not known at the conceptual stages of the design. Later, after the relationship was

discovered, a new test was needed.

A poor test description can result in a poor property. Results of the new hydrogen embrittlement test were
found to differ from different labs. Slight difference in test specimen microstructure resulting from different
methods of making test samples caus;ed different results. The test was subsequently modified. Lee coins the
use of “pedigree’ to describe well-defined and understood property descriptions. Initially the property was not
well understood. Discovering the new relationship with hydrogen and then the further refinement of the test

description to standardise the microstructure of samples improved the test pedigree.

Quality management of test information has particular demands on materials information management,
especially when acquiring data. lLee used the database management system M/Vision. M/Vision has multiple
databanks. The test data enters into one data bank then passes through a spreadsheet that filters the test data
ensuring the data meets the necessary pedigree, before entering a “materials” databank. For each design,
another spreadsheet selects those properties appropriate to the design, creating the “materials design
allowable” databank. For example, the materials design allowable databank could exclude data from an

embritalment property that does not take into account of the hydrogen environment.

M/Vision is a database system with t;lle purpose to store and disseminate consistent materials data.
. M/Vision’s idea of a material is the tested substance, not the abstractions of the cMS. Data are one of an
extensive, but limited range of data types, eg numbers through to graphs. M/Vision does qualify the
relationship between material and'data with a description of the test and the quality of the result. It supports
categorisation by relating materials to a named category, but does not infer inheritance or represent abstract
materials like cMs. Unlike most database systems, M/Vision can extend the description of materials to

include new types of properties.

25

ijeu-OlimtedSoMeRwuﬁo'not‘Polyl;Je" als Inf ion in Engineering Design
2.1.7 Capricious Properties '
Sargent clearly identifies a difficulty in classification caused by properties known to be capricious.

“The [Ashby] diagrams are most useful for selection at the conceptual stage of design because of the
reliance on complete data being available for every property, for every material. The sparseness of
real data implies that data from several closely related materials can be, and must be, merged as a
material class to get a complete set. This implies that the method only works for those properties for
which it is easy to identify classes of materials with similar property values. This is true for the
properties, such as stiffness and thermal expansion, but largely false for properties such as corrosion
or wear-resistance. These [are] capricious properties” ',

Sparse data benefits from abduction, but the classes must group materials with similar propefty values.
Classes may group the values of some properties, but capricious properties do not group. If the désigner
browses materials of a class, most properties will have similar values but the capricious properties appear
random. Capricious properties are a problem for classification because the same kinds of materials do not

have the same kind of properties.

In Lee’s® case there was difficulty encountered in establishing a pedigree test for hydrogen environment
embrittlement. Slight changes in microstructure were reported to have sigﬁiﬁcant differences in property
values from the different labs. Slight changes in microstructure between similar materials would have a

significant effect on the property. Sargent calls this trait the capricious nature of some material properties. .

Capricious properties describe ﬁ process that occurs during the test. An illustrati\‘re example is the process of
crack propagation that must occur during any (successful) impact test. The propagaﬁon of the crack is subject
to microstructure as much as the chemistry of the material, A sligﬁt change in the microstructure can cause
very significant changes in the development of a crack and its subsequent propagation. Therefore, the‘t&st
result relates more to the specific structure than the maten's;l of the sample. Some changes in microstructure
may relate to processing in an unpredictable way, resulting in a chaotic variation in property results. Such
properties will never lead to a property of high pedigree since the description of the test can never qualify the

microstructure to a detail necessary for a repeatable result that depends solely on material composition.

In other properties, the slighl differences in chemical composition between materials can result in radical
changes of property value. Matching capricious properties is difficult at the initial stages of design, and best
left for detailed changes in composition and processing. Therefore, despite the property not distinguishing a

class from any other, the rangc of a capricious property may still be of interest.

Properties should encourage “incremental stability” — slight changes to the relative description result in

acceptable changes in the relative value, otherwise confidence in the selection process will be lost'®. The

26

Object -Oriented Software Representation of Polymer Materials Information in Engimeering Design
stability of a property is useful knowledge for determining the comparability of different relative
descriptions, which can quantify the confidence a designer can have in a value comparison.

2.1.8 Classification of Polymer Information

Classification is an important structuring componeat of a KBS for design. In addition to researching software
components for representing and managing classifications, the user requires interface tools in order to build
the classification and then use the information it contains. After developing the software components and the
tools, there remained the issue of how taxonomy of materials should classify. A separate study by Spedding®
used the tools this present research developed (see Chapter 5) to determine an ‘;appropriatc” taxonomic
classification of polymers for engineering design. Spedding provides the high level (human cognitive)

judgement of similarity to develop an appropriate classification for design.

After populating the KBS by importing data from the CAMPUS database, Spedding used the KBS to evolve the
classification by defining higher level classes of polymer. In addition, she extended the description by
defining new properties and rules for those properties, and adding them to the classification. She also
generated descriptions of new polymers and performed a number of data analysis on properties of the abstract

polymers inferred from the classes.

Spedding classifies polymers by characteristics of chemical structure. The characteristics of simplified
chemical structure satisfy Simon’s* criterion for forming good hierarchies. A hierarchy needs to compose of
identifiable sub-systems and the interactions, or properties, between members of the same sub-system should
strongly correlate or identify stronger in magnitude than with members from different sub-systems. A
simplified view of chemical structure composed multiple levels of sub-systems, namely atoms, molecules
and grains. The interactions include spatial distribution and attractive forces. Among sub-systems of the same
level the magnitude of the interactions, say between atoms within molecule, is similar. The interactions differ
by an order of scalar magnitude when crossing different levels of sub-systems, say the atoms between
different molecules. The difference in the attractive forces defines a molecule, so a hierarchy of chemical

structure is based on principles of chemical science'.

Chemical structure has far-reaching effect on a wide range of properties. Grouping grades by similar
chemical structure affect the properties in the same way. The groups collect like with like grades as members
of a class. Since the chemical structure is the basis of standard nomenclature, the generalisations from these

classifications are also familiar.

27

Object -Oriented Software Representation of Polymer Mateials Informetion in Engineering Design
Through Spedding’s work it transpires that the characterisation of a polynier as a class according to chemical
structure is, on its own, insufficient to fully differentiate types of polymer grades. For example, the addition
of glass reinforcement has strong affects on some properties but not on others and is independent of chemical
structure. These were properties where the mechanism of the internal process leading to the property was

more dependent on the reinforcement than the material class.

In some cases general polymer properties could not predict the performance when the property was in an
extreme geometric state, eg films and fibres. To the observer, the extreme geometry gmm sufficient
capriciousness in properties to cause the prescription of a new test. _Thwe tests though_are only valid to
materials capable of the geometric state, and not applicable to materials in general, yet chemistry does not

exclude the property. The applicability of the properties is arthogonal to the materials classification.

A conflict was idcntiﬁed between the classification and the need to represent these properties on a per-
instange basis. Conventional class-instance languages can extend the descriptions of grades by creating
subclasses or by using multiple inheritance mechanisms to subsume orthogonal propérties. In multiple
inheritance a class might have two parents, for example, one contributing general properties of Nylon and the
other adding the film properties to give a subclass Nylon-Films. The function of this multiply inherited
subclass is no different to an explicit subclassing of Nylon with a subclass Nylon-Films, Nylon being the
single parent. Although both are computable solutions, for knowledge representation of engineering
properties of polymers both of these mechanisms are flawed*® hindering the extensibility of the classification.
2.2 Knowledge Representation

Designers requires o taxonomic classification hierarchy of polymer materials knowledge that generalises the
knowledge within the olasse;‘; and then infers an abstract material useful for initial design, in addition to
representing the individual properties of the specific materials. Frost"’ gives an excellent background
covering general knowledge representation. This section of the review specifically examines the conceptual
model of kuowledge representation that addresses taxonomical hierarchics and the inference logic within
them. This examination starts with defining some of the underlying concepts, before looking at work on the
frame-based systems that introduced early ngonomic hierarchies with inheritance, and the problems they

encountered,

2.2.1 Knowledge vs. Data
“Most knowledge bases are distinct from conventional databases in that they typically consist of
explicitly states general rules as well as explicitly stated simple facts.” 7,

A database only describes simple facts, such as tuples in a relational database, with implicit data modelling

rules such as “tuples are unique in a relation”. A knowledge base explicitly stores rules, such as “All Nylons

28

Object Oriented Software Representation of Polymer Materials Information in Engincering Design

are Polymers”. Just as the computational functions calculate (eg sum and multiply) simple values in a well-
defined manner, more complex computational processes manipulate the rules, according to a ‘formal

language’, to infer new facts.

A number of formal computing languages logically process rules. They are formal because rules exist for the
construction of legal expressions where the meaning of the expressions can be derived from the meaning of
the components of those expressions. A formal language with axioms (standard rule of inference) that can
deduce if rules in a theory (set of assertions as sentences of the language) are consistent is known as a formal
deduction system. Deduction is a form of inference that infers a cause (like consistency) from a number of

effects (the rules).

Most inference applies to a known set of related rules. A formal deduction system that groups rules need only
check consistency within each set of rules, thereby reducing the computational load. Adding new knowledge
is simpler since only the local effect of new rules would need consideration. Attempts have been made to
structure the knowledge in formal languages. Both simple facts and rules were initially shown graphically
structured in semantic nets***®. The graph in a semantic net allows meaningful groups of rules about a
common entity. “Slot and filler” representation is another approach to structuring rules in to entities, which

frame-base systems are an example®’.

The knowledge structure in frame based systems complicates the axioms of the formal languages on which
they were originally based. Additional axioms define the rules for inference between entities. One of these

axioms models inheritance of rules between entities. The frame-based system NETL?™*!

is an early working
example that demonstrated inheritance for knowledge representation. As will be shown, inheritance has lead
to ambiguity and inconsistencies in these kBss. These findings are relevant since frame based systems
introduce a number of features that closely resemble object—oriented systems.

2.2.2 Frames

A frame structures data that represents an entity—a concept or thing being described. A frame consists of a
@Huﬁm of named slots. Values or ‘pointers’, which link to other frames, fill each slot. Copying frames
creates a new frame of the same type, in a process éalled instantiation. In this, the frame is similar to a

relation defining the structure of tuples (see §2.3.2), but different frames with the same state are possible and

identity is not dictated by the values in the frame’s slots.

Various kinds of deductive inference are supported through frame ‘matching’. Frames were first developed

for pattern matching, eg visual identification of an entity from observed properties, and understanding of

29

CNJ]E!-OTBIM"‘ fiwire R D ot ofPobm;-‘ ials Ink ¥ in‘Engmaﬂ'm' ing Design
analogies in text. The frame structure also supports deduction'of consistency since local modifications to an
entity only affoct rulos about the entity; and not the reat of the kns. Matching MDS with MDs fita this category

of inference.

Framc basc systems also include a number of implicit rules to simplify knowledge representation. The rules
include generic properties, default values, taxonomic structuring. Explicit rules. are supported by slot

conditions and procedural attachments (or ‘demons’).

Generic properties include universal rules, such as “All polyethylene are constructed from the monomer

ethylene”. A generic property ie a specific property all instances of the frame must exhibit.

Default properties are similar to generic properties but may be over-ruled by instances. The default “All
Nylon66 have a melting point of 270°C” is copied by all grades of Nylon66 but may be changed by individual

Nylon66 grades.

Slot conditions are explicit rules whose consistency depends on the state of the slot. The rule: ‘Mﬂ

impact strength is a number greater than zero or No-Break” is such an example.

A procedural attachment is a ﬁ:echanism for evoking a computing proc.ess upon change fo arglot. For each
frame based language the functionality can be different, but it is generally en;pected to aid the s&uctnring ofa
lmowledge buso: For onamplo, & eomponent’s matorial typo might detormino the production type for the
component, SO when the component’s slot for matcrial is filled; a type of production framc is instantiated, say
injection moulder, and entered into the component’s production slot.

2.2.3 Inheritance H/'érafrhies' in Knowledge Base Systems

Framc basc 3ystcms gencralise common slots through hicrarchical structuring. Rather than definc the slots
explicitly for each frame, a generalised frame, or ‘parent’, can define the common slots and the ‘child’ frames
can inherit the slots through a special is-a relationship. All the slots in the parent, along with their generic
properties, default p'roperl:ies, conditions and procedural attachments, are implicitly slots of the children by
the mechanism of inheritance. For example, the child Mylon inherits the slot of impact strength from the
parent Polymer thfough the “Nylbn is-a Polymer” relation. These is-a relationships form a generalisations

hierafchy of frames.

Hierarchies have long been seen as an important structure in knowledge representation. The hierarchy relates
speciﬁ(; entities with more general entities by the is-a relationship. Inferring the behaviour of the specific

entitics from the general entities is inheritance. Although there are ofton somo behaviours inherited that aro

30

P TR S

Object -Oriented Software Representation of Polymer Materiak in Engineering Design

abstract truths, typically they are only generalisations where exceptions are expected. The added
complication of resolving exceptions clearly identifies that generality hierarchies and inheritance are not one
and the same:

“ISA isn’t inheritance and inheritance isn’t 5™ _
For example, “Clyde is-a Elephanf” is a classification*?. Rarely is there a problem v;dth the explicit
statement that does not contribute any more properties than Clyde’s membership to Elephant. When
assuming Clyde has large ears, a property logical abduction infers from an abstract Elephant, there is a

potential for inconsistencies and ambiguity.

A classification hierarchy describes the relationship of generalisation, and inheritance is only a mechanism
for enforcing the principle of subsumption across that relationship (see 2.1.3). Subsumption occurs when one
concept, say Polymer, collectively describes the properties of another, in this case Nylon, Polycarbonate,
Polyethylene etc. Every property that defines Polymer also defines those subsuming Polymer. General rules
for subsumption are still under debate. In particular, deﬁm'ng properties and dmribing properties are
distinguished*. Some properties of Polymer do not define Polyrﬁer but are only dwcﬁpﬁw; they are typical
and used as default properties that are still inheritable. As they a:e.only typical, there is cause to define
cont;adictory properties in a subsumed concept; ie define an exception. “Crystalline polymers are not usually
transparent. However, PET used in soda bottles, has such small crystallites &ue to processing conditions tixat it

is transparent.”

Some inheritance schemes allow for exceptions. Fox argues mandatory inheritance of properties is too
inflexible for representing real-world knowledge*. Interpreting exceptions logically is complex. Standard
first-order-predicate logic can not represent exceptions since this logic sees an exception as a contradiction
with the inheritance rules. The more difficult nonmonotonic logic*® provides a semantic that can model

exceptions.

Exceptions can lead to poor modelling. They can over-ride all inheritance, leading to ludicrous statements
that contradict the very purpose of the classification hierarchy*. Horty provides an alternative, by suggesting
" a mixing strict logical inheritance, which does not allow for exceptions, with a defeasible logical inheritance

corresponding to a statement of expectation; “Birds should fly™’.

Difficulties occur when a concept subsumes more than one other concept. Consider a material blown into a
film. In many contexts film plastics are considered a raw material. A film-plastic subsumes both the conce;}t

of plastic and the concept of a film. In a hierarchical knowledge-representation, such as a semantic net, the

31

Gnect-(hmtdSoﬂmemtmon of Polymer Materials Information in Engineering Design
film-plastic would be given both properties: is-a film and is-a plastic creating an a-cyclic graph. This is
still considered a hierarchy (but not taxonomic) since a generalisation ordering is maintained. The difficulty

is to resolve the subsumption of properties from both parents.

2.2.4 Problems with Inheritance in Hierarchical Representations
If multiple parents in a multiple-inheritance hierarchy are truly orthogonal then the properties of one parent is

independent of the properties of the other parent. If the parents are not completely orthogonal, properties of

one parent may conflict with the properties of the other.

Conﬂicﬁng properties are either descriptive or definitions. If definitions, then conflicts should rule the
subsumption invalid, eg a material can not be both is-a plastic and is-a metal. If properties are descriptive,
then exceptions are possible and the conflicting assertions requires resolving. Resolving these issues is the

task of the inheritance mechanism.

Semantics (the descriptive rules) for multiple-inheritance with exceptions were ﬁrét proposed by Touretzky’'.
Ez_irlier techniques for resolving inheritance in the system NETL*¥’, and many other knowledge representation
systems, were based on a simple shortest path calculation. The shortest path algorithm assumes each link
between child and parent has a unity weighting of specialisation, reflecting the strength of a parent’s
assertions. Shortest path algorithms can lead to unexpected r.wults. By adding redundant statements, the
properties of entities can change. For example, if “Clyde isa Royal_elephant isa From_India isa
Elephant” and From_India has the property ‘ears = small’ conflicting with Elephant ‘s ‘ears = big’, and then
an extra redundant statement “Clyde isa Elephant”, which changes the distance of ‘ears = big’ from three
parents distant to one parent, would change the conclusion of the shortest path algorithm from ‘ears = small’
to ‘ears = big’. Touretzky defined his inferential distance ordering to preclude inheritance along sequences if
contrary intermediate sequences exist, ie precludes the inheritance along Clyde isa Elephant, while already

inheriting along From_India.

Regardless of the system for determining the assertions from multiple parents, multiple inheritance with
exceptions will always be bound by nonmonotonic logic*, ie more than one logical solution can result
creating ambiguity. Simply put, if film and plastic are equally strong parents and both are descriptors of
property strength, which property should dominate as the property of film-plastic? Unless explicitly stated,

there is no way to resolve the description of film-plastics into a single solution.

32

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
Touretzky’s inheritance is more orthodox, formally describes its semantics and, more importantly, defines
when ambiguity occurs. The implementation comes with the cost of a more complex algorithm for resolving

Terminological logic studies hierarchical representations of knowledge. It is primarily concerned with
generalisation by subsumption, which in turn has a strong inheritance flavour. The work has shown that
inheritance has many representational problems. One suggestion for handling ambiguity, discards inheritance
as an implicit mechanism and instead supports the inference of subsumption directly, by generating
hierarchies with explicitly define inheritance'®. Patel-Schneider points out two other problems with

inheritance:

Expressive problems: Recognising the most suitable location on a hierarchy to express a specific instance is
not a function of a hicrarchy. The hierarchy does not prevent a specific entity from inheriting from a general
description, and specifically defining properties that are also described in a more suitable subclass of the
general description. The hierarchy does not enforce the recognition of similarity. This recbgnition is up to the

user of the hierarchy*.

Deductive problems: Inheritance, generally, do not address the combination of inherited properties. If the
logical combination of two propcrﬁeé produces a third, then either inheriting or defining the two should result
in the single third property: the two components should not be further inherited. Combining properties is
necessary for the function of subsumption, eg subsuming P(x):{1,2,3}2x and P(x):{2,3,4}2 x should give
P(x):{2,3}2x.

2.3 Data Modelling

A data model is an abstract structure for containing data. One way of interpreting the data model is as a set of
rules for combining data. These rules limit the expression of data, so the choice of data model needs to
consider the purpose of the data. The rules limit expression because they are closely linked to the sequential
way computers represent and access data in memory. This link between data model and memary is the

physical model.

For the majority of computerised systems managing data, Data Base Management System (DBMS), the
priority is on quickly processing large quantities of data from a storage system with slow (arbitrary or
‘random’) access. Consequently, these conventional DBMS limit the capabilities of data manipulation in the

physical model, to simple access routes and data manipulations, which utilise the access routes. The data

33

Object -Oriented Software Representation of Polymer Materials Information in Engineering Deaign
models do not support arbitrary computation involving many different types of knowledge, in contrast to the

computation possible in many computing languages.

Many systems for supporting material selection use one of a number of standard data-models. Examples of
some common models are given later. If a data model is suitable, any number of ‘off the shelf’ DBMS can be
selected, optimising development and performance. Knowledge representation also has standard data models,

such as the production rule representation common in many ‘off the shelf’ expert system shells.

Demaid and Zucker”*® question the appropriateness of adopting any of the common representation
strategies for the development of systems that support the evolving nature of design. Their assessment of the
common representation strategies is relevant since one component in their schema represents materials. A
summary of their argument for a conceptual schema on which they designed their own representation
strategy leads to the use of classification as a design tool. In general, the effect a data model has on the

application of the data is well documented elsewhere:

“Tt is important when choosing a DBMS that the user is aware of the data model underlying it. This is
because the user of a DBMS must perceive the universe of discourse according to the view of the
universe which is the basis of the data model of that DBMS” .

Most data models in conventlonal DBMS do not prqvide a diversity of modelling constructs. This weakness
makes them inappropriate for engineering design®. Design involves computation with many different types
of knowledge, eg processing, geometry and materials are all broad categories. These different types of
knowledge would benefit from semantically richer arganisations (see §2.3.4). For example, organisations
based on knowledge entities (represented by data structures) rather than the data structures (representing
many entities).

2.3.1 Hierarchical and Network Data Models

The automated data processing of the 1960s and 70s represented data as simple character strings and numbers
and structured this data into hierarchies and networks. The hierarchical structuring of data mapped well into a
physical model of records sequentially stored in files recorded on sequential storage medium such as
magnetic tape’’. This organisation enables quick searching for particular parts of the structure and simplifies

automatic processing because of the uniform file format.

The hierarchy places limits on the knowledge represented. Only one-to-many relational structure are
possible, eg a kettle design, with a plastic container, with glass lid, with a plastic handle with...etc. If other
kettle designs were made using the same handle, the whole handle would need to be copied. Both designs

could not access the same entity relating many kettles to one handle. Many to one and many to many

34

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
relationships need a network structure, such as in CODASYL systemssz. To form a network the CODASYL

system introduces pointers between records.

Both hierarchical aﬁd network data models view information as entities with attributes. Records, physical
space on disk, represent entities, and tﬁe binary information in the records translates into attributes. In a
hierarchical model, the ordering of records (on secondary slorage) describes all one-to-many relations. In a
CODASYL network the binary data in a record can also be interpreted as a pointer to a set of records (DBTG
gets, sets defined by the Database Task Group®") to form a many to one relation. The DBTG set forms a one-
to-many relation as an ordering of records, like in the hierarchical model. °

2.3.2 The Relational Model

The relational data model is more common, and originates from Codd’s work®>. Relational databases
(RDBMS) manage tables of data. Each column of the table contains entities from a particular entity set.
Entities are unique identifiers such as strings and numbers from an entity set. Entity sets defines all valid
entity identifiers. The database stores these identifiers in tuples. Each tuple is a unique combination of
entities from the entity sets in the table. Whereas the entity sets are the columns in the table, the tuples fqrm
the rows. The relation defines the associations between entity sets, hence the possible tuples and the

relationships between entities, which gives the database structure.

The CODASYL network model represents many-to-one relations differently to one to many, causing an
asymmetric performance when accessing. This benefits one use of the database over another. In addition,
pointers make it very difficult to manage the movement of records in memory. In contrast, the relational
model is “flat’, with entities associated in an equally commutative relation; ie the ‘columns’ of the table can
be swapped without effect. Each column relates equally to each other column. The tuple easily describes a
many-to-many relation. The relational model does not use pointers, but uniquely identifiable attribute values

in the entity sets.

The relational model is suitable for financial records for two reasons. First financial information requires only
a few simple data structures. Secondly, the number of individual records ‘instantiated’ from each of these
structures is huge. Many financial database activities manipulate relations, not individual entities, which act
on this large population of records as a group. These computations are operations of either a relational

algebra or relational calculus, languages that manipulate relational tables.

- Access to individual tuples is possible through a transaction that selects the desired tuple from a relational

table. Such a transaction is a sequential search and compare of all tuples in the relation. Faster access is

35

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

possible by ‘hash key’ list. A hash key list is a special ordering of entities indexing the tuples of a relation. A
‘hash algorithm’ calculates the position in the list for a particular entity and with the entity the desired tuple.
Although hash lists aid the access to tuples, they are not part of the relational model, but extensions by
typical RDBMS to the physical model.

2.3.3 The Relational Model in Engineering

Maier questions the suitability of the relational model for CAD, computer aided d&igns"'”, in contrast with
the object—oriented model which will be discussed later. Maier argut;s CAD swms define large numbers of
types with fewer instances. Transactions tend to follow paths from one individual record to the next (eg from

car to the car’s door — attributes form paths to other behaviours).

Frost identifies the same problem in the relational model as a performance asymmetry’’. Information on
entities is often spread across many relations, Although the relational model is ‘flat’ within a relation,
combining the information from different relations requires an algebraic operation, whereas information
w1th1n a tuple do not. The information on a particular entity spans across relations as well as the relationships

within tuples. The asymmetry creates a difference in access performance for different attributes of an entity.

According to Maier, CAD tends to traverse between tables. In a relational system, this traversal requires an
attribute value look-up, optimised through a hash key. The hash key is another source of asymmetry. DBMS
only index selected entity sets in a relation. Although other physical models locate entities through a hash
table, such as some object—oriented models, there is no asymmetry if the table consistently includes all entity
relations. Object—oriented models optimise their access to objects since it is a prominent activity in object
transactions. In relational systems, any overhead associated with each transaction (eg fetching a look-up table

from secondary memory) effects performance.

Maier concludes the overhead with each CAD transaction tends to be large in a relational data manipulation
language. Data processing computations of typical RDBMS applications tend to apply few transactions so the
overhead has little impact on performance. CAD computations tend to be more complex, and the overhead has

a larger impact.

This performance difference is at an extreme as the relations describing an entity increase. In CAD
applications entities use many different relations, not one large relation. One reason is the different types of
entities have some different associations and some the same. This forms a type-subtype hierarchy relating the
similarity. The relations that are the same are kept in one table. Those that are different are in different

relations. Hence, many relations describe entities with many differences.

36

Object -Oriented Software Representation of Polymer Materials Inf ion in Engineering Design

An example is a Polymer entity in a relational model. A polymer may be considered a type of entity that
exhibits the relationships to the properties for tensile strength, elasticity, conductivity and many other generic
materials properties. A table is formed where each polymer grade is a tuple describing values in the property
columns. Here a single relation is used. However, a grade may express unique knowledge that is not generic
to polymer but some more specific classification, eg the Crystalline polymer property of melting point.
Therefore, a second relation is created to record the Crystalline polymer properties. The process continues.
At the extreme, properties may be defined to distinguish individual grades creating a large number of
relations. This demonstrates one problem the relational model has with describing infinitely extendible
descriptions of entities. More relevant is the distribution of information across many relations. Relational
DBMS are good at managing large relations, not a large number of relations, therefore only a few types of

entity.

Finally, Maier also argues the strategies for concurrency (data sharing) and recovery protection, work well in
small transactions over large data populations where locking and logging can be applied and optimised, but
work poorly on CAD data. These features put a lot of overhead on transactions in multi-user and multi-tasking

computing systems.

The relational model could represent a polymer grade as an entity in a table that groups a number of entity-
sets, one for each property. Rules could be associated with the table to ensure the grades correct behaviour.
Beyond this, the relational model does not assist the knowledge representation of polymers. Developing a
classification of many types of tables and ensuring they correctly subsume the rules from each class while
evolving the whole representation would require a complex interface for interpreting the data in the model.
The preferred approach rejects the relational model for a data model that supports the structure of the
classification, such as semantic data modelling.

2.3.4 Semantic Data Modelling

The relational madel fails to capture the semantics of an entity; the meaning of an entity as an atomic concept
characterised by properties. An entity in the relational model is often spread over many relations. To display
all properties of an entity requires an operation locating all the relations that attribute properties to the entity.
Within tuples attributes and entities are not distinguished, so data manipulating can produce meaningless
relationships, such as between tensile strength and conductivity taken from a tuple describing a polymer
entity. One-to-many relations differ from the many-to-many a tuple represents. The one-to-many should
constrain queries, like the relational operation ‘projection’. This, and other semantic issues, are addressed by

‘Semantic Data Models’ (SDMs). In particular, SDMs focus on a database as a collection of entities.

37

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
£DMs provide structural abstraction® (as opposed to object oriented behavioural abstraction which will be
addressed later), driven by a need for data representation as opposed to data manipulation, resulting in more
complex types of data structure. An early semantic model is the Entity-Relationship model®’, distinguishing
entities and relations. The semantics of relations are specialised to identify aggregation from association.
Semantic modelling extends to distinguish groupings®™ from associations and aggregations. Further
developments add generalisation. For an overview see Peckham and Maryanski®, or Gardarin and

Valduriez*.

Aggregationc and ascociations are semantically cimilar: Thoy both attributc propertics to entities. The
aggregation though is not viewed as a aumber of parts, but an atomic semantic unit describing the entity. The
polymer grade is an aggregation of engineering property attributes. Forming new relations from parts of the
aggregation (between engineering properties eg conductivity and tensile strength of a polymer) is

meaningless.

Associations are access paths between entities. A material may define a property linking a material to
successful applications. The relationship does not define the entity. The attributes of associations are entities
themselves. The attributes in associations may be used to form other relations to other entities forming other

associations.

A rolational model can support both aggregation and associations but docs not distinguish thens a3 the SBM
does. In the relational model, each tuple is set of values, some that aggregate attributes and others that
weviciate with tupley in other tables. The unique identity of the tuple ie a function of all valuey, whether

contributing to the aggregation or association.

In tho SDM an cntity changes its identity if attributes of the aggregation changes: If tho change causes all tho
values to equal those of another catity, then the model will only represent one catity; the two entities becomo
onc. Thiz is diffcrent to the rclational model, which will maintain two tuples with the same aggregations if

there is a difference in the associations.

Unlike changes to aggregations, changes in association should not affect the identity of the entity. In the SDM
if two entities doscribe the same aggrogation they chould reduce to one; but how this affeets their different
associations is not so clear. Technically the two entities are the same. King suggests it should trigger some

process’® to resolve the associations.

38

Object -Oriented Software Representation of Polymer Materials Information in Enginoering Design
Classification is a specialisation of association (also called grouping’®) here the members are all of the same
type of entity. A type defines the properties of entities, both associations and properties, derived from
aggregations. A classification groups entities which exhibit the same properties but in a SDM not necessarily

all entities with those properties, eg Polyethylene used at Lucas is a classification.

The generalisation is a classification that groups together semantic similarities, eg In a classification of
materials, “Polymer” is a generalisation which includes the property tensile strength, exhibited by all Nylons,
Polypropylene and Polycarbonate classifications since they are all Polymers. Every type is a
generalisation, In addition, -property intersections of types may define the similarities between the types,

hence more general generalisations.

2.4 Object-orientation: A Background of Principles
Object—orientation is a technique of abstraction. The technique supports software design, in particular

Graphical Uscr Interface (GUI) development and knowledge repréentaﬁon, but may also be useful for
product design. This section looks into object—orientation in soﬁware’languages with a view to modelling
design descriptions of producfs. Object—orientation composes descriptions in a similar manner to the
composition of product designs. Classification is also predominant in many object-orientated languages; its
relevance to materials information management has already been mentioned. In object—orientation the main
unit of abstraction is the object. The principle of the object to formulate software behaviour follows.

2.4.1 The Software Abstraction of the Object

Programming is a design problem in itself. The problem is to get a computer to behave in a specified manner.
An application is a software construction combining abstract behaviours, creating one solution to the
problem. If the abstract behaviours model some other design domain, then within the constraints of that
model, the sqﬁwa.re solution is also a valid representation of a solution in that domain. The question is
whether the abstract behaviours a computing language provides for the comstruction of programminé

problems could form suitable models in other design domains: Are objects a generic representation?

Computer languages define a closed set of atomic behaviours. Computing machines construct atomic
behaviours from boolean logic”. Consequently, they are individually invariant, precise and predictable.
These qualities make them suitable for modelling formal mathematical logic. The logic of sets, for example,

provides mechanisms towards generalisation, specialisation and abstraction.

Sequences of behaviours form sentences in the computing langnage. Although individually the atomic

behaviours are invariant, the atomic behaviours affect the state of the machine, which in turn changes the

39

Object Oriented Software Representation of Polymer Materials Information in Engineering Design
sequence of behaviours. This allows variation in the behaviour of software. These variations quickly become

very complex which makes understanding the behaviour of software difficult.

Consider the task of drawing a line between two points on a matrix of peints. The computing behaviour
determines which points in the matrix are between the two given points. The given points are a state of the
computing machine that affects the computing behaviour to draw different lines. Whereas the programming
taok producing the behaviour is complex for the eomputer, the coneept of line drawing io simply understood.
The behaviour is complex in design but simple in concept. The concept is simple because the behaviour is
limited to the task of line drawing. The behaviour changes, if given different points, by drawing a different

line but always draws a line and, for example, does not draw curves.

Without the given points, the behaviour is abstract. An abstract behaviour represents a known variation of
behaviour. An abstract behaviour conforming to a simple coneept; though complex in construction; may be
reused in further software constructions, such as drawing polygons requires line drawing behaviour. Through

abstraction, software increases complexity while each abstract component may remain reasonably simple in

concept.

Program design is mainly an activity of decomposing the design into identifiable abstract concepts. The
example of drawing a square decomposes into drawing lines, which decomposes into drawing points.
Programming then desoribes (he behaviours of abstract concepts. Often a design encounters the same abstract
concept many times. Computer languages support abstraction by allowing the reuse of a programmed

abstract behaviour.

Once an abstract concept is successfully programmed, it is desirable to reuse it where possible. Designs
rarely start from scratch, and languages supporting reuse of software makes it easier for programmers to
build from previous software design. Such support is not limited to developing software but may address

generic design problems.

Support of abstraction by eomputer language comes in many levels. At the lower levels the languages strictly
define the abstract behaviour and maintain tight control over behavioural variations. Each level higher
provides different kinds of abstraction, gradually increasing the ways a software abstraction can describe

complex abstract concepts.

In an objoot-oriented language there arc additional mechanioms of abstraction. The subjeot ic well covered in

many texts®!. The following summarises the reasoning behind the object—oriented concepts.

40

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
In object—oriented languages, in addition to combining abstract behaviours to form specific behaviours, the
behaviours themselves are grouped to form objects. The analogy is that objects in the real world are
identified by a collection of descriptions. The behaviours are the descriptions of an object. These descriptions
are in a language that uses other abstract objects as components in sentences. A behaviour is no longer
reducible to a single complex combination of atomic behaﬁoms, but depends on relationships with other

objects and their behaviours, which can change.

Object—orientation recognises that few objects have unique descriptions. Their descriptions share similarity
to other ebjeets. This recognition leads to (curreatly) one of two kinds of description sharing: prototyping and

classification.

There are many other issues in object—orientation besides sharing déscriptions. The following section will
highlight some of them. Two features dominate the control of object manipulation. Object manipulation
changes the state of the object. A state is a specialised behaviour that depends on the history of transactions.
The two features controlling the manipulation of the state are encapsulation and messages. Messages are the
transactions and the object’s encapsulation ensures only proper messages manipulate the object.

2.4.2 Encapsulation : .

Encapsulation is defined as the grouping together of various properties associated with an identifiable entity

in the system in a lexical and logical unit, ie the object.

What encapsulation achieves in terms of modelling and program-structure is its most important- benefit.
Encapsulation provides a boundary called an ‘interface’. This interface defines where an object stops and the
rest of the world begins. The encapsulation defines rules for passing that interface. The rules ensure that the

state of the content results from historical accesses to the object, where each access abides by the rules.

In terms of modelling, the interface enforces the grouping of related properties that constitute an object.
Access to the properties is subject to the rules of the interface, so the state is well controlled and processes
outside the interface can not change the state inside the interface. Although an object can be defined without
encapsulation, it demands discipline from a programmer not to directly access internal components of an

object thereby intertwining the object’s internal world with the external world.

Not all encapsulation is equally effective. Some languages are better at encapsulation than others. A good test
of the ‘strength’ is to try and side effect (change the state) the properties of an object by breaking the rules of
the interface. Usually a language has weak encapsulation for reasons of efficiency. So even in this most

typical feature of object—orientation, there can be variations.

41

Object -Oriented Soft R jon of Polymer Materials Infc jon in Engineering Design

243 Messages
A messages is a basic means of behaviour sharing between objects. Sharing descriptions of behaviours,

mentioned earlier, is not the same as sharing the actual behaviour. To distinguish the difference, a description
of a behaviour, as written in the syntax of the language, is called the protocol. While programming protocols,
they are often termed behaviours since, when executed, the protocols generate the behaviours. They are very
similar and subtlety different. The aim of this next section is to describe the message and distinguish this

difference between behaviour and protocol. Later, the relevance to modelling will be highlighted.

A distinguishing feature of object—oriented systems is the ability to ‘pass messages between objects’. A
message originates as part of a sentence in a protocol that describes an object. The message specifies another
behaviour to evoke. The message identifies another object, known as the receiver, where the behaviour

resides. Additional information identifies the particular behaviour in the receiver.

The message does not directly access the protocols in the receiving object. Messages are received at the
object’s interface. At the interface, the additional information in the message interprets what will happen.
This is fully under the control of the receiver, not the object sending the message. A useful interface will

define a known set of possible actions.

The first step in message interpretation is to locate a protocol to continue the computation. The rules used to
interpret the message differ from language to language, and are a major source of difference between them.
In some the rules are programmable. The interface though should remain consistent, well known and
published since it forms a contract between the receiver and the protocols of message senders. If a receiver
can not locatt;.-. an appropriate protocol, either the language generates some kind of error, or the receiver may

specify a specific default protocol for messages it does not understand.

After locating each protocol, the receiver evaluates it. The evaluation generates the behaviour. The evaluation
is a process of further message sends. Protocols generate behaviour, which locates further protocols for
generating more behaviour, infinitum. Ultimately the software evokes messages to atomic behaviours that

generate behaviour without further message sends, terminating the chain reaction.

Each protocol is a specific combination of other abstract behaviours. Additional objects augment the message
evoking the protocol. These “arguments” and the receiver together specialise the behaviour that the protocol

generates.

42

Object -Oriented Software Represcutation of Polymer Materials Information in Engincering Design
It may have been implied that the receiver of a message is the owner of a protocol. This is not the case.
Protocols are often shared. This does not necessarily mean the behaviour is the same for all receivers sharing
the same protocol. Differences in the receivers specialise the behaviours by sending different messages from
the same protocol syntax. The syntax composing a protocol changes semantically by altering any objects in
each message eg the object receiving the message. Each object sharing the protocol provides a different
context of available objects, the recci;/ers and arguments, for binding to messages in the protocol and
determines the path of computation when evoking. There can be many differences, each a different path of

computation.

The different paths a protocol generates are descriptively called its ‘pattern of message passing’. A complete
object—orientation system of objects is a flowing ‘pattern of passing messages’. The nature of this flow is an
important descriptive characteristic of any object—oriented language. Understanding the potential patterns is
important for understanding the potential behavioural effects a protocol will have, so the semantics of

protocols depend on the patterns.

Many languages define types of object to simplify understanding of computation paths. A type describes
what behaviour a message should evoke, in general terms, for objects of that type. It is then up to the object
to implement the behaviour (answering how to do it) as a protocol. In coding a prbtocol, the programmer
relies on the specification of types. Protocols can send messages to types of objects (receivers of a type)
knowing what will happen, not concerning with which object of the type binds to the message or how the
behaviour is achieved. If all objects obey their type specification, then the protocol will link the correct

behaviours and the protocol will evaluate correctly.

The difficulty in understanding the patterns of message passing rises as the number of variables affecting the
pattern rises. The receiver is not the only variable. There are two further factors. The path can also depend on
other objects (besides the receiver) sent with the message. Typing can help here by ensuring messages only
send objects of the type expected by the protocols. In cLOS (Common Lisp Object System) for example, in
the interface a messages mus.;t match all parameters of a protocol, which includes the type of objects the
message carries. Smalltalk™ however does not check the arguments. Usually an incorrect argument type

will, eventually, cause a message to be not understood.

The other factors affecting the pattern of passing messages depends on how a receiver shares its protocols.
Recall there is a difference between sharing a behaviour through a message and sharing a protocol

description of a behaviour. Objects that share protocols are said to have Empathy.

43

Object -Oriented Software Representation of Polymer Materials Information in Engimeering Design

2.49.4 Empathy
The term empathy was coined in a paper called the Treaty of Orlando’. It reports a discussion between

factions arguing the benefits of one sharing mechanism over another, namely inheritance and delegation.

In the quote from the treaty, which follows, the crucial feature is the assignment of the variable self. For
empathy, this variable binds to the receiver of the message, not the owner of the protécol. Thig cauges the

receiver, not the owner, to fix the pattern of message passing.

“We say that object A empathises with object B for the message M if A does not have its own protocol for
responding to M, but instead responds to M as though it were borrowing B’s response protocol. A borrows
jusf the response protocol, but not the rest of B. That is any time B’s response protocol requires a message to
be sent to self (or a variable to be looked up), it is sent to A, not to B; otherwise A and B respond in the

game way [as if B receivied the message].

“Formally we say object A empathises with object B for M when the following holds: If B’s behaviour in
response to M is expressed as a protocol function P(B, M) — that is, B’s method for M can be expressed as a
function that tak% self as an argument along with M — then A’s response to M can be expressed using the

same function P as P(A, M) — A’s behaviour is derived by ﬁsing A wherever B would have used itself”.

The implementation of empathy is asymmetric. A borrows from B. B does not borrow from A. The
behaviour of empathy is symmetric. It does not matter if A borrows from B or B holds the protocol and B
borrows from A . This raises the question of who should manage a protocol. In the case of cLos®, neither

holds the protocol.

Where a protocol is stored and managed is not in itself empathy. Empathy only affects how the variable self
associates with the receiver after locating the protocol. How a message finds and matches a protocol is. a
separate orthogonal issue. Often the two issues are related in particular language models. In a number of
languages, for the convenience of the programmer, the same mechanism handles both look-up and binding to

protocols.

If an object can change the set of protocols it shares dynamically, then the object can dynamically changes its
description, ie the messages it will respond to (locate protocols for) hence the object’s named behaviours or
properties. Such change complicates inter-object communications. Delegation is conditional behaviour

sharing.

ijea _Oriented Software Representation of Polymer Materials Information in Engineering Design
2.4.5 Delegation
Delegation is a forrﬁ of empathy. Whereas a sender sends a message to a receiver, a client delegates a
message to a proxy. When a client delegates a message, the same mechanism locates the protocol as if the
proxy was receiving a message. Instead of evoking a behaviour of the proxy, self assigns to the élient, and
the protocol binds with the characteristics of the client. This produces a specific behaviour of the client, not

the proxy. The client is still the receiver, not the proxy.

There are two cases of &elegation: Explicit and implicit. A protocol coding explicit delegation states the
proxy as where to find the protocol, separate from the receiver which is the evaluator of the protocol. Implicit
delegation is part of normal message reception. When a receiver gets a message that does not match any
specific protocol of the receiver, the receiver can specify a parent proxy. The message then delegates to the

parent. Implicit delegation models inheritance.

Consi&er an extreme case of implicit delegation: a client may delegate all messages sent to it, to the parent
proxy. No other specific characteristics are contributed. Any attempt to locate specific behaviours of the
client will fail resulting in immediate delegations to the parent proxy. Although any protocol found will have
self bound to the client, the client still contributes nothing, with all messages delegating to the parent. All
behaviour is the same as if messages were sent directly to the parent proxy. Now consider adding a single
new property to the client. The client behaves just like the parent, but for the single new property. The client
refines the property specification of the parent. .The client is a software “‘prototype”, an experiment in

specification variation.

An even more generalised form of prototyping simplifies message sending. Consider an object receiving a
message telling the object to do something. Does the object and message not define a more specific object
representing “this object doing something”? Rather than define complex messages with the description of
something, prototyping makes it easy to create a new object with the specific behaviour, “doing something”,
on every message send. The new object is characterised by a behavioural flter defining what the object 13
doing. Computing then becomes an activity of reduction. The object should then reduce to the result of that
action, eg the function object [3 + x] receives the message “assign 5 to x”, creates an object [3 + x , x = 5]

and reduces to the object [8].

The feature of prototypes as a model for objects and messages is derived from the ACTOR formalism (see
§2.4.8). The formalism does not specify delegation, but delegation is a mechanism for implementing the

formalism.

45

Object Orienited Software R ion of Polymer Materials Information in Engineering Design

Delegatlon has been shown helpful in modelling engineering design interactions'. It petmlts the submission
of a query that needs to be answered through accessing some of the properties embodled by objects other
than the original receiver of the message. As a knowledge encoding methodology, thls use of delegation
differs from inheritance because the latter provides an organisation of objects through anticipated
connections whereas the former is a run-time technique to program dynamieally established relationships.

The computational difference between delegation and inheritance lies in the localisation of processing.

Delegation is but one mechanism providing sharing between objects. Much debate occurred over the virtues
of various shanng mechanisms. However, a consensus was reached, and the dynamics of sharing in object-

oriented languages concluded.

2.4.6 Dynamic Behaviour Shan‘ng
‘Dynamic behaviour sharing’ is a term that describes a language mechanism that allows the patterns of
computation to change at runtime. The issue was summarised by consensus between three arguing factions in

the Treaty of Orlando’- The treaty describes three independent dimensions to characterise the nature of

sharing mechanisms: STATIC vS. DYNAMIC, IMPLICIT vs. EXPLICIT, PER OBJECT VS. PER GROUP.

The orthogonality of the PER OBJECT VS. PER GROUP is more easily understood and the ordinate it describes
is more discreet in the possibilities. Protocols are shared, thereby defining behaviour, either for individual
objects or for a group of objects. In the middle, there are various degrees of a group guaranteeing some

behaviour, but allowing idiosyncratic behaviour to individuals.
The orthogonality of the STATIC VS. DYNAMIC and IMPLICIT vS. EXPLICIT is less obvious.

STATIC vs. DYNAMIC: Static sharing is the fixing of the pattern of message passing. There are two
possibilities: When specifying an object (protocol compilation), and when instantiating an object (object
creation, see §2.4.7). All sharing that is not fixed is considered dynamic, determining the pattern of message

passing as each message is senf at runtime.

Two different types of messaging mechanisms affect the patterns of message passing: binding and inheriting.
Binding occurs when the message is sent, inheriting (or delegating) occurs on receiving the message. Both,

either, or none can introduce dynamigm to the pattern.

Static sharing is adverse to modelling and only an software optimisation. For developing prototype

applications, static features should be avoided.

46

Object -Oriented Software Representstion of Polymer Materials Information in Engineering Design

IMPLICIT VS. EXPLICIT: Implicit sharing is where a language provides a rule that is generally used when
finding protocols and there is some assumption made in the rule as to how to find the behaviour and continue
processing. The usual assumption is the recipient of the message gains control of the process flow. Explicit
sharing is when the sender can specify all details; both the means of searching and who evaluates the code.
Naturally, there are degrees as to the details provided with a message under control of the sender, which can
affect the behaviour found. In systems where the searching rule is itself programmable, then both explicit and
a pre-programmed implicit searches are possible.
2.4.7 (Class-Instances
In general, three main features form the “classification paradigm™® and are often hpld to be essential to
object—oriented programming:

e The ability to construct objects as a set of operations and a memory.

e The classification of objects, ie each object as an instance of a class.

¢ An inheritance mechanism defining superclass-subclass relationships.
This paradigm is synonymous with class—instance, object—oriented software mechanisms, ie systems oriented
to objects as instances of classes whose definitions form templates from which many instances may be
generated. The instances are intended to correspond to “real-world” information, responding to messages

about their attributes and behaviours, while the classes are abstract specifications.

A class groups objects with common behaviour for the purpose of classification. The discussion on categories
and taxonomies are equally valid to the classes in object—oriented languages. Objects belonging to a class are
instances of that class, and must obey the common behaviour of the class. The instances obey because they

depend on implicit inheritance from those classes for their behaviour.

Inheritance is a form of protocol sharing, as is delegation. Instances receiving messages look to their classes
for protocols. Upon locating the protocol, the instance evaluates the behaviour as if it was its own.
Inheritance is like implicit delegation, but applied per group and may be dynamic or static. Static inheritance

is quite common and limits the evolution of instance behaviour.

Classification highlights the complex choice of abstraction technique presented to the programmer. The

choice also exists with prototyping but is less obvious.

The behaviour sharing implicit in classification supports an alternative approach to behavioural abstraction.
Similar behaviour sharing cxists in prototyping languages, but the abstraction is more obvious in the class-

instance languages. Classification emphasises the choice a programmer has when abstracting a software

47

Object -Oriented Software Rep joa of Polyraer Matesials Information in Egineering Design
problem into objects. The choice is between sharing behaviour and sharing protocol. Should an object inherit
a protocol, or should another objcot be created to exhibit the behaviour? Often the choice is not clear,

especially when multiple inheritance is possible.

An object composed of three abstract parts could either models three objects or a single object inheriting
from three independent classes. The latter is the philosophy of multiple inheritance. The inheritance

becomes a mechanism for mixing behaviours.

Consider a clock as a gauge (display) and a timer. Classification says: “It is-a kind of timer or is-a kind of
gauge”. Alternatively, is it a device that “is-a timer” that “has-a gauge for display”, or “is-a gauge” that
“has-a timer as input”. Alternatively, it could be a clock, an object, that “has-a gauge for display” and “has-
a timer as input”. These are all possible ways of modelling a clock. The first is multiple inheritance and the
next two are different views of clock in a single inheritance system. The last e)iample is not yet part of a

classification, so it is just a composition. All provide the same behaviour.

The class originated in an ancestor of object--orientation, Simula™., The class has existed in many languages
since, notably Smalltalk, which has the longest history of any object—oriented language still in commercial
use today. The class in these languages is a template. The class generates objects in the image of the
template. This function provides a guaranteed fixed structure to the objects produced. Fixing the structure

gives two imporiant advanlages: consistency and optimisation.

The consistency provided by the class is more than simply a logical prevention of inconsistencies leading to
errors. The class creates a syntactic grouping of concepts that all instances, objects of the class, abide by. The
programmer uses the class as a guarantee that the instance will behave as specified. This simplifies handling
objects, just as types mentioned earlier do which, without the enforcement of the class—instance relationship,

would otherwise require a more exact understanding of the patterns of message passing.

Classes are generally considered static, in virtue of the assumption that real-world specifics change and
generalisations do not; eg, new cars are designed but the idea of car remains static. Most objects change in

“state” .but are relatively static in their behaviour, described by the class. Cars move, but are still cars.

The assumed static nature of the class has made it the target for optimisation in many class—instance
languages. Classes are implemented as static templates, and optimised, leaving the instances to represent the

dynamic aspects of an application. Some languages do not even representing the class as an object. The class

48

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
does not truly exist in the same way as instances exist at runtime. This viewpoint is taken to its extreme by

the language C++, which continues the “C” philosophy of highly optimising code.

Enforcing a static structure has its disadvantages, namely when the structure needs to change. The boundary
between class and instance is also a boundary between static and dynamic. Since nothing in the real world is
truly static, there is always a point, if a model is to remain consistent with the real world, the boundary needs
breaching. In some domains, this is more common than in others. In particular the domain of design is

" potorious for its dynamic nature of descriptions and specifications.

Many class-instance languages require all dynamic aspects of the implementation to be handled by instances,
but this conflicts with the nature of design; a design describes the behaviour of an entity in the real world. In
the class—instance language, the property of behaviour description, the protocol, is only held by classes. The
only other dynamic changes in behaviour are by changing the relationships between objects, as recorded in
instance variables. Therefore, the implementation of a design must be by an object that has the property of
behaviour description and is capable of changing with the design. The whole point of classes is to provide a
behaviour description, but one that is static so to guarantee the interpretation of messages to the class’s
instances, ie as a type definition. Classes are inappropriate for representing design under this criterion. This
does not preclude a different mechanism, in a language supporting the class-instance relationship, for

modelling design specifications.

Not all class—instance languages adhere to the strict static nature of the class. Languages allowing their
classes to change are said to support schema evolution. Language supporting schema evolution carry a large
overhead in terms of requiring compilers, consistency checkers, and error handling routines to enable the

schema change and ensure the change is sound.

In Nierstrasz’s*® review of object—oriented concepts he defines schema evolution as an operation on a class
hierarchy, not an operation on objects, ie not a consequence of messages. This follows the analogy of a
database schema evolution, which is not a database transaction. A normal interaction between objects ﬁlat
dynamically changes the inheritance of behaviours within the object model is dynamic inheritance. Yet, if a
class is a generic object, as it is in Smalltalk—80, then schema changes are a consequence of messages.
Inheritance changes in Smalltalk are considered schema evolution because they involve coercing the
underlying object model for each instance, despite the fact a complex series of normal message interactions

achieve this coercion.

49

Object -Oriented Software Reg ion of Polymer Materials Information in Engineering Design

Schema evolution is often only available during initial program prototyping, such as in the database
Gemstone™®_ The effects of change on ‘established’ classes have far reaching consequences that return to
the programmer as bugs. The reason for this far-reaching effect is the semantics of messages. The effective

patterns of message passing are rarely well understood by the programmer making changes.

The semantics of a behaviour are not only defined by the objects that hold the behaviour, but also by the
ugers of the behaviour. Viewing behaviours as an input cutput relationghip, mecsage goes inte an object and
the response comes out, then the implementation of all senders encodes the interpretation of the response.
That is, the object a message returns is sent messages by the same sender and these messages are all part of
the pattern that develops the sender’s own behaviour. Theoretically, each message should return an object
fully defining the semantics of the response. This is rare and usually messages return a simple data types with
little semantic value. These messages rely on the recipients of the result (usually tl;e message sender) to

correctly interpret the result.

It is all very well to say that messages correspond to semantics, ie messages have precise meaning, and are
separate from protocol implementation, but when programming starts, the semantics of a given message
might differ by the time programming ends. In practice semantics of a program evolve with the

implementation.

There are attempts to scparatc thc implementation of a class from its semantic obligations®. This is believed
to be a solution that will further prevent schema evolution from affecting other parts of a system. The
semantic obligations are described in terms of type requirements for messages and message responses. The
organisation of types can be handled quite separately from class descriptions. Type checking need only occur
during schema evolution. If a change is made to the type hierarchy, consistency checks occur once before
ai_:cepting the change. Ultimately the difference made by type checking is the determination of
inconsistencies at the time of change rather than during execution of behaviours, which might occur much
later when, the source of the error is forgotten. Typing introduces an overhead on the programmer w‘ho must
define types to classes and in protocols.

2.4.8 Actor Semantics and Protolype Languages

In the late 60's and early 70°s, Hewitt et al’’ developed the ACTOR formalism as part of the PLANNER research
project into natural and effective means for embedding knowledge in procedures. They identified the
modular naturo of knowledge and its dynamic ability to combine the abstract to create the specific. This led

them to the ACTOR, a computational model that allows an extendible description of knowledge. The ACTOR

50

Object -Oricated Software Represeatation of Polymer Materials Information in Engineering Design
formalism is not a language but a computational model describing semantics for the foundation of computer

languages.

An ;‘\CTOR is an active agent that plays a role on cue according to a script. The computational model conveys
semantics similar to an object: modularity, messages, intentions (a conceptual model of behaviour),
protection and privacy (encapsulation). Ilewitt states that “control flow and data flow are inseparable” in an
ACTOR. This is a concise description of encapsulation in that the control over processing (the control flow)
and control of data change (data flow) are maintained inseparable in an ACTOR. Control passes between
ACTORS through messages. Under these restrictions, the only way an ACTOR can achieve its intentions
(behaviours) is either “Every ACTOR should act for himself or delegate the responsibility [pass the buck] to an

ACTOR who will’®’, It is through delegating that an ACTOR extends the representation of knowledge.

Experiments in programming styles have implemented some of the ACTOR philosophy in Tisp. Early
examples include Kahn’s Director® and Lieberman’s Act 1%°. These experiments are specific
implementations of software machines using ACTOR. The concept of a prototype that deiegatw to a proxy
(see §2.4.5) as a method of representing knowledge, came from these experiments. All prototypes are an
ACTOR. Each knows a proxy, which is an ACTOR. Any message a prototype does not specifically know hov;r
to resolve will resolve the message by delegating the message to its proxy. This message delegation is more
specific than Hewitt’s “pass the buck” between AéTORS. Before a prototype delegates, control passes to the
message (also an ACTOR) and assigns the variable ‘client’ to the prototype. Therefore, languages defining this

delegation have standardised the intentions of messages.

The standardising of object organisations within languages has genémted a lot of argument. Initially
Lieberman™ argued class—instance inheritance was inferior to prototype-delegation. Stein" countered that
delegation is functionally the same as inheritance. Other languages implement various other organisations;
Ungar’s” Self, Mercado’s" Hybrid, and Agha’s™* ACTORS are but a few. The arguments were clarified when
Stien, Lieberman and Ungar produced the Treaty of Orlando’(see §2.4.4), which abstracts the concepts of
behaviour sharing. Each concept exhibits useful characteristics for software modelling. The important issue

in designing or choosing a language is deciding which characteristics best suits the knowledge represented.

When Zucker' represented materials design he specified behaviour sharing that supports both searching
through information and then experimentally combining information. He sought a classification to organise
his knowledge, which supports searching. He sought the expressive description of prototypes to

experimentally comb(ine information into design solutions. Zucker got both these characteristics by starting

51

Object -Oriented Software Representation of Polymer Materiah Information in Engineering Design

with Scheme’, a dialect of the Lisp language that adopts actor semantics. He modified the language to
provide cach object with a striet classification with inheritance, while the delegation of scripts between
objeets allow the dynamic eombination of information from different classifications. This new language he
called SPLINTER.

2.5 Selecting a Language

This review describes some of the software concepts applicable for knowledge representation. For the
majority of polymer knowledge, these concepts are satisfactory, but inferring general polymer behaviours
requires a language with highly abstract functionality. Object—orientation is reviewed because the philosophy
of behaviour sharing encourages abstraction and classification, which the class-instance paradigm

exemplifies.

This review starts by introducing a description of design as a method that uses classification and
generalisation of information. As discussed, designers first identify suitable general materials during the
initial stages of design. They attempt to generally satisfy the design, possibly by adjusting other design
parameters, before attempting to satisfy it with materials that are more specific. This is a principle method of
design, which “leads inexorably to a minor but unmistakable invention”, as quoted at the beginning of this
review. The method relies on a taxonomic classification, where each class generalises materials. The method
proceeds as long as the designer can interpret design benefits from the abstract behaviour of the
generalisations. Theefure, a language implementing this method of design requircs a concept of

classification and data abstraction.

A relational model can describe a hierarchy. Relational algebra can abstract properties of grades to give
averages, maximums, minimums and general distributions. Then why is object-orientation chosen for
representing polymer information rather than a relational model? The distinguishing features of these two
data models are the way they manipulate data. A relational u'an.sacﬁon processes many entities with the same
query, while an object transaction evaluates many different messages over a few objects. The benefits of

these features for representing polymer information lies in the way designers use polymer information.

If designers are able to translate a specification for a product into a material specification using general
material properties, then a relational calculus query could represent the material specification and a relational
database could effectively locate grades matching the query. This query approach was rejected as an

uncharacteristic design method.

52

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
Designers can provide a loose specification of a product. Often the designer can translate them into desirable
general material properties. The important difference is the designer knows the criterion is only approximate,
and the criterion depends on other perspectives of the design, which can change and therefore change the
criterion for the material. What the designer first wants to know is how classes of material behave in general.
The designer can then translate the product specification into different material specifications that gives each
class of material the best chance at solving the problem. A new specific criterion then applies to subclasses of
a class, while other criterion apply to the subclasses of other classes. The designer decides on direction at
each new source of informaﬁon, which is a style of information browsing. Adjusting information processing
according to the type of information is a general feature of object-oriented messages not supported by

standard relational manipulation languages.

The object-oriented paradigm provides greater abstraction than the relational model. In a relational model the
data definition of grades, their classification, consistency rules for inheritance, and rules to infer abstract
polymer behaviour would all be represented as separate database objects (ie table definitions, tables and
queries). In the object model, this level of abstraction exists too. Method objects represent the rules, while
other objects represent the polymer abstraction. Unlike the relational model, the object model can abstract all
these behaviours into a single object. For example, the behaviour of class objects, whose metaclass inherits
the behaviour of inheritance and object representation (ie the grade-definition), can extend by the addition of

new object behaviours to infer abstract polymer.

Of the object-oriented approaches, neither the class—instance paradigm or the actor formalism prevents
complex modelling, but specific optimisations of individual languages might. Unlike the class—instance
paradigm, which implies inheritance and classification, the actor paradigm does not naturally support a
programming structure, though it does not prevent an actor language from developing one. Zucker started
with a language with some actor semantics and enhanced the language with a taxonomic structure. In
Zucker’s case, the qualities of the prototype were a dominant benefit for his initial choice of language for
modelling the evolution of design. The work presented here requires classification, and there exists many

very good examples of languages that support classification.

The language will describe complex relationships between grades, classes of polymers and the abstraction of
properties, but also evolve the description since the classification will continue to grow and develop. The
language requires schema evolution. The schema includes the classification hierarchy and the description of

polymer classes with polymer properties.

53

Otject -Oriented Software Representation of Polymer Materials Information in Engineering Devign

ObjectWorks™ 4.1, a variant of the class-instance language Smalltalk, was seen to be a suitable language for
the representzition of polymer materials information for design. Smalltalk had many characteristics deemed
beneficial to the research in Table 1, including an expressive user interface capability. The interface to the

knowledge base is important for browsing the information.

Everything is an object all entities in the language are objects and can evolve.

Classes as objects As well as define protocols, classes can have their own
behaviours, e.g. population generalisation and abstraction
. Protocols as objects " | Can define engineering property objects as a kind of protocol
Strict classification hierarchy encourages a cleanly principled taxonomy.

Runtime evolution of classes template | Grade structure can change at runtime, though not
efficiently. Changes are per group, not per individual.

Dynamic protocol inheritance Protocols change efficiently.
Large class library Faster development time
Advanced user interface tool-kit Encourages effective interface development.

Table 1: Known characteristics of Smalltalk deemed beneficial to the research
A ouitable language means some of the expected functions may be difficult or impossible te achieve. Table 2

lists the charasteristics considered challenging at the beginning. The absence of database support, which is
necessary for an extendable knowledge base, suggests the Smalltalk .data model may not be suitable for
databasc application. Smalltalk supports a single inheritance classification and only implicit protocol sharing,
so using the class to both classify and describe polymer materials with properties orthogonal to their
classification will be a challenge. Encountering these barriers and others in the representation simply
identifies how the language does not suit the problem. Where possible barriers are overcome and the research -
continues, Overcoming the barriers is also of interest since it characterises the problems not foreseen at the

beginning of the research.

Only implicit protocol sharing | Object interface does not support explicit protocol sharing. |

No prototyping Classes must be used to manage protocols.
No Persistence Requires a third party database service.

Table 2: Known challenges to Smalltalk at the beginning of the research

54

B,

Object -Oriented Software Representation of Polymer Materials Infc jon in Engieering Design

Chapter 3 POISE: Polymer Objects in a Smalltalk Environment

Overview of Objectives

For useful representation of polymer information for design applications, the following list identifies issues
on:

1) managing a rich variety of informative descriptions, each with the potential to extend,

2) managing sparse data, and providing suitable defaults where possible,

3) encouraging descriptions that are independent of a particular purpose, through an appropriate

classification which generalises similarities across the domain,
4) defining and managing many levels of abstractions from the domain generalisations.

The following chapter proposes a conceptual description, or loose schema. The schema descrihes software
tools for achieving these objectives. Software conforming to the object—oriented class—instance paradigm
provides the principles. (1) Objects encapsulate information, providing an independence that allows the
information to evolve. (2) Objects share behaviour, typically following a concept of default inheritance, from

more abstract objects. (3) In the class—instance paradigm classes enforce a strict classification of instances.

In addition, the class defines a consistent structure of objects, which is useful for supporting traditional

information management tools, namely: |

5) database support techniques for information storage, in a form that appeals to the organisation of
information in the polymer industry, and

6) supporting interface design for reflecting the representations and appealing to the user through intelligent
interaction. ‘

In particular, an implementation of Smalltalk™ has characteristics deemed beneficial. The final application is

implemented in Smalltalk™, and named POISE. Following this chapter is a discussion on the particular

aspects of this schema that challenges the object model of Smalltalk™. This schema is not particular to

Smalltalk™, and it should not imply Smalltalk™ is the only possible language for the implementation.

The schema follows the information flows from source through to the classification. The description, support
for abstraction and grade representation of this classification is at the core of the schema. Extensions to this
core add orthogonal descriptions and database management capabilities. The schema, visualised in Figure 4,
shows ke data acquisition on the right ﬂowiﬁg into the classification and supported by an object management

system on the left. The rest of this chapter follows this flow.

55

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

Archltecture of POISE for object-oriented knowledge representation and management

@ @D

b/

G (o

290RRJA 339{qo-mpy

s puads a

Fom o™

(k=

Plastics

Hierar chy @

DIF ASCI/ Multi-
file binary Media
file file

Read Only

RAW DATA
ACQUISITION
ENVIRONMENT

“ISAM”
Structured
Objects
File * E
b A e
PERSISTENCE HIGH-LEVEL CLASSIFICATION
ENVIRONMENT (automatic ENVIRONMENT
storage and (experimental .
maintenance of all current Information structuring) S~
object transactions)

O Class definition

é Insiance of class

3.1 Source Data

i Disk file

... (gateway to third-party -
data/programs)

s Class ordering
==l Data flow between objects

———» Disk communications
Figure 4: An initial architecture of POISE

} Smalttalk imag

Speclal
amenlity for
user
interaction
Implementatio
n classes

Forms of data

For experimenting with information management, POISE needs only a minimal strategy for data exchange,

preferably accessing a single large source. Initially CAMPUS (§2.1.1.) was chosen. In principal, POISE requires

a more general interface catering to many sources. To satisfy the principle, a CAMPUS specific interface

passes data to a general data structure that may represent data from other sources. This general data structure

is a binary relational table.

3.1.1 Reading Binary Relational Table from DIF Files
DIF, delimited interchange format, is a simple data file format that separates fields in a record with a

delimiting character, allowing the fields to vary in size. Most spreadsheet applications and relational DBMS

can produce output of this kind. POISE requires the fields within the records to correspond to the following

binary relational data schema:

56

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

oy [,
T Y f P
- ") -,
7 K Y \ .’ .‘1 ‘/ T,
- 3 s {7 -
%) 4 5
N "\ d ;r' i s/
N\
.\\“ AN ,J ‘(
< \:'{.) \ l\] V;/
“\ '] / ».‘
R kY H ¢ J’ -
,.‘_. \\ \ (3 I{ ; o e
."f o \. “\- P POI gmer “’-‘i’l‘ ill ‘,\.‘:,.-"' \
Vi, ey Supplier e S A Y,
/,I - .\".‘ R e 3, / \.\,: o . 4
.., K g . A . R S
e, \\?.-‘ N Yis-a: Organization / y S s
e NN AN o
i e K N " \]
i e lr’%. R . s, '
j 7o~ 7 '
Jr N ~—‘~s. ~\ 4
. T L- ~ ., N\, s 1 \ i,
PO {7 e - RN S | |\ WL
Jantes Grade
Pl ——~=""|is-a: Polymer
o I et e
e ol -~ 7 .'
¥ p - 7
4 ~0 - S
’ - (A ’
3 Y, ‘
N A B
Jpuss 4 / '
e 4 k\, 4 4 .! :g
, g ¢ i)
A _‘,?:r,‘_ P }'
3 P | 1
v -~ £
“ o § \.‘ﬁ.\ ‘{
B et 5 J ~
w N | =
R L]
- / {1 3
Y j 3
A / g
ey
a .-‘; f
...... . .:’i .l "(1
) V‘\.-f i “I .é
" !___\‘ ¢
- -._f T

Figure 5: The open-ended relational view of an al"bilrary polymer grade
{Unique Polymer Name}— {Unique Property Name}—{Property Value}

In this case, the binary relation maps a ‘Unique Polymer Name’ to a ‘Property Value’ under the named
relation ‘Unique Property Name’. The schema allows any property relation that is uniquely identified by the
string in the ‘Unique Property Name’ field. Diagrammatically, fnis creates a model as shown in Figure 5. A
" polymerSupplier is an object representation of a DIF file containing the source descriptions of grades. The
grade’s description takes the form of an aggregation of property relations to magnitudes, which are often

numerical and described here as property-values.

The data structure adopts a binary relational data model, but not the inference engine that usually comes with
relational databases. If an information source infers information from the data, it must explicitly export the
inferred data in relations. For example, a database assuming a closed domain and closed world does not state
what is false. POISE assumes what is not stated is unknown, so false statements must be given as relations in
the input. The potential exists for information to be lost if the system generating the output makes

assumptions on the schema of the receiving system.

57

mmanﬁwommummﬁmmm&wmmm
The binary relational data structure does not rely on any assumptions or any particular domain. A DIF file
containing such relations is quite capable of conveying the description of an arbitrary grade as a loose

grouping of properties, ie the relations as described in Figure 5.

The binary relation file does rely on the unique name assumption for both polymer grades and the properties
used to describe them, but only within defined sub-domains of data. The domain of POISE covers all
knowledgé of polymer materials. Any division of the domain creates sub-domains. Each PolymerSupplier is
considered a sub-domain of grade descriptions. The boundary of the sub-domain simplifies the scope of an
individual DIF file or aggregation of files, provided by suppliers. In the case of CAMPUS, there is a separate
file fér describing the semantics of the property relations and another for specifying textual descriptions of

grades separately (see §3.1.3)

The knowledge content of a relational database will often include constraints over the domain entities
belonging to an entity set. In particular, each property describes an entity set of property values. The source

eould define constraints over the property values hence define acceptable bounds.

Interpreting the ‘Property Value’ eatity from a field in a DIF file relies on the semantic meaning of the
property relation, In its raw form, the DIF field is a string of characters or bytes. In some cases, the entity only
requires unique identification, in which case a string may be a reasonable representation of the entity. More
often, the entity is a magnitude with otha specific semantic qualitics. The default behaviour when
interpreting the ‘Property value’ is to convert the string into a real number. If the translation mechanism can
not coerce the string to a number then tile value is left as a string. This behaviour can change on a per

property relation basis. The definition of the property relation in POISE can include a valid data type for the

L

value acceptable for representing the property.-

312 CAMPUS
The polymer data used by GAMPUS is available in two difforent file structuros: The format found with the

commeroial distribution of CAMPUS is a binary fils. CAMPUS was also available on request from the polymer

supplicrs in ABGII (American Standard Code for Information Interehange) file.

During the pmod of the project (1990—1994) the binary format changed when a new versions of the
CAMPUS program, CAPS’®, was written. The ASCH format remained consistent, presumably because it is used
to ecommunieate the datn to the CAMPUS goftware developers. The difficulty in obtaining the ASCI version

though made it necessary for POISE to read either file format.

58

Object -Oriented Software Representation of Polymer Materialy hfoqnlﬁonhﬁnsineﬁthuip
Both file formats contain the same information. CAMPUS portrays all polymers with the same list of
properties. It classifies properties by type (eg mechanical vs electrical) and polymers by material family.

Each polymer includes a textual description.

CAMPUS portrays a concrete aggregation of properties, so unlike the general schema, a static data structure.
could represent CAMPUS grades, and initially a class did. Instances had a fixed set of atiributes, onc for cach

property and one for the text. After the PolymerSupplier, which groups property-value associations, there

was little need for the old class except for the code generating instances from the CAMPUS files. A subclass of
PolymerSupplier, CampusPolymerSupplier, specialises the general representation with this code.

3.1.3 CAMPUS Data in ASCII Text Format

The text format can be likened to a simplified (or ‘normalised’) binary relational file. The file consists of
tables, one for each polymer grade. The table has two columns, the first with integers uniquely identifying a

property, the second associating the property with a value, see Table 3. The integers in the first column

reference property descriptions in a second ASCI text file from the CAMPUS disk, see Table 4

301 Vestolen A 3512 F
19 5 89 .
101 0.932

102 17

103 10

104 >50

107 550

108 500

109 250

112 S0

113 14

: Table 3: ASCI Campus data file (edited)
The file differs from a DrF file. The fields are of fixed character size, rather than field delimited by a special

character. There are also Boolean properties where the identifiers existence represents true, and its absence
infers false (ie a closed world assumption). The absence of other properties, eg the mechanical (1) property

(05) “Tensile strength’ in Table 4 is absent from the record in Table 3, infers no measurement exists.

This structure simplifies the task of the PolymerSupplier since the file groups together all the associations of
one grade in sequence. A process iterates through the file without need to locate each grade for each property.
A binary relational file does not necessarily group relations by grade. The CampusPolymerSupplier encodes

this difference.

59

Object -Oriented Software Representation of Polymer Materials Information in Bgmeerhg Design

f

Huels Ag
3 Families
ve i R 01* Vestolen (PE-HD) PE-HD
02* Vestolen (PP) ' PP
03* Vestolen (PP + EP) PP+EP
04* Vestolit (PVC-P) PVC-P
05* vestolit (PVC-U) PVC-U
06* Vestolit (PVC-HI) PVC-HI
_ 07* Vestyron (PS) .- PS
08* vestyron (S/B) ' S/B
09* vVestamid (PA 612) PA 612
K 10* Vestamid~ (PEBA) . PEBA -
" 11* Vestamid (PA 12) PA 12
12* Vestodur (PBT) PBT
13* vestoran (PPE) ’ PPE
14* Vestoblend (PPE + PA) PPE+PA
s+ . ' 16* Dyflor - (PVDF) . - . PVDF |
15* Trogamid (PA-6-3) PA-6-3
1 Mechanical Properties (At: 23/50)
01* Density g/ml Dens
02* Stress At Yield {50mm/Min) N/mm2 Stssyi
03* Strain At Yield {50mm/Min) L] Strayi
04* Strain At Break (50mm/Min) - Strabr
58* Stress At 50% Elong.(50mm/Min) N/mm2 Stss50
. 05*-Tensile Strength (5mm/Min) N/mm2 Strgth
06* Strain At Break (5mm/Min) $ Strnbr
~ 07* Young'S Modulus (1mm/Min} N/mm2 Ymod
(08* Creep Modulus ‘ " 1h N/mm2 Ecl
L 09* Creep Modulus 1000h N/mm2 Ec1000
! o 10* Impact Strength (Izod) +238C kJ/m2 Imp+23 . -
11* Impact Strength (Izod) -308C kJ/m2 Imp-30
12* Notch.Imp.Str. (Izod) +238C . kJ/m2 Nimp23
13* Notch.Imp.Str. (Izod) -308C kJ/m2 Nim-30
14* Notch.Tens.Imp.Strength +238C kJ/M2 Tenimp

Table 4: CAMPUS property file
The property definition data, Table 4, is read by the CampusPolymerSupplier creating an automatic partial

description of the properties. This meta-knowledge includes the full name of t.he property, a common
abbreviation, and units. The file also describes a set of mutually exclusive properties corresponding to
polymer family membership (the first 15 properties, prefixed with a 3, eg 301 for ‘VESTOLEN (l;E-HD)’). Each
gréde defines only one of these properties. The family allows the automatic placement of the polymer ‘in the

3

POISE classification, see (§3.2.3).

3.1.4 CAMPUS Data in Binary Format ‘
The binary format represents each grade in a record with a fixed number of bytes. The main numeric
properties are represented by two bytes each and identified by their index (position) wn.hm the record. T“his
index corresponds proportionally with the identifying number found in the property file. Unlike the CAMPUS
text representation, all properties are represented, even if not applicable or unknown. The two bytes only
represent discrete values. These values include a range of numbers — both integer and float — and special
states such as ‘value unknown’, ‘value not applicable’ and property specific states such as ‘no break’ for
impact tests. The record also contains the name of the grade, in a fixed length field, the family of the grade,

by integer corresponding to the property, and an encoded date to identify the version of the data.

The binary file uses the same property definition file (Table 4) as the AsClI file.

Object -Orieated Software Representation of Polymer Materials Infi jon i Engineering Design

3.1.5 The Transitive Data Model
The PolymerSupplier reads DIF files, the CampusPolymerSupplier reads CAMPUS files. Both generate

representations of grades. The TDM (Transitive Data Model) is the temporary representation of grades

entering POISE.

On the first attempt at acquiring data from CAMPUS, the data was placed in objects that specified each
CAMPUS property explicitly, so adopting a similar fixed data structure used by CAMPUS itself The objects

were rigid, requiring a redefinition of the objects data structure whenever new properties were encountered.

As new properties are a characteristic of the rich property descriptions of materials, a general transitive data-
model was designed. This model, like the binary relations, adopts a set-like structure that collected relations.
Any numbser of relations could be added. The model was not to be used for any inference so there were no

restrictions on what relations were added since no meaning is attributed to them at this stage.

The requirements of the TDM are simpler than the representation of grades in the classification system of
POISE, which does apply inference over the members. The TDM does not ensure consistency across properties.

The concept of the property relation only requires unique identification.

The TDM model includes some mandatory property descriptions of grades. Most only simplify the
development of POISE. We believe the software implementing POISE could be re-written so grades could exist
within POISE without these properties but that it would introduce unnecessary difficullics when vis;ually
identifying grade entities. These properties are otherwise treated the same as any others. The mandatory
properties include:

® A name for the grade

o The supplier of the grade.

¢ A text description
e A validation date.

Rather than enforcing the inclusion of these properties as input requirements, the TDM provides a default
mechanism for each of these properties. The date is set at the current modification date of the file read. The
name is either derived from the supplier as ‘Unknown from <supplier>’ or just ‘Unknown’. The text is a

copy of the name. The supplier defaults to the file name of the file read.

There is one exceptional property. Grades must belong to a chemical family. This relationship is the
beginnings of a taxonomic classification. It is the only mandatory relation for automatic classification in the

POISE schema. Any grade entity entering POISE without this relationship will not be able to take its place with

61

Object -Oriented Sofiware Representation of Polymer Materials Information in Enginesring Désign '

other grades in the class1ﬁcatlon Since there is little pomt is deﬁm]tmg to ‘is-a Polymer and rather than
make this relationship the sole input requlrement a browser was proposed to allow the user to place each
grade w1thout the property Since all CAMPUS grades specify thxs property, the development of this browser
was not a high priority. ,
3. 2 System Data Flow '

The data flows from source to a TDM, the temporary representation of grades The TDM lacks any. structure to
support inference. The next step is to transfer the data in the TDM into a more knowledgeable structure in the
classification architecture. This structure provides many different inferences. Restructuring and placing the
grades requires the applicatioe of inference rules and occesionally some interaction from the user. As l;OISE
collates more about polymers, the classification develops character. This section follows the flow of

information and the effect it has on the classification.

32.1 The Grade

A transifive data model (TDM) mitially collects the raw data on a polymer grade as arbitrary property-value
pairs, managing them as a single group. The TbM_ acts as a flexible interface between the data acquisition
system and the classification. The next step is to find a class for the grade. The PolymerSupplier object

manages a collection of TDMs, and defines a mechanism for placing the grade into the classification.

The classification of grades divides into two steps. CAMPUS provides the information for the first step, which
is fo group chemically similar polymers into a family. This is the most specific level of class in the
classification. U-sing> the tools provided the user manually generalises more classes and completes the
classification. A virtue of an evolutionary structure means these two steps can occur in either order. As soon

as a CAMPUS grade enters POISE, the grade can automatically migrate to the class representing the family.

Each class in the classification describes a data structure for its member grades. This structure is a more
formal description of the grade as an instance of a class. Each relation is unique and specifically described,
unlike the general treatment in the TDM. Figure 6 shows the structure of a single relation, linking a grade with

an attribute, with the relation qualified by a Property object. This object is the subject of the next section.

The TDM requests a new empty structure from the polymer family and fills the structure by ‘matching
properties in the structure with the properties in the property-value pairs. If the TDM defines a property that is

not in the structure then there is the potential for the property to be lost.

However, POISE prevents the loss by checking the properties of all TDMs before adding. For-example, as

result of reading a CAMPUS file, the CampusPolymerSﬁpplier object collects up the properties for each family

62

Object -Oriented Software Representation of Polymer A ials Infc 3on in Engineering Design

class and compares them with the classification. Any discrepancies induce a request to modify the
classification to provide for absent properties in the schema (see §3.3). Only then are the grades added. New
families are also defined when not found in the classification. These families automatically inherit from the

general class Polymer,

e: Polymer
Supplier

Hs—3: Organization

g
o : Grade o: Property Value
property samad "22%
is-n: Polymer ’ is-o: Magnitude
A
2 Property
is-3: M lNioR

Figure 6: Schema of the CAMPUS polymer object
3.2.2 The Properly Object

The Property object has the following roles in the implementation of POISE:

e An identifier of an engineering test applied to polymers.

e A unique key for property-value pairs in the TDM.

e Interprets values in the property-value field of a DIF file

o The ability to negotiate with a class on how instances represent grades.

By default, any two objects occupying separate locations are identifiable as different, but they may be
semantically the same. Identifying semantically different properties requires information to differentiate
between them. Simple attributes can be compared automatically, such as a name string, but a textual
description of the test requires a user. Two different texts can have the same semantics, requiring a user to
read and interpret the text to determine differences between properties. Either way, the information allows

properties to be differentiated.

A unique Property specialises each association between the TDM and values of a grade. In the TDM, the
Property object is a key in a look-up table. This key is the only distinguishable difference between different

property data in a TDM.

When a PolymerSupplier reads a DIF file, the contents of the second field names a property. The
PolymerSupplier locates the Property object matching the name. The third field containing the property-

value is a string. The Property object converts the string to an object of the type representing a value of the

63

Object -Oriented Software Rep jon of Polymer Materiahs Information in Engineering Design

property. The type is an attribite of the Property object, which also provides the behaviour to transform

from a string. The. TDM then associates the Property, as a key in a hash table, with the value object.

Propértim are not pre-defined. Grades will always require mare property descriptions. POISE is able to receive
new properties at any time. New CAMPUS properties are no different from any others. CAMPUS describes all
the properties in each database in a separate text file, Table 4. Each property in the file is a record with a
name as a string, unique symbol (a shorter sequence of characters), and a string for the units of the property-
values. POISE creates a new Property with this information as attributes to identify the property. Defaults are

available for all other behaviours of a Property object.

CAMPUS mainly defines grade’s property-values as a single rational number. Raﬁc;nal numbers describe an
ordering and ordering is necessary for comparison; a prime function in design. So it is reasonable to assume
all specific properties can be represented with a rational number, though o&wr ordering representations may
be found more appropriate. It so happens that all the CAMPUS properties are quantitative properties, which
means the rational values are the result of some pﬁncipled test. For some properties a measurable test has not
been found, and these properties are often described qualitatively. In principle even these me can be
ordered and databases like PLASCAMS-220 use rational numbers as an abstract ranking to represent qualitative
data. In this form they do not pose any more ot; a challenge t-o classiﬁcation and ;bsuacﬁng as qua.lit;tive
measures. Their absence in POISE is solely a consequence of the source of data. Nevertheless, it should be
remembered that although the abstract use of rational numbers for measuring qualitative properties has a

logical basis in ordering, there is no principle to the measure of qualitative properties.

The default type attributed to a property is an object representing rational numbers. A consequence of this
default can be a loss of information, such as engineering units, in the representation of the values.
Associating a value with units conveys more information. Instead, lost information is maintained as an
attribute of the Property object. As POISE developed, the Property object became a repository of ‘lost’
information specific to the values. As the development of POISE evolves, this information finds a more

appropriate representation, such as part of a value’s type definition.

The default Property behaviour also makes it easier for users to define their own properties. Initially only a

unique name is needed. The user can then refine the Property’s attributes later.

Objects of any language could easily model all the roles in the above list. All are typical computing

behaviours except for the last role. The last role, negotiating with a class, involves evolving the des;:ription of

Object -Oriented Software Representation of Polymer Materialy Information in Engineering Design
other objects. In a class—instance language, classes define the behaviour of other objects. The class describes
the meaning of each value attributed to a grade of the class. However, properties also describe the meaning of
a value attributed to grade. A class describes many attributes whereas a Property describes only one.

Therefore, a materials class is an aggregation of materials properties.

A class describes objects as a single unit of description, or template. The template is not a composite
structure, but a single description that has been contributed to by many properties. A Property requires some
functionality where it may deﬁne beha.viours and include ﬂlese‘behaviours into the class template. The
Property is a tool that adds behaviou;s to the class machinery that produce grades. The Property as a tool
for constructing object templates is a unique object—oriented issue that arises from POISE. The Property is a

partial-template object’’, see §4.4.3.

This approach to class definition is similar to the ‘mixin’ style of multiple inheritance of cLos™. It differs as
it does not enforce a membership behaviour with the Property. Grades have no relationship with the

Property entity, only the behaviours the Property provides to the class template.

The process of installing, moving and removing properties over to classes is further described in §3.3.2. In

the implementation of POISE, §4.4.1, addresses how classes add properties.

The description of a Property so far has been more as a tool in the machinery of POISE. The Property is also
an entity of knowledge in the materials domain. Some of that knowledge is useful for identifying uniqueness
across properties. As a representation of part of the materials information, a property should also provide:

® atext Mpﬁm of an engineering test, which is then translated into,

e arepository of behaviours that objects with the property may adopt.
The text, useful for identification, is also a. repository of knowledge, which may be translatable into
computable rules by a knowledgeable designer. These rules become behaviours of grades, but aggregate by
property. The Property adds the behaviours to the classes of grades with the property. This means if the
Property moves in the classification, so does its associated behaviours.
3.2.3 Automatic Classification Declaration
Initially POISE does not contain grades or classes except for the class represented by Polymer, which is the
root of the classification hierarchy. By restricting this experiment to the domain to polymer entities, POISE
can automatically classify TDMs under Polymer. The only other classification information is the polymer
family property. The TDM demands a polymer family name from each entity. Each new name defines a class

‘polymers belonging to polymer family named ...” and is subclassed automatically under Polymer,

65

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
Each new polymer family class is undescribed, with exception of its name and its membership to Polymer.
Even Polymer initially describes only a name ‘Polymer’. The concept of Polymer is empty and in its empty
state a poor representation of a polymer category. POISE provides specialisation of the classes through a user

interface, which is covered later, and by automatic inference that generalises from the TDMs.

A PolymerSupplier manages the first grades POISE adds as TDMs, grouping them by their polymer family
“property”. Each group requests the classification to provide a class with the collective properties of the
TDMs. Each request is a transaction between the class and the Property object in the TDMs. This ensures that

classes specify a template capable of storing the property information represented in the TDM.

The class template is common to all members of the class. Adding properties to the class modifies the data
structure of existing members, thus keeping a unified representation of grades. This unification results in a
relational de-normalisation by polymer family. Membership of the classification imposes a uniform property

specification over the grades that did not exist in the TDM’s unrestricted relational representation.

Unrestricted addition of properties aims to preserve all information obtained from the TDMs. Even if there is
only one member with a Property, all members of the class will be modified to represent the Property. The
automatic addition of properties assumes the existing grades and any other future-grades of the class not

specifying a property are simply sparse; the data is not available but may be specified.

The presence of properties in a TDM does not distinguish whether the property is a characteristic specific to
the grade, to the polymer family or to polymers in general. The assumption of sparse data could be taken
further; the absence of the property in other families is also due to sparse data and the property should
characterise all polymers. Given any property, it is potentially a property of all polymers or specific to the
polymer family class, or indeed specific to the grade itself. For a solutian, POISE looks towards the nature of
the source, the PolymerSupplier.

3.2.4 Transfer of CAMPUS Grades into the POISE Architecture
The following looks at the consequence the primary data source, CAMPUS, has on the architecture.

CAMPUS uses a fixed unified data structure to represent all engineering properties for all polymer grades.
CAMPUS maximises the usage of the fixed data structure by tending towards generic polymer properties. By
keeping to properties measurable (but not necessarily measured) for all grades avoids having useless slots

allocated to properties that can not be measured for a grade.

66

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
In the case of data from CAMPUS, the majority of properties describe all polymers. Since the placement of
TDMSs, hence their properties, is under the control of the CampusPolymerSupplier object, it can specialise the
rule for property placement. The default place for CAMPUS properties is under Polymer. This is where
CampusPolymerSupplier puts them. Since the rule is general to all TDMs, CampusPolymerSupplier may
gidetrack the PolymerSupplier’s automatic property analysis of TDMs by class described earlier, placing all

properties directly in the Polymer class

An intcresting exception to generic propertics in CAMIUS is the property water absorption. This property is
usually applicable to Nylons. It so happens that many grades in CAMPUS are Nylons, hence its declaration in
the data structure of all polymers is not inefficient. If this property is only applicable to Nylons, what do the
other non-Nylon grades store in the space provided in the data structure? CAMPUS uses a special state,
represented as a string ‘NA’ in the Ascl file, for ‘not applicable’. This causes the TDM to specify the property
with the value ‘NA’ for non-Nylon grades. To handle such nonsense, the TDM could be notified when the
property translates the value that it is not an appropriate representation of the property. What then? If the

property is just removed, then the CampusPolymerSupplier will assume the property is just unmeasured.

A state for ‘Not applicable’ is useful to the user for developing the classification of polymers. If one grade in
a class is discovered that should not define a property then the property can not be related to the classification
principle. Removing the property from the class will modify the data structure of all members, including
those that define data for the property. Removal will cause loss of this data. It is simpler if the system just
mérks ‘Not Applicable’ until the property moves during re-classification by the user, rather than removed on

an ad-hoc basis.

Two factors contribute to the population of properties settling down at the root of the classification. The
assumption that the absence of data is sparse and that the CAMPUS database uses generic properties. Although
the descriptions of the more specific classes are , they do not determine the principle of classiﬁcatién.
The classification is based on a single property: polymer family membership. If the classification does indeed
group like with like, then this similarity should be reflected in the property values of the specific grades
grouped. This analysis of similarity was part of Spedding’s® work. Generalising over the specific grades, to

characterise each class, is a function of the hierarchy, §3.5.

All caMPUS properties initially describe all polymers. This results in all grades sharing a homogenous data
structure, just like the structure in CAMPUS. This is not surprising, since the information on classification

originates from CAMPUS, and the details of this information are yet to enter POISE. Unlike CAMPUS, the

67

Object Oriented Software Representation of Polymer Materials Information in Enginearing Design
polymers are not left in this homogenous state. The classification is not intended o remain static. Later,
mechanisms for evolving the classification are given special consideration in (§3.3.2). The only issue at this
stage is to prévent loss of data. The user must add knowledge absent from CAMPUS for further classification

to occur.

A further consequence of choosing CAMPUS is that it leaves the classitication as a shallow hierarchy. With no
other source of information, it is up to the user to add abstract classes between Polymer ana the polymer
families, thereby creating the deep levels of representation found in the polymer domain (§2.1.8). User
interaction requires, appropriate tools and these are considered in section §3.3.3.
3.2.5 Maintenance of Unknown Data .
Sparse data and the concept of incomplete descriptions both have an identifiable state. For completeness,
POISE considers four.states exist for data:

e’ Known

e Not applicable

® Sparse
e Unknown

Two states exist for a property: (PeC) n(PeC) where C is any class template.and P is a property. If PeC,

then data for the property is either known, not applicable or sparse. Unknown corresponds to Pe C.

When a TDM{reprments ;1 grade, there is no distinétion between unknown and mese 'dam. Sparse data exists
in the POISE data model because the data model recognises two states of absent. data: when PeC and when
Pe C. When PeC is true, the property is known to be measurable, and POISE infers a value for the propcrtyl
The contrary statement, P&C, does not mean the property is ‘not applicable’ (NA), ie not measurable. The
domain is not closed and properties will always exist that are measurable but are not yet reprwenteci Until
represented, inferring defaults is not possible. Properties with values as NA are a subset of PeC. For all the
properties in the domain, POISE expects Pe C is true for all classes that can measure the property. The ahsence
of a known proiaerty from a class is then assumed NA in'that class. There is initially a period between a
properties definition and its placement in the classification where this assumption is incorrect, ie a property is

known but PeC.

The absence of a property from the system implies the descriptions are incomplete. If the property is absent
from the grades description (class), but present in the system, then this indicates that the property is NA to the

grade. When the systém adds a new property, by default it is NA to all grades until it is correctly added to the

68

Object -Oriented Software Representation of Polymer Materiahs Information in Engineering Design
classes. Even then, default values are not implicitly inferred until some grades attribute actual values to the

property.

Requesting a NA property for a grade responds differently from a request for a known property of a grade
which is sparse. A sparse condition results in a default value, and NA in an error message. With NA
properties, it is semantically incorrect to request the property. Sparse daia assumes the property has yet to be
tested against the grade. POISE knows it is semantically correct to request the property of such a grade. The
problem is how such a request should be handled when POISE does not know the value. These issues are
addressed either explicitly as a behaviour of a property or generally through default values based on typical

values of the property within the classification.

A response of a default value and a known value should also be recognised, as the two states have different

accuracy. They both at least produce computable values.

3.2.5.1 Not applicable data
A grade describes a property as ‘Not applicable’ (NA) if the grade is inappropriately grouped in the
classification or if the property is an inappropriate description in the class. The classification should

normalise the property specification to remove such states.

~

The NA state is rare given the initial source of POISE. CAMPUS properties are mainly applicable to all

polymers. The state does exist for a few properties, eg water absorption, which is applicable only to Nylons.

A property value representing the state NA is useful for flagging a possible fault of the classification as it can
indicate an unusual grade that deserves a separate subclassing from other grades. Whatever the reason for its
existence, a property behaviour that returns the state should generate an error, since a proper model would

not normally respond to the behaviours of the property.

The NA is also useful during the process of property placement, either automated or manual. Placing a
property in a more general class is possible without inferring all grades exhibit the property. Grades not
exhibiting the property can be given the NA state. Later a process of relational normalisation can remove NA

states.

3.2.5.2 Unsiruciured data: Text
All grades are partial descriptions. Information is usually available on individual grades before it is

understood how the information relates to the polymer family or polymers in general. The information can

also be of a lesser pedigree, and not available for gengral description. When the information is better

understood it may describe a POISE property and add to the description of a class.

69

Object -Oriented Software qu'uamnon of Polymer Materials Information in Engineering Design
Unstructured information gains nothing more from classification than the association with the classified
grade. POISE manages the unstructured information as text in a single collection. Such a collection of text
descriptions exists in the CAMPUS system as a separate delimited file, with an entry for each polymer
identified by name. A single text collection is a representation that benefits simple sequential searches
through the text, A sequential search for a key word is a simple generic tool for finding similarity between
grades. Individual grades are not attributed with the text. Instead, the collection maintains an index of grades
and associates each grade with a block of text in the collection. Sub-collections of text for any group of

polymer can be created when needed.

A user interface gives the domain expert access to the block of text for individual grades. The interface
allows the uger to annotate the grade with unclassified information in a piece-wise manner characteristic of
prototyping. This interface would benefit from a Hypertext extension to the simpler text interface. Hypertext
adds cross-referencing of key words and when the user selects one, the view automatically moves to the
reference. Many other applications have proven Hypertext a very successfully browsing tool, eg
HyperCard”™. Although not considered an essential feature of the POISE system, it is viewed as being a
potential future extension to the system. The hypertext facility could also provide cross-referencing to other
POISE user interfaces providing immediate access to the knowledge in POISE on polymers and properties

described in the text.

3.3 Evolution of POISE Architecture
3.3.1 Description of the (lassification Architecture.

The hierarchical classification in POISE supports the management of domain information and generates
abstractions. However, the nature of the domain complicates developing a classification because the
principled concepts of similarity that provide an extendable classification do not always group similar
engineering data useful for design. Without an acceptable principle for classification, and rather than
enforcing a controversial classification; an alternative is to implement a classification that can change and
evolve according to principles that are learnt from use. A philosophy of change compensates for a certain

amount of absent knowledge still to be learnt.

An empmcal decomposition of the domain aims to consistently classify like with like. The empirical
approach considers existing record structures and documentary sources, such as the annotations from
cAMPUS: Finding similarity within the domain is not a trivial exercise. Later, some teols are introduced to aid
this process. Figure 7 shows a fragment of an initial classification. It illustrates an expanded portion of the

polymer hierarchy together with some of the knowledge-domain arguments favouring the structure. The

70

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
classifications of the domain, the classes between the polymer families and root class Polymer, are chosen
according to principles of microstructural scale and composition, ie a domain principle suitable for extending

the representation.

More general
materials classes
More specific
malerials dasses

At this level in a general materials
hierarchy, metals and ceramics
appear, but not composites due to
the large scale of mixed
reinforcements.

At this level Thermoplastic is factored into
Amorphous and Crystalline. Implicit in this
division is that nearly all subclasses of Crystalline
will be expected to benefit from the greater
chemical and structural integrity of a crystalline
phase. The microatructural classification is of the
same order as the chemical classification which
follows.

Individual grades

At this level the domain is factored into chemical

classes. The assumption here is that the chemical

classes subsumed under Crystalline (strictly

“puuallyc.rysmlhne"')mdAnnrplnu:smllnot . * A further deviation with far-reachi N .
normally violate their ancestry. A policy for . ..

LT R . . consequences, observing the principle of
exceptions is required, as exemplified by the strain- factoring according to molecular scale
induced crystallization of PET. This has led to the introduces dentity as an ria.tew;, of
issue of whether a class Z4/gned?at this level is grouping polyethylencs approp y
appropriate.

Figure 7: The factoring process
The management of the classification, which is described next, automatically supports:

i. grade behaviour consistent with classification
ii. specification of grade implementation, including data structure,
iii. consistent placement within classification of grades acquired by data acquisition system
iv. gencration and management of generalisation . :
v. abstracting default property specification from generalisation
whilst being able to coerce to a new classification as specified by the user.

Class—instance object—orientation supports this management ﬂready as follows: (i) Grades of the same class

template define common abstract behaviour ensuring consistent properties (ii) and data structure. (iii)

71

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
Currently the placemént of grades uses the unique polymer family name as a key to the polymer class, to
ensure consistent placement of grades. Class—instance language do not generally support points (iv) and (v),
which introduce abstract levels of representation besides specific grades and are discussed later in §3.4.
Many class—instance language do not support schema evolution, which is the difficult task of coercing to a

new classification.

The lack of a computable domain principle means there is no rule to automate classification. Only highly
specialised chemical classes exist into which the grades are automatically placed. These families generally
group alike grades but there is no guarantee so there may be exceptions where it is necessary for the user to
manipulate the classification. The user will need to specify any other more general classes as well. The tools
for supporting evolution of the class hierarchy under user control follows.

3.3.2 Creating the Hierarchical Classification

POISE adopts the class-instance paradigm to represent classification. The following sections discuss what
specific functionality POISE requires from the class hierarchy for representing polymer classes, and the tools

for managing the hierarchy from a domain, rather than software, point of view.

The behaviour of each polymer grade can change and must be modifiable at any time. It follows that the
language implementing POISE will need to coerce object definitions at run-tﬁne as behaviours change.
Changing object definitions at run time creates many problems for the stability of programs. If a language
provides schema evolution, it must also provide consistency rules over change and provides a mechanism for

handling instability.

POISE provides its own weﬁ-mmnaed mechanisms to govern object definition changes in the class hierarchy.
From a domain viewpoint, these are the addition of new classes, the movement of class within the
classification, and the movement of properties in and out of classes. All these issues are inter-related. A new
class will involve all three. The movement of properties in an existing classification is considered first.
3.3.2.1 Adding and removing a property

A property is a partial template description that contributes to the complete template defined in a class. How
the property achieves this is specific to the implementation language and not an issue here. Regardless of the

implementation, the property will abide by rules of inheritance.

When adding a property to a class, POISE ensures the property is not declared more than once along the same
line of inheritance. Besides the mare specific declaration being redundant, if allowed by a class the repeated

property would correspond to a repeated allocation of resources by the class in the grade’s data structure.

72

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
If a specific polymer family specifies a property, and later it is found it applies to a more general class of
polymers then the general class should add the property. The specific polymer family then removes the

property, and instead inherits the property from the general class.

If all the subclasses of a superclass define a property, POISE infers that they should inherit the property from
the superclass. The activity of moving a property defined in a subclass to its superclass is known in POISE as
promoting. The inference to promote assumes a closed domain, eg initially the grades may all define yield
strength, causing the promotion of the property to Polymer. Later an addition of a polymer that does not yield

will invalidate the generality of the property.

The appropriate place for a property may be known before adding grades, so the promotion should also be
under user control. Explicitly promoting each property is labour intensive, so an explicit denial of promotion
is more useful than explicit promotion. Consequently, POISE does automatic promotion only when adding a

property. The user can reverse or prevent this promotion by explicit removal of the property.

Removing a property from a general class of polymers has two possible consequences. Either the class and its
subclasses no longer exhibit the property or each subclass adds the property so only the general class no

longer exhibits the property

Removing a property from a class is not the same as removing a property from the descriptions of all
members of the class. The class only abstracts properties from its members. The members still express the
property. When removing a property from a class, .the more specific members of the class should
automatically add the property. When a property moves from a superclass to its subclasses, the property is

demoted. Demoting a property never affects the behaviour of grades.

Demoting is only possible if grades are in subclasses, since in most class-instance languages instances can
not specialise their class description, ie cannot add properties to individual grades. When a property demotes
from a class with instances (grades) the property cannot pass to the individual grades. In this case a
destructive removal occurs. It is destructive because any values the gradae maintain for the property will be

lost, as their data structures will no longer support the property value.

Occasionally, the user wants to remove a property, rather than demote it. Such as when the user wishes to
reverse an addition of a property. So both demotion and removal are supported. When removing a property
from a superclass, it is possible that the user is unaware of the consequence to other subclasses. It is possible

that the property was explicitly added to a subclass earlier and a promotion caused the inheritance of the

73

Object -Oriented Software Representation of Polymer Materiahs Information in Engineering Design
property from a superclass. Removing the property from the superclass, rather than demoting the property,
will conflict with the earlier addition of the property to the subclass. A similar case occurs when adding'a
property to a superclass that was earlier removed from a subclass. These actions are ‘in conflict, but not

directly reversed actions. In such cases, the user is not_iﬁed.

For the user’s convenience, the tool providing these facilities should visually convey an add as the reversal of
a remove and a demotion as the reversal of a promotion. This eases the reversal of erroneous actions.

3322 Adding abstract classes

Adding an empty polymer class as a specialisation of Polymer extends the classification. The class can then
move to inherit from a class other than Polymer. Other classes can move to inherit from the new class. These

functions allow the creation of a taxonomic classification.

The class needs a name, which as text, is a minimal visual representation of the class. If the class is a polymer

family from CAMPUS, the name will link grades from CAMPUS to their class in POISE.

3.3.2.3 Moving classes - ; .

Moving a class is a major modiﬁcatiqn to the classification. A move changes the supacélass-subclass
relationships and the subsumed properties. With a change of superclass, me‘inhex-i'tance of proﬁerﬁes
changes. The effect on the class template is twofold: properties no longer inherited are ;dded to the claés, and
the data structure extends to cater for the addition of newly inherited properties. Commonly inherited

properties, between new and old superclass, do not cause change.

There are two kinds of move possible. The first moves a class and all its subclasses to a new superclass. The
second moves a class but all its subclasses remain by inheriting directly from the old superclass. Moving the

whole branch of the classification (the subclasses with a class) is thought to be better understood by a user.

Moving whole branches prevents one inconsistency possible within a hierarchy: circular inheritance. Circular
inheritance occurs when a superclass inherits from one of its own subclasses. By moving a whole branch and
allowing the branch to inherit only from classes other than those in the branch, prevents circularity.

3.3.2.4 Merging classes

The naming of polymer families is not universal so there is the potential for the same real-world polymer
family to be declared under two different names, eg Nylon and Polyamide. Merging two classes first requires
both classes to share the same ‘property structure. Normally this will be the union of the two property
stnictures creating a more complete description. The next step coerces the structure of the instances (grades)

to the unified structure.

74

Object -Oriented Software Representation of Polymer Materials [aformation in Engineering Design

3.3.3 The Interface . '
The hierarchy-editing interface is primarily a visual representation of the hierarchy. The simplest

representation is a tab-indented list of the names of the classifications. The tabs are set according to the level
in the hierarchy. The order of the list is such that any class inherits from the next class above it, which is
printed at a lower level (one less tab space). An example is given in Figure 8 where PA6 and PA12 both inherit

from PA, which is the next polymer class up the list at a lower level.

Hierarchykditor ==

12 (€]

T —] T
‘ ‘ Didetiovength K0P A:d ‘ ettastioad B
Creep modulus th | e men .) atedtioad &
Flow frontvalodey ! | Maitvoluma indexth (2usiue)
! Elecyolydc corrosion 3 Spedmen and propetties acod..o DIN
! Viscosiyy ooaf. - [Demote ReMOYe | woar absorplion (ZPC-sat) L
| CTIM 100 drops-usiue i » | : . : | etestwrpersure A
! Comp.raddngindex CTIM | | atestwrperawre B
| Mould emmperatire ‘ ! = —
thicknessB | ‘ “
Jf Creep mwdulus 1000k i] [
1 Heotdefl Terrp. HOTS QNI | L - 0] !
| Tensie swangh @mminin) | - Added Propetties ¢ |
1 Femmebiiity ULO$ (LArm) . |
! < Removed Properties ¥ | -

Figure 8: POISE hierarchy editing tool
Users select a class by choosing the appropriate line in the list with a pointer input-device (eg a ‘mouse’).

The view (an area displayed on a computer screen) then displays the information about properties of the class
in the subviews below the hierarchy. From these subviews, the user can move properties around the hierarchy

in an orderly manner.

3.3.4 User Interaction with Properties
Once the user has selected a class, three subviews are updated to display; the properties inherited by the class

(the left view); the properties specialising the class (the centre view); and a view with all other properties,
those considered not applicable (the right view). The right list will exclude the properties of orthogonal

classes (§3.6.2) which can apply to any grade.

75

Object -Oriented Soft Repr ion of Polymer Materials Information in Engineering Design

The editor keeps a record of all the property modification, for consistency checks. The interface checks each
change and determine when the user requests conflicting actioﬁs. Pull-down lists marked “added-properties”

‘and “removed-properties” display the history of actions on the selected class.

There are four dedicated buttons for manipulating the properties of the class; Add and Remove on the right,
Promote and Demote on the left. The proximity of these butions encourages the user’s understanding of

movements between the lists.

3.3.4.1 Adding a property
Properties listed in the pane on the right of Figure 8 are not subsumed by the selected class. The class could

add these properties by selecting one and pressing the Add button next to the list. The lists are updated with
the property removed from the right list and added to the centre list. The list in the centre pane ig the

properties declared specific to the selected class.

The editor checks all subclasses and recursively their subclasses, before adding a property to a class to see if
any subclass has explicitly removed the property. If the property has been removed then inheriting the new
property is a conflicting request. This raises a Notifier that provides the option to either abort the add,
enforce the add despite the earlier remove (hence adding the property back via inheritance), or add the
property to all subclasses except those in direct descendant from the class that had the property removed. .

This last option will cause all subclasses to have the property except the one that had the property removed.

After adding a property POISE analyses the complete hierarchy. If the property is common in all the
subclasses of the sglected class’s superclass, (the subclasses will include the selected class) then the editor
automatically promotes the property to the superclass. In which case, the property moves from the right list
over to the left list in Figure 8. This process enriches the abstract classes and the hierarchy as a whole. If a
record of the property removal exists for the superclass then this automatic promotion will be vetoed.

3.3.4.2 Removing a property

Removing a property, like adding, starts by selecting the property in the centre list and pressing the remove
button. The property moves from the centre list to the right list. The editor first checks subclasses for any
previous adds of the property that now rely on the inheritance from the current class. If a conflict occurs a
Notifier opens with the following options: force the remove despite the previous add, abort the remove, or
remove the property but add it back to the subclass that had add the property previously (like demotion, but

only to the conflicting subclass).

76

Object -Oriented Software Representation of Polymer Materiah nformation in Engineering Design
Removing a property will eventually lead to loss of data. This has not yet occurred at this point in the
procedure, but will happen later when the user accepts all changes to the hierarchy. Reversal is possible up to
that point without loss. Any action providing the grades with the property later will maintain the data.

3.3.4.3 Adding and removing classes
The user can add a new class by selecting the menu bar (S22

=), and choosing the “Add Class”
option. Defining a new class abstraction has two requirements: a name and a class from which to inherit. By
selecting the menu, a field entry window opens for the user to type the name of the class. The class inherits
by default from Polymer. The user can then add properties and move the new class.

3.3.4.4 Moving classes

Moving a class involves selecting it in the hierarchy and then designating a new superclass from which it
inherits. A select and drag operation by the user can achieve this elegantly. The user selects and holds (keeps
the mouse button depressed) a line containing the text of the class’s name, then drags the mouse. As the
mouse moves up with the text of the name, the classifications above are highlighted, conversely in the down
direction. In Figure 8 PVCP can be seen over the classification PvC. When the editor highlights t.he.new
superclass, the user releas& the mouse. If the move passes consistency checks then the class becomes a
subclass of the new superclass. No changes occur if checks fail, eg releasing the class on one of its own

. subclasses. The editor updates the display.

3.3.4.5 Removing classes
By selecting a class then ordering the command via the menu, the user can remove classifications. The

appropriate warnings are announced accordingly. The editor does not change the POISE classification, only
the display, until the user commits all changes. All the changes can be aborted at any time, including class
removals. Currently, aborting a single class removal requires aborting all modifications.

3.3.5 The Data Model underilying the Hierarchy Interface

A single change to the schema of the polymer data definition can affect from a single class containing tens of
objects to every ohject in the schema, an order of thousands of objects. Often a user will not make one
change but will have a number of modifications. Most of the changes will affect the same objects, eg
removing a property from Crystalline and adding one to Polypropylene, both affect Polypropylene. It
would be sensible then to use a batch processing technique rather than the interactive processing of each

change.

Batch processing requires a description of all the changes to be made and then a single process to optimise by

reduction and performs those changes in one step. A model, which is descriptively parallel to the polymer

77

Object -Oriented Software Representation of Polymer Materials Information in Engineering Deaign
hierarchy, records changes entering the user interface and performs the consistency checks as described in the

previous sections.

Two parallel hierarchies have two advantages over interacting directly with the polymer hierarchy. Firstly,
the classes of the polymer hierarchy have instances that they must represent consistently at all times. So a
single change requires as much coercion as many changes and, since it is more common to evoke many
changes at once, batching the changes is more efficient. The parallel structure does not have to coerce
instances. The second advantage is a separation of consistency checks and user interface protocols from the
polymer hierarchy. These are properties of the parallel hierarchy. This leaves the polymer hierarchy a

‘cleaner’ structure for representing polymer behaviours.

The parallel structure, known in POISE as the POISEHierarchyChanger, performs the consistency checks and
raises a Notifier when the user performs conflicting actions. It collects the changes from the editor intertace
until the user commits. The POISEHierarchyChanger only then updates the polymer hierarchy.

3.4 Levels of Representation

So far, the concept of the class imposes property descriptions on grades. Each class captures similar
behaviouf in a template of properties, common to all members. The hierarchy explicitly declarés many levels

of classification. Each level classifies a population into exclusive classes of similar grades.

The class template abstracts properties that all members of the class exhibit. These are the defining
properties. Comparing the class template to a design specification can only establish if all members will meet
the design requirements. For design, it is more useful to establish if any specific members might meet the
requirements of a design. A similar logical statement is if no members meet the requirements. If this is false,

it can be assumed a member might meet the requirements.

Two abstract inference rules determine if the requirements of a design are not satisfied. They do not
determine if they are satisfied, but if they are true then the requirements are definitely not satisfied. The fust
rule for an unsatisfiable design is if there is a single property requirement not satisfied. This is true if a single

property is not applicable to all members of a class, or the required value is not found in the class.

The second rule for an unsatisfiable design is if the union of all properties will not satisfy a property
requirement, then no individual member will satisfy the requirement. The union of properties is a collection

of every property deseriptions exhibited by tho grades and a unien of the values for cach property. The union

78

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

of the values must infer if a given value is definitely not in the union, but does not need to infer if a given

value is in the union.

This union of properties is a characteristic description of a class of grades. The union describes, as opposed to

defines, the properties of a class. It is an abstraction capturing properties the class can at best satisfy.

The union is an optimistic abstraction of the members in a class. Logically, if the union satisfies any design
rule then there is still a chance a member of the class can satisfy the rule. Additionally, if a member of a class
satisfies a design rule then the union must also satisfy the design rule. Since the union can substitute for any
member in a logical design rule, it is an abstract representation of those members. The union is an abstract

polymer description.

The union of the values in an abstract polymer must infer a given value is definitely not in the union. A
simple range can satisfy this criterion. If the given value is outside the range then the value is definitely not in
the class. The range is a very course measure. Knowing the distribution of the values may give a measure of
probability the value is in the class. Whatever the abstraction technique used, the abstract value is a function

of the set of values from a population of grades. In an object-oriented system, this function can be specialised

per property.

Each class abstracts a different population of polymers. A hierarchy organises these classes and the
subclasses inherit defining properties from their superclasses. What is the relationship between the describing
properties of subclasses and their superclasses? An inference mechanism similar to inheritance exists for
inferring the properties of the abstract polymers that describe classes, but it applies in the opposite direction
to inheritance. Rather than subclass inheriting from their superclass, the describing properties of superclasses
“inherit” from their subclasses and the most specific subclasses “inherit” the descriptive properties of their

instances.

The class template represents the defining properties of instances. Inheritance infers the class template by
recursively appending the specific instance variables attributed by each class down the hierarchy. A template
for the describing properties is quite different, but by reversing direction, the inheritance can also infer this
template during abstraction. The descriptive templates from each subclass combine to create the template

their superclass.

In a strict hierarchical classification, the grades need only be abstracted for their immediate classes, which

produces an abstract polymer. These abstract polymers are further abstracted to produce the abstract polymer

79

Object -Oriented Software Repr jon of Polymer Materials Infi ion in Engineering Design

for their superclasses. The superclass abstracts the lesser abstract representations from its 'subclasses (eg
Nylon abstracts all the specific nylon families, Nylon66 and Nylonl2, etc). Since the hierarchy is strict, a
superclass’s subclasses are mutually exclusive sets and there is no duplication of information. Mutually

exclusive sets are easy to union, since the intersection is empty.

Abstracting grades for only their most specialised class makes it much easier when adding, or changing, a
grade. POISE need only update the abstractions of the most specialised classes, ie the class of the grade. The

more general classes then dynamically infer the update elong the hiararchy.

When adding a grade, each known property-value adds to the corresponding set of property-values in the
abstract polymer. When a property changes, the set must remove an occurrence of the old value and add the
new value. The greatest effect occurs when a grade adds an orthogonal view. When this first occurs in a
class, the abstract polymer descriprion must also add an orthogonal view to represent the exira properties.
Whatever property POISE provides to describe a grade of material, it must also be available to describe the
abstract polymer.

3.5 Abstracting Knowledge Creating General Concepts

Abstracting reduces information, capturing the important concepts and discarding the details. At the initial
stages of design, when the possible approaches to the problem are at their greatest and require assiniﬂaﬁon of
large quantities of information, these reductions are important. Assimilating abstractions rathér than the large

quantities of detailed information they capture makes the initial stages of design easier for the user.

In statistics, a normal distribution is an abstraction over a population of values, which reduces any number of
values to only two numbers, a mean and a standard deviation. Comparing means and deviatione is easier than
population profiles. However, not all populations fit the character of a narmal distribution. Care is needed not

to lose important information in the process of reduction, so causing mis-representation.

Tho statistical quality of tho values in polymer populatione hae not boen the subject of a formal study. A
study is appropriate only whon given a quality population and an expert statistician dptelmines an appropriate
statistical method. Regardless of the method of reduction, the generation and management of the abstraction
would still be a function over the population. Extensive statistical analysis for improving accuracy of abstract
entities would probably be of little value while abstract entities are only used as approximate selection

criterion. Consequently, POISE uses a simple representation of the values in polymer populations.

80

Object -Oriented Software Representstion of Polymer Materials Information in Engineering Deaign
The abstraction POISE generates from a collection of §ing1e point data, properties with a single number value,
is a histogram. A class Histogran instantiates objects which manage the set of single point dala, aud provide
the behaviour necessary to display histograms and logically calculate with histograms. Although this

technique is interesting in itself, the primary interest is in the management of abstracted general concepts.

A hiétogram is a set of consecutive intervals along an ordinate, each with a tally of occurrences within that
interval. The Histogram constructs the occurrences of values falling into each interval from a population of
values. The Histogranm is usually viewed graphically as a series of bars on an ordinate, with the length of the
bars proportional to the tally. The Histogram is an empirical reduction of a population rather than one based

on the expert knowledge of the statistician.

3.5.1 Consistency between Histograms of the Same Property
An abstraction is best when it captures important information. Two objectives, the ability to compare and to

query, judge whether an abstraction captures important information. For the Histogram, these two objectives

depend largely on the ordinate intervals.

Comparing a property between two abstract polymers involves comparipg Histograms. When comparing two
Histograms the accuracy depends on the alignment. Histograms are said to be aligned if the intervals start at
the same positions on the ordinate, and the intervals are of the same size. If two Histograms have different
alignments, their comparison is visually distorted. When aligned, the tallies of individual bars are

cdmpa.rable.

Other visual issues affecting the accuracy of a comparison is the size of intervals. A Histogram with few
large intervals has larger tallies. Consequently, the ‘tally height’ by ‘interval width’ area that a bar covers is
larger, yet thé data is the same as with a Histogram with many small intervals and low tallies. A Histogram
with large tally seems visually to state that there is a number of members (‘tally’ of theﬁx) of the population at

every point along the interval.

Whether large or small intervals should be used is a question of how accurate an answer is needed. If the
interval is 1.0, and a query requires an answer of + 0.5, then all members in an interval will satisfy the
accuracy requirement and hence the tally is an appropriate response. Each query though has a different

accuracy requirement.

The alternativc is to derive an interval appropriate to the population. An interval too large creates one large

tally. An interval too small creates a number of tallies equal to one. A visually appropriate interval is

81

Objsct -Orientsd Software Representation of Polymer Materials Information in Engineering Design
somewhere in between. Above all, the interval must be the same for all Histograms representing the same
property. Both the distribution of the population and generally acceptable levels of accuracy for queries are

qualities of each Property object.

Comparisons are always between two Histograms representing the same property. To ensure that the
alignment is the same, POISE keeps the alignment as an attribute of each Property object. The attribute is a
HistogramParameter object that POISE queries whenever it creates a new Histogram for a particular property.
Once the alignment is set on a Histogranm it is impossible to change the alignment. The Histogram only
represents property abstraction. A more permanent source of knowledge is always the grades that make up

the population.

Calculating suitable parameters for a particular property is not simple. Initially few values exist for a property
and there is nothing to infer an alignment. The parameters can not be set until POISE achieves a suitable
population. In the meantime, an InmatureHistogram maintains the actual property values of the members of
the population, rather than a set of interval-tally pairs. From these values, an ImmatureHistogram can

calculate new interval-tally pairs for any alignment.

ImmatureHistogram depends on the HistogramParameter of the property they represent to ensure they all
present the same alignment. The HistogramParameter maintains a reference to all the ImmatureHistogram.
As the population of a given property grows, the HistogramParameter object recalculates the alignment
using the record of values in all the InmatureHistogram Once the population for a property reaches a certain
size, POISE deems the alignment accurate and the ImmatureHistograms mature. Each ImmatureHistogram
coerces to the mature Histogram class using the latest alignment.

3.5.2 Consistency between Histograms and Populations

The general classes infer their Histograms from the Histograns of their subclasses. The Histograms merges
by summing tallies for common intervals. These common intervals must align. For a given property, the
alignment of the intervals in histograms must be consistent to support the recursive subsumption of

histograms up the hierarchy.

The properties of more gencral abstract polymers are consistent with the population they subsume by
dynamically merging histograms of the more specific abstract polymers. Each grade in the population is a
member of only one specific polymer class. Each grade notifies its class of any change, which also represents
the abstract polymer, so the whole hierarchy of abstract polymers maintain a consistent abstraction over all
grades.

82

Object -Oriented Software Representation of Polymer Material Information in Enginecring Design
Finally, Histograms are polymorphic with the single-value properties of grades, because the median value in
the Histogram answers any value-specific queries. Although this is not an accurate representation of an
abstract value, it demonstrates the necessary polymorphic behaviour. The Histogram therefore satisfies all

the objectives of a property-value describing an abstract polymer.

3.5.3 A Summary of Functionality for the Abstract Polymer
The following features have been identified:

e At the most specialised level of representation, collect the values for each property exhibited by
members of the class.

e Reduce the populations of values into abstract Histograms.

e Maintain changes to individual grades and the addition of new grades.

e Histograms to be polymorphic with any grade’s value and abstract polymers polymorphic with the
grades.

e A subsumption mechanism that dynamically merges the populations of specialised classes to create
the populations for the more generalised levels of representation.

The issue of polymorphism has multiple facets. In theory, it means the abstract polymer must respond to any
message appropriate to any grade it subsumes. The abstract polymer subsumes many types of grades. The

type of the response to the message must also match the type of response the grade would give.

The requirements for polymorphic behaviour and subsuming the populations for more generalised classes
both suggest some kind of reversed inheritance of grade structure to cater for the wide range of property
aggregations possible. Characteristics at the bottom, or specialised end of the hierarchy, inherit and merge to
describe the top end of the hierarchy. This reversal reflects the bottom-up nature of generalisation, as

opposed to the top-down nature of abstract property description imposed on grades.

From the domain viewpoint, the class defining the structure of the grades is the same concept as the abstract
entity. If this is to be the case in the software model, the behaviour of the class needs an extension.

3.5.4 Extending Class Behaviour
The class has two roles within the POISE classification:

o As an abstract description, declaring behaviours and states for polymer grades.

e A domain representation of an abstract polymer. '
With these two roles come a number of behaviours to maintain and manage the population of a class. The
implementation of the two roles was found, on the whole, mutually exclusive. The same entity combhines the
roles because this is how the domain views them. It is also convenient to share the same hierarchical
structure. It does not concur that the two roles relate functionally. As result, the class may be kept in the

single hierarchy, while packaging the implementation of abstraction into a separate object. The class keeps

83

Object -Oriemted Software Representation of Polymer Materials Information in Engimeering Design

this object as an attribute, and so indirectly keeping its hierarchical position. The object in turn provides the
abstracting services for the class. The standard class-instance relation declares behaviours and states for
polymer grades, while with minimal extension to classes, a'scparate object can extend the classes behaviour

to include services for generalising and abstracting properties amongst grades of the class.

3.6 Orthogonal Property Classification’
An appropriate classification distinguishes differences and similarities between classes with properties that

depend solely due to differences in materials. Therefore, an appropriate polymer classification will describe
properties that vary solely due to differences in material under test and are independent of other design
perspectives. Grades inherit and specialise these properties. Many properties though are not solely dependent
on a generic material perspective, requiring additional extensions to the grade’s inherited template for these
properties. These extensions are rarely unique to a single grade, but describe orthogonal classes of grades
applicable to all. Properties depending on extreme geometry, like films, is an example. The nature of a
material can prevent rolling into a film. Grades that can be blown into films forms an orthogonal class..
Properties describing this extreme geometry should specialise the template of these grades.
Multiple-Inheritance

Superclass 1 Superclass 2

Subclass

Single-inheritance

Key:
[Al B principled membership functions
orthogonal membership function
Figure 9: MI vs. standard subclassing effect is the same

The problem is how to extend the description of grades without losing the taxonomic separation. Orthogonal
descriptions require a mechanism for subsuming different representations independent of taxonomic
classification. Extending grade descriptions by subclassing and through multiple inheritance mixes the
orthogonal classes with the taxonomic classes. Figure 9 shows mulﬁple inheritance and subclassing in class
based languages have the same effect on classification. Superclass 1 and Superclass 2 are orthogonal
descriptions of the same domain. Both represent all grades but a grade can only belong to one immediate

class. Each classification principle carves up the membership to subclasses differently and in conflict. In

84

Gbject -Oriented Software Rep ion of Polymer Msterials Information in Engineering Design

single inhm'tanc;e, taxonomic classification chooses one or the other. Consider the membership function
which includes grades with both property [and property B If Superclass | classifies with single inheritance
on the principles of Superclass 2, the members of 2B can form a subclass. With multiple-inheritance, the
intersection subclass forms with members of RBj Once members of 2B] separate from members of P (or @

by subclassing, it is impussible to further classify grades with property 2 (or @

In an extreme case, it is possible the properties are very specific and further subclassing is not necessary. In
an extendable classification, the anly way to ensure no further subclassing would be to have a unique class
for each grade (ie remove the class based premise), since the potential to further classify always exists in a

class with two different entities.

Mixing the representation of grades and the classification in conjunction with multiple inheritance dilutes
each taxomomic perspective. All the different orthogonal taxonomies mix, combining classes of all
permutations. This dilutes the significance of classes that form individual perspectives. Variance within a
perspective is independent of other perspectives and is therefore a valuable path to investigate design

variation.

To illustrate the concerns of dilution and extensibility, take an example of a film made from a Nylon grade.
Multiple inheritance would define classes Film and Nylon then a subclass Nylon-Film. Now consider if
taxonomy classifies Nylons into Nylon66 and Nylonl2. An exclusive class of Nyloné6 .and Nylonl2 is not
possible since some are members inherit from Nylon-Film and some only from Nylon. The common solution
is to remove Nylon-Films and add Nyon-66-Films and Nylon-12-films. Then consider if the user classifies
on Nylon-Fibres. What happens if some Nylons fabricate both films and fibre? Are there then Nylon-66,
Nylon-66-Film, Nylon-66-Fibre and Nylon-66-Fibre-Film? Such a structure complicates simple queries
on Nylon properties. Moreover, the permutations do not stop here with this small exaniple. Consequently the
taxonomic classification loses structure on introducing multiple inheritance. What class a grade is finally a

member of is no longer determinable from a top down search unless its form is known.

In conclusion, POISE requires the definition of polymer classes that do not completely describe the grades
belonging to the class. Some describe the taxomomic dccomposition. Others act as orthogonal classes
describing properties templates for completing the description of the grades. Taxonomy requires these

descriptions to remain separate. The implementation of grades requires the two to combine.

85

Object -Oriented Software Representation of Polymer Materials Information in Engineering Deaign

3.6.1 Composite Structure for Orthogonal Descriptors
Objects can alternatively share behaviours through a composite structure. Considered polymers as a general

polymer description, “General Poly”, that owns a specific polymer description, “Film properties”, as

/&MV ﬂlm) tearStrength l

#tearStrength

illustrated by Figure 10.

Figure 10: Composite template sharing
To access specific details — the film property ‘tearStrength’ — the polymer, “poly”, is first asked for the

set of film properties with the message ‘film’. The message film might achieve this by returning the object
FilmProperties. This object is then the receiver of the message tearStrength. There are the following

problems with this representation:

e A GeneralPolymer is not a film. It does not respond as an object with film properties, ie it is not
polymorphic with FilmProperty. Senders, objects that evoke the behaviour, must know where to
send the message #£ilm. . ‘

e FilmProperty is not a polymer. If asked for the name of the polymer (a property of GeneralPolymer)
it can not respond. FilmProperty is not polymorphic with polymers.

e The general polymer has no control over the property access of film properties. After the message
#film any message may be sent to the FilmProperty object and these messages do not pass through
the GeneralPolymer’s interface. Hence ther(; is a hole in the encapsulatién around the polymer entity.
It is an association rather than an aggregation. FilmProperty is not a separate part of a polymer, only
part of the description of one whole entity.

3.6.2 Management of Orthogonal Descriptors
Polymer classes moﬁde a template that describes the behaviour of grades. An orthogonal descriptor extends
the descriptions of gradés. They too contribute a template of behaviour. In class—instance languages, classes

are templates of behaviour, so it is common to find classes representing orthogonal descriptors.

POISE extends the function of the polymer classes, and similarly classes representing orthogonal descriptors.
The descriptions can add and remove properties. They have their own populations of grades and can abstract
generalisations over those grades. Orthogonal classes differ from polymer classes in that the orthogonal
classes are only meaningful in the context of a particular materials class. For example, asking Films for their

density is only meaningful within the domain of polymers. The query is really the density of polymer films.

86

Object -Oriented Software Representation of Polymer Materiahs Information in Engineering Design
The query is more meaningful directed at the Polymer class. Efforts were made to extend the abstracting
mechanism within the Polymer hierarchy rather than extending it to the orthogonal descriptors (§3.6.4).
3.6.3 Adding Orthogonal Descriptors to Grades
There is no such thing as a ‘new’ orthogonal entity. All grades are first classified taxonomically then classed

orthogonally. Orthogonal descriptions extend existing grades.

Adding an orthogonal description to a grade extends the grade’s existing data model by using the class
template of the orthogonal descriptor. This class provides a data structure and methods, which extend the
grade’s behaviour. The problem of how to merge the templates, one from the polymer hierarchy and any
number from orthogonal descriptors, under the same object interface remains.

3.6.4 Abstraction of POISE Knowledge in Orthogonal Descriptors

Although taxonomic classes of polymers do not define orthogonal properties as part of their template,
individual grade entities do exhibit orthogonal properties. Although an orthogonal property is not a defining
requirement of membership to the taxonomic classes, each property is a valid description of a subset of
members in the taxonomic domain. Any property particular to a subset is a valid generalisation of a
taxonomic class when the property itself fundamentally limits the domain. For example, take the property of
minimum film thickness. The distribution of minimum film thickness over all Polyethylene is a valid
generalisation of Polyethylene. The prdpelty does not exist for all kinds of Polyethylene but where the

property does exist, its variance is a measure of rolyethylene in general.

When a grade adds an orthogonal extension, there is no need to affect the polymer class absﬁ'actions until a
grade adds an orthogonal property-value. The grade then notifies the class abstraction mechanism as it does
with all property updates. It is up to the abstraction mechanism to recognise that the property is orthogonal
and to cater for the new property by extending the abstraction’s own structure with the same orthogonal
template. The abstraction mechanism maintains a separate population for each orthogonal view. The user can
scleclively view ubsh'acﬁons'usMg an orthogonal perspective (ie select the orthogonal subsct within the

taxonomic class).

3.7 User Interrogation
3.7.1 Histogram Visualisation: The Comparator

Histograms are very easy to display and make good tools for conveying the abstract knowledge of a general
polymer. The Comparator allows the display of any combination of Histograms of the same property in a

resizable window.

87

Object -Oriented Softwars Representation of Polymer Materials Information in Engincering Design
From the Comparator, the user can select individual intervals or a single interval of any size across the whole
Comparator. The tool searches for grades finding those in the selected interval(s). Displayed as a group, the
user can browse them individually or even as a Histogram against different properties. This allows the user to

dynamically specify any arbitrary abstraction besides those in the taxonomic classification.

There are a large number of groups of polymers in POISE, each with different property abstractions. The
Comparator provides intelligent options to the user for specifying the abstraction to display as a Histogram.
The initial selection might include all possible polymer classes, orthogonal classes or properties. If a property
is chosen, then the Comparator limits further selection to classes supporting the selected property. This limits
both the classifications and the orthogonal perspectives available for selection. Once a class is chosen only
the properties in that class become available. The Comparator displays many abstractions but only against
one property. If the user specifies many class abstractions, the only properties available are those common to
all the abstractions. For this kind of consistency, the Comparator accesses global resources such as the

Polymer hierarchy, a list of all properties and, more specifically, maintains a reference to the abstract

polymer, not just the histogram displayed.

Comparators can scale the display of histograms, changing the visible size of the intervals. This is not only
an issue of conveniently fitting windows on a computer screen, but to offset the effects perception has on
information. Histograms can be deceptive depending on the interval size chosen. By modifying the scale a
user can visually bias the interval size and tally for each comparison. Comparing properties that the user
perceives as significant can be made larger. Although the technique is far from quantitative, it does provide a
quick qualitative feeling as to whether polymer selection is satisfying design requirements. The technique

also identifies polymers not belonging in their assumed groupings.

Scaling displayed views is challenging. The axis changes in only one dimension, keeping constant space for
labelling which relates to the text size of the numbers displayed rather than the size of the view. The view
labels more numbers as the axis gets longer and less labels if space is limited. Given an arbitrary maxim and
minimum and the space for display, the view determines the numbers on the axis. Even the type of number

on the axis affects clarity. The view avoids rational numbers preferring integers.

3.8 Database Management .
POISE contains a database management system. Through intelligent management (classification and

organisation) and through presentation with graphical interfaces, POISE conveys the meaning of new data

informatively to the user, hence transforming data into information. Both the data entering POISE and the

88

Object -Oriented Software Representation of Polymer Materialy Information in Engineering Design
organisation transforming the data must persist. A classical program persists as an application stored on
secondary storage and when the user commands the computer’s operating system, it loads into primary
memory. The user supplies the data each time the program activates and returns some result, so neither the
data nor the result persist. Alternatively, the user may store input data on a file. Through iterative changes in
the data on the file, the user changes the nature of the process. The result may also contribute to the data in

the input file. A database is an application that manages files of persistent data.

One source of data in POISE is the descriptions of polymer grades. These already reside in files of a simple
format for easy management although POISE also receives complex data from the user, especially on data
structuring and organisation. Through the classification environment within POISF, the user adds value to the
raw data by virtue of the structuring and behaviour associated with objests making up the classifications of a

domain. The simple format of the polymer data is incapable of recording all the information within POISE.

POISE distinguishes between the format for archiving and exchanging data within or between industries
(suppliers and users) and its own internal representation. For data exchange, the important factor in the
format is its simplicity and universal acceptance. One example is the DIF structure of binary relations
(§3.1.1), and although other formats exist, third party applications can convert data between simple formats.
For the internal representation of the complex objects within POISE, the important factor for storage is an
expressive structure capable of representing the diversity of these objects. The expressiveness is contrary to
simplicity, hence distinguishes between complex internal and simple external representations. For persistence
of the internal representation, a range of existing database management systems (DBMS) were examined.
Although the internal representation is the focus for the remaining discussion, some of the issues apply

equally to integrating data from external sources.

The search for a storage system starts with two extremes. Storage system functionality ranges from a fully-
fledged object—oriented DBMS (OODBMS), to Smalltalk’s simplistic file structures for exporting objects
without any management, Tho initial preference was for an ‘off the-shelf” eommercially available OODBMS,
which provides program support, and convention. POISE though places high demands on even the most
expressive data description language. The alternative; a file storage using the native data description language
of the client, Smalltalk, required major extra development to incorporate a suitable management strategy.
3.8.1 Data Store vs. Database Management

General purpose OODBMS process behaviours remotely in a database server environment. The environment,
primarily of the class—instnﬁce paradigm, features disk-storage management of a class hierarchy. Objects on

the database are all instances of these classes. A mapping between classes in a client language (eg Smalltalk)

89

Object -Oriented Sofiware Rep ion of Polymer Materials Information in Engineering Devign

to classes on the server allows copies of an object to cross from one environment to another. Typically, a
mapping keeps to simple classes like numbers and strings. A totally alien language (ie not Smalltalk)

describes the classes on the server.

The description language of a database is similar to a programming language. The class description includes
the storage requirements of objects, manages versioning and schema evolution control, and interacts with
system administration, such as memory management and security. The main differences are due to multi-user
databases access. Policies for locking objects and accepting changes are designed to make each user’s
activities atomic. Most computing activities include a number of intermediate states, which other activities
could corrupt or misinterpret. Computing in a multi-user environment requires composing all computing into
atomic transactions. Within each transaction, the objects involved are locked and once the transaction is

complete the final state of each object accepted and the objects unlocked for the next transaction.

Shortcomings of general-purpose OODBMS systems, their language’s modelling power in particular, are

criticised in an earlier paper” relating this management to domain modelling.

Data storage relies on the client’s language for object definition and manipulation. The server for data storage
stores only the state of an object. When read, it moves the state to a new object in the client environment and
the client processes the behaviours. The responsibility of object integrity (valid states within an object) lies
with the procossing of behaviour within clients. An objcct store cxports the object structure to a foreign
environment. The protocols changing the states in one client can be different to those in another client; they
may not be consistent and semantics can differ for different clients. In an OODBMS, clients do not access the

state of the object. The OODBMS centralises consistent object behaviour.

A particular advantage of a simple object store over these large-scale 0ODBMS is the ability to reduce data
administration overheads. For example, a multi-user object store is possible by locking the record of the
object on the server until the client using the ohject finishes, but is unnecessary for a single user system.
00DBMS tend to come as multi-user systems with the mechanisms tightly integrated in the server’s language
as a standard feature.

3.8.2 Evolution in a DBMS

The consequence of object definitions (classes) within the OODBMS is that they must meet POISE’S
requirements on schema evolution. An OODBMS using the same manipulative object model and environment
as Smalltalk would suffice. Unfortunately, the memory management in primary memory, which makes

Smalitalk’s manipulative model possible, seems to compromise efficient transaction processing in a

90

Object -Oriented Software Rep ion of Polymer Materials [ion in Engmeering Design

secondary storage system. Transaction processing is a benchmark, which relational database management
systems use to judge a DBMS performance. Consequently 10 DBMS are as manipulative as Smalltalk, and
contemporary DBMS cannot support the needs of POISE. The main problem is that they do not provide
mechanisms for manipulating the schema while the databases is in use. Without schema evolution, adding

and removing properties from polymer classes is not possible and the classification can not be re-engineered.

A grade’s tendency to evolve even complicates the specification of a data store. All changes to the property
structures of classes in POISE require automatic respect by the storage mechanism, which stores instances of
those classes. A data store that returns an out-of-date data structure for an object in POISE is useless, so the
storage mechanism must be able to migrate such out-of-date structures to the current versions in primary
memory. For this, some interpretation of each data structure must be recorded, like the class template records

the structure of instances in primary memory.

Schema evolution causes the same problems for object-storage as it does for languages. The problems
exasperate when multiple users access the samé evolving objects. Besides changing the semantics of objects,
which has far-reaching effects in clients, evolving in a multi-user database starts a transaction that locks all
active instances of the class and its subclasses. A change to the root class would lock the whole database.
OODBMS systems, even those with supposed schema-evolution provisions like Gemstone®', do not allow

evolution when there are active instances.

The schema evolution in Gemstone lets the application programmer evolve class definitions before creating
any instances. This schema evolution is a development function. The migration of a class definition from a
client into the server is not a runtime function of Gemstone. Therefore, it is impossible to automatically add
an object of a class not already on the server without programmer intervention. Some storage mechanisms
provide a general object-storage process capable of managing new data types, but such a process is liable to
fail for complex objects with ‘global’ references and cyclic paths in their structure. BOSS, see §4.5.3, is one

mechanism with little program intervention that attempts to avoid such pitfalls.

Evolution of the DBMS objects is not the only problem. Whereas demonstrating such mechanisms as
delegation within Smalltalk is possible, it does not necessarily hold that similar mechanisms are possible in
other object—oriented environments. None of the current DBMS support delegation, only static class

hierarchies. Other complex mechanisms like orthogonal descriptors would also be an issue.

91

Object -Oriented Software Rep ion of Polymer Materials Inft jon in Engineering Design

3.8.3 Database Interaction for Memory Management
The data manipulation languages describing a transaction in a relational DBMS limits the manipulation to an

explicit fixed scope of data, applying the rules of manipulation to each tuple in a relational table. This ensures
that after processing a unit of data, the transaction is complete for that part of the data. The locking and
committing of data is iﬁpﬁcit in the structure of the transaction, not part of the manipulation language.
Object—oriented languages manipulate data through messages, not transactions. A long-lived message
géneratm many shorter messages, which in turn generate shorter messages. The end of a message can be
conditional, thereby depend on an object to change state, which inturn may depend on other messages. The
data accessed or the time taken can not limit the goal of a message. The message is therefore not like a

transaction in a relational database.

Management of limited primary memory is an important feature of database management systems. All
transactions occur in primary memory. When they finish, the database commits the changes to persistent
secondary memory. The definition of a transaction has a consequence on the utilisation of primary memory.
Deﬁﬁing a transaction as a message to an object requires careful consideration. Committing the state of an
object to secondary memory after each message sent to the object will not affect the logic of any messages,
but it is inefficient to commit objects subject to further change. Concurrently, changes in the primary memory
are susceptible to loss until the database commits the object to secondary me¥nory where it is persistent. Even

in single-user systems, transactions affect the management of primary memory and the integrity of objects.

Something must trigger the database to commit objects to secondary storage. Since the applications using the
objects evoke changes, they must also trigger the database. The efficiency of memory utility and object
integrity depends on the regular commitment of objects by applications. Most OODBMS and data stores
require an explicit interaction to activate and release objects. This means the application is constantly

communicating with the database for each transaction.

In an object—oriented language messages follow an implicit path. They may polentially access any object,
and the same path may repeatedly cause message to the same object. A message is not a transaction since it
does not identify which objects to lock. A transaction could span many messages to the same object. In
object—oriented languages there is no implicit structure to define the scope of a transaction. The protocols,

which construct the path of processing, must explicitly encode transactions.

Persistent objects now differ from volatile objects, which do not necessitate the specification of processes

into atomic transactions. The use of the persistent object is also a property of the protocols, which must

92

Object -Oriented Software Representation of Polymer Materials Infi jon in Engineering Design

define when the objects are locked and committed. The storage characteristics of objects are not a property of
domain entities in the POISE application but must provide pre-processing and post-processing behaviours
implementing the storage characteristics of the object on an object store. Even if objects are otherwise
polymorphic in their behaviour, the activation of these behaviours within transactions with the object
destroys the benefits of polymorphism. Protocols must distinguish stored object from memory resident

objects that do not require this activity.

The situation where users of the objects do not see the interactions with the object store or OODBMS is termed
‘transparent’ database access. Although an object stores with only single-user access does not define
transactions for multiple-users, primary memory is still a limited resource requiring the paging of objects
back and forth from secondary memory. So both systems require transparent access, but CODBMS must also
define effective transactions for multiple users.

3.8.4 Multiple Interfaces

The specification of a DBMS handling a national source of information is quite different to a DBMS for an
individual designer. Different worlds of information pose different demands on an 0OoDBMS. Differences
include the number of users, security, data integrity, and the size and scope of information resulting in
different access mechanisms and data models, all of which affect transaction management. POISE on the other
hand does not need to identify where the data has come from. It is quite possible for POISE to access many

different DBMS, and extend to add new DBMS at a later point in time.

Heterogeneous database management systems®? manage the access to many different types of database using
different data models. Since each DBMS has a different interface protocol, the main purpose of this manager is
to provide a single consistent interface protocol for data manipulation in any of the databases. An object—
oriented model is popular for this interface. Although the data model and manipulation language of the
individual databases limits the behaviour of these objects, the objects provide a consistent, polymorphic
interface across many different (hidden) access mechanisms, A management system for heterogeneous

databases provides a uniform object interface as a proxy conveying transactions to database objects.

A third party handles proxy votes as though the owners of the vote had voted themselves. Similarly, a
database proxy receives messages and, from the viewpoint of the message sender, the resulting actions are as
if the intended object received the message. A message to a proxy triggers the memory management system
within the DBMS. Within the ensuing communications the message transports somehow (depending on the

particular DBMS) to the stored object, lbcks the object fro other processes and, when the message is complete,

93

Object -Oriented Software Representation of Polymer ials Infc jon in Engineering Design
unlocks the object. The user is unaware of the nature of an object’s storage so the DBMS becomes transparent

to the users of persistent objects.

~

Current heterogeneous systems rely on each message to be an atomic transaction. Extending transactions
beyond a single message requires a standardisation of locking semantics at the interface of the database
objects. The standard makes the transaction locking independent of the actual database being accessed but
protocols still explicitly specify the locking. In which case the proxy is no longer transparent.
3.8.5 Summarising the Storage for POISE
Both the persistence of user data and the interchange of data between users require some kind of database
management. The management for both is quite different. If client languages support a transparent proxy
access mechanisms, then different database management utilities can independently implement each of these
requirements. The following two lists identify the two different storage requirements of POISE. The first kst
covers the management of private information gathered by a single user. The second list covers global data
shared by many users:
1) Private single-user data

a) Minimal transaction management. Lifetime of transaction only subject to primary memory

management. ’ . .
b) Object behaviour integrity guaranteed by a single client.
c) Complex highly structured data storage model for supporting any arbitrarily complex Smalltalk
' object composition.
d) The evolution of object structures during runtime, trans-migrating class definitions between client
and server and coercing objects of old versions to new versions within the client.

2) Global multi-user data

a) A consistent protocol for accessing many heterogeneous databases.

b) Object integrity guaranteed by individual server databases (usually read only with respect to Poise).

¢) Use simple data structure as the common denominator of many different client applications.

d) Client process independent of server transaction management, eg security, locking and versioning.

A transparent interface between application and storage management is common to both storage mechanisms.
A transparent interface is not only consistent with access to native objects but is also consistent between
private and global stored objects. The interface, in this case a Smalltalk specific implementation of an object
proxy, provides different services for each two types of storage:

e Transparent access and updates, managing transactions subject to local memory conditions.

e A translation from generic protocols to specific protocols of heterogeneous DBMS.
In order to simplify the development of POISE, the issues explicitly on global multi-user data were not

considered further, ie issues on access and management of transactions within heterogeneous databases.

94

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
Others®? have already addressed many of these issues. POISE instead imports external data and represents it

with the private data. Issues considering transparent transaction management apply to both storage systems.

The behavioural complexity of objects within POISE and their tendency to evolve puts the representation
beyond even the most advanced commercial OODBMS. Commercial OODBMS focﬁs on the other issues,
integrity and transaction management. For the private single-user data in poisk the objectives are more
limited, and more powerfully focused on representation, than the objectives of a general-purpose
management system. Consequently, even the simplest of data stores are as capable as the advanced» OODBMS
at representing and evolving POISE objécts. Although data stores are less sophisticated, the client language
implements most of them. Hence the data store gains the language’s manipulation capabilities, including

schema evolution, and it is possible to develop the management principles of these data stores.

In conclusion, the storage needs of POISE involves an investigation into the suitability for development of
available data stores and an investigation into transparent transaction management. Initially the investigation
of proxies for transparent interaction was separate to the development of a data store. As the issues involving
the representation of complex object-relations became clear, the proxy was found useful as a representation
for the relationship between 6bjects on the database. The proxy became an integrated part of the database

schema, see §4.5.2.

95

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

3.9 Summarising the Schema of POISE

Each aspectofthe conceptoal deseription, or loose sehem ay summarised below in Table 5, mapyto a design
specification, The design specification phrases the requirem entsin termeoofobject-oriented concepts, typesof
objects, clisses, protocoly classification and inheritance, During this research, the specification was
fmplemented i Swoalltalk to produce the porse applivation, The following chapter discusses in detail the

programm ing issues thatarise fioom implem enting thiv specification fn thiv class-instance linguage,

Summary Requirements o fPOISE Schema Design Specification

Adding value to acquired relational data through re- Re-jmodelling relational data using principles of object-orientation. For

representation in a classification hierarchy with property example, extending fiierelational description of grades with de&ult y m

Extend the description ofthe polymer domain: Instantiate new components o fthe schema: ~ , *

a) Define new engineering properties. Ah object rqjresents each engineering pfopesrty, L , e

b) Addnew computations for describing and interpreting Compiling new protocol objects and assigning them to an esnglneorlng,
the semantics ofan engineering property. property, - t

¢) Add new properties to abstract polymer descriptions. Assign the protocols firomthe engineering properties to classes o igrades.

d) Add new classifications over the domain ofpolymers for Add new classes, modifying the inheritance structure, ensuring
absfracting_s.iiml"ty_andgengalising properties wnsistw cy and ujpdating dqjrajdent,"*

Support consistent evolution ofthe schema by the user: Develop specialised user interlaces apd inlératce engines, s

a) Define a language for describing engineering properties. Modify the native language programrning tools and compiler for protocols
defined in the context ofa domain property, nota specific class. -/

b) Assign domain properties to classes of grades and Reflect the hierarchical structure and inheritance rules witiiinthe \ *

manipulation of domain organisation classification through a graphical inter&ce. ¢

¢) Make schema changes persistent. Develop an object storage capable o frecording the objects in the polymer
classification and all engineering property's behaviours...............

Support both taxonomic classification and orthogonal Investigate dyiiarnic behaviour sharing to support orthogonal , ;j

classification for representation extending beyond the representation in a class-instance languages. v

Support the design process throu” generalising the properties ~ Develop aninfWence engine to generalise and abstract properties from &

ofdomain classifications providing abstract levels of class and present these properties as an extension to the behaviours of'thel
R . ,
L T?2Pre_SENLAtIO VM ...viiiiiieiient et T s > . agn.lgse.., 1
Provides expressive visualisation ofgenerahsed polymer Develop a user interfece to explore the abstractions in the evolving s
Support persistence of design data and the complex evolving Develop an interfece to secondary storage that is transparent, thereby,

cr<’ting the illusion o fpersistence o fknowledge betweai sessions.
Table 5: Mapping requirements to specification.

96

Object -Oriented Software Representation of Polymer Materials Inf ion in Engmeering Design

Chapter 4 Implementation o
The POISE schema presents a number of challenges to the class—instance language Smalltalk. The

implementation of the POISE application successfully satisfied most of the requirements, like the data
acquisition, and the user interface design, which fit well into the class—instance paradigm. This chapter
focuses on the main features of the implementation and explains how each of these features was a challenge
to the class—instance paradigm in general and Smalltalk in particular. This identifies the limits of this
approach to taxonom.ic representation of materials information. For a complete summary of the POISE

applicai:ion, Chapter 5 describes the functionality from the user’s perspective.

The main features of the implementation found challenging are summarised as follows:

Problem Feature Affected Description

Mix-in object Orthogonal property classiﬂeaﬁot; Combining polymer taxonomic description with

behaviour ’ ’ orthogonal description in a single lcxi‘eal unit.
Extending behaviour for user Protocols of domain entity with visual modelling
interrogation protocols

Extending behaviour for transparent | Object behaviour + Database access and management

memory management protocols
Mix-in class Implementation of levels of Normal class behaviour plus abstraction of property
behaviour representation generalisations and population maintenance
Composition of | Properties as class descriptors Class behaviour emaps_ulated into shared Property
class template Objects
Delegation Design as a dynamic composition of | Behaviour dependent on a context of objects.
ghared behaviour

Table 6: Challenging problems to solve
Mix-in® of both object and class behaviour (§4.2.1) and delegation, in Table 6, are all solved using the same

mechanism for enhancing the behaviour sharing capabilities of Smalltalk. The “composition of the class
template” captures the existing class evolution behaviour in Smalltalk and packages it into an abstract object.

This ahstract object creates a new approach to change in a class—instance paradigm.

All these problems result somewhat from the limits to sharing between objects in standard Smalltalk.
Fortunately, the underlying object model is flexible enough to implement a programmable extension to the
standard sharing mechanism of inheritance.

4.1 Sharing in Smalltalk.

Chapter 2 introduced two types of sharing of protocols and behaviours. Instances inherit protocols from

classes, and the classes inherit from superclasses, thus protocols are shared. The protocols describe the

97

(kjwm&mwmdﬁ;lyme" ials Inf jon in Engineering Design

behaviours of objects. The behaviour is a composition of other behaviours (procedural abstraction) shared

from other objects, evoked through messages.

The limits of the standard forms of sharing in Smalltalk are the subject of this next section, starting with the
special inheritance relationship between the instance and the class. '
4.1.1 The Smalltalk Object Mode!

Inheritance between classes and between a class and an instance is quite different, unlike in prototype
languages where implicit sharing is uniform. The reason for the difference is that the-instance is a

specialisation of an object that optimises processing.

Instances hold specific differences and inherit abstract behaviours from their classes. The typical abstract
behaviour is a protocol providing instructions on how to do something. The typical specific behaviour is a
relationship with another object, or more simply, an atiribute. Two instances cun shure the same abstract

protocol, but behave differently due to specific differences in attributes.

A
ADDRESS MEMORY

nnnn:y+0 classiD
nnnn:y+4 instvar
nnnn:y+8 instvar
B ADDRESS
1
nnnn:y+4k instVar mmmm: anObject's} y-
InsfcncalDl

mmmm: clossiD L.z

(0) MEMORY IMPLEMENTATION
OF THE INSTANCE, anObject

’ (D) A SMALLTALK OBJECT IDENTITY LIST
ADDRESS MEMORY

nnnn:z+0 metaclassiD
nnnn:z+4 ?:;231 Data table held (equivalently) on elther
InstvarNames primary or secondary memory.
Look-up processes (see text).
Yy
(C) MEMORY IMPLEMENTATION . ggg:;(ses In either main memory or file
OF anObject's CLASS

mmmm: Location of elther memory page or flle
nnnn: on disk.

All remaining symbols are objectiDs. Such IDs are
fiagged to be Interpretted either as Immediates or as
offsets In the Object Identity List.

Figure 11: Canonical memory representation of static Smalltalk objects, following Goldberg'
A contract exists between instances and the class behaviours. A class template contracts names to each

attribute. The class protocols generate specific behaviour by referring to the attributes by the contracted
name. Instances provide the necessary memory ‘slots’ to store attributes. The class template optimises the
contract by defining a specific ordering of the names. This ordering generates a record structure for

representing instances and an index for behaviours to directly access the attributes in instance records.

98

B

Object -Oriented Software Rep ion of Polymer Materials Information in Engineering Design

Figure 11 shows the basis of the object storage model for the static, record-part of object storage. The model

can apply to both primary and secondary memory, as will be seen in §4.5.10.

In Smalltalk, the physical model of the object is an indexed table of objectIDs. The table represents named
relations to other objects. These relations are colleotively called instance variables. Every object hag an ID,
including integers, characlers, any other instance, class or metaclass. The collection of objcct representations

is known as Object Memory.

In order to access the complete description of a stored Smalltalk object (referenced as anObject) the

following activities occur:

1) Look up anObject’s ID in the Object Identity List, as Figure 11 (b), and obtains the address of the
record (y) giving the location of anObject ‘s record in Object Memory.

?2) The first word of the record is an objectID to a clags, the classID. Obtain this also by looking up the
Object Identity List.

3) The remaining task is to obtain the location (z) of the Class record in Object Memory. The Class record
includes (storage of) the data definition of anObject. The word marked format in this stored data
definition determines the allocation size of anObject’s record. The data definition also includes
instVarNames. These are the names of the locations identified in Figure 11 (a) as instVarl to

instvark. Protocols are compiled to reference directly by index.
The effectiveness of this model as an object will become clearr after introducing how the object receives a

mesgsage, locates a protocol and evaluates behaviour.

4.1.2 The Class as an Object
The Class in Smalltalk is an object constructed like all other objects in the language. It behaves like a Class

because it inherits those ‘class like’ behaviours from the class ‘Class’. One of the behaviours a class
inherits is the ability to generate other objects, their instances. This is a primitive behaviour (encoded in the
Smalltalk kernel §4.1.3) that directly accesses the second instance variables of the class record, called the

format, and must contain an integer. This integer describes the number of slots for the instance.

The new instance keeps a reference to the generating object (the class) in the instance’s classID slot; ie the
instance’s class. For this instance to work as an object, its class must meet two other criteria. The class has
another class object (or nil) in the third instance variable as the superclass, and a MethodDictionary object

(a hash list of protocols) in the fourth instance variable.

These three instance variables are the basic requirement for getting a class to function as an instance

template. Other requirements are necessary for the Class to function as expected within the Smalltalk

99

Object -Oriented Software Representation of Polymer Materials Infc ion in Engineering Design

environment, especially to compile protocols, but no more necessary to get an instance functioning in the
Smalltalk environment.

4.1.3 Methods as Protocol Objects

All classes keep a MethodDictionary in the fourth instance variable. The MethodDictionary holds a hashed
list of symbols (special strings of characters that the environment ensures have unique object id’s) known as
selectors. When an instance receives a message, it searches the dictionary for a selector matching the
message. If the search does not find the selector, the search continues in the MethodDictionary of the
superclass. Each selector in the MethodDictionary maps to a CompiledMethod, and by finding a selector, the

MethodDictionary returns the CompiledMethod.

CompiledMethod are the essence of Smalltalk protocols. They are objects with code in their first instance
variable and data in others. The code, at its most basic, is a byte array. The virtual machine’, the Smalltalk
kernel, interprets the meaning of the bytes in the array at runtime. The code may reference three different
types of variables. As mentioned earlier, instance variables of the receiver are one type. The code also
accesses temporary variables for the duration of method execution, which includes the receiver bound in
source code to the name self. Finally, there are the global variables, which are a reference to any unique
object by the method. A global reference does not changei with each receiver. The reference is nc;t

empathetic.

Protocols in the object—oriented language compose primarily of message sends. Smalltalk behaviours evoke
these messages through a sequence of pseudo-code commands encoded in the method representing the
protocol. The method stores the selector in one of the method’s instance variables and refers to it by index.
First, a command pushes the receiver of the message, some objectID available to the method, onto a stack. A
second command referring to the index of the selector causes the virtual machine to ‘send the message’. For
this the virtual machine gets the receiver’s objectID off the stack, locates the record, locates the receiver’s
class record, locates the method dictionary, and starts the searching for the selector’s objectID in the

method dictionary.

Not all protocols result in message sends. There are a select number of primitive protocols, which call
functions in the virtual machine, operate on simple objects like numbers and byte arrays, and communicate

with the underlying operating system.

> On each computer platform there is a program running which dynamically compiles, caches, and
executes Smalltalk™ code. This program is called the “Virtual Machine”, as it emulates a hardware device
which would directly execute Smalltalk™ code.

100

Object -Oriented Software Representation of Polymer Materials Inf ion in Engineering Design

Some preparation occurs before evaluating a method, which involves creating a context in which the code
can reference by index all the objects available to the method. The next section describes the objects used

represent a single execution of a method.

4.1.4 The Process: Message Sends, Look-ups, and Patterns

Messages are sent causing classes to find protocols, that evaluate causing further message sends, hence
creating a pattern of processing. An object called the Process follows this pattern through the Smalltalk
environment. The Process represents, at any given time, a sequence of incomplete method evaluations, with

the last one being currently evaluated. An object called the Context represents each incomplete method

evaluation.

Once a message send finds a method, the virtual machine creates a Context. The Context immediately
records the receiver, the method located, arguments sent with the message, and the Context which sent the
message. The pattern returns to the sending Context once evaluation of the method is complete. During the
evaluation of a method, the Context also maintains a stack (mentioned earlier) and the state of any temporary
variables generated during the method evaluation. All these objects are accessible by the code evaluating the

method by index.

Memory management of Context objects is special. A stack space, a sequence of equally sized records in
memory, is reserved which adds and removes context objects efficiently. Since the virtual machine genératcs
context objects, their data structure is beyond change by the user. Canceptually the structure fits the standard
object model and can be viewed and manipulated by Smalltalk code and tools. One tool of importance is the
exception handling system that will be introduced later §4.2.6.1.

4.1.5 Summarising Behaviour Sharing

The empathy between the receiver and the located protocol has been highlighted. The protocol binds self to
the receiver and indexes the instance variable locations of the receiver. It is essential that all accesses to
instance variable locations are consistent across every protocol a receiver shares. The class manages this
consistency by naming the variables. These names link to the indexes when compiling methods for the class.
It is therefore impossible for a recéiver to empathise with methods from classes other than those from which

the receiver inherits. This is only true of method accessing instance variables.

If a representation requires an instance to share behaviours with another class (that is not inherited), then the
question that arises from the above point is whether an instance is the proper representation. Instance

variables are unique properties of instances of a class and are meaningless to any other methods but those of

101

Object -Oriented Software Regresentation of Polymer Materials Information in Engineering Design
the class. Methods do not need to access instance variables to represent knowledge, only to represent
knowledge specific to instances of a class. To demonstrate this point and to place the behaviour sharing of
~ prototyping languages into perspective, which does not classify and represents knowledge without instance

variables, an experiment was carried out that specialised the meta-class, the definition of the class object.

Objects in prototype languages do not have instance variables, all attributes are stored as protocols (ie as a
method references a global variable), always returning the same object. Attributes differ between child and
parent by overloading the name of the protocol, just as methods are overloaded in the class hierarchy. A child
with a protocol of the same name as the parent will never implicitly exhibit the parent’s behaviour. A
specialisation of the class object defines a class that is an instance of itself. When the “instance” receives a
message, the classID points to itself, and the method search starts in the instance’s own fourth instance
variable; containing a method dictionary. This configuration successfully models prototypes in Smalitalk.
The prototype defines its parent by referring to another prototype in the third instance variable (the superclass
slot). If a selector is not matched in the prototype’s own dictionary, the search passes to the second according

to Smalltalk’s standard look-up process.

The second point to highlight is that the look-up for methods (protocols) is a strict process. The virtual
machine dictates what happens between the point a method in a context evaluates the code to send a message .
and, the point it creates a new context and evaluation starts. The critical part of this process is the locating of
the method by the recursive search from class to superclass to superclass is well defined for all objects. Since
the scope of the search is well defined, it is seen as a uniform and seamless inferface to the objects. Only

those selectors indexed in the method dictionaries will provide a key to access the receiver.

Since the look-up mechanism is a strict process, the prototype objects described do not give explicit
delegation capabilities, and instances of a normal class can not explicitly look-up messages. All behaviour
sharing in Smalltalk must locate the desired protocol using the standard look-up process. For extending the
sharing capabilities for grades of polymers; an alternative schemc was developed from the “Encapsulator®,
§4.2.2, for enhancing message passing in Smalltalk.

4.2 Enhancing Message Passing in Smalltalk

Ag an introduction to the enhanced mossage passing that provides a solution to a number of problcms in

POISE, the issue of orthogonal classification descriptions over grades is re-introduced.

102

Object -Onented Software Representation of Polymer b L 0T In Engmeermg Lesign

4.2.1 Mix-in Object Behaviour for Orthogonal Descriptions
Orthogonal classifications describe properties of grades. Objects describing the behaviour of other objects in

a class—instance language are implemented as classes. Objects described by classes are instances. Therefore,

the orthogonal classifications are classes and the grades of niaterial are instances.

The relationship between class and instance is a one to one ordinal relation. This would suggest that more
than one class could not describe a grade, thereby excluding orthogonal descriptions. ‘Mix-in’ object

behaviour is the description given for objects that ‘mix-in’ the behaviours from multiple sources.

Mix-in object behaviour introduces an additional perspective to the-description of an instance. While still
only perceiving a single object, a mix-in object behaves as if it is an instance of two separate classes. Two

interfaces seen as one, two implementations and one unified set of relationships.

The proposal is to placc onc instance from an orthogonal class and an instance from the polymer class under
a common interface. The interface is the point at which messages are received. When receiving messages
both instances are searched until a method is found. The interface would exhibit a concatenation of the

instance’s behaviours whilst each instance remains an inheriting member of their separate classes.

The common interface does not contribute any behaviour but does affect the pattern of message passing.

Hence, the proposal is an enhancement of the message passing mechanism in Smalltalk.

4.2.2 The Encapsulator

Pascoe’s Encapsulators® is a mechanism for controlling and extending the messaging powers of Smalltalk.
1t is not the first mechanism?® of its kind, but has two advantages. First, it extends the behaviour of individual
objects. Encapsulators are classes of objects that have the behaviour of isolating (encapsulatiﬁg) another
object. The degree of isolation and control on access depends on the implementation in different subclasses

of Encapsulators. The second advantage is that it uses a standard Smalltalk kernel, so any Smalltalk

environment can apply the implementation.

Pascoe solves two common operating system problems using the Encapsulator: queuing requests using a
monitor®® philosophy, and committing transactions in an atomic step. Both of these problems occur when
managing message evaluation in multi-user operating systems to ensure the evaluation of one message does
not conflict with the evaluation of a second message from a second concurrent user. These solutions have

more relevance to the secondary storage requirements of POISE, see §4.5.

103

Object -Orieated Software Representation of Polymer Materishs Information in Engineering Design

Pascoe apphes the Encapsulator to the Model concept in Smalltalk’s Model-View-Controller (MvC) scheme
for user interaction. The Model is the source of information displayed in the mterface The View generates the
screen display. The Controller handles users input. The Model has two roles. One role is as an entity in the
conceptual schema of an application, which is the subject of the object’s pufpose. The second role is as a
servant of the View. The user modifies the Model through hardware inputs interpreted by the Controller and
the model reports changes visually through the View. The Controller and View send a range of messages to
the Model for this purpose. Usually the Model mixes these message protocols with the protocols that describe

the entity’s role as part of some knowledge schema.

The two perspectives of the Model cannot separate through decomposition since the View requires notification
when the application’s entity part changes state. When the state of the entity changes the View updates. This
requires extensive integration within the implementation of the entity, catching potential changes to the

states.

The Encapsulator focuses on the interface of the object rather than the implementation by identifying
message protocols known to modify the entity’s state. All messages destined to the entity are sent instead to
an Encapsulator. The Encapsulator then redirects the message to a dedicated object representing the entity.
If the Encapsulator suspects the message changes the entity then it notifies the View after the entity
evaluates the message. The implementation of the entity is free of the View’s neeﬁs. The View displays only

information it obtains from the interface of the entity (the Encapsulator).

The application of ﬁle Encapsulator in the MVC is a better object—oriented model because the object being
ﬁewed is independent of objects representing the View. If the View needs extra methods for combining
information from the object on display, then they are separately implemented by another object, the Model.
The Encapsulator combines the objeci on display with the Model under one object interface. Not only are
the objects on display represented scpaialcly from the Model but can be classified separately. This scparates
the evolution of the MvC from the evolution of the objects they View. The separate MVC hierarchy can then

classify interfaces of different generality, general MVC and specific MVC for viewing the same objects.

In POISE separate classifications represent different perspectives of a polymer grade. An Encapsulator can
combine taxonomic classes and orthogonal classes of individual grades. Unfortunately, through common

coding practices it was possible to break an Encapsulator accidentally. This would compromise the

104

Object -Oricated Software Representation of Polymer Materials Information in Engineering Dexign

semantics of a polymer composed of different perspectives, and a major improvement was suggested, which
also resulted in simplifying the Encapsulator as published by Pascoe.

4.2.3 Message Passing in Smalltalk

The Encapsulator extends the object interface through an exception in the message passing mechanism in
Smalltalk. This exception invokes when none of the protocols, in any superclass of the receiver, matches a
message’s selector. The condition is not well defined by the class-instances paradigm and each language
must specify some mechanism to handle the condition or ensure the condition never arises. In Smalltalk, the

particular mechanism provides a very useful way for extending the behaviours shared between objects.

When messages are not understood by a receiver in Smalltalk, it generally opens. a Notifier informing the
user, usually the program developer, of the ‘type’ error. The mechanism generating this behaviour is not
specific, as it involves many program controllable steps. After the failure of the first message, the Smalltalk
virtual machine automatically sends a second message to the receiver. This message, called
‘doesNotUnderstand; aMessage’, is a behaviour of all objects. The general doesNotUnderstand protocol,

residing in the class Object, creates the Notifier for the user.

Like any other protocol, the doesNotUnderstand protocol can change. For example, rather than opening a
Notifier, the failed message could be sent elsewhere. Consider object A sending a message M to object B. If
object B does not have a protocol for M, B receives the doesNotUnderstand message. The
doesNotUnderstand protocol for B does not open a Notifier, but instead sends the same message M to a
third object C. Any message object A sends to object B can bind with either the protocols of object B or C.
From the viewpoint of object A, the one interface at object B presents a subsumption of behaviours ﬁ'om

object B and C.

Initially object C may be thought.of as a proxy to the client object B and the message passing from B to C as
delegation. Strictly, for delegation object C needs empathy for the behaviours of object B. Since the re-
direction from B to C is a normal message send, this is not delegation. Object B shares the behaviours of
object C, not the protocols. Empathy is not necessary for orthogonal descriptions and this extension of the

interface is sufficient.

Changing the protocol for doesNotUnderstand in a class affects all instances inheriting from the class.
Orthogonal descriptions require an extension of the interface per object, not per class. The Encapsulator

provides an interface extension per object.

105

Object -Oriented Software Representation of Polymer Materials Information i Engineering Desiga
Pascoe’s description of the implementation of the Encépsulatbr contains a’flaw and 'involves some
unnecessary modifications to the existing Smalltalk environment. The flaw allows access to the hidden object
without passing through Encapsulator. The sender of messages can avoid the flaw if it knows the receiver is
an Encapsulator. Requiring the sender to know the nature of the receiver is panimount to requiring the
sender to know the receiver’s implementation, ruining some benefits of mcapsulﬁﬁon. Expecﬁng POISE to
assume any polymer could be a composition of orthogonal descriptions was unacceptable. The Enhancer is

an Encapsuiator that aims to solve this problem.
4.2.4 The Enhancer

The Enhancer®® updates, simplifies and generalises the Encapsulator. The Enhancer takes a useful tool for
combining the behaviour of two object for- a specifically designed purpose, and creates a general

enhancement to the messaging mechanism in Smalltalk—80.

Creating an object that exhibits the behaviours of another object it hides, while contributing its own
behaviour is still the aim. In addition, the Enhancer attempts to do this as transparently as possible.
Transparent means a sender will not be able to identify the composition of objects generating the behaviour,
and only see a single object. The variable ‘self’ is the main reason why the Encapsylator ﬁﬂs to achieve
this objective. When a message binds to a protocol, the variable self, common in code, binds to the receiver.
Although the Encapsulator initially receives the message, it re-sends the message to the hidden object. The
hidden object is now the receiver and binds to self. Although this binding prevents empathy between the

Encapsulator and the hidden object, it has a more serious consequence when the protocol finishes.

When a protocol finishes, unless otherwise specified by the programmer, it returns the reference to the object
bound to self. Unless the Encapsulator intervenes, the variable self passes back to the sender. The hidden
object, supposedly encapsulated, by default returns to the sender without the Encapsulator. A common
programming practise in Smalltalk worsens the Ptoblem. Cascading messages sends the next message to the

object returning from the previous message, often expecting it to be the same receiver.

An example illustrating the problem is a grade as an Encapsulator hiding a number of orthogonal parts. The
Encapsulator passes any message it receives to each of the parts in turn until the message binds to one of
them. A cascade of messages to a polymer could result in the first message binding to one of the orthogonal
part of the polymer’s description, and the behaviour returns that part to the sender. Thg cascade causes a

second message to be sent to the returned object, in this case the part that responded to the previous message

106

Object -Oriented Software Representation of Polymer M ials Infc ion in Engineering Design

in the cascade, the message is not sent to the Encapsulator. Unless the cascade accesses only protocols from

one part of the polymer, a message will not bind correctly.

4.2.5 Implementing the Enhancer
Unlike previous attempts to generalise the doesNotUnderstand mechanism® the Enhancer attempts to merge

seamlessly with the Smalltalk object model with minimal disruption to the standard Smalltalk environment.
With the exception of a few development tools (debuggers), the Enhancer is undetectable from an equivalent

object inheriting solely from a single class hierarchy (ie based on the standard object model).

doesNotUnderstand: aMessage

"This method is a behaviour specific to Enhancers. The doesNotUnderstand message s
automatically sent by the Smalltalk virtual machine when a method cannot be found to match the
message name.

The recelver, referenced by self, is therefore a variety of Enhancer.

aMessage is an object describing the message send which has been intercepted by the receher.
aMessage comprises the selector (.e. message name) and accompanying arguments.*

"Temporary variabies
hiddenOblect...........cceeune initlally, the object hidden by the receher.
WIii be assigned the receiver.
To store the result of aMessage.®
| hiddenObject me answer |
“Initial agsignments.”

me 1= self,
hiddenObject :1= nme privateEnhancedObject.

"privateEnhancedObject is the retrieval operation specific to a particular subclass of Enhancer. that
the receher inherits. *

hiddenObject prinBecome: me. }

"Swapping the receiver and the hidden object, so as to 'open the door' to the hidden object.
‘me' is now a reference to the hidden object®

[answer := me
perform: aNessage selector
withArguments: aNessage arguaents)

"Executes the behaviour associated with message send described by aMessage.®
valueRowOrOnUnwindDo: [me primBecome: hiddenObjectl .
"Regardless of the behavour executed when aMessage Is performed, the hidden object and me are

swapped back again. The door Is closed on the hidden object, no matter the outcome.®

‘answer
"The result 8 retumed upon successful execution.”
Figure 12: Message redirection for Enhancer

Consider an object without behaviours except the doesNotUnderstand behaviour of Figure 12 and one other

named ‘privateEnhancedObject’.

Any message that was sent to this Enhancer object (with the exception of privateEnhancedObject) would
~ evoke the doesNotUnderstand message. The hidden object exchanges places with the Enhancer and the

message is re-evoked but with the hidden object as the receiver. Upon completing, the exchmige is reversed.

The only behavioural difference between an object hidden by an Enhancer and the hidden object on its own
is the Enhancer will respond with the hidden object if the message ‘privateEnhancedObj ect is sent. The
semantics of this message would appear to be returning a copy of ‘self’, the receiver. Since it is unlikely that
the message privateEnhancedObject will have any other semantic meaning, this is a minor difference in

behaviour

107

Objoct -Oriented Software Representation of Polymer Materials Information in Engineering Design

The advantage of the Enhancer is not an absence of behaviour. Semantically the Enhancer, as above,
contributes nothing to object modelling. The Enhancer though differs in its implementation. The Enhancer is
the sole reference to the hidden object. This allows the hidden object to change in a similar way to the
message become:. The similarity is that when the hidden ‘object changes, all owners of the Enhancer will

experience the behaviour of a new object:

Vo

\to

— A reference from client to server

O An object

@ An Enhancer with encapsulation

Figure 13: _ Schema of Enhancer
In Figure 13, the Enhancer (E) can easily change its reference from one object (A) to another (B). This

simple use of the Enhancer can help strengthen the encapsulation of all objects in Smalltalk. Currently any
object can be the argument in a become: message. Without permission ﬁ'@ either the object or any of the
objects referencing the object, the object can be replaced by another. For the objects referencing, the change
is an unauthorised change in state. With the Enhancer the become: primitive (§4.1.3) can be rempved from
general object behaviour, placed only in parts of the system necessary (eg to coerce instances during schema
evolunon) The Enhancer is then available for specific apphcatlons on individual objects that need the
flexibility in changing object 1dent1ty For this, the Enhancer will keep its own pnvate behaviour contalmng

the become: primitive.

The Enhancer, as above, is an empty shell; into which each application writes a subclass w1th a different kind
of behavioural extension. One app;lica'tion is the arthogonal description of grades.

1.2.6 Implemenbng Orthogonal Descriptions of Polymer

The primary description of grades is from taxonomic classes. For inappropriate propertws, the POISE schema
calls for orthogonal descriptions. An orthogonal polymer description is 2 modular extension of behaviour for
individual grades. A class represents the orthogonal polymer description and each instance is an extension

which individual grades may arbitrarily assign as part of theif description. The grade distributes its

108

Object -Oriented Software Representation of Polymer Materials Inf jon in Engineering Design
description across many different instances. An Enhancer passes messages to each descriptive part until the

message finally binds, thereby constructing the grade under one object interface.

A variant of the Enhancer combines the interface of two or more objects. The behaviours of these objects are
independent of each other and pre-defined by their corresponding classes. This Enhancer creates the
perception of a single object that combines the behaviours of the hidden objects. This Enhancer is a subclass

called a CompositeEnhancer.

4.2.6.1 CompositeEnhancer
The CompositeEnhancer is like ‘multiple inheritance on a per-object basis’, or mix-ins. Multiple inheritance

allows a single class template to inherit from more than one other class template. The CompositeEnhancer
dynamically merges the interfaces of two (or more) objects without an official declaration of a class to unite

the behaviours.

The CompositeEnhancer does not hide a single object but an ordered collection of objects. Upon receiving
each message, the Enhancer iterates through each of the objects in order until the message binds
satisfactorily. The iteration and testing for satisfaction are message pre-processing functions, functions quite
specific to the multiple-hidden object nature of this subclass. The doesNotUnderstand: behaviour for the
CompositeEnhancer requires re-implementation. To simplify the analysis of this behaviour, the following

example, Figure 14, oniy comments on the new aspects of the protocol:

doesNotUnderstand: aMessage

*First | resend aMessage to the first object in my components. Any message that my
does not understand will be caught and sent to the next component until either it Is answered or
have gone through all my components with the current
1. Set a temporary pointer named receiver to the first
| receiver |
receiver 1= 1.
2. Set up the exception handler to pass message to next object”
A0bjsct messageNotUnderstoodBignal
handle:
[tex |
4, A message has been sent during evaluation of the do: block that was not understood.
exception, ex, occured In the context object ‘initialContext'. iff the message not
was aMessage sent in the do: block context below (equal to ‘ex handlerContext’),
there are still objects to pass aMessage to, then increment the polnter and restart the

block®
ex initialContext sender sender == ex
handlerContext & (receiver == composite
size) not
1fTrue:
[receiver := receiver + 1.
ex restart]
"5. Else reject this exception handler. The signal will continue as if this handler did not
ifFalse: [ex reject]]
dos
3. composits Is an Instance variabls for access to an ordered collection protential message
recelvers. The perform:withArguments: senas a message as described by the
the attributes 'selector’ and ‘argusments' of aMessage.
[(composite at: receiver)
pezrform: aNessage selactor
withArg st ak s].

Figure 14: Message redirection for Composite Enhancer

109

Object -Oriented Software Represeatation of Polymer Materials Information in Engineering Design
The CompositeEnhancer relies on the hidden objects supporting the standard Smalltalk behaviour for the
doesNotUnderstand: message. The standard behaviour raises a signal, named messageNotUnderstood, as

follows.

A CompositeEnhancer receiving a message will evoke its own doesNotUnderstand: method, in Figure 14.
Under most circumstances, the do: block evokes and the first object in the OrderedCollection, named
‘composite’, receives the same message sent to the Enhancer, aMessage. If the message is understood the

response returns. The Enhancer then appears to have the behaviour of the first object in ‘composite’.

If aMessage was not understood by the first receiver in composite then the Smalltalk virtual machine decrees
that this receiver will receive the message doesNotUnderstand instead. The first receiver is not an Enhancer
but a standard Smalltalk object with the standard Smalltalk behaviour for the doesNotUnderstand: message,
which raises a signal. This signal searches past contexts (§4.1.4) and finds the handler in the Enhancer’s
doesNotUnderstand context which evaluated the perform message. The handler is an object that holds the
code described as step 4 and 5 in Figure 14. This code, unlike step 3 has not yet been evoked, despite the

ordering in the source code. Now the signal tells the handler to evoke steps 4 and 5.

1

Getting the message, aMessage, to an appropriate receiv& is the only purpose of the Enhancer. The standard
Smalltalk behaviour for doesNotUnderstand might evoke for other reasons, at any time, because of another
object not handling a sent message. There is no guarantee the cause of the signal is due to the attempt by the
Enhancer to match aMessage to a receiver of the composite. This must be tested explicitly. This test

examines the contexts created between re-sending aMessage and raising the signal.

For clarity, the context evaluatingfhe do: block is the ‘doContext’, which returns to a ‘handlerContext’, the
context that results from the whole handle:do: message. The ‘sender’ of the doContext is the
handlerContext. In the doContext the perform: message creates another new context. This third context
has the doContext as a sender. A chain of contexts is thus described: handler-do-new. If the receiver of the
new context understands aMessage, the context will evaluate the protocol found for aMessage. If aMessage is

not understood, the new context will evaluate the doesNotUnderstand protocol, which raises a signal.

‘Raising a signal’ is a message to a signal object. The signal creates an exception object. The signal
passes the exception the current context (the initialContext) from which the exception can obtain the
chain of parent contexts of the current process, ie the history of message sends leading up to the signalling.

This includes the context that raises the signal, a doesNotUnderstandContext. The chain of contexts also

110

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
includes the handlerContext. The receiver in the handlerContext is a signal object (see step 2 of
Figure 14). The role of the exception is to search for handlerContexts and match their signal with the
signal raised. The handler block, held as an argument in the handlerContext, then activates. The

exception passes to the handler block through the argument ex.

In the handler block, there is a condition the Enhancer checks. This check determines if the signal is a
consequence of a message the Enhancer sent and not some other object. Through the message
initialContext to the exception (the ex argument), the handler block accesses the context raising the
doesNotUnderstand signal. For the condition to be true, the sender of the initialContext must be executing
the handler “do” block, and its sender must be the handlerContext. The exception determined this context
when the signal was raised. If the message handlerContext to the exception matches the

initialContext’s sender’s sender, then the Fnhancer must have given rise to the signal.

After ensuring that there are still objects in composite that have not received aMessage, the index increments
and the do-block is evaluated again after rémoving (known as unwinding) all the redundant contexts down to
the handlerContext. The do-block evaluates for each receiver until the doesNotﬁnderstmd message and
signal are no longer triggered, ie the message binds correctly. A receiver which binds will shadow the
remaining objects in ‘composite’. Any other objects also satisfying the message are not given the opportunity

to express their hehaviour.

The consequence of the first-object failing with aMessage and instead a second-object responding is the
merging of two behaviours under a single interface, the CompositeEnhancer. To clients the
CompositeEnhancer is a union of two or more object types. The example given dictates a particular rule for
behaviour sharing in the intersection of the object types, so higher ordered objects override completely any
object lower in the ordering.

4.2.6.2 Compositenhancer for supporting orthogonal descriptions.

The CompositeEnhancer is a single object interface. As such, it is identifiable as a single object, not a
collection. It subsumes the behaviour from a number of other objects, not through inheritance but by
delegating messages. Many objects explicitly subsume the behaviours of others through message passing, but
the CompositeEnhancer does this implicitly. The types of the objects the CompositeEnhancer subsumes are
unknown. Throughout the life of the CompositeEnhancer new subsumptions dynamically resolve as the
objects themselves change. In addition, the subsumption is different for each CompositeEnhancer. The

description of behaviour is per-object.

111

Object -Oriented Software Representation of Polymer Materials Information in Engineéring Design
Resolving behaviouf subsumption of orthogonal descriptions is simple since the orthogonality implies any
intersection between the parts should be empty. The ordering within the CompositeEnhancer of objects has
no consequence on sharing across objects with orthogonal properties. A CompositeEnhancer representing a
grade can assign the component objects, for example, an instance from one general polymer description and

one or more instances from orthogonal descriptions, in any order.

Even objects representing arthogonal descriptions of grades are not truly orthogonal in POISE. They all inherit
from Object. An example of a common property inherited from Object demonstrates the susceptibility of the
CompositeEnhancer to the ordering of objects. The property hash is a primitive behaviour that returns a
unique integer for every object. It is important when placing and locating an object in a hash-table. Consider
a CompositeEnhancer in a hash-table subsuming object-1 first then object-2. When the
CompositeEnhancer receives the hash message, it passes the message to object-1. The look-up of the
selector hash starts in object-1’s class, dowln the super classes and locates the primitive behaviour in
Object, returning an integer unique to object-1. That integer is used to place the CompositeEnhancer in the
ﬁash-table. If object-1 and object-2 where to swap places in the CompositéMancer, consider what the
behaviour of hash is now. The CompositeEnhancer receives the message but -now object-2 receives tﬂe
message first, passes it to obj ect -2’s class, superclasses and finds the same pnm.mve in Object, l:;ut this time
object-2 is the receiver. A different integer number is returned. A different integer number means the
CompositeEnhancer is now in the wrong place in the hash-table. This problem is simply solved by defining
the hash primitive as a property of the CompositeEnhancer, but it does demonstrate the related issues of
orthogonality, property subsumption and empathy, (note if self was a;ssigned to the CompositeEnhancer

rather than object-1 or object-2 the primitive would have worked uniformly despite the look-up path).

The important aspect of the Enhancer is its ability to pass on arbitrary messages to individual oi:jects. This
facilitates the dynamic re-description of individual objects. In the next section, the message passing
mechanism is attributed to the polymer classes for quite different .reasons. Polymer classes are the sole
instances of their class (the meta-class). Individual class can extend their behaviour by manipulating the
meta-class, but the behaviours are subject to inheritance and affect all subclasses. As will be shown, the
inheritance of protocols is in the opposite direction to the subsumption of property generalisations. The
message passing mechanism cleanly separates the different roles of the class and the different subsumption of

property generalisations.

112

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

4.2.7 Polymer Class Behaviour
The class has two roles (§3.5.4.) within the POISE classification:

e Explicit behaviours: As a definition of an object type, declaring behaviours and states for polymer
grades, a class template.
e Implicit behaviours: Property abstraction for domain representation of an abstract polymer.

Property generalisations characterising abstract polymers features two complications. As polymer grades
change their descriptions so too the abstract polymers hence the Polymer subclasses must all evolve their
implicit property generalisations that compose each polymer abstraction. This evolution is even more
complex than the evolution of grades, as will be shown later. The second complication is the abstraction
becomes progressively more specific at every subclass down the hierarchy, and so the implicit properties list
decreases. Subclasses do not subsume the abstractions of the superclasses rather the superclasses actually
infer their abstractions from the subclasses. The superclass-subclass protocol inheritance is in the opposite

direction to the inference by subsumption of property generalisations.

These two roles require separate implementation but represent the same entity. Although the Enhancer excels
in this activity, it is unnecessary to use an Enhancer since all Polymer classes will exhibit both roles. Since
the two roles are orthogonal, two separate objects could represent the two roles, the class and another object.
They are combined by modifying the doesNotUnderstand protocol of the class so unbound messages pass to
the other object. This allows the two roles to be kept separate, so allowing an instance of a specialised class
to represent the evolving abstract entity with an explicit subsumption of the property generalisations. This

new object is a PolymerDataAbstraction.

Separating the implementation of the two roles had a number of benefits. A Polymer class can change the
type of PolymerDataAbstraction, which changes the abstract property subsumption for the Polymer class.
There are different subsumption mechanisms for Polymer classes subsuming subclasses, instances and

orthogonal classifications.

4.2.7.1 Abstract polymer objects
The PolymerDataAbstraction, or PDA, represents the abstract polymer part-behaviour of the Polymer class.

The Polymer class receives messages pertaining to the abstract entity and delegates them to the PDA.

The PDA subsumes all properties of all grades in a population. The PDA is polymorphic with all grades in that
population, which subsume the property descriptions of their Polymer subclasses. The PDA must be able to

receive the same messages and respond in the same way as the grades. An additional complication is the

113

Objea-&immséﬁmwmofrolymu" iah Informasion in Engineering Design
evolution of the grade’s behaviours. If the grades change their subsumption then the behaviour of the PDA

must also change.

The simplest PDA is a single Polymer class with grades but no subclasses. The grades all subsume the same
properties from the same class. The only difference between the behaviour of a PDA and the grades is the
values held for each property. In the PDA each property holds a population of values. An instance of the
Polymer class (not called a grade) could represent the PDA. Thls requires polymorphism between an object
representing the population of values held by each property of the PDA and the specific values held by grades.
The protocols inherited from the class behave correctly only if the object representing the population behave

in the same way as the specific values.

In addition to presenting populations of values, the PDA provides the following management tasks:

e Receive and disseminate update messages when grades modify properties.

e Maintain a membership population over which the abstraction is valid, including adding and
removing instances from the population. _

e Merge with a fellow subclass’s abstract polymer to provide abstract behaviour for superclasses, (to
follow in §4.2.7.3).

e Manage the addition (and removal) of orthogonal property descriptions as grades in population
extend their property descriptions, (also to follow in §4.2.7.5).

All these management tasks are additional to the behaviour of an abstract polymer instance. The tactics of the
Enhancer extend the behaviour of a Polymer instance without compromising the classification describing its
behaviour. Unlike other applications of the Enhancer, the management role requires access to the properties
of the abstract polymer instance, ie the abstract values held by the abstract polymer instance. The PDA is a
subclass of Enhancer that extends the message passing to both subsume and manage the properties of a
polymer instance, representing an abstract polymer.

4.2.7.2 Conformity between population and abstract polymers

The PolymerDataAbstraction (PDA) is an Enhancer that cmbellishes the aggregation of polymer properties
with a number of data management behaviours, which ensure that the properties of the aggregation are
consistent with the population represented by the class. The PDA maintains a close relationship with the class
it represents. Indeed, it accesses the class by simply sending the message ‘class’ to the instance that it

subsumes.

A class does not keep track of all its instances. However a primitive behaviour does exist that searches object

space (primary memory) for objects with a class pointer matching a given class and returns all instances of

114

Object -Oriented Software Representation of Polymer Materials Inf jon in Engineering Design

the class in primary memory but not instances represented on secondary memory. It will also include the
instance tﬁe PﬁA subsumes, which is not a grade. A more explicit approach is taken of recording grades’
existence. There are two sources of grades in POISE. New grades can be instantiated, and the application can
connect to a set of existing grades on a database. The Polymer class re-defines the standard instantiation
protocol to notify the PDA when instantiating a new grade. When the application connects to a new database,
the database notifies each class of the grades added, and the message passes to the PDA, which keeps a

standard collection of instances representing grades.

An explicit approach is taken for the removal of grades, from primary memory or from a database. When a
user directs the removal of a grade using a graphical interface (see §5.2.2), the interface notifies both the

database concerned and the PDA.

The PDA views (he addition or removal of a grade as the addition or removal of a set of property valucs. The
PDA locates the generaliéation for each property (see §4.2.7.4) and correspondingly adds or removes an
occurrence of the value in the grade. On a lesser scale, individual changes in a property value of a grade
cause a similar change in the PDA. The grade notifies its class of the change. The message passes to the PDA,

which locates the appropriate property and updates by removing the old value and adding the new.

The function of the PDA, so far, manages the generalisation of data from a single class with instances but no
subclagses. rPDAs for Polymer classes with subclasses subsumes property descriptions ﬁon& objccts of
different sub-types. For these classes, a PDA could subsume more than oné instance, one from each subclass.
This would complicate population management, so a new type of PDA that can subsume the properties of
many other PDAs was created. Then only subclasses with instances require management with PDAs. The
superclasses subsume the results of this management from the subclasses’ PDAs.

4.2.7.3 Conformity across levels of representation.

The total population of a superclass is its own instances (if any) and the combined population from
subclasses. The properties of abstract polymers for general classes are likewise the subsumption of the same
properties from the specialised subclasses. These properties are already subsumed together in PDAs for those
subclasses. A CombinedDataAbstraction (CDA), subsumes the properties of any number of PDAs. One PDA

represents the instances of the immediate class (if any) and one from each subclass with an instance,

Semantically there is no difference between a CDA and a PDA. Both are subtypes of any grade in their
respective populations. Each PDA generalises engineering values (see §4.2.7.4). For the CDA to subsume the

same property from many PDAS, the CDA resolves the subsumption by merging the generalisations of the

115

Object -Oriented Software Representxtion of Polymer Materials Information in Engineering Design
same property from different PDAs. Resolving subsumption is a behaviour of the abstract engineering value.
In §2.1.8 general subsumption resolution was considered a problem with inheritance representation. Here the

CDA manages the problem explicitly with a specific merging algorithm.

The CDA is also an Enhancer. Any message sent to the CDA is sent to all PDAs it subsumes. Each message
successfully binding to a PDA returns an abstract engineering value. Unsuccessful mess'ages are simply
ignored. The CDA combines the abstract engineering values and returns a single object as the response.
4.2.7.4 Abstract engineering values
The abstract engineering value (AEV) is an important description of thé abstract polymer. In order to support
the abstract polymer, the abstract engineering value must provide the following functions: -

e generalise a population of specific engineerm’ g values

e presents an abstract value polymorphic with specific engineering values
e resolve subsumption by creating another abstract engineering value covering a combined population.

Although an AEV reduces the population into a generalisation in order to present an abslractlon, for completc
generality, it does not reduce the mformatlon content hidden within its own memory. It is not a memory
' saving device. It provid&s protocols for interrogating the complete population of values. The abstraction

keeps a record of the engineering values from the pdpulation it represents.

The AEV is similar to the PDA. Both add a general functionality to a set of different object types. The PDA
adds population management to different classes of polymer. The AEV adds the above functions to different
types of engineering values - many of which the users of POISE will develop and are yet unknown. So again

adding a common behaviour to an unknown type of object is a problem.

Any type could represent an engineering value. The user defines the type of an engineering value when they
define the Property object. One behaviour of a Property is to return a class for representing the engineering
value, (a class since Smalltalk doesn’t define types). Strictly, this is a type specification for the argument of
the updator: method, and the expected type of the accessor method response (see §4.4.3). The AEV collects
several of these value types. Currently POISE assumes the values are arithmetic,. and calculates a medium
value. With the aid of the Enhancer behaviour sharing technique, the AEV subsumes the behaviour of the

median value.

Whereas the PDA collects grades, so the abstract engineering value collects values. The management of the
abstract engineering value is the direct result of a similar activity in the PDA. The abstract engineering value

receives messages from the PDA to add or remove Mues as the population of grades change.

116

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

4.2.7.5 Applying orthogonal descriptions to abstract polymers
A grade’s description extends with the addition of an orthogonal description. If a single grade is capable of

extending its description, then so is the description of the abstract polymer. The mechanism for extending the
grade subsumes the existing instance of the Polymer class with an instance from an orthogonal class. Yet,

another Enhancer facilitates this subsumption.

A grade extends its description using an Enhancer to ‘subsume two (or more) instances, for example one
polymei' and the others orthogonal descriptions. Since the composition of a PDA includes an mstance of the
Polymer class, the same mechanism applying to the specific grade also applies to abstract polymers. They
both compose of an instance of the Polymer class. A PDA with orthogonal representation subsumes an
Enhancer, which in turn subsumes a Polymer instance (the original abstract polymer) and a new instantiation
of the orthogonal class. For each new orthogonal class that any instance in the population adds, the PDA must

also add a single new instance from the same orthogonal class to its Enhancer.

The orthogonal descriptions provide a secondary classification. Unlike the class of the materials hierarchy,
the members of the secondary classification mix with members from other classifications. A subclass,
MultipleDataAbstraction (MDA), extends the behaviour of the PDA. The extension segregates the
population according to membership to orthogonal descriptions. This allows queries to focus on grades
subsuming a particular perspective. Besides some complications in management, there is little difference
Wm MDA and the PDA.

4.3 Delegation in Smalltalk

Splinter uses delegation to combine the behaviours from multiple perspectives forming the behaviour of an
artefact. Delegation is known to satiéfy this objective. The question is what constitutes delegation. Does the
behaviour sharing of the F::nhancer conéﬁtute delegation? If it doesn’t, then does the Enhancer, or some
variation satisfy the objectives of a multiple perspective artefact? Bearing in mind complete delegation is not
a goal of this thesis, though the ScopeEnhancer ig the result of an attempt to capture behaviour haring

between multiple perspectives as closely as poséible.

Delegation is a feature of a hnémge implementation that supports empathy. Yet even empathy, as defined
from the Treaty of Orlando’, refers to the variable self, which i3 a common binding that languages
implement. The variable self is a very important feature of an object—oriented lanéuage linking a protocol to
-the context of the receiver, allowing procedural abstraction of protocols, both abstract and specific, within the

same entity. If the binding is outside programmable control and bound according to a rule of the language,

117

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
then the binding is standard, a feature of the language implementation. Empathy defines the nature of a

common binding, so describes a feature of a language implementation.

If both delegation and empathy are descriptions of a language implementation, it is impossible to use them as
a description for a Smalltalk language where the implementation does not enforce such characteristics.
Smalltalk always binds the variable self to the receiver of the message and the receiver of the message is
always an instance of the class holding the code. It is impossible for another object to request a protocol from
an instance and then take the role of the receiver (ie the other object binding to self). In conclusion, it is

impossible for Smalltalk to support empathy or delegation beyond the implicit inheritance hierarchy.

Absence of delegation is not specific to Smalltalk but strikes contrary to the success of the class—instance
paradigm. Even if the variable self could support empathy in Smalltalk, self is not the only ‘variable
associated with the receiver. Each instance variable maps to a relation of the receiver. Empathy does not
define how such variables should bind. The binding of the self variable infers these relations should also
come from the client and not the owner of the protocol. Such bindings simply do not exist in delegating
languages and there are good reasons. The instance variables are just optimisations ﬁlat benefit from a
template-like relationship, such as found between the classes and their instance. They‘ do not extend the
expressiveness of a language. If a software model chooses to use the class—mstance relationship, it must

comply with the rules of instance variable classification.

If the existing Smalltalk environment, its protocols and message passing mechanisms, can not support
delegation, could a separate mechanism within the Smalltalk language exhibit the intentions of delegation?
Whether such a mechanism is considered to attribute Smalltalk with delegation is not the debate. Arguably, a
procedural language can generate programs of an object—oriented fashion, but the language is not considered

object—oriented. The same can apply to Smalltalk and delegation implemented as a language extension.

The implementation of Smalltalk can not chunge but emulation of delegation is possible. Instead of using the
existing self variable, use a new variable. This variable changes according to who is the client, and in POISE
the client is an Enhancer. If protocols are written using this variable, then these protocols may empathise

with other receivers.

4.3.1 ScopeEnhancer: Delegation Emulation
A ScopeEnhancer adopts the simple object description of the Enhancer. It shares semantic similarity with the

CompositeEnhancer but the implementation is different to allow experimentation in behaviour sharing

management. The ScopeEnhancer’s aims are also much more ambitious.

118

Object -Oricated Software Representation of Polymer Materiak ion in Engineering Design

The ScopeEnhancer aims to support the sharing of protocols across a community of objects. The community
forms an ordering from an object containing the most specific protocols to the last and most general object.

Objects in the community can belong to other communities, forming an acyclic graph of behaviour sharing.

In terms of delegation, the ScopeEnhancer is the client and the objects in the community are proxies. The
ScopeEnhancer does not contribute any behaviours itself, so the overall behaviour is the same as if the first
object of the community, the most specific, was the client. The rest of the objects in the community are

proxies of this client. For simplification, all the objects in the community are called ‘proxies’.

The proxies are standard objects. Separate classes define the behaviour of each proxy. The classes reside in
the standard inheritance hierarchies. Individually they do not share the protocols of others, yet in order for the

sharing mechanism to work their protocols send messages to self, which are not behaviours of the class. In

this way, classes of proxies are special.

The mechanism starts with a ScopeEnhancer and the proxies in a SequenceableCollection grouping the
community. Messages to the community are sent to the ScopeEnhancer, which has the responsibility to locate

the protocol within the community and ‘overview’ the evaluation.

Upon receiving a message the ScopeEnhancer sets up an exception handler and re-sends messages just like
the CompositeEnhancer. Any messages, not just those re-sent messages, not found during evaluation of the

ScopeEnhancer’s behaviour will be caught by the handler.

If the messageNotUnderstoond signal is raised, the exception handler gains control. The handler identifies
the message and object (receiver) causing the signal. The handler also identifies if the message was sent
directly from the ScopeEnhancer, ie if it is the initial ‘delegated’ message re-sent. If the initial message
springs the trap then the ScopeEnhancer re-sends the message to the next object in the community, just like
the CompositeEnhancer. The ScopeEnhancer differs from the CompositeEnhancer when the message raising

the signal is not the initial m&ssagé.

When a protocol for the initial message has been found, the trap stays set during evaluation of the protocol.
For empathy within the community, the ScopeEnhancer relies on the protocol evoking the
messageNotUnderstood signal to intervene. This will happen if the proxy sends a message to self that it

does not understand. The message raising the signal in this case is not the initial message.

119

Object -Oriented Software Représentation of Polymer Materials Information in Engineering Design
The exception handler of the ScopeEnhancer identifies the message and object (receiver) raising the
messageNotUnderstood signal. If the receiver is the object from the community that last received the initial
message (the delegated message), and this message is different, then a new message delegation starts. The
ScopeEnhancer searches the whole community for a new protocol for the unbound message. If the receiver is

not the expected object, the ScopeEnhancer assumes the signal is a genuine type error.

The policy implemented is one of a few variations tried. They all rely on the handler trapping signals
resulting in a protocol search in the community of objects. In this way, a message in one object can gain
access to proiocols of other objects within the ‘scope of the Enhancer’ whilst the object does not define the
behaviour itself This final condition is inconvenient since it prevents the ability for proxies to specialise
behaviours existing in the class hierarchy. To further understand this limitation, the specific implementation

of the ScopeEnhancer follows.

4.3.2 Implementing the Scopefnhancer
Two separate parts of the ScopeEnhancer implement the interface and the delegation event. The class

ScopeEnhancer, a subclass of Enhancer, implements the interface receiving the initial messages.
ScopeEnhancer changes the doesNotUnderstand method to construct an instance of DelegationEvent with
the message and the ScopeEnhancer’s community of objects. The DelegationEvent is responsible for

locating the protocol within the community and ‘overview’ the evaluation.

Separating interface and management of the delegation event aﬂows specialisation of the DelegationEvent
class. DelegationEvent inherits from Object like most Smalltalk classes. The subclasses create different

delegation policies.

This scheme allows the ScopeEnhancer to create a copy of the delegation event to handle each message

mutually exclusively. Each shared protocol has an event to manage the evaluation of that protocol.

120

Object -Oriented Software Representation of Polymer Materiabs Information in Engineering Design
The ScopeEnhancer ' s interface evokes the DelegationEvent as follows:

1) Enhancer receives message.

2) Enhancer does not understand message and receives doesNotUnderstand: message.

3) The Enhancer creates a new DelegationEvent object.

4) The ScopeEnhancer gives the event the message selector to search for and the community as an

ordered collection of objects
5) The Event is told to search and evaluate.

The dominant behaviours of the DelegationEvenﬁ are search, evaluate and ‘trap’. The ‘trap’ is an exception

handler.

6) When an event receives a message to search it initialises a pointer to the top of the collection (of
objects to delegate to). This is the current receiver.

7) An exception handler monitors for a does not understand signal.

8) The do-block is evaluated.

9) The message being delegated is sent to the current receiver.

From this point until the message is complete, the trap is set. The following occurs if any object triggers the

trap by raising the signal.

10) The handle-block is evaluated with an exception object as argument.

11) The handle checks if the initial context, the context sending the message which was not
understood, is the do-block context from in step (8).

12) If the same then the receiver is set to the next proxy receiver. If no more proxies then reject the

exception (normal does-not-understand behaviour occurs) otherwise re-evaluate the do-block

(back up to step 8).
13) If not the same, the handle checks if the originator of the exception, the object which did-not-
understand, is the current receiver. If not then reject the exception (normal does-not-understand

behaviour occur).
If the originator is the current receiver, the ScopeEnhancer directs the message to the whole community.

14) A new message is being sent. Simply pass the message to the ScopeEnhancer (start at step 1) and
proceed with the response.

Step (14) causes the creation of a new DelegationEvent. The current event is still active until that event’s

message is complete.

It is possible for the parts fiom the community to message each other and send various parts of the
community as arguments in those messages. The various DelegationEvents handle the situation well, with

each part providing it’s specific behaviour first, then the communities collective behaviour afterwards.

121

Objoct -Orionted Sofware Representation of Polymer Materials Information in Engineering Design
The above DelegationEvent was the first implementation. This implementation attempts to extend the
variable self, by sending messages to self that are not understood within the local object’s classes. An
alternative is to define a new variable, A specialisation of the above DelegationEvent demonstrates one way

of achieving this.

The new variable is named the client. Unlike the self vanable which binds to the receiver automatlcally
by the virtual machine, client binds explicitly through a message sent to self in each protocol. The class
Object defines the message client. All objects (bar Enhancers, which do not inberit from Object) can bind
to the protocol. The semantics of the c1ient message is to return the empathetic self, the ScopeEnhancer. If

there is no ScopeEnhancer, client simply returns self.

A temporary variable can be assigned to the response to the message:

| client |
cllent := self client.

If client is now sent messages instead of self then the protocol is fully empathetic. Messages sent to
client, the ScopeEnhancer, immediately form a new DelegationEvent that directs the message to the first

object in the community, which is the most specific.

The message ‘self client’ finds the ScopeEnhancer by raising the doesNotUnderstand signal. The
specialisation of the DelegationRvent detects bthc client-message.' and ftreats it specially. The
DelegationEvent returns the ScopeEnhancer as the response to the client message. If the
doesNotUnderstand signal is not handled, then there is no ScopeEnhancer. The client protocol detects this
situation and returns self in response to the message. Protocols usin.g ﬂ;e client variable without a
ScopeEnhancer have all messages sent to self rather than a community. In this case, self is the most

specific in a community of one.

With client the ScopeEnhancer can emulate explicit delegation. In delegation, a c1ient. delegates a message
to a specified proxy. A specialisation of the ScopeEnhancer, with a single object as the community, emulates
the proxy. The message is sent to this ScopeEnhancer. The specialised behaviour notes the object sending the
message, the delegating client. The ScopeEnhancer finds this client by accessing the message contexts,
just as exceptions access signal handlers. When the proxy object sends the client-message, rather than
returns a ScopeEnhancer with just the proxy, this specialised ScopeEnhancer adds the delegating-client to
the community as the most specific object. The delegating-client then overrides all messages sent to the

client and the remaining proxy behaviours in the community acts as defaults.

122

Object -Oriented Software Representation of Polymer Materials Inf ion in Engineering Design

Even with client, the programming style needs to change. If the programmer uses the variable self, then
the programmer does not expect delegation. If the programmer does expect delegation, then programming

must change to allow the ScopeEnhancer to support the empathy.

4.4 Hierarchical Schema Evolution
Schema evolution in POISE is not a common activity. Once the classification is initially set up, only

occasionally will it change when a user adds new classes of polymers or properties. Even so, user interactions
must be effective. For example, excessive delay would be unacceptable when processing a change. Excessive
delays were incurred when making a series of changes using the development system’s mechanism for
schema evolution, the ClassBuilder. Long waits occur after each change to the schema, so a source of

optimisation was sought.

The development system’s ClassBuilder evolves class specifications; in particular, the scope of variables
declared by a class and accessible by its instances. Changing the class’s name and global’s scope, such as
class variables and pool variables, only requires minor changes to the state of the class object. Methods too
only affect the method dictionary of the class. Subclasses implicitly inherit these changes and they need not
change themselves. This is not the case for changes to the format of instances. The most common change is
the number of instance variables. This changes the integer fofmat descriptor (that encodes the storage layout

of instances) and has much more extensive consequences.

Subclasses ana instances inheriting instance variables, and any other format information, from a superclass
must explicitly coerce their own format to match changes in the superclass. A change in a class can affect a
number of subclass&s/ and many more instances. The addition of an instance variable, for example, requires
each subclass to change their format. For each instance the class generates a new instance under the new
format, copies across the states of the instance variables and xﬂa.kes the old instance become the new. With
the change in instance variable position within instances, each method of the subclasses requires recompiling.

The classBuilder coordinates all these modifications to the hierarchy.

The schema of the ClassBuilder shows significant inefficiencies when moving an instance variable from a
subclass to a superclass. The schema dictates that the name of an instance variable is unique within the
inherited scope of a class. The subclass must ﬁrst remove an instance variable before adding it to a
superclass. Otherwise adding the same named instance variable to the superclass wiil conflict with the
existing named variable in the subclass. Removing (he name reduces the nunber of inslance variables

causing a reduction in data structure of all instances of the subclass. All methods are also recompiled. Only

123

Object -Oricated Software Representation of Polymer Materials Information in Engincering Design
then can the superclass add the instance variable. This adds the instance variable back to a subclass, by
inheriting from the superclass. All the instances of the subclass restructure again. Now the structure holds no
data for the moved Mble. The values were lost when the instance variable was removed from the subclass

and the structure reduced. All the subclass’s methods are recompiled a second time.

When properties move, the vanables they deﬁne move. Movmg propertlu up and down the inheritance graph
is called promotlon and demotlon (§3.3.2.1). Movmg mstance variables up and down the mhmtance graph is
inefficient and causes a loss of data, Since this is a sngmﬁcant activity when modlfymg the classxﬁca’uon, a

new schema was developed to schedule the changes to the classification.

Qu.,,,.m: Hlerarchy vlew\
confroller
- root: —
changerClassBulder with: changer Mme:.su changerNamed: Fropeny Gy e e S
- § : accept C
a: Changer Class - oop A ot o p o o
Builder © B e
[—— ocuicaad .
is-a: Obj @ A mpitc (i) chjec
‘adupoun: Hiavcrcsy view A sebaymem of seimad objects
— oot
acoapt
o 7 5=a;rg-ln&rch
a: POISE Class E om0 ey whwion
A swexd beswern subwysioms
. Mansges iy Changer End \ & :E"_w.,mm
@P 18-a: POISEClan Changer | | '\h;_ :
[Superclasses /
s

: Polymer class

Subclasses
is-a: POISE class

checker addProperty: property
checker removeProperly: property

checker demoteProperty: property
N Pr b Changer : Superclass
operty Proparty Consistency Lnheri Co:):rsfency
Check Check

lis-a: Object bie: s-a:Object

PropertyinconsistencyNotifier
problemDescriptor: stiing
options: amayOfStrings.
ubsystem: MvC

Request: Open nofifiers

Figure 15: Schema- hierarchy editor

124

Object -Oriented Software Representation of Polymer Materials Inf jon in Engineering Design

The HierarchyEditor is POISE’s user interface for evolving the polymer classification (§3.3.3). The interface
is the user’s view into a mechanism that radically changes Smalltalk’s traditional class evolution. The new

mechanism boasts the following features:

e Batching changes by class to minimise processing.

e Abstracting inheritance by property rather than by method.

e Prevent loss of data through instance restructuring

e Improving re-compilation efficiency by extending method representation.

Figure 15 is a schematic representation of the mechanism supporting the first two points, batching and
inheritance checking by property. The ChangerClassBuilder does the actual evolution of the polymer

classification. Improving the re-compilation is addressed later, in §4.4.5.

4.4.1 Assigning Properties to CJasses
When a new interface on the hierarchy opens it initiates a new POISEHierarchyChanger (PHC), the batch

manager of the session’s changes. The PHC creates and records ClassChangers (CC) upon request. CCs record
the changes for each class. The cCs form a hierarchy transposed from the existing class hierarchy. A
ChangerEnd object terminates the scope of the PHC at the root of the hierarchy, thereby limiting the range of
class modifications to some domain in the Smalltalk hierarchy. For the polymer hierarchy, this limit is set to

the POISE class, the superclass of Polymer.

"The Instance varrible 'cument' Is a ClassChanger cumently being checked during recursive
behaviours. The instance varrible ‘oflenders’ are ClassChangers that conflict with the curent
process. The Instance vanible ‘superseders’ are ClassChangers that have redundent states due to
the cument process. The instance variable ‘originator’ is the changer the process wil act on.”

consistencyCheckForAdding

"current Is a subchanger of an originator who is adding a property. Has cument removed the propert:
explicitly this session, causing a direct conflict?*
{current hasRemoved: property) ifTrue: {[offenders add:
current}.
*Does current define the property that It will now inherit”

(current properties includes: property) ifTrue:[superseders
add: current]. .

"Recurshwely check subclasses’
current subChangersDo:
[:ch
current := ch.

self consistencyCheckForAdding]
conslstencyCheckForRemoving

*curmrent is a subchanger of an criginator who Is removing a property.
Has cumment added the property explicitly this sesslon, and now should define the property”
(current hasAdded: property) ifTrue: [offenders add:

current].
*Recurshely check subclasses”
current subChangersDo:
[:ch |
current := ch.

colf concictancyCheckForRemoving]

Figure 16: Code- ClassChanger consistency checking for adding and removing
Modifications to the schema are directed to the individual cCs concerned. The view requests the CC by class

name in the message changerNamed:. A CC can add, remove, demote or promote a property. A CC can change

its superclass or its name. New CCs are created for non-existent classes that will be added to the hierarchy.

125

Object -Oriented Software Representatian of Polymer Materials Informetion in Engineesing Design
Each request changing the schema initiates a éon‘sistency check. A ClassConsistencyChecker (CCC) is set
with the appropriate check flag: add, remove, promote, or demote. The descriptions of these consistency
checks are given in §3.3.2.1. Any inconsistency causes a Notifier to open giving the user appropriate
options or else for aborting the request for change. After completing the conmsistency check, the checker
updates the cC. The code implementing the checks in this schema is given in Figure 16 and Figure 17. Note

these methods recursively call themselves as the check goes through the hierarchy of ClassChangers.

demoteCheck

*The originator is any one of the subclasses of a superclass that defines property. The demote will
remove the property fom that superclass and add the property to it's subclasses such that the
originator defines the property. Hence all superclasses of the originator will not inherit or define the
property.”
Current starts as the Immediate superclass (changer) of the originator
* Any superclass that has had the property explicitly added Is now having the property removed -
hence a conflict. Add contflicts to offenders®
(current hasAdded: property) ifTrue: (offenders add: current].
*Collect up the superclasses of the originator. Thelr subclasses (not In the line of Inheritance of the
originator) will require property to be added"
suparscderc add: current.
*Continue recursion until the superclass that defines the property is found"
(current properties includes: property)
ifFalse:
{current := current superChanger.
self demoteCheck]

- promoteCheck

*Cumrent I3 a class that will have a property added. (Often It is initiallt the same as originator when
adding). Check to see If cument can inherit the property from It's superclass (superchanger). To dc
this, all subclasses of superchanger must also define property.
Curmrent will be left at the highest superchanger which will accept property*
| superChanger subChangers |
superChanger := current superChanger.
(superChanger hasRemoved: property) ifTrue:
Property has been explicitly removed. Do not promote®
[~self].
"Check the subclasses of thia superclass, excluding current which is having the property added.
Check they all define property. If a single one doean't, promotion Is not possible*
subChangers := OrderedCollection new: 10.
superChanger subChangersDo:
éﬁc2= current ifFalse:

[(ch properties includes: property)
ifFalse: [“self].

gsubChangers add: ch])
]

"Promotion possible. All these subclasses will need to have the property removed so they can
inherit it from superchanger. Add them to superseders. *
gsuperseders addAll: subChangers.
*Now recursively check to see if the property can be promoted to the next superclass®
current := superChanger.
self promoteChecE

Figure 17: Code- ClassChanger consistency checking for demoting and promoting
The primary consistency checks are concerned with inheritance conflicts. The checkers are also able to

interact with Property objects to ensure that mutually exclusive properties are not both accessible to the

same class. Each Property determines the existence of other Properties it depends on.

When a class changes its superclass, it affects the inheritance of the class and its subclasses. The properties
subsumed from the new superclass are checked against the properties defined by the class and each subclass.

Coordinating these checks is a SuperclassConsistencyChecker (scC). Essentially this object iterates

126

Object -Oriented Software Representation of Polymer Materialy Information in Engineering Design
through all the properties of the class being moved. If the property is not inherited from the new superclass A
then it is defined on the class being moved. The moved class will only increase its property base. The sccC
then checks each subclass to see if the newly inherited properties conflict with any subclass property

definitions.

SCC utilises a number of CCcCs to ensure the new superclass does not conflict with the class’s propertics.
Unlike user driven property changes, Notifiers are not raised. Instead, default actions are taken, such as
removing properties that are now inherited and adding properties that were previously inherited. Such
changes are visible in the hierarchy view before any permanent change is made to POISE, allowing the user to

make adjustments.

The sccC also checks for an invalid inheritance structure. The new superclass must not be the moved class or
any of ils subclasses, thereby creating an inheritance loop. At all times the changes arc consistent with the

inheritance rules and any other rules imposed by the properties.

4.4.2 Building Classes

The benefit of a separate model for representing the changes to the hierarchy is that POISE can control the
order the changes occur in the classiﬁcaﬁon hierarchy. When the user decides to accept the changes, POISE
always begins modifying the most general class first, which are the classes at the top of the hierarchy.
Another benefit is that there is no need for consistency checks as they have already been made, unlike the

ClassBuilder of the Smalltalk development system. Instead a new ChangerClassBuilder, (CCB) does the

changes. The individual ccs specify the new classes to the CCB.

Each cc specifies a new class object. This speciﬁcation includes the superclass and an aggregation of
property objects. The property objects specify the behaviours and state variables of the new class. The ccB

collects the instance variables and defines the new class, but installing the methods is the responsibility of the

property objects.

POISE allows behaviours specific to Polymer classes that are not specific to a property. These behaviours use
standard Smalltalk methods. Any code not derived from a property object, but is specific to the class, requires
copying over from the old class’s method dictionary. The builder does this after installing the properties,

allowing the class specific behaviour to over-ride a property specific behaviour.

The CCB starts at the root of the hierarchy. Building superclasses occurs before building subclasses and every

new class built is initially absent of subclasses. After building each class, building starts on its subclasses.

127

Object -Oriented Software chr:unmnn of Polymer Materials Information in Engineering Design
The subclasses inherit the changes of the newly buiilt superclass. A ‘subclass will not expect changes in the
superél'ass after building the subclass, thereby ending repeating evolution of subclass structure and methods.
Also, there are no subclasses when building a (super) class. The builder does not recursively update any

subclasses.

Once the new class objects are built, the builder coerces the instances (if any in primary memory, §4.5) of the
old classes across to new instances of the new classes. Since this is only done once at the end of all schema
changes, no data is lost. Data associated with an instance variable in the old class moves to the same named

variable in the new class, regardless of the variables position in the instances data structure.

After accepting the hierarchy and the POISE class hierarchy has been rebuilt, the new classes substitute the old
classes, then the old classes along with the old instances, the PHC and all its CCs, are all garbage collected (see

§4.5.8).

The only part of the story left to tell is how property objects describe the metl.;tods. of the class. Each cc,
which collects the properties, passes th§ new class to each property. It is up to the properties to install their
behaviours on the new class. |

4.4.3 Properties and Partial Template Objects o

A material class is a template for the behaviour of grades. This template comprises of an aggregation of
properties. Each property contributes a part io the templaic. Objeuts with the ability to partially describe

classes, and thereby the instances, are abstractly known as Partial Template Objects’’, (PTO).

The Hierarchical Schema interface collects the properties as the user directs for each class. With PTOs, the
user defines the material classes template, and thereby the behaviour of grades. The process of composing the

material class involves the information in the PTO, and some coercion of the instances.

Smalltalk’s development environment provides the programmer with schema evolution for dynamically
adding instance variables and methods to classes. At its simplest, the PTO is a similar description of change,
where the declaration of instance variables and methods using text, as entered by the programmer, generates

a macro like function.

Each property is an independent collection of behaviours. Instance variables in a property description support
the implementation of the property’s methods. Usually the variable holds the specific engineering value for
each grade and methods provide the interpretation. The instance variables are few and specific to the

property. The description of the methods are in turn limited to accessing these instance variables, some global

128

Object -Oriented Software Represeatation of Polymer N ials Infi ton in Engineering Design

variables and accessing other states of the receiver through messages to self. Global variables always bind to
the same objects. Self always binds to the receiver. Instance variables though bind to locations within the
structure of the receiver. This structure is different for different classes of object. Since the PTO’s protocols

are not defined for any particular class, the instance variables complicate the compilation of PTO protocols.

For each PTO the scope of variables the methods may access, the instance variables, globals, arguments and
temporaries etc, are consistent regardless of the class of receiver. Only the physical binding of instance
variables is unknown. Initially the programmer represents each protocol as text (the source) which is then
compiled. The PTO could keep the text representation though any errors in the text would not become known
until the text was compiled for a particular class. Instead, POISE extends the compiler to cater for PTO

protocols. The compiler optimises the protocols, converting text to pseudo code, see §4.4.5.

If the protocols are correct, they are only correct for classes that support the instance variables required by
the property. Before a Polymer class adds the protocols of a PTO, the class adds the instance variables. Then

the PTOs can ‘install’ the protocols on the class and each instance in memory.

With the help of the ChangerClassBuilder, part of the hierarchy schema, PTOs also simplify the addition of
instance variables. They remove the responsibility from the ClassBuilder and the rest of the hierarchy
system from dealing with the complexities of the development system’s compiler, scoping rules and naming

conventions.

4.4.4 A Mechanism for Partial Template Objects
In POISE any instance of the class PartialTemplate or its subclasses, such as Property, is a PTO. The

abstract description of PartialTemplate is:

Object subclass: PartialTemplate
instance variable names
temp lateName
classMethods instanceMethods classScope instanceScope
prerequisites preclusions classesInstalledOn
instance method for installing
installOn: aClass

PartialTemplate supplies the following abstract specification of a PTO:

Ability to insert methods. — A PTO associates a dictionary of instanceMethods and a dictionary of
classMethods. These methods are “partially compiled” (see §4.4.5) for extra portability and efficient

compilation into any class installing the PTO. The instanceMethods contribute behaviours of instances, while

classMethods contribute behaviours to the Polymer class itself.

129

Object -Oriented Software Representation of Polymer Materiah Information in Engineering Design
Protected scope of variable reference, local to the set of inserted methods. — instanceScope and
classScope express variable definitions accessible to the instance methods and class methods (respectively).
A class-installing the PTO adds these variables as necessary. The scopes comprise (i) instance variables
visible to all methods affecting the instances of the class, (ii) community-pool variables visible to all
instanceMethods and classMethods of ti1e PTO, (iii) Smalltalk global variahles visible to all Smalltalk
methods generally. The community-pool variables are a local enclosing scope of the PrO behavioural
“community”. These local variable definitions are not otherwise available to other methods of the affected

class.

A record of all classes that the current PTO has been installed — classesInstalledOn stores this set of

classes as part of a mechanism ensuring changes propagate to them when modifying the PTO.

Any given class template may install more than one PTO. In order to control multiple installation the

specification of PartialTemplate also incorporates the following:

Prerequisites. — These are other PTOs which a class must install (or inherit) before installing the current PTO.
This attempts to provide for control over inter-module dependencies that arise if methods of the current PTO

’

call methods in other PTOs.
Preclusions. — These are other PTOs with conflicting behavioural definitions.

This specification of PTOs supports a cohesive description of the partial contents of Polymer classes. They
attempt to provide the classes they affect with a well-composed character, m the sense that each set of
installed properties observes a scoping regime common to members of the set but otherwise private.

4.4.5 Generating a Behaviour of a PartialTemplateObject

Within POISE, the Property object implements the PTO as part of its role. The user, using a PropertyEditor
browser, creates a new property. Then a second specialised PropertyMethodBrowser browser adds
behaviours to the property. See Figure 45 for examples of the browser. Each property behaviour generates a
PartiallyCompiledMethod (PcM). In Figure 18 the schema of the process generating the PCM from source

code is the subject of this section.

The schema is a modification of the process that compiles standard Smalltalk code. The schema shows both
compilations, with a different method activating each. A dashed line demarcates the two methods in the

initial context.

130

1€1

Object -Orientnd Software Represeatation of Polymer Matrriah Information in Engineering Design

The behaviour specialiéing the PéM«compﬂaﬁm is mamly in the class PartCodeStream, a subclass of the
CodeStream that normal class-bound compiled methods use. The PartCodeStream class capi.:ures the extra

information that the PCM requires from the source.

Compiling code requires the text source code and a NameScope. The Name;Scope- contains the mapping
Between variable names and their storage loc;ation. The NameScope is a nw'ted structure, an extendible
ordering éf the variables descripﬁm The nesting allows the addition of temporary variables while
generating code. This ordering has little effect on the compilation other than when optimising some structures
in code that do not require access to parts of the NameScope . In most cases, only the overall variable visibility

is of any concern.

NameScope contam two basic types of variable deﬁnitiops, which are StaticVariables and
InstancevVariables. The StaticV;_riables are typically globalsi Access to globals is the same for all
methoc_ls, so will not be any diﬂ"erenf for a classléss PCM. InstancéVariables are class dependent.
Instan;:éVariables define the name and the index within instances of the class. Since a cla.ss is not known,
the pcM compiles for a PTO, and the- PTO provides the naI.nw and indexes of valid instance variables. As long
as these variables are unique and the indexes are unique, the standard cpmpiler':"will accept them. Later the

pCcM will explicitly modify the indexes to complete the compilation for given classes.

A compiler is a u-;nshtor of ‘hjgh-leyel’ source code to ‘low-level’ code. It typically consists of a lexical
analyser that converts the source text into tokens, a Parser that converts the sequence of tokens into a syntax
tree, an attribute collector and distributor that apply the contextual constraints of the source language, and a
code generator and ophmser that ;x'anslatm'the syntax tree into the low level code’. In the schema,
Figure 18, these modules of behaviour can be seen as follows. The lexical analyser is the general behaviour
of the Parser’s superclass, LexicalScanner. The specific subclass Parser dwcﬁbm the syntax of

Smalltalk’s one-look-ahead grammar language. Subclassing off the scanner makes the schema amcnable to

other language syntax.’

A sentence in the Smalltalk language éomposcs of a sequence of tokens called terminals. The Parser applies
rules for grouping terminals with other terminals and other groups of terminals. These rules are called

production rules.

Production rules generaté a ‘syntax tree’, which is a hierarchy with the terminals as leaves and the groups as

nodes. The simplest representation of a syntax tree is a hierarchy of terminal and non-terminal symbols for

132

'S

Object -Oriented Software Representation of Polymer Materials Infs ion in Engineering Design

the nodes. Each node is marked by a ‘non-terminal’ name that identifies the production rule used to produce
the node. These names convey the semantics of the sentence. Later, they instruct the compiler how to

construct the code in the output language.

The compiler applies denotation semantics, which means each component of a sentence corresponds to a
component of the language’s semantics. The syntax tree is a decomposition of the sentence into semantic
components. The production rules identify each node and their corresponding semantic. The language’s
semantics are rules for constructing low-level code from the components of nodes. Each node combines
simpler nodes and terminals. At each node, code combines until the compiler constructs code for the whole

sentence.

With the importance of the nodes evident, it becomes clear why compilers often create elaborate syntax trees.
Each production rule in the Parser maps to a type of node. In Smalitalk, rathcr than usc a symbol, the Parser
creates a message corresponding to the production rule, and sends thé message to the interface of a
NodeBuilder object. Messages to the NodeBuilder instantiates Node objects and generates the syntax tree. As
the Parser scans the source code, each application of a production rule causes a cascade of message sends to
the NodeBuilder, which builds the tree. After scanning and all messages to the NodeBuilder are complete,
the Parser is left with one distingm'shed node, or top-node, which is the root of the syntax tree. In Figure 18,
the syntax tree is the hierarchy rooted in ProgramNode, the top-node of the h.ia‘archg'. More specifically, this

hierarchy composes of instances from subclasses of Node, each class distinguishing different types of node.

The NodeBuilder provides an interface between the production rules of the language and the Node objects
used in the syntax tree. The Parser uses none of the node’s instance behaviours. The NodeBuilder only uses
instantiation behaviour of the Node classes. This leaves the behaviour of Node, and its subclasses, a clean
representation for the language semantics. Therefore, although only syntactic information is used to generate

the syntax tree, it is already a semantically powerful structure.

One abstract Node subclass represents variables. This node is specialised for temporary variables, arguments,
instance variables and globals. The production rules do not provide the information to differentiate between
them. This information comes from the variable scope, which the class usually provides. Instead, the PTO

provides the initial variable declarations.

The rarser rewurns the top node of the syntax tree to the underlying context, which then initiates checks on

the contextual validity of the tree. Smalltalk is not a context-free grammar. The choice of production rules at

133

Object -Oriented Softwaro Rep jon of Polymer Matesials Information in Engineering Design

a point in a program depends on rules pi'eviousl)} applied, eg a temporary variable must be declared before it
can be assigned a value. The requirement that a variable is declared forms part of the contextual description
at some point in the program. This ‘program-context’ description is part of theé behaviour of the CodeStream
object. Since the formulation of the program-context is an important part of code generation, the CodeStream
also generates code while the contextual checks are being performed by the syntax tree. So, although the
checks are initiated by underlying compiling context by passing a new CodeStream with the NameScope,
‘ messages pass back and forth between each node and the code stream, some for checking, some for code

generation. Py

Code generation is a combination of the following activities:

¢ Binary instructions are sequentially added to a byte array.
e Collect literals (objects accessible by any code: integers, characters, selectors, references to global
variables,) the code uses.

e For each inner-block the code uses the compiler generates a new CodeStream.
The inner-block is a unit of code within a protocol. An example is in Figure 14, (pp 109), which contains a
handle-block and a do-block inside the main protocol. A separate CodeStream compiles each block. Later the

code for these blocks will join the literals as attributes of the main protocol object.

In addition to these activities of the CodeStream, the Pa;tCodeStream collects every reference made in the
byte array to an instance variable. Two kinds of instructions in the code refer to instance variables, and they
are either an accessor or an updator. The NameScope supplies the index of the instance variable, which
follows the instfuction code. The PartCodeStréam collects the location in the code of this index (the ‘location

in code’ in Figure 19) and associates it with the name of the instance variable.

After the checks and the initial pass of code generation, the final step usually makes the method, a Smalitalk
protocol. The CodeStream constructs the components of a method. It does not present these components in a
way the virtual machine can execute. Executing code is the independent intéltion of another object, the
CompiledCode. Each CodeStream makes a CompiledCode object. The CompiledCode presents the components
simply and uniformly within its own instance variables for the virtual machine to access. For the PTO,
PartCodeStream constructs a PartiallyCompiledCode (PcC) (Figure 19) that is only partially of the same
type and do not execute. This object is not a subclass of CompiledCode but it can generate a kind of

CompiledCode when the PTO transfers protocols to a class.

134

Object -Oriented Software Representation of Polymer Materiaks Inft jon in Engineering Design

A pcC defines a subset of CompiledCode behaviour so it can masquerade as a method in code browsers. To
this behaviour, the PCC adds its own behaviour for re-compiling the code for a given class. This behaviour
creates o mapping between instance variable names of the rCG and the indexcs of instance variables of the
same names in the class. A simple recursive Class behaviour collects the ordered lists of instance variable
names defined by the class and its superclasses. The position of the names in this list provides the correct

ordinal number of the slot in the instances.

Location in code

"k: Property - la: Parfially oo la:
o % Complled Codg—s—
Partial TemplateObject 1g-a: Object

t
LTINS
———
| N,
Source

N
a: Mutable
Compiled
Method g
1s-a: CompiledMethod ig-a: Array g
a: - Compiled 3
Method An Instaonce 3
: i
is-a: Compiled Code Class pointer g
AV Inst Var 1 %
" Superclasses : g g’ ?nstVarZ Locationd 5
[%3 st Varn g
a Class G
] Recursive
Subclasses Instance collection
is-a: Variable
name
Figure 19: Schema- PTO linking

Like CompiledCode, the PCC can contain inner-blocks of code with the litq’als, but they too are PCC, not
CompiledCode. Each separate PCC keeps a mapping of instance variable in their local code. The pCC is
therefore a hierarchical structure. With the literals of a root PCC (an attribute not shown in Figure 19) there
are PCCs as inner-blocks, which in turn can hold other PcCs with their literals. When a PTO installs PCC onto a
clags, it sends a re-compile message with the clasg ag an argument to each root PCC. This creates the mapping
for the class. A copy of the local code updates for the new indexes. The collection of literals in each PCC are
copied (the literals themselves are not copied). The re-compile message then passes to each PcC found in the

new collection of literals, which recursively pass on to their inner-blocks down the hierarchy. With the copy

135

Object -Orieated Software Representation of Polymer Matecials Information in Enginesring Design
of literals and modified copy of code, each inner PCC creates and returns a new CompiledBlock, the subclass
of CompiledCode representing inner-blocks of code. The exception is the first outer PCC, the root pcC; which

geﬁerates a MutableCompiledMethod (MCM) object, a kind of CompiledMethod, and not a compiled block. *

The pcC could make a standard CompiledMethod, which is the normal kind of CompiledCode that classes
manage and code browsers manipulate. The MutableCompiledMethod adds a more efficient re-compilation
behaviour. When instance variables change, or the class moves to a new superclass, all the methods of the
class re-compile. A standard method re-compiles by sourcing the original text (from secondary storage) and
going through parsing, syntax tree construction, and compili'ng. The MutableCompiledMethod, on the other
hand, keeps a reference of the PCC, which can re-compile the method for any mapping of instance variables
by changing instance variable indexes in the byte stream. When the MCM receives the message to re-compile
from a class, it passes the message to the PCC, which returns a new MCM. The class then replaces the old MCM

with the new one.

4.5 Data Storage
Data storage is a broad research topic. The issue at hand though is object storage for POISE. The requirements

in §3.8.5 summarise the issues. Attempts to find a commercial system satisfying these requirements failed.
This is due to two factors: first, Smalltalk is a parﬁculaﬂy expressive object-oriented language, supporting
large and complex object relations. A database supporting applications in Smalltalk requires an equally
expressive data description language. Secondly, niany OODBMS compete with RDBMS. Consequently, their
design emphasis is on data retrieval not data modelling, so the expressiveness of the data description
languages is secondary to the access speed associated with the data manipulation language. The development
of POISE necessitated research into the field of database design, though v;lith the very specific goals specified

in §3.8.5.

The object storage for POISE is an issue of persistence for portable objects in the Smalltalk environment.
Research into persistence of Smalltalk Objects is a broad topic in itself, with contemporary work often
involving implementing a new Smalltalk kernel®. These persistent objects will not port between different

Smalltalk sessions and a choice of Smalltalk kernel had already been made.,

An alternative approach implements a storage mechanism within Smalltalk. Smalltalk code manipulates an
external file structure that is pdrtable.between sessions. Since the mechanism is in Smalltalk code, the

mechanisms benefits from Smalltalk as the data description language. Any data management POISE needs can

136

.

Object -Oriented Software Representation of Polymer Materials Infi ion in Engineering Design

be added later. The search was for a storage mechanism that satisfies most of POISE’s data storage

requirements.

Within the development environment of ObjectWorks 4..0, there is an Object protocol for representing
instances on a byte stream. This protocol provides a fundamental record format for general representation of
objects similar to the structure mentioned in §4.1.1. It doea.; not provide any managemeni of the
representation. Applications storing objects in records even need to create the medium for the record (the
disk file) and remember where the record is in that medium. In contrast, the commercial class library 1ISAM
provides for the management of object storage. ISAM is one of many task specific class libraries
commercially available for enhancing the productivity of Smalltalk development.

4.5.1 Attempt 1: ISAM

Two different commercial class libraries, or “Toolboxes’, supporting storage mechanisms were examined.
The first commercial mechanism was the ISAM—Indexed Sequential Access Mechanism—Toolbox®’. The
toolbox focuses on management of objects stored in records on a file. The classes in the toolbox define a
technique for creating and accessing records programmable from Smalltalk. The main class defines a set of
access protocols for collecting and iterating through records in sequence and by index on attribute, so ISAM is
both indexed and sequential access. For example, grades could be sequenced by polymer family keeping

similar grades together and indexed by trade name for direct access.

In order to store and retrieve an object in a file, stored as a record, ISAM requires them to abide by a type
specification. All subclasses ISAMrecord class inherit this type specification. Typically, only objects
inheriting from ISAMrecord are stored. The type specification includes a specification for the structure of
each record as a template aggregating items. An item is an attribute that is an instance inheriting from the
ISAMitem class. Subclasses of ISAMitem represent basic Smalltalk objects, such as text and numbers, in

binary form.

The 1SAM representation is like a .hierarchical data model. The class hierarchy of ISAMrecords form a
hierarchy of structural description of different records. The CODASYL network ‘model (§2.3.1) extends the
hierarchical data model with many to one relations represented by pointers between records. Likewise, the
first cxperiment in POISE extends the expressiveness of ISAMrccords with a pointer-item for representing

complex structures.

ISAM uses Smalltalk as a data description language but each description is explicit. It stores only objects

inheriting from ISAMrecord and as a type of ISAM object they explicitly define their behaviour of logical

137

Object -Oriented Sofware Representation of Polymer Materials Information in Engineering Design
representation, ie the attributes representing the state of the object. Each subclass of ISAMrecord transforms
instances into a set of attributes and visa versa. The .inheritance between subclasses forms the hierarchical
relationship between records and is the only relation available to 1SAM. The addition of the pointer-item
allowed other orthogonal relations, but they too must relate to an ISAMrecord. Although ISAM uses
Smalltalk as a data definition language, the specification of hehaviour or protocols of the ISAMrecord define
the syntax and limit the semantics of records. As will be seen, representing the full semantics of Smalltalk

addresses many issues beyond simply the network of relations between objects.

ISAM semantics are those of fixed aggregations of attributes and they are less expressive than the binary
relational file discussed. 1SAM is incapable of representing arbitrarily complex data structures on a file, let
alone supporting change to those structures. Storing the representations in POISE needs complex data

representation and transparent access §3.8, so the 1SAM toolbox was extended.

In principle, by extending 1SAM to include pointer-items, a general mechanism is possible for encoding on
disk specialised subclass of ISAMrecords, provided each instance variable in the subclass was a type of
ISAMrecord or ISAMitem, The network of inter-related records on dxsk directly model the inter-relationships
of Smalltalk objects in memory. These pointers though introduce a number of complexities, which will be

addressed later. ‘Circular references’ are a particular problem if objects are not identified as already stored. |

ISAM does not define an independent portable data store. The data model, the subclass defining the structure
of the records and the semantics of the objects into which the records transform, is a property of the
application, not the data store. Specific applications specify items and record types explicitly, but these
specifications are part of the application, and not integrated into the data store. Data stores can port only

between applications that share common class definitions.

ISAM provides both an ordered access and a random access interface to stored objects. The interface is a
characteristic of the data manipulation 1sam supports. Before an applicalion manipulates an object on the data
store, it must access the object via the interface. This distinguishes the manipulation of objects on ISAM from
the manipulation of objects in memory. The access requires the application designer to identify the persistent
objects prima-facie, to cater for the interface protocols. A stored object can receive a message, only after
ISAM retrieves the object. The task of telling ISAM to retrieve the object falls on all classes of object, which
send messages to ISAMrecords. After processing the message, the senders must also tell ISAM to save the

object.

138

s

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

“Transparent access’ is the process of data manipulation of stored objects that does not require explicit
interaction with the storage management. Accessing ISAM is not transparent. An initial attempt at
transparency uses an Enhancer as an object proxy responsible for communicating with the ISAM storage

management.

4.5.2 The Role of Database Proxies

Just as a proxy vote is handled by a third party as though the voters had voted themselves, the database proxy
receives messages in place of an object stored on the database. As a subclass of Enhancer, the proxy is a
small primary-memory resident object, and all messages evoke its doesNotUnderstand: protocol, which
creates a primary memory representation of the persistent object and passes it the original message. The

proxy communicates with the object storage manager in order to achieve this task.

Objects can only receive messages from the other memory-resident object that reference them, ie their
referencers. Therefore, proxies exist only for stored objects with memory resident referencers. In
consequence:
e There can be many more objects on the database referenced by other objects on the database for
which there are no proxies.

e Proxies consume less space than the database objects they represent and so do not compromise the

purpose of the database to achieve primary-memory economy.
Evoking only the one behaviour, regardless of the message is a trait of the Enhancer. The employment of
Enhancer as a proxy—usually one per stored object with a memory resident referencer—is transparent to the
referencer, and hence the application in primary memory, which sends the messages. Stored objects appear to

receive messages like any other object.

Upon receiving a message, the proxy requests from the database management system, a memory resident
representation of the stored object. The proxy then passes the message on to this object. Upon completion of
the message, the proxy requests the database to store the current state of the object. Both the importing and

exporting of the object to the object manager occurs transparently with respect to the message sender.

The structure of an object in primary memory is as an aggregation of object relations, see Figure 11. In
accord with other network models, an object on secondary memory is a record of pointers to other records.
When reading an object into memory, each of the objects in the aggregation previously without a memory
resident referencer now have one; the object aggregating those relations is a memory resident referencer. By

the above rule, a proxy represents each relation in primary memory. An inter-record pointer on the data store

139

Object -Oriented Software Representation on;olﬁumu Information in Engineering Design

represents an Enhancer as a future ;;roxy. This finding simplified the problem of object retrieval, and led to a
re-write of Tigris™®® and Boss™®’, which were parts of the second data-store examined.

4.5.3 Attempt 2 Tigris and BOSS

ISAM still had the problem of requiring an explicit declaration the record structure for each type of object it
stored. Tigris stores objects without need for an explicit declaration of object structure. Tigris is an indexed
access mechanism with general object storage capabilities, and in conjunction with transparency through
proxiés, initially seemed to satisfy POISE’s storage requirements. Unfortunately, problems were found with

the identity of objects retrieved.

The strength of the Tigris interface is its similarity to a Smalltalk Dictionary. Natural language dictionaries
sorts words by character order for consistent access and associates the words with their meaning. A Smalltalk
Dictionary is a collection of object pairs, one sorted for access with the other object associated for retrieval.

Tigris stares each object against a unique name used for retrieving the stored object.

Transparent access to Tigris uses the same mechanism, the Enhancer as a database proxy, which extended
‘1SAM. The Enhancer keeps the key for looking up the object in the Tigris database. When the Enhancer
receives a message it sends the key to the database to retrieve the object. The message then passes to the

object returned.

Unfortunately, the Tigris behaviour was found to differ from the behaviour of a true Smalltalk Dictionary.
The bbject a Tigris collection retrieves from may or may not be a copy. A copy is acceptable if the original
object no longer exists within the Smalltalk environment (ie it has been garbage collected, see §4.5.8). If the
original object exists, it is possible to test for the identity difference between the original and the copy. A true

dictionary stores the original and retrieves the original, so no difference is detectable.

Tigris maintains a small cache for efficiency. If an object is in the cache, a subsequent request for the same
object produce the same object. So, in some cases, a copy is not generated depending on the number of

different objects requested from Tigris and the size of the cache.

Copies have an adverse effect on many to one relations, converting relations to many-to-many-copies. If two
different referencers both request an object from Tigris they may or may not reference different objects,
depending on the cache. If they reference the same object, the behaviour of one referencer can influence the

behaviour of the other. Otherwise, their behaviours are mutually exclusive. Consequently, behaviours differ

140

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
depending on the activity in the Tigris cache! In addition, writing one copy will over-write the other, if using

the same key name to the dictionary, resulting in possible information loss.

Two parts compose the Tigris toolbox. An outer shell provides the dictionary interface and object cache. The

inner part is a version of a public domain toolbox called Boss®, Binary Object Storage System.

BOSS receives an object from the interface. As mentioned, each object can be viewed as a record of the other
objects it references. From any given ‘root’ object, BOSS successfully traces the network of object relations,
identifies circularity, and generates a linear sequence of records. A byte stream represents this seqﬁcnce of

records.

BOSS stores whole object compositions and reads whole object compositions. Within each composition BOSS
recognises and assigns to each object a unique identifier. These identify the relations between the objects on

the stream. BOSS handles multiple references within a composition correctly.

"Once a record of an object composition is on the stream, Tigris orders the BOSS to forget all assignments of
object identifiers. If BOSS remembers these assignments, Smalltalk does not garbage collect the original
object; and release primary memory. Consequently, Tigris does not maintain relationships between different
compositions or between compositions and primary memory except to the root object, which Tigris explicitly ‘

associates in its dictionary interface.

Tigris stores each object as an independent compdsitional unit. If the unit is not independent, if objects
elsewhere refer to parts of the composition, then Tigris will not maintain the relationship. The original part
will remain in memory and when BOSS reads the composition back into-memory, it will return an identifiable
copy. If the references elsewhere are also saved to Tigris, then BOSS will record a second copy of the

common part.

The proxy, providing the transparent access to Tigris, is also a potential solution for maintaining object
identity between different object compositions within BOSS. The proxy already maintains object identity for
the compositions by keeping a single reference between a proxy for each composition and Tigris. The proxy
is the only object that interacts with Tign's, 80 it does not matter if Tigris returns the object from the cache or
from disk, only one copy is ever in memory. The Enhancer logic ensures a second referencer cannot ever
hold onto an ‘old’ copy. By applying the same principle to a finer granularity, from object composition to

individual objects, a similar solution is found for BOSS.

141

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
4.5.4 The Use of Praxies to Maintain Object Identity: an Application View
Multiple objects referencing one object is a many-to-one relationship. It is quite different to multiple copies
of one-to-one relationships. If each referencer held a copy of the object, and one copy changes, the other
referencers would continue to hold obsolete versions. Multiple references are generally dependent on the

changing state of the common object.

However, using Enhancers as database proxies can partially solve the problem. When saving an object with
multiple references, after copying the object to -a record, replace it with a new Enhancer with the appropriate
key. Replacing an existing object with a new object without referencers causes Smalltalk to garbage collect
the original object and therefore preventing a second memory copy from existing. All the saved object’s
referencers now access the same Enhancer. If any of them are then subsequently stored, BOss will discover .
the Enhancer as part of their composition and can identify the part already recorded on file. The Enhancer
maintains a unique 1:1 relationship to the stored object. This relationship holds regardless of the stored
object’s memory state. When reading a composition, Tigris remembers the Enhancers it generates. Before
generating any new Enhancer, Tigris checks the Enhancers already in memory. If a second composition
attempts to read the same Enhancers a second time, Tigris substitutes the existing Enhancers in the second

composition, thus preventing copies of the Enhancer to the same object.

By securing uniqueness of the proxy, if an object changes state, all references both on and off the database,
can locate the new states through the key kept by the proxy. The behaviour of the proxy reflects the change
and all the referencers will reflect the change in their own behaviour.

4.5.5 Attempt 3: The WorkBase

Although the majority of objects are uniquely owned (ie in one-to-many relations), any object is potentially a
future member of a many to one relation. At the point of storage there is no guarantee an object will not
multiply share in the future. A provision for a general object store must preserve the identity of all objects
stored. Changing the BOSS system to maintain identity of every object throughout the data store requires a
major change to the Tigris-Boss model. Instead, aspects of the BOSS system were used in a new custom-built
database called the WorkBase. The WorkBase takes advantage of the proxy concept, introduced to give the
store transparency, for maintaining object identity. Whereas POISE applies the proxy concept to all databases,

the management of proxies for object identity is particular feature of the WorkBase.

142

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
The object—orientation and management of database proxies is an original feature the WorkBase contributes to
object storage systems. From an applications viewpoint of data base storage, the key advantages of the
Enhancer technique is as a proxy for stored objects:

e The proxy separates all data management activities from the persistent objects. The management of
the object on secondary storage is not a property of the object. The objects class does not define the
behaviour, and objects of the same class may either be persistent or not.

e Database access is transparent to the applications using the object. Code manipulating objects does
not specify the storage conditions of the objects it is manipulating. Changing the management of an
object from primary memory management to a proxy that accesses secondary storage is transparent

to the code manipulating the object. Smalltalk code appears to handle native objects in the same way,
irrespective of whether they are memory-resident or a proxy retrieves them secretly.

The data management activities—the data-retrieval strategy, object caching, object updating, housekeeping'
of the store, etc.—are functions of a database’s storage model. The proxy aids an application’s interaction
with the database but does not improve the storage model yet. The WorkBase storage model uses the proxies
in the design of its storage model to solve many difficult problems that object data structures introduce. It

helps in maintaining object identity, in handling circularity and in caching.

In the storaée model of Smalltalk, §4.1.1, objects record relationships by reference with other composing
objects. The record is physically an ordering of objectIDs. The storage model of a WorkBase is the same. The
objectID in Figure 11, pp. 98, is a different number but the WorkBase uses its objectID in the same way.
Records representing an object are a list of objectIDs. The WorkBase finds the starage location of any object
from the objectID. Proxies reference persistent objects by remembering the objectID.

4.5.6 The Use of Proxies to Maintain Object Identity: a Database View

Multiple referencers can exist outside the database, and these hold a common proxy. Multiple referencers can
also exist within the database. If the correct data model to be built when reading a referencer, it must hold the
same proxy as all other referencers in primary memory, whether that proxy is representing an object in
memory or not. That same proxy will guarantee the behaviour, which it replaces, is common to all sharing

referencers.

Consider two database objects that both reference a common third object. When the database reads the first
object into primary memory it creates a proxy that references the common object. When the database reads
the second object, it cannot create a second proxy to the common object, since multiple proxies will create
copies of the common object. How does the database find out whether a proxy already exists in memory for

a given database reference? This question needs to be answered for all references the database creates when

143

Object -Oriented Software Reperyentation of Polymer Maserials Information in Engineering Design
reading an object into primary memory. For the majority of cases, there will not be any other object sharing

the reference, but every reference is potentiaily shared.

The WorkBase keeps a record of every proxy in memory. Each request to reference a database object the

WorkBase searches the records to see if the proxy already exists.

The WorkBaseMapping is responsible for finding existing proxies. Based on a hashed dictionary, the

WorkBaseMapping keeps an index of proxies against objectID.

When reading an object into memory, the WorkBase, checks each objectID against the WorkBaseMapping.
Finding the objectID also loéates, 'by association, the current proxy for the object in primary memory,
otherwise the WorkBase creates a new proxy. Other objects on the data base may share the new proxy, so the

WorkBaceMapping adds the objectID associated with ﬂie new proxy.

Creating a new proxy does not imply that the WorkBase reads the persistent object, which thg proxy
references, into primary memory. Only if the proxy receives a message will the proxy read the object into
primary memory. The referencing object, the object currently being ’read, must send a message to the proxy.
For the majority of the new I;roxies, this will ‘not happen. The majority. of the proxies in the
WorkBaseMapping, and hence in memory, are pa'ssive. They represent a link to an object on the WorkBase that

the pattern of message passing has yet to cross.

When repeatedly accessing an object, the WorkBaseMapping schema provides an efficiency benefit. Once a
passive proxy receives a message and the object the proxy represents is in primary memory, the proxy holds
the copy of the object in primary memory. The proxy is then said to be active. Active proxies do not read
from secondary storage but use the memou;y copy for furthe.r messages and so respond much faster. Locating
an active proxyvin the WorkBaseMapping is the same as for passive proxies. A passive proxy reads from

secondary storage, whereas a message passing to the active proxy uses its primary memory copy.

A special case of active proxies is when referencing classes. Every object references a class to provide the
data description and behaviour for objects. Like all objects, objectID (specifically called classIDs) identify
the memory resident classes. The WorkBaseMapping index them in the same way as other shared objects. The
workBase finds classes like any other object. The object associated with the objectID is not a proxy. The
primitive interaction of instantiation with the class structure prevents the use of a proxy. Instead, the
association is with either the class or an object representing an obsolete version of a class. Class versions are

described later, §4.5.11.2. The WorkBaseMapping cross reference minimises the retrieval of classes for

144

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
representing objects on the database, and also manages versions of data definition between objects on storage

and in memory.

()
&

Figure 20: Scanning circularities

4.5.7 Object Circularity
Object circularity is a special form of multiple references. An example is given in Figure 20. Object

circularity originally arises from practical difficulties with the deepCopy concept within Smalltalk. A
deepCopy is a recursive copy of an object and all its composite objects. A deepCopy attempts to make a copy
of an object that is totally independent of the state of the original, down to the finest detail. Usually applied to
strictly hierarchical compositions, the result is a copy of all members of the hierarchy. A strictly hierarchical
composition is one where each ‘higher’ object composes of ‘lower’ objects. Problems occur when an object
is not a strict hierarchical composition. Since Smalltalk does not guarantee such structures, it is possible for a
lower component object to refer to a higher object creating a loop, or circularity. When deep copying, the
higher object is already copied, and unless the recursive copying is coded otherwise, the copy of the lower
object will request a recursive copy of the higher object. A procedural loop forms, which runs infinitely — or

at least until memory is no longer available.

A similar difficulty exists in the BOSS system. BOSS reads a whole object composition at a time so creating a
copy similar to the deepCopy, but differs in the medium the original is on in secondary storage. Circular
references could exist and an extensive mechanism is necessary for identifying the condition and structuring

the composition correctly.

The general mechanism using proxies (§4.5.6) manages all shared references, not just circular ones. This

mechanism manages object identities, and it has made the majority of the BOSS code dealing with circularity

145

Objecx-OrimtedSoﬂweRmmionofN/lyma“ iah Informati il:",," ing Design

redundant. Instead, the database management was re-developed, adapting ideas from BOSS, to create the

WorkBase.

An object read from the data store often refers to other objects on the data store. Reading those objects and
the objects they reference ad infinitum results in large and proliferate transactions, in comparison to other
data models®. Instead, the WorkBase substitutes proxies for the object references (ex@t numbers and
characters and some other special cases), so it only reads the object receiving the messages. Therefore,

proxies need only read the next object, never the whole composition.

4.5.8 Proxies and Memory Management
The proxy’s purpose in the architectural design of POISE is to mediate indirect database references at the

interface between Smalltalk applications and persistent data. A further development of this design is to
augment the definition of proxies with a control strategy for fine-tuning the lifetimes of resident object

representations. Effectively, this implements rules of permanent versus temporary memory residence.

The underlying memory-reclamation controller of the application language monitors the lifetime of objects.
Generally, an object dies when there are no other objects referencing it. In Smalltalk, this controller is a

Garbage Collection Manager’".

The primary memory life of a persistent object dies to free memory. The Garbage Collection Manager role
extends to keeping track of active proxies occupying primary memory. The manager initiates the removal of
old, active proxies by requiring that they ‘commit’ the memory-Aruident data to the data storage mechanism.
Both the number of message-sends and a FIFO (First In First Out) queue determine the expiry choice, or age,
of active proxies. Overall, the manager does not force such a decision until available primary memory runs
below a threshold. The manager determines the length of the FIFO queue according to the platform’s main

memory characteristics, and dynamically adjusts it when necessary.

The WorkBaseCache manages the FIFO qucuc. It provides tuneable parameters for deciding the number of
active proxies to commit. If they commit too eagerly, it causes run-time penalties. At the extreme, it commits
immediately after the proxy services a message. Objects that receive messages many times within an

enclosing context’? will lose the benefits of caching between messages.

The lifetime starts whenever a process sends a message to the proxy. A passive proxy will become active or
an active proxy will reset its lifetime. Proxies accessed often record a short lifetime, whereas proxies that are

not will quickly grow old in primary memory and return to secondary storage.

146

Object -Oriented Software Regresentation of Polymer Materials Information in Engineering Design
The reason for committing objects is to release main memory, not for transaction integrity. At present,
WorkBaseCache implements the policy of committing the oldest objects whenever the Garbage Collecﬁon
Manager notifies a WorkBase that memory is running low. A complementary facility — implemented as a
Smalltalk background process — utilises spare processor time to keep occurrences of WorkBase objects down
to a maximum number. This then lessens the effect of system failure causing loss of transaction changes.
45.9 Implementation of the Database Proxy
The proxy provides a service to any object requiring persistence. The proxy behaviour is inappropriate under
Object because not all objects will persist and persistence is not a behaviour of an object. Persistence is a
service the language provides to objects, just as the ability for objects to receive messages is a service of the
lmg@gc. An alternative to the proxy would be to re-write the virtual machine so objectIds could point to

representations on a file in the same way as they point to representations in object memory.

The database proxy is the simplest of the Enhancers in POISE. Specifically, the Enhancer implementation of
the proxy is a subclass called the WorkBaseEnhancer. Each proxy has two exclusive states, either active or
passive. The behaviour of the proxy is significantly different, requiring a change in protocol depending on the
state. When active, messages pass directly to a memory resident persistent object, but must reset its lifetime.
The WorkBaseCache can also direct the active proxy to commit changes, and become a passive proxy. The
passive proxy interacts with the WorkBase and changes to the active state. Normally two different classes of
object define differences in protocol. A proxy could reference different classes of instances to change state.
The different instances would provide the differences in service described. Two objects would construct each
proxy with a proxy interface and an associated object for the different management. An alternative was found
which does not require using memory for extra objects. Smalltalk provides a primitive for changing the class

of an object. A proxy changes its class and thereby changes the protocols it inherits.

There are two different subclasses of the WorkBaseEnhancer. One is the ActiveWorkBaseEnhancer when the
proxy is active and the other is the PassiveWorkBaseEnhancer. When the PassiveWorkBaseEnhancer
receives a message, it requests from the WorkBase a memary resident copy of the object on file and changes
itself to an ActiveWorkBaseEnhancer to service the message. The ActiveWorkBaseEnhancer records the time
it receives the message then passes the message to the persistent object. The active proxy is part of a cache
system'that uses the last access time to determine which proxies to commit to disk, so releasing primary
memory. When committing, the proxy passes the hidden object to the WorkBase, which checks if the hidden

object differs from the record on file and updates it accordingly. The active proxy then changes to a passive

147

Object -Oriented SoRware Representation of Polymer Matcrials Informstion in Engineesing Design
proxy. Since the passive proxy no longer keeps record of the memory resident object and the active proxy

was the only referencer, Smalltalk garbage collects the hidden object and releases memory.

4.5.10 File Representation: Adaptations from BOSS
BOSS represents objects in byte arrays. Typically, the arrays of bytes compose a sequence of records on a disk

file. Each array starts with an identifying éignature. The objects on the file can always be found by searching
for the signatures. Normally the byte count from the start of the file locates the objects. The signatures help

overcome corruption, an event common in a developing system.

Bytes support 256 different states and grouping the bytes into sets of four gives 2*2 states. Each of these
states in an objectID uniquely identifies a different object. This is a finite number, which limits the number
of objects a WorkBase represents. BOSS groups pairs of bytes, as the objectIDs are only unique within each

object record.

After the signature, the WorkBase starts the object record with the object’s own objectID. There is a key
from objectID number to the location in the file. If ever this key is corrupt, the WorkBase can iterate through

objects in the file by locating signatures and re-constructing the key.

The remaining representation is like the representation in Smalltalk primary memory (§4.1.1). Each reference
is an objectID, starting with the class of the object or classID. Like the primary memory model, characters
and intcgers have spovial references that are uniquely encoded to identify the character or integer without

further reference. Consequently, numbers and characters do not require proxies.

BOSS differs from the WorkBase in the structure of its records. A record contains many objects, each
contributing to a composition. After representing one object, BOSS immediately represents the next until it
completes the whole composition. The WorkBase puts each of these objects in their own record since any one
may be shared in the future. The consequence is a need for more objectIDs and the increase from 2-byte

representation of objectIDs to 4-byles.

The storage model is a relatively direct extension of the Smalltalk internal primary-memory representation
policy. The internal primary-memory representation derives from the format in the class definition of stored
instance variables. Trans-migrating the class definition from the Smalltalk environment into the database is

important in automating object-storage.

148

Object -Oriented Software Representation of Polymer Materiabs Information in Engineering Design

4.5.11 Storing Class Information
The storage model discussed so far captures only the relationships between instances. This is an incomplete

description of an object as it inherits protocols from its class, which defines the semantics of each object.

4.5.11.1 Requirements for class data definition storage
In a class-based inheritance language, the templates classes supply the data definition of instances. The

retrieval of stored instances also requires sufficient template information for interpreting the stored structure.
A class name is sufficient information to find a class in a Smalltalk application and hence the class definition
with a template and protocols. This is fine if class data definitions are static, but POISE provides for
evolutionary modification of domain-modelling classes, so classes are not static. The template in memory

may no longer match the structures used in storage.

Maintaining the behavioural integrity of all objects inheriting from a class throughout its evolution requires
much more representation than simply the name of the class. The class name representation is the simplest
object specification using an application-based class, and it provides the least integrity. Complete integrity is
possible with a data-based class. Data-based classes completely represent both protocols and structure on the

database and re-construct the class in primary memory on demand.

Initially the WorkBase only considers objects inheriting from application based classes. These are simpler and
faster to retrieve but the class name alone provides insufficient integrity. To entertain evolutionary class

descriptions, the WorkBase supplements the class specification with a version template.

The name of an application-based class is an insufficient representation for an evolving class. When a class
changes its structure, instances in primary memory immediately coerce to the new structure while both the
new and old structure are known. The instances in secondary storage remain unchanged. The WorkBase needs
the information about the old structure when it encounters these obsolete instances. Their data structure
differs from the current class structure. The order of objectID relations in the record depends on the structure
of the class when saved and the order can have no correlation with the current class structure. Without a valid
class template, the ordering of objectID relations is lost, and with it the semantics of records stored on the

database.

The version template provides integrity, or more correctly a consistency between the behaviour of instances
in memory and the stored instances of the same application-based class name. The WorkBase coerces stored
objects to the application’s class structure. The WorkBase stores a version template for each class of any

stored instance, which encodes:

149

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

o The class’s name.
o The class’s format number.

e A sequence of names of all instance variables defined and inherited.
The version template is only a partial description of the class. For it to be of any use the class’s storage name
must match the name of a class currently in the application. The format memorises the size of the object on
the WorkBase. The instance variable names relate the stored object with its content, the objectIDs in the
record. If names in the list match names in the application class specification, the stored object adopts the

semantics for the name in the class.

If a class has not evolved, then the order and names of instance variables is the same in the class template and
the class specification in memory. The records on store order the relations the same as new instances and a
simple transcription of information from the record to a new instance re-creates the stored object in primary

memory.

If the data structure of the named class changes then this causes the addition, removal and change in
sequence of named instance variables. A difference means the records on the store are old versions
belonging to an obsolete class definition. Instance variablo;s common between the version template and the
current class specification can map data from the obsolete object on the database to a current object in '
memory on retrieval. The stored object is then correctly consistent in behaviour with the curreat class
specification. Since this may not have been the intended I;ehaviour of a stored object, the integrity may still
be in question.

4.5.11.2 Version management of evolving data definitions

When encountering an instance of an old version for the first time, the WorkBase creates ClassVersion object
and records it in the WBMapping under the old class’s classID. The WorkBase gives the current class a new
classID as soon as it saves a new instance to distinguish it from old versions. New instances map to the class

in the WBMapping and further encounters with the old version immediately map to the ClassVersion object.

The ClassVersion object and Class are polymorphic with respect to protocol for creating new current
instances from WorkBase records. On instantiation a ClassVersion object compares the given old class
definition with the current definition and makes a map between instance variable names. The ClassVersion
keeps a reference to the current version of the class in memory. With this information, it can generate any

current instance from the obsolete WorkBace record.

150

Object Oriented Saftware Representation of Polymer Materials Information in Engineering Deaign
The WorkBase represents all classes by a record containing the version template, even the current classes.
They therefore have objectIDs associated with them or, more specifically, classIDs. When the WorkBase
reads an object of the class for the first time, it reads the version template first. As with all objects the
database reads, the WorkBaseMapping makes a reference. If the class of the stored object is the same version
as currently in memory, the WorkBaseMapping keeps a cross-reference between the classID and the memory
resident clas.tls. if the class is an old version, it keeps a cross-reference between the classID and the
ClassVersion. The WorkBase will use the object the WorkBaseMapping associates with the classID to

generate instances from the record.

Whenever a class changes, Smalltalk notifies WorkBases through a ‘dependency’ link (a dictionary associated
relation as opposed to an instance variable). The WorkBase removes the association between classID and the
changed class from the WorkBaseMapping, because that classID no longer designates the <;u1rent class
version. If the WorkBase subsequently writes an instance of this latest class version, it will treat the instance
the same as if the class had never been written to the WorkBase before. Hence, it writes a new version-

template and assigns a new classID for the class.

Consequently, a WorkBase may hold multiple versions of the same class with a distinct version template and
unique classIDrepresenting each version. The ClassVersion objéct performs the translation
® From the instance variables, the stored version template describes the ordering in the arrayr of stored

objects:
e ' To a fresh instance of the current application’s class, matching where the descriptions are similar.

As-each version template has a unique classID, it creates a unique ClassVersion instance to perform the

conversion of instances that refer to that version template.

4.5.11.3 Data migration of instances

An accidental consequence of the ClassVersion management is the longevity of named instance variabl.w.
The removal and addition of the same instance variable leads to loss of data in primary memory, §4.1.2,4.4.2.
This data survives in persistent objects on secondary memory and the ClassVersion can correctly return the

data on return of the instance variable.

Data migrates from the record on file to a new instance of a named application class. In most cases, the
WorkBase finds the application-based class matching the classID in the record is current. In this case, the
migration is simple. The record, an ordering of objectIDs, migrates to an array of the same order containing

PassiveWorkBaseEnhancers, with the corresponding objectIDs. The WorkBase then coerces the array to the

151

wwm&mwﬁm&wm:mmammmw
named class by the changeClassToThatOf: primitive method. This changes the classID of the array in

memory to that of the named class.

If the record is obsolete then, instead of the application-based class, the WorkBase finds a ClassVersion. The
ClassVersion matches the named instance variables in the version template .with those in the current
representation and associates the names with the current index. Using the name-index associations, the
ClassVersion translates from an ‘old instance index’ to ‘new instance index’, (equivalent to a relational
projection). The rest of the process is the same as current versions, but the process re-orders the proxies in the
array according to the translation. This translation is precisely what happens to instancé in memory during
schema evolution §4.4.

4.5.11.4 Limitations of application inherited classes

The application-based classes are still the only repository of protocols defining the semantics of instance
variables. This ig fine if there is only one application. Problems occur if there is more than one Smalitalk
session where the application-based classes in each differ. Since the WorkBase does not distinguish classes of

the same name in different applications there is the potential for semantic differences.

Relying on the definition of classes within the application can cause behavioural discrepancies in persistent
objects in a common data store, accessed by different applications. This can breach the encapsulation of the
stored objects. The greatest risk is if one application permits a state in the object not acceptable to the
behaviours in another application. Typically, one application’s behaviour assigns a type of object to a named
relation that other applications do not permit. This is possible since although the two applications must both
have classes that agree on the data structure of the objects, there is no agreement on the method code that

accesses and changes the data in the structure.

Inheriting behaviours from application-based classes is not satisfactory for a distributed system where
applications could access the data structures incorrectly. The WorkBase does not provide any means of
ensuring correct, consistent a;x:m. An alternative is to store a class completely on the database that defines
the complete behaviour of the objects stored. Complete storage of a class is more in line with the object

representation of fully-fledged 0ODBMS.

4.5.11.5 Requirements and limitations of behaviour storage
A notable example of 0ODBMS that stores the complete class behaviour is within the architecture of

Gemstone 2.1%°. Gemstone runs an object manager on a server machine. It executes services (in a custom

language, OPAL) remotely in the server, upon request by an application (eg in Smalltalk) running on a client

152

Object -Oriented Software Represeatation of Polymer Materials Information in Engineering Design
machine. In contrast, the WorkBase strategy aims to escape the need of a programmer or end-user to establish
whether a computatién occurs as part of an application or part of a remote object manager. A research
attempt involving this same goal was the Rekursiv project™ into producing a seamlessly integrated object
memory and secondary data storage, by developing special hardware. In the absence of a ready hardware
solution, POISE can execute message-sends to an object only in the main memory occupied by the application,
since the application contains the appropriate class manager and its the compiled code of its methods. From
this follows the pragmatic language design decision to manage only structural-definitions of instances as the

main data management task.

The WorkBase is not, essentially, a computational vehicle; it does not provide computation in addition to that
with a Smalltalk application. Nevertheless, it provides a storage format for byte-compiled Smalltalk code,
such as the CompiledMethod class discussed in §4.4.5, and for the syntax of a message-send to an object. It
exploits these formats to provide commands for exequﬁng services when under authorisation by an

application. In this way, the WorkBase can store a sequence of code as an object for later evaluation.

A method is a sequence of code associated with a class of objects. In particular POISE provides the option of
selecting particular methods of a class and makes them persistent along with the class version template. This
selective policy is suitable for the evolutionary information-modelling requirements of POISE, since the major
part of an application running in Smalltalk will be thé behaviours of domain-modelling objects, which in turn
describe the peculiar activitiés of that application. This was superseded quickly by the more general

mechanism of complete class storage.

4.5.11.6 Storage of a Smalltalk class
POISE evolves the description of polymer classes. In order to make these changes persist the WorkBase must

also store the class. The storage of the class is especially complex because of the relationships it has with the

client image.

Smalltalk constructs the class like all other objects in the language, §4.1.2. It behaves like a class because it
inherits those “class like’ behaviours from the Class class. One of the behaviours a class inherits is the ability
to generate other objects using the information contained in the class object. This is a primitive behaviour
that directly accesses the second instance variable and must contain an integer which describes the format of
the instance. The instance keeps a referenpe to the generating object (the class) and it is known as its class.
For this instance to work as an object the class object must meet two other criterion. The class has another

class object (or nil) in the third instance variable as the superclass and a method dictionary in the fourth

153

Object -Oriented Software Representation of Polymer Materials Information in Engineering Deaign
instance variable. This is the most basic requirement for getting a class to function. Other requirements are
necessary for the object to function as expected in the Smalltalk environment, but are not necessary to get the

class’s instances functioning in the Smalltalk environment.

The format, being an integer,’ is easily stored. The superclass can use any of the aforementioned class
representations but not viala proxy. The superclass must inherit directly from the application or the database.
The method dictionary though contains many difficulties. First, a proxy cannot be put in the method
dictionary place since the virtual machine expects a dictionary. The dictionary links protocols to their names.

With the list of names, the WorkBase creates a special proxy MethodDictionary.

Reading all the protocols of a class and its superclasses is unnecessary. All objects the WorkBase reads are by
request from a proxy receiving a message, so the WorkBase need only read the protocol matching the
message. The proxy MethodDictionary contains all the names of the protocols, but associates them with a
CompiledMethod that requests the real protocol from the WorkBase. The message look-up occurs as normal,
and so causes the WorkBase to import the protocol. The rest of the difficulties are with representing protocols

on the WorkBase.

CompiledMethods are, at their most basic, a byte array, which contains pseudo-code, compiled at runtime,
and hidden from the user. CompiledMethods are simple sequences of code that the WorkBase can easily
represent, which are complicated by references to variables that are outside the scope of the immediate

calculation: instance variables and global variables.

CompiledMethods refer to instance variables by an index, which must correctly correspond to the indexes in
the receiver’s class. It is for this reason that methods associate uniquely with a single class. Smalltalk
searches for methods by class and the structure guarantees that the method is compiled for the class. Without
the class, the method is meaningless since it refers to instance variables by a number that have arbitrary

meaning in any other classes.

Globals include class variables and pool variables’. All methods that access a unique global variable share a
reference to a common association, which contains a name for the global in the key and an arbitrary object in
the value. When a method sends a message to a global association, the value of the association receives the
message. As this is a primitive function the association must be an association not a proxy. The object, as the
association’s value, that receives the messages may be a proxy if the global is only within the domain of the

database. However, a difficulty arises if the global is meant to be an application resident object. In this case,

154

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
the Workbase must find the application global before any messages are sent to the global, ie when the method

is read into memory.

The most complex issues in storing a class is the class’s relationship to a superclass and any global variables.
In fact, the superclass is just another global variable. References to globals should be resolved by a separate
policy object from the server that has explicit knowledge of the global name space on every client and the
server. Other than that, the class is treated like any other object on the WorkBase.

4.5.12 Summarising the WorkBase

The WorkBase satisfies the private storage requirements for a single POISE user (§3.8.5). The unique feature of
the WorkBase is that when it reads objects it resolves differences in the schema between client and server,
which allows the client schema to change independent of the schema of individual objects represented in the
workBase. Implementing this feature was simplified by the single connection policy between the POISE
application and the private single-user WorkBase. Most DBMS focus on supporting multiple connections and
consequently complicate the client’s dependence on the server’s schema, which the server endeavours to

maintain consistent for multiple clients.

An advanced object storage system is a better description of the WorkBase than a DBMS because of its single-
user restriction, and the application executes all object behaviours, not the WorkBase. The WorkBase advancés
object storage because it is capable of representing complex objects, including the classes of polymers in the
hierarchy and the behaviours of engineering properties developed by the user. In addition, with the help from
the database proxy, the objects maintain their unique identity, usually lost when object storage systems

remove objects from the application environment.

Any object is a candidate for storage by a database management system. The DBMS must retrieve the object
back into primary memory before processing any messages dxrected at the object. A general proxy Enhancer
provides a transparent interface between objects of an application and objects held in the DBMS. Messages
sent to database objects via the proxy Enhancer activate the enhanced behaviours for requesting the DBMS
bring the object into primary memory and for updating the database with any changes. This role of the

database proxy is an abstract feature that can apply to any application-database interface.

A specialisation of the proxy manages object identity on behalf of the WorkBase. This lets the WorkBase
retrieve objects individually, rather than whole compositions. The WorkBase only retrieves the objects

necessary for the active process. The majority of proxies only remain in memory as long as a process using

155

Object -Oriented Software Representation of Polymer Matesiahs Information in Engineering Design
them remains active, thereby promoting memory management. Other specialisations include an object

lifetime property of the proxy for collaborating with the WorkBase’s transaction and memory management.

Although the WorkBase is an object storage system, it does adopt many database management features. In
addition to the requirements of the knowledge representation, there are database management requirements,
which manage the limited computing resources. The workBase collaborates with the Smalltalk memory
management, only committing transactions when memory is low thereby maximising the utilisation of
primary memory, and committing all transactions when the user terminates the application. Transaction
management is a complex feature of many 0ODBMS. This simple policy takes advantage of the single-user

restriction of the WorkBase, since in multi-user applications long transactions prevent other user access.

The one resource the WorkBase does not manage effectively is the disk file it uses to store the state of objects.
This aspect is not pursued because there was an ample resource for experimenting and many DBMS address

the problem adequately.

Another weakness in the design of the WorkBase was the efficiency of the DBMapping. This object provides
the pnmary index for the database. Currently the DBMappmg adopts the mdexmg behaviour of the Set to
provide a simple hashing algorithm with hnear probing. This is known to be one of the least effective
mechanisms and doesn’t take into account the future growth of Set like objects. Further research’’, concludes
a dynamic hash table™ is more appropriate. It also allows for many smaller WeakArrays of one size, rather
than one big array that needs to change size. This advance to the WorkBase was unnecessary for the

experimental purpose of POISE.

\

4.6 Summarising the Implementation of POISE
A drawback of the class—instance relationship is that the class usually defines instance behaviour exclusively.

The Polymer classes in the POISE classification do not define grade behaviour exclusively. Grades have the
properties from the taxonomic classes extended with orthogonal properties by a technique of manipulating
messages sent to the grade object. Orthogonal properties are any property not related to the classification
based on chemical and molecular structural composition, eg those relating to general geometric shape and
process. Instead, a separate class template defines orthogonal properties that can apply to any polymer. POISE
abstracts this manipulation of messages, which makes orthogonal behaviour possible, into a class of objects

called the Enhancer.

The Enhancer provides a behaviour sharing that differs from the explicit dynamic messages between

individual objects and differs from the static implicit behaviour shared between classes and groups of

156

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
instances. The Enhancer provides implicit dynamic empathy between individual objects. These are general
descriptions of types of behaviour sharing from the Treaty of Orlando®. The Enhancer is therefore a general
enhancement to the class—instance paradigm, which Smalltalk implements. The implementation of the
Enhancer uses the error trapping mechanisms built into Smalltalk. Although these details are specific to

Smalltalk, the behaviour sharing that the Enhancer’s characterises is significant for representation.

The Enhancer is a general tool for enhancing any object behaviour. Classes inheriting from the Enhancer add
specific functionality to enhance the behaviour of a number of objects independent of their classes. The
inheritance statically binds these specific behaviours to the class. An Enhancer called the ScopeEnhancer
- dynamically binds behaviours from multiple objects. The ScopeEnhancer shares behaviours with the
flexibility often found in languages with delegation. Zucker has already demonstrated delegation useful for
representing the evolution of the design description, or the ‘application perspective’. The ScopeEnhancer
demonstrates a similarity with delegation by sharing an enhanced behaviour between more than one object.

This initial experiment suggests the Enhancer can support Zucker’s objectives in a class—instance languages.

Another class inheriting from the Enhancer resolves deducﬁve inheritance (§2.2.4). The
CombinedDataAbstraction is one of a number of objects with enhanced behaviour that produce the abstract .
polymer behaviour. The CombinedDataAbstraction inherits many abstract properties and deduces a single
abstract property. An enhanced instance from each comcrete Polymer classes (the ones v;'ith instances)
represents their abstract properties. The Polymer classes themselves manipulate their messages so they inherit
the abstract properties. The result is a hierarchy of abstract polymers that generalise properties typical of the

grades they classify, from which the designer can interpret design benefits.

POISE takes advantage of Smalltalk features that are not characteristic of the class—instance paradigm.
Smalltalk does not distinguish between the development and runtime states of software. For this, the
Smalltalk environment includes tools normally associated with development, such as a compiler. The
compiler and other supporting classes let Smalltalk define, declare and instantiate objects during runtime.
This promotes: the development of software by prototyping, but does not distinguish prototyping during
development from the application of prototyping during runtime. POISE uses these features to evolve classes
through interaction with the user, thereby providing dynamic schema evolution. POISE specialises the
software tools to orientate schema changes around polymer properties, thereby empowering the domain

expert, rather than the Smalltalk programmer, to manipulate the polymer classification.

157

Objoct -Oriented Software Representation of Polymer Materials Information in Enginoering Design
The development tools for evolving Smalltalk classes were found highly inefficient. While specialising these
tools for the polymer classification, a new type of protocol objects was defined that is independent of a
physical model. These proto;:ols did not require re-compiling when the physical model changes. Therefore,
these protocols are independent of the class, which defines the physical model of instances. This permits the
definition of partial template objects, PTOs, which are a tool for managing protocols cutside the class. Partial
templates are a re-useable set of protocols that may be installed consistently on many classes. The PTO in
POISE represents polymer properties. They provide a classification independent way of relating the sixﬁilarity

between properties and their contextual application.

158

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
Chapter 5 A Populated, Fully Functional POISE.

POISEsupports the user with o vumber of interfaces. The aim of these interfaces iv to reflect the data models
divewssed, There has been no formal cognitive design of these interfaces, and this i not an argument
supporting them as the best way to display the dato models, They provided o way to Tearn about the polymer
Gomain and the models weed, They were wved in the cowrse of developing the data modeland by Spedding® n

berresearch into approprinte elassifications of polymer inform ation,

The first wser interfaces developed were the Comparitor 118 the HierarchyEditor. These interfaces had
Girect relevance to the representations of the abstract polymer and elassification, Toitially « commwand line
interpreter started o Smoalltalk process that opened these fnterfaces, Command ey are very flexible but
require o specific skill for wse, Consequently, a central fnterface wag developed for the designer and other
noviee wsers, This central interface represents an active POISEsession. The first task of the noviee wser i to

start the POISEsessint,

5.1 Entering the Smalitalk Image
System Transcript =o= Launcf =[f]=o0=

+

Browsers
Utilities
Changes

Special

33

TIGRE (tm) i

Quit

ri

Figure 21: Smalltalk image start-up state
The application known a5 poise resides with the development tools in 2 common Smalltalk imaget, The
user's aceesy to the development tooly iy throvgh o window kvown ayv the Launcher (Figure 21}, The
Launcher provides a list of options for the user to select, poise adds an extra option a5 a gateway into the

vorld of POISE. In o §malltalk image containing only POISE, and without the development tools, loading the

image automatically evokes this option,

The second window v Figure I is the System Trawseripte This window provides o general display of
moessages to the wser. The window ds also a text editor providing the programmer with a place to type and
request the evaluation of Swoalltalk syntax, In av iwage containing only poise, sueh a tool would not be
available sinee it would enable the vver to modify the image in av wopredictable manner. Later we infrodure

dospecialived window for notifying the vser of poise’sattivities,

A Swoalltalk Twoage ds the deseription of all objects i primary memory when starting Smalltalk, The Image
plus the Vertial M oachine make wp the whole Smalltalk Environm ent,

159

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
Onentering, POISEopens Tigre's FileChooser sereen {Figure 1), asking the wser to loeate the WorkBase file

containing the polymer information and session details,

System Transcript

Choose Database File +
Ram Disk Browsers >
Utilities >
Changes - >
Desktop Folder: Volume Special y
Trash: POISE
POISEdababase.dat TIGRE (tm) >
Quit
Open b
Cancel
Figure 22: Selecting the WorkBase

At this point poise loeates references to polymers in the WorkBase and adds to each Polymer tlasses an index
of their polymers, O pening the WorkBase ¢reates o background process responsible for wanaging the garbage
collecting in the WorkBase file. A mevsage appears iv the transeript votifying the wyer of this provesy and

gives the numberof grades POISEfinds,

System Transcript iDi Launcr 10101

'Background Garbage Collecting of)} objects - STARTED' 4

Final population =943
Browsers
Utilities
Changes
Special
POISE
TIGRE (tm)

Quit

vV V VvV V

\

Open saved windows?

Figure 23: Re-starting POISE

A owew window opens, asking if the wser wishes to open the windows stored in the WorkBase (Figure 13),
These windows were saved in the last session, recording any lists of grades or particalar com parisons of

polymer fam ilies the wser was processing during the last session,

160

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
[sereens were not saved, or the wser opty vot to oper them, then only the POISEsession streen opens

(Figure 24). The Launcherand System Travseript sereens elose autom atically,

POISEsession 10101
Welcome To POISE
POISE
Polymer
Thermoplastic
Amorphous
ABS
ASA
ASAPC
CA
EBA
EVA
MABS Comparator Clipboard T
PAF
PBTASIi Domain Properties
PC
PCH Domain Hierarchy Grade Searcii Quit

Figure 24: The POISEsession window
5.2 POISEsession

The POISEsession Wwindow (Figure 24) is a centralaveess pointto all other tools in POISE The POISEsession
has three parts, O the left iy 2 sub-view confaining a hierarchy of Polymer tlasses, Top-right is
specialised subview that replaces the functionality of the tramseript, The third part i a set of "button’ views,
which open variows types of POISEsereens when the weer velects them. The dbutton warked ‘clipboard’ and
the button below are exeeptions, providing functionality to the trawseript part of the POISEsession (in §§.8).
Quit returns back to the Launcher, offering to save any open sereens,

5.2.1 The User Defines the Classification

The sub-view on the left of the POISEsession is 1 complete hierarehy, The hierarchy is inside 2
ScrollingWrapper that provides serolling funetionality, This sub-view is o functionally cnt-down version of
the HierarchyEditor window deseribed earlier (§3.3.3), The wser evokes fuvcetions by selecting the menu-
bary i Figure My cousing a menw of options toappears & complete lst of the funetions iy in Table 7,
Figure 15 demonstrates the ‘ivspect’ option. The fnvpect command provides visual aceess fnto individual
Polymer tlasses, [n this cave, the text for “EBA> was previously selected o the sub-view, providing the

context for the inspect commant,

161

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

POISE

A Welcome To POISE

copy
POISE add
accept .
cancel astic
hardcopy phous
save BS
load SA
B BXMsAPC
add grad *
remove
Iy
EVA
MABS Comparator
POISEClassChanger » 20101
1v 1
-1 ~ POISEClassChanger on
keif 1 AEBA
name
superchan
hierarchy
properties
addedProi:
removed?
subclasse
/] vl
Figure 25: POISEsession- viewing the schema

The fnspect option opens o general inspector on an instance of the ¢liss POISEClassChanger, inFigure 15,

These objects record the state of ehanges to the hierarchy and the fnspector provides a coneise report of
chamges per class, & general fnspector provides reports the state of the object’s instance variables for this
The sub-view on the left listy the fnstanee variable

purpOSe, Selecting onve displays the vontents of the

instance variable in the right sub-view as text, (the 'printOn: " text behaviour all objects have,

The list shows the fnstance variables that store changes to the poise tlasves while the wser operates onthe

bierarchy (in schema §3.5.0, editor window §3.3.3, implem entation §4.4). The superchanger references the

Changer 0 f the superclass the clasves inherits, Hierarchy iv a reference to the overall hierarchy model. 00

Copy Avvigns the variable “Clipboard o the object currently selected (in §5.8).

Add Addsavew polymer class by first asking the name of the polymer faw ily and subelassing off
the tliss poise.

Accept Compiles all ehanges to the bierarehy, To thispointonly o deseription of the ehanges are
kept., POISEdoes not change the classes and instances of polym ers that the bierarchy deseribes
vutil the wser selects the aceept option,

Cancel Therecord of changes is reset,

Hard-copy ~ The textin the subview is sentto the printer,

Save A disk file saves the configuration of elasses,

Load The Bierarchy compares the confignration of closses in o disk file with the current
configuration and records the necessary thanges,

Inspect Opensageneralobject inspector on the record of changes for the selected class,

Add grade Createsan instonce ofthe selected class, The wser isprompted for the name ofthe new
instanee and left with # Grade inspector window on the new grade (in Figure 26 below)

Remove Woarks the selected elass for removal from the image. (Grades remain on the WorkBase but the

162

key to them ds lost until the user adds a clasy of the same name and re-opens the WorkBase.)
Table 7: User menu-functions over hierarchy editor

Dbject -Oriented Software Representation of Polymer Materials Information in Engineering Design
every thange, the POISEClassChanger treates 1 Checker fo tonsult the hierarchy and ensure ehanges are
consistent with the inheritonce and class vaming rales of o Smalltalk hierarchy, Properties, addedProperties
11d removedProperties ar¢ v§¢d by the HierarchyEditor for confirming modification o the properties of

the class,

5.2.2 Adding a Grade
The bierarehy interface fs an easy place to identify a closy of polymer, 1o wser selects o elass, they can add 2

grade to the clasy by selecting the appropriate menu item

When adding 2 grade, poise provides o default name; simply the nvumber of grades known plus one
concatenated with the grade’s family name. In Figure 20, a grade inspector views the new eba grade, At
fhis point, the grade fnherits propertios from the polymer family, but o specific valves are known exceept for
the grades name. The view provides the list of properties in the top sub-view. Serolling to the property
Tradename of polymer’ and selecting couses the bottom sub-view to display o text representation of the
property’s value, The user can ehange the name here,

EBA #23 0EF1=
\% 1
Stress at yield (50mm/mini +J
Supplier of polymer
Tensile strength (.5mm/min)
Text description and use
Therm.exp.coef. long. 23-800C
Therm.exp coef tran. 23-800C
Thermal conductivity of melt
Tradename of polymer .
Vicat A/50 (ION)
Vicat B/50 (50N) 1
Viscosity coeff.
Vater absorption (230C-sat.) 1L 1
Young’s modulus (sec. Imm/min) N

EBA %23 H

Figure 26: Grade View over new grade EBA 23
Tho wser con select any of the properties in the top sty mwodify the fext in the bottom text view and, through

the menuw of the text view, aceept the change. The view, in conjunction with the property object, parses the
fext, interprets o valve for the property, and assigns it to the grade. In thiv way, the vver can fully specify o

new grade or modify or delete an existing grade. dvexvample of 8 campus grade iv given in Figure 3§,

163

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

POISEsession

A Welcome To POISE

Property comparison mm
Property selection

All Select Polymer 4

Comparator
ifh-

. . DwM U dataavalia'blc forth praperty
Domain Properties

Domain Hierarchy

Figure 27: Starting a property comparison
5.3 The Comparator

The hierarchy in the POISEsession window provides the vser with the tooly for defining the fnitial database
sehema and date entry. A the wser changes the sehema and enters dafa, POISE tonstantly modifies
abstractions over the domain of knowledge. The ‘butten’ in the POISEsession 11m ¢d Comparator provides

aveess o these abstractions (Figure 17),

The property comparisen window, o1 Comparator, is 4 Qisplay of the generalisations derived from the grades
it the domain, POISE generalises the properties of the grades from each polymer family, forming a1
thstraction, poise merges these generalivations, and without further domain analysis, forms bigher order
ahstractions (§3.5,84.0.7.0) Ln abstraction exists for each Polymer tlasy in the hierarehy, each contributing
fooa list of grade eategories available for display, The Hst of abstractions appears when the wser selects the
button “Select Polymer’, Figure 27 The list of property generalisations appears when the wser selects the
button ‘Property Selection’. Fivally, the window displays the generalisation in the main centre sub-view,

Figure 18,

I the evample of Figure 28, the property Young's wodulus iy selected and the chsifivation Crystalline
(mwore correctly partially erystalline). Like ofl the other property objects, the Young's moduhs property
specifies a generic histogram subview to display the generalised data. The Comparator window locates the
generalisation from the Crystalline tlass, which transparently aceesses the WorkBase. The WorkBase sfores
the generalisation as o setofvalue oceurrences, The view coerces the vet into o data type suitable for disphy,

A bistogram object in thiv case,

164

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

Property comparison

Young’s modulus (sec. Imm/min) MPa T
All Crystalline -
jwooo _
20000
15000 I
10000 S
Sooo
0
14 21 28 35 42 49 56 63 70 77 85
Tally
? -1
Figure 28; Abstraction display of Young’s modulus over (partially) Crystalline polymers

Property comparison

Young’s modulus (sec Imm/min)

Crystalline

looo 1

?1Mhee| IAEN -
Figure 29: Viewing films only for Young’s modulus over Crystalline

The bistogram subview dv fully sealable. Wohen the vver adjusts the size of the window, the sub-views size
seales equally, ehanging the size of each ordivate proportionally, [vereasing the window size fnereaves the
room available for displaying the ordinate, The vumber of labelled intervaly also ivcerease avroom becom ¢

available to aceommodate the font sive, which does not scale,

The avis on the Teft iy the wnits of the property, divplayed next fo the property name, mpafor Mega-Paseals

pressure, The bottom avisiva tally ofovewrrences so ds wnitless,

The button Tabelled “A 10 refers to the whole classification of Crystalline. A1y Polymer thisy with grades

exhibitivg orthogonal properties will generalise the orthogonal properties into MultipleDataAbstraction

DA) 0bjeets, a5 deseribed in §4.0.7.5, A0 maa will report each orthogonal elass tem plate in wye within in

the polymer clossification, Cuorrently orthogonal clisses inelide Fibre, Film and ‘wyed-by Lucas’. The

165

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

selection of thiv button allows viewing of one of theve clasves oryay veen here, allo In Figure 19 the selection

chamges so to view only polymers vsed as film,

Impact strength (Izod) +230C kJ/m2
Amorphous Crystalline R
341.0
w ayv
«0 2W
300 ioo
m. %) 150 i
100 100
»
1.0
, 40 so 40 SO
Figure 30: Comparing abstractions strength across four polymer classes

The Comparator allows comparison acrosy abstractions sharing the same property in the same window., By
pelecting the 7 button, in the bdottom right corner, the window adjusts the sive of the sub-views fo
accommodate oo second histogram display, Each display has its own clossification buttons for selecting the
abstraction, In Figure 30 four classifications compare their impact strength, I Figure 30 the film s of
Crystalline contrast against all of Crystalline. Note the property valve aviy seales across the largest

range over all abstractions in the display,

Property comparison 10101
Young's modulus (sec. Imm/min) NP

Crystalline Crystalline
24000
20000 S000
15000 15000
{0000

Figure 31: Comparing abstractions

I Figure 30 there are two red loes aeross all the histograms with o blue arrow af the ends. These bars
appear when the voer selects the ‘Bar?" button The red lnes move alowg the property avis forming an upyper

1

and Tower Himit W hile these bars are active, the user van select the grades that fall between the Hueso W bile

166

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
fthe Hwes are notactive, the veer can select the fndividual bars of the bistogram s, which ehange their colovr fo

red when selected,

The selected gradesare vot collected until the wser presses the ‘select” button, Finding the grades requires o
search throuwgh afl the grades fn the appropriate classes fn the elassification, The process can lim it the search
by inferring the absence of grades in o subelass that fally outside the ravge being searched, [fthe selection is
aerosy the class Polymer then potentially the search covers every grade in the WorkBase. This iy time

consuming compared with selections across specific clavses, eg PAwhich are quick,

The search results in oo window listing the classes where grades mateh the selection. Selecting the clasy
displays o sub-list of the grade’s Tradename, The complete list of grades forms o sub-shortlist, Figure 3
piby, which can contribute to o global shortlist available to oll POISE windows when the user closes the

vindow (in §3.5 below),

The Comparator tan display the global shortlist as o user-generated abstraction, Tfthe *$" button i pressed
inthe bottom left corner ofthe Comparator, it displays only the grades in the shortlist, Dach abstraction view
still Tim its the display by elassification and property, To display the whole shortlist, the elassification would

need fobe ‘A1l and ‘Polymers’with the shortlist button selected,

Clicking on the background ofany subview in the Comparator selects if. The border of the subview inverts
foindicate the selection, Tn conjunction with the seissors button the subview can be cut to the clipboard, or
deleted with the minus (') button. The Comparator ¢an paste iv o sub-view fi-om the elipboard, which has

the same function as adding o vew subview and setting the chssification,

Finally the *7" button displays o text window containing help information, Belp iy generally seen a5 mn
important funetion butnot eritical to thiv revearch, The button demonstrates the sim plicity of integrativg an

avxiliary support system, suceh ashelp, into POISE.

5.4 Grade Search by Query

Tht POISEsession streen provides aceess to an alternative fo the Comparator for finding grades, The
Search” button opens o Grade Search window, Like the Comparator it is possible to linm it the search to a
selected elossification. The search ds corrently Hm fted to the dowain of o sivgle property but this was only fo
sim plify the tool. The potentinl exists for a complex query at the same level as the POISEsession's

trawseriptwindow (in later §3.4),

167

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

Grade Search laiH 1 Grade Search [0101

Property: Impact strength (IZOd) +230Cy Property: Impact strength (Izod) +230C f
PA6 PAG
m f*ress control C to stop search

10/97

Figure 33:Grade search by query search specification Figure 32: Grade search by query search in progress

Inthe evample, Figure 33, the property selected iv impact strength and the classification pa6. The user enters
doquery dn o the larger central view, The view com piles the text info valves, oy interpreted by the property
object, Tn this case, the property interprets N B ax *No Break’, the extreme result of the impact test where

the specimen fails to bresk,

Thoview displays the size of the seareh in the bottom right comer as the number searched/total to seareh, 4
the search proceeds the vumber searched iy periodically wvpdated as in Figure 320 The wser can terminate the
seareh by typing control O Sweh facilities are nevessary inoa system with the potential for large lnear
searches for which it is notoptin ised.

§.5 Shortlisting

Wohen the search s complete, 2 SubShortList opens with the results, In Figure 34 the only clasy iy PA6since
the domain of the search was limited to this elass. W hen the wser selects pa6, it displayy the grade’s
Tradename in the second list, At thiv point, the menu above pa6 allows the removal of the class or the

generation of o disk file containing the set of grades. The menu also allows the addition of 2 whole

classification or for all classes to beremoved or filed ont,

The menu above the gradesenables the wser to clear the Hstor remove individual grades, Grades may also be

filed into a text file in 2 dip format (in §3.1.1).

When closing the SubShortList window, POISEasks if this set of grades is to join the global shortlist, The
global shorthist is o set of grades like the sub-shortlist, but it iv wnigue for 2 single poise session. The user
may perform variouws searches generating sub-shortlists, which are logically ORed fogether in the global

shortlist, The Comparator tan lim it the domain to just the global shortlist which provides o logical ANDw ith

168

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

the Comparator’sow 1 selection eriterfon., With these browsing tools, the wser obtains some bivary logic over

|

the selection,

SubShortList

Grade Select

Polymer Grades

Add Class t

Remove Class t
PA6 Remove All [THAN B25TC.

IAPMHWdHcB#THAN B25Td,

[File Out Air THAN B30S c.
UUHb 1HAN UJU3 d.
DURETHAN B31SKC.
DURETHAN B31SKd.
DURETHAN B40E d.
DURETHAN B40SKC.
DURETHAN B40SKd.
DURETHAN B40SKWI1 c.
DURETHAN B40SKW1 d.

Inspect]

Figure 34: Sub-shortlist a user defined set of grades
5.6 Grade View

The Swspeet” button in Figure 34 becomev active on selecting o grade, and openy o grade view window, This
i the same type of window as used in Figure 26, for creating o grade, Figure 35 gives a complete deseription

0fthe DURETHAN B3OS & grade.

ID 0 DURETHAN B3US d. ceneeeee —[gIE]i

Eff. thermal diffusivity +
Electrolytic corrosion

Flammability UL94 (1 .6 mm)
Flammability UL94 (2nd value)
Flammability UL94 - 5V

Flow front velocity

Freeze Temperature

Heat defl.temp. HDT/A at 1.8 MPa
Heat defl.temp. HDT/B at 0.45 MPa
Heat defl.temp. HDT/C at 5.0 MPa
Impact strength (Izod) +230C
Impact strength (Izod) -300C *
Isotaxie index

NB kJ/m?2

Figure 35: Grade view initial text description and specific property

169

Object -Oriented Software Representation of Polymer Materials Information in Enginecring Design
Until the wser seleets o property to view, the bottom subview of Figure 26 displays the text property on the
grade (i §3.0.5.0)0 When the weer selects a property, the subview displays the valve, [n the case of
Figure 35, the property impact strength matehes the query, The bebaviour generating a text representation of
the value belongs to the property object and the value object, not the window or the subview, This allows

different text formats to exist for different properties,

5.7 Property Definition.

The wver can add properties and modify existing properties vsing 2 PropertyEditor. Refurning fo the
POISEsession, the user openy an editor throwgh the “Domain Properties” button, & wenuw opens for selecting
the subject property, either a wew property (Figure 36) or an existivg property, which Hety either the classified

Gomain (Figwre 38), o orthogonal elasy (Figure 37T) or wnassigned,

Comparator
t D«
Domain Properties
D Specialist Properties > Grad
I Unassigned Properties>
Figure 36: Selecting subject property- Start new property
Comparator Clipboatrd

Crimp Level

Cross Section
Elastic Recovery
Elongation at break
Fibre Fineness
Fibre Length
Moisture Regain

Define New Property

Domain Properties

Specialist Properties > UsedForO FiAre >
jUnassigned Properties >|UsedBy >|Fil>Ti >

Stiffness
Tenacity
Toughness
Figure 37: Selecting subject property - orthogonal class used for fibre
POISEsession = characteristic density 230C
Icome To POISE Creep modulus 1h
Deg. of light transmission
Density

Density of melt

Dielectric strength

Dissipation factor 1MHz

Dissipation factor 5S0Hz

Eff. thermal diffusivity

Electrolytic corrosion

Flammability UL94 (1.5 mm)

Flammability UL94 (2nd value)

Flammability UL94 - S5V
Comparator Flow front velocity

Freeze Temperature

Heat defl.temp. HDT/A at 1,8 MPa

DdDefine New Property peat defl.temp. HDT/B at 0.45 MPa

Domain Properties Heat defl.temp. HDT/C at 5.0 MPa
Specialist Properties > yp,,c¢ strength (Izod) +230C Jit
Unassigned Properties> yyhac¢ strength (Izod) -300C

Icn+ avio inrlov

Figure 38: Selecting subject property- classified domain

170

Object -Oriented Software Representation of Polymer Materials Information in Engineenng Design

Property Editor IEIH i

Name
Symbolic
Create
Units
Figure 39; PropertyEditor- new property
Property Editor
Young’s modulus (sec. Imrn/rnin)
Name
. 'iod
Symbolic Y
Create
(I
. NP
Units
T
Datatype
Add Domain Class Polymer
Interval = 3000 d
suggest j - !
Attribute;
_| Collectable _Jvisible
Comment Methods Remove
Figure 40: PropertyEditor on existing property

Selecting o owew property will open an editor with most options greyed-ontand inactive. The veer must fill in
the active fieldy before aveepting the property, adding it to the domain, These active fields, Figure 39,
inelude; the property name, the string wsed by interfaces for property selection, eg Figure 385 the property
symbol, which the editor eheeks for uniqueness and Polymer ¢lasses use to name fnstance variables and

message selectors for the property,

After the weer enters the esventinl deseriptions, the ereate button generates the property object, setting other
attributes to the default states, The restof the window becomes active allowing the editing of these defaults,

This ds the same for windows on exvisting properties, eg Young'smodulus in Figure 490,

17

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
Editors on existing properties do not permit the deveriptive name string to ehavge or the vame symbol. The

symobol identifies the property syntactivally, the string semantically, 0 ther property attributes can change

throwgh the life of the property,

Iitis possible to generalise o property into histogram s, then the weer can specify the value in the interval
field for distributivg the histogram bars, The suggest option cawses the interface to query the Polymer tlass
for the property-values expressed by all known grades. [fawy grades define the property and assign values,
thew the query returns a set of those values, From thiv set, o rule of thumbd calewlation, derived by trial and

errory suggesty o value for distributivg the bistograms. The interval field displays the value,

Property MultiSelectView ol
MutableCompiledMethod
NameScope
NearestPaint
NilEnhancer
NoController
NonlnteractiveCompilerErrorHandler
Notifier
NotifierController
NotifierView
NullScope
Nurrfber
NumberLine
Object
GbjectMemory
GbjectWrapper
GldChangeSet
Oldligris
Gpaquelmage
Gpti mi zedLi neInformation! able
GrderedCollection
GrderedCol lection Inspector
GrderedDither
OSErrorHolder
GSHandle
QtherChange
3000 GtherChangesView
i PA

Young’s modulus (sec. Ilm
Name 8 (

A Symbolic M

. MPa
Units

Number

Datatype

Add Domain Class

Interval =
suggest

Attribu

Collectible Visible

Methods (g*

Comment

Figure 41:

PA 12
PA12G
PA6
PAG612
PA63
PA66
PAEK
Paint
PaintPolicy
PaintRenderer
Palette

Datatype

The datatype attribute (Figure 41) iv o Smoalltalk closs, & property con select any Smoalltalk clasy to represent

the value, Theoretically, the attribute should be o type, vot o class, Standard Smoalltalk does not distinguish

|

fypes beyond asingle elass so poiseuses o elass, Polymorphic classes, of the same type, which do not share

vsuperclasy, can notboth representa property sinee currently only one clasy can be selected,

172

Object -Oriented Software Representation of Polymer Materials Information in Engincering Design

Ifthe data of the property con abstract into histogram s then the “Not Collectable” attribute (Figure 42) can be
furned offc The polymer abstraction mechanism and the Comparator cheek this binary flag, Strietly it is an
attribute of the property’s datatype, vot of the property, but the development of POISE did ot address user

defived data types for engineering values,

Interval= 3000

suggest | -----m-m---
Attributes
Not Collectab le m Invisible
Comment Methods
Figure 42: Interval, not-collectable, and invisible

The fields in the PropertyEditor are imm ediately active, Changing the interval will cawse all Bistograms on
the property to wpdate. Any Comparators displaying the property will also wpdate. The immediate feedback
can moake the selection of aw interval much easfer, and allows the wser to modify the emphavis of 4 property
bistogram (§3.7.0). When working ov o particular design, the emphasis of specific properties is different,

Changing the interval ean reflect the different em phasis,

The “Tovisible” attribute prevents variouvs POISE interfaces displayivg the property sy an option. Many
properties that grades deseribe are of vo interest to a designer with a particular design problem. Removing

these properties from view lets the designer focus on the properties of fnterest,

The string deseribing the property is very drief, ensuring easy display through the interfaces, & complete
Geseription of the meaning of o property can take o large section of texte The *Comment” button provides
just osueh o space. Aldthough the example in Figure 43 ds only displaying o single loe, the ehild-window s
capable of wnlinm ited text,

I joooiieceadie jovisible

Comment | Methods | Remove

joungs modulus tested at a strain rate of 1 mm per minute.

Figure 43: Comment, method and remove

Properties deseribe elasses, The Hst of elasses thiv property deseribes v given i 2 Hst sub-view., In
Figure 40 the property deseribes the clasy Polymer. The list does not include clasves inheriting the property
from Polymer. A lternatively, the property could Hst an orthogonal elass, The “Add Dowain Class” addy the

property tooa elass, The button lists the orthogoual elasses and o velection fo oper the HierarchyEditor. By

173

()bject -Oriented Software Representation of Polymer Materials Information in Engineering Design
Gefinition, o property can not belong to both an orthogonal clasy and o tavonow e elass, The view will not

add o property toan inconsistent elaso until the other orthogonal elass removes the property,

A tlosy removes o property by selecting the class in the Hsto & removal option ds found in the menu of the
list, & property can be removed from the whole domain by selecting the “Remove” button (Figure 44). Not

only do all clasves remove the property but also the Property tlass removes the property from o list of all

pvsigned domain properties,

iy e Numi>er l
1]
Add Domain Class Fibre . J Polymer
WFilm '
UsedBy >

POISE hierarchy 1

Interval = 3000

suggest | -—-—-——-)
Figure 44: Add to orthogonal classification / remove from polymer classification
Polymer Class Bromser
v
I iTastTci'tiiPérRass~
> [>c1
Instance class J yMod
Density # yMod:
Water absorption (230C-sat.) 1L
Young's modulus (sec. 1mrn/rniti)
Strain at yield (50mm/min)
~elastic! tyPerMass
‘self yMod / (self volume * self density)
Property Method Bromser

Vicat B/50 (SON)

Vicat Softening Point (Lucas K1 .2) elasticityPerMass
Viscosity coeff. yMod:

Viscosity-shear rate yMod

Vater absorption (230C-sat.) 11
"Water vapour permeability
Young’s modulus (s*c. Imm/min)

instance class

elasticityPerMass
‘self yMod / (self volume * self density)”

Figure 45: Property method browser

10101

The Property is a spetial pto (§4.4.3). Fach Property has a sivgle instance variable. The default bebaviowr

iy two methods, Av accessor; method retrieves the contents of the fnstance variable, and a1 updator to set

the contents, Both use the symbolvame of the Property, the updator adding o colon ay is the convention for

methods with one argument, The Property methods for Young's modulus shown in Figure 45 (bottom

174

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

window) are the accessor: (yMod), updator (yMod:) and a user defined behaviour elasticityPerMass, & 11it

ofenergy absorption,

Young's modulus is o property of the Polymer ¢lass. W hen a property vompiles a behaviour, the bebaviour
immediately fnstalls on the Polymer thiss, Figure 43 showys the method it Polymer through o standard
Smoalltalk browser (ftop window). The browser groups protocols, naming each grovp and lstivg the names in
the top-left Tist, AT the methods from the Young’s modulus property are together under the name of the

property,

5.8 Transcript
The frawseript part of the POISEsession window provides the designer with o computational interface,

EBA - added to Clipboard POISEsession |
Welcome To POISE
POISE
Polymer
Thermoplastic POISEsession I
Amorphous
ABS
ASA
ASAPC
CA
EBA
EvJf
MABS Comparator
PAF
PBTAS/ Domain Properties
PC

A Welcome To POISE
self
EBA

PCMM Domain Hierarchy Comparator
J21J

Figure 46: Transcript- selecting abstract polymer Figure 47: Transcript- self
for clipboard binds to clipboard contents
Aveess tooobjects for comyputation iv throwgh o clipboard, Tn Figure 46, the abstract polywer clisy eba is
placed on the clipboard by selecting the name in the hierarchy. The Conparator tan alse place populations

of polymers on the elipboard, The clipboard notifies the vser whenever an object is put there by opening 2

small Notifier window with the privt-string of the object, and the words ‘added to Clipboard’

The varfable ‘self" autowativally binds o the object on the clipboard, when code evaluates in the
Transcript. [n Figure 47 coding ‘sedf returns the object EBA The Transcript prints the print-string of

the refurning object,

175

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

POISEsession [0101

Welcome To POISE
self
EBA

loplasti
oplastic ProspectClasses := Set with: self

ProspectClasses is undeclaired. Do you want to add It to the POISE Clipboard?

[12 [

EBA
EVA
MABS Comparator Clipboard T
PAF
PBTAS/ Domain Properties
Figure 48: Transcript- selfis EBA, then select variable for clipboard, changes self
POISEsession 10101
A Welcome To POISE
self
EBA
ProspectClasses ;= Set with: self
Set (EBA)
self
EBA
m
Comparator
nnmAin PronArtiA «
Figure 49: Transcript- define your own variables
POISEsession 10101
~ ProspectClasses :=Set with: self
#Set (EBA)
[self
* EBA
self
Set (EBA)
ProspectClasses
Set (EBA)
ConporatDr
Figure 50: Transcript- selfand ProspectClasses bound to Set with EBA

Any variable the Transcript does not recognise rafses 2 Notifier (Figure 48) asking if the variable is to be
“added to the poise Cliphoard’. The clipboard can record o number of different objects vnder different
pames, and one ‘active’ object wnder the name “Cliphoard”. Together with global variables, the tliphoard
forms the variable seope of the code compiled in the Transcript. In Figure 48, 4 variable ProspectClasses
avsigns fo o set with self (the EBA). Notrecoguising the variable ProspectClasses, the user iy given the

opportunity toadd it to the elipboard,

176

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
After assigning o varfable, the cliphboard s active variable iv left vnchanged (eg still EBA). The active variable
thanges from the variable “Clipboard” to another variable (¢g ProspectClasses) by selecting the button
currently marked “Cliphoard’ (Figure d9), The variable selfbinds to the value in ProspectClasses and the
button displays the new active variables mam e, iv Figure 30,

5.9 Summary

The walkthrowgh illustrates the funetionality built into porse as presented to the domaiv expert, The dowain
expert can define vew schewma components: grades, properties and elasses, The user van re-distribute and re-
Gefine any of these compovents, W hile porSE thanges, the effects of these changes imwediately affect the
inference mechanivm s ineluding the Smoalltalk standard inheritancee of grade properties and the poISE specific

abstraction o fabstractpolymer bebaviowr,

Tht Comparator, alse illustrated, is o window for browsing abstract polymer debaviowr, The following
chapter discwsves Spedding's wee of thiv window o contrast the polymer fom ilies while investigating

appropriate elassification,

The POISEsession lets the designer evolve s complex query in 1 Transcript, snd o sim ple exam ple is given,

POISE records the state of any avtivity in the Workbase w hen the designer leaves the session and re-instates
the session when the designer returns, The designer can continue developing the complex design queries,

searches, shortlists, and views on polymers on refurn to the vession,

177

Object -Oriented Software Representation o f Polymer Materials Information in Engineering Design

178

Object -Oriented Software Representation of Polymer Materials Information in Engincering Design
Chapter 6 Using POISE to Analyse the Polymer Domain

Spedding® uses the porse application during ber awalysiv of the polymer dowain, A Mhough her objective of
Getermining an approprinte classification differs from the objectives of a designer, they both require 2 sim ilar
analysis of the dowain, which identifies sim ilarities and differences between polymer grades. & number of
the relationships and characteristios of the polymer domain she reports foom her analysiv illustrate different
Ways ofusing the porse tools not initially coneeived when they were designed, These ways ofusing the tools

are likely fo benefit the designer sinee the analysiv iy sim ilar,

The Comparitor was initially intended to determine relationships between abstract polymers. For example,
Spedding illustrates the tensile strength of Thermosets 15 generally less than thermoplasties. Unfortunately,
thisparticular application of the Comparitor was vot as effective as expected at extending the classification
beyond the polymer families, 0ften the wature of the date obtained from campus restricted further
comparisons, Analysis between amorphous and partially Crystaline showed fewer differences than
expected whereas the Comparitor did distinguishes elasses at the ehemdeal level, The standard polym er tests
maynotmeasure the effect oferystalinity, posvibly to prevent capriciousness, Devpite the inability to further

classify, Spedding found otherwses for the comparisons,

Although campuspopulates PorSEW ith over 1000 polymers, each deseribing $0 properties, there are a large
number of Polymer tlasses and the grades are not evenly distributed amongst them . Additionally, many
properties are vniversally vopopular, e often sparse of date, with only [T giving adequate populations,
Further, the suppliers of polymers produce grades for specific markets, Suppliers generate more grades for
profitable markets, therefore the number of grades with o certain property profile is not o measure of the
polymer’s fypieal properties but a measure of the market that wees the polymer. Therefore, the abstract
bebaviour of Polymers, for exvam ple, is highly distorted by the behaviour of Polyamides, w hich are highly
populated. The Comparitor does not hide thiv bhias, butthe median oraverage value from an abstractproperty
Wil hide the distortion, & comparison ofthe populations of Polyamide and all polymers for any property will

show Polyamide as 2 strong confributor,

Although popular warkets distort the totalnumber of grades with o particular property profiles, the range of
property profiles of grades is reavonably represented, It ds possible o market driven vouwrce of data, sueh as
polymers for the awtom otive fndustry, will only represent partienlor property performance profiles, & range

o fdifferentmarkets for polymers ensures the data source representsa range ofproperty profiles,

179

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
Spedding illustrates an evample of o significantly different application of polymers while wying the
orthogonal classification in poise. Spedding used the search wtility to find the words *film ” and “fibre” in the
fext deseription of CAMPUS grades, Besides the vomplieation of locativg “Fibre-reinforcement”, the search
focated o significant vumber of these grades, Spedding declared an orthogonal class for film s, initially with

no properties, She thew added each of the grades located with the *film ™ fext to the orthogonal elass Film.

With the grades classified uvnder Film the Comparitor can display just those grades. From the Film tlass,
Spedding fownd they generally had relatively poor mechanical properties, & elass with a range ofapplications
vl fnelde grades with an extreme v o property’s performance, and grades where the same property
performance i vot significant, which will distribute the property, The Tack of data prevented any further
generalisation, but again the Comparitor and the classification demonstrated their roles fn determ ining this

tase,

Additives are another distorting effect on the abstractions, Som e properties are more significantly affected by
their additives than the polymer chemistry, Further orthogonal chissification could remove thiv factor, but
often the evact composition of additives &5 a polymer supplier's seeret, Spedding highlighted the inclusive
vature of the polymer chssification prevents the Comparitor from exceluding an orthogonal clisy of
polymers, which is necessary to remove o distorting factor, For exam ple, the Comparitor does not support

browsing for “strongestpolymernot glays filled”,

Wohile browsing a property with the Comparitor, Spedding found the text comments vseful for relating the
extrem e grades fo other properties, This i how she determ ined the effect ofadditives, The text comments can
also fnclude the application of the grade, and therefore a type ofproperty profile, or even specific property
profiles, Forevample, while browsing the density of Polyvynalchlorides, the text of grades with high
density had lead stabilisation, In the tlass of Polystyrene high density grades were noted for stability and
rigidity dmoplying o high Youwng’s wodolus, which was confirmed i another compariven, By relating the
Gifferent interface tools, Spedding inferred different types of property vorrelations, such a5 2 speeific

correlation between density and Young'smoduhis for PVGs.

I another tase, the Comparitor tlearly identified miss-placed grades and clasves, W hile fnvestigating the
exfreme impactstrengths of Polyethylene, Spedding found the two grades of the peswsubelass had a higher
impact strength, The text confirmed they were vot a polyethylene but 2 Polyethersulphone, W hith gives 2

higher impact strength,

180

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
Chapter 7 Conclusions

The representation presented focuses on the classification and abstraction of polymer grades. Classifivation
and abstraction precede abduetion, an inferenee method commonly wsed during design, which infers facts
about members of o chvs from fnformation abstracted from the elass. Conelusions about large volumes of
information are inferred from o few abstract facts, Therefore, both clissification and generalivation are
intringic to the representation of polymer materials for design. A UMhough inform ation representation
commonly dneludes o classification, the sehema in POISE builds a classification and abstracts general

properties from the classification fnto many levels of representation,

An oobject-oriented software model was adopted to implement POISE. The object s a highly abstract
computing element that provides o vumber of benefity to kvowledge representation, Bebaviovr sharing
between objects encourages abstraction and classification of knowledge and object encapsulation sim plifies
the evolution of & knowledge representation. Clags-instance languages specialive on the classification of
objects, and Smoalltalk is an evample, Closs-instance lowguages implementa striet elossification for explicitly
deseribing software, whereas real clossification iy stereotypicaly and woaintainy o level of generality, Thi
difference raised the question whether the class-instance classification can represent real classification, or i

itonly o software design mechanism?

The majority of polymer grade information depends on the grade’s chewistry, but there is also inform ation
relating to additives, processing and applications of the grade. Since an instance inherits from ove chys,
wohich dominates the instance’s behaviowr, an instance con only representdate from one clasy of inform ation,
Therefore, the elass-instance longuage con represent separate orthogonal partyofa grade, butnot a vom plete
representation of o grade becawse the complete grade does notbelong to o single elassification, The obviows

solution ds to wnite the orthogonal parts into & single object, The behaviowur of thiv object depends on the

componentyand vota class, therefore does not fit the elass-instance model,

A single moaterials elossification does vot define ofl the fnformation on grades, Therefore, the class-instance
relationship is too restrictive for an dvstance to representa grade, lustead anum ber ofinstances from different
clasifications could contribute to o grade representation, but this depends on the lowguages ability to traverse
these object boundaries through debhaviour sharing, POISE enhances the bebaviour sharing in §malltalk with
i oobjeet capable of wnifying the bebaviewr from woultiple objects, thereby extending the languages
representational ability, Thiv wnigue object inherity the ability to share other object’s bebaviowrs from the

tlass talled Enhancer.

181

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
Improving the representational abilities ofa elass-ivstance lawguage s vot the only benefit of the Enhancer.
A specialisation of the Enhancer extends the empathy between the objects it vnifies. The Enhancer provides
bebaviowr sharing that differs from the explicit dyvamic messages between individual objects and differs
ficom the static implicit behaviour shared between elasses and groups of instances. The Enhancer provides
implicit dynam e empathy between individual objects, These are general deseriptions of types of bebaviour
stharing fi-om the Treaty of Orlando®, The Enhancer is therefore a generalenbancement fo the clavs-instance

paradign .

Like the Enhancer, delegation is an example of impleit dynamic empathy between objects, Work by Ducker
fdentifies delegation ax an fmportant representational tool for profotyping design. Therefore, opportunity
exivts to represent design prototyping oo class-instanee lawguage using the Enhancer. 0ther research
com bining delegation with the elass-instance relationship calls thiv Towguage hybridisation, since they are
pormally contrary approaches contending for the right to deseribe av object, The Enhancer is 11
enhancement since it Teaves the existing Smoalltalk class-instance objects vnaffected by the futroduction of
imoplicit dynamic empathy, Objects wust explicitly permit implicit-binding, by veing the client message

rather than self.

The Enhancer is not equivalent to delegation, The name self always refers fo the provy object that owny s
bebaviour, In delegation, self refers to the delegating object. Using the Enhancer, the proxy’s bebaviour
moust look for the delegating object with the mevsage self clientbefore there ivany empathy, A lthough an
Alternative approach was investigated, where o Swoalltalk elass models o prototype by dbecoming an fnstance
o f itvelf, the wse ofthe clientmessage was votconsidered a problem for explorative design, The Enhancer’s

ability fore-program theway ithandles messages wasa dominantadvantage over the alternative,

An dnitial experiment suggests the Enhancer can support Zucker's objectives ofmodelling explorative design
oo elass-instance languages, In thiv experiment, the elass-instance strocture represented conerete knowledye
on moaterials, processes and geom etry while a1 Enhancer represents the design, which dynam feally explores
ways of combining the knowledge. The POISEsession lets the designer evolve o compler query in g
Transcript. An example query, reported elsewbere®” tested the design property of cost, o function ofall the
perspectives, The test design was specialived by refining the materials perspective, thuy demonstrating the

dynam e dbinding between design and the perspective, Experiments other than cost were hindered by the lack

ofabstract koowledge in the public domain thatcom bines information fi-om differentperspectives,

182

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
Avother specialisation of the Enhancer revolves deduetive dnheritance (§J2.0.4)0 The
PolymerDataAhstraction inherits any named property from the instanees of o class, fncluding any
orthogonal properties the instances may have, The abstraction bebaviowr then deduees 2 single abstract
representation of the property from all the valves it fnberits, The CombinedDataAbstraction is 1 sim ilir
object, but infers an abstract representation from other PolymerDataAbstraction. 1 the hierarchy, the
CombinedDataAbstraction infers the abstract properties of o superchss from ity subelass's
PolymerDataAbstractions. The Polymer tlasses them selves manipulate their messages so they inherit their
abstract behaviour from either 2 CombinedDataAbstraction 01 1 PolymerDataAbstraction. The result iy a
Pierarehy of abstract polymers that generalive properties typical of the grades they classify, from whieh the

Gesigner can dnterpretthe design benefits of the elasy,

The dynamic empathy of the enbhancer was o distinet advantage when evolving the sehema, The Smoalltalk
envirenment mway evolve elass inberitance hierarchies, which has o convequence on abstraction, When
Polymer ctlasses change their inheritance patterns, they also change the pattern of abstraction,
CombinedDataAbstraction dynam itally com pose their abstractions from the subelasses, which ensures the

abstractions are always consistent with the classification hierarchy,

Sehema evolution in Swoalltalk fs o complex wandpulation that substitutes afl affected classes and fnstances
vith o vew moodified copy. The development tools for evolving Swalltalk elasses were found highly
nefficient, often replacing the same hievarchies for each change, W hile specialiving these tools for evolving
the polymer clossification, a new type of protocol objects was defined that iy independent of 2 physical
model, These protocols are independentof the clavy, which defines the physical model of instances protocols

therefore they donotrequire re-com piling when the clags sehema changes,

The improvement on sehema evolution was o bonus feature of the independent protocols, These protocols
bave orepresentational role abstractly deseribing polymer properties, & partial tem plate object, pto, tolleets
any setofinteracting independentprotocols, & PTOcollects o re-useable setofprotocols thatmay be installed
consistently on many classes, The PTOin POISErepresents polymer properties independent of Polymer tlasses

and encapsnlates the computing concepts ofprotocoly with o coneept fam iliar to the dom ain expert,

The PTOs translate the concepts of the Polymer tlass and the polymer property in the Polymer dom ain to the
clasy and protocely i the software domain, M oving properties between classes iy o tavononmic fimetion,
Wohieh now has an equivalent process in the software domain, Presenting o bierarchy populated with domain

concepty, and without software concepts, lets the domaiv expert evolve the classifieation. Presented

183

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

appropriately, the domain expert can create and position specific properties in classes and specific classes

into a hierarchy, and POISE translates these actions into a manipulation of the software schema.

POISE supports the elassifieation process with a visual analysis tool called the Comparator. The¢ Comparator is
aovindow for browsing abstract polymer behaviowr, which divplays the data abstracted by the classification
bierarehy as histograms, Spedding’s research® utilises the Comparator extensively fo analyse the polym er
Gomain for sim ilarities and differences between classes of polymer grades, The Comparator showed that
additives had o distorting effect on the abstractions supporting the need for orthogonal classes, Unfortunately
the dato on polymers did vot consistently indicate the nature ofadditives, and a high majority bad some kind
o fadditive, so classifying fo remove the effect of additives foom ‘watural polymers was not possible. Sinee
the additive elasses were not created, the Comparator was never programmed to excelude orthogonal elasses,
Forevample, the Comparatordoes not support browsing for “strongestpolymer not glasy filled” There is ne

feehuical reason preventing orthogonal elasy exelusion,

The concurrent research into appropriate classifications tested and advanced poise a5 2 com plete system .
Orthogonal classes, new properties and new grades were added for Films and Fibres 118 ‘U sed by Lucas’.
The abstraction mechanism awtom atically updated to fnclude the deseriptive properties contributed by the
vew orthogonal elasses and properties, so for exvample, the Comparator tould displiy the Polymer tliss
1gafast filn tear-strengths from grades enhaneed with the property, although the polymer hierarchy does

votdefine the property,

POISE im ported the bulk ofthe dats from CAMPUS. The nature ofdats from CAMPUS ¢ entified some problen s
for distinguishing elosses at different levels of generalisation, Though a property distivguished polymery at
the ehemival Tevel, they did not distinguish the polymers significantly at higher Tevels of generality, which
characterised the material structure, No other polymer representation represents materials af different levels
of generalisation, Convequently, the properties corrently deseribing polymers tend to generalise over all
polymers, and often over ol materials, These general properties are wnable to distinguish the specific

stroetural differences in polymer materials, hewee clossification by strocture are vot distinguished by these

peneralproperties,

Alowg with o population ofover 1000 grades imported from CAMPUS, 1¢% Polymer tlasses and properties
were generated, which tested the database management, POISE’s database facility stored all the new objects,
and the storage remained transparent fo all POISEactivities, thereby hiding wemory managenent issues from

the knowledge representation and the domain wser, & general provy Enhancer provides 2 transparent

184

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

interface between objects of an applivation and objects held in the DBMS. M essages vent fo database objects
yiv the provy Enhancer attivate the enhanced bebaviours for requesting the DBMS to bring the object into
primary wemory and for wpdating the database with any changes, Closses do not defive this behaviovr,
fthereby making database storage available to objects of all elasses, 0 bjects wsing databave objects ay partof

their own bebaviowr do vot weed to defive trawsactions, They can treat the databave object like any other

object ofthe same type.

A database provy sobstitutes for any relationship between the application and the database, The database is
object-oriented, only ever reading one object and substituting afl ity relations with provies. & provy only

refrieves an objects ifa process sends o message to it

POISE sp e tification identifies a dichotom y in database management requirements, Database managenent for
persistence ofuser data differs from the fnterchange of data between users, The main difference is persistence
i single-wser datay and dato-interehange o multiuser data, Moanagivg multiple wsers requires the definition of
dotransaction, and o trawsaction distinguivhes a database process from other computing processes, which
com plicates trawsparency, This type of database mavagement is common to commwercisl OODBMS, W ith 1
foeus on tromsaction managementand iy integrity, Schema evolution is o type o ftransaction that s typically
very large and couwses problems for these travsaction bases system s, The bebaviowral com plexity of objects
Within POISEand their tendeney to evolve puts the representation beyond even themost advanced commercial
OODBMS. For the private date of the single-user i POISE the objectives are more limited, and more
powerfully focused on representation, than the objectives of o general-purpose management system,

Consequently, POISE has o single-user database for object persistence called 1 WorkBase, W hich adopts

Swoalltalk’s manipulation capabilities, ineluding sehema evolution,

Theunigue feature of the WorkBase is that when it reads objects it resolves differences in the sehema between
eclient and server, which allows the elient sehema and server schema to fndependently wpdate individual
objects, Twplementing this feature was simplified by the single connection poliecy betveenr the POISE
application and the private single-user WorkBase. M o5t DBMS focus o0 supporting multiple connections and
consequently complicate the client’s dependence on the verver's sehema, which the server endeavounrs to

moaintain consistent for wultiple clients,

An oadvanced object storage system iy 2 better deseription of the WorkBase than 1 DBMS betause the
application executes all object bebaviours, not the WorkBase. The WorkBase ad vantes object storage beeause

itis capable ofrepresenting complex objects withouwt prior declaration of file structure, including the elagses

185

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design
ofpolymers in the hievarehy and the bebaviowrs ofengineering properties developed by the wser, In addition,
With the belp from the databave provy, the objects maintain their vuique fentity, vswally Tost when object

storage system s remove objects from the application environm ent,

The provy manages the active lifetime of the object, The WorkBase in collaboration with the Snalltalk
moemory managenent, commifs the ofdest provies when mewmory is low thereby mavin ising the wtilisation of
primary memory, Thiv simple memory management policy i a consequence of the single-user franvaction

restriction of the WorkBase.

The WorkBase also tom m ity all provies when the vser terminates the application, POISErecords the state of
any activity when the designer Teaves the sevsion and re-invtates the session when the designer returns, The
designer can continue developing the complex design queries, searches, shortlists, and views on polymers on

return to the session,

Theone resource the WorkBase does not manage effectively iv the disk file itwses to store the state of objects,
Another weakvess in the design of the WorkBase w4y the efficienty of the DBMapping. This object provides
the primary index for the databave, Improving the DBMapping and managing the disk file were both

vnnecessary for the experimental purpose of POISE.

The focuy of this thesis hay been the software development of POISE. The software demonstrates the
feasibility of the thesis but ity overall sweeesy of supporting design, whieh dv the reason bebhind ifs
Gevelopment, depends largely on the information it contains, The software principles are well established
vith the CAMPUS data, but ity general nature will wot thorouwghly test the design principles. The inform ation
POISE tontaing mwust start to awswer design questions, Thiv may require specific properties that better
distinguish classes for specific applivations or properties that wegotiste with other perspectives to
com promise the design. &t Teast the software now exists that equips the domaiv expert with tools to perforn

these experiments,

186

Object -Oriented Software Representation of Polymer Materials Information in Engincering Design
Chapter 8 FutureWork

Thiv thesis has followed the argument that designers require advanced software deseriptions of elassification
and abstraction fo swpport their decision tasks, A long the way the research raised many questions within the
computer and material seiences, Owe question iy the switability of material properties to deseribe abstract
materials, The Taek of distinetion between amorphous and crystalline polymers wag cited as o visnally
indivtinguishable example, The need for further research fnto the relationship between clasvification and
properties deseribing its members i not conelvsive without detailed research info how designers wie
information, Onereasvon for thiv lack ofreseareh iv the absence ofan historical Tink between property use and
Gesign outeome tomeasure the effectiveness of properties iv design, Software like POISE that iy capable of
moanipulating compler materialy information vould help to determine the effectiveness of specific design
moethods using properties The software can record the historical application ofmethods towards o design, It

fopossible that sweb research wall find general properties, like thove in CAMPUS, do not answer design

questions effectively and lead fo more appropriste materials research,

8.1 Extentions For Further Design Support.
Doesign requires contributions of information from many perspectives, The design bebaviour is 2 vomplex

com bination of bebaviowr from different perspectives, POISE only addresses the representation of materinls
information principled vpon the material’s chem istry (and composition in the case of filled polymers) and it
L ity ity design support to providing an example of tools for clossifying and viewalising abstract materials,
Each vew design perspective introduees ity own challenges, Further research fs required fo represent the other
perspectives, which contribute to o design, and develop wveful design methods that integrate their various
sourees of information. Only thenw will computers aid the process of design and properly record the design

Bistory, which could measure design effectiveness for studying case based reasoning in design,

8.2 Furthering the Role of Object Orientation in Knowledge Representation
POISE ds aw example of o knowledge representation tool that does not build ov traditional expert systems

theory, POISE represents more specific mantpulation rules than role based expert systems where the general
moanipulation logic is encoded v oan inference engine, POISE v wot restricted in structuring inform ation for
the engine, The manipulation rules i POISE are object orfentated. Closses contain the rules developed for
eath type of object, which contain the information so inference iv a specific relationship between an object
and ity clasy evoked throwgh well-defined patterny of message passing, POISE demonstrates the diverse
patterns generated by object oriented systems formy o bighly expressive koowledge representation, From this

Gireetion, object ordentation needs wore study into the role diverse message handling, which drives the

patterns ofbehaviowr, could have fn knowledge representation,

187

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

POISE has alvo dntroduced some wnigue patterny of object behaviowr. Patterny are quickly becom ing
fmportant deseriptions of abstract object oriented software solutions, Patterns often have some interesting
attributes that make them particnlarly switable for solving certain kinds ofsoftware problems, The patterns i
POISE are interesting becawse they dynam feally compose object interfaces, Moost objects have o static type,
Whereas the Enhancer permits dynamic type construction, as demonstrated by the orthogonal deseription of
grades, The PTO permits the runtime re-engineering ofobject types, POISE v able to ereate these patterns in
Swoalltalky, which iv o von-typed hioguage, Typed Towguages require specific type definitions fo validate
program execution, Currently valid evecution of these patternsis not guaranteed and valid execution requires
careful dmplem entation and application. Further research would be necesvary to determine how o typed

lowguage might supportdynamic typing generated by a vim ilar pattern,

This thesis hay o highly focused agenda for representivg materials inform ation in 2 class instance language.
This foeus taekles some of the more compler fvswes inrepresenting the dowaiv, There are many other fssues
fhat fit the object-oriented paradigm very well thatat firstappearto be Tess ofa ehallenge, 0 bjectorientation
basmuceh more to offer CAD development, These fvelude wanaging engineering measurements that fnelude

Unitsand aceuraey

Eogineering design alvo fnvolves the application of design calewlations, 0 bjects can represent not just g
resulty but the whole calewlation av o method that com binves other calewlations with vew fuputparameters, The
results of ealewlations are no lowger subject to external interpretation, Tronieally, the result does not need to
Gerive o specific value wntil the designer needs it Sinee most design decisions are o trade off between
param eters, the specific values are not importantuntil the designer contrasts specific vom binations ofdesign
attributes, The object colewlates the result dynvam feally when veeded and vot just when the fput parameters

are available since these parametersmay change,

The bewefits of o completely object ordented representation of o devign wethod v that the devign process is
recordable and rewsable, [fthe devigner decidey that the inputparameters ormethod moust ehange, o traceable

route ofdependentdesign discussions can be determined, which in turn can be re-evaluated,

From this seenario, we can see thatan evolving database ofmaterials might in fact wotify the designer when
potentially better materfals have entered the database for specific designy, simply becawse the system records

the methods used to dn design conclusions,

188

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

8.3 Extensions Within the Materials Domain
POISE assumes the domain of engineering polymers can be classified into o bierarchy, This assumption

fgnores some complex material concepts, whieh challenge o hierarchical elassification, ag bighlighted hn
Spedding’s analysis of the domain, Co-polymerivation and alloying of polymers greatly com plicate the
relationship between o materials parentage and the material's physical properties, Whether the parentage
should influence the elassifieation of these kinds ofmaterial is still subject to further work that may suggest

dlternative software mechanism s for representing these coneepts,

The POISE devign could extend the domain to fnclude wetals, The characteristios of metals properties are
probably better understood than polymers and the domain iv alvo highly characterised by alloys, Both these
tharacteristies of the domain would Tend to evperimenting with the clossification of alloys and the
Gevelopment of more complex bebaviowural deseriptions of wetals, For evample work bhardening and
annealing are well studied i mwetals, and are possibly suitable for computer modelling, The benefit of
integrating the modelling with o databave iv that it is mueh easier fo relate the fest data to the computer

models and therefore derive where the model deviates fom reality,

Woetals alse have a simpler chem feal deseription than polymers, based on crystalline atomic arrangements
rather thaw wolecules, Thiv means abstraction fechnigues might be more precive, Evamples could include
abstracting the phase diagrams, commonly wsed by metallurgists, fl-om experimental date ax 2w alternative to

bistogram s,

Ceramiesare probably the least well understood ofmaterials, Their properties are dom inated by the kinds of
lattice structures the chemistry produwees, which is subject to the process wsed fo create the material ay wuch
as the chemicalcomposition, The stady of their bebaviowr will be o subject o ffurther work for quite a while,
The diffienlty i deriving o principled classification, but once determined, there iv vothing to suggest the

software patterns presented fn thiv thesio willnotbe able to represent ceramicy aywell,

J. Zucker (1989): Eugineering design computed by prototypes and deseriptions; Library, 0pen

University, M ilton Keynes, UK.

A. Goldberg and D. Robson (1983): §malltalk-80™ = The Language and Its Implementation;
Addivon-Woesley Reading, Moasvachusetts,

D. H. H. Ingalls, A. H. Borning (1982): Ml ultiple inheritance in Swoaltalk-80; Proceedings of National
Conference on Artificial Tntelligence, Pittshurgh, PA, ppl3d-237,

189

20

190

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

J. P. Briot (1989); 4 etalk: a Testhbed for Classifying and Devigning Actor Languagesin the Smalltalk-
$0 Bnironment; in ECOOP'EY, 2304,

L. A. Stein, H. Lieberman and D. Ungar (1988): The Treaty of Orlando: A shared view of sharing;
i b idi 100, ppdi-dd,

J. Schmitz, E. Bornschlegel, G. Dupp and G. Erhard (1988): CAM PUS§ plastics database; in
Plastverarbeiter 39(4), ppi0-38.

K. Oberbach (1989): P lastic Properties for Design - o Databave from the Raw Materials Suppliers; in
Polymer Properties For CADICAM , London, PRI, 3/T-5,

V. Spedding (1995): An 0 bject-0 riented System for Engineering Polymer Information; Library,
Open University, ¥ ilton Keynes, UK,

M. J. French (1971): Engineering Design: The conceptual stage; HEB London, [SBN 0 435 71650 6,
P g

A. Demaid, S. Ogden, J. Zucker (1992): M aterials Selection: 0 bject-0riented Structures for
Factoring Polymer Doformationy in Computerisation and Networking of Woaterials Databases: Third
Volvw ¢, ASTM STP 140, Bds, Thomas I Barry and Keith W Reynard, Philadelphia,

EPOS ™ vaproducetofICT Ltdy,

RAPRA: Plaseam s-200™ 3 Rubber and Plastics Research Association, Plascams Technology Ltd,
Shawbury, Shrewsbury, Shropshire, UK,

A. Hopgood (1989): 4 1 inference mwethod for selection, and its application to polymersy in A rtificial
Intelligence in Engiveering 4(4),pp 197-104,

D. Bassetti (1995): Furzymat User Guide; Laboratoire de Thermodynam fque ef Physico-Chim ic
Woitallurgiques, ENSEEG, ref 19,

P. Pechambert, Y. Brechet (1995): “Etude d 'unel ethodologie de Choiv des N oatériauy Com posites”
and “Coneeption dhwn Logieal d'Aide & T Formulation des Verres"; Laboratoire de
Thermodynamique et Physico-Chimie M étallurgiques, ENSEEG , ref 16,

M. F. Ashby (1997): M aterials Seleetion: M ultiple Covstraints and Compouvnd 0bjectives; in
Awerican Society for Testing and Moaterials, $TP 1140,

G. E. Dieter (1983): Engineering Design: & materialvand processing Approach; Me draw Hill, [§BY
P07 000896-1,

G. Lewis (1990): S election of Engineering materials; Prentice Ball, ISBN 0-13-800190-1,
P. Sargent (1991): X aterials inform ation for CAD/CAM ; Butterworth-Heinemann 0 xford, Chapter 5,

Open University (1985): Ml anufacture, M aterials and Design; 0 pen University Press,

22

24

26

27

28

29

34

35

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

R Ayres (1974): Woaterialy Process Product Modely International Research and Techuology
Corporation RefEndean, 19898212,

§. Pugh (1986): Curricnlum Design: Specification phase; 0pen University Press,

J. Zucker, A. Demaid (1989): & software machine designed for selection; o Knowledge Based
Systems D(3), pp 178104,

H. A. Simon (1981): The Science of the Artificialy M IT Press Xoassachusetts,

A. Demaid, J. Zucker (1988): & conceptual wodel for materials selection; in M oetals and M aterials
L) pp L2711,

C. S. Peirce (1958): Collected Papersof Charles Sanders Peiree; Bavvard University Press, 1938,

S. E. Fahlman (1979): NETL: & system for representing and Using RealWoorld Knowledge; in

Proceedings of the National Conference on A rtificial Intelligence, ppd-d

R. Ackerman (1908):Theory of Knowledger & critical introductiony N oG raw-Hill, ppdd-08 & 7679,
(ref).

E. E. Smith, D. L. Medin (1981): C ategories and Concepts; Harvard University Press, (ref 1),
I. Stewart, D. Tall (1977): The foundations ofmathem atics; 0 vford University Press,

D.S. Touretzky ([384):The M athem atics of Inheritance System sy PRD, Computer Seience, Camegie-
Woellon, Pittshurgh, P& TST03, also Pitwan/Morgan Kaufivann, Research Noter o Artificial
Intelligence series (1986).

M. M. Downs, R G. Greene, D. Rishel (I991): Development ofan On-Line Data Dictionary Using
Conceptual Date Modelling; in NSE Workshop Tuternal Report, Aleon Techuical Centre, U5,
Novemberppli-14,

M. F. Ashby (1989): M aterial Selection in Dugineering Design; in M aterial Science and Technology
S(lune), pp L7513,

M/Vision (1995): & product of PDA Ewgineering; Noagnetic Howve, Waterfront 2000, Salford Quays,
Woanchester M 32XV

J.E. Lee, D.E. Marinaro, M. E. Funkhouser, RM. Horn, R. P. Jewett (1931): Creating a Common

Woaterials Database; in Advanced Materinls & Processes (November),

A. Demaid, J. Zucker, S. Ogden (1991): 0 bject-0riented waterials Enogiveering Information
Woodelling and Mavagement; in TOOLS, ppl 19-134,

R. Frost (1986): Introduction to Koowledge Base Systems; Colling London,

B. Raphael (1368): & computer program for sew antic inform ation retrievaly fn ibidi 1072,

191

39

40

42

43

45

46

47

50

51

52

53

54

55

56

192

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

R. Quillian (1908): Sem antic mem ory; iv ihidi 102,

M. Minsky (1975): & framework for representing knowledge; in The Poyebology of Computer
Viston, Edso PR W dnston, M G raw-Hill,

S. E. Fahlman (1989): NETL: A System for Representing and Using Real-World Kuvowledge; MIT
Press, Cambridge, M A,

R.J. Brachman (1983): "W hat I§-4 @5 and isa't": A v awalysis of taxonom ie Hoks in 2 sem antic
networks; in IEEE Computer L6(10), ppl30-36,

I, Decio, P. Petrin, L. Spampinato ([990): Pushing the Term fnological Barrier; in ibidi 101,

M. S. Fox (1979): 0n Inheritance iv Koowledge Representationy in International Joint Conference on
Artificial Tntelligence, ppl82-184,

D. McDermott, J. Doyle (1980): N on-M onotonic Logic Iy in A rtificial Tntelligence L3(1,2), ppdl-11,

R. J. Brachman (1985): "I lied about the frees": Or defaults and definitions i knowledge
representationy in A1 M agazive 6(3), ppd0-97,

J. F. Horty (1990): A Credulouws Theory of M ived Tnberitance; in ibidi (01, ppl3-18.

P. F. Patel-Schneider (1990): W hafs Inheritonce got to do with knvowledge representation; in ibidi
L pp -1t

A. Demaid and J. Zucker (1989): Selection of engineering materials; in Scandinavian Symposivn

on M oaterials Seience , Copenhagen, Danish Society for Woaterials Testing and Research,

D. Hartzband (1985): Enhancing knowledge representation in engineering databases; i [EEE
Computer, ppldy-48.

D. S. Tsichritzis, F.H. Lochovsky (1982): Dats M odels; Prentice-Hall, Englewood CIliffs, New

Tersey,

DBTG (1971): The Database Task Grovp of the CODASYL Programming Language Comm itfee
Reporty Available from ACM , BCS and 1A G, (in ibidi37).

E. F. Codd (1970): A relational model of data for large shared data banksy in CACM L3(6), pp3T7-
387.

D. Maier (1989): M aking Database System s Fast Boough for CAD Applications; in ibidi 100, ppdT3-
582.

S. Ahmed, A. Wong, D. Sriram, R. Logcher (1991): & Comparison of 0 bject-oriented Database
Woanagement Systems for Enginveering Appleationsy in RYL-02, W IT, (Orderno, [ESL 9003, 901-03),

R. King (1989): M y Catis 0 bject-0 riented; in ibidi 100, pp23-30.

58

59

60

62

63

64

65

66

67

69

70

72

73

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

P. P. Chen (1976): The Eutity-Relationship M ode-Towards o Unified View of Data; in ACN
Trawsactions on Database Systems (1), ppd-36.

M. J. Smith, D. C. P. Smith (1977): Database Abstraction: dggregations and Generalisations; in
ACN Transactionson Database System s 2(1],

J. Peckham, F. Maryanski (1988): Semantic Data Models; i ACH Computing Suwrveys 20(3),
pplid-1dy,

G. Gardarin, P. Valduriez (1989): Relational Databases and Koowledge Bases; Addison-W esley,

G. Blair, J. Gallagher, D. Hutchison, D. Sheperd (1991): 0 bject-0 riented Languages, System s and
Applicationsy Pitman, London, [SBX 0-273-03132-5,

D. G. Bobrow et al. (1986): Comm on Loops: Moerging Lisp and 0 bject-0riented Programming; in
hidiys, pp 1719,

P. Wegner (1987): The object-oriented clossification paradign; in Research Directions in 0 bject
Oriented Programming, Edso By Shriverand P Woegner, W IT Press, Cambridge, W A, pp 4795610,

O. Nierstrasz (1989): & survey of O bject-0 riented Concepts; in ibidi 100,
R. Bred et al (1989): The G emstone Data M avagement System in ibidi 100,

W. R. LaLonde (1989): D esigning Families of Date Types Using Evemplorsy in ACH TOPLAS
LE() pp 22248,

C. Hewitt, P. Bishop, R. Steiger (1973): & universal, modular Actor formalism for A rtificial

Intelligence; in Tnternational Joint Conference on & rtificial Intelligence, pplis-143,
K. Kahn (1379): Creation of Computer Animantion from Story Deseriptions; PAD thesis, MIT,

H. Lieberman (1987): Concturrent 0bject-0 riented Programming v Act [y in 0 bject-0riented

concwrrentprogramming, M IT press,

H. Lieberman (1986): U sing Prototypical 0 bjects to implement Shared Bebaviowr; fn ibidi 35, pp
IAERYER

L. A. Stein (1987): D elegation Is Inberitance; in ibidi 96, pp 138149,
D. Ungar, R, B. Smith (1987): §¢lf: the power ofsin plicity; in ibidi 96, pp 117-241,

A. Mercado Jr. (1988): Hibrid: Twplem enting Closses with Profotypes; Noaster's thesis, Teeh Report
CS-88-10, Brown University, Providence, RL, July 1948,

G. A Agha (1987): ACTORS: & model ofconcurrent computation fn distributed systems; W IT Presy,
Cambride, M 4,

193

75

76

79

80

82

83

84

86

87

92

194

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

K. J. Lang, B. A. Pearlmutter (1988): 0 aklisp: An 0 bject-0 riented Dialect of Sehem ey in Lisp and

Symbolic Computation [(L), Kluwer Acadenic, pp. 3951,

S. Kuldoff (1990): C A P§; Aachen and Dublin, Polydata Ltd,

S. Ogden, J. Zucker, A. Demaid (1993): A dding partial femplates to class templites: modelling

property commonalities iv a produet-engineering inform ation system; in ibidi 96,

§$. 0. Keene (1989): 0 bject-0rientation Programming in Common Lispe & Programer's Guide to

CLOS; Reading, M A, Symbolies Press/dddisvon-W esley,

HyperCard (1985): 4 pple Computers Ine; California, https b percaidapplecony

S. Ogden, J. Zucker, A. Demaid, (1994): & teess Enhancement 0 bjects for Data Mavagenment in

Swoalltalk; in Internal Report, Devign Department, 0 pen vniversity, UK,

D. J. Penney, J. Stein (1986): (lass m odification in the G ew stone object-oriented DBM §; in ibidi Vi,

ppll1i,

J. Grant, T. Sellis (1987): D eductive Heterogeneous Databases; in M oethodologies for Tntelligent

Systems, B4 Dbigniew W Ravand Mario Temankova, Elsevier, ISBY 04440012958,

D. A.Moon (1986): 0 bject-0 riented programming with Flavors; in ibidi¥§,

G. A. Pascoe (1986): Euvapsulators: & New Software Paradign in Sooalltalk-80; in ibidiy5,,

C. A.R.Hoare (1973): M onitors: & v operating system structuring coneptyin Comm, of4CM 18(10),

ppidy-ist,

S. Ogden, J. Zucker, A. Demaid (1393): A ceess Enbancement 0 bjects for Storage and Viswalisation

o Smoalltalk Toformation System of Engiveering Properties; in [E4JATE 93,

A. Tonne (I990): The ISAN Toolbor version LI

bupr www heegide,

vender Georg

Heeg,

Dortmund,

Tigris "™ (1991)s Tigre Dnterface Designer, Tigre O bject System; 3004 M dssion Street, Santa Cruz, C4

$5060, Apparently Diseontinued,

BOSS© (1989): Binary Object Storage System for Swalltalk-80; Yernn
Laboratory, Palo & lte, Colifornda, & Tso published by UM IST Swalltalk Goodies Library.

S. Khoshafian, D. Frank ([988):Im plew entation techuiques for object-oriented
Advances in O bject-0riented Database Systems, eds. Banerjee, J,, Kin, W,

Woinster, West Germany, Springer-Verlag,

A. Goldberg, D. Robson ([3§3): The [mplew entation; in ibidid, pp 41566,

A. Goldberg (1984): Finding 0wt dbout System Classes;
Programming Euvironment, Adddson-W esley, pp L1194,

in

Swoalltalk™

Intellegent Systems

ind

41

tatabases; in
Kim, K, Bad

the

Interactive

http://www.heeg.de

93

95

96

97

98

100

101

1@

Object -Oriented Software Representation of Polymer Materials Information in Engincering Design

D.) . Harland, B. Drummond (1991): R ekursiv 0 bject-oriented Hardware; in ibidi 61, pplT0-298,
6. Larson (1978): D ynam ic Hash Algorithms, ibidid7,

OOPSLA (1986): 0 bject-0 riented Programming Systems, Languages and Applications; Conference
Proceedingsof dmerican Computing M oachines (ACN), eds,, SIGPLAN Notices, 2I(11),

OOPSLA (1987): Second 0 bject-0riented Programming Systems, Languages and Applications;
Conference Proceedingsof dmerican Computing M achives (ACM), SIGPLAN Notices 1I(10).

OOPSLA (1993): 0 bject-0riented Programming Systems, Languages and dpplications; Conference
Proceedings of American Computing Moachines (ACH), eds, SIGPLAN Notices, 2.

ECOOP (1989): European Conference ov 0 bject-0riented Programming;.

IEA/AIE (1993): Industrial and Eogineering Adpplications of Artificial Tutelligence and Evpert
system sy Proceedingy of the Sivth International Conference, Edinburgh, Scotland, June [, 1993,

Gordon and Breach Science Publishers,

W. Kim, F. H. Lochovsky (1989): 0 bject-0 riented Concepts, Databases, and Applications; A CN
presy, A ddison-W oesley, NY ISBN 0200144107,

M. Lenzerini, D. Nardi, M. Simi (1990): [nheritance Bierarchies in Knowledge Representation and

Programming Languages; Wiley,

M. Minsky (1968): §em antic Inform ation Processing; M IT Press,

195

