
Open Research Online
The Open University’s repository of research publications
and other research outputs

Object-Oriented Software Representation of Polymer
Materials Information in Engineering Design
Thesis
How to cite:

Ogden, Sean Paul (1999). Object-Oriented Software Representation of Polymer Materials Information in Engineering
Design. PhD thesis. The Open University.

For guidance on citations see FAQs.

c© 1998 Sean Paul Ogden

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

v jN G £ S re .v c rsC i
Object-Oriented Software Representation

of Polymer Materials Information In

Engineering Design

Sean Paul Ogden, BE (elec)

Submitted as requirements for a Doctorate of Philosophy in the

Discipline of Compute Science, Materials Engineoing and

Draign

3 March, 1998

OQT& Of 5uemv5sicH‘.3 i nnaecH
m r £ _ O f s i x a e o \

ProQuest Number: 27696793

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 27696793

Published by ProQuest LLO (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

Object -Oriented Softwtre Repretentetion of Polymer Materieb Infbimmtion in Engineering Deeign

Abstract
The software ^ h c a tio n POISE, Polymer Objects in a Smalltalk™ Environment, integrates knowledge

representation, user intofoces, and data management; a system of tools for the materials domain expert

involved in design. Engineering design solutions initially build from generalisations. POISE represents

multiple levels of generalisations from classifications of polymer information,

The class-instance paradigm classifies software objects. An object’s behaviour is an exclusive fimction of its

class. Polymer’s behaviours are a function of multiple wthogonal fectors, like chemistry and processing,

therefore multiple orthogonal classes must represent polymers. Taxonomy only represents one of these

foctors. The Enhancer m echanism resolves this conflict between classification and representation.

Polymer classification is not well established, with new materials evolving. The software compensates by

evolving the classification schema. Guided with a specialised inta-fiice tool, the domain expert updates the

schema by adding new polymer fomilies and re-classifying existing classes. Through analysing die

generalisations in the classification, the domain expert can develop an appropriate classification. This

analysis relies on the engineering properties differentiating the principal material quahties. Standard

properties do not distinguish specific structural differences in polymer materials, necessitating new

properties.

Material properties distinguish materials in the domain i^ereas the classes describe the properties of polymer

objects. Domain experts add new properties to the polymer classes to distinguish polymer objects. Properties

are indepaident objects that partially describe the class template; Partial Tenqilate Objects.

Persistence of personal design information and management of shared data requires dichotomous database

management Shared data requires multi-user access, and consequaitly transaction management Transaction

management in object-orioited systems often holds resources for a long duration. Transaction declaration

hinders transparent access to storage, and corrupts the representation. For single-usa" dcsigi infonnation,

transactions are implicit with access. Database proxies provide transparent per-object transaction

management to pCTsistent design information. The WorkBase is an object-storage utility that utilises

Enhancers as proxies.

Object -Oiented Softwne Rqwentedom of Polymer Mmeriab Wannedom in Engineering Deeign

Acknowledgments
This research was conducted in conjunction with research at the Open d iversity between November 1990

and June 1994. fimded by the research grant ŒD 4/1/1416. The research team included Adrian Demaid, Dr.

John Zucko- and Vanessa Speddmg. I thank these people both as invaluable colleagues and as friends.

Finally, this thesis would not have been completed without the emotional and financial support of

Anne Culhane.

Object -Oiiented Software Repewntmtion of Polymer Mmtenmb Infbimmtion in Engineaing Demign

Contents
ChaptCT 1 Introduction 1

1.1 Class-Instance Object-Orientation 3
1.2 Object-Oriented Support of Hierarchical Classification 3
1.3 Atetracticm of Domain Generalisations 5
1.4 Similar Properties 6
1.5 Smalltalk 7
1.6 An Alternative Object-Orientation: Prototypes 8
1.7 POISE Tools 9
1.8 Summary of Objectives 10
1.9 Introduction to the Literature Review 11

ChaptCT 2 Literature Review 13
2.1 Polymer Materials Knowledge for Engineering Design 13

2.1.1 A Conceptual Model of Design 16
2.1.2 Logical Abduction of Properties in Classification 18
2.1.3 A Sinyple Formal Classification Model 19
2.1.4 Appropriate Classifications 21
2.1.5 Conceptual Schema of the Cambridge Materials Selector (CMS) 22
2.1.6 Managing Property Pedigree and Test Data 24
2.1.7 Capricious Properties 26
2.1.8 Classification of Polymer Information 27

2.2 Knowledge Representation 28
2.2.1 Kno)^edge vs. Data 28
2.2.2 Frames 29
2.2.3 Inheritance Hierardiies in Knowledge Base Systems 30
2.2.4 Problems with Inheritance in Hierarchical Representations 32

2.3 Data Modelling 33
2.3.1 Hierarchical and Network Data Models 34
2.3.2 The Relational Model 35
2.3.3 The Relational Model in Engineaing 36
2.3.4 Semantic Data Modelling 37

2.4 Object-orientation: A Background of Principles 39
2.4.1 The Software Abstraction of the Object 39
2.4.2 Encapsulation 41
2.4.3 Messages 42
2.4.4 Empathy 44
2.4.5 Delegation 45
2.4.6 Dynamic Behaviour Sharing 46
2.4.7 Class-Instances 47
2.4.8 Actor Semantics and Prototype Languages 50

2.5 Selecting a Language 52
ChaptCT 3 POISE: Polymer Objects in a Smalltalk Environment 55

3.1 Source Data 56
3.1.1 Reading Binary Relational Table from DIF Files 56
3.1.2 CAMPUS 58
3.1.3 CAMPUS Data in ASCH Text Format 59
3.1.4 CAMPUS Data in Binary Format 60
3.1.5 The Transitive Data Model 61

3.2 System Data Flow 62
3.2.1 The Grade 62
3.2.2 The Property Object 63
3.2.3 Automatic Classification Declaration 66
3.2.4 Transfer of CAMPUS Grades into the POISE Architecture 66
3.2.5 Maintenance of Unknown Data 68

3.2.5.1 Not applicable data 69
3.2.5.2 Unstructured data: Text 70

3.3 Evolution of POISE Architecture 70
3.3.1 Description of the Classification Architecture. 70
3.3.2 Creating the Hierarchical Classification 72

3.3.2.1 Adding and removing a property 73
3.3.2.2 Adding abstract classes 74
3.3.2.3 Moving classes 74
3.3.2.4 Merging classy 75

iii

Object -Oriented Software Reprementation of Polymer Materiab Infonnation in Engmeerkig Detiga

3.3.3 The Interfiice 75
3.3.4 User Interaction with Prq)erties 76

3.3.4.1 Adding a property 76
3.3.4.2 Removing a prqjerty 77
3.3.4.3 Adding and removing classes 77
3.3.4.4 Moving classes 77
3.3.4.5 Removing classes 77

3.3.5 The Data Model underlying die Hierarchy Interfiice 77
3.4 Levels of Representation 78
3.5 Abstracting Kno^edge Creating General Concepts 80

3.5.1 Consistency between Histograms of the Same Property 81
3.5.2 Consistency between Histograms and Populations 82
3.5.3 A Summary of Functionality for the Abstract Polymer 83
3.5.4 Extending Class Behaviour 83

3.6 Ortiiogonal Property Classification 84
3.6.1 Compœite Structure fi)r Orthogonal Descriptors 86
3.6.2 Management of Orthogonal Descriptors 87
3.6.3 Adding Orthogonal Descriptors to Grades 87
3.6.4 Abstraction of POISE Knowledge in Orthogonal Descriptors 87

3.7 User. Interrogation 88
3.7.1 Histogram Visualisation: The Comparator 88

3.8 Database Managemoit 89
3.8.1 Data Store vs. Database Managemoit 90
3.8.2 Evolution in a DBMS 91
3.8.3 Database Interaction fi)r Memory Management 92
3.8.4 Multiple Interfiices 93
3.8.5 Summarising the Storage for POISE 94

3.9 Summarising the Sdiema of POISE 96
Chapter 4 Implementation 97

4.1 Sharing in Smalltalk. 97
4.1.1 The Smalltalk Object Model 98
4.1.2 The Class as an Object 99
4.1.3 Methods as Protocol Objects 100
4.1.4 The Process: Message Sends, Look-ups, and Patterns 101
4.1.5 Summarising Behaviour Sharing 101

4.2 Enhancing Message Passing in Smalltalk 102
4.2.1 Mix-in Object Behaviour fi)r Orthogonal Descriptions 103
4.2.2 The Encapsulator 103
4.2.3 Message Passing in Smalltalk 105
4.2.4 The Enhancer 106
4.2.5 Implementing the Enhancer 107
4.2.6 Implementing Orthogonal Descriptions of Polymer 108

4.2.6.1 CompositeEnhancer 109
4.2.6.2 CompositeEnhancer fi)r supporting orthogonal descriptions. I l l

4.2.7 Polymer Class Behaviour 113
4.2.7.1 Abstract polymer objects 113
4.2.7.2 ConfiMmity between populaticm and abstract polymers 114
4.2.7.3 Confijrmity across levels of representation. 115
4.2.7.4 Abstract engineering values 116
4.2.7.5 Applying orthogonal descriptions to abstract polymers 117

4.3 Delegation in Smalltalk 117
4.3.1 ScopeEnhancer: Delegation Emulation 118
4.3.2 Implementing the ScopeEnhancer 120

4.4 Hierarchical Schema Evolution 123
4.4.1 Assigning Properties to Classes 125
4.4.2 Building Classes 127
4.4.3 Properties and Partial Template Objects 128
4.4.4 A Mechanism fi)r Partial Template Objects 129
4.4.5 Generating a Behaviour of a PartialTemplateObject 130

4.5 Data Storage 136
4.5.1 Attempt 1: ISAM 137
4.5.2 The Role of Database Proxies 139
4.5.3 Attempt 2: Tigris and BOSS 140

IV

Object -Orânted Software Repieicntation of Polymer Materiab Infonnation in Engineering Design

4.5.4 The Use of Proxies to Maintain Object Identity: an Apphcation View 142
4.5.5 Attempt 3: The WorkBase 142
4.5.6 The Use of Proxies to Maintain Object Identity: a Database View 143
4.5.7 Object Circularity 145
4.5.8 Proxies and Memory Management 146
4.5.9 Implementation of the Database Proxy 147
4.5.10 File Representation: Adaptations from BOSS 148
4.5.11 Storing Class Information 149

4.5.11.1 Requirements for class data definition storage 149
4.5.11.2 Version management of evolving data dcCniliuns 150
4.5.11.3 Data migration of instances 151
4.5! 11.4 Limitations of application inherited classes 152
4.5.11.5 Requirements and limitations of behaviour storage 152
4.5.11.6 Storage of a Smalltalk class 153

4.5.12 Summarising the WorkBase 155
4.6 Summarising the Implementation of POISE 156

Chapter 5 A Populated, Fully Functional POISE. 159
5.1 Entering the Smalltalk Image 159
5.2 POISEsession 161

5.2.1 The User Defines the Classification 161
5.2.2 Adding a Grade 163

5.3 The Comparator 164
5.4 Grade Search by Query 167
5.5 ShortUsting 168
5.6 Grade View 169
5.7 Property Definition. 170
5.8 Transcript 176
5.9 Summary 177

Chapter 6 Using POISE to Analyse the Polymer Domain 179
ChaptCT 7 Conclusions 181
Chapter 8 FutureWork 187

8.1 Extentions For Further Design Support. 187
8.2 Furthering the Role of Object Orientation in Knowledge Representation 187
8.3 Extensions Within the Materials Domains 189

(Xqect -Oriented Software RqncMntation o f Polymer Material: bftHmation in Engineering Deaign

Table of Figures
Figure 1:
Figure 2:
Figure 3:
Table 1:
Table 2:
Figure 4:
Figure 5:
Table 3;
Table 4:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Table 5:
Table 6:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Table 7:
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50

Partial ordered set as a hierarchy
Taxonomic classification
A sketch of an Ashby chart
Known characteristics of Smalltalk deemed beneficial to the research
Known challenges to Smalltalk at the beginning of the research
An initial architecture of POISE
The open-aided relational view of an arbitrary polymer grade
ASCn Campus data file (edited)
CAMPUS property file
Schema of the CAMPUS polyma object
The fiictoring proc%s
POISE hiaarchy editing tool
MI vs. standard subclassing effect is the same
Cmnposite template sharing
Mapping requirements to specification.
Challenging problems to solve
Canonical memory representation of static Smalltalk objects, following Goldberg
Message redirection for Enhanca
Schema of Enhancer
Message redirection for Composite Enhanca
Schema- hierarchy editor
Code- ClassChanga consistency checking for adding and removing
Code- ClassChanga consistency checking for demoting and promoting
Smalltalk 80 compila schema
Schema- PTO linking
Scanning circularities
Smalltalk image start-up state
Selecting the WorkBase
Re-starting POISE
The POISEsession window
POISEs^sion- viewing the schema
U sa menu-fimctions ova hiaardiy editor
Grade View ova new grade EBA 23
Starting a property comparison
Abstraction display of Young’s modulus ova (partially) Crystalline polymas
Viewing films only for Young’s modulus ova Crystalline
Comparing abstractions strength aaoss four polyma classa
Comparing abstractions
Grade seach by query search in progress
Grade seach by query seach specification
Sub-shortlist a u s a defined set of grades
Grade view initial text description and specific property
Selecting subject property- Start new property
Selecting subject property - orthogonal class used for fibre
Selecting subject property- classified domain
Propert>CditOT- new property
Proper^EditOT on existing property
Datatype
Interval, not-coUectable, and invisible
Comment, method and remove
Add to orthogonal classification / remove fi-om polyma classification
Property method browsa
Transcript- selecting abstract polyma for clipboard
Transcript- self binds to clipboad contents
Transcript- self is EBA, thai select variable for clipboad, changes self
Transcript- define your own variables
Transcript- self and ProspectClasses bound to Set with EBA

20
21
23
54
54
56
57
59
60
63
71
75
84
86
96
97
98

107
108
109
124
125
126
131
135
145
159
160
160
161
162
162
163
164
165
165
166
166
168
168
169
169
170
170
170
171
171
172
173
173
174
174
175
175
176
176
176

vu

Object -Oriented Software Repiesentition of Polymer Metetmh hifbimmtiom in Engineering Deeign

Trademarks
CAMPUS is a trademark of the campus consortium, Germany.

EPOS is a trademark of ICI Ltd.

Gemstone and OPAL are trademarks of Gemstone Ltd, California.

ISAM is a trademark of Georg Heeg, Dortmund,
plascams-220 is a trademark of the Rubber and Plastics Research Association, Plascams Technology

Ltd, Shawbury, Shrewsbury, Shropshire, UK.

Smalltalk-80, Objectworks 4.0, and BOSS are trademarks of Xerox Intellegent Systems Laboratory, Palo

Alto, California.

Tigre and Tigris are tradmarks of Tigre Object System; Santa Cruz, CA 95060.

vm

Object -Oriented Software Repreuntition of Polymer Materiab Infbimation in Engineering Deaign

Chapter 1 Introduction
Computer Aided Design (cad) often refers only to the geometric design of sh^es. The shape of a design is

only one perspective on the design problem presented to die design engineer. An extœded CAD system for

managing all aspects of the design process must address other perspectives. One perspective is the choice of

material. Within this perspective is CAD support of engineering polymer materials*. This thesis proposes a

specification of polymer inftirmation, a region of knoi^edge or domain, i\iiich challenges customary

computer representation. This representation, vfrich includes evolving data types, is of particular interest to

knowledge engineers. Its implemoitation describes new software patterns that challenge object-oriented

language concepts that are of interest to software scientists. For similar reasons the database designers will

find the approach compelling. The resulting application of this representation will interest polymer engineers,

and potentially all matoials and design engineas, for analysing their domains.

A variety of polymer properties characterises die domain of polymer information. They capture the diversity

of the material and the dynamic technological advances still occurring within the industry. Each instance of a

polymer material, a grade, has properties that are a highly complex consequence of the polymerisation

reaction, chemical mix of additives and processing history. Distinguishing grades by this chonistry and

history is not helpful to design. Designers need to relate properties to the behaviour of their final product.

They design tests on samples of each grade fiir quantifying the properties that imply some behaviour of the

product. The behaviour relates to the design purpose. Although there are behaviours common to many

designs, such as the behaviour of strength, diverse products require different tests. Therefore, as well as

developing new grades, the polymer industry dynamically develops new tests to describe the behaviour of

polymers in diverse products.

A computer representation is a description of some part of the real world, the domain of the representation,

on a computer. Customary implementations of computer reproentations, such as in many commercial

relational databases, assume the description of entities in the representation do not change. Changing the

representation, or “schema evolution”, complicates database management. Logical inconsistencies, evolving

storage in memory, integrating change with data manipulation tools and applications all gaierate an overhead

unnecessary for most applications of database management systems (DBMS).

* Engineaing polymas are synfiietically produced solids composed of large molecules built from
simple repeating chemical units (monomers). They have physical properties useful for many different
mechanical and electrical engineering iqiplications. References to polyma, for the remainda of this thesis,
wül imply engineering polymas

1

Otgect -Oriented SoAwmre RepnMntntion of Polymer Miteriab Infonnation in Engineering Deaign

Computer representations supporting schema evolution are often object-oriented. Object-orientation is an

approach to implementing software. Objects tie data widi computer processa that manipulate tibe data. The

description of the procas is à protocol. Computer processing depends only on the local data and the

protocol. Together they produce behaviour in the computer that characterisa the object. A schema change in

individual objects only affects the internal workings of that object. This localisaticm of change is a

characteristic of objects called encapsulation, and m aka schema evolution simpler to manage.

Schema evolution is still complex, even with encfq)sulation in the language mo(tel. Schema evolution is like

software programming. The changa require knowledge of die schema to ensure each change is vahd. The

crator of the schema, the programmer, possasa this knowledge, not the user of the schema. A changing

polymer domain needs sdiema evolution throughout its Ufe, not just during programming. Empowering the

user to manipulate the schema requira specialised software tools. Developing these tools requira a study of

schema evolution in context of a specific schema fiir matoials information to identify wiiat needs to change

and how to maintain a valid representation. In particular, die implementaticm of the language and database

model considers the following general diaracteristia of die schema:

• Materials Classification

• Domain property inheritance

• Abstraction of domain generalisations

Software representations of materials classification exist, but representing the classification procas is novel.

Inheritance of domain propertia and abstraction of domain genaalisaticns are inference mechanism that

follows on from classification.

Generahsation perfiirms an impotant role during die conceptual analysis stage of daign. For example,

plastia and metal are both generalisations from the domain of materials. In the early staga of daign, “the

crucial decision-making steps [during daign] in being able to deploy domain generalisations effectively are

substantially qualitative"^ A step such as approximating the daign parameters to test the feasibility of the

daign concepts. Using the typical valua of property performance to compare plastia versa metals is more

effective than concluding from the specific value from a material t a t (like the ta t result few tensile strength

of Huels’ VESTOLEN high-density polyethylene).

Each of die listed characteristia is a unique development in the object-orientated representation of materials

inftirmation. A database capable of evolving in a consistent manna i^hile performing these tasks will

2

Object -Oriented Softwtre Reprewotttion of Potymer Mtteritb Informttion m Engmeermg Deeign

question and challenge the very way objects are organised and communicated. This research presents

answers to these questions in a chosen object-oriented language. The apphcation developed to demonstrate

this research, called POISE, includes the evolution of classification, evolves the descriptions of polymers, and

Tnaintnina storage and user interaction throughout this evolution. To further introduce these issues requires a

more detailed account of object-orientation.

1.1 Class-instance Object-Orientation
Classification commonly organises die polymer domain. A majority of object-orientation supports

classification of objects. In class-instance languages and databases, the class groups similar objects. The

class formally defina the relationship between the structure of data and the protocols for a set of objects. An

instance is one of these objects.

An object’s behaviour depends only on the local data and the protocol. Eadi instance inherits protocols fi"om

the class and they add their local data to specialise the behaviour, Those with the same data behave the same.

Different data produces similar behaviour, since the protocols are the same. The protocols describe die

abstract behaviour of the class. Instances share this behaviour by inheritance. For software development, die

motivation for inheritance is the re-use of a common protocol, vhich minimises coding. Inheritance also

fecilitates representation through the development of abstract behaviours.

Behaviour sharing complicata schema evolution. Instances share the behaviour from their class. A change in

the class affects all the instances. No change in the class can apply to some objects and not others. The class

can not define behaviours that only apply to some instances. For this reason, the principle of classification

must be appropriate to the viiole domain, and not some arbitrary portion. An jqjpropriato classifiGation also

generates useful generahsations. Classification is important because generahsation is principle to the process

of design.

Inheritance between classes generaUses behaviours even furtha, forming levels of rqiresentation. Objects of

different classes maŷ have common behariours. By placing the protocols for the common behaviours in a

superclass, many subclasses can share the protocols by inheriting them. The result is a hierarchical

classification, or taxonomy.

1.2 Object-Oriented Support of Hierarchical Classification
Taxonomy is the process of classification into an ordered hierarchy, forming the frunihar femily-tree shape.

Each class in the classification groups similar inftirmation. This similarity is general to the members of the

class and, therefore is a generahsation. The benefit of taxonomy, over arbitrary classification, is die branches

otgect -Oriented Software Repremeotation of Polymer Materiab Inlbnnatioii in Engineering Deaign

of the hierarchy differentiate between classes. These differences thœ support comparison. A taxonomic

classification of materials information can support design decisions by relating similar domain

generahsations and distinguishing relevant differences.

Often a process of speciahsing generates the classification by distinguish the description of one class firom

others. Class-instance languages support speciahsation in classification through subclassing. Subclassing

extends the behaviour of a class. Each subclass inherits ah the behaviour from one other class then adds its

own specialised behaviours. Eadi subclass is a class that may be subclassed furdier. This forms a tree-shape

hierarchy with each class branching to many subclasses. For example the subclass Aeroplane, a member of

the class Flying_machines fi-om wbich it inhoits the general ‘behaviour of flight’, garaates an instances

DC10_NZ001. Aeroplane could be further subclassed by a class DCIO, which contains behaviours that

specialise DC 10s fi-om other aeroplanes. The inheritance relationship between classes and their subclasses

forms a hiaarchical OTganisation. All instances of a class share (inherit) the same protocols, thus share

similar behaviour and satisfy classification.

The class provides the definition of a rqiresentation and a taxonomic classification. Classes can both

represent and classify polymer information, such as those polymers considered nydons. The class Nylon is a

template fia an instance of polymer NylonJSrade. Here an instance models a grade of polymer, a particular

brand of a suppher’s raw product that conforms to a set of properties. Equally, the Nylon class inherits

behaviours describing properties from the class of P artia lly _ C ry sta llin e polymers. The network of

inheriting polymer classes is a classification. The classes themselves define the structure and protocols for

representing grades. This research poses the question whether the class can represent polymers exclusively

without compromising die taxonomic classification.

The class-instance paradigm as interpreted by many object-oriented languages has drawbacks iriien

representing polymer injformaticn. The drawback stems from the strict nature of inheritance between

instances and classes. Classes exclusively define the properties of instances; they can not individually extend

their properties. This limits the instances cfqiabihty to model Nylon_Grade. All instances of a class must

extend their properties together. An instance can change its monbership to a subclass and add different

properties to the subclass. Such ad-hock subclassing, solely fia extending property descriptions of instances,

conflict with the use of the class hierarchy as a taxonomy of the domain. Extending property descriptions will

require a mechanism fia behaviour sharing orthogonal to inheritance.

Object -Oriented Software Repreaeotmtion of Potymer Material: Information in Engineering Deaign

Conversely, Nylon is as much an aitity as a grade. Although Nylon is an abstract concept, abstract materials

have as much functionality as a grade in calculating a design. The class is not normally a computable object

like instances. In some languages, die class is an object with the behaviour to create other objects and provide

those objects with protocols. In addition to providing a description to grades, and evolving diat description,

the class of a polymer material needs to respond as a generahsed material, giving responses typical of the

grades it classifies.

A grade describes a brand of material, not the material itself The material results from a common production

process. It is probably subject to a quality control on a limited set of propertia, a profile selected for the

grade’s intended use. The r a t of the propertia are genoalisations that are similar due to the common

production process. So, is a grade also abstract? Njdon is abstract because it doa not reference specific

exampla, and it should even generalise unknown Nylon grada. Nylon is a common chemistry, and the

principle of the classification is based on the belief that chemical composition strongly a tab lisha the

propertia. The grade doa reference specific exampla. If a new sample of material d o a not fit the grade

description, then supplia rejects the material, not the concept of the grade. If a new N>don d o a not fit the

abstract description of Nylon thoi the classification rejects the abstract description on principle.

Thae is no epistemological reason to distinguish a grade and an abstract material in the way object-

orientation distinguisha the functions of classa and instanca. Instanca represent grada because the

structural function of instanca suitably represents the conaete property^valua that data supplias provide on

grada.

1.3 Abstraction of Domain Generalisations
The application of domain generahsations, like Nylon as a daign material, is a characteristic of the domain.

Domain experts typically talk of the propertia of Njdon in comparison to otha goiaal materials. Each

generahsation from a classification forms an abstract concept. This concept abstracts a general behaviour fra

each property in the classificaticHi. Since daigners use these abstract concepts, any knowledge base on

polyma information should contain a representative entity for computaticm in daign. The class Nylon should

not simply create instanca of grada but also behave as an object that abstracts the propertia of those grada

and provide them for daign.

For example, a domain expat might consida the use of N)don a Polypropylene for the manufecture of a

washing bowl. Hae, N)don genaahsa the charactaistics of the wfrole population of the class Nylon. If the

propertia of Nylon deem it unsuitable for the daign of a washing bowl, then no grade in the class will be

Object-Oriented Software Repreacntation of Polymer M itcmb Infimnation in Engineering Deaign

suitable. To a less formal degree, if Polypropylene shows desirable strengths in comparison to Nylon, then

Polypropylene may be a better class to initially search for a solution.

With a populated claoGificationj tho proportiec of domain gmeralisationB can be implicitly inferred through

analysing the properties of member instances. Distributions of the explicit properties from grades are useful

indicators of the generic behaviour of the domain goieralisations. Quantitative comparisons of these

distributions are possible between classes of different polymers, which provide support to qualitative

decisions^ during die search for a design solution. This process of generalisation is called abstraction, and the

generalisations created are abstract polymers.

The properties of atetract matoials are also a useful estimate fiir the value of a member grade \riiere the

property has not been measured. With the continual addition of new properties, the condition of data absence

or “sparse data”, is intrinsic to an evolving database. If specific data is not available then a defeult value may

substitute. The defeult value is a property of a classification that sparse instances inherit For a dynamic

classification this inherited value is the same value the domain abstraction exhibits, eg the propoty of a

Nylon grade expects a value similar to otha Njdons, which is die value abstracted by the general conc^t of

Nylon.

This relationship between the abstract concepts in the domain and member grades of a classification also

strengthens the integrity of the knowledge base. New grades exhibiting a property outside the expected

deviation of values in a classification are identifiable! The Imowlodge base can thai query these entrisSj dius

decreasing the chance ©f data entry oitotj and incræsc intcgrit)'.

1.4 Similar Properties
Object orientation supports sparse data dirough inheritance of a defeult \'alue. It also allows processes

specific to an object. A protocol inhoited by an instance can distinguish a measured value from the sparse

state and obtain a default value from the class generalisation. Alternatively, it can query the instance for other

‘sim ila r’ properties, where similar is a subjective quahty the knowledge developer encodes in the protocol.

With this knowledge, a protocol can generate a specific process or behaviour of the instance that infers

defeult data from a similar property' or properties of the instance.

Sim ilar properties in materials describe a different test measuring similar physical characteristics. This results

in different values but similar properties will rank relative performance between materials the same.

Ooeasionally coirolatim between properties can bo determined within certain material contexts, eg tensile

strength and hardness ooirclation of some polymer families. In the simplest case ̂ a similar propertjf may

Object -Oriented Software RepietentatioD of Polymer Materiab Information in Engineering Design

substitute for another in analytic calculations. The difficultly with using the correlation between properties of

polymer materials is their uncertainty, poor accuracy and contextual dependency on die type of material and

other perspectives, like geometry and environment. Calculaticms using the correlation, or any inherited

defeult value, need to quahfy their results, eg an audit trail. This element of the design domain has not been

pursued further in this research, but its importance is identified.

The relationship between properties, such as these conditional correlations, has highUghted that besides the

values describing grades the properties are themselves entities in the domain. The property contributes to the

representation of grades, as a class contributes behaviour to instances. Therefiire, representing the

relationships between properties involves structuring and manipulating relationships witiiin classes. In

addition to a class structuring and manipulating the protocols of instances, now another representation must

structure and manipulate the protocols representing properties in the classes, and thereby model the similarity

between properties and their contextual application.

All class-instance languages manipulate instances. Instances are known as ‘first class values’. Not all

languages permit the manipulation of the class. The manipulation of classes as first class values permits the

evolution of the schema for describing grades and permits experiments that relate the material properties. The

schema describes domain classes as a collection of matoial property descriptions. These describe grades of

polymers that collect or infer foe values jfor each property. If foe software class can be manipulated then an

interfece could empower foe domain expert, not just foe programmer, to add and remove property-objects

that evolve a class, and propagating foe schema change to subclasses and instances.

In many class-instance languages, foe class is not a first class value and the class definition is static. In others,

foe class is an object capable of change that affects foe schema of foe instances they define. In these

languages foe classes can represent and evolve a classification of foe domain. Smalltalk-80™^ is a language

belonging to foe class-instance paradigm that allows classes to evolve their description. Both foe description

and manipulation of objects occur within a single aivironment without any separation of foe two activities.

This permits foe development of a computing system that both manipulates and describes objects. Smalltalk

is foe language chosen for developing POISE, Polymer Objects in a Smalltalk™ Environment

1.5 Smalltalk
Unlike most languages, Smalltalk™ is an interactive programming aivircmment, so programming is an

activity of small iterative changes to foe definition of objects that are immediately active in foe environmait

Smalltalk™ is a large library of classes, and foe objects in foe environmoit with foeir source code constitute

Object -Oriented Software RejHaentitioD of Polymer Material: Infbimation in Engineering Deaign

the software itself This resource simpUfies and shortens the software development procas. An esoteric

feature permits the manipulation of even foe language compila, wfoich is also part of foe library. It is possible

to extend foe language. Smalltalk has often been used as an experimoital t a t bed fta language research.

Exampla include extending Smalltalk for multiple inheritance^ and developing new Actor language

hybrids*. The research conclusions are not isolated to foe Smalltalk environment but %q)ply to any computing

envircmment that can develop foe featura studied.

A section of this foais (Quqita 4) is dedicated to language extensions. Although these extensions came

about because of a need in Smalltalk, they are not believed to be unique requirements of Smalltalk for foe

support of materials representation. An examination into foe nature of foe behaviour sharing that foe

extensions apport justifia this belief

The first extension is foe Enhancer, wtiich is a very genaal mechanism for extending foe messaging in

Smalltalk. In a class-instance language foe control of m asaga passa along a strict pafo from instance to

class to supaclass. The Enhancer enabla individual instanca to specify an extension to this existing pafo.

Messaga alien to foe standard classification of foe object can find meaning in foe extension. The extension

enhanca foe behaviour of foe individual instanca.

The second extension is foe Partial Template Object (PTO). The PTO is an abstraction of foe class template.

Each class often defina categoria of behaviours. The ptû defines an abstraet ealcgory o f bchaviouis

independent of foe class. The PTO then consistoitly installs itself on any numba of specific classa. Furtha,

foe PTO maintains changa to foe abstraction on foe specific classa. Alfoough this implementation of PTO

affects classa, any object paradigm with a rqxwitory of behaviours could take advantage of this kind of

abstraction. The m echanism is of particular interat to any system supporting schema evolution since it can

quantify formal changa to foe schema.

1.6 An Alternative Object-OilentatlQn: Prototypes
The class-instance representation of materials is not foe only possible course of action. An alternative

approach u sa prototypa. A prototype is an object that managa both data and protocols. Both foe data and

protocols are available for otha prototypa to inherit. A grade as a prototype can add its own unique

protocols like a class. An abstract material can rapond wifo its own behaviours like an instance. Zucka‘

u sa prototypa to represent foe purpose of material selection in daign.

The different virtua of class-instance and prototypa^ have been well argued. The consensus is that they

a c h describe a different type of behaviour sharing, and neitha limit languaga to these typa. Thaefore, it is

8

Object -Oriented Software Repietentation of Polymer Miteriab Information in Engineering Design

more relevant to study the specifics of the behariour sharing supported by a language. Zucker’s work io

reviewed for its unique contribution to behaviour sharing, wfoich extends delegation with enforced

classification. He uses this combination to represent the evolution of the design description, or the

‘apphcation perspective’. This thesis invatigates the use of the Enhancer to see if it will support Zucker’s

objectives. The E nhancer extends classification with dynamic inq)hcit empathy, a type of behaviour sharing

similar to delegation.

An exanq)le of the application perspective of a disposable cup is the description; “Rigidly contains water at

100®C” and “Connects to a surfece of less than 30®C’ fia a handle. This description of the application is

independent of the material. It does not convey a restriction on die matoial properties explicitly, ie the

disposable cup does not specify a material rigidity at 100®C. A prototype of this descr^tion combines

information fi-om other perspectives, such as a materials perspective, and deduces if die material satisfies the

design purpose. Consider a polystyrene cup wfoere die thamal conductivity of the material and the thickness

fi-om the geometry perspective could conclude the outer surfece of the cup remains much lower than 100®C

and m aintains rigidity at this lower temperature. Other prototypes specialise the geometry, adding ribs to the

cup, thus reducing the stiJffiiess required of die material at 100®C. Decomposing prototypes into perspectives

enables each to evolve independently and structures the design problem.

If the object model representing design abstracts design into an p lica tio n perspective and a materials

perspective, then the application perspective is an object that shares behaviour fi-om objects representing

materials. Odia objects also share behaviour fi-om materials, like the user-interfece that displays a matoial.

These objects are all users of materials’ behaviours. The software design of the materials perspective impacts

on all diese objects. The software design also depends on the languages ability to traverse these object

boundaries through behaviour sharing. The software design must also consider the effect schema evolution

will have on the consistency of behaviours. Overcoming these difficulties in die materials paspective is the

main modelling issue adcfiesaed in section Chuter 4, as it applies to Smalltalk.

1.7 POISE Tools
POISE provides a number of user interfiice tools for manipulating the classification. One browser empowers

the user to define new properties. With anotha, the user assigns properties to classes within a hierarchy. The

same browser also moves classes and defines new classes. A modified Smalltalk engine for schema evolution

ensures consistency and siqiports the abstraction of new properties added to classes. These abstractions are

then viewed in a third browser for comparing the general properties of classes, such as the toisile strength of

Nylon.

Olgect -Oriented Software Repmcntatam of Polymer Materiab Infonnation in Engineering Deaign

To determine the general tensile strength of Nylon requires a significantly sized population of knowledge on

N]^ons. A data acquisition tool initially populates poise by reading information from an existing materials

database called CAMPUS™^’̂ . cam pus holds data on raw polymers from many major suppliers. CAMPUS was

readily available and it contains a large peculation of polymer grades and a cemsistent set of properties. A

class called Polymer defines these general materials properties, cam pus defina a chemical frimily property

for each grade. The data acquisition tool u sa this property to define a class that inherits from Polymer. This

class generata an instance to represent and initially classify the grade.

With the tools developed and a population of grada, a separate study by Spedding* u sa POISE to determine

an “appropriate” taxonomic classification of polymers for engineering daign. The classification abstracts the

domain generalisations on vfoich foe daigner visualisa foeir qualitative judgements of similarity between

propertia. Hence, foe nature of foe classification affects foe groiq)ings of similarity within foe domain. An

appropriate classification is one that groups similar materials icpropriate for foe task, engineering daign, and

preferably daign in general rather than specific daign.

Speddmg u sa foe tools to compare foe abstracted propertia of foe cam pus polymer frunilia. One

observation was foe wide-ranging effect additiva had on foe propertia. So in a single polymer femily

significant deviation in property valua were due to foe different additiva and masked any expected concept

of similarity. The Enhancer was a consequence of this discovery. The Enhancer permits gmerahsation over

secondary groupings orthogonal to foe polymer classificatim. Orfoogcmal classa like Film and Fibre can be

viewed independently of bulk engineering polymers, wfoich are engineered for extreme geometric conditions.

These grouping are orthogonal since they are a group of foe wfoole polymer population dedicated to

supporting a specific property of another perspective.

1.8 Summary of Objectives
The underlying objective is to resolve foe software issua arising from implementing in Smalltalk a

repraentation of polymer information iataded for daign. The asential requirements for daign are foe

domain concepts of material propertia, taxonomic and orthogonal classificatioa, and abstraction. The

domain expert déclara foe polymer classification and agineering propertia, and foe software evolves foe

schema accordingly. This user-defined sdiema rqiresents a classification from specific grada to generahsed

polymers.

The intention is to build this representation into a working ^h ca tio n . Ihe POISE application requira a

management system for foe persistence of daign knowledge contributed by foe user, and effective graphical

10

Object -Oriented Software Repreaentation of Polymer Material: Information in Engineering Design

user intofeces for driving foe tools, and import fecilities for transforming relational data into foe object-

oriented representation. These features are significant because they must consistently perform foeir tasks as

foe schema evolves. Each esoteric phenomenon of foe representation is thoroughly described, but a formal

study into each is avoided since they are a consequence of performing foe research into foe representation.

Special attention is given to foe properties of foe language extensions since they are a criticism of foe

underlying object model supporting foe representation.

1.9 Introduction to the Literature Review
The use of classification in design is foe principle that suggests a class-instance language strong on

inheritance will provide appropriate support to engineering design decisions. This conceptual model of

design is reviewed, putting classification in perspective wifo foe task of finding a suitable material

description to match foe product specification. This in turn demonstrates foe dependence on preconceived

concepts of similarity because set foeory limits classification. The question is then one of choosing a

classification, an appropriate classification, for aigmeaing design. Current literature only suggests foe basis

for a classification is on principles of foe material’s physical characteristics, and not on foe use of foe

materials, vfoich are only indirectly related to physical characteristics. The review then presents Spedding’s

in-depth analysis of classification that utihsed foe software product of foe present research.

Substantial literature exists on foe science of representing knowledge from basic computa data. Frames are

introduced as a sample of this field. They arc also an early applicatimi of inheritance for foe representation of

generalised descriptions, hfooitmce is not a simple issue in knowledge rqaesentation. Wifo classification,

there are often exceptions between foe generalised descr^tion and individual entities. If entities inherit

characteristics from foe generalised descriptions, mechanisms must permit exceptions to foe inheritance of

properties. This though can lead to logical inconsistoicies in systems wifo multiple inheritance pafos.

Data modelling studies foe structures fra containing data. All computer languaga and databasa are built on

data models. Many still use simple record structura. Over large quantifia of data, foe relational model

provida manipulation tiiat is more flexible. In engineering, it has limitations due to foe wide range of typa

of data. Each polymer property introduca another type of data to relate to foe material.

Data modelling only structura data The m aning of foe structural components is simple and homogenous.

Semantic data modelling classifia common typa of relations. These typa add more meaning to foe structure

of the Hatfl The arguments for adding semantia to foe data is equally applicable to developing a semantic

model for adding propertia to classa of polymers in an object-oriented system.

11

otgect -Oriented Software Repiacntation o f Potymer Material: Infimnation in Engineering Deaign

The concept of the object is addressed thoroughly. Enc^sulation, messages, empathy between objects, and

delegation are described. These are foen related to foe two main types of languages, foe class-instance and

foe prototyping languages.

The rest of foe thesis splits into foree parts: Specification, hnplementatian and foe Application.

The specification of POISE details all of foe features built Namely foe data acquisition, grade instantiation,

classification, generalisation, abstraction, u sa interfiice design, and data storage.

The implementation specialises on foe language extensions, foe Enhancer and foe pro. A numba of

applications utilise foe Enhancer in particular, including enhancing grada with orthogonal description,

enhancing classa with generalisation and abstraction, applying foe Enhancer to a variation of delegatim, and

enhancing any object wifo persistoice in an object storage. The PTC is part of a larga discussion on foe

mechanism providing schema evolution to foe polyma classification.

Two chaptas re-enforce foe application of POISE. The first is a walk-through description that demonstrata

foe u s a interfiica and foe undalying functionality. The second presents a domain expert’s conclusions

raulting firom using foe application. This domain expert, Speddmg, examined foe domain fia appropriate

classifications.

12

Object -Oriented Software ReptCMOtation of Polymer Materiab Infbimation in Engineering Deaign

Chapter 2 Literature Review
“The claim foat method may prompt inventive steps [in design] will seem rash, if not ridiculous, to
some. But argumoits, which can be built on the lines put forward here, will often reduce to a
marching logic which leads inexorably to a minor but unmistakable invention”^

The representation of polymer materials information fia design is itself a software design problem. The first

stage of design methodology is to specify the objectives. The objectiva then decompose into a number of

specific software requirements fia achieving each objective. One objective is to identify suitable mataials.

This literature review follows the current argument that browsing through a classification of mataials meets

this objective. Along the way, the review introduca otha works contributing to o tha objectiva in polyma

materials representation.

Browsing introduca requiremoits on the representation of infiamation. Browsing views groups of

information. These groups need representing. Browsing travasa the relationships between groups. These

relatioudlips need representing. Thae groups and their relationships form a classification. The review

analysa a conceptual model of the daign problem to collect concepts of similarity to group materials fia the

d a ig n a to browse and identify the nature of the classification. The review then proceeds to review work

defining similarity, abstraction, generalisation, classification, appropriate classificaticm and problems with

classification.

A fta specifying the software requirements, a broad solution is sought in terms of representation technology.

Although the software methodology has already been identified, namely object-orientation, this should not be

confused with the knowledge representation model. Although many knowledge representation models w ae

developed in non-object-oriented software languaga, an object-oriented language could implement them

(and in some casa more effectively). Indeed, the review introduca knowledge representation featura that

object-oriented languaga adopt in their object model, like inhaitance, and will enhance foe polyma

information representation.

Finally, foe review introduca in detail foe object model for software development This review provida foe

necasary background to convey the significance of foe language enhancements found necessary to achieve

foe representation.

2.1 Polymer Materials Knowledge for Engineering Design
The supplias of materials generate vast quantity of materials knowledge. Supplias tailor much of this

infiamation to foeir customers, foe daign enginea. Demaid et al*® cfoaractaise materials infiamation as rich

and complex, and much of it for beyond foe capability of curroit databasa to analyse. In Spedding’s®

extensive review of materials information available from suppliers, she descnba “a wide variation in foe

13

Object -Oriented Software Reprcaentatk» of Polymer Mmterimla Infimnation in Engineering Deaign

form and level of detail of the information”, usually disseminated by supplier data sheets. Within the

information there is a subset of materials knowledge that software can help analyse. Supplias of materials

even tailor some information fia software analysis.

Supplias contributing to the CAMPUS®' ̂project agreed to a standard of data presentation. EPOS™** is a similar

standardised system by the supplia ICI. They provide a unifiom data structure and comparable data. This

enables a database ^proaeh to infiamation storage, rotrie\'al and analysis by query. The CAAffUS database

software supports materials comparison against a template. The template is a query that describes ranges of

property values of in taest A query then selects all materials that satisfy all the range conditions. Once the

selection result reduces to a manageable numba, CAMPUS can retrieve a text description of each material.

The text recads information too complex to analyse by the query mechanism. At this stage, the domain

expert must analyse the remaining infiamation.

The quay procedure dictates the extent a database system can analyse information before u sa intervention.

The objective of a query procedure is to reduce the numba of candidate materials. At the same time, the

query should not reject materials that might not be optimal but could satisfy the design criterion through

compromise.

Plascams-220™*^, a product of the Rubba and Plastics Research Association, has a similar representation to

CAMPUS but advances on simple numerical comparison, and instead the query procedure ranks materials. The

ranking could avoid rejecting any material, but in practice, many materials towards the bottom of the hst are

not useful, so an arbitrary limit is placed on list size to reject those materials.

Ranking mataials against a single property criterion is simple. The difficulty arises Wioi two design

criterion conflict This is common since optimising one property will rarely optimise anotha. In Plascams^

220 the désigna places a weighting on each property the désigna wishes to optimise. The ranking algorithm

can bias eadi laopoty foen sum the biased values for ranking. Zucka* analysed the ranking algorithms

ability to promote suitable solutions and found they do not model well the activity of selection by désignas.

Consequently, potential candidates a e lost fia down the ranking. Furtha, Hopgood*^ finmd the infiaence

mechanism gave a poor property with low importance a weaka ranking than a poor property with high

importance. Hopgood suggests an alternative inference mechanism (aim) that gives a ranking more in line

with designa’s expectations.

Others use ‘Tuzzy Logic” ****̂ to define a probability profile for measuring a material’s suitability. Simply

put, the weighting, or profile changes depaiding on the properties distance from a satisfectory value. All rely

14

(%ject -Oriented Softwne RepreMntnion of Polymer Materiab Infonnation in Engineering Deaign

on the designer’s judgement for weighting one property against another to correctly bias the ranking towards

the desired design qiecification.

Ashby*® addresses the problem of combining design constraints. First, he converts individual properties

constraints to Dieter’s merit indices* .̂ A merit index applies the physics of the design problem to relate

material properties, eg “specific stiffiiess, E/p (Wierc E is Young’s modulus and p is density) ... large values

of E/p are the best candidates for a light, stiff tie rod”*®. The difficulty is often devising tqjpropriate indices

for specific design problems*®.

A design can have multiple merit index constraints. Ashby proposes that ‘subjectivity is reduced or

eliminated by employing the “coupling equation” method and the mediod of “currency exchange”’*®. The

coupling equation method combines multiple design constraints on the same merit index fimction. More

commonly, designs have different design objectives, and therefore different unrelated merit indoE foncti<ms.

For each objective, a judgement of value is given to its m oit index. The judgement of value provides a

common currency for trading off the design objectives. This currency exchange minimises the subjectivity of

the judgment

Software technology is still a long way from developing a query procedure that returns a list of ranked

materials that satisfy a design specification. Judgemait is still required to trade off between different

criterion. In cases wfrere there is no physical foundation for judgement, Ashby’s currency exchange and

Sargent’s review of the problem of decisions and selection*® are the only available approaches. Promoting

judgements with physical foundation, wfrich are always superior, will minimise subjective judgements.

Although this is the objective of the computer aided design systems, there will always be need to suppôt the

subjective judgements.

Where the user is not able to specify requirements essential for conducting a database search, foe metaphor of

browsing*® offers a different approach fia obtaining a soluti<m, Furfoer, browsing infiamation in a way that

reflects foe physics of the materials will promote judgements wifo physical foundation. Browsing has added

benefits. It siqyports information both well represented and poorly rqaesented, complete and incomplete.

Interaction wifo foe user is also more likely to support evolution wifo design.

Browsing to a solution depends on foe presentation of foe information to guide foe designer. Software

support for browsing needs to present foe infiamation in a useful way. Browsing therefore has different

15

Object -Oriented Software Rqaeeenimtion of Potymer MmterimI: Infbimmtion in Engineering Design

demands on information representation. A conceptual model of design identifies the objective of the

designer, thereby identify ̂ a t the software needs to present to the designer.

2.1.1 A Conceptual Mode! of Design
An engineering design application starts with a loose description of performance of the desired artefiict. At

this point, the artefect does not exist What does exist, to a greata or lesser extent, is a Product Design

Specification (PDS)^®’̂ *. The PDS is a fimctimal and formal statement of requirements, not a description of the

product itself Inevitably such a specification will be incomplete and contain errors, eg a prototype of a

kitchen %q)phance attracting dust will trigger realisation that electrostatic propertia of the polymer are

relevant for the saleable appearance of the appliance and the extra requirement added to the PDS. The use of a

PDS to categorise title design process is discussed by Pugh^ .̂

As the design activity progresses foe PDS will evolve. When gaining new infiamation and correcting existing

information foe design problem changes and hence foe PDS changes. Ill defined or iU structured problems

change during foe procos of solving foe problem, and are notoriously difficult^’̂ *.

Relevant parts of foe PDS forms a Materials Design Specificatiai (MDS), foe materials perspective* of foe

design. Known material descriptions (MD) matching foe MDS, partially satisfy foe PDS. Demaid and Zucker̂ ®

describe two measures of confidence wiien matching properties between descr^ticns:

“How close is foe description of an element in foe MDS to foe description of an element in foe MD?
The relative description.
How close is foe value of an element in foe MDS to foe value of an element in foe MD? The relative
value.”

A material can always furfoa specialise differences in relative description. For both imaginable materials and

existing material, foe list of materials properties is potentially infinite.

Testing all materials across a large set of different property docriptions is impractical. It is costly fia

material supplias, so they are selective in foeir choice of properties to test. Different polyma supplias

inevitably oelect different propertioG oven for similar mataids. Materials wifo diffaœ t lists of properties,

such as those between different supphas, cannot be compared with equal confidence; they differ in relative

description. To solve this problem within foe polyma supply industry, four major supphas developed

CAMPUSj a database wifo a oonsistont hot of poljm a property values. Obabaoh^ describes foe necessity of

foe CAMPUS development

A consequence of a consistent set of properties is gcnaahly. The pioperties in cam pus are genaal polyma

tests, wfoich ^)ply to nearly all polyma material.

16

Object -Oriented Software Repreaentatiou of Polymer Materiab Infbimition in Engineering Detign

“Materials descriptions from different sources are described in such a way that the individual
attributes they contains are goierally useful. This is done by attempting to make a material property
as independent of a particular product or application as possible and is reflected in the test conditions
used to determine that property. The description of a material required for an artefect on the drawing
board is, however, assaled in terms of the functionality of that artefect not in generally useful terms.
So, my plastic box of computer disks must not break Mhen dropped onto a hard floor: this is not the
way a general purpose test is formulated.” ’̂

Divorcing tests from any specific application means properties characterising atypical attributes of polymers

are absent and unusual extranes in applicaticm geometry, processing or environment are not represented but

these can be of particular importance to a design.

Indeed, the CAMPUS properties, although very general in that die test can apply to most material, are highly

specific in their “relative description” in order to enable proper comparison between the “relative values”.

They are therefore not abstract descriptions of design. It is difficult to describe purpose-related MDS in terms

of t h ^ properties, yet to compare with the generally described MDs within a general query requires this

compromise.

French values the contribution of abstraction in design, but has tiiis to say about generality:

“More abstract does not always mean more gaieral. If we want to design an elastic beam, the highly
abstract but very specialised view of a beam as two flanges and a web, the flanges taking all the
moment and the web all the shear, is immeasurably more useful than the very general theory of
elasticity. The key to ... die cruder concept here is its greater abstraction (only three areas and a
depth) and its purpose-related nature.”’

This quote ignwes the design step that occurs before the elastic beam specialises the solution, Wiich

identifies the gm oal dieory of elasticity as a solution to the design problem. The theory of elasticity

generalises the specialised behaviour of the beam. Initially, the designer must identify the general theory of

elasticity as a goieral solution to the problem then infer, from the beam’s association with elasticity, the

specific beam solution. The details of the beams behaviour distinguish it from other solutions associated with

the general theory. French’s point is that design benefits from abstract solutions but these solutions may not

be general. Specific use-related abstract solutions are more usefiil.

Why the specialised view of the beam is a greater abstraction is not so clear. The view of the beam is a

geometric abstraction. The general theory abstracts over all geometry by applying finite analysis. By the

reference to four geometric variables, French might be assuming a specific geometry with a simple solution,

rather than the variables needed to solve an arbitrary geometry using finite analyse. The distinction between

these cases is an example of generalisation in the geometric pospective of the design.

The beam solution is more usefiil because it specialises the geometry. Progress towards specific instances in

any perspective is useful to design. Material properties that suggest a specialised class in another perspective

17

Object -Oriented Software Repreacntation of Polymer Mateiiab Information in Engineermg Deiign

will appear more useful when that perspective is a free variable in the d^ign. If it is not a free variable then

the design needs general propaties, \thich have a mœe complex relaticmship with other perspectives.

Zucker* observed the domain expert disregards Wiole categories of properties, “those properties tiiat were

strictly electrical or load-bearing properties, none had any significance to the selection of kitchen containers”.

These categories relate to very general purposes. A design specification often addresses only a small number

of relevant properties out of the many properties that describe materials. The designer makes a decision

collectively on die categories of property, regarding its relevance to the design problem. Designers base these

decisions on their physical knowledge of the categories and not from any explicit infiMmation about die

properties. In die case of beam design, the category of elastic properties in the materials perspective and die

cross section of the beam geometry perspective describe the application of the beam. The overall jqiplication

perspective specialises each design perspective.

Specialising each design perspective depends on the level of detail in the application description. Matching

general properties between MDS and MD identifies the general characteristics of materials, or selects or rejects

vriiole categories of materials. As the classes of material become more specific, the problem of distinguishing

materials requires properties that will match the level of detail in the application. Consequendy, properties of

more specific material classes depend more on die context of the other perspectives.

2J,2 LogicalAtxtuction ofProperges in Classification
Inferring die behaviour of materials from die general behaviour in a class is abduction. Abduction is

synthetic reasoning in science, engineering, design and even in everyday life, Miich forms and accepts

explanatory hypothesis that accounts fiir a set of fects. If a material behaves like a polymer (the set of fects)

then the hypothesis forms that the material is a “member of the class of polymers”. The hypothesis is useful

for explaining material’s behaviour. If a material is known to be a polymer, then abduction infers the

behaviour of the material from the behaviour of polymers. Consequendy, the behaviour of polymers is very

general in order frir the behaviour to apply to many members.

Abduction declares a concept, the class, i\hich accounts for a set of fiicts and is a repository of general

knowledge. Often fiicts are deduced from observing the members. Statistical fects, such as the minimum and

HIM X1 III mil values of a numerical prop^ty, can contribute to the description of the class. The designs deduces

die class relevance to design problems from the class description. A design fiir a furnace, for example,

exposing the material to a tempaature of 500 degrees Celsius can immediately disregard polymers if die melt

temperature is always less than 500 degrees.

18

Object -Oriented Softwire Repictentition of Polymer MeterW: bfonnitioo in Engineering Deiign

The properties in CAMPUS characterise members Mio, as a group, share a concept of similarity; tiiey are

engineering polymers. By selecting properties common to all polymers, CAMPUS identifies vdiat is similar

across all polymers in terms of those properties. This selection of properties can define a membersh^

fimction. The fimction selectively defines tiie concqit ‘Polymer’ and describes a class of ‘Polymer materials’.

The process of identifying similar characteristics and fiiai the subsequent use of those characteristics as

properties fiir grouping members, is classification.

The power of classification fijr infisrring properties is well discussed by Fahlman^^. If the designer knows

some feet about the Nylon class of polymers, that excludes the material fi-om the design, then this

immediately excludes any material known as a Njdon. This inference by abduction occurs without referring

to any physical properties of specific materials. The general concept of Nylon infers the fiict in qu^tion upon

the specific material. A search through all known instances of material is no longer required; instead, an on
!

mass test applies to classes.

There is much more debate on the benefits and pit-fells of classification. Ackerman^*, and Smith and Medin^’

both analysis a more complete philosophical definition of classification and concepts. The benefits of

classification to design are enough to justify representation in a materials database. The computCT

representation of classification needs a formal description.

Many software systems already represrat classification, and it is a feature of all class-instance object-

orientated languages. All build on a simple fijrmal model of sets. Even this model uncovers some pit-fells of

classification, vriiich manifest themselves as conflicts in the representations. This model also characterises

the limitations existing in contemporary computer data-models, and therefore die limitations of the proposed

database system.

2.1.3 A Simple Formai Classifiation Mode!
Taxonomy is classification that refines each class into subsequently more specific “levels” of classes. The

mathematical abstraction of the poset, a partial ordered set̂ ,̂ models the relationship between classes in a

taxonomic classification system. Category theory is a more complex model of the relationship between

classes and their properties. Morphisms, the formal description of properties in category theory and

properties describing classes in computff languages differ significantly. The latter are much more expressive

and do not obey a formal logic. The simple poset model applies to a category in category theory if restricting

* The use hee of category is not strictly consistent with mathematical semantics of category theory. The
theory defines the descriptive functions (Morphisms) as transfiDimations between valid members. This is
more akin to object-oriented classes transforming the state of instances. Here the category is like a set but
instead of the descriptive functions defining membership, they only specify membership.

19

Object -Oriented Software Repreaentation of Polymer Material* Information in Engineering Detign

morphines to membership functions. The membershq) functions of sets suffice to model the relationsh^

between classes and their properties. To clarify the description between classes and tiieir members, a member

is a set of properties, a property-set. A class is a category of members. Therefore, a category is a set of

property-sets that satisfy a membership fimction.

Property list
Small

Domain
} a (x) : { 1 ,Z 1 4 5 } 3 x

Taxonomic classification

Inheritance

Delegation or
multi-inheritance

Mixed perspectives

I
B(x):{l,Z3,5 } 3

Large

Membership
Large

C(x):{l,Z3.4 } 3 X

F(x):{2,3,4) 3 X n

Eo3

G(x);{l,3} 3 X x);{2,3 } 3 X

(x):(3 } 3 X

Instance

IVKAMd .23.4.5}
{1.Z3.4}{1.Z3.5}
{1.3.5}{1.Z3}{Z3.4}
{1.3}(Z3}
{3}}

(D
3

I
•D

Small

Figure 1: Partial ordered set as a hierarchy
Sets and categories related by inclusicm can form posets. Inclusion^’ relates any set to its subsets and relates

categories in taxonomy. The hierarchy in Figure 1 describes a classification of sets categorised by the

inclusion relationship. The letters firom A to I are categories. The categories’ members are sets. The function

M returns the monbership, which for category A is all sets in the domain. Consider each set a material with a

number of elements (the properties) as descriptions (eg, material {1,2,3} has property 1 and 2 and 3). The

functions A(x) through I(x) specialise, or assert, the membership fiir each category (eg A({ 1,2,3}) is true

since {1,2,3} is a subset of {1,2,3,4,5}). The properties inherit, so category B is subject to function A(x) and

B(x). B is said to subsume the properties of A, by the process of subsumption. Category I is subject to all the

functions. Of all the members in the domain, only {3} satisfies all the fimctions and belongs to category I.

The tc^ portion of die graph in Figure 1 is taxonomic classification because the membership of lower

(spécifié) categories are exclusively members of one higher (gœeral) category. For example, the members of

D are exclusively the members of B too, vvhereas the members of E are members of both B and C. A

consequence of categories B and C not being mutually exclusive. Strictiy, the exclusive categories are a

requirement of a poset. E is said to mix the pospectives of B and C. If classification decides the subsets of

{1,2,3} belong exclusively in category B or in C, as in Figure 2, it becomes taxonomic.

20

Object -Oriented Softwtre Reprewntalion of Polymer Materiab Information in Engineering Deiign

Touretzky^* points out it is goierally fester to search an ordered tree (a poset) than an unordered list The

efficiency depends on the org^isaticm. “Often we wiU have more than one retrieval task in mind, with each

task requiring a different organisation of the hiaarchy”. A search is efficient if the categories’ assertions

conclude which branches should be subsequently searched. A seardi becomes less efficient if the assertions

are independait of the search critaion.

Membership
Large

Domain
'A<x):{1,Za4,5) 3 X

D(x):{l,3 } 3 X

E(x):{2 } 3 X F(x):{4 } 3 % G (x):{5) 3 *

Instance
Small

Figure 2: Taxonomic classification
For example, compare searches in Figure 1 for the ftiUowing subsets: {3} {1,3,5} and {1,2,3,4,5}. Ihe

set {3} would require a complete search of the i f̂eole tree, tihrough every node, until found in node I. The

classification does not fector on the property of element 3. Whaeas {1,3,5} is exclusively in categories

A B or D. The set {1,2,3,4;5} is neitha a memba of B or C so the search can exclude the rest of the tree in

two decisions. - . i .

For a materials classification, thae is more than, one retrieval task in mind, since many designs will use the

classification. Thae is not one MDS, but many. At each level of the classification categories identify

characteristics \sfeich clearly distinguish the categories. Each category must also charactaise properties

useful for matching MDS, thaeby conclusively narrow the search for a suitable candidate material. The

categories fiw one MDS may not be useful for. anotha MDS. In practice, optimising the classification ft)r all

MDS is not possible, but attempts are made to make the classification appropriate ft>r engineering design

problems. .

2.1.4 Appropriate Classifications
What makes an (qypropriate classification of materials ft)r engineering design? Classification is a process of

. ' _ ■ •
identifying “similar” characteristics, w ^ae s im i la r at this point is an arbitrary common concept.

Classification thai uses those characteristics as properties for categorising membas. In one sense, an

21

Object •Oriented Softwne Rejraentation of Polymer Materiab Infonnation in Engineering Deiign

appropriate classification discerns similar characteristics that ultimately result in assations useful for

searching. Although thae are many retrieval tasks in mind, often the tasks themselves have similarity. One

approach identifia similar featura in MDSS. MDs then group depending on the MDSs they b a t match. This

iqjproach has been fevoured by some^ ̂ as it produca ‘usefiil’ fgiplication specific assertions. Thae are a

numba of problems with this approach:

1) MDSs do not classify in an exclusive manna. A MD can satisfy more than one MDS.

2) MDSs do not classify aaoss the whole domain. New MDs might not satisfy any of the MDSs.
3) New MDSS can be defined that a e not simila with any of the existing ategoria , thus needing ad-hoc

classifiation to introdua a new ategory of MDs, which satisfy the new MDS.

The last point is relevant to a comment of Zucka’s:

“‘Similarity’ is known to philosophy as something of a snae and a delusion and we suggat that it
cannot be used to group descriptions on an ad hoc basis — it is the context provided by the
propertia of the artefiict Wiich constrains foe pattan of similarity in a selection system.”

In addition to ad hoc classification, Zucka says the purpose of foe MDS, foe propertia of foe artefect,

constrains vriiat is simila in materials. Representing similarity between MDS and MDs explicitly in foe

structae of the classifiation system is imqipropriate. The act of classifiation is not an act in satisfying

daign critaicm.

2.1.5 Conceptual Schema of the Cambridge Materials Selector (CMS)
Moot Gofhwe systano cataing for polyma information have not developed ad^uncod rcpraontations. They

ruproaeul malonals us a list ûf property valua and focus on developing inforoncc mcohamoms that select

materials using some satisfection critaion in some way relating to a daign specifiation. One exception is

Ashby’s‘® Cambridge Materials Selector (CMS)” , >riiidi represents generalised data and focusa on

praenting foe information. The CMS demonstrata foe effectiveness of generalised materials infijrmation at

foe initial stages of daign, The CMS doa not relate foe general data to opaifie data on grada, vfoieh limits

foe CMS to foe initial staga of daign.

CMS rapidly accases to a wide range of data at low preaision; whieh supports foe prelimintuy selection in

daign. The CMS diverge firom selecting individual materials, with its precise and narrowly focused data.

Instead, CMS provida a relevant level of information to questions raised in foe initial staga of daign, so

answers with broad eatogorios of material; with low precision,

“The nature of the data needed in foe early staga [of daign] differs greatly in its level of precision
and txadfo fi’om that needed later on”

Whereas a spaific material expressa a praise value fijr each engineering property, a category of materials

can express a range of valua in foe ategory. The range is of low praision, but it expressa a broader scope

of materials than foe praise value of foe spaific material. The property profile of such a ategory refiats

22

Object -Oriented Softwne Reptetcntition of Polymer Mneriab Informetion in Engineering De#%n

the property profile of the members in a broad and loose manner. In tills way, the category generalise over

the members it contains, and characterises an abstract material.

leermg

lies
lOOC l ig h t .

Stiff

C et
100

Co nf osites
Young’s
Modulus,
E(Gpa) 10.

1.0
Dense,

Flexible

0.1
10.1.00.1

Density, p , (Mg/m’),

Figure 3: A sketch of an Ashby chart”
The CMS fectors the mataials domain into broad catégorie of mateials, based on conventional material

classe. These classe are ftiunded cm material principle of common chemical and structural compeition,

and are fam iliar to domain experts. They group similar propèrtie, similar processing route and often similar

applications. They produce useful abstractions because generalising clusters the propertie of the members

across many type of propertie. These clusters then differentiate the different abstract materials. This is

important if the abstraction is to be useful in the selection process.

At the initial stage, it is more appropriate to answer deign quêtions generally with an abstraction than with

a specific material. CMS achieve this goal by visualising the abstract material femilie through a gnq>hical

user intefiice (GUI), Figure 3.

The GUI enable the user to plot two dimensions of the selection space. The CMS supports the procès of

evolutionary deign through tiiis GUI by allowing a progressive refinement of the selection space. The

complete selection space in the database is multi-dimensional, e c h dimeision a property distributiag the

domain of mateials. The GUI displays any plane in this multi-dimensional space by choosing two fimctions

of the material properties, typically fiictors fi’om merit indices, defining a surface for graphing the abstract

materials of the domain. An ellipse on the graph represents each abstract material family, mapping the extent

23

Object -Oriented Software Repreaentation of Polymer Materiala Information in Engineering Deiign

of property variance witiiin the family. The user can then mark an area of the graph to select or reject

materials. Then the.user can change the dimensions, graphing tiie selected materials against different

properties. In this manner, the designer reduces the selection space from the ^ o l e domain of materials to a

select few smaller categories of materials.

The information provided with CMS, the classes and generalisations, is the result of professional expertise and

data analysis done else^^here. The CMS does not support any database functions other than retrie\'al of this

prc'defrned information. The CMS is not a database system nor supports the process of classification. CMS

only describes a hierarchy of abstract material based on classes of a classification system.

The main drawback of materials rq>resentati(Hi in tiie CMS is it can not support specialised property

descriptions. The properties must be geno'al to all materials in order to position each class in the selection

space. Even some general' properties in the CmS have semantic differences. This cuuld cause sume error in

the homogenous selection space. For example, the definition of yield point frn: metals and plastic is different,

yet both share the same selection space. The precision of the general values CMS represents often permits

minor differences in the relative dœcriptions of the properties within the same selection space.

2.1.6 Managing Property Pedigree and Test Data
CAMPUS, Pascams-220, epos and CMS all describe materials with highly general properties. They do not

describe the purpose-related properties that fit design descriptions better. This is largely because these

properties do not ^ l y across all the materials they represent. A database capable of specialising the

representation fijr smaller classes of material would be capable of representing properties tiiat are more

specific. An appropriate classification even needs these properties to distinguish the more specific classes of

material. In the extreme, new properties will describe specialised classes of material These new properties

define new tests, and with this comes altogether new problems for database management

Empowering the user to extend the descriptions of materials requires database management of both the

grades and their descriptions. The M/Vision^^ system supports management fi)r grades and their descriptions

but docs not support abstraction; Nor is it object orientated^ so the descriptions are just named Wues without

any computational power. M/Vision tiiough does demonstrate the complexities with managing even “simple”

property descriptions.

Conditions and procedures qualify each test designed to quantify the physical properties of the material. The

conditirais normally include the envircmment, physical geometry and manufiicturing technique of the tested

sample. The procedure includes the technique and physical description of the test apparatus. Tests are

24

Object -Oriented Softwire Reptewntmtion of Polymer Miteriili Infbimition in Engineering Deiign

standardised so the conditions are the same, and hence provide some consistency \riien comparing relative

descriptions of different materials. Ashby^ ̂also emphasises the consistency of testing.

In ordCT to test consistently, the test must identify all factors that affect the test result. Sometimes the factors

affecting the result are not known. Lee^ ̂ illustrate this in a case Wiere a hydrogen environmoit, in the

design for a rocket fuel pump, adversely affceted the embrittlemait of nickel based superalloys. The

relationship was not known at the conceptual stage of the deign. Later, after the relationship was

discovered, a new te t was needed.

A poor t e t description can result in a poor property. Results of the new hydrogen embrittlement test were

found to differ from different labs. Slight difference in test specimen microstructure resulting from different

methods of making t e t sample caused different reults. The te t was subsequently modified. Lee coins the

use of ‘pedigree’ to decribe well-defined and understood property descriptions. Initially the property was not

well understood. Discovering the new relationship witii hydrogen and tiioi the further refinement of the test

description to standardise the microstructure of samples improved the test pedigree.

Quality management of test information has particular demands on materials information management,

especially when acquiring data. Lee used the database management system M/Vision. M/Vision has multiple

databanks. The test data enters into one data bank then passes through a spreadsheet that filters the test data

ensuring the data meets the necessary pedigree, before entering a “materials” databank. For each design,

another spreadsheet selects those properties appropriate to the design, creating the “materials design

allowable” databank. For example, the mataials design allowable databank could exclude data from an

embritahnent property that does not take into account of the hydrogen oivironment.

M/Vision is a database system with the purpose to store and disseminate consistait materials data.

M/Vision’s idea of a material is the tested substance, not die abstractions of the CMS. Data are one of an

extensive, but limited range of data types, eg numbers through to graphs. M/Vision do% quahfy the

relationship between mataial and data with a description of the test and the quahty of the result. It supports

categorisation by relating materials to a named category, but does not infer inheritance or represent abstract

materials like CMS. Unlike most database systems, M/Vision can extend the description of matenals to

include new types of properties.

25

Object -Orieoted Software RepieMntatkm of Polymer Matériel: htfbnnatiou in Engmeering Detign

2.1.7 Capricious Properties
Sargent clearly identifies a difficulty in classification caused by properties known to be capricious.

“The [Ashby] diagrams are most useful for selection at die conceptual stage of design because of the
reliance on complote data being available fitr e\'ory property, for ê êry material. The sparseness of
real data implies that data fi*om several closely related materials can be, and must be, merged as a
material class to get a complete set. This implies that the method only works for those properties fiir
\riiich it is easy to identify classes of mataials with similar property values. This is true for the
properties, such as stiffiiess and thermal expansion, but largely false for properties such as corrosion
or wear-resistance. These [are] capricious properties”

Sparse data benefits fi-om abduction, but the classes must group mataials with similar property values.

Classes may group die values of some prc^ierties, but capricious properties do not group. If the designer

browses materials of a class, most properties will have similar values but the ctqiricious properties appear

random. Capricious properties are a problem fiir classification because the same kinds of materials do not

have the same kind of properties.

In Lee’ŝ ̂ case there was difficulty encountered in establishing a pedigree test fiir hydrogen aivironment

embrittlement Slight changes in microstructure were reported to have significant difference in property

value fi-om the different labs. Slight change in micretructure between similar materials would have a

significant effect on the property. Sargent calls this trait the capricious nature of some mataial propertie.

Capricious propertie describe a process that occurs during the te t. An illustrative example is die process of

crack propagation that must occur during any (successful) impact t e t The propagation of the crack is subject

to microstructure as much as the chemistry of the material. A slight change in the micretructure can cause

very significant change in the development of a crack and its subsequent propagation. Therefiire, the t e t

result relate more to the specific structure than the material of the sample. Some change in micretructure

may relate to processing in an unpredictable way, resulting in a chaotic variation in property results. Such

propertie will never le d to a property of high pedigre since the description of the te t can never qualify the

micretructure to a detail necessary for a repetable result that depends solely on material composition.

In other propertie, the shghl differ cave m chemical composition between mataials can result in radical

change of property value. Matching capricious propertie is difficult at die initial stage of deign, and b e t

left for detailed change in composition and procesing. Therefore, despite the property not distinguishing a

class fi'om any other, the range of a capricious property may still be of mteret.

Propertie should encourage “incremental stability” — slight change to the relative description result in

acceptable change in the relative value, otherwise confidence in the selection process will be lost* .̂ The

26

Object -Crieated Software RepreMotation of Polymer Materiala Information in Engineering Deiign

Stability of a property is useful knowledge for determining the comparability of different relative

descriptions, which can quantify the confidence a deigner can have in a value comparison.

2.1.8 Classification of Polymer Information
Classification is an important structuring component of a KBS for design. In addition to researching software

components fiir rqiresenting and managing classifications, the user requires interfiice tools in order to build

the classification and then use the information it contains. After developing the software components and die

tools, there remained the issue of how taxonomy of materials should classify. A separate study by Spedding*

used the tools this present research developed (see Chtqiter 5) to determine an “appropriate” taxonomic

classification of polymers jfiir engineering design. Spedding provides the high level (human cogmtive)

judgement of similarity to develop an appropriate classification for d^ign.

After populating the KBS by importing data from the CAMPUS database, Spedding used the KBS to evolve the

classification by defining higher level classes of polymer. In addition, she extended the description by

defining new properties and rules for those properties, and adding them to the classification. She also

generated descriptions of new polymers and perfijnned a number of data analysis on properties of the abstract

polymers inferred from the classes.

Spedding classifies polymers by charactoistics of chemical structure. The characteristics of simplified

chemical structure satisfy Simon’ŝ * criterion for fijiming good hio-archies. A hierarchy needs to compose of

identifiable sub-systems and tiie interactions, or properties, between members of the same sub-system should

strongly correlate or identify stronger in magnitude than with members from different sub-systems. A

simplified view of chemical structure composed multiple levels of sub-systems, namely atoms, molecules

and grains. The interactions include spatial distributi(m and attractive forces. Among sub-systems of the same

level the magnitude of the interactions, say between atoms within molecule, is similar. The interactions differ

by an order of scalar magnitude wfroi crossing different levels of sub-systems, say the atoms between

different molecules. The difference in the attractive fijrcœ defines a molecule, so a hierarchy of chemical

structure is based on principles of chemical science^ .̂

Chemical structure has fiir-reaching effect on a wide range of properties. Grouping grades by similar

chemical structure affect the properties in the same way. The groups collect like with like grades as members

of a class. Since the chemical structure is the basis of standard nomenclature, the goieralisations from these

classifications are also familiar.

27

Object -Oriented Software RepieMntatkm of Polymer Miterialt Infbimition in Engineering Deiign

Through Spedding’s work it transpires that the characterisation of a polymer as a class according to chanical

structure is, oa its own, insufficient to fully differentiate types of polymer grades. For example, the addition

of glass reinforcement has strong affects on some properties but not on others and is indepoident of chemical

structure. These were properties wfierè the mechanism of the internal process leading to the property was

more dqiendent on the reinforcement than the material class.

In some cases general polymer properties could not predict the performance when the property was in an

extreme geometric state, eg films and fibres. To the observer, the extreme geometry generates sufficient

capriciousness in properties to cause tiie prracipticn of a new test. These tests though are only valid to

materials capable of the geometric state, and not eqiplicable to materials in general, yet chemistry does not

exclude the property. The tqiplicability of the properties is orthogonal to the materials classification.

A conflict was identified between the classification and the need to reposent these properties on a per

instance basis. Conventicmal class-instance languages can extend the descriptions of grades by creating

subclasses or by using multiple inheritance mechanisms to subsume ortiiogonal properties. In multiple

inheritance a class might have two parents, fiir example, one contributing gœeral properties of Nylon and the

other adding the film properties to give a subclass N ylon-Film s. The function of this multiply inherited

subclass is no different to an explicit subclassing of Nylon with a subclass N ylon-F ilm s, Nylon being the

single parent Although both are computable solutions, for knowledge representation of engineering

properties of polymers both of these mechanisms are flawed̂ ® hindering the extensibility of the classification.

2.2 Knowledge Representation
Designers requires a taxonomic clafloification hierarchy of polymer materials Imowledge that generalises the

Imowledge within foe classes and than infers an abstract material useful for initial design, in addition to

representing foe individual properties of foe specific materials. Frost^’ gives an excellent background

covering general knowledge representation. This section of foe review specifically examines foe conceptual

model of knowledge representation that addresses taxonomieal hiawchics and the infijrcnce logic within

them. This examination starts with defining some of foe underlying concepts, before looking at work on foe

fi-ame-based systems that introduced early taxonomic hierarchies with inheritance, and foe problems they

encountered.

2.2.1 Knowledge vs. Data
“Most knowledge bases are distinct fi-om conventional databases in that they typically consist of
explicitly states general rules as well as explicitly stated simple fiicts.”

A database only describes simple fiicts, such as tuples in a relational database, with implicit data modelling

rules such as “tuples are unique in a relation”. A knowledge base explicitly stores rules, such as “All N ylons

28

(%ject -Oriented Software RepieMntitiDn of Polymer Materiab Information in Engineering Dctign

are P olym ers” . Just as the computational functions calculate (eg sum and multiply) simple values in a well-

defined manner, more complex computational processes manipulate the rules, according to a ‘formal

language’, to infer new facts.

A number of formal computing languages logically process rules. They are formal because rules exist for the

construction of legal expressions wfao-e the meaning of the expressions ean be derived frOm the meaning of

the components of those expressions. A formal language with axioms (standard rule of inference) that can

deduce if rules in a theory (set of assertions as sœtences of the language) are consistent is known as a formal

deduction system. Deduction is a form of inference that infers a cause (like consistency) from a number of

effects (the rules).

Most inference applies to a known set of related rules. A formal deduction system that groups rules need only

check consistency within each set of rules, thereby reducing the computational load. Adding new knowledge

is simpler since only the local effect of new rules would need consideration. Attempts have been made to

structure the knowledge in formal languages. Both simple facts and rules were initially shown graphically

structured in semantic netŝ ®*̂ ’. The graph in a semantic net allows meaningful groups of rules about a

common entity. “Slot and filler” representation is another approach to structuring rules in to entities, wfrich

frame-base systems are an example^.

The knowledge structure in fi-ame based systems complicates foe axioms of foe formal languages on wfoich

they were originally based. Additional axioms define foe rules for inferaice between entitiw. One of these

axioms models inheritance of rules between entities. The frame-based system NETL^^’̂ * is an early working

example that demonstrated inheritance fi)r knowledge representation. As will be shown, inheritance has lead

to ambiguity and inconsistencies in f o ^ KBSs. These findings are relevant since fiame based systems

introduce a number of features that closely resemble object-oriented systems.

2.2.2 Frames
A fiame structures data that represents an entity—a concept or foing being described. A fiame consists of a

collection of named slots. Values or ‘pointers’, which link to other fiam%, fill each slot. Copying frames

creates a new fiame of foe same type, in a process called instantiation. In this, foe fiame is similar to a

relation defining foe structure of tuples (see §2.3.2), but different flames with foe same state are possible and

identity is not dictated by foe values in foe flame’s slots.

Various kinds of deductive inference are supported through flame ‘matching’. Frames were first developed

for pattern matching, eg visual identification of an entity from observed properties, and understanding of

29

Otqect -Oriented Software Representation of Polymer Materials Information in Engineering Design

analogies in text The frame structuré also supports deduction of consistency since local modifications to an

entity only affect rules about the entity, and not the rest of the imo. Matdiing MDS with MDs fits this category

of inference.

Frame base systems also include a number of implicit rules to simplify knowledge representation. The rules

include generic properties, defriult values, taxonomic structuring. Explicit rules are supported by slot

conditions and procedural attachments (o r‘demons’).

Generic properties include universal rules, such as “All polyethylene are constructed from the monomer

ethjdene”; A generic property is a specific propoty all inotanc^ of the finme must exhibit;

Default properties are sim ilar to generic properties but may be over-ruled by instances. The default “All

Nylon66 have a melting point of270°C” is copied by all grad% of Nylon66 but may be changed by individual

Nylon66 grades. ,

Slot conditions are explicit rules wfrose consistœcy depends on the state of the slot The rule: “Material

impact strength is a number greater than zero or No-Break” is such an example.

A procedural attachment is a mechanism for evoking a computing process upon change to a slot For each

finme based language the fimctionality can be different, but it is generally expected to aid the structuring of a

Imuwledge buuui For oAomplC} a component’s material typo might detoniuno the production tjpo for the

componoit, so wfaen the component’s slot for material is filled, a typo of production frnmc is inctantiatod, cay

injection mouldci, and entered into the component’s production slot.

2.2.3 Inheritance Hierarchies in Knowledge Base Systems
Frame base systems generalise common slots through hierarchical structuring. Rather than define the slots

explicitly for each fi-ame, a gœeralised finme, or ‘parent’, can define foe common slots and foe ‘child’ frames

can inherit foe slots throu^ a special is -a relationship. All foe slots in foe parent, along with foeir generic

properties, default properties, conditions and procedural attachments, are implicitly slots of the children by

foe mechanism of inheritance: For œcomplo, foe child Ni'lon inhcritc the slot of impact strmigth from foo

parent Polymer through foe “Nylon is -a Polym er” relation. These is -a relationships form a generalisations

hierarchy of frames.

Hierarchies have long been seen as an important structure in knowledge representation. The hierarchy relates

specific entities wifo more general entities by foe is -a relationship. Inferring foe behaviour of foe specific

entitios from foe general entities is inheritance. Alfoough there are often some bohariours inherited that are

30

Object-Oriented Softwne Repieentation of Polymer Materiab Infonnation in Engineering Deiign

abstract truths, typically they are only generalisations wiiere exceptions are expected. The added

complication of resolving exceptions clearly identifies that generality hierarchies and inhaitance are not one

and the same:

“ISA isn’t inhoitance and mheritance isn’t ISA” ^̂

For example, “Clyde i s - a E lep h an t” is a classification*^. Rarely is there a problem with the explicit

statement that does not contribute any more properties than Clyde's membership to E lep h an t. When

assuming Clyde has large ears, a property logical abduction infers fi-om an abstract E lep h an t, there is a

potential for inconsistencies and ambiguity.

A classification hierarchy describes the relationship of generalisation, and inheritance is only a mechanism

for enforcing the principle oisubsumption across that relationship (see 2.1.3). Suteumption occurs wfoen one

concept, say Polymer, collectively describes the properties of anofoer, in this case Nylon, P o ly ca rb o n a te ,

P o ly e th y le n e etc. Every property that defines Polymer also defines those subsuming Polymer. General rules

for subsumption are still undo- debate. In particular, defining properties and describing properties are

distinguished^^. Some properties of Polymer do not define Polymer but are only descriptive; they are typical

and used as default properties that are still inheritable. As they are only typical, there is cause to define

contradictory properties in a subsumed concept, ie define an exception. “Crystalline polymers are not usually

transparent However, PET used in soda bottles, has such small crystallites due to processing conditions that it

is transparent."

Some inheritance schemes allow for exceptions. Fox argues mandatory inheritance of properties is too

inflexible for representing real-world knowledge^. Interpreting exceptions logically is complex. Standard

first-order-predicate logic can not represent exceptions since this logic sees an exception as a contradiction

with foe inheritance rules. The more difficult nonmonotonic logic* ̂ provides a semantic that can model

exceptions.

Exceptions can lead to poor modelling. They can over-ride all inheritance, leading to ludicrous statements

foat contradict foe very purpose of foe classification hierarchy^. Horty provides an altonative, by suggesting

a mixing strict logical inheritance, wfaich does not allow for exceptions, wifo a defisasible logical inheritance

corresponding to a statement of expeetalion, “Birds should fly”^̂ .

Difficulties occur wfooi a concept subsumes more than one otha- concept. Consider a material blown into a

film. In many contexts film plastics are considered a raw material. A film-plastic subsumes both foe concept

of plastic and foe concept of a film. In a hierarchical knowledge-representation, such as a semantic net, foe

31

Object -Oriented Softwne Rqneeentetion of Polymer Meterieb bfimnnion in Engmeering Design

film-plastic would be given both properties: is -a film and is -a plastic creating an a-cyclic graph. This is

still consido-ed a hionrchy (but not taxonomic) since a generalisation ordering is maintained. The difficulty

is to resolve the subsumption of properties fi'om both parents.

2.2.4 Problems with Inheritance In Hierarchical Representations
If multiple parents in a multiple-inheritance hierarchy are truly ordiogonal then the properties of one parent is

independent of the properties of the other parent If the parents are not completely orthogonal, properties of

one parent may conffict with the properties of the other.

Conflicting properties are either descriptive or definitions. If definiticms, then conflicts should rule the

subsumption invalid, eg a mataial can not be both is -a plastic and is -a metal. If properties are descriptive,

then exceptions are possible and the conflicting assertions requires resolving. Resolving these issues is the

task of die inheritance mechanism.

Semantics (the descriptive rules) for multiple-inheritance with exceptions were first proposed by Touretzky^V

Earlier techniques for r^olving inheritance in the system NETL̂ **̂ , and many other knowledge repr^entation

systems, were based on a simple shortest path calculation. The shortest path algorithm assume each link

between child and parait has a unity weighting of specialisation, reflecting the strength of a parent’s

assertions. Shortest path algorithms can lead to unexpected results. By adding redundant statements, the

properties of entities can change. For example, if “Clyde i s a R oya l_e lephan t i s a F rom _India i s a

E le p h a n t” and F ro n u ln d ia has die property ‘ears = small’ conflicting with E lep h an t ' s ‘ears = big’, and then

an extra redundant statement “Clyde i s a E le p h an t” , wiiich changes the distance of ‘ears = big’ fi'om three

parents distant to one parait, would change the conclusion of the shortest path algorithm from ‘ears = small’

to ‘ears = big’. Touretzky defined his inferential distance ordaing to preclude inheritance along sequences if

contrary intermediate sequences exist, ie precludes the inheritance along Clyde i s a E lep h an t, wfrile already

inheriting along F ro n u ln d ia .

Regardless of the system fiir determining the assertions from multiple parents, multiple inheritance with

exceptions will always be bound by nonmonotonic logic^ ,̂ ie more dian one logical solution can result

creating ambiguity. Simply put, if film and plastic are equally strong parents and both are descriptors of

property strength, which property should dominate as the property of film-plastic? Unless explicitly stated,

there is no way to resolve the description of film-plastics into a single soluticm.

32

Object -Oriented Software Repreacntation of Polymer Materiab Infonnation in Engineering Deagn

Touretzky’s mheritance is mœe orthodox, formally describes its semantics and, more importantly, defines

\riien ambiguity occurs. The implementation comes with the cost of a more complex algorithm for resolving

inheritance.

Terminological logic studies hierarchical representations of knowledge. It is primarily concerned with

generalisation by subsumption, wdiich in turn has a strong inheritance flavour. The work has shown foat

inheritance has many representational problems. One suggestion for handling ambiguity, discards inheritance

as an implicit mechanism and instead supports foe inference of subsumption directly, by generating

hierarchies wifo explicitly define inheritance^®. Patel-Schneider points out two other problems wifo

inheritance:

Expressive problems: Recognising foe most suitable location on a hierarchy to express a specific instance is

not a fonction of a hierarchy. The hierarchy does not prevent a specific entity fi-om inheriting fi-om a general

description, and specifically defining properties that are also described in a more suitable subclass of foe

general description. The hierarchy does not enforce foe recognition of similarity. This recognition is up to foe

user of foe hierarchy^.

Deductive problems: Inheritance, generally, do not address foe combination of inherited properties. If foe

logical combination of two properties produces a third, fooi either inheriting or defining foe two should result

in foe single third property: the two components should not be further inherited. Combining properties is

necessary for foe function of subsumption, eg subsuming P(x):{l,2,3}2x and P(x): {2,3,4}ax should give

P(x):{2,3}2x.

2.3 Data Modelling
A data model is an a ttrac t structure fi)r containing data. One way of interpreting foe data model is as a set of

rules fi)r combining data. These rules limit foe expression of data, so foe choice of data model needs to

consider foe purpose of foe data. The rules limit expression because they are closely linked to foe sequential

way computers represent and access data in memory. This link between data model and memory is foe

physical model.

For foe majority of computerised systems managing data. Data Base Management System (DBMS), foe

priority is on quickly processing large quantities of data from a storage system wifo slow (arbitrary or

‘random’) access. Consequently, these conventional DBMS limit foe capabilities of data manipulation in foe

physical model, to simple access routes and data manipulations, which utilise foe access routes. The data

33

Object -Oriented Software Repreecntation of Polymer Metenab Information in Engineering Detign

models do not support arbitrary computation involving many different types of knowledge, in contrast to the

computation possible in many computing languages.

Many systems for supporting material selection use one of a number of standard data-models. Examples of

some com m on models are given later. If a data model is suitable, any number of ‘off the shelf DBMS can be

selected, optimising development and performance. Knowledge representation also has standard data models,

such as the production rule representation common in many ‘off the shelf expert system shells.

Demaid and Zucker^ '̂^ ̂ question the appropriateness of adopting any of the common representation

strategies for the development of systems that supprat the evolving nature of design. Their assessment of the

common representation strategies is relevant since one component in their schema represents materials. A

summary of their argument for a concq)tual schema on which they designed their own representation

strategy leads to the use of classification as a design tool. In goieral, die effect a data model has on the

application of die data is well documented elsewhere:

“It is inqxirtant when choosing a DBMS that the user is aware of the data model underlying it. This is
because the user of a DBMS must perceive the universe of discourse according to the view of the
universe which is the basis of the data model of that DBMS”

Most data models in conventional DBMS do not provide a diversity of modelling constructs. This w eakn^

makes diem inappropriate for oigineering design’®. Design involves computation with many different types

of knowledge, eg processing, geometry and materials are all broad categories. These different types of

knowledge would benefit fi-om semantically richer organisations (see §2.3.4). For example, organisations

based on knowledge entities (represented by data structures) radiCT than the data structures (representing

many entities).

2.3.1 Hierarchical and Network Data Models
The automated data processing of the 1960s and 70s represented data as simple character strings and numbers

and structured this data into hierarchies and networks. The hionrchical structuring of data mapped well into a

physical model of records sequentially stored in files recorded on sequential storage medium such as

magnetic tape’*. This organisation oiables quick searching for particular parts of foe structure and simplifies

automatic processing because of foe unifi^rm file fiirmat

The hierarchy places limits an foe knowledge represented. Only one-to-many relational structure are

possible, eg a kettle design, wifo a plastic container, with glass hd, wifo a plastic handle wifo.. .etc. If other

kettle designs were made using foe same handle, foe wdiole handle would need to be copied. Both designs

could not access foe same entity relating many kettles to one handle. Many to one and many to many

34

(% ject -O riented Softw are R epreM ntition o f P olym er M ateriab Infbnnatio ii in E ngineering D eaign

relationships need a network structure, sudi as in CODASYL systems” . To form a network the CODASYL

system introduces pointers between records.

Both hierarchical and network data models view information as entities with attributes. Records, physical

space on disk, represent entities, and the binary information in the records translates into attributes. In a

hierarchical model, the ordering of records (on secondary storage) describes all one-to-many relations. In a

CODASYL network the binary data in a record can also be interpreted as a pointer to a set of records (DBTG

sets, sets defined by the Database Task Group’)̂ to form a many to one relation. The DBTG set forms a one-

to-many relaticm as an ordering of records, like in the hierarchical model. '

2.3.2 The Relational Model
The relational data model is more common, and originates firom Codd’s work” . Relational databases

(rdbms) manage tables of data. Each column of the table contains entities fi-om a particular entity set.

Entities are unique identifiers such as strings and numbers fi-om an entity set. Entity sets defines all valid

entity identifiers. The database stores these identifiers in tuples. Each tuple is a unique combination of

entities fi-om the entity sets in the table. Whereas the entity sets are the columns in the table, the tuples form

the rows. The relation defines the associations between entity sets, hence the possible tupl% and the

relationships between entities, wtich gives the database structure.

The CODASYL network model represents many-to-one relations differently to one to many, causing an

asymmetric performance wfoen accessing. This benefits one use of the database over another. In addition,

pointCTS make it very difficult to manage the movement of records in memory. In contrast, the relational

model is ‘flat’, witii entities associated in an equally commutative relation; ie the ‘columns’ of the table can

be swapped without effect. Each column relates equally to each other column. The tuple easily describes a

many-to-many relation. The relational model does not use pointers, but uniquely identifiable attribute values

in the entity sets.

The relational model is suitable for financial records for two reasons. First financial information requires only

a few simple data structures. Secondly, the number of individual records ‘instantiated’ fi-om each of these

structures is huge. Many financial database activities manipulate relations, not individual entities, wfoich act

on this large population of records as a group. These computations are operations of either a relational

algebra or relational calculus, languages that manipulate relational tables.

Access to individual tuples is possible through a transaction that selects the desired tuple fi-om a relational

table. Such a transaction is a sequential search and compare of all tuples in the relation. Faster access is

35

Otqect -Oriented Software Repreaentation of Polymer Materiala Infimnation in Engineering Deaign

possible by ‘hash key’ list A hash key list is a special ordering of entities indexing the tuples of a relation. A

‘hash algorithm’ calculates the position in the list for a particular entity and with the entity the desired tuple.

Although hash lists aid the access to tuples, they are not part of the relational model, but extensions by

typical RDBMS to the physical model.

2.3.3 The Relational Model In Engineering
Maier questions the suitability of the relational model for c a d , computer aided design’*"” , in contrast with

the object-oriented model which will be discussed later. Maio" argura CAD systems define large numbers of

types with fewer instances. Transactions tend to follow paths fi'om one individual record to the next (eg fi'om

car to the car’s door — attributes form padis to otho: behaviours).

Frost identifies the same problem in the relational model as a performance asymmetry’ .̂ Information on

entities is often spread across many relations. Although foe relational model is ‘fiat’ within a relation,

combining foe infijrmation from different relations requires an algebraic operation, wfoaeas information

within a tuple do not. The infijrmation on a particular entity spans across relations as well as foe relationships

within tuples. The asymmetry creates a difference in access performance fijr different attributes of an entity.

According to Maier, CAD tends to traverse between tables. In a relational system, this traversal requires an

attribute value look-up, optimised throu^ a hash key. The hash key is another source of asymmetry. DBMS

only index selected entity sets in a relation. Alfoough otho- physical models locate entities through a hash

table, sucfo as some object-oriented models, foere is no asymmetry if foe table consistently includes all entity

relations. Object-oriented models optimise foeir access to objects since it is a prominent activity in object

transactions. In relational systems, any overhead associated wifo each transaction (eg fetching a look-up table

from secondary memory) effects performance.

Maier concludes foe overhead with each CAD transaction tends to be large in a relational data manipulation

language. Data processing computations of typical RDBMS applications tend to apply few transactions so foe

overhead has Uttle impact on peiformance. CAD computations tend to be more complex, and foe overhead has

a larger impact

This performance difference is at an extreme as foe relations describing an œtity increase. In CAD

applications entities use many different relations, not one large relation. One reason is foe different types of

entities have some different associations and some foe same. This forms a type-subtype hierarchy relating foe

similarity. The relations that are foe same are kept in one table. Those foat are different are in different

relations. Hence, many relations describe entities wifo many differences.

36

Object -Oriented Software Repitsenttiioii of Polymer Materitb Infbnnatioii in Engineering Deaign

An example is a Polymer entity in a relational model. A polymer may be considered a type of entity that

exhibits the relationships to the properties for tensile strength, elasticity, conductivity and many otho- generic

materials properties. A table is formed wfoere ^ h polymer grade is a tuple describing values in the property

columns. Here a single relation is used. However, a grade may express unique knowledge that is not generic

to polymer but some more specific classification, eg the C rystalline polymer property of melting point.

Therefore, a second relaticm is created to record the C rystalline polymer properties. The process continues.

At foe extreme, properties may be defined to distinguish individual grades creating a large number of

relations. This demonstrates one problem foe relational model has with describing infinitely extendible

descripticms of entities. More relevant is foe distribution of information aCTOSS many relations. Relational

DBMS are gcxxl at managing large relations, not a large number of relaticms, foerefore cmly a few types of

entity.

Finally, Maier also argues foe strategies for ccmcurrency (data sharing) and recovery protecticm, work well in

small transacticms over large data populations wfoere Icmking and logging can be applied and optimised, but

work poorly on CAD data. These features put a lot of overhead on transacticms in multi-user and multi-tasking

computing systems.

The relational model could represent a polymer grade as an entity in a table foat groups a number of entity-

sets, cme for each property. Rules could be associated wifo foe table to ensure foe grades correct behaviour.

Beyond this, foe relational mcxiel does not assist foe knowledge representation of polymers. Developing a

classification of many types of tables and ensuring they correctly subsume foe rules firom each class wfoile

evolving foe w&ole representation would recptire a complex interfiice for intopreting foe data in foe mcxiel.

The prefisrred approach rejects foe relational mcxiel for a data model that supports foe structure of foe

classification, sucfo as semantic data mcxielling.

2.3.4 Semantic Data Modelling
The relaticmal model fails to capture foe semantics of mi entity; foe meamng of an entity as an atomic concept

characterised by properties. An entity in foe relational mcxiel is often spread over many relaticms. To display

all properties of an oitity recpiires an operaticm Icxmting all foe relaticms that attribute properties to foe entity.

Within tuples attributes and entities are not distinguished, so data manipulating can prcxhice meaningless

relaticmships, such as between tensile strength and ccmductivity taken from a tuple describing a polymer

entity. One-to-many relaticms differ from foe many^to-many a tuple represents. The cme-to-many should

ccmstrain queries, like foe relaticmal operaticm ‘projecticm*. This, and other semantic issues, are addressed by

‘Semantic Data Mcxiels’ (SDMs). In particular, SDMs focus cm a database as a coUecticm of entities.

37

Object -Crieated Softwne Reprceentnkni of Polymer Mtteriali Infimnnion in Engineering Deiign

SDMs provide Gtruetural abstraction” (ao c lo se d to object oriented behavioural abstraction whidi will be

addressed later), driven by a need for data representation as opposed to data manipulation, resulting in mere

complex types of data structure. An early semantic model is the Entity-Relationship model’ ,̂ distinguishing

entities and relations. The semantics of relations are specialised to identify aggregation from association.

Semantic modelling extends to distinguish groupings’® from associations and aggregations. Further

developments add generalisation. For an overview see Peckham and Maryanski’®, or Gardarin and

Valduriez*®.

Aggregationo and asGociations are semantically similar: They both attribute properties to entities. The

aggregation though is not viewed as a number of parts, but an atomic semantic unit describing the œtity. The

polymer grade is an aggregation of engineering property attributes. Forming new relations from parts of the

aggregation (between engineering prqjerties eg conductivity and tœsile strength of a polymer) is

meaningless.

Associations are access paths between entities. A material may define a property linking a material to

successful applications. The relationship does not define the entity. The attributes of associations are entiti%

themselves. The attributes in associations may be used to fijrm otiier relations to other entities fijrming other

associations.

A roluüüiiul model etui âuppûx t both aggregation and associations but docs not distinguish them as the sdm

does. In the relational model, each tuple is set of values, some that aggregate attributes and others that

Hsy<x:iate with tuples iu other tables. The unique identity of the tuple is a fimction of all values, whether

contributing to the aggregation or association.

In the SDM an entity changes its idmtit)' if attributes of the aggregation changes: If the change causes all the

values to equal those of another entity, them fee model will only represent one entity; the two entities become

one. This is different to the relational model, wfeich will maintain two tuples with the same aggregations if

there is a difference in the associations.

Unlike changes to aggregations, dianges in association should not affect the identity of the entity. In the SDM

if two entities describe the same aggregation they should reduce to one, but how feis affects their different

associations is not so clear. Technically the two entities are the same. King suggests it should triggear some

process’® to resolve the associations.

38

Object -Oriented Software Repreaentation of Polymer Materiab Infonnation in Engineering Deaign

Classification is a specialisaticm of association (also called grouping”) here the members are all of the same

type of entity. A type defines the properties of entities, both associations and properties, derived fi-om

aggregations. A classification groups entities vfeich exhibit the same properties but in a SDM not necessarily

all entities with those properties, eg Polyeth>dene used at Lucas is a classification.

The generahsation is a classification that giûups together semantic similarities, eg In a classification of

materials, “ Polymer” is a generahsation \riiich includes fee property tensile strength, exhibited by all N ylons,

P o ly p ro p y len e and P o ly ca rb o n a te classifications since they are all Polym ers. Every type is a

generahsation. In addition, property intersections of types may define fee similarities between fee types,

hence more general généralisations.

2.4 Object-orientation: A Background of Principles
Object-orioitation is a technique of abstraction. The technique supports software design, in particular

Graphical User Interface (Gin) development and knowledge representation, but may also be useful for

product design. This section looks into object-orioitation in software languages wife a view to modelling

design descriptions of products. Object-orientation composes descriptions in a similar manner to fee

composition of product designs. Classification is also predominant in many object-orientated language; its

relevance to materials infijrmation management has already been mentioned. In object-orientation fee main

unit of abstraction is fee object. The principle of fee object to fijrmulate software behaviour fijllows.

2.4.1 The Software Abstraction of the Object
Programming is a design problem in itself The problem is to get a compute: to behave in a specified manner.

An application is a software construction combining abstract behaviours, creating one solution to fee

problem. If fee abstract behaviours model some ofeer design domain, then within fee constraints of that

model, fee software soluticm is also a vahd representation of a soluticm in that dcjmain. The questicm is

vriiefeer fee abstract behaviours a ccjmputing language provides for fee constructicm of programming

problems could fcjrm suitable mcjdels in other design dcjmains: Are objects a generic representaticm?

Ccjmputer languages define a clcjsed set of atcjmic behaviours. Computing machines ccmstruct atcjmic

behaviours frcjm bcjolean logic” . Ccjnsecjuently, they are inchvidually invariant, precise and prechctable.

These quahties make feem suitable fijr mcjdelling fijrmal mathematical logic. The logic of sets, for example,

provides mechanisms towards generalisation, specialisaticm and abstracticm.

Sequences of behaviours form sentences in fee cemputing language. Although individually the atomic

behaviours are invariant, fee atcjmic behaviours affect fee state of fee machine, vfeich in turn changes fee

39

Object -Oriented Softwne Repietentation of Polymer MmterimI: Infonnation in Engineering Deaign

sequence of behaviours. This allows variation in the behaviour of software. These variations quickly become

very complex wfeich makes understanding the behaviour of software difficult.

Consider the task of drawing a line between two points on a matrix of points. The computing behaviour

determines \riiich points in the matrix are between the two given points. The given points are a state of the

computing machine that affects the computing boha\iour to draw different linoj. Whereas fee programming

taale producing fee behaviour is complex for fee computer, fee concept of line drawing is simply understood:

The behaviour is complex in design but simple in concqjt. The concept is simple because fee behaviour is

limited to fee task of line drawing. The behaviour dianges, if given different points, by drawing a different

line but always draws a line and, ftjr exanqjle, does not draw curves.

Without fee given points, fee behaviour is abstract An abstract behariour represents a known variation of

behaviours An abstract bohariour conforming to a simple concqjt, though complex in construction, may be

reused in further software constructions, such as drawing polygons requires line drawing behaviour. Through

abstraction, software inoreases complexity vfeile each abstract component may remain reasonably simple in

concept.

Program design is mainly an activity of decomposing fee design into identifiable abstract concepts. The

example of drawing a square decomposes into drawing lines, v tich decomposes into drawing points.

Programnmig then describes fee behaviours of abstract conc^ts. Often a design encounters fee same abstract

concqjt many times. Computer languages support abstraction by allowing fee reuse of a programmed

a ttrac t behaviour.

Once an abstract concept is successfully progranimed, it is desirable to reuse it vfeere possible. Designs

rarely start from scratdi, and languages supporting reuse of software makes it easier fijr programmers to

build from previous software design. Such support is not limited to developing software but may a d d r^

generic design problems.

Support of abstraction by computer language comes in many levels. At fee lower levels fee languages strictiy

define fee abstract behaviour and maintain tight control over behavioural variations. Each level higher

provides different kinds of abstraction, gradually increasing fee ways a software abstracticHi can describe

complex abstract concepts.

In an object-oriented language there ore additional mechanisms of abstraction. The subject is well covered in

many texts®*. The fijUowing summarises fee reasoning behind fee object-oriented concepts.

40

Otject -Orieoted Softwtre Reprementmtioa of Polymer M iteiitb bfbrmition in Engmeering Detign

In object-oriented languages, in addition to combining abstract behaviours to form specific behaviours, fee

behaviours themselves are grouped to form objects. The analogy is feat objects in fee real world are

identified by a collection of descriptions. The behaviours are fee descriptions of an object. These descriptions

are in a language feat uses ofeer abstract objects as components in sentences. A behaviour is no longer

reducible to a single complex combination of atomic behaviours, but depends on relationships wife ofeer

objects and their behaviours, vfeich can change.

Object-orientation recognises that few objects have unique descriptions. Their descriptions share similarity

to ofeer objects. This recognition leads to (currently) one of two Idndc of doocriptian sharing: prototyping and

classification.

There are many ofeer issues in object-orientation besides sharing descriptions. The following section will

highlight some of them. Two features dominate fee control of object manipulation. Object manipulation

changes fee state of fee object. A state is a specialised behaviour that depends on fee history of transactions.

The two features controlling fee manipulation of fee state are encapsulation and messages. Messages are fee

transactions and fee object’s enc^sulation ensures only proper messages manipulate fee object.

2A.2 Encapsulation
Encapsulation is defined as fee grouping together of various properties associated wife an identifiable entity

in fee system in a lexical and logical unit, ie fee object.

What encapsulation achieves in terms of modelling and program-structure is its most important benefit.

Encapsulation provides a boundary called an ‘interface’. This interface defines vfeere an object stops and fee

rest of fee world begins. The encapsulation defines rules for passing that interface. The rules ensure that fee

state of fee content results fi-om historical accesses to fee object, vfeere each access abides by fee rules.

In teams of modelling, fee interface enforces fee grouping of related properties feat constitute an object.

Access to fee properties is subject to fee rules of fee interface, so fee state is well controlled and processes

outside fee interface can not change fee state inside fee interface. Although an object can be defined without

encapsulation, it demands discipline fi-om a programmer not to directly access internal componoits of an

object thereby intertwining fee object’s internal world wife fee external world.

Not all encapsulation is equally effective. Some languages are better at encapsulation than others. A good test

of fee ‘strength’ is to try and side effect (change fee state) fee properties of an object by breaking fee rules of

fee interface. Usually a language has weak encapsulation fijr reasons of efficiency. So even in this most

typical fisature of object-orientation, there can be variations.

41

Object -Oriented Software Rqaeaentation of Polymer Material: Information in Engineering Deaign

2.4.3 Messages
A messages is a basic means of behaviour sharing between objects. Sharing descriptions of behaviours,

mentioned earUer, is not the same as Glaring the actual behaviour. To distinguish the difference, a d^cripticm

of a behaviour, as written in the syntax of the language, is called the protocol. While programming protocols,

they are often termed behaviours since, when executed, the protocols generate the behaviours. They are very

similar and subtlety different. The aim of this next section is to describe the message and distinguish this

difference between behaviour and protocol. Later, the relevance to modelling will be highlighted.

A distinguishing feature of object-oriented systems is the ability to ‘pass messages between objects’. A

message originates as part of a sentence in a protocol that describes an object. The message specifies another

behaviour to evoke. The message identifies another object, known as die receiver, vdiere the behaviour

resides. Additional information identifies the particular behaviour in the receiver.

The message does not directly access the protocols in the receiving object. Messages are received at the

object’s interfece. At die interfece, die additional information in the message interprets i\hat will happen.

This is fiilly under the control of the receiver, not the object sending the message. A useful interfece will

define a known set of possible actions.

The first step in message interpretation is to locate a protocol to continue the computation. The rules used to

interpret the message differ fi-om language to language, and are a major source of difference between them.

In some the rules are programmable. The interfece though should remain consistait, well known and

published since it forms a contract between the receiver and the protocols of message senders. If a receiver

can not locate an appropriate protocol, either die language genaat^ some kind of error, or the receiver may

specify a specific defeult protocol for messages it does not understand.

After locating each protocol, the receiver evaluates i t The evaluation generates the behaviour. The evaluation

is a process of further message sends. Protocols generate behaviour, which locates further protocols for

generating more behaviour, infinitum. Ultimately the software evokes m^sages to atomic behaviours that

generate behaviour without further message sends, terminating the chain reaction.

Each protocol is a specific combinaticm of other abstract behaviours. Additicmal objects augment die message

evoking the protocol. These “arguments” and the receiver together specialise the behaviour that the protocol

generates.

42

Object -Oriented Software Repicsentation of Polymer Miteiieli tafimnation in Engineering Deaign

It may have been implied that the receiver of a message is the owner of a protocol. This is not the case.

Protocols are often shared. This does not necessarily mean the behaviour is the same for all receivers sharing

the same protocol. Differences in the receivers specialise the behaviours by sending different messages from

tiie same protocol syntax. The syntax composing a protocol changes semantically by altering any objects in

each message eg the object receiving the message. Each object sharing the protocol provides a different

context of available objects, the receivers and arguments, fijr binding to messages in die protocol and

determines the path of computation \vdien evoking. Thffe can be many differences, each a different path of

computaticm.

The different paths a protocol generates are descriptively called its ‘pattern of message passing’. A complete

object-orientation system of objects is a flowing ‘pattern of passing messages’. The nature of this flow is an

important descriptive characteristic of any object-oriented language. Understanding the potential patterns is

important for undorstanding the potential behavioural effects a protocol will have, so die semantics of

protocols depend on the patterns.

Many languages define types of object to simphfy understanding of computation padis. A tjpe describes

what behaviour a message should evoke, in general terms, for objects of that type. It is then up to the object

to implement the behaviour (answering how to do it) as a protocol. In coding a protocol, the programmer

relies cm the specification of types. Protocols can send messages to types of objects (receivers of a type)

knowing vfeat will happen, not concerning with which object of the type binds to the message or how the

behaviour is achieved. If all objects obey their type specification, then the protocol will link the correct

behaviours and the protocol will evaluate correctly.

The difficulty in understanding the patterns of message passing rises as the number of variables affecting the

pattern rises. The receiver is not the only variable. There are two further fectors. The path can also depend on

other objects (besides the receiver) sent with the message. Typing can help here by ensuring messages only

send objects of the type expected by the protocols. In CLOS (Common Lisp Object System) for example, in

the interfece a messages must match all parameters of a protocol, ^feich includes the type of objects the

message carries. Smalltalk™ however does not check the arguments. Usually an incorrect argument type

will, eventually, cause a message to be not understood.

The other frictors affecting the pattern of passing messages depends on how a receiver shares its protocols.

Recall there is a difference between sharing a behaviour through a message and sharing a protocol

description of a behaviour. Objects that share protocols are said to have Empathy.

43

Otgect -Oriented Softwtre Repretentation of Polymer Miteriab Infbnmmtkm in Engineering Deaign

2AA Empathy
The term empatiiy was coined in a p ^ e r called the. Treaty of Orlando’. It reports a discussion between

fections arguing the benefits of one sharing mechanism over another, namely inhoitance and delegation.

In the quote firom die treaty, Wiich follows, the crucial feature is the assignmoit of the variable self . For

empathy, this variable binds to the receiver of the message, not the owner of the protocol. This causes the

receiver, not the owner, to fix the pattern of message passing.

“We say that object A empathises with object B fiir the message M if A does not have its own protocol for

responding to M, but instead responds to M as though it were borrowing B’s response protocol. A borrows

just the response protocol, but not the rest of B. That is any time B’s response protocol requires a message to

be sent to s e l f (or a variable to be looked up), it is sent to A, not to B; otherwise A and B respond in the

same way [as if B received the message].

“Formally we say object A empathises with object B fiir M Mien the following holds: If B ’s behaviour in

response to M is expressed as a protocol fimction P(B, M) — that is, B’s method fiir M can be expressed as a

fimction that takes s e l f as an argument along with M — then A’s response to M can be expressed using the

same fimction P as P(A, M) — A’s behaviour is derived by using A Mierever B would have used itself’’.

The implonentation of empathy is asymmetric. A borrows firom B. B does not borrow fi"om A. The

behaviour of empathy is symmetric. It does not matter if A borrows fi"om B or B holds the protocol and B

borrows fi’om A . This raises die question of Mio should manage a protocol. In the case of CLOS®̂ , neither

holds the protocol.

Where a protocol is stored and managed is not in itself empathy. Empathy only affects how the variable s e l f

associates with the receiver after locating die protocol. How a message finds and matches a protocol is a

separate orthogonal issue. Often the two issues are related in particular language models. In a number of

languages, for the convenience of the programmer, the same mechanism handles both look-up and binding to

protocols.

If an object can change the set of protocols it shares dynamically, then the object can dynamically changes its

description, ie the messages it will respond to (locate protocols for) hence the object’s named behaviours or

properties. Such change comphcates inter-object communicaticms. Delegation is conditional behaviour

sharing.

44

Object -Oriented Software ReprcMntation of Polymer Material* Information in Engineering Deaign

2.4.5 Delegation
Delegation is a form of empathy. Whereas a sender sends a message to a receiver, a client delegates a

message to a proxy. When a client delegates a message, the same mechanism locates the protocol as if the

proxy was receiving a message. Instead of evoking a behaviour of the proxy, s e l f assigns to the client, and

the protocol binds with the characteristics of the client This produces a specific behaviour of the client, not

the proxy. The chent is still the receiver, not the proxy.

There are two cases of delegation: Explicit and impUcit. A protocol coding explicit delegation states the

proxy as Miere to find the protocol, separate fi'om the receiver Miich is the evaluator of the protocol. Implicit

delegation is part of normal message reception. When a receiver gets a message that does not match any

specific protocol of the receiver, the receiver can specify a parent proxy. The message then delegates to the

parent. Imphcit delegation models inheritance.

Consider an extreme case of imphcit delegation: a chent may delegate all messages sent to it, to the parent

proxy. No other specific characteristics are contributed. Any attempt to locate specific behaviours of the

chent wiU foil resulting in immediate delegations to the parent proxy. Although any protocol found will have

s e l f bound to the chent, the chent stiU contributes nothing, witii ah messages delegating to the parait All

behaviour is the same as if messages were sent directly to the parent proxy. Now consider adding a single

new property to the cha it The chent behaves just like the parent, but for the single new property. The choit

refines the property specification of the parait. The chait is a software “prototype”, an expoiment in

specification variaticm.

An even more generahsed form of prototyping simplifies message sending. Consida an object receiving a

message telling the object to do something. Does the object and message not define a more specific object

representing “this object doing somethin^'! Rather than define complex messages with the description of

something, prototyping makes it easy to create a new object with the specific behaviour, “doing something!",

on every message send. The new object is characterised by a behavioural filler dcfiuiug what the object is

doing. Computing then becomes an activity of reduction. The object should then reduce to the result of tiiat

action, eg the function object [3 + x] receives the message “assign 5 to x”, creates an object [3 + x , x = 5]

and reduces to the object [8].

The feature of prototypes as a model fiir objects and messages is derived firom the ACTOR fi^rmalism (see

§2.4.8). The formalism does not specify delegation, but delegation is a mechanism for implementing tiie

formalism.

45

O tgec t •O rien ted S oftw are RqHCM ntation o f P o lym er M ite r ia b Inform ation m E ugm eering D eaign

Delegation has been Aown helpfiil in modelling engineering design interactions^ It permits the submission

of a query that needs to be answered through accessing some of the properties embodied by objects other

than the original receiver of tiie message. As a knowledge encoding methodology, this use of delegation

differs from inhoitance because the latter provides an organisation of objects through anticipated

connections Miereas the frirmer is a run-time technique to program dynamically established relationships.

The computational difference between delegation and inheritance ties in the localisation o f processing.

Delegation is but one mechanism providing sharing between objects. Much debate occurred o\w the virtues

of various sharing mechanisms. However, a consensus was reached, and the dynamics of sharing in object-

oriented languages concluded.

2.4.6 Dynamic Behaviour Sharing
‘Dynamic behaviour faring* is a term that describes a language mechanism that allows the patterns of

computation to change at runtime. The issue was summarised by consensus between three arguing fections in

the Treaty of Orlando’. The treaty describes three independent dimensions to characterise the nature of

sharing mechanisms: S t a t i c vs. D y n am ic , Im p u c it vs. E x p lic i t , P e r O b je c t vs. P e r G ro u p .

The orthogonality of the P e r O b je c t v s. P e r G ro u p is more easily understood and the ordinate it describes

is more discreet in the pœsibilities. Protocols are shared, thereby defining behaviour, either for individual

objects or fiir a group of objects. In the middle, thae are various degrees of a group guaranteeing some

behaviour, but allowing idiosyncratic behaviour to individuals.

The orthogonality of the STATIC VS. DYNAMIC and iMPUCiT vs. Explicit is less obvious.

S t a t i c v s. D ynam ic : Static sharing is the fixing of the pattern of message passing. There are two

possibilities: When ^ecifying an object (protocol compilation), and when instantiating an object (object

creation, see §2.4.7). All Aaring that is not fixed is considered dynamic, determining the pattern of message

passing as each message is sent at runtime.

Two different types of messaging mechanisms affect the patterns of message passing: binding and inheriting.

Binding occurs Mien the message is sent, inheriting (or delegating) occurs on receiving the message. Both,

either, w none can introduce dynamism to the pattern.

Static sharing is adverse to modelling and only an software optimisation. For developing prototype

apphcations, static fixtures should be avoided.

46

(%ject -Oriented Software RepitMntetion of Polymer Meteriab Information in Engineering Deaign

Implicit vs. Explicit: Implicit sharing is M iae a language provides a rule that is generally used Mien

finding protocols and there is some assumption made in the rule as to how to find the behaviour and continue

processing. The usual assumptim is the recipient of the message gains control of the process flow. Explicit

sharing is Mien the sender can specify all details; both die means of searching and Mio evaluates the code.

Naturally, thae are degrees as to die details provided Mth a message under control of the sender, Miich can

affect the behaviour found. In systems Miere the searching rule is itself programmable, then both expUcit and

a pre-programmed implicit searches are possible.

2.4.7 Qass-Instances
In general, diree main features fiirm die “classification paradigm” ’̂ and are often held to be essential to

object-oriented programming:

• The abihty to construct objects as a set of operations and a memory.

• The classification of objects, ie eadi object as an instance of a class.

• An inheritance mechanism defining superclass-subclass relationships.

This paradigm is synonymous Mth class-instance, object-oriented software mechanisms, ie systems oriented

to objects as instances of classes Miose definitions fiirm templates from Miich many instances may be

generated. The instances are intended to correspond to “real-world” information, responding to messages

about their attributes and behaviours, Miile the classes are abstract specifications.

A class groups objects Mth commcm behaviour for the purpose of classification. The discussion on categories

and taxonomies are equally valid to the classes in object-oriented languages. Objects belonging to a class are

instances of that class, and must obey the common behaviour of die class. The instances obey because they

depend on implicit inheritance from those classes for their behaviour.

Inheritance is a frirm of protocol sharing, as is delegation. Instances receiving messages look to their classes

for protocols. Ujpon locating the protocol, the instance evaluates the behaviour as if it was its own.

Inheritance is like implicit delegation, but fqiphed p a group and may be dynamic or static. Static inheritance

is quite common and limits the evolution of instance behaviour.

Classification highlights the complex choice of abstraction technique presented to the programmer. The

choice also exists Mth prototyping but is less obvious.

The behaviour sharing imphcit in classification supports an alternative approach to behavioural abstraction.

Similar behaviour sharing exists in prototyping languages, but the abstraetian is more obvious in the elass-

instance languages. Classification emphasises die choice a programmer has Mien abstracting a software

47

Object -Oriented Software ReptcMntation of Polymer Material: Infonnation in Engineering Design

problem into objects. The choice is between sharing behaviour and sharing protocol. Should an object inherit

a protocol, or should another objcot be created to exhibit the behaviour? Often the choice is not clear,

specially Mien multiple inhoitance is possible.

An object composed of three abstract parts could eitha models three objects or a single object inheriting

from three independent classes. The latta is the philosophy of multiple inheritance. The inheritance

becomes a mechanism frir mixing behaviours.

Consider a clock as a gauge (display) and a timer. Classification says: “It is -a kind of timer or is -a kind of

gauge”. Altonatively, is it a device that “is -a timer” that “has-a gauge for display”, or “is -a gauge” that

“has-a timer as input”. Altonatively, it could be a clock, an object, that “has-a gauge fiir display” and “has-

a timer as input”. These are all possible ways of modelling a clock. The first is multiple inheritance and the

next two are di&rent views of clock in a single inheritance system. The last example is not yet part of a

classification, so it is just a composition. All provide the same behaviour.

The class originated in on oneeotor of object orientation^ Simula™. The class has existed in many languages

since, notably Smalltalk, Miich has the longest history of any object-oriented language still in commercial

use today. The class in these languages is a template. The class generates objects in the image of the

template. This function provides a guaranteed fixed structure to the objects produced. Fixing the structure

gives two imporioul advantages: consistency and optimisation.

The consistency provided by the class is more than simply a logical prevention of inconsistaicies leading to

errors. The class creates a syntactic grouping of concepts that all instances, objects of the class, abide by. The

programma uses the class as a guarantee that the instance will behave as specified. This simphfies handling

objects, just as types mentioned earha do Miich, Mthout the enforcement of the class-instance relationship,

would otherwise require a more exact understanding of the patterns of message passing.

Classes are generally considaed static, in virtue of the assumpticm that real-world specifics change and

generahsations do not; eg, new cars are designed but the idea of car remains static. Most objects change in

“state” but are relatively static in their behaviour, described by the class. Cars move, but are still cars.

The assumed static nature of the class has made it the target for optimisation in many class-instance

languages. Classes are implemented as static templates, and optimised, leaving the instances to represent the

dynamic aspects of an application. Some languages do not even representing the class as an object. The class

48

Object-Oriented Softwtre RepfCMntattion of Polymer M iterâb Infbniution in Engineering Dcfign

does not truly exist in the same way as instances exist at runtime. This viewpoint is taken to its extrane by

the language C++, Miich continues the “C” philosophy of highly optimising code.

Enforcing a static structure has its disadvantages, namely Mien foe structure needs to change. The boundary

between class and instance is also a boundary between static and dynamic. Since nothing in foe real world is

truly static, there is always a point, if a model is to remain consistent with the real world, foe boundary needs

breaching. In some domains, this is more common than in others. In particular foe domain of design is

notorious for its dynamic nature of descriptions and specifications.

Many class-instance languages require all dynamic aspects of foe implementation to be handled by instances,

but this conflicts Mth foe nature of design; a design describes foe behaviour of an entity in foe real world. In

foe class-instance language, foe property of behaviour descripticm, foe protocol, is only held by classes. The

only other dynamic changes in behaviour are by changing foe relationships between objects, as recorded in

instance variables. Therefore, foe implementation of a design must be by an object that has foe property of

behaviour description and is capable of changing Mth foe design. The Miole point of classes is to provide a

behaviour description, but one that is static so to guarantee foe interpretation of messages to foe class’s

instances, ie as a type definition. Classes are in^)propriate for representing design under this criterion. This

does not preclude a different mechanism, in a language supporting foe class-instance relationship, for

modelling design specifications.

Not all class-instance languages adhere to foe strict static nature of foe class. Languages allowing their

classes to change are said to support schema evolution. Language supporting schema evolution carry a large

overhead in terms of requiring compilers, consistency checkers, and error handling routines to enable foe

schema change and ensure foe change is sound.

In Niastrasz’s^ review of object-oriented concepts he defines schema evolution as an operation on a class

hierardiy, not an operation on objects, ie not a consequence of messages. This follows foe analogy of a

database schema evolution, Miich is not a database transaction. A normal interaction between objects that

dynamically changes foe inheritance of behaviours Mthin foe object model is dynamic inhoitance. Yet, if a

class is a generic object, as it is in Smalltalk-80, then schema changes are a consequence of messages.

Inheritance changes in Smalltalk are considered schema evolution because they involve coercing foe

underlying object model for each instance, despite foe feet a complex series of normal message interactions

achieve this coercion.

49

Object -Oriented Software Repreeentelion of Polymer Meterinli Inftmnetion in Engineering Deeign

Schema evolution is often only available during initial program prototyping, such as in the database

Gemstone™” . The effects of change on ‘established’ classes have 6 r readiing consequaices that return to

the programma as bugs. The reason ftir this fer-reaching effect is the semantics of messages. The effective

patterns of message passing are rarely well understood by the programma making changes.

The semantics of a behaviour are not only defined by the objects that hold the behaviour, but also by the

users of the behaviour. Viewing behariours as an input output relationship, message goes into an object and

the response comes out, tiien tiie implementation of all senders encodes the interpretation of the response.

That is, the object a message returns is sent messages by the same senda and these messages are all part of

the pattern that develops the senda’s own behaviour. Theoretically, each message should return an object

fiilly defining the semantics of the response. This is rare and usually messages return a simple data types with

little semantic value. Th%e messages rely on the recipients of the result (usually the message senda) to

correctly interpret the result

It is all very well to say that messages correspond to semantics, ie messages have precise meaning, and are

separate from protocol implementation, but Mien programming starts, the semantics of a given message

might differ by the time programming ends. In practice semantics of a program evolve Mth the

implementation.

Thae are attonpts to sqiaratc tiic implementation of a class from its semantic obligations^. This is believed

to be a solution that Mil fiirtha prevent schema evolution from affecting otha parts of a system. The

semantic obligations are described in terms of type requirements fî r messages and message responses. The

organisation of types can be handled quite separately from class descriptions. Type checking need only occur

during schema evolution. If a change is made to the type hiaarchy, consistency checks occur once before

accepting the change. Ultimately the difference made by type checking is the determination of

inconsistencies at tiie time of change ratha tiian during execution of behaviours, Miich might occur much

la ta Mien, tiie source of the error is forgotten. Typing introduces an ovahead on the programma Mio must

define types to classes and in protocols.

2.4.8 Actor Semantics and Prototype Language
In the late 60*s and early 70’s, HeMtt et al̂ ̂developed the ACTOR formalism as pai t o f the PLANNER research

project into natural and effective means fiir embedding knowledge in procedures. They identified the

m odular nature o f know ledge and itfl dynamic abihty to combine the abstract to acatc tiic specific. This led

them to the a c to r , a computational model that allows an extaidible d^cription o f knowledge. The ACTOR

50

Object -Oriented Software Repieaentatiom of Polymer Material: Information in Engineering Deaign

formalism is not a language but a computational model describing semantics for the foundation of computer

languages.

An ACTOR is an active agent that plays a role on cue according to a script. The computational model conveys

semantics similar to an object: modularity, messages, intentions (a conceptual model of behaviour),

protectioii âiid privacy (encapsulation). Ilewitt st^es that “control flow and data flow are inseparable in an

ACTOR. This is a concise description of encapsulation in that the control over processing (the control flow)

and control of data change (data flow) are m aintained inseparable in an ACTOR. Control passes between

ACTORS through messages. Under these restrictions, the only way an ACTOR can achieve its intentions

(behaviours) is either “Every ACTOR should act for himself or delegate the responsibility [pass the buck] to an

ACTOR who will”®̂. It is through delegating that an ACTOR extends the representation of knowledge.

Experiments in programming stjdes have implemented some of the ACTOR philosophy in T.isp. Ea'ly

examples include Kahn’s Director^ and Lieberman’s Act 1®’. These experiments are specific

im plem entations of software machines using ACTOR. The concept of a prototype that delegates to a proxy

(see §2.4.5) as a method of representing knoMedge, came fi-om these experiments. All prototypes are an

ACTOR. Each knows a proxy, Miich is an ACTOR. Any message a prototype does not specifically know how

to resolve will resolve the message by delegating the m^sage to its proxy. This message delegaticm is more

specific than HeMtt’s “pass the buck” between ACTORS. Before a prototype delegates, control passes to the

message (also an ACTOR) and assigns the variable ‘client’ to the prototype. Therefiare, languages defining this

delegation have standardised the intentions of messages.

The standardising of object organisations Mfoin languages has generated a lot of argument Initially

Lieberman^° argued class-instance inheritance was inferior to prototype-delegation. Stein^ ̂ countered that

delegation is functionally the same as inheritance. O tha languages implement various otiia organisations;

Uhgar’s^ Sel^ Macado’ŝ ’ Hybrid, and Agha’ŝ ̂ACTORS are but a few. The arguments w ae clarified when

Stien, Lieberman and Ungar produced the Treaty of Orlando’(see §2.4.4), Miich abstracts the concepts of

behaviour sharing. Each concept exhibits useful characteristics for software modelling. The important issue

in designing or choosing a language is deciding Miich characteristics best suits tiie knowledge represented.

When Zucka* represented materials design he specified behaviour sharing that supports both soirching

th ro u gh information and tiioi experimentally combining infiarmation. He sought a classification to orgamse

his knowledge, Miich supports searching. He sought the expressive description of prototypes to

experimentally combine information into design solutions. Zucker got both these characteristics by starting

51

Object -Oriented Softwire Representation of Polymer Materials Infonnation in Engineering Design

with Scheme^’, a dialect of the Lisp language that adopts actor semantics. He modified the language to

provide each object with a strict cloGBificatian with inhoitance, wfiile the delegation of scripts between

objects allow the dynamic combination of in&irmation from different classifications. This new language he

called SPLINTER.

2.5 Selecting a Language
This review describes some of the software concepts applicable fiir knowledge representation. For the

majority of polymer knowledge, these concepts are satisfiictory, but inferring goieral polymer behaviours

requires a language with highly atetract fimctionality. Object-orientation is reviewed because the philosophy

of behaviour sharing encourages abstraction and classification, Miidi the class-instance paradigm

exemplifies.

This review starts by introducing a description of design as a mdhod that uses classification and

generahsation of information. As discussed, designers first identify suitable goieral materials during the

initial stages of design. They attempt to generally satisfy the design, possibly by adjusting other design

parameters, before attempting to satisfy it with materials that are more specific. This is a principle method of

design, Miich “leads inexorably to a minor but unmistakable invention”, as quoted at the beginning of this

review. The method reUes on a taxonomic classificaticm, Miere each class generalises materials. The method

proceeds as long as the daigner can interpret design benefits from the abstract behaviour of the

généralisations. Therefore, a language implementing this method of design rcqitircs a concept of

classification and data aWtracticm.

A relational model can describe a hierarchy. Relational algebra can abstract properties of grades to give

averages, m ax im u m s, m in im u m s and general distributions. Then Miy is object-orientation chosen for

representing polymer inftirmation rather than a relational model? The distinguishing features of these two

data models are the way they manipulate data. A relational transaction processes many entities Mth the same

query, Miile an object transaction evaluates many different messages over a few objects. The benefits of

these features for representing polymer inftirmation lies in the way designers use polymer inftirmation.

If designers are able to translate a specification for a product into a material specification using general

material properties, thoi a relational calculus query could represait the matoial specification and a relational

database could effectively locate grades matdiing the query. This query approach was rejected as an

uncharactoistic design method.

52

Otgect-Oriented SoftwHB Rjqxwntilion of Polymer Materials Infbimatioii in Engineering Design

Designers can provide a loose specification of a product. Often the désigna can translate tiiem into desu-able

general material properties. The important difference is the désigna knows the criterion is only approximate,

and the criterion depends on otha paspectives of the design. Much can change and thaefore change the

criterion for the material. What the désigna first wants to know is how classes of material behave in gœeral.

The désigna can then translate the product specification into different material specifications that gives each

class of mataial the best chance at solving the problem. A new specific criterion then applies to subclasses of

a class, Miile otha criterion apply to tiie subclasses of o tha classes. The désigna decides on direction at

each new source of information, which is a style of information browsing. Adjusting inftirmation processing

according to the type of information is a general foiture of object-oriented messages not supported by

standard relational manipulation languages.

The object-oriented paradigm provides greata abstraction than the relational model. In a relational model the

data definition of gratis, their classification, consistoicy rules for inheritance, and rules to infer abstract

polyma behaviour would all be represented as separate database objects (ie table definitions, tables and

queries). In the object model, this level of abstraction exists too. Method objects represent the rules, while

o tha objects represent the polyma abstraction. Unlike the relational model, tiie object model can abstract all

these behaviours into a single object. For example, the behaviour of class objects, whose metaclass inherits

the behaviour of inheritance and object representation (ie the grade-definition), can extoid by the addition of

new object behaviours to infer abstract polyma.

Of the object-oriented approaches, neitha the class-instance paradigm or the actor formalism prevents

complex modelling, but specific optimisations of individual languages might Unlike the class-instance

paradigm, Miich impUes inheritance and classification, the actor paradigm does not naturally support a

programming structure, though it does not prevent an actor language from developing one. Zucka started

with a language Mth some actor semantics and enhanced the language Mth a taxonomic structure. In

Zucka’s case, the qualities of foe m-ototype w ae a dominant benefit fijr his initial choice of language fi>r

modelling foe evolution of design. The work presented h a e requires classification, and foae exists many

very good examples of languages that suppôt classification.

The language will describe complex relationships between grades, classes of polymers and foe abstraction of

properties, but also evolve foe description since foe classification will continue to grow and develop. The

language requires schema evolution. The schema includes foe classification hierarchy and foe description of

polyma classes Mth polyma properties.

53

Object -Oriented Software RepnMntetk» of Polymer Miterieli Infonnation in Engineering Deaign

ObjectWorks™ 4.1, a variant of the class-instance language Smalltalk, was seen to be a suitable language for

the representation of polymer materials information for design. Smalltalk had many charactoistics deemed

beneficial to the research in Table 1, including an expressive user interfece capability. The interfece to the

knowledge base is important for browsing the information.

Everything is an object all entities in the language are objects and can evolve.
Classes as objecte As well as define protocols, classes can have their own

behaviours, e.g. population generalisation and abstraction
Protocols as objects Can define engineering property objects as a kind of protocol

Strict classificatian hierarchy encourages a cleanly principled taxonomy.
R untim e evolution of classes template Grade structure can change at runtime, though not

efficiently. Changes are per group, not per individual.
Dynamic protocol inheritance Protocols change efficiently.
Large class library Faster development time
Advanced user interfiice tool-kit Encourages effective interfiice development.

Table 1: Known characteristics of Smalltalk deemed beneficial to the research
A suitable language means some of the expeeted fonctions may bo difficult or impossible to achieve. Table 2

lists the charactaistics considered challenging at the beginning. The absence of database support Miidi is

necessary for an extendable knowledge base, suggests the Smalltalk .data model may not be suitable f a

database application. Smalltalk supports a single inheritance classification and only implicit protocol sharing,

so using the class to both classify and describe polymer materials with properties orthogonal to their

classification will be a challoige. Encountering these barriers and odiers in the representation simply

identifies how the language does not suit the problem. Where possible barrias are overcome and the research

continues. Overcoming the barriers is also of interest since it characterises the problems not fi)reseen at the

beginning of the research.

Only implicit protocol sharing Object interfece does not support explicit protocol sharing.
No prototyping Classes must be used to manage protocols.
No Persistence Require a third party database service.

Table 2: Known challei^es to Smalltalk at the beginning of the research

54

(%ject -Oriented Softwtre RepreMntatk» of Polymer Miteriab Infbrmatkm in Engineering Detign

Chapter 3 POISE: Polymer Objects in a Smalltalk Environment
Overview of Objectives

For useful representation of polymer information for design sgiplications, the following list identifies issues

on:

1) managing a rich variety of informative descriptions, each with the potential to extend,

2) m anaging sparse data, and providing suitable defeults where possible,

3) encouraging descriptions that are independoit of a particular purpose, through an appropriate

classification which generalises similarities aaoss the domain,

4) defining and m anaging many levels of abstractions fi-om the domain generalisaticms.

The following chapter proposes a conceptual description, or loose schema. The schema describes software

tools for achieving t h ^ objectives. Software confijrming to the object-oriented class-instance paradigm

provides the principles. (1) Objects encapsulate information, providing an independence that allows the

information to evolve. (2) Objects share behaviour, typically following a concept of defeult inheritance, fi-om

more abstract objects. (3) In the class-instance paradigm classes enforce a strict classificaticm of instances.

In addition, the class defines a ccmsistent structure of objects, which is useful for supporting traditional

informaticm management tcmls, namely: .

5) database support techniques for information storage, in a form that appeals to the organisation of

informaticm in the polymer industry, and

6) supporting interfece design fiDr reflecting the representations and appealing to the u sa forough intelligent

interacticm.

In particular, an implementaticm of Smalltalk™ has characteristics deemed beneficial. The final tqjplicaticm is

implemented in Smalltalk™ , and named POISE. Following fois chtqjta is a discussion on foe particular

aspects of this schema that challenges foe object model of Smalltalk™. This schema is not particular to

Sm alltalk™ , and it should not inq)ly Smalltalk™ is foe cmly possible language fia foe implementaticm.

The schcmaa follows foe informaticm flows fi-om source through to foe classificaticm. The descripticm, support

for abstracticm and grade representation of this classification is at foe core of foe schema. Extensicms to this

core add orthogonal descripticms and database management capabilities. The schema, visualised in Figure 4,

show s foe data acquisiticm on foe light flowing into foe classification and supported by an object management

system cm foe left. The rest of this chapta follows this flow.

55

Object -Oriented Software Repreaeotatioa of Polymer Materiab Infbontiion in Engineering Design

Architecture of POISE for object-oriented knowiedge representation and management

 ̂ Smalltalk Imagi

Plastics
Hierarchy

Acem

Special
amenity for
user
interaction

k Implementatio
' n classes

“ISAM”
Structured
Objects
File

Forms of data

I PERSISTENCE
ENVIRONMENT (automatic

storage and I maintenance of all current
object transactions)

^ ^ Class definition

Instance o f class

HIGH-LEVEL CLASSIFICATION
ENVIRONMENT

(experimental

Disk file

ASCII/ Multi­
binary Media |
file file I

I______________l|
Read Only |

RAW DATA i
ACQUISITION I

ENVIRONMENT |

data/programs)

Class ordering

Data flow between objects

Disk communications

Figure 4: An initial architecture of POISE

3.1 Source Data
For experimenting with informaticm management, POISE needs only a minimal strategy for data exchange,

preferably accessing a single large source. Initially CAMPUS (§2.1.1.) was chosen. In principal, POISE requires

a more general intofece catering to many sources. To satisfy the principle, a CAMPUS specific interfece

passes data to a general data structure that may represent data from other sources. This general data structure

is a binary relational table.

3.1.1 Reading Binary Relational Table from DIF Files
DIF, delimited interchange format, is a simple data file fromat that separates fields in a record with a

delimiting character, allowing the fields to vary in size. Most spreadsheet ^phcations and relational DBMS

can produce output of this kind. POISE requires the fields within the records to correspond to the following

binary relational data schema:

56

Object -Oriented Softwtre RepreMntation of Polymer Meteritb Inftmnetion in Engineering Deaign

Polymer
Supplier

jg -a : OrgMtiZâtioa

: Property ValueGrade

Figure 5: The open-ended relational view of an arbitrary polymer grade
{Unique Polymer Name}— (Unique Property Name}— (Property Value}

In this case, the binary relation maps a ‘Unique Polymer Name’ to a ‘Property Value’ under the named

relation ‘Unique Property Name’. The schema allows any property relation that is uniquely identified by the

string in the ‘Unique Property Name’ field. Diagrammatically, this creates a model as shown in Figure 5. A

P o ly m erS u p p lie r is an object representation of a DIF file containing the source descriptions of grades. The

grade’s description takes the form of an aggregation of property relations to magnitudes, i^ ich are often

numerical and described here as property-values.

The data structure adopts a binary relational data model, but not the infisrence engine that usually comes with

relational databases. If an information source infers inftirmation firom the data, it must explicitly export the

infisrred data in relations. For example, a database assuming a closed domain and closed world does not state

what is felse. po ise assumes vhat is not stated is unknown, so fidse statements must be given as relations in

the input The potential exists ftir inftirmation to be lost if the system generating the o u ^ t makes

assumptions on the schema of the receiving system.

57

Object -Oriented Software Repreaentition of Polymer Material: Infimnation in Engineering Deaign

The binary relational data structure does not rely on any assumptions or any particular domain. A DIF file

containing such relations is quite capable of conveying the description of an arbitrary grade as a loose

grouping of properties, ie the relations as described in Figure S.

The binary relation file does rely on the unique name assumption for both polymer grades and the properties

used to describe them, but only within defined sub-domains of data. The domain of poise covers all

knowledge of polymer materials. Any division of tiie domain creates sub-domains. Each P o lym erS upp lie r is

considered a sub-domain of grade de^riptions. The boundary of the sub-domain simplifies the scope of an

individual DIF file or aggregation of files, provided by suppliers. In the case of c a m pu s , there is a separate

file for describing the semantics of the property relations and anothe* for specifying textual descriptions of

grades separately (see §3.1.3)

The knowledge content of a relational database will often include constraints over the domain entities

belonging to an entity set. In particular, each property describes an entity set of property values. The Murce

could define constraints over the property values hence define acceptable bounds.

Interpreting the ‘Property Value’ mtity from a field in a d if file relies on the semantic meaning of the

property relation. In its raw form, tiie DIF field is a string of characters or bytes. In some cases, the entity only

requires unique identification, in v^hich case a string may be a reasonable representation of the entity. More

often, the entity is a m agnitude with other specific semantic qpialities. The de&ult behaviour vhcn

interpreting the ‘Property value’ is to convert the string into a real number. If tiie translation medianism can

not coerce tiie string to a number then the value is left as a string. This behaviour can change on a per

property relation basis. The definition of tiie property relation in POISE can include a valid data type for tiie

value acceptable for representing the property.

3.1.2 CAMPUS
The polymer data used by cam pu s is available in two difToront file structures: The finmat found with the

commercial (hstribution of c am pus is a binary file, cam pus was also a\nilable on request fi-om tiie polymer

supplioro in î GCli (American Standard Code for Information Interchange) file.

During the period of the project (1990— 1994) the binary format changed vhen a new versions of the

CAMPUS program, c a ps ®̂, was written. The ASCn format remained consistent, presumably because it is used

to communicate the data to the CAMPUS software de\'elopers. The difficulty in obtaining the ASCII version

though made it necessary fiir p o ise to read either file fimnat

58

Object -Oriented Software RqncMntation of Polymer Materiab bftmnation in Engineering Design

Both file fimnats contain the same infimnation. c a m p u s portrays all polymers with the same list of

properties. It classifies properties by type (eg mechanical vs electrical) and polymers by material 6mily.

Each polymer includes a textual description.

CAMPUS portrays a concrete aggregation of properti%, so unlike die general schema, a static data structure

could represent CAMPUS grades, and initially a class did. Instances had a fixed set of attributes, one fur ca d i

property and one for the text. After the P o lym erS upp lie r, vhich groups property-value associations, there

was little need fiir die old class except fiir the code generating instances firom the CAMPUS files. A subclass of

P o ly m erS u p p lie r, Cam pusPolym erSupplier, specialises the general representation with this code.

3.1.3 CAMPUS Data in ASOI Text Format
The text fimnat can be likened to a simplified (or ‘normalised’) binary relational file. The file consists of

tables, one for each polymer grade. The table has two columns, the first with integers uniquely identifying a

property, the second associating the property with a value, see Table 3. The integers in the first column

reference property descriptions in a second ASCn text file fi-om die c a m p u s disk, see Table 4

301 Vestolen A 3512 F
19 5 89
101 0.932
102 17
103 10
104 >50
107 550
108 500
109 250
112 50
1 1 3 1 4

Table 3: ASCII Campus data file (edited)
The file differs firom a DIF file. The fields are of fixed character size, rather than field delimited by a special

character. There are also Boolean properties where the identifiers existence rqxresents true, and its absence

infix's &lse (ie a closed world assumption). The absence of other properties, eg the mechanical (1) property

(05) Tensile strength’ in Table 4 is absent firom the record in Table 3, infers no measurement exists.

This structure simplifies the task of the PolymerSupplier since the file groups together all the associations of

one grade in sequence. A jwocess itérées through die file without need to loeate each grade fin- each property.

A binary relational file does not necessarily group relations by grade. The CampusPolymerSupplier encodes

this difference.

59

O bject -O riented S o ftw tre R ep ie ten ttlio n o f P olym er M tte r i tb b fb im ttio n in Engineering D e t^ n

Huels Ag r.

3 Families
01 Vestolen (PE-HD) . PE-HD
02 Vestolen (PP) PP ■
03 Vestolen (PP + EP) PP+EP
04 Vestolit (PVC-P) PVC-P
05 Vestolit (PVC-Ü) PVC-Ü
06 Vestolit (PVC-HI) PVC-HI
07 Vestyron (PS) PS
08 Vestyron (S / B) S/B
09 Vestamid (PA 612) PA 612
10 Vestamid (P E B A) PEBA

11 Vestamid (PA 12) PA 12
12 Vestodur (P B T) P B T

13 Vestoran (PPE) PPE
14 Vestoblend (PPE + PA) PPE+PA
16 Dyflor (PVDF) PVDF
15 Trogamid (PA-6-3) PA-6-3
1 Mechanical Properties (At: 23/50)
01 Density g/ml Dens
02 Stress At Yield (50mm/Min) N/mm2 Stssyi
03 Strain At Yield (50mm/Min) % Strayi
04 Strain At Break (50mm/Min) % Strabr
58 Stress At 50% Elong.(50mm/Min) N/mm2 Stss50
05 -Tensile Strength (5mm/Min) N/mm2 Strgth
06 Strain At Break (5imn/Min) % Stmijr
07 Young's Modulus (Imm/Min) N/mm2 Ymod
08 Creep Modulus Ih N/mm2 Eel
09 Creep Modulus lOOOh N/mm2 EclOOO
10 Iiî >act Strength (Izod) +238C kJ/m2 Inç+23 .
11 Impact Strength (Izod) -308C kJ/m2 Inp-30
12 Notch.iDÇ.Str. (Izod) +238C kJ/m2 Nirç23
13 Notch.Inç.Str. (Izod) -308C kJ/m2 Nim-30
14 Notch.Tens.Inp.Strength +238C kJ/M2 Tenimp

Table 4: CAMPUS property ffle
The property definition data. Table 4, is read by the Cam pusPolym erSupplier creating an automatic partial

description of the properties. This meta-knowledge includes the full name of the property, a common

abbreviation, and units. The file also describes a set of mutually exclusive properties corresponding to

polymer femily membershÿ (die first 15 properties, prefixed with a 3, eg 301 for ‘VESTOLEN (PE-HD)’). Each

grade defines only one of these properties. The fiimily allows the automatic placemoit of the polymer in the

POISE classification, see (§3.2.3).

3.1.4 CAMPUS Data in Binary Format
The binary format represents each grade in a record widi a fixed number of bytes. The main numeric

properties are represented by two bytes each and identified by their index (position) within the record. This

index corresponds proportionally with the identifying number found in the property file. Unlike the CAMPUS

text repr^entation, aU properties are rqiresented, even if not applicable or unknown. The two bytes only

represent discrete values. These values include a range of numbers — both integer and float — and special

states such as ‘value unknown’, ‘value not applicable’ and property specific states such as ‘no break’ for

impact tests. The record also contains the name of the grade, in a fixed length field, the femily of the grade,

by integer corresponding to the property, and an encoded date to idoitify the version of the data.

The binary file uses the same property definition file (Table 4) as the ASCII file.

60

Oiqect -Oriented Software Repeaenlmlion of Polymer Materiab Information in Engineering Design

3.1.5 The Transitive Data Mode! .
The P o ly m erS u p p lie r reads dif files, the Cam pusPolym erSupplier reads CAMPUS files. Both gaierate

representations of gradies. The TDM (Transitive Data Model) is the temporary representation of grades

entering POISE.

On the first attempt at acquiring data from cam pu s , the data was placed in objects that specified each

CAMPUS property explicitly, so adopting a similar fixed data structure used by CAMPUS itself The objects

were rigid, requiring a redefinition of the objects data structure whenever new properties were encountered.

As new properties are a characteristic of the ridi property descriptions of materials, a general transitive data-

model was designed. This model, like the binary relations, adopts a set-like structure that collected relations.

Any number of relations could be added. The model was not to be used for any inference so there were no

restrictions on what relations were added since no meaning is attributed to them at this stage.

The requiranents of the TDM are simple than the representation of grades in the classification system of

POISE, vhich does apply inferoice over the members. The TDM does not ensure consistoicy across properties.

The concqit of the property relation only requires unique identification.

The TDM model includes some mandatory property descriptions of grades. Most only simplify the

development of POISE. We believe the software implementing POISE could be re-writtoi so grades could exist

within POISE without these properties but that it w ould introduce unnecessary difficulties when visually

identifying grade entities. T h ^ properties are otherwise treated the same as any others. The mandatory

properties include:

• A name for the grade

• The supplier of the grade.

• A text description

• A validation date.

Rather than enforcing the inclusion of these properties as input requirements, the TDM provides a default

mechanism fin* each of these properties. The date is set at the current modification date of the file read. The

name is either derived fi-om the supplier as ‘Unknown firom <suppliei>’ or just ‘Unknown*. The text is a

copy of the name. The supplier defiuilts to the file name of the file read.

There is one exceptional property. Grades must belong to a chemical femily. This relationship is the

beginnings o f a taxununtic classificaticn. It is the only mandatory re la tif for automatic classification in the

POISE schema. Any grade mtity entoing poise without this relationship will not be able to take its place with

61

Object -Oriented Softwire Reprewnution of Polymer Miteriali Infbrmition in Engineering Detign

other grades in die classification. Since there is little point is defeulting to ‘is-a ' Polym er’, and rather than

make this relationship the sole input requirônent, a browser was proposed to allow the user to place each

grade without the property. Since all cam pus grades specify this property, die development of this browser

was not a high priority.

3.2 System Data Flow
The data flows fi-om source to a TDM, the temporary representation of grades. The TDM lacks any structure to

support infisrence. The next stqi is to transfer the data in the TDM into a more knowledgeable structure in the

classification architecture. This structure provides many different infisrences. Restructuring and placing the

grades requires the eqiplication of infisrence rules and occasionally some interaction firom the user. As POISE

collates more about polymers, die classification develops character. This section follows the flow of

infimnation and the effect it has on the classification.

3.2.1 The Grade
A transitive data model (TDM) initially collects the raw data on a polymer grade as arbitrary property-value

pairs, managing diem as a single groiip. The TDM acts as a flexible interfece between the data acquisition

system and the classification. The next step is to find a class for the grade. The P o lym erS upp lie r object

manages a collection of t d m s , and defines a mechanism for placing the grade into the classification.

The classification of grades divides into two steps. CAMPUS provides the infimnation for the first step, vhich

is to group chemically similar polymers into a femily. This is the most specific level of class in the

classification Using the tools provided the user manually generalises more classes and completes the

classification. A virtue of an evolutionary structure means these two steps can occur in either ordo*. As soon

as a CAMPUS grade enters POISE, the grade can automatically migrate to the class representing the femily.

Each class in the classification describes a data structure fisr its member grades. This structure is a more

formal description of the grade as an instance of a class. Each relation is unique and specifically described,

unlike the general treatment in the TDM . Figure 6 shows the structure of a single relation, linking a g r a d e w i th

an attribute, with the relation qualified by a P ro p e rty object. This object is the subject of the next section.

The TDM requests a new empty structure fi-om the polymer femily and fills the structure by matching

properties in the structure with fee properties in fee property-value pairs. If fee TDM defines a property feat is

not in fee structure then there is fee potential fiar fee property to be lost.

However, POISE prevents fee loss by checking fee properties of all TDMs before adding. For example, as

result of reading a CAMPUS file, fee C am pusPolym erSupplier object collects up fee properties fî r each fiimily

62

(^ect-O riented Software Reproentttion of Polymer M itoiab Infbrmttioii in Engineering Daign

class and compares them witii the classification. Any discrq)anci^ induce a request to modify the

classification to provide for absent properties in the schema (see §3.3). Only then are the grades added. New

femilies are also defined vihen not found in the classification. These femilies automatically inherit fi’om the

general class Polymer.

gioy ttym m ad '???’

Polymer
Supplier

Property

Grade : Property Value

Figure 6: Schema of the CAMPUS polymer object
3.2.2 The Property Object
The P ro p e r ty object has the following roles in the implementation of POISE;

• An identifier of an engineering test ^)plied to polymers.

• A unique key for property-value pairs in the TDM.

• Interprets values in the property-value field of a DIF file

• The ability to negotiate with a class on how instance represent grades.

By defeult, any two objects occupying separate locations are identifiable as different, but they may be

semantically the same. Identifying semantically different properties requires informaticm to differentiate

between them. Simple attributes can be compared automatically, such as a name string, but a textual

description of the test requires a user. Two different texts can have fee same semantics, requiring a user to

read and interpret fee text to detamine differences between properties. Either way, fee information allows

properties to be differentiated.

A unicjue P ro p e r ty specialises each asscmiaticm between fee TDM and values of a grade. In fee TDM, fee

P ro p e r ty object is a key in a look-up table. This key is fee cmly distinguishable difference between different

property data in a TDM.

When a P o lym erS upp lie r reads a DIF file, fee ccmtents of fee seccmd field names a property. The

P o ly m erS u p p lie r Icx̂ ates fee P ro p e rty object matching fee name. The third field containing fee property-

value is a string. The P ro p e r ty object converts fee string to an object of fee type representing a value of fee

63

Object -Oriented Software Repeewalation of Polymer Materiab Inftxmation ki Engineering Deaign

property. The type is an attribute of the P ro p e rty object, > ^ch also provides the behaviour to transform

from a string. The TDM then associates the P ro p e rty , as a key in a hash table, with the value object.

Properties are not pre-defined. Grades will always require more property descriptions. POISE is able to receive

new propertira at any time. New CAMPUS properties are no different from any others, cam pus describes all

die properties in each database in a separate text file. Table 4. Each property in the file is a record with a

name as a string, unique symbol (a shorter sequence of characters), and a string for the units of the property-

values. POISE creates a new P ro p e rty with this information as attributes to identify the property. Defiiults are

available for all othCT behaviours of a P ro p e r ty object

CAMPUS mainly defines grade’s property-values as a single rational number. Rational numbers descnbe an

ordering and ordering is necessary for comparison; a prime function in design. So it is reasonable to assume

all specific properties can be represented with a rational number, though other ordering representaticms may

be ftjund more appropriate. It so hq)pœs feat all fee CAMPUS properties are quantitative properties, > ^ch

means fee rational values are fee result of some principled test For some properties a measurable test has not

been found, and these properties are often described qualitatively. In principle even these properties can be

ordered and databases like plascam s-220 use rational numbers as an abstract ranking to represent qualitative

data. In this form they do not pose any more of a challoige to deifica tion and abstracting as qualitative

measures. Their absence in POISE is solely a consequence of fee source of data. Nevertheless, it should be

remembered that although fee abstract use of rational numbers for measuring qualitative properties has a

logical basis in ordering, there is no prindple to fee measure of qualitative properties.

The defeult type attributed to a property is an object representing rational numbers. A consequence of this

defeult can be a loss of information, such as engineering units, in fee representation of fee values.

Associating a value wife units conveys more infi)rmation. Instead, lost infirmation is maintained as an

attribute of fee P ro p e rty object. As POISE developed, fee P ro p e rty object became a repository of Tost’

infirmation specific to fee values. As fee development of POISE evolves, this information finds a more

appropriate representation, such as part of a value’s type defimtion.

The defeult P ro p e rty behaviour also makes it easier for users to define their own properties. Initially only a

unique name is needed. The user can feen refine fee P ro p e r ty 's attributes later.

Objects of any language could easily model all fee roles in fee above list All are typical computing

behaviours except for fee last role. The last role, negotiating wife a class, involves evolving fee description of

64

(% ect -Oriented Softvnre Repreicntition of Polymer Miteriab InfbnnitioQ in Engineering Design

other objects. In a class-instance language, classes define fee behaviour of other objects. The class describes

fee meaning of each value attributed to a grade of fee class. However, properties also describe fee meaning of

a value attributed to grade. A class describes many attributes whereas a P ro p e r ty describes only one.

Therefore, a materials class is an aggregation of materials properties.

A class describes objects as a single unit of description, or template. The template is not a composite

structure, but a single description that has been contributed to by many properties. A P ro p e r ty requires some

functionality vhere it may define behaviours and include these behaviours into fee class template. The

P ro p e r ty is a tool feat adds behaviours to fee class machinery that produce grades. The P ro p e r ty as a tool

for constructing object templates is a unique object-oriented issue feat arises fi'om POISE. The P ro p e r ty is a

partial-template object^ ,̂ see §4.4.3.

This approach to class definition is sim ilar to fee ‘mixin’ style of multiple mheritance of CLOS^*. It differs as

it does not enforce a membership behaviour wife fee P ro p e rty . Grades have no relationship wife fee

P ro p e r ty entity, only fee behaviours fee P ro p e rty provides to fee class tenq)late.

The process of installing, moving and removing properties over to classes is furfeCT described in §3.3.2. In

fee implementation of POISE, §4.4.1, addresses how classes add properties.

The desorption of a P ro p e rty so fer has been more as a tool in fee machinery of POISE. The P ro p e rty is also

an entity of knowledge in fee materials domain. Some of feat knowledge is useful fijr identifying uniquen^s

across properties. As a representation of part of fee materials infimnatian, a property should also provide:

• a text description of an engineering test, which is feen translated into,

• a rq)ository of behaviours that objects wife fee property may adopt.

The text, useful for identification, is also a repœitory of knowledge, which may be translatable into

computable rules by a knowledgeable designer. These rules become behaviours of grades, but aggregate by

property. The P ro p e r ty adds fee behaviours to fee classes of grades wife fee property. This means if fee

P ro p e r ty moves in fee classification, so does its associated behaviours.

3.2.3 Automatic Qassificabon Declaration
Initially POISE does not contain grades or classes except for fee class represented by Polymer, ^ ic h is fee

root of the classification hierarchy. By restricting feis experiment to fee domain to polymer entities, POISE

can automatically classify TDMs under Polymer. The only other classification information is fee polymer

femily property. The TDM demands a polymer femily name fi-om «ich entity. Each new name defines a class

‘polymers belonging to polymer femily named...’ and is subclassed automatically under Polymer.

65

Object -Oriented Softwtre Repfcscntttion of Polymer Miteriab Infbimttion in Engineering Design

Each new polymer femily class is undescribed, with exception of its name and its membership to Polymer.

Even Polym er initially describes only a name ‘Polymer’. The concept of Polymer is empty and in its empty

state a poor representation of a polymer category. POISE provides specialisation of the classes through a user

interfece, whidi is covered later, and by automatic inference feat generalise from fee TDMs.

A P o lym erS upp lie r manage fee first grade POISE adds as TDMs, grouping them by their polymer femily

“property”. Each group requets fee classification to provide a class wife fee collective propertie of fee

TDMS. Each request is a transaction between fee class and fee P ro p e rty object in fee td m s . This ensure that

classe specify a template cfq)able of storing fee property information rqjresented in fee TDM.

The class template is common to all members of fee class. Adding propertie to fee class modifie fee data

structure of existing members, feus keeping a unified representation of grade. This unification results in a

relational de-normalisation by polymer fiunily. Membership of fee classification impose a uniform property

specification over fee grade that did not exist in fee TDM’s unretricted relational representation.

Ihiretricted addition of propertie aims to preserve all information obtained from fee TDMs. Even if there is

only one member wife a P ro p e rty , all members of fee class will be modified to represent fee P ro p e rty . The

automatic addition of propertie assume fee existing grade and any other future grade of fee class not

specifying a property are simply sparse; fee data is not available but may be specified.

The presence of propertie in a TDM do e not distinguish A ether fee property is a characteistic specific to

fee grade, to fee polymer femily or to polymers in general. The assumption of sparse data could be taken

further; fee absence of fee property in othe femilie is also due to sparse data and fee property should

characterise all polymers. Given any property, it is potentially a property of all polymers or specific to fee

polymer femily class, or indeed specific to fee grade itself For a solution, POISE looks towards fee nature of

fee source, fee P o ly m erS u p p lie r.

3.2.4 Transfer of CAMPUS Grades into the POISE Architecture
The following looks at fee consequence fee primary data source, CAMPUS, has on fee ardiitecture.

CAMPUS uses a fixed unified data structure to represent all engineering properties for all polymer grades.

CAMPUS maximises fee usage of fee fixed data structure by tending towards generic polymer properties. By

keeping to properties measurable (but not necessarily measured) fi)r all grades avoids having useless slots

allocated to properties that can not be measured for a grade.

66

Object -Oriented Software Repreaentation of Polymer Material* Infonnation in Engineering Deiign

In the case of data from CAMPUS, the majority of properties describe all polymers. Since the placement of

TDMs, hence their properties, is under the control of the C am pusPolym erSupplier object, it can specialise the

rule for property placement The defeult place for CAMPUS properties is under Polymer. This is \\ha"e

Cam pusPolym erSupplier puts than. Since the rule is general to all TDMs, Cam pusPolym erSupplier may

sidetrack die P o ly m erS u p p lie r’s automatic property analysis of TDMs by class described earlier, placing all

properties directly in the Polymer class

An interesting acception to generic propcrtios in CAMPUS is the property water absorption. This property is

usually applicable to Nylons. It so happens that many grades in CAMPUS are Nylons, hence its declaration in

the data structure of all polymers is not inefiBcient If this property is only applicable to Nylons, i\hat do the

other non-Nylon grades store in the space provided in the data structure? CAMPUS uses a special state,

represented as a string ‘n a ’ in the ASCII file, for ‘not applicable’. This causes the TDM to specify the property

with the value ‘n a ’ for non-Nylon grades. To handle such nonsaise, the TDM could be notified the

property translates the value that it is not an e^jpropriate representaticm of the property. What thai? If the

property is just removed, then the Cam pusPolym erSupplier will assume the property is just unmeasured.

A state for ‘Not ^ lic a b le ’ is useful to the user ftir developing the classification of polymers. If one grade in

a class is discovered that should not define a property then the property can not be related to the classification

principle. Removing the property from the class will modify the data structure of all members, including

those that define data for the property. Removal will cause loss of this data. It is simpler if the system just

marks ‘Not Applicable’ until the property moves during re-classification by the user, rather than removed on

an ad-hoc basis.

Two fiictors contribute to the population of properties settling down at the root of the classification. The

assumption that the absence of data is sparse and that the CAMPUS database uses generic properties. Although

the descriptions of the more specific classes are empty, they do not determine the principle of classification.

The classification is based on a single property: polymer fomily membership. If the classification does indeed

group like with like, then this similarity should be reflected in the property values of the specific grades

grouped. This analysis of similarity was part of Spedding’s* work. Generalising over the specific grades, to

characterise each class, is a function of the hia-archy, §3.5.

All CAMPUS properties initially describe all polymers. This results in all grades sharing a homogenous data

structure, just like the structure in CAMPUS. This is not surprising, since the infiirmation on classification

originates from CAMPUS, and the details of this information are yet to enter POISE. Unlike CAMPUS, the

67

Object -Oriented Softwtie Representition of Polymer Materials InfbimatioD in Engineering Design

polymers are not left in Üiis homogenous state. The classification is not intended to remain static. Later,

mechanisms for evolving the classification are given special consideration in (§3.3.2). The only issue at this

stage is to prevent loss of data. The user must add knowledge absent fi’om cam pus for further classification

to occur. , .

A further consequence of choosing CAMPUS is that it leaves the classification as a shallow hierarchy. With no

other source of inftirmation, it is up to the user to add abstract classes between Polymer and the polymer

femilies, thereby creating die deep levels of representation found in the polymer domain (§2.1.8). User

interaction requires, appropriate tools and these are considered in section §3.3.3.

3.2.5 Maintenance of Unknown Data
Sparse data and the concept of incomplete descriptions both have an identifiable state. For completeness,

POISE considers finir.states exist for data: . .

• Known

• Not applicable

• Sparse

• Unknown

Two states exist fin a property: (P eQ n(PgC) v^here C is any class tenqilate.and P is a property. If PeC,

then data fin the property is eitho" known, not applicable or sparse. Unknown corresponds to Pg C.

When a TDM represents a grade, there is no distinction between unknown and sparse data. Sparse data exists

in the POISE data model because the data model recognises two states of absent data: Pe C and \^fien

PgC. When PeC is true, the property is known to be measurable, and POISE infers a value fijr the property.

The contrary statement, PeC, does not mean the property is ‘not tqiplicable’ (na), ie not measurable. The

domain is not closed and properties will always exist that are measurable but are not yet represented. Until

represented, infisrring defeults is not possible. Properties with values as n a are a subset of PgC. For all the

properties in the domain, POISE expects P e C is true for all classes that can measure the property. The absence

of a known property from a class is then assumed NA in that class. Tho^e is initially a period between a

properti^ definition and its placement in the classification >^ere this assumption is incorrect, ie a property is

known butPgC.

The absence of a property fi-om the system implies the descriptions are incomplete. If tiie property is absent

from the grades description (class), but present in the system, then this indicates that the property is NA to the

grade. When the system adds a new property, by defeult it is NA to all grades until it is cœrectly added to the

68

(%ject -Oriented Softwme RqMcwatition of P o ^ c r Materiali Infonnetioii in Engineering Design

classes. Even then, defeult values are not implicitly inferred until some grades attribute actual values to the

property.

Requesting a NA property for a grade responds difiSa-ently from a request for a known property of a grade

vdiich is sparse. A sparse condition results in a defeult value, and NA in an error message. With NA

properties, it is semantically incorrect to request the property. Sparse data assum es the property has yet to be

tested against the grade. POISE knows it is semantically correct to request the property of such a grade. The

problem is how such a request should be handled when POISE does not know the value. These issues are

addressed either explicitly as a behaviour of a propoty or generally ferough defeult values based on typical

values of the property within the classification.

A response of a defeult value and a known value should also be recognised, as the two states have different

accuracy. They both at least produce computable values.

3.2.5.1 Not applicable data
A grade describes a property as ‘Not iqjplicable’ (n a) if the grade is inappropriately grouped in the

classification or if the property is an inappropriate d^cription in the class. The classification should

normalise the property specification to remove such states.

The NA state is rare given the initial source of poise. CAMPUS properties are mainly applicable to all

polymers. The state does exist for a few properties, eg water ateorption, is wplicable only to Nylons.

A property value representing the state n a is useful for flagging a pœsible feult of the classification as it can

indicate an unusual grade fiiat deserves a separate subclassing from other grades. Whatever the reason for its

existence, a property behaviour that returns the state should generate an error, since a proper model would

not normally respond to the behaviours of the property.

The NA is also useful during the process of property placement, eitha- automated or manual. Placing a

property in a more general class is possible without inferring all grades exhibit the property. Grades not

exhibiting the property can be given the n a state. Later a process of relational normalisation can remove NA

states.

3.2.5.2 U nstructured datai Text
All grades are partial descriptions. Infixrmation is usually available on individual grades before it is

understood how the information relates to the polymer femily or polymers in geieral. The informatian can

also be of a lesser pedigree, and not available fi)r general description. When the infimnation is better

understood it may describe a POISE property and add to fee description of a class.

69

Object -Oriented Softwm RqHCtentation of Polymer Materials Infonnation in Engineering Design

Unstructured information gains nothing more from classificaticm than the association with the classified

grade, poise manages the unstructured infisrmation as text in a single collection. Such a collection of text

descriptions exists in the CAMPUS system as a separate delimited file, with an entry for each polymer

identified by name. A single text collection is a representation that benefits simple sequential searches

through the text A s§qu®tial search for a key word is a simple generic tool fin- finding similarity between

giades. Individual grades are not attributed with the text Instead, the collection maintains an index of grades

and associates each grade with a block of text in the collection. Sub-collections of text for any group of

polymer can be created needed.

A user interfece gives the domain expert access to the block of text for individual grades. The interfece

aUo^vs the user to annotate the grade with unclassified informaticm in a piece-wise manner characteristic of

prototyping. This inteifece would benefit from a Hypertext extension to the simpler text interfrice. Hypertext

adds cross-referencing of key words and ^ e n the user selects one, the view automatically moves to the

reference. Many other eqjplicatioas have proven Hypertext a very successfully browsing tool, eg

HyperCard^^. Although not considered an essential feature of the POISE system, it is viewed as being a

potential future extension to the system. The hypertext fecility could also provide cross-referencing to other

POISE user interfeces providing immediate access to the knowledge in POISE on polymers and properties

described in the text

3.3 Evolution of POISE Architecture
3.3.1 Description of the Oassification Architecture.
The hierarchical classification in POISE supports fee management of domain infimnation and generates

abstractions. However, fee nature of fee domain complicates developing a classification because fee

principled concepts of similarity feat provide an extendable classification do not always group similar

engineaing data useful fijr design. Without an acceptable principle for classification, and rather than

enforcing a controversial classification) on altcsiiati\'e is to inq)lement a classification feat can change and

evolve according to principles that are learnt from use. A philosophy of change compensates for a certain

amount of absent knowledge still to be leamt

An empirical decomposition of fee domain aims to consistently classify like wife like. The empirical

approach considers existing record structures and documentary sources, such as fee annotations from

CAMPUS; Finding similarity within fee domain is not a tririal exercise. Ltda", some tools are introduced to aid

this process. Figure 7 shows a fragment of an initial classification. It illustrates an expanded portion of fee

polymer hierardiy togefeCT wife some of fee knoWedge-domain arguments fevouring fee structure. The

70

Object -Oriented Softwtie Repiewotmtion of Polymer Materiib Infbrmition in Engineering Design

classifications of the domain, the classes between the polymer femilies and root class Polym er, are chosen

according to principles of microstructural scale and composition, ie a domain principle suitable fi)r extending

the representation.

Apaoed

olyacetal

0oiyoieiin(JiyBtamne

I ■ ■ 1 I
MDPE 1 ^Poly-

etfayleae

! ■ ■ ■ !

At this level in a geneial materials
hieiarclWi metals and ceramics
sq>pear, but not composites due to
the large scale of mixed
reinforcements.

A t this level Thermoplastic is factored into
Amorphous and Crystalline. lnq>licit in this
division is that nearly all subclasses of Crystalline
will be expected to benetit from the greater
chemical and structural integrity of a crystalline
phase. The microstructural classification is of the
same order as the chemical classification which
follows.

At this level the dorm inis factored into chemical
classes. The assunq>tion here is that the chemical
classes subsumed under Crystalline (strictly
“partially crystalline") and Amorphous will not
normally violate their ancestry. A policy for
exceptions is required, as exenq>lified by the strain-
induced crystallization of PET. This has led to the
issue of whether a class ?Aiigae<t?9X.̂ lCù% level is
appropriate.

A further deviation with hu^reaching
consequences, observing the principle of
fectoring according to molecular scale,
introduces density as an appropriate way of
grottying polyetltylenes.

Figure 7: The factoring process
The managemait of the classification, ^riiich is described next, automatically supports:

grade behaviour consistent with classification
specification of grade implemaitation, including data structure,
consistent placement within classificaticm of grad% acquired by data accptisiticm system
gcmcration and management of generahsation
abstracting defeult property specificaticm fi'om geno-alisation

vriiilst being able to coerce to a new classificaticm as specified by the user.

11.
111.

IV.
V.

Class-instance object-orientaticm supports tiiis management already as follows: (i) Grades of the same class

template define common abstract behaviour ensuring consistent properties (ii) and data structure, (iii)

71

Object -Oriented Software Repreaentation of Polymer Material: Infonnation in Engineering Deaign

Currently the placement of grades uses the unique polymer femily name as a key to the polymer class, to

ensure consistent placement of grades. Class-instance language do not generally support points (iv) and (v),

vriiich introduce abstract levels of rqiresentation besides specific grades and are discussed later in §3.4.

Many class-instance language do not support schema evolution, winch is the difficult task of coercing to a

new classification.

The lack of a computable domain principle means tho-e is no rule to automate classification. Only highly

specialised chemical classes exist into wiiidi the grades are automatically placed. These femilies geno-ally

group alike grad% but feere is no guarantee so there may be exceptions where it is necessary for the user to

manipulate the classification. The user will need to specify any other more general classes as well. The tools

for supporting evolution of the class hierarchy under user control follows.

3.3.2 Creating the Hierarchicai Classification
POISE adopts the class-instance paradigm to rqiresent classification. The following sections discuss what

specific functionality POISE requires fi-om the class hierarchy for representing polymer classes, and the tools

for managing the hierarchy fi-om a domain, rather than software, point of view.

The behaviour of each polymer grade can change and must be modifiable at any time. It follows that the

language implementing POISE will need to coerce object defmitions at run-time as behaviours change.

Changing object definitions at run time creates many problems for the stability of programs. If a language

provides schema evolution, it must also provide consistency rules over change and provides a mechanism for

handling instability.

POISE provides its own well-mannered mechanisms to govern object definition changes in the class hierarchy.

From a domain viewpoint, these are the addition of new classy, the movement of class within the

classification, and the movement of properties in and out of classes. All these issues are inter-related. A new

class will involve all three. The movement of properties in an existing classificaticm is considered first

3.3.2.1 Adding and removing a property
A property is a partial template descripticm that ccmtributes to the complete template defined in a class. How

the property achieves this is specific to the implemoitaticm language and not an issue here. Regardless of the

implementation, the property will abide by rules of inheritance.

Whoi adding a property to a class, POISE ensures the property is not declared mwe than once alcmg the same

line of inheritance. Besides the more specific declaration being redundant, if allowed by a class the repeated

property would correspond to a repeated allocation of resources by the class in the grade’s data structure.

72

Object -Oriented Software Représentation of Polymer Material: Information in Engmecring Design

If a specific polymer family specifies a property, and later it is found it £)̂plie8 to a more general class of

polymers then the general class should add the propoty. The specific polymer family thai removes the

property, and instead inherits the property fi'om the general class.

If all the subclasses of a superclass define a property, POISE infers that they should inherit the property fi'om

the superclass. The activity of moving a property defined in a subclass to its superclass is known in POISE as

promoting. The infiîrence to promote assumes a closed domain, eg initially the grades may all define yield

strength, causing the promotion of the property to Polymer. LatCT an addition of a polymer that does not yield

will invalidate the generality of the property.

TTie ^jpropriate place for a property may be known before adding grades, so the promotion should also be

under user control. Explicitly promoting each property is labour intoisive, so an explicit denial of promotion

is more useful than explicit prumulion. Consequently, POISE does automatic promotion wily wfeen addmg a

property. The user can reverse or prevent this promotion by explicit removal of the propaty.

Removing a property firom a general class of polymers has two possible consequences. Either the class and its

subclasses no longer exhibit the property or each subclass adds the property so only the general class no

longer exhibits the property.

Removing a property fi'om a class is not the same as removing a property fi'om the descriptions of all

members of the class. The class only abstracts properties firom its members. The members still express the

property. When removing a property fi'om a class, the more specific members of the class should

automatically add the property. When a property moves fi'om a superclass to its subclasses, the property is

demoted. Demoting a property never affects the behaviour of grades.

Demoting is only possible if grades are in subclasses, since in most class-instance languages instances can

not specialise their class description, ie cannot add properties to individual grades. When a property demotes

firom a class with instances (grades) the property cannot pass to the individual grades. In this case a

destructive removal occurs. It is destructive because any values the grades maintain fi)r the property will be

lost, as their data structures will no longer support the property value.

Occasionally, the user wants to remove a property, rather than demote i t Such as when the user wishes to

reverse an addition of a property. So both demotion and removal are supported. When removing a property

from a superclass, it is possible that the user is unaware of the consequence to otho- subclasses. It is possible

that the property was explicitly added to a subclass earlier and a promotion caused the inheritance of the

73

Ofgect -Oriented Softwve Repictcntition of Polymer Meterimh Infonnition in Engineering Dctign

property from a superclass. Removing the property from the superclass, rather than demoting the property,

will conflict with the earlio- addition of the property to the subclass. A similar case occurs when adding à

property to a superclass that was earlier removed from a subclass: These actions are in conflict, but not

directly reversed actions. In sudi cases, the usa* is notified.

For the user’s convenience, the tool providing these facilities should visually convey an add as the reversal of

a remove and a demotion as the reversal of a promotion. This eases fee reversal of erroneous actions.

33.2.2 Adding abstract classes
Adding an empty polymer class as a specialisation of Polymer extends fee classification. The class can then

move to inherit from a class other than Polymer. Ofeer classes can move to inherit from fee new class. These

functions allow fee creation of a taxonomic classification.

The class needs a name, which as text, is a minim al visual representation of fee class. If fee class is a polymer

fam ily from CAMPUS, fee nam e will link grades from CAMPUS to their class in POISE.

3.3.2.3 Moving elapses
Moving a class is a major modification to fee classification. A move changes fee superclass-subclass

relationships and fee subsumed properties. Wife a change of superclass, fee inheritance of properties

changes. The effect on fee class template is twofold: properties no longer inherited are added to fee class, and

fee data structure extends to cater for fee addition of newly inherited properties. Commonly inherited

properties, between new and old siq>erclass, do not cause change.

There are two kinds of move possible. The first moves a class and all its subclasses to a new superclass. The

second moves a class but all its subclasses remain by inheriting directly from fee old siq>erclass. Moving fee

whole branch of the classification (fee subclasses wife a class) is thought to be better understood by a user.

Moving whole branches prevents one inconsistency pœsible within a hierarchy: circular inheritance. Circular

inheritance occurs when a superclass inherits from one of its own subclasses. By moving a whole brmch and

allowing fee branch to inherit only from classes ofeer fean those in fee branch, prevents circularity.

3.3.2.4 Merging classes
The n am ing of polymer fam ilies is not universal so feCTe is fee potential for fee same real-w^orld polymer

fam ily to be declared under two different names, eg Nylon and Polyamide. Merging two classes first requires

both classes to share fee same property structure. Normally this will be fee umon of fee two property

structures creating a more complete description. The next stq) coerces fee structure of fee instances (grades)

to fee unified structure.

74

CRÿect -Oriented Software Repreaentation d Polymer Material: Informadoo in Engineering Deiign

3.3.3 The Interface ,
The hierarchy-editing interface is primarily a visual representation of the hierarchy. The simplest

representation is a tab-indented list of the names of the classifications. The tabs are set according to the level

in the hierarchy. The order of the list is such that any class inherits from the next class above it, which is

printed at a lower level (one less tab space). An example is given in Figure 8 where PA6 and PA12 both inherit

from PA, which is the next polymer class up the list at a lower level.

H ierarchyEditor
:v ------

I h tm n p lu t io
Amorphous

PUD F w "
pumi
PUCM
PVCP
PUDU
PVDF

Ciysttfflne
PA

PAG
P *

PE
paA

 :__ pmn __

R«ft«olhw mtax
Creep iTodulus Vr
flow tontoelooi^

i BeolroJjrtc corrosion
VisDosiç coeir
OH U 100 drop»«elue

' Gomp.irecMng index C7TM
I Mould tempereture
l| attiidm ssB
!} Creep modulus tOOOh
'i He# deHTennp. HDTG
I Tende seenoti (SnnMn)

I RenvnebillqpULOI(Uhin)

1Promoted DWMWpdwaA K2QP5D
Add 'e

Demotew Removew

Added Properties T
Removed Properties f

eUmSUoedB
MleStloedA

mWt volume index MW Pvekie)
Specfanen md properdeseood.(o DM
Wetar ebsorp4on(29C-set)fl.

eHestlempereWreA
etttSdenpereUreB

Figure 8: POISE hierarchy editing tool
Users select a class by choosing the rqipropriate line in the list with a pointer input-device (eg a ‘mouse’).

The view (an area displayed on a computer screen) then displays the information about properties of the class

in the subviews below the hierarchy. From these subviews, the user can move properties around the hierarchy

in an orderly manner.

3.3.4 User Interaction with Properties
Once the user has selected a class, three subviews are updated to display; the properties inherited by the class

(the left view); the properties specialising the class (the centre view); and a view with all other properties,

those considered not applicable (the right view). The right list will exclude the properties of orthogonal

classes (§3.6.2) which can apply to any grade.

75

Otgect-Oriented Software R qraotfatioa of Polymer MateriiU bfbnnation in Engineering Design

The editor keeps a record of all the property modification, for consistency checks. The interface checks each

change and determine wfeen the user requests conflicting actions. Pull-down lists marked “added-properties”

and “removed-properties” display the history of actions on the selected class.

There are four dedicated buttons for manipulating the properties of the class; Add and Remove on the right,

Promote and Demote on the left. The proximity of these buttons encourages fee user’s understanding of

movements between fee lists.

33.4.1 Adding a property
Properties listed in fee pane on the right of Figure 8 are not subsumed by fee selected class. The class could

add these properties by selecting one and pressing the Add button next to fee list. The lists are updated wife

the property removed from fee right list and added to fee centre list. The list in fee centre pane is fee

properties declared specific to fee selected class.

The editor checks all subclasses and recursively their subclasses, before adding a property to a class to see if

any subclass has explicitly removed fee property. If the property has been removed feen iifeeriting the new

property is a conflicting request This raises a N otifier that provides the option to eifeer abort the add,

enforce fee add despite the earlier remove (hence adding fee property back via inheritance), or add fee

property to all subclasses except those in direct descendant from fee class that had fee property removed.

This last option will cause all subclasses to have the property except fee one that had the property removed.

After adding a property POISE analyses fee complete hierarchy. If fee property is common in all fee

subclasses of the selected class’s superclass, (fee subclasses will include fee selected class) feen fee editor

automatically promotes the property to fee superclass. In wfrich case, fee property moves from fee right list

over to fee left list in Figure 8. This process enriches fee abstract classes and the hierarchy as a wfeole. If a

record of fee property removal exists for fee superclass then feis automatic promotion will be vetoed.

33.4.2 Removing a property
Removing a property, like adding, starts by selecting fee property in fee centre list and pressing fee remove

button. The property moves from fee centre list to fee right list The editor first checks subclasses for any

previous adds of the property that now rely on fee mheritance fix)m the current class. If a conflict occurs a

N otifier opens wife fee following options: force fee remove despite fee previous add, abort fee remove, or

remove fee property but add it back to fee subclass that had add fee property previously (like demotion, but

only to the conflicting subclass).

76

Object -Oriented Software ReptcMntation of Polymer Material: Infonnation in Engineering Deaign

Removing a property will eventually lead to loss of data. This has not yet occurred at this point in the

procedure, but will h^jpen lata" when the user accepts all changes to the hierarchy. Reversal is possible up to

that point without loss. Any action providing the grades with the property later will maintain the data.

3.3.43 Adding and removing classes
The user can add a new class by selecting the menu bar and choosing the “Add Class”

option. Defining a new class abstraction has two requiranents: a name and a class fi'om which to inherit By

selecting the menu, a field oitry window opens fi)r fee user to type fee name of fee class. The class inherits

by default fi'om Polymer. The user can feen add properties and move fee new class.

33.4.4 Moving classes
Moving a class involves selecting it in fee hierarchy and feoi designating a new superclass fi'om which it

inherits. A select and drag operation by the user can achieve this elegantly. The user selects and holds (keeps

fee mouse button depressed) a line containing fee text of fee class’s name, feen drags fee mouse. As fee

mouse moves up wife fee text of fee name, fee classifications above are highlighted, conversely in fee down

direction. In Figure 8 PVCP can be seen over fee classification pvc. When fee editor highlights fee new

superclass, fee user releases fee mouse. If fee move passes consistency checks feen fee class becomes a

subclass of fee new superclass. No changes occur if checks fail, eg releasing fee class on one of its own

subclasses. The editor updates fee display.

3.3 4.5 Removing classes
By selecting a class feen ordering fee com m an d via fee menu, fee user can remove classifications. The

appropriate w arn in g s are an n ounced accordingly. The editor does not change fee POISE classification, only

fee display, until fee user commits all changes. All fee changes can be aborted at any time, including class

removals. Currently, aborting a single class removal requires aborting all modificatimis.

3.3.5 The Data Model underlying the Hierarchy Interface
A single change to fee schema of fee polymer data definition can affect fi'om a single class containing tens of

objects to every object in the schema, an order of thousands of objects. Often a user will not make one

change but will have a number of modifications. Most of fee changes will affect fee same objects, eg

removing a property firom C ry sta llin e and adding one to Polypropylene, both affect Polypropylene. It

would be sensible feen to use a batch processing technique rather fean fee interactive processing of each

change.

Batch processing requires a description of all fee changes to be made and feen a single process to optimise by

reduction and perfijrms those changes in one step. A model, which is descriptively parallel to fee polymer

77

Otject -Oriented Softwne RenBeMotation of Polymer Miterieb Infonnition in Engineering Deiign

hierarchy, records changes entering the user interface and performs the consistency checks as described in fee

previous sections.

Two parallel hierarchies have two advantages over interacting directly wife fee polymer hierarchy. Firstly,

fee classes of fee polymer hierarchy have instances that they must represent consistently at all times. So a

single change requires as much coercion as many changes and, since it is mwe common to evoke many

changes at once, batching fee changes is more efficient The parallel structure does not have to coerce

instances. The second advantage is a separaticm of consistency checks and u s c t interface protocols from fee

polymer hioarchy. These are properties of fee parallel hierarchy. This leaves fee polymer hierarchy a

‘cleans’ structure for representing polymer behaviours.

The parallel structure, known in POISE as fee POISEHierarchyChanger, performs fee consistency checks and

raises a N o tifie r when fee user performs conflicting actions. It collects fee changes from fee editor intafoce

until fee user commits. The POISEHierarchyChanger only feen updates fee polymer hierarchy.

3.4 Levels of Representation
So far, fee concept of fee class imposes property descriptions on grades. Each class clôtures similar

behaviour in a template of properties, common to all members. The hierardiy dcplicitly declares many levels

of classification. Each level classifia a population into exclusive classes of similar grades.

The class template abstracts properties that all members of fee class exhibit. These are fee defining

properties. Comparing fee class tonplate to a design specification can only establish if all members will meet

fee design requiremoits. For design, it is more useful to establish if any specific members might meet fee

requirements of a design. A similar logical statement is if no members meet fee requirements. If this is false,

it can be assumed a member might meet fee requirements.

Two abstract inference rules determine if fee requirements of a design are not satisfied. They do not

determine if they are satisfied, but if they are true feen fee requirements are definitely not satisfied. The fii st

rule fijr an unsatisfiable design is if fea-e is a single property requiremait not satisfied. This is true if a single

property is not applicable to all members of a class, or fee required value is not found in fee class.

The second rule for an unsatisfiable design is if fee union of all properties will not satisfy a property

requirement, feen no individual member will satisfy fee requirement The union of properties is a collection

of ever)' property dcscriptiono exhibited by the grades and a union of the values for each property. The union

78

Object -Oriented Softwtte RepreMntation of Polymer Miteriab Information in Engineering Deaign

of the values must infer if a given value is definitely not in the union, but does not need to infer if a given

value is in the union.

This union of properties is a diaracteristic description of a class of grades. The union describes, as opposed to

defines, the properties of a class. It is an abstraction capturing properties the class can at best satisfy.

The union is an optimistic abstraction of the members in a class. Logically, if the union satisfies any design

rule thoi there is still a chance a member of the class can satisfy the rule. Additionally, if a member of a class

satisfies a design rule then the union must also satisfy the design rule. Since the union can substitute for any

member in a logical design rule, it is an abstract representation of those members. The union is an abstract

polymer description.

The union of the values in an abstract polymer must infer a given value is definitely not in the union. A

simple range can satisfy this criterion. If the given value is outside the range then the value is definitely not in

fee class. The range is a very course measure. Knowing fee distributian of fee values may give a measure of

probability fee value is in fee class. Whatever fee abstraction technique used, fee abstract value is a function

of fee set of values fi-om a population of grades. In an object-oriented system, feis function can be specialised

per property.

Each class abstracts a different population of polymers. A hierarchy organises feese classes and fee

subclasses inherit defining properties fi-om their siqjerclasses. What is fee relationship between fee describing

properti^ of subclasses and their superclass^? An inference mechanism similar to inheritance exists fijr

infiaring fee properties of fee abstract polymers that describe classes, but it tqjplies in fee opposite direction

to inheritance. RafeCT than subclass inheriting from their superclass, fee describing properties of superclasses

“inherit” from their subclasses and fee most specific subclasses “inherit” fee descriptive properties of their

instances.

The class template reprraents fee defining properties of instances. Inheritance infia-s fee class template by

recursively ^pending fee specific instance variables attributed by each class down fee hierarchy. A template

for fee describing properties is quite different, but by reversing direction, fee inheritance can also infia* this

template during abstraction. The descriptive templates from each subclass combine to create fee template

their supo-class.

In a strict hierarchical classification, fee grades need only be abstracted fr>r feeir immediate classes, which

produces an abstract polymer. These abstract polymers are furfeer abstracted to produce the abstract polymer

79

Otgect -Oriented Softwire RepreMntation of Polymer Miteiiab Infonnation in Engineering Deaign

for their superclasses. The superclass abstracts the lesser abstract repr^entations from its subclasses (eg

Nylon abstracts all the specific njdon families, Nylon66 and N ylonl2 , etc). Since the hierarchy is strict, a

superclass’s subclasses are mutually exclusive sets and feere is no duplication of infiarmation. Mutually

exclusive sets are easy to union, since the intersection is empty.

Abstracting grades for only their mœt specialised class makes it much easier when adding, or changing, a

grade. POISE need only update the abstractions of the most specialised classes, ie fee class of fee grade. The

more general classes feen dynamically injfer fee update along fee hiorarchy.

Whai adding a grade, eadi known property-value adds to fee corresponding set of property-values in fee

abstract polymer. When a property changes, fee set must remove an occurrence of fee old value and add fee

new value. The greatest effect occurs when a grade adds an orthogonal view. When this first occurs in a

class, fee abstract polymer descriprion must also add an orthogonal view to represent fee extra properties.

Whatever property POISE provides to describe a grade of material, it must also be available to describe fee

abstract polymer.

3.5 Abstracting Knowledge Creating General Concepts
Abstracting reduces information, ciqjturing fee important concqits and discarding fee details. At fee initial

stages of design, when fee possible approaches to fee problem are at feeir greatest and require assimilation of

large quantities of infijnnation, feese reductions are important Assimilating abstractions rather than fee large

quantities of detailed infimnaticm feey ciqiture makes fee initial stages of design easier fi)r fee user.

In statistics, a normal distribution is an abstraction over a population of \'alues, which reduces any number of

values to only two numbers, a mean and a standard deviation. Comparing means and deviations is easier fean

population profiles. However, not all populations fit fee characta- of a nmnal distribution. Care is needed not

to lose important inftirmation in fee process of reduction, so causing mis-representation.

The statiotioal qualit)’ of fee values in polymer populations has not been fee sutgoct of a formal study. A

study is appropriate only when gi '̂on a quality peculation and an expert statistician detenmnes an ^propriate

statistical method. Regardless of fee method of reduction, fee gœeration and managemait of the abstraction

would still be a fimction over fee population. Extaisive statistical analysis for improving accuracy of abstract

entities would probably be of little value while abstract aitities are only used as approximate selection

criterion. Consequently, POISE uses a simple representation of fee values in polymer populations.

80

Object -Crieated Software Repreaeotation of Polymer Materiab Information in Engineering Deaign

The abstraction POISE generates from a collection of single point data, properties with a single number value,

is a hlstogiam. A class Histogram instantiates objects which manage the set of single point data, and provide

the behaviour necessary to display histograms and logically calculate with histograms. Although this

technique is interesting in itself the primary interest is in the management of abstracted general concepts.

A histogram is a set of consecutive intervals along an ordinate, each with a tally of occurrences within tiiat

interval. The H istogram constructs the occurroices of values falling into each interval from a population of

values. The H istogram is usually viewed graphically as a series of bars on an ordinate, with the length of the

bars proportional to the tally. The H istogram is an empirical reduction of a population rather than one based

on the expert knowledge of the statistician.

3.5.1 Consistency between Histograms of the Same Property
An abstraction is best when it c^tures important information. Two objectives, the ability to compare and to

query, judge whether an abstraction captures important infi)miaticm. For the Histogram, these two objectives

depend largely on the ordinate intovals.

Comparing a propoty between two abstract polymers involves comparing H istogram s. When comparing two

H istogram s the accuracy depends on the alignment. H istogram s are said to be aligned if fee intervals start at

fee same positions on fee ordinate, and fee intervals are of fee same size. If two H istogram s have different

alignments, feeir comparison is visually distorted. When aligned, fee tallies of individual bars are

comparable.

Ofeer visual issues affecting fee accuracy of a comparison is fee size of intervals. A H istogram wife few

large intervals has larger tallies. Consequoitly, fee ‘tally height’ by ‘interval width’ area feat a bar covers is

larger, yet fee data is fee same as wife a H istogram wife many small intervals and low tallies. A H istogram

wife large tally seems visually to state feat feo-e is a number of members (‘tally’ of them) of fee population at

every point along fee interval.

Whether large or small intervals should be used is a question of how accurate an answer is needed. If fee

interval is 1.0, and a query requires an answer of ± 0.5, feen all members in an interval will satisfy fee

accuracy requirement and hence fee tally is an £q>propriate response. Each query though has a different

accuracy requiremoit

The alternative is to derive an interval aj^r(^riate to fee population. An interval too large o-eates one large

tally. An interval too small ermites a number of tallies equal to one. A visually appropriate interval is

81

Object -Oriented Sofiwire Repreeemtetion of Polymer Meterkb Informetion in Engineering Deiign

somewhere in between. Above all, the interval must be fee same for all H istogram s representing fee same

property. Both fee distribution of the population and generally acceptable levels of accuracy for queries are

qualities of each P ro p e r ty object.

Comparisons are always between two H istogram s representing fee same property. To ensure that fee

alignment is fee same, POISE keq>s fee alignment as an attribute of each P ro p e r ty object. The attribute is a

H istogram P aram eter object feat POISE queries whenever it creates a new H istogram for a particular property.

Once fee alignment is set on a H istogram it is impossible to change fee alignment The H istogram only

represents property abstraction. A more permanent source of knowledge is always fee grades that make up

fee population.

Calculating suitable parameters for a particular property is not simple. Initially few values exist for a property

and there is nothing to infer an alignment. The parameters can not be set untü POISE achieves a suitable

population. In fee meantime, an ImmatureHistogram maintains fee actual property values of fee members of

fee population, rather fean a set of interval-tally pairs. From these values, an ImmatureHistogram can

calculate new interval-tally pairs for any alignment.

Im m atureH istogram depends on fee H istogram Param eter of fee property feey represent to ensure feey all

present fee same alignment The H istogram Param eter maintains a reference to all fee Im m atureH istogram .

As fee population of a given property grows, fee H istogram Param eter object recalculates fee alignment

using fee record of values in all fee Im m atureHistogram . Once fee population for a property reaches a certain

size, POISE deems fee alignment accurate and fee im m atureH istogram s mature. Each Im m atureH istogram

coerces to the mature H istogram class using fee latest alignment.

3.5.2 Consistency between Histograms and Populations
The general classes infer feeir H istogram s from fee H istogram s of their subclasses. The H istogram s merges

by summing tallies jfar common intervals. These common intervals must align. For a given property, the

alignment of fee intervals in histograms must be consistent to support fee recursive subsumption of

histograms up fee hierarchy.

The p ro p re s of more general abstract polymera are consistent wife fee population feey subsume by

dynamically merging histograms of fee mere specific abstract polymers. Each grade in fee population is a

member of only one specific polymer class. Each grade notifies its class of any change, which also represents

fee abstract polymer, so fee whole hierardiy of abstract polymers maintain a consistent abstraction over all

grades.

82

Object-Oriented Software RqstMntation of Polymer Materiib Infonnation in Engmecring Design

Finally, H istogram s are polymorphic with the single-value properties of grades, because the median value in

the Histogram answers any value-specific queries. Although this is not an accurate repr^entation of an

abstract value, it demonstrates the necessary polymorphic behaviour. The H istogram therefore satisfies all

the objectives of a property-value describing an abstract polymer.

3.5.3 A Summary of Functionality for We Abstract Poiymer

The following features have been identified;

• At the most specialised level of representation, collect the values for each property exhibited by
members of the class.

• Reduce the populations of values into abstract Histograms.
• Maintain changes to individual grades and the addition of new grades.
• H istogram s to be polymorphic with any grade’s value and abstract polymers polymorphic with the

grades.
• A subsumption mechanism that dynamically merges the populations of specialised classes to create

the populations for the more generalised levels of representation.
The issue of polymorphism has multiple facets. In theory, it means the abstract polymer must respond to any

message appropriate to any grade it subsumes. The abstract polymer subsumes many types of grades. The

type of the response to the message must also match the type of response the grade would give.

The requirements for polymorphic behaviour and subsuming the populations fi>r more generalised classes

both suggest some kind of reversed inhaitance of grade structure to cater for the wide range of property

aggregations possible. Characteristics at the bottom, or specialised end of the hierarchy, inherit and merge to

describe the top end of the hierarchy. This reversal reflects the bottom-up nature of generalisation, as

opposed to the top-down nature of abstract property description imposed on grades.

From the domain viewpoint, the class defining the structure of the grades is the same concept as the abstract

entity. If this is to be the case in the software model, the behaviour of fee class needs an extension.

3.5.4 Extending Qass Behaviour
The class has two roles within fee poise classification:

• As an abstract description, declaring behaviours and states for polymer grades.

• A domain representation of an abstract polymer.

Wife feese two roles come a number of behaviours to maintain and manage fee population of a class. The

implementation of fee two roles was found, on fee whole, mutually exclusive. The same entity combines the

roles because this is how fee domain views them. It is also convenient to share fee same hierarchical

structure. It does not concur feat fee two roles relate functionally. As result, fee class may be kept in fee

single hierarchy, ipfeile packaging fee implementation of abstraction into a separate object. The class keeps

83

(%gect -Oriented Softwne Repfeientnion of Polymer Meteriali Infimnnion in Engineering Design

this object as an attribute, and so indirectly keeping its hierarchical pœition. The object in turn provides the

abstracting services for the class. The standard class-instance relation declares behaviours and states for

polymer grades, while with m in im al extension to classes, a separate object can extend the classes behaviour

to include services for generalising and abstracting properties amongst grades of the class.

3.6 Orthogonal Property Classification
An appropriate classification distinguishes difference and similaritie between classes with propertie that

depend solely due to differences in materials. Therefore, an tqipropriate polymer classification will describe

propertie that vary solely due to differences in material under test and are independait of other design

perspectives. Grades inhoit and specialise feese properties. Many properti^ though are not solely dependent

on a gaieric material pCTSpective, requiring additional extensions to fee grade’s inherited template for feese

properties. These extensions are rarely unique to a single grade, but describe orthogonal classes of grades

applicable to all Properties depending on extreme geometry, like films, is an example. The nature of a

material can prevent rolling into a film. Grades feat can be blown into films forms an orthogonal class.

Properties describing this extreme geometry should specialise fee template of feese grades.

M ultlple-lnherltonce

Superclass 1 Superclass 2

Subclass

Single-Inheritance

or
KS3G

principled membership fimctions
 orthogonal manbership function

Figure 9: MI vs. standard subclassing effect is the same
The problem is how to extend fee description of grades without losing fee taxonomic separation. Orthogonal

descriptions require a mechanism fi)r suteuming different representations independent of taxonomic

classification. Extending grade descriptions by subclassing and ferough multiple inheritance mixes fee

orthogonal classes wife fee taxmomic classes. Figure 9 shows multiple inhaitance and subclassing in class

based languages have fee same effect on classification. Siçerclass 1 and Superclass 2 are orthogonal

descriptions of fee same domain. Both represent all grades but a grade can only belong to one immediate

class. Each classification principle carves up fee membership to subclasses differently and in conflict. In

84

Otject -Oriented Softwtie Repieuntation of Polymer Meteriali bfbnnation in Engineering Deiign

single inhoitance, taxcmomic classification chooses one or the ofeer. Consider fee membership function ^

which includes grades wife both property § and property § . If Superclass 1 classifies wife single inheritance

on fee principles of Superclass 2, fee members of ̂ can fium a subclass. Wife multiple-inhoitance, fee

into^section subclass forms wife manbers of Once members of separate from members of § (or §)

by subclitssiug, it is impossible to further classify grades with property § (or

In an extreme case, it is possible fee properties are very specific and furfeer subclassing is not necessary. In

an extaidable classification, fee only way to ensure no furfeer subclassing would be to have a unique class

for each grade (ie remove fee class based premise), since fee potential to furfeer classify always exists in a

class wife two different entiti%.

Mixing fee representation of grades and fee classification in conjunction wife multiple inheritance dilutes

each taxonomic perspective. All fee different orthogonal taxonomies mix, combining classes of all

permutations. This dilutes fee significance of classes that form individual perspectives. Variance within a

perspective is independait of ofeer perspectives and is feerefiire a valuable path to investigate design

variation.

To illustrate fee concerns of dilutirai and extensibility, take an example of a film made from a Nylon grade.

Multiple inheritance would define classes Film and Itylon feen a subclass N ylon-Film . Now consider if

taxonomy classifies Nylons into Nylon66 and N ylonl2. An exclusive class of Nylon66 and N ylonl2 is not

possible since some are members inherit from N ylon-F ilm and some only from Nylon. The common solution

is to remove N ylon-F ilm s and add N yon-66-Film s and N y lo n -1 2 -f ilm s. Then consider if fee user classifies

on N y lo n -F ib re s . What happens if some Nylons fabricate both films and fibre? Are there feen Nylon-66,

N y lon-66-F ilm , N ylon-66-F ib r e and N ylon-66-F ib re -F iIm ? Such a structure complicates simple queries

on Nylon properties. Moreover, fee pomutations do not stop here wife this small example. Consequently the

taxonomic classification loses structure on mlroduciug multiple inheritance. What class a grade is finally a

member of is no longer determinable from a top down search unless its form is known.

In conclusion, POISE requires fee definition of polymer classes that do not completely describe fee grades

bclougm g to fee class. Some describe fee taxonomic decomposition. Others act as orthogonal classes

describing properties tonplates for completing fee description of fee grades. Taxonomy requires feese

descriptions to remain separate. The implementation of grades requires fee two to combine.

85

Object -Oriented Sofiwire RepresentitiBi of Polymer Metemli Infonnition in Engineering Deeign

3.6.1 Composite Structure for Orthogonal Descriptors
Objects can altonatively share behaviours th rou^ a composite structure. Considered polymers as a gaieral

polymer description, “General Poly”, that owns a specific polymer description, “Film properties”, as

illustrated by Figure 10.

(poly film) tearStrength

1

(^ neral P o l^ #±Lim

?ropert^

t t t e a r s t r e n g t h

Figure 10: Composite tempiate sharing
To access specific details — the film property ‘tearStrength’ — the polymer, “poly”, is first asked fi)r the

set of film properties with the message ‘f i lm ’. The message f i lm might achieve this by returning the object

F ilm P ro p e r tie s . This object is then the receiver of the message te a rS tre n g th . There are the Allowing

problems with this representation;

• A G eneralPolym er is not a film. It do% not respond as an object with film properties, ie it is not

polymorphic with F ilm P roperty . Senders, objects that evoke the behaviour, must know wtere to

send the message #film .

• F ilm P ro p e rty is not a polymer. If asked for the name of the polymer (a property of G eneralPolym er)

it can not respond. F ilm P ro p e rty is not polymorphic with polymers.

• The general polymer has no control over the property access of film properties. After the message

f ilm any message may be sent to the F ilm P ro p e rty object and these messages do not pass through

the G eneralP olym er’s interfiice. Hence there is a hole in the enc^sulation around die polymer entity.

It is an association rather than an aggregation. F ilm P ro p e rty is not a separate part of a polymer, only

part of the description of one whole entity.

3.6.2 Managementof Orthogonal Descriptors
Polymer classes provide a template tiiat describes the behaviour of grades. An orthogonal descriptor extends

the descriptions of grades. They too contribute a template of behaviour. In class-inslanoc languages, classes

are templates of behaviour, so it is common to find classes representing orthogonal descriptors.

POISE extends the fimction of the polymer classes, and similarly classes representing orthogonal descriptors.

The descr^tims can add and remove properties. They have their own populations of grades and can abstract

generalisations over those grades. Orthogonal classes difiGsr from polymer classes in that the orthogonal

classes are only meaningful in the context of a particular materials class. For example, asking Film s for their

density is only meaningful within the domain of polymers. The query is really the density of polymer films.

86

Object -Oriented Software RepreMntation of Polymer Material: Information in Engineering Dea%n

The quay is more meaningful directed at the Polymer class. Efforts were made to extend the abstracting

mechanism within the Polymer hierarchy rather than extending it to the orthogonal descriptors (§3.6.4).

3.6.3 Adding Orthogonal Descriptors to Grades
There is no such thing as a ‘new’ orthogonal entity. All grades are first classified taxonomically tiien classed

ordiogonally. Orthogonal descriptions extend existing grades.

Adding an orthogonal description to a grade extends the grade’s existing data model by using the class

template of the orüiogonal descriptor. This class provides a data structure and methods, which extend the

grade’s behaviour. The problem of how to merge the templates, one from the polymer hierarchy and any

number fi-om orthogonal descriptors, under the same object interfece remains.

3.6.4 Aiostraction of POISE Knowledge in Orthogonal Descriptors
Although taxonomic classes of polymers do not define orthogonal properties as part of their template,

individual grade entities do exhibit orthogonal properties. Although an orthogonal property is not a defining

requirement of membership to the taxonomic classes, each property is a valid desorption of a subset of

members in the taxonomic domain. Any property particular to a subset is a valid generahsation of a

taxonomic class when the property itself fundamentally limits the domain. For example, take the property of

minimum film tiiickness. The distribution of minimum film thickness over all P o ly e th y le n e is a valid

generalisation of P o ly e th y len e . The property does not exist for all kinds of P o ly e th y le n e but where the

property does exist, its variance is a measure of p o ly e th y le n e in general.

When a grade adds an orthogonal extension, there is no need to affect the polymer class abstractions until a

grade adds an orthogonal property-value. The grade then notifies the class abstraction mechanism as it does

with all property updates. It is up to the abstraction mechanism to recognise that the property is orthogonal

and to cater fiar the new property by extending the abstraction’s own structure with the same orthogonal

template. The abstraction mechanism maintains a separate population fijr each orthogonal view. The user can

selectively view abstiactiûiis using an orthogonal perspective (ie select fee orfeogfmol subset wifein fee

taxonomic class).

3.7 User Interrogation
3.7.1 Histogram Visualisation: The Comparator
H istogram s are very easy to display and make good tools for conveying fee abstract knowledge of a general

polymer. The Com parator allows the display of any combination of H istogram s of the same propoty in a

resizable window.

87

Object -Oriented Software RqweMutilion of Polymer Miteriih Information in Engineering Deiigii

From the C onpara to r, the user can select individual intervals or a single interval of any size across the whole

Com parator. The tool searches for grades finding those in the selected interval(s). Displayed as a group, the

user can browse them individually or even as a H istogram against different properties. This allows the user to

dynamically specify any arbitrary abstraction besides those in the taxonomic classification.

There are a large number of groups of polymers in POISE, each with different property abstractions. The

C om parator provides intelligent options to the user fi)r specifying the abstraction to display as a H istogram .

The initial selection might include all possible polymer classes, OTthogonal classes or properties. If a property

is chosen, then the Com parator limits further selection to classes supporting the selected property. This limits

both the classifications and the orthogonal perspectives available fi)r selection. Once a class is chosen only

the properties in that class become available. The Com parator displays many abstractions but only against

one property. If the user specifies many class attractions, the only properties available are those common to

all the abstractions. For this kind of consistency, the Com parator accesses global resources such as the

Polym er hierarchy, a list of all properties and, more specifically, maintains a reference to the abstract

polymer, not just fee histogram displayed.

C om parators can scale fee display of histograms, changing the visible size of the intavals. This is not only

an issue of conveniently fitting windows on a computer screen, but to offeet fee effiscts perception has on

information. Histograms can be deceptive depending on fee interval size chosen. By modifying fee scale a

user can visually bias fee interval size and tally for each comparison. Comparing properties feat fee user

perceives as significant can be made larger. Although fee technique is fer fi-om quantitative, it does provide a

quick qualitative feeling as to whether polymer selection is satisfying design requirements. The technique

also identifies polymers not belonging in feeir assumed groupings.

Scaling displayed views is challenging. The axis changes in only one dimension, keeping constant space for

labelling which relates to fee text size of fee numbers displayed rather fean fee size of the view. The view

labels more numbers as fee axis gets longer and less labels if space is limited. Given an arbitrary maxim and

minimum and fee space fi)r display, fee view determines fee numbers on fee axis. Even fee type of number

on fee axis affects clarity. The view avoids rational numbers preferring integers.

3.8 Database Management
POISE contains a database management system. Throu^ inteUigent management (classification and

organisation) and through presentaticm wife gnq)hical interfeces, POISE conveys the meaning of new data

informatively to fee user, hence transforming data into information. Both fee data entering POISE and fee

88

Object -Oriented Sofiwire Reprewnutiom of Polymer Miteriili bfbrmition m Engineering Deiign

organisation transforming the data must persist. A classical program persists as an application stored on

secondary storage and when the user commands the computer’s operating system, it loads into primary

memory. The u sc t supplies the data each time the program activates and returns some result, so neither the

data nor the result persist Alternatively, the user may store input data on a file. Through iterative changes in

the data on the file, the user changes the nature of the process. The result may also contribute to fee data in

the input file. A database is an ^jplication that manages files of persistent data.

One source of data in POISE is fee descripticms of polymer grades. These already reside in files of a simple

format for easy management although poise also receives complex data fi-om fee user, especially on data

structuring and organisation. Through fee classification environment within POISE, fee user adds value to fee

raw data by virtue of the ctructuring and boha\iour associated wife objects molting up fee classifications of a

domain. The simple format of fee polymer data is incapable of recording all fee infirmation within POISE.

POISE distinguishes between fee format fir- archiving and exchanging data within or between industries

(suppliers and users) and its own internal representation. For data exchange, fee important fector in fee

format is its simplicity and universal acceptance. One example is fee DIF structure of binary relations

(§3.1.1), and although other firmats exist, third party ^phcations can convert data between simple formats.

For fee internal representation of fee complex objects within POISE, fee important fiictor for storage is an

expressive structure c£q>able of representing fee diversity of these objects. The expressiveness is contrary to

simphcity, hence distinguishes between complex internal and simple external rqn-esentations. For persistence

of the internal representation, a range of existing database management systems (DBMS) were examined.

Although fee internal representation is fee fiacus for fee remaining discussion, some of the issues fg)ply

equally to integrating data fi-om external sources.

The search fijr a storage system starts wife two extremes. Storage system functionality ranges fi-om a fully-

fledged object-oriented DBMS (oODBMS), to Smalltalk’s simplistic file structures for exporting objects

without any management. The initial prefiarenco was for an ‘off the-shelf commercially available OODBMS,

which provides program support, and convention. POISE though places high demands on even fee most

expressive data descripticm language. The altanative, a file storage using the native data description language

of the clieit, Smalltalk, required major extra development to incorporate a suitable management strategy.

3.8.1 Data Store vs. Datatxtse Management
General purpose OODBMS prcx^ess behaviours remotely in a database server environmoit The envircmment,

primarily of the class-instance paradigm, features disk-storage management of a class hierarchy. Objects on

fee database are all instances of feese classes. A m ^ in g between classes in a client language (eg Smalltalk)

89

Object -Oriented Softwne Repietentnion of Polymer Meteriali Infonnation in Engineering Deaign

to classes on the server allows copies of an object to cross from one environment to another. Typically, a

mapping keeps to simple classes like numbers and strings. A totally aliai language (ie not Smalltalk)

describes the classes on fee server.

The description language of a database is similar to a programming language. The class description includes

fee storage requirements of objects, manages versioning and schema evolution control, and interacts with

system administration, such as memory management and security. The main differences are due to multi-user

databases access. Policies for locking objects and accepting change are designed to make each user’s

activities atomic. Most computing activities include a number of intermediate states, wfeich other activities

could corrupt or misinterpret Computing in a multi-user environment requires composing all computing into

atomic transactions. Within %ch transaction, fee objects involved are locked and once fee transaction is

complete the final state of each object accepted and fee objects unlocked for fee next transaction.

Shortcomings of general-purpose OODBMS systems, their language’s modelling power in particular, are

criticised in an earlier paper*® relating this management to domain modelling.

Data storage relies on fee client’s language for object definition and manipulation. The server for data storage

stores only fee state of an object When read, it moves the state to a new object in fee client œvironment and

fee client processes the behaviours. The responsibility of object integrity (valid states within an object) lies

with the processiiig of behaviour within clioits. An object store exports fee object structure to a foreign

environment The protocols changing fee states in one client can be different to those in another client; feey

may not be consistent and semantics can differ fiir different clients. In an OODBMS, clients do not access the

state of fee object. The OODBMS centralises consistent object behaviour.

A particular advantage of a simple object store over feese large-scale OODBMS is fee ability to reduce data

administration overheads. For example, a multi-user object store is possible by locking fee record of the

object on the server until fee client using fee olgect finishes, but is unnecessary for a single user system.

OODBMS tend to come as multi-user systems wife fee mechanisms tightly integrated in fee server’s language

as a standard feature.

3.8.2 Evolution in a DBMS
The consequence of object definitions (classes) within fee OODBMS is feat feey must meet poise’s

requirements on schema evolution. An OODBMS using fee same manipulative object model and environment

as Smalltalk would suffice. Unfortunately, fee memory management in primary memory, which makes

Smalltalk’s manipulative model possible, seems to compromise efficient transacticm processing in a

90

Object -Oriented Software RepRsentation of Polymer Materiali Infbimation in Engmeering Deaign

secondary storage system. Transaction processing is a benchmark, which relational database management

systems use to judge a DBMS performance. Consequently no DBMS are as manipulative as Smalltalk, and

contemporary DBMS cannot support the needs of POISE. The main problem is that they do not provide

mechanisms for manipulating the schema while the databases is in use. Without schema evolution, adding

and ronoving properties from polymer classes is not possible and the classification can not be re-engineered.

A grade’s tendency to evolve even complicates the specification of a data store. All changes to the property

structures of classes in poise require automatic respect by the storage mechanism, which stores instances of

those classes. A data store that returns an out-of-date data structure for an object in POISE is useless, so the

storage mechanism must be able to migrate such out-of-date structures to the current versions in primary

memory. For this, some interpretation of each data structure must be recorded, like fee class template records

fee structure of instances in primary memory.

Schema evolution causes fee same problems for object-storage as it does for languages. The problems

exasperate when multiple users access fee same evolving objects. Besides changing fee semantics of objects,

which has fitr-reaching effects in clients, evolving in a multi-user database starts a transaction feat locks all

active instances of the class and its subclasses. A change to the root class would lock the whole database.

OODBMS systems, even those with supposed schema-evolution provisions like Gemstone®’, do not allow

evolution when there are active instances.

The schema evolution in Gemstone lets fee eq)plication programmer evolve class definitions before creating

any instances. This schema evolution is a development fimction. The migration of a class definition from a

client into fee server is not a runtime fimcticm of Gemstone. TherefiDre, it is impossible to automatically add

an object of a class not already on fee server without programmer intervention. Some storage mechanisms

provide a geno-al object-storage process capable of managing new data types, but such a process is liable to

fiiil for complex objects with ‘global’ references and cyclic paths in feeir structure. BOSS, see §4.5.3, is one

mechamsm with little program intervention feat attempts to avoid such pitfrills.

Evolution of fee DBMS objects is not fee only problem. Whereas demonstrating such mechanisms as

delegation within Smalltalk is possible, it does not necessarily hold that similar mechanisms are possible in

other object-oriented environments. None of fee current DBMS support delegation, only static class

hierarchies. Ofeer complex mechanisms like orthogonal descriptws would also be an issue.

91

Otqect-Oriotted Software RejncMntatkm of P o ^erM ite riab Inftmnition in Engineering Daign

3.8.3 Database Interaction for Memory Management
The data manipulation languages describing a transaction in a relational DBMS limits the manipulation to an

explicit fixed scope of data, applying the rules of manipulation to eadi tuple in a relational table. This ensures

that after processing a unit of data, die transaction is complete fiir that part of die data. The locking and

committing of data is implicit in the structure of the transaction, not part of the manipulation language.

Object-oriented languages manipulate data through messages, not transactions. A long-Uved message

generates many shorter messages, wdiich in turn generate shorter messages. The end of a message can be

conditional, thereby depend on an object to change state, which intum may depend on odier messages. The

data accessed or the time takœ can not limit die goal of a message. The message is therefore not like a

transaction in a relational database.

Managemait of limited primary memory is an important fixture of database management systems. All

transactions occur in primary memory. When diey finiA, the database commits the changes to persistent

secondary memory. The definition of a transaction has a consequence on the utiUsation of primary memory.

Defining a transaction as a message to an object requires careful consideration. Committing the state of an

object to secondary memory after each message sent to the object will not affect the logic of any messages,

but it is inefficient to commit objects subject to furdier change. Qmcurrently, changes in the primary memory

are susceptible to loss until the database commits die object to secondary memory wtere it is persistent. Even

in single-user systems, transactions affect the management of primary memory and the integrity of objects.

Something must trigger the database to commit objects to secondary storage. Since the applications using the

objects evoke changes, they must also trigger the database. The efficiency of memory utility and object

integrity depends on the regular commitment of objects by ^iplications. Most OODBMS and data stores

require an explicit interaction to activate and release objects. This means die appUcation is constantly

communicating with the database ftir each transaction.

In an object-oriented language messages fiillow an implicit path. They may potentially access any object,

and the same path may repeatedly cause message to the same object. A message is not a transaction since it

does not identify i^diich objects to lock. A transaction could span many messages to the same object. In

object-oriented languages there is no implicit structure to define die scope of a transaction. The protocols,

which construct the path of processing, must explicitly encode transactions.

Persistent objects now differ fi-om volatile objects, i ^ c h do not necessitate die specification of processes

into atomic transactions. The use of the persistent object is also a property of the protocols, i ^ c h must

92

Otgect -Orânted Software Reprœntation of Polymer Materiali Infbnnatioii in Engineering Design

define vt^en the objects are locked and committed. The storage characteristics of objects are not a property of

domain entities in the POISE application but must provide pre-processing and post-processing behaviours

implementing the storage characteristics of the object on an object store. Even if objects are otherwise

polymorphic in their behaviour, the activation of these behaviours within transactions with the object

destroys the benefits of polymorphism. Protocols must distinguish stored object firom manory resident

objects that do not require this activity.

The situation who-e users of the objects do not see the interactions with the object store or OODBMS is termed

‘transparent’ database access. Although an object stores with only single-user access does not define

transactions for multiple-users, primary memory is still a limited resource requiring the paging of objects

back and forth fi-om secondary memory. So both systems require transparent access, but OODBMS must also

define effective transactions for multiple users.

3.8.4 Multiple Interlaces
The specification of a DBMS handling a national source of information is quite different to a DBMS fiir an

individual designer. Different worlds of information pose different demands on an OODBMS. Differences

include the number of users, security, data integrity, and the size and scope of information resulting in

different access mechanisms and data models, all of \siiich affect transition management. POISE on the other

hand does not need to identify v tere the data has come fi-om. It is quite possible for POISE to access many

different DBMS, and extend to add new DBMS at a later point in time.

Heterogeneous database management systems^^ manage the access to many different types of database using

different data models. Since each DBMS has a different interfiice protocol, the main purpose of this manager is

to provide a single consistait interfoce protocol for data manipulation in any of the databases. An object-

oriented model is popular for this interfiice. Although the data model and manipulation language of the

individual databases limits the behaviour of these objects, the objects provide a consistait, polymorphic

interface across many different Oiidden) access mechanisms. A managemœt system for heterogeneous

databases provides a unifiirm object interfiice as a proxy conveying transactions to database objects.

A third party handles proxy votes as though the owners of the vote had voted themselves. Similarly, a

database proxy receives messages and, from the viewpoint of the message sender, the resulting actions are as

if the intended object received the message. A message to a proxy triggers the memory management system

within the DBMS. Within the ensuing communications the message tranqiorts somehow (depending on the

particular DBMS) to die stœed object, locks the object fro otha- processes and, ^ e n the message is complete,

93

Object -Oriented Softwtie Representation of Polymer Mjderiab bfbnnation in Engineering Design

unlocks the object. The user is unaware of the nature of an object’s storage so the DBMS becomes transparent

to the users of persistait objects.

Current heterogeneous systems rely on œch message to be an atomic transaction. Extending transactions

beyond a single message requires a standardisation of locking semantics at the interfece of the database

objects. The standard makes the transaction locking independait of the actual database being accessed but

protocols still explicitly specify the locking. In vM ck case the proxy is no longer transparent

3.8.5 Summarising the Storage for POISE
Both the persistence of user data and the interchange of data between users require some kind of database

management The management for both is quite different If client languages support a transparent proxy

access mechanisms, thei different database management utilities can independently implemoit each of these

requirements. The following two lists identify the two different storage requirements of POISE. The first hst

covers the management of private infiirmation gathered by a single user. The second list covers global data

shared by many users:

1) Private single-user data
a) Minimal transaction management Lifetime of transaction only subject to primary memory

management
b) Object behaviour integrity guaranteed by a single clioit
c) Complex highly structured data storage model for supporting any arbitrarily complex Smalltalk

object composition.
d) The evolution of object structures during runtime, trans-migrating class definitions between client

and server and coercing objects of old versions to new versions witiiin the client.

2) Global multi-user data
a) A consistent protocol for accessing many heterogeneous databases.
b) Object integrity guaranteed by individual server databases (usually read only with respect to Poise).

c) Use simple data structure as the common denominator of many different client ïqjphcations.

d) Client process independent of server transaction management, eg security, locking and versioning.

A transparent interfece between application and storage management is common to both storage mechanisms.

A transparent interfece is not only consistent with access to native objects but is also consistent between

private and global stored objects. The interfece, in this case a Smalltalk specific implementation of an object

proxy, provides different services for each two types of storage:

• Transparent access and içdates, managing transacticms subject to local memory conditions.

• A translation from generic protocols to specific protocols of heterogeneous DBMS.

In order to simphfy the development of POISE, the issues explicitly on global multi-user data were not

considered furdier, ie issues on access and management of transactions within heterogeneous databases.

94

Object -Oriented Software RefseMntation of Polymer Material* Information in Engineering Dcaign

Otiiers* ̂have already addressed many of these issues. POISE instead imports extonal data and represents it

with the private data. Issues considering transparent transaction management fqiply to both storage systems.

The behavioural complexity of objects within POISE and their tendency to evolve puts the representation

beyond even the most advanced commercial OODBMS. Commercial OODBMS focus on the other issues,

integrity and transaction management. For the private single-user data in puise the objectives are more

limited, and more powerfully focused on representation, than the objectives of a general-purpose

managemait system. Consequently, even the simplest of data stores are as capable as the advanced OODBMS

at representing and evolving POISE objects. Although data stores are less sophisticated, the client language

implements most of them. Hence the data store gains the language’s manipulation cïçabihties, including

schema evolution, and it is possible to develop the management principles of these data stores.

In conclusion, the storage needs of POISE involves an investigatifm into foe suitability for development of

available data stores and an investigation into transparent transaction management Initially foe investigation

of proxies for transparent intoaction was separate to foe development of a data store. As foe issues involving

foe representation of complex object-relations became clear, foe proxy was found useful as a representation

for foe relationship between objects on foe database. The proxy became an integrated part of foe database

schema, see §4.5.2.

95

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

3.9 Summarising the Schema of POISE
E a c h a s p e c t o f t h e c o n c e p t u a l d e s c r i p t i o n , o r l o o s e s c h e m a , s u m m a r i s e d b e l o w i n T a b l e 5 , m a p s t o a d e s i g n

s p e c i f i c a t i o n . T h e d e s i g n s p e c i f i c a t i o n p h r a s e s t h e r e q u i r e m e n t s i n t e r m s o f o b j e c t - o r i e n t e d c o n c e p t s , t y p e s o f

o b j e c t s , c l a s s e s , p r o t o c o l s c l a s s i f i c a t i o n a n d i n h e r i t a n c e . D u r i n g t h i s r e s e a r c h , t h e s p e c i f i c a t i o n w a s

i m p l e m e n t e d i n S m a l l t a l k t o p r o d u c e t h e POISE a p p l i c a t i o n . T h e f o l l o w i n g c h a p t e r d i s c u s s e s i n d e t a i l t h e

p r o g r a m m i n g i s s u e s t h a t a r i s e f i - o m i m p l e m e n t i n g t h i s s p e c i f i c a t i o n i n t h i s c l a s s - i n s t a n c e l a n g u a g e .

Summary Requirements o f POISE Schema Design Specification

Adding value to acquired relational data through re­
representation in a classification hierarchy with property

Re-jmodelling relational data using principles of object-orientation. For
example, extending fiie relational description of grades with de&ult y ■ -

Extend the description o f the polymer domain:
a) Define new engineering properties.
b) Add new computations for describing and interpreting

the semantics of an engineering property.
c) Add new properties to abstract polymer descriptions.
d)___Add new classifications over the domain of polymers for

_____ absfracting_s.iiml^ty_ andgengalising properties.................
Support consistent evolution of the schema by the user:
a) Define a language for describing engineering properties.

b) Assign domain properties to classes of grades and
manipulation of domain organisation

c) Make schema changes persistent.

Instantiate new components o f the schema: , ^
Ah object rqjresents each engineering pfopesrty, ' • ^ . , ' ' •
Compiling new protocol objects and assigning them to an esngineoring,
property, - t
Assign the protocols firom the engineering properties to classes o î grades.
Add new classes, modifying the inheritance structure, ensuring
wnsistw cy and ujpdating dqjrajdent,^^^
Develop specialised user interlaces apd inlèratce engines, s
Modify the native language programrning tools and compiler for protocols
defined in the context o fa domain property, not a specific class. - /
Reflect the hierarchical structure and inheritance rules witiiin the \ ̂
classification through a graphical inter&ce. ‘ -
Develop an object storage capable o f recording the objects in the polymer
classification and all engineering property's behaviours..............._________

Support both taxonomic classification and orthogonal
classification for representation extending beyond the

Investigate dyiiarnic behaviour sharing to support orthogonal , ; j ,
representation in a class-instance languages. v

Support the design process th ro u ^ generalising the properties
of domain classifications providing abstract levels of

. r?pre_sentati9?i....................... -
Provides expressive visualisation of generalised polymer

Develop an infWence engine to generalise and abstract properties from â
class and present these properties as an extension to the behaviours of the J

, à g n . i g s e . . , ' 1 -

Develop a user interfece to explore the abstractions in the evolving , ,

Support persistence o f design data and the complex evolving Develop an interfece to secondary storage that is transparent, thereby,
cr<^ting the illusion o f persistence o f knowledge betweai sessions.

Table 5: Mapping requirements to specification.

96

Otject -Oriented Software Repreaentation of Polymer Material: Information in Engineering Deaign

Chapter 4 Implementation
The POISE schema presents a number of challenges to the class-instance language Smalltalk. The

implementation of the POISE application successfully satisfied most of the requirements, like the data

acquisition, and the user interfece design, t ^ c h fit well into the class-instance paradigm. This c h ^ ta

focuses on the main features of the implementation and explains how each of these features was a challoige

to the class-instance paradigm in general and Smalltalk in particular. This identifies the limits of this

approach to taxonomic representation of materials infijrination. For a complete summary of the POISE

appHcation, Chapter 5 describes the functionality fi-om the user’s perspective.

The main features of the implementation found challenging are summarised as follows:

Problem

Mix-in object

behaviour

Mix-in ciass

behaviour

Composition of

class template

Delegation

Feature Affected

Orthogonal property classification

Extending behaviour for user

interrogation

Extending bdiavimu* for transparent

memory management

Implementation of levels of

representation

Properties as class desoiptws

Design as a dynamic composition of

shared behaviour

Description

Combining polymer taxonomic desorption with

orthogcmal description in a single lexical unit.

Protocols of domain oitity with visual modelling

protocols

Object bdmviour + Database access and management

(Hotocols

Nwmal class bdiaviour plus abstraction of property

gaieralisations and population maintenance

Class bdiaviour encapsulated into shared Property

Objects

Behaviour dqiendott on a context of objects.

Table 6: Challenging problems to solve
Mix-in” of both object and class behaviour (§4.2.1) and delegation, in Table 6, are all solved using the same

mechanism for oihancing the behaviour sharing capabilities of Smalltalk. The “composition of the class

template” captures the existing class evolution behaviour in Smalltalk and packages it into an abstract object.

This abstract object creates a new approadi to change in a class-instance paradigm.

All these problems result somewhat fi-om the limits to sharing between objects in standard Smalltalk.

Fortunately, the underlying object model is flexible enou^ to implement a programmable extension to the

standard sharing mechanism of inheritance.

4.1 Sharing in Smalltalk.
Chapter 2 introduced two types of sharing of protocols and behaviours. Instances inherit protocols fi-om

classes, and the classes inherit fi-om superclasses, thus protocols are shared. The protocols describe the

97

Olqect -Oriented Softwire Repcwntitkm of I^lymer Mmterimh hifionnetion in Engineering D aign

behaviours of objects. The behaviour is a composition of other behaviours (procedural abstraction) shared

from other objects, evoked through messages.

The limits of the standard forms of sharing in Smalltalk are the subject of this next section, starting widi the

special inhoitance relationship between the instance and the class.

4.1.1 The Smalltalk Object Modd
Inheritance between classes and between a class and an instance is quite different, unlike in prototype

languages wiiCTe implicit sharing is uniform. The reason for the difference is that the instance is a

specialisation of an object that optimises processing.

Instances hold specific differences and inherit abstract behaviours from their classes. The typical abstract

behaviour is a protocol providing instructions on how to do something. The typical specific behaviour is a

relationship with anodier object, or more simply, an attribute. Two instauccs ean shtuc the same abstiact

protocol, but behave differently due to specific differences in attributes.

ADORER

nnnn:y+0
nnnn^f+4
nnnnnr+8

nnnn:y+4k

MEMORY
ckm lD
instVar]
instVor 2

instVar ^

(a) MEMORY IMPLEMENTATION
OF THE INSTANCE, anObJect

ADDRESS

mmmm: anO bjecfsi y
InstancôlD j

mmmm: clossID I z

(b) A SMALLTALK OBJECT IDENTITY LIST

nnnniz+O
nnnn:z+4

I metoclœslD
! nam e
I format
■ InstvarNames

(c) MEMORY IMPLEMENTATION
OF anO bjecfs CLASS

mmmm:
nnnn:

D ata table hield (equivalently) on elttier
primary or secondary memory.

Look-up processes (see text).

Addresses In either main memory or file
ondldr.

Location of either memory p a g e or file
on disk.

All remaining symbols ore objectlDs. Such IDs are
flagged to b e Interpretted etther as Immédiates or os
offsets In the O bject Identity Ust. ^

Figure 11: Canonical memory representation of static Smalltalk objects, following Goldberg
A contract exists between instances and the class behaviours. A class template contracts names to each

attribute. The class protocols generate specific behaviour by referring to the attributes by die contracted

name. Instances iffovide the necessary memory ‘slots’ to store attributes. The class template optimises the

contract by defining a specific ordering of the names. This ordering generates a record structure for

representing instances and an index for behaviours to directly access the attributes in instance records.

98

Object -Onented SoAwmre RepRMQtatioii of Polymer Mmlenmh Infbmimtion in Engineering Design

Figure 11 shows the basis of the object storage model for the static, record-part of object storage. The model

can apply to both primary and secondary memory, as will be seen in §4.5.10.

In Smalltalk, the physical model of the object is an indexed table of objectlDs. The table represents named

relations to other objects. These relafions are collectively called instance variables. Every object has an ID,

including integers, chonietcrs, any other instance, class Of metaclass. The collection of object representations

is known as Object Memory.

In order to access the complete description of a stored Smalltalk object (referenced as anObject) the

following activities occur:

1) Look up anObject's ID in the Object Identity List, as Figure 11 (b), and obtains the address of the

record (y) giving the location of anObject's record in Object Memory.

2) The first word of the record is an objeçtlD to a class, foe classlD. Obtain this also by looking up the

Object Identity List.
3) The remaining task is to obtain foe location (z) of the C lass record in Object Memory. The C la ss record

includes (storage oQ the data definition of anObject. The word marked fo rm a t in this stored data

definition determines the allocation size of anObject*s record. The data definition also includes

InstvarN am es. These are the names of the locaticms identified in Figure 11 (a) as in s tV a r l to

in s tV a rk . Protocols are compiled to reference directly by index.

The effectiveness of this model as an object will become clearr after introducing how the object receives a

message, locates a protocol and evaluates behaviour.

4.J.2 The Class as an Object
The C la ss in Smalltalk is an object constructed like all other objects in the language. It behaves like a C lass

because it inherits those ‘class like’ behaviours from the class 'C l a s s ' . One of the behaviours a class

inherits is the ability to generate ofoer objects, their instances. This is a primitive behaviour (encoded in the

Smalltalk kernel §4.1.3) that directly accesses the second instance variables of the class record, called the

fo rm at, and must contain an integer. This integer describes the number of slots for the instance.

The new instance keeps a reference to the generating object (the class) in the instance’s classID slot; ie the

instance’s class. For this instance to work as an object, its class must meet two other oiteria. The class has

anotho" class object (or n il) in the third instance variable as the superclass, and a M ethodD ictionary object

(a hash list of protocols) in the fourth instance variable.

These three instance variables are the basic requirement for getting a class to function as an instance

template. Other requirements are necessary for the Class to function as expected within the Smalltalk

99

Object -Oriented Softwne RepraMntation of Polymer Material: Information m Engineering Deaign

enviranmoit, especially to compile protocols, but no more necessary to get an instance functioning in the

Smalltalk environment

4.1.3 Methods as Protocol Objects
All classes keep a MethodDictionary in die fourth instance variable. The MethodDictionary holds a hashed

list of symbols (special strings of character that the environment ensures have unique object id’s) known as

selectors. When an instance receives a message, it searches the dicticnary for a selector matching the

message. If the search does not find the selector, the search continues in the MethodDictionary of the

superclass. Each selector in the MethodDictionary nups to a CompiledMethod, and by finding a selector, the

MethodDictionary returns the CompiledMethod.

CompiledMethod are die essence of Smalltalk protocols. They are objects with code in their first instance

variable and data in othCTS. The code, at its most basic, is a byte array. The virtual machine , the Smalltalk

kernel, interprets the meaning of the bytes in the array at runtime. The code may reference three different

types of variables. As mentioned earlier, instance variables of the receiver are (me type. The (xxle also

accesses temporary variables for the duration of method execution, which includes the receiver bound in

source cxxle to the name self . Finally, there are die global variables, \riiich are a reference to any unique

object by the method. A global reference does not change with each receiver. The reference is not

empathetic.

Protcmols in the object-oriented language compose primarily of message sends. Smalltalk behaviours evoke

these messages through a sequoice of pseudo-c(xle commands encmded in the methcxi representing the

protocol. The method stores the selector in one of the mediod’s instance variables and refers to it by index.

First, a command pushes the receiver of the message, some objectID available to the method, onto a stack. A

second command referring to the index of the selector causes the virtual machine to ‘send die message’. For

this the virtual machine gets the receiver’s objectID off the stack, locates the record, locates the receiver’s

class record, locates the method dictionary, and starts the searching for the selector’s objectID in the

methcxi dicticmary.

Not all protocols result in message sends. There are a select number of primitive protocols, i ^ c h call

functions in the virtual machine, operate on simple objects like numbers and byte arrays, and communicate

with the underlying operating system.

♦ On each computer platform there is a program running which dynamically compiles, caches, and
executes Smalltalk™ code. This program is called die “Virtual Machine**, as it emulates a hardware device
which would directly execute Smalltalk™ code.

100

Object -Onented Software Representation of Polymer Materials Infbimation in Engineering Design

Some preparation occurs before evaluating a method, which involves creating a context in which the code

can reference by index all the objects available to the method. The next section describes the objects used

represent a single execution of a method.

4.1.4 The Process: Message Sends, Look-ups, and Patterns
Messages are sent causing classes to find protocols, tiiat evaluate causing further message sends, hence

creating a pattern of processing. An object called the Process follows this pattern through the Smalltalk

environment The Process represents, at any given time, a sequence of incomplete method evaluations, with

the last one being currently evaluated. An object called the Context rqiresents each incomplete method

evaluation.

Once a message said finds a method, tiie virtual machine creates a Context. The Context immediately

records the receiva, the method located, arguments sent with the m^sage, and the Context which sent the

message. The pattern returns to tiie sending Context once evaluation of tiie method is complete. During the

evaluation of a method, the Context also maintains a stack (mentioned earher) and the state of any temporary

variables geno-ated during the method evaluation. All these objects are accessible by the code evaluating tiie

method by index.

Memory managemait of Context objects is special A stack space, a sequence of equally sized records in

memory, is reserved which adds and removes context objects efficiently. Since the virtual machine genoates

context objects, their data structure is beyond change by the usa. Conceptually the structure fits the standard

object model and can be viewed and manipulated by Smalltalk code and tools. One tool of importance is the

exception handling system that will be introduced lata §4.2.6.1.

4.1.5 Summarising Behaviour Sharing
The empathy between the receiva and the located protocol has been highlighted. The protocol binds s e l f to

the receiva and indexes the instance variable locations of tiie receiva. It is essential that all accesses to

instance variable locations are consistent aaoss every protocol a receiva shares. Ihe class manages this

consistency by naming tiie variables. These names link to the indexes when compiling methods for the class.

It is thaefore impossible for a receiva to empathise with methods firom classes otha than those fi'om which

the receiva inherits. This is only true of method accessing instance variables.

If a representation requires an instance to share behaviours with anotha class (that is not inherited), thai the

question that arises fi'om the above point is whetha an instance is the propa representation. Instance

variables are unique properties of instances of a class and are meaningless to any o tha methods but those of

101

Otqect -Oriented Software Repreaeotadon of Polymer Materiab bifonnatkm in Engineering Deaign

foe class. Mefoods do not need to access instance variable to represent knowledge, only to represent

knowledge specific to instances of a class. To demonstrate fois point and to place foe behaviour sharing of

prototyping languages into perspective, which does not classify and represents knowledge without instance

variables, an experiment was carried out foat specialised the meta-class, the definition of the class object.

Objects in prototype languages do not have instance variables, all attributes are stored as protocols (ie as a

method references a global variable), always returning foe same object. Attributes differ between child and

parent by overloading the name of the protocol, just as methods are overloaded in the class hierarchy. A child

with a protocol of the same name as foe parent will never implicitly exhibit foe parent’s behaviour. A

specialisation of the class object defines a class foat is an instance of itself When foe “instance” receives a

message, the classID points to itself and foe method search starts in foe instance’s own fourth instance

variable; containing a method dicticmary. This configuraticm successfully models prototypes in Smalltalk.

The prototype defines its parent by referring to another prototype in the third instance variable (the siq>erclass

slot). If a selector is not matched in the prototype’s own dicticmary, foe searcfo passes to the second according

to Smalltalk’s standard lcx)k-up process.

The seccmd point to highhght is that the look-up far methods (protocols) is a strict process. The virtual

machine dictates wfoat hfqïpens between the point a method in a ccmtext evaluates the ccxle to send a message

and, the point it creates a new context and evaluation starts. The critical part of this process is the locating of

the mefood by the recursive search firom class to superclass to superclass is well defined fijr all objects. Since

the scope of the searcfo is well defined, it is seen as a unifiarm and seamless interface to the objects. Only

those selectors indexed in the method dictionaries will provide a key to access the receiver.

Since the look-up mechanism is a strict process, the prototype objects described do not give explicit

delegation capabilities, and instances of a normal class can not expUcitly look-up messages. All behaviour

sharing in Smalltalk must locate the desired protocol using the standard look-up process. For extending the

sharing capabilities for grades of polymers^ on alternative scheme was developed fi'om foe “Encapsulator”,

§4.2.2, for enhancing message passing in Smalltalk.

4.2 Enhancing Message Passing in Smalltalk
A s an introducticm to foe enhanced message passing foat prô ’idcs a solution to a numljcr of problems in

POISE, foe issue of orthogcmal classification descriptions over grades is re-introduced.

102

Object -Oriented Softwire Repretentition of Polymer M itenib Infonnition m Engmeenng Deiign

4.2.1 Mix-in Object Behaviour for Orthogonai Descriptions
Orthogonal classifications describe properties of grades. Objects describing the behaviour of other objects in

a class-instance language are implemented as classes. Objects described by classes are instances. Therefore,

the orthogonal classifications are classes and the grades of material are instances.

The relationship between class and instance is a one to one ordinal relation. This would suggest that more

than one class could not describe a grade, thaeby excluding orthogonal descriptions. ‘Mix-in’ object

behaviour is foe description given for objects that ‘mix-in’ foe behaviours fi’om multiple sources.

Mix-in object behaviour introduces an additional perspective to foe description of an instance. While still

only perceiving a single object, a mix-in object behaves as if it is an instance of two separate classes. Two

interfiices seen as one, two implementations and one unified set of relationships.

The proposal is to place one instance fi'om an orfoogonal class and an instance fi’om foe polymer class under

a common interfece. The interfece is foe point at which messages are received. When receiving messages

both instances are searched until a mefood is found. The interfece would exhibit a concatenation of foe

instance’s behaviours wfoilst each instance remains an inheriting member of their separate classes.

The com m on interfece does not contribute any behaviour but does affect the pattern of message passing.

Hence, the proposal is an enhancement of foe message passing mechanism in Smalltalk.

4.2.2 The Encapsuiator
Pascoe’s Encapsulators^^ is a mechanism for controlling and extending foe messaging powers of Smalltalk.

It is not foe first mechanism^ of its kind, but has two advantages. First, it extends foe behaviour of individual

objects. Encapsulators are classes of objects that have foe behaviour of isolating (encapsulating) another

object. The degree of isolation and control on access depends on foe implemoitation in different subclasses

of Encapsulators. The second advantage is foat it uses a standard Smalltalk kernel, so any Smalltalk

environment can apply the implementation.

Pascoe solves two common operating system problems using foe Encapsulator: queuing requests using a

monitor® ̂ philosophy, and committing transactions in an atomic step. Both of these problems occur when

managing message evaluation in multi-user operating systems to ensure the evaluation of one message does

not conflict with foe evaluation of a second message fi’om a second concurrent user. These solutions have

more relevance to foe secondary storage requirements of poise, see §4.5.

103

0<]ject-Onented Softwire RqxtM tatkm of Polymer Miteriali Infonnition in Engineering Daign

Pascoe applies the Encapsulator to foe Model concept m Smalltalk’s Model-View-Controller (MVC) scheme

for user interaction. The Model is foe source of information displayed in foe interfece. The View generates the

screen display. The Controller handles users input The Model has two roles. One role is as an entity in the

conceptual schema of an apphcation, which is the subject of the object’s purpose. The second role is as a

servant of the View. The user modifies the Model through hardware inputs mtapreted by the Controller and

foe model reports changes visually through foe View. The Controller and View send a range of messages to

foe Model for fois purpose. Usually foe Model mixes these message protocols with foe protocols foat describe

foe entity’s role as part of some knowledge schema.

The two perspectives of the Model cannot separate through decomposition since foe View requires notification

when foe apphcation’s entity part changes state. When foe state of foe entity changes foe View içdates. This

requires extensive integration within foe implementation of the entity, catdiing potential changes to the

states.

The Encapsulator focuses on foe interfece of the object rather than foe implementation by identifying

message protocols known to modify the entity’s state. All messages destined to foe entity are sent instead to

an Encapsulator. The Encapsulator then redirects foe message to a dedicated object representing foe entity.

If the Encapsulator suspects the message (foanges foe entity thai it notifies foe View after foe entity

evaluates the message. The implemaitatian of foe entity is fiee of the View’s needs. The View displays only

information it obtains from the interfece of the entity (foe Encapsulator).

The iqjphcaticm of foe Encapsulator in foe MVC is a better object-oriented model because the object being

viewed is independent of objects rq>resenting foe View. If foe View needs extra mefoods fi)r combining

information fi-om the object on display, then they are separately implemented by another object, foe Model.

The Encapsulator combines foe object on display with foe Model under one object interfece. Not only "are

the objects on display represented s^anticly fiom the Model but can be classified s^arately. This separates

foe evolution of the MVC fi-om foe evolution of the objects they View. The separate MVC hierarchy can then

classify interfeces of different generality, general MVC and specific MVC for viewing the same objects.

In POISE separate classifications represent different perspectives of a polymer grade. An Encapsulator can

combine taxonomic classes and orfoogonal classes of individual grades. Unfortunately, through common

coding practices it was possible to break an Encapsulator accidentally. This would compromise foe

104

Object -Oriented Softwire RepreMnmion of Polymer MÉteriib Infbnnitkm in Engineering Deiign

semantics of a polymer composed of different perspectives, and a major improvement was suggested, vfoich

also resulted in simplifying the Encapsulator as published by Pascoe.

4.2.3 Message Passing in Smaiitaik
The Encapsulator extends the object intofece through an exception in the message passing mechanism in

Smalltalk. This exception invokes \riien none of the protocols, in any superclass of the receiver, matdies a

message’s selector. The condition is not well defined by the class-instances paradigm and each language

must specify some mechanism to handle the condition or ensure the condition never arises. In Smalltalk, the

particular mechanism provides a very usefiil way for extending the behaviours shared between objects.

When messages are not understood by a receiver in Smalltalk, it generally opens a N otifier informing the

user, usually foe program developer, of foe ‘type’ error. The mechanism generating this behaviour is not

specific, as it involves many program controllable steps. After foe feilure of the first message, foe Smalltalk

virtual machine automatically sends a second message to foe receiver. This message, called

'doesNotUnderstand: aMessage', is a behaviour of all objects. The general doesNotUnderstand protocol,

residing in foe class Object, creates foe N otifier fi)r foe user.

Like any other protocol, foe doesNotUnderstand protocol can change. For example, rather than opening a

N otifier, foe foiled message could be sent elsevfoere. Consider object A sending a message M to object B. If

object B does not have a protocol for M, B receives the doesNotUnderstand message. The

doesNotUnderstand protocol ft)r B does not open a N otifier, but instead sends foe same message M to a

third object C. Any message object A sends to object B can bind with either foe protocols of object B or C.

From foe viewpoint of object A, the one interfiice at object B presents a subsumption of behaviours from

object B and C.

Initially object C may be thought of as a proxy to the client object B and foe message passing from B to C as

delegation. Strictly, for delegation object C needs empathy for the behaviours of object B. Since foe re­

direction from B to C is a normal message send, this is not delegation. Object B shares the behaviours of

object C, not the protocols. Empathy is not necessary for orthogonal descriptions and this extension of the

interfiice is sufficient.

Changing foe protocol for doesNotUnderstand in a class affects all instances inheriting from foe class.

Orthogonal descrÿtions require an extension of the interfiice per object, not per class. The Encapsulator

provides an interfiice extension per object.

105

Object -Oriented Software Repeeentelion of Polymer Meterieb Infbimation in Engineering Design

Pascoe’s description of the implementation of the Encapsulator contains a flaw and'involves some

unnecessary modifications to foe existing Smalltalk environment The flaw allows accMs to foe hidden object

without passing through Encapsulator. The sender of messages can avoid the flaw if it knows the receiver is

an Encapsulator. Requiring foe sender to know foe nature of the receiver is paramount to requiring the

sender to know foe receiver’s implementation, ruining some benefits of encapsulation. Expecting POISE to

assume any polymer could be a composition of orfoogonal descriptions was unacceptable. The Enhancer is

an Encapsulator that aims to solve this problem.

4.2.4 The Enhancer
The Enhancer*^ updates, simplifies and généralisés foe Encapsulator. The Enhancer takes a useful tool for

combining foe behaviour of two object for a specifically designed purpose, and creates a general

enhancement to the messaging mechanism in Smalltalk-80.

Creating an object foat exhibits foe behaviours of another object it hides, vhile contributing its own

behaviour is still foe. aim. In addition, the Enhancer attempts to do this as transparently as possible.

Transparent means a sender will not be able to identify the composition of objects generating foe behaviour,

and only see a single object The variable - s e l f is the main reason vhy the Encapsulator foils to achieve

this objective. When a message binds to a protocol, foe variable se lf, common in code, binds to foe receiver.

Although the Encapsulator initially receives the message, it re-sends the message to foe hidden object. The

hidden object is now the receiver and binds to self. Although this binding prevents empathy between the

Encapsulator and foe hidden object, it has a more serious consequence when foe protocol finishes.

When a protocol finishes, unless otherwise specified by the programmer, it returns foe reference to foe object

bound to se lf. Unless the Encapsulator intervenes, the variable s e lf passes back to the sender. The hidden

object, supposedly encapsulated, by defoult returns to foe sender without foe Encapsulator. A common

programming practise in Smalltalk worsens foe problem. Cascading messages sends foe next message to the

object returning fi’om foe previous message, often expecting it to be the same receiver.

An example illustrating foe problem is a grade as an Encapsulator hiding a number of orfoogonal parts. The

Encapsulator passes any message it receives to each of the parts in turn until foe message binds to one of

them. A cascade of messages to a polymer could result in the first message binding to one of the orthogonal

part of the polymer’s description, and the behaviour returns that part to the sender. The cascade caus% a

second message to be sent to the returned object, in this case foe part foat responded to foe previous message

106

Object -Oriented Software Représentation of Polymer Materiali Information m Engineering Deaign

in foe cascade, foe message is not sent to foe Encapsulator. Unless the cascade accesses only protocols from

one part of foe polymer, a message will not bind correctly.

4.2.5 Implementing the Enhancer
Unlike previous attempts to generaUse foe doesNotUnderstand mechanism^ the Enhancer attempts to merge

seamlessly wifo foe Smalltalk object model with minimal disrption to foe standard Smalltalk environment

With the exception of a few development tools (debuggers), the Enhancer is undetectable from an equivalent

object inheriting solely from a single class hierarchy (ie based on foe standard object model).

doesNotündarstand: aMessage
This method is a behaviour specific to Enhancers. The doesNotUnderstand m essage Is
automatically sent by the Smalltalk ^rtual machine when a method cannot be found to match tha
m essage name.
The receiver, referenced by self, Is therefore a variety of Enhancer.
aMessage Is an object describing tfre m essage send which has been Intercepted by tfie receker.
aMessage comprises the selector (I.e. m essage name) and accompanying arguments."
Temporary varlatXes
hlddenOt)jecL.....................Initially, the object hidden by the receiver.
m e.......................................Will be assigned the receiver.
answ er.........................To store tfre result of aMessage."

I hlddenObjact me answer |
"Initial assignments."

me !■ self.hlddenObjeot i> me privateXnhancedObjeot.
"privateEnhancedObject Is the retrieval operation specific to a particular subclass of Enhancer, that
the receiver Inherits. "

hlddenObject prlmBecomei me.
"Swapping the receiver and the hidden object, so a s to "open tfie door" to the hidden object.

"me" Is now a reference to the hidden object"
[answer t- meperforms aMessage selector

withXrgnmentst aMessage arguments]
"Executes the behaviour associated with message send dracrlbed by aMessage."

TalueMowOrOntTnwlndOoI [me prlmBeoomei biddenObject]
"Regardless of the behavioir executed when aM rasage Is perfcwmed, the hidden object and me are
swapped back again. The door Is closed on the hidden otiject, no matter tfie outcome."

*answer
The resuË is returned upon successfiil executfoti"

Figure 12: Message redirection for Enhancer
Consider an object without behaviours except foe doesNotUnderstand behaviour of Figure 12 and one otha

named 'privateEnhancedObject'.

Any message foat was sent to this Enhancer object (with foe exception of privateEnhancedObject) would

evoke the doesNotUnderstand message. The hidden object exchanges plac% wifo foe Enhancer and foe

message is re-evoked but with the hidden object as foe receiva. Upon completing, foe exchange is revased.

The only behavioural difference between an object hidden by an Enhancer and the hiddoi object on its own

is foe Enhancer will respond with foe hidden object if foe m^sage privateEnhancedObject is sent The

Semantics of this message would appear to be returning a copy o f ‘s e l f , the receiva. Since it is unlikely that

the message privateEnhancedObject will have any otha semantic meaning, this is a minor difference in

behaviour

107

object -Oriented SoAwmre Repreuntation of Polymer Mmteriab Infonnition in Engineering Deiign

The advantage of the Enhancer is not an absence of behaviour. Semantically the Enhancer, as above,

contributes nothing to object modelling. The Enhancer though diflBers in its implementation. The Enhancer is

the sole reference to the hidden object. This allows the hidden object to change in a similar way to the

message become :. The similarity is that viien the hiddai object changes, all owners of the Enhancer will

experience die behaviour of a new object:

A become; B

"hidden object changed"

A reference from client to %rver
An object

An Enhancer vith encapsulation

Schema of EnhancerFigure 13:
In Figure 13, the Enhancer (E) can easily change its reference from one object (A) to another (B). This

simple use of the Enhancer can help strengthen the enc^suladon of all objects in Smalltalk. Currentiy any

object can be the argument in a become: message. Without permission from eitiio- the object or any of the

objects referencing the object, the object can be replaced by another. For the objects referencing, the change

is an unauthorised change in state. With the Enhancer the become: primitive (§4.1.3) can be removed from

general object behaviour, placed only in parts of the system necessary (eg to coerce instances during schema

evolution). The Enhancer is then available fiir specific Explications on individual objects that need the

flexibility in rhanging object identity. For this, the Enhancer will keep its own private behaviour containing

the become : primitive.

The Enhancer, as above, is an empty shell, into which each application writes a subclass with a different kind

of behavioural extaision. One Explication is die orthogonEil description of grades.

1.2.6 Implemenijng Orthogonal DesGriptJons of Polymer
The primary description of grEides is from taxcmomic classes. For inEXpropriate properties, the POISE schema

calls fiir orthogonal descriptions. An orthogonal polymer description is a modular extension of behaviour for

individuEil gnid^. A cIeiss represents the orthogonEil polymer description and each instance is Ein extoision

which individual grades may Eubitrarily Eissign as part of dieir description. The grade distributes its

108

(%ject -Oriented SoAwmre Reprementmtion of Polymer Mmterimb InAwmmtion in Engineering Deiign

description across many different instance. An Enhancer passes messages to each descriptive part until the

message finally binds, thereby constructing the grade under one object interfece.

A variant of the Enhancer combines the intCTfece of two or mwe objects. The behaviours of these objects are

independent of each other and pre-defined by their corresponding classes. This Enhancer creates the

perception of a single object that combines the behaviours of the hidden objects. This Enhancer is a subclass

called a CompositeEnhancer.

4.2.6.1 CompositeEnhancer
The CompositeEnhancer is like ‘multiple inheritance on a per-object basis’, or mix-ins. Multiple inheritance

allows a single class template to inherit from more tiian one otha- class template. The CompositeEnhancer

dynamically merges the inteifeces of two (or more) objects without an ojBGcial declaration of a class to unite

the behaviours.

The CompositeEnhancer does not hide a single object but an wdered collection of objects. Upon receiving

each m^sage, the Enhancer iterates through each of the objects in order until the message binds

satisfectorily. The iteration and testing fi)r satisfection are message pre-processing functions, functions quite

specific to the multiple-hidden object nature of this subclass. The doesNotUnderstand : bdiaviour for the

CompositeEnhancer requires re-implementation. To simplify the analysis of this behaviour, the following

example. Figure 14, only com m ents on tiie new aspects of the protocol:

dMBNotumdarstand t aMsBssga
"First I resend aM essage to the first ct^ect In my components. Any m essage that my
does not understand will be caught and sent to the next component until either It Is answered or
have gone through all my components with the current
*1. Set a temporary pointer named receiver to the first

I reoelver |
receiver := 1.

"2. Set up the exception handler to pass m essage to next object"
*Object meeeageNotOnderetoodSigmel
handleI [:en |

"4. A m essage has been sent during evaluation of the do: block that was not understood,
exception, ex, occured In the context object 'InltlalContexf. Iff the m essage not
was aM essage sent In the do: block context below (equal to ex handlerContexf),
there are still objects to pass aM essage to, then Increment the pointer and restart the
block"
ex initielContaxt sender sender ■■ exhandlerCcntext & (receiver ■■ composite

sise) not
ifTruei[receiver i> receiver + 1.

ex restart]
"5. Else reject this exception handler. The signal will continue a s If this handler did not

ifraiseI [ex reject]]
dot

"3. con r^slte Is an Instance variable for access to an ordered collection protential m essage
receivers. The pertormnwlthArguments: se nos a m essage a s described by rhe
the attributes selector" and "arguements" of aM essage.

[(composite at: receiver)perform: aMessage selector
withRrguments: aMessagearguments].

Figure 14: Message redirection for Composite Enhancer

109

Object -Oriented Software Refroentation of Polymer Material* Infbnnation n Eogmeering Design

The CompositeEnhancer relies on the hidden objects supporting the standard Smalltalk behaviour jfor die

doesNotUnderstand: message. The standard behaviour raises a signal, named messageNotUnderstood, as

follows.

A CompositeEnhancer receiving a m^sage will evoke its own doesNotUnderstand: mdhod, in Figure 14.

Under most circumstances, the do: block evokes and the first object in the OrderedCollection, named

‘composite’, receives the same message sent to the Enhancer, aMessage. If the message is understood the

response returns. The Enhancer then appears to have the behaviour of the first object in ‘composite’.

If aMessage was not understood by the first receiver in cowposi te tiien the Smalltalk virtual machine decrees

tiiat this receiver will receive the message doesNotUnderstand instead. The first receiver is not an Enhancer

but a standard Smalltalk object with the standard Smalltalk behaviour fiir the doesNotUnderstand : message,

which raises a signal. This signal searches past contexts (§4.1.4) and finds the handler in the Enhancer’s

doesNotUnderstand context which evaluated the poTorm message. The handler is an object that holds the

cxxle described as step 4 and 5 in Figure 14. This ccxle, unlike step 3 has not yet been evoked, despite the

ordering in the source ccxle. Now the signal tells the handler to evoke steps 4 and 5.

Getting the message, aMessage, to an Expropriate receiver is the only purpose of the Enhancer. The standard

Smalltalk behaviour for doesNotUnderstand might evoke for other reasons, at any time, because of another

object not handling a sent message. There is no guarantee die cause of the signal is due to the attempt by the

Enhancer to match aMessage to a receiver of the composite. This must be tested explicitiy. This test

examines the contexts created between re-sending aMessage and raising the signEd.

For clarity, the context evaluating the do: block is the ‘doContext’, which returns to a ‘handlerContext\ the

context that results fi'om the whole handle:do: m^sage. The ‘sender’ of the doContext is the

handlerContext. In the doContext the perform: message creates another new context. This third context

has the doContext as a sender. A chain of contexts is thus described: handler-do-new. If the receiver of the

new cxmtext understands aMessage, die context will evaluate die protcxxil found for aMessage. If aMessage is

not understood, the new context will evaluate the doesNotUnderstand protocol, which raises a signal.

‘Raising a signal’ is a message to a signal object. The signal creates an exception object. The signal

passes the exception the current context (the initialC ontext) from which the exception can obtain the

chain of parent contexts of the current process, ie the history of message sends leEiding up to the signalling.

This includes the context that raises the signal, a doesNotUnderstandContext. The chain of contexts also

110

Object -Oriented Software Repreaentation of Polymer Materials bftmnation in Engmecring Design

includes the handlerContext. The receiver in the handlerContext is a signal object (see step 2 of

Figure 14). The role of the exception is to search for handlerContexts and match their signal with the

signal raised. The handler block, held as an argument in the handlerContext, then activates. The

exception passes to die handlo* block through the argument ex.

In the handler block, tho-e is a condition the Enhancer checks. This check determines if the signal is a

consequence of a message the Enhancer sent and not some other object. Through die message

in itia lC ontext to the exception (the ex argument), the handler block accesses die context raising the

doesNotUnderstand signal. For the condition to be true, the sender of the in itia lC ontext must be executing

the handlo- “do” block, and its sender must be the handlerContext. The exception determined this context

when the signal was raised. If the message handlerContext to the exception matches the

in itia lC ontext'^ sender’s sender, then the Enhancer must have given rise to the signal.

After ensuring that there are still objects in composite diat have not received aMessage, the index increments

and the do-block is evaluated again after removing (known as unwinding) all the redundant contexts down to

the handlerContext. The do-block evaluates fiir each receiver until the doesNotUnderstand message and

signal are no longer triggered, ie tiie message binds correctly. A receiver which binds will shadow the

rem aining objects in ‘composite’. Any other objects also satisfying the message are not given the opportunity

to express their behaviour.

The consecjuence of the first-object fiiiling with aMessage and instead a second-object responding is the

m e rg in g of two behaviours undo^ a single interfiice, the CompositeEnhancer. To clients the

CompositeEnhancer is a union of two or more object types. The example given dictates a particular rule for

behaviour sharing in the intersection of the object types, so high^ ordered objects override completely any

object lower in the ordering.

4.Z.6.Z CompositeEnhancer for supporting orthogonal descriptions.
The ConpositeEnhancer is a single object interfiice. As such, it is identifiable as a single object, not a

collection. It subsume the behaviour from a number of other objects, not through inhoitance but by

delegating messages. Many objects explicitly subsume the behaviours of others through message passing, but

the ConpositeEnhancer does this implicitly. The types of the objects tiie CompositeEnhancer subsumes are

unknown. Throughout the life of the CompositeEnhancer new subsumptions dynamically resolve as the

objects themselves change. In addition, the subsumption is different for each ConpositeEnhancer. The

description of behaviour is pCT-object.

I l l

Object -Oriented Software ReptcMntatkm of Polymer Matoiab Infbtmation in Engineering Design

Resolving behaviour suteumptioo of orthogonal descriptions is simple since the orthogonality implies any

inta'section between the parts should be empty. The ordering within the CompositeEnhancer of objects has

no consequence on sharing across objects with orthogonal pnxerties. A ConpositeEnhancer representing a

grade can assign the component objects, for example, an instance from one general polymer description and

one or more instances from orthogonal descriptions, in any order.

Even objects representing orthogonal descriptions of grades are not truly orfoogonal in POISE. They all inherit

from Object. An example of a common property inherited from Object demcmstrates foe susceptibility of foe

CompositeEnhancer to foe ordering of objects. The property hash is a primitive behaviour that returns a

unique integer for every object. It is important when placing and locating an object in a hash-table. Consider

a CompositeEnhancer in a hash-table subsuming object-1 first then object-2. When foe

ConpositeEnhancer receives foe hash message, it passes foe message to object-1. The look-up of foe

selector hash starts in object-l's class, down foe super classes and locates foe primitive behaviour in

Object, returning an integer unique to object-1. That integer is used to place foe CompositeEnhancer in foe

hash-table. If object-1 and object-2 where to swap places in foe ConpositeEnhancer, consider what foe

behaviour of hash is now. The ConpositeEnhancer receives foe message but now object-2 receives foe

message first, passes it to object-2's class, superclasses and finds foe same primitive in Object, but this time

object-2 is foe receiver. A different integer number is returned. A different integer number means foe

ConpositeEnhancer is now in foe wrong place in foe hash-table. This problem is simply solved by defining

foe hash primitive as a property of foe ConpositeEnhancer, but it does demonstrate foe related issues of

orthogonality, property subsumption and empafoy, (note if s e l f was assigned to foe ConpositeEnhancer

rather than object-1 or object-2 foe primitive would have worked uniformly despite foe look-up path).

The important aspect of foe Enhancer is its ability to pass on arbitrary messages to individual objects. This

fiicilitates foe dynamic re-description of individual objects. In foe next section, foe message passing

mechanism is attributed to foe polymer classes for quite different reasons. Polymer classes are foe sole

instances of their class (foe meta-class). Individual class can extend their behaviour by manipulating foe

meta-class, but foe behaviours are subject to inheritance and affect all subclasses. As will be shown, foe

inheritance of protocols is in foe opposite direction to foe subsumption of property generalisations. The

message passing mechanism cleanly separates foe different roles of foe class and foe different subsumption of

property generalisations.

112

(Xgect -Oriented Software Repreaentation of Polymer Materiali Information in Engineering Deaign

1.2.7 Polymer Oass Behaviour
The class has two roles (§3.5.4.) within the POISE classification:

• Explicit behaviours: As a definition of an object type, declaring behaviours and states for polymer

grades, a class template.

• Implicit behaviours: Property abstraction for domain representation of an abstract polymer.

Property generalisations characterising abstract polymers features two complications. As polymer grades

change their dMcriptions so too the abstract polymers hoice the Polymer subclasses must all evolve their

implicit property generalisations that compose each polymer abstraction. This evolution is even more

complex than the evolution of grades, as will be shown later. The second complication is the abstraction

becomes progressively more specific at every subclass down the hierarchy, and so the implicit properties list

decreases. Subclasses do not subsume the abstractions of the superclasses rather the siq)erclasses actually

infer their abstractions fi-om the subclasses. The superclass-subclass protocol inheritance is in the opposite

direction to the inference by subsumption of property generalisations.

These two roles require separate implementation but represent the same entity. Altiiough the Enhancer excels

in this activity, it is unnecessary to use an Enhancer since all Polymer classes will exhibit both roles. Since

the two roles are orfoogonal, two separate objects could represent foe two roles, foe class and another object.

They are combined by modifying foe doesNotUnderstand protocol of foe class so unbound messages pass to

foe ofoer object. This allows foe two roles to be kept separate, so allowing an instance of a specialised class

to represent foe evolving abstract entity wifo an explicit subsumption of foe property generalisations. This

new object is a PolymerDataAbstraction.

Separating foe implemoitation of foe two roles had a number of benefits. A Polymer class can change foe

type of PolymerDataAbstraction, whicfo changes foe abstract property subsumption few foe Polymer class.

There are different subsumption mechanisms for Polymer classes subsuming subclasses, instances and

orfoogonal classifications.

4.2.7.1 Abstract polymer objects
The PolymerDataAbstraction, or PDA, represents foe abstract polymer part-behaviour of foe Polymer class.

The Polymer class receives messages pertaining to foe aWtract entity and delegates foem to foe PDA.

The PDA subsumes all properties of all grades in a population. The PDA is polymorphic wifo all grades in that

population, which subsume foe property descriptions of their Polymer subclasses. The PDA must be able to

receive the same messages and respond in foe same way as foe grades. An additional complication is foe

113

Object -Oriented Softwere RepreMntetk» of Polymer Materiali Information in Engineering Deaign

evolution of the grade’s behaviours. If the grades change their subsumption then the behaviour of the PDA

must also change.

The simplest PDA is a single Polymer class with grades but no subclasses. The grades all subsume the same

properties from the same class. The only difference between the behaviour of a PDA and the grad^ is the

values held for each propaty. In foe pda each property holds a population of values. An instance of foe

Polymer class (not called a grade) could represent foe PDA. This requires polymorphism between an object

representing foe population of values held by each property of foe PDA and foe specific values held by grades.

The protocols inherited from foe class behave correctly only if foe object representing foe population behave

in foe same way as foe specific values.

In addition to presenting populations of values, foe PDA provides foe fallowing management tasks:

• Receive and disseminate update messages when grades modify properties.

• Maintain a membership population over which foe abstraction is valid, including adding and

removing instances from foe population.

• Merge wifo a fellow subclass’s abstract polymer to provide abstract behaviour for superclasses, (to

follow in §4.2.7.3).

• Manage foe addition (and removal) of orfoogonal property descriptions as grades in population

extend their property descriptions, (also to follow in §4.2.7.5).

All these management tasks are additimal to foe behaviour of an abstract polymer instance. The tactics of foe

Enhancer extend foe behaviour of a Polymer instance without compromising foe classification describing its

behaviour. Unlike ofoer applications of foe Enhancer, foe management role requires access to foe properties

of foe abstract polymer instance, ie foe abstract values held by foe abstract polymer instance. The pda is a

subclass of Enhancer foat extends foe message passing to both suteume and manage foe properties of a

polymer instance, representing an abstract polymer.

4.2.7.2 Conformity between population and abstract polymers
The PolymerDataAbstraction (PDA) is an Enhancer that embellishes foe aggregation of polymer properties

wifo a number of data management behaviours, which ensure that foe properti^ of foe aggregation are

consistent wifo foe population represented by foe class. The PDA maintains a close relationship wifo foe class

it represents. Indeed, it accesses foe class by simply sending foe message ‘c la ss’ to foe instance that it

subsumes.

A class does not keep track of all its instances. However a primitive behaviour does exist that searches object

space (primary memory) for objects wifo a class pointer matching a given class and returns all instances of

114

Object-Oriented Softwtre RepiCMntation of Polymer Miteriali Infisnnatioii in Engineering Daign

the class in primary memory but not instances represented on secondary memory. It will also include the

instance the PDA subsumes, which is not a grade. A more explicit apprcmch is taken of recording grades’

existence. There are two sources of grades in poise. New grades can be instantiated, and the application can

connect to a set of existing grades on a database. The Polymer class re-defines the standard instantiation

protocol to notify the PDA when instantiating a new grade. When the application connects to a new database,

the database notifies each class of the grades added, and the message passes to the PDA, which keeps a

standard collection of instance representing grades.

An explicit approach is taken fijr the removal of grades, firom primary memory or fi-om a database. When a

user directs the removal of a grade using a graphical interfiice (see §5.2.2), the interfece notifies both the

database concerned and the PDA.

The PDA views the addition oi removal of a grade as foe addition or ranoval of a set of property values. The

PDA locate the generalisation for each property (see §4.2.7.4) and correspondingly adds or removes an

occurrence of the value in the grade. On a lesser scale, individual changes in a property value of a grade

cause a similar change in the PDA. The grade notifies its class of the change. The message passes to the PDA,

which locates the appropriate property and i^dates by removing the old value and adding the new.

The function of the PDA, so fer, manages the generalisation of data fi-om a single class with instances but no

subclasses, pdas for Polymer classes with subclasses subsumes property descriptions from objects of

different sub-types. For these classes, a PDA could subsume more than one instance, one firom each subclass.

This would complicate population management, so a new type of PDA that can subsume the properties of

many other pdas was created. Then only subclasses with instances require management with pdas. The

superclasses subsume the results of this managemait firom the subclasses’ PDAs.

4.2.7.3 Conformity across levels of representation.
The total population of a superclass is its own instances (if any) and the combined population from

subclasses. The properties of abstract polymers for general classes are likewise the subsumption of the same

properties from the specialised subclasses. These properties are already subsumed together in PDAs for those

subclasses. A CombinedDataAbstraction (CDA), subsumes the properties of any number of PDAs. One PDA

represents the instances of the immediate class (if any) and one from each subclass with an instance.

Semantically there is no difference between a CDA and a PDA. Both are subtypes of any grade in their

respective populations. Each PDA generalises engineering values (see §4.2.7.4). For the CDA to subsume the

same property from many pdas, the CDA resolves the subsumption by merging the generalisations of the

115

Object-Ôrieoted Software RqscMntation of Polymer Miteriab Infbniutkm in Engineering Deiiga

same property from different PDAs. Resolving subsumption is a behaviour of the a ttrac t engineering value.

In §2.1.8 general subsumption resolution was considered a problem with inheritance representation. Here the

CDA manages the problem explicitly with a specific merging algcxithm.

The CDA is also an Enhancer. Any message sent to the CDA is sent to all PDAs it subsumes. Each message

successfiilly binding to a PDA returns an abstract engineering value. Unsuccessful messages are simply
t

ignored. The CDA combines the abstract engineering values and returns a single object as the response.

4.2.T.4 Abstract engineering values
The abstract engineering value (AEV) is an important description of the abstract polymer. In order to support

the abstract polymer, the abstract engineering value must provide the following functions:

• generalise a population of specific engineering values

• presents an abstract value polymorphic with specific engineering values

• resolve subsumption by creating another abstract engineering value covering a combined population.

Although an AEV reduces the population into a generalisation in order to present an abstraction, for complete

generality, it does not reduce the infrnmation content hidden within its own memory. It is not a memory

saving device. It provides protocols for interrogating the complete population of values. The abstraction

keeps a record of the engineering values from the population it represents.

The AEV is sim ilar to the PDA. Both add a genoul functionality to a set of different object types. The PDA

adds population management to different classes of polymer. The AEV adds the above functions to different

types of engineering values - many of wfoich the users of POISE will develop and are yet unknown. So again

adding a common behaviour to an unknown type of object is a problem.

Any type could represent an engineering value. The user defines the type of an engineering value when they

define the Property object. One behaviour of a Property is to return a class for representing the engineering

value, (a class since Smalltalk doesn’t define types). Strictly, fois is a type specification for foe argumœt of

foe updator: mefood, and foe expected type of foe accessor mefood response (see §4.4.3). The AEV collects

several of these value types. Currently POISE assumes foe values are arithmetic, and calculates a medium

value. Wifo foe aid of foe Enhancer behaviour sharing technique, foe AEV subsumes foe behaviour of foe

median value.

Whereas foe PDA collects grades, so foe abstract engineering value collects values. The management of foe

abstract engineering value is foe direct result of a similar activity in foe pda. The abstract engineering value

receives messages from foe pda to add or remove values as foe population of grades change.

116

Object -Oriented Softwue Repietentation of Polymer Mmterimh b formation in Engineering Design

4.2.7.S Applying orthogonal descriptions to abstract polymers
A grade’s description extends with the addition of an orthogonal description. If a single grade is capable of

extending its description, then so is the description of the abstract pplymer. The mechanism for extending the

grade subsumes the existing instance of the Polymer class with an instance from an orthogonal class. Yet,

another Enhancer fricilitates this subsumption.

A grade extends its description using an Enhancer to subsume two (or more) instances, for example one

polymer and the others orthogonal descriptions. Since the composition of a PDA includes an instance of the

Polymer class, the same m echanism applying to the specific grade also i^ l ie s to abstract polymers. They

both compose of an instance of the Polymer class. A PDA with orthogonal representation subsumes an

Enhancer, vriiich in turn subsumes a Polymer instance (the original abstract polymer) and a new instantiation

of the orthogonal class. For each new orthogonal class that any instance in the population adds, the PDA must

also add a single new instance from the same orthogonal class to its Enhancer.

The orthogonal descriptions provide a secondary classification. Unlike the class of the materials hierarchy,

the members of the secondary classification mix with members from other classifications. A subclass,

MultipleDataAbstraction (mda), extends the behaviour of the PDA. The extension segregate the

population according to membership to orthogonal descriptions. This allows queries to focus on grades

subsuming a particular perspective. Besides some complications in management, there is little difference

between MDA and the PDA.

4.3 Delegation in Smalitaik
splinter uses delegation to combine the behaviours from multiple perspectives forming the behaviour of an

artefiict. Delegation is known to satisfy this objective. The question is vhat constitutes delegation. Does the

behaviour sharing of the Enhancer constitute delegation? If it doesn’t, then does the Enhancer, or some

variation satisfy the objectives of a multiple perspective artefiict? Bearing in mind complete delegation is not

a goal of this thesis, though the ScopeEnhanccr is the result of an attempt to csq)ture behaviour sharing

between multiple perspectives as closely as possible.

Delegation is a feature of a language implementation that supports empathy. Yet even empathy, as defined

from the Treaty of Orlando®, refers to the variable se lf, which is a common binding that languages

implement. The variable s e l f is a very important feature of an object-oriented language linking a protocol to

the context of the receiver, allowing procedural aWraction of protocols, both abstract and specific, within die

same entity. If the binding is outside programmable control and bound according to a rule of the language.

117

Object -Oriented Software Repreaentation of Polymer Material: Information in Engineering Deaign

then the binding is standard, a feature of the language implementation. Empathy defines the nature of a

common binding, so describes a feature of a language implementation.

If both delegation and empathy are descripticms of a language implementation, it is impossible to use them as

a description for a Smalltalk language where the implementation do^ not enforce such characteristics.

Smalltalk always binds die variable s e l f to the receiver of die message and the receiver of the message is

always an instance of the class holding the code. It is impossible for anotho* object to request a protocol from

an instance and thoi take the role of the receiver (ie the other object binding to self). In conclusion, it is

impossible for Smalltalk to support empadiy or delegation beyond the implicit inheritance hierarchy.

Absence of delegation is not specific to Smalltalk but strikes contrary to the success of the class-instance

paradigm. Even if the variable s e l f could support empathy in Smalltalk, s e l f is not the only variable

associated with the receiver. Each instance variable mtqis to a relation of the receiver. Empathy does not

define how such variables should bind. The binding of the s e l f variable infers diese relations should also

come from the client and not the owner of the protocol. Such bindings simply do not exist in delegating

languages and there are good reasons. The instance variables are just optimisations that benefit from a

template-like relationship, such as found between the classes and their instance. They do not extend the

expressiveness of a language. If a software model chooses to use the class-instance relationship, it must

comply with the rules of instance variable classification.

If the existing Smalltalk œvironmait, its protocols and message passing mechanisms, can not support

delegation, could a separate mechanism within the Smalltalk language exhibit the intentions of delegation?

Whether such a m echanism is considered to attribute Smalltalk with delegation is not the debate. Arguably, a

procedural language can generate programs of an object-oriented feshion, but the language is not considered

object-oriented. The same can apply to Smalltalk and delegation implemented as a language extension.

The implementation of Smalltalk can not change but emulation of delegation is possible. Instead of using tiie

existing sel f variable, use a new variable. This variable changes according to who is the client, and in POISE

the cheat is an Enhancer. If protocols are written using this variable, tiien these protocols may empatiiise

with other receivers.

4.3.1 SœpeEnhancer: Delegation Emulation
A ScopeEnhancer adopts the sinq)le object description of tiie Enhancer. It shares semantic similarity with the

CompositeEnhancer but the implementation is different to allow experimentation in behaviour sharing

managemoit The ScopeEnhancer ' s aims are also much more ambitious.

118

(%ject -Oriented Software Representation of Polymer Materials Information in Engineering Design

The ScopeEnhancer aims to support the sharing of protocols across a community of objects. The community

forms an ordering from an object containing the most specific protocols to the last and most general object.

Objects in die community can belong to othff communities, fiirming an acyclic graph of behaviour sharing.

In terms of delegation, the ScopeEnhancer is the client and the objects in the community are proxies. The

ScopeEnhancer does not contribute any behaviours itself, so the overall behaviour is the same as if the first

object of the community, the most specific, was the client. The rest of the objects in the community are

proxies of this client. For simplification, all the objects in the community are called ‘proxies’.

The proxies are standard objects. Separate classes define the behaviour of each proxy. The classes reside in

the standard inheritance hionrchies. Individually tiiey do not share the protocols of others, yet in order for the

sharing mechanism to work their protocols send messages to se lf, which are not behaviours of the class. In

this way, classes of proxies are special

The mechanism starts with a ScopeEnhancer and the proxies in a SequenceableCollection grouping the

community. Messages to the community are sent to the ScopeEnhancer, which has the responsibility to locate

the protocol within the community and ‘overview’ the evaluaticm.

Upon receiving a message the ScopeEnhancer sets up an exception handler and re-sends messages just like

the CompositeEnhancer. Any messages, not just those re-sent messages, not found during evaluation of the

ScopeEnhancer’s behaviour will be caught by the handler.

If the messageNotUnderstoond signal is raised, the exception handler gains control. The handler identifies

the message and object (receiver) causing the signal. The handler also identifies if the message was sent

directly from the ScopeEnhancer, ie if it is the initial ‘delegated’ message re-sent If the initial message

springs the trap then the ScopeEnhancer re-sends the message to the next object in the community, just like

the CompositeEnhancer. The ScopeEnhancer differs from the CompositeEnhancer whoi the message raising

the signal is not the initial message.

When a protocol for the initial message has been found, the trap stays set during evaluation of the protocol.

For empathy within the community, the ScopeEnhancer relies on the protocol evoking the

messageNotUnderstood signal to intovene. This will happen if the proxy sends a message to s e l f that it

does not understand. The message raising the signal in this case is not the initial message.

119

Object -Oriented Software Représentation of Polymer Materiab Information in Engineering Design

The exception handler of the ScopeEnhancer identifies the message and object (receiver) raising the

messageNotUnderstood signal. If the receiver is the object fi'om the community that last received the initial

message (the delegated message), and this message is different, then a new message delegation starts. The

ScopeEnhancer searches the whole community for a new protocol fijr tiie unbound message. If the receiver is

not the expected object, the ScopeEnhancer assumes the signal is a genuine type error.

The policy implemented is one of a few variaticms tried. They all rely on the handler trapping signals

resulting in a protocol search in tiie community of objects. In this way, a message in one object can gain

access to protocols of other objects within the ‘scope of the Enhancer' whilst the object does not define the

behaviour itself This final condition is inconvenient since it prevents the ability for proxies to specialise

behaviours existing in tiie class hierarchy. To fiirther understand tiiis limitation, the specific implementation

of the ScopeEnhancer follows.

4.3.2 Implementing the SœpeEnhancer
Two separate parts of the ScopeEnhancer implement the interfece and the delegation event The class

ScopeEnhancer, a subclass of Enhancer, implements the interfece receiving the initial messages.

ScopeEnhancer changes the doesNotUnderstand method to construct an instance of DelegationEvent with

the message and tiie ScopeEnhancer ' s community of objects. The DelegationEvent is responsible for

locating the protocol within the community and ‘overview’ the evaluation.

Separating interfece and management of the delegaticm event allows specialisation of the DelegationEvent

class. DelegationEvent inherits from Object like most Smalltalk classes. The subclasses create different

delegation policies.

This scheme allows the ScopeEnhancer to create a copy of the delegation event to handle each message

mutually exclusively. Each shared protocol has an event to man%e foe e\Tduation of that protocol.

120

Object -Oriented Softwtre Reptaeotmtion of Polymer Meterimh hbnnation in Engineering Design

The ScopeEnhancer ' s interfece evokœ the DelegationEvent as follows:

1) Enhancer receives message.

2) Enhancer does not understand message and receives doesNotUnderstand: message.

3) The Enhancer creates a new DelegationEvent object.

4) The ScopeEnhancer gives the event the message selector to search for and the community as an

ordered collection of objects

5) The Event is told to search and evaluate.

The dominant behaviours of the DelegationEvent are search, evaluate and ‘trap’. The ‘t r ^ ’ is an exception

handler.

6) When an event receives a message to search it initialises a pointer to the top of foe collection (of

objects to delegate to). This is foe current receiver.

7) An exception handler monitors for a does not understand signal.

8) The do-block is evaluated.
9) The message being delegated is sent to foe curroit receiver.

From this point until foe message is complete, the tnp is set. The following occurs if any object triggo-s the

trap by raising the signal.

10) The handle-block is evaluated with an exception object as argument

11) The handle checks if the initial context, foe context sending the message which was not

understood, is foe do-block context from in step (8).

12) If the same then the receiver is set to foe next proxy receiver. If no more proxies then reject the

exception (normal does-not-understand behaviour occurs) otherwise re-evaluate the do-block

(back up to step 8).
13) If not the same, foe handle checks if foe originator of foe exception, foe object which did-not-

understand, is the current receiver. If not foai reject the exception (normal does-not-understand

behaviour occur).

If the originator is the curroit receiver, foe ScopeEnhancer directs the message to the whole community.

14) A new message is being sent. Simply pass the message to the ScopeEnhancer (start at step 1) and

proceed with foe response.

Step (14) causes foe CTeation of a new DelegationEvent. The current event is still active until that event’s

message is complete.

It is possible for the parts from the community to message each other and send various parts of the

community as arguments in those messages. The various DelegationEvents handle the situation well, wdth

each part providing it’s specific behaviour first, then foe communities collective behaviour afterwards.

121

Object -Orioited Software RcpnMntation of P o ^ a r Mitcriab Inftmnadon m E n^eering D aign

The above DelegationEvent was the first implementation. This implementation attempts to extend the

variable se lf , by sending m^sages to s e l f that are not understood within the local object’s classes. An

alternative is to define a new variable. A specialisation of the above DelegationEvent demonstrates one way

of achieving this.

The new variable is named the clien t. Unlike tiie s e l f variable, which binds to tiie receiver automatically

by the virtual machine, c lien t binds explicitly through a message sent to s e l f in each protocol. The class

Object defines the message c lien t. All objects (bar Enhancers, which do not inhoit fi'om Object) can bind

to the protocol. The semantics of the c lien t message is to return the empathetic se lf , the ScopeEnhancer. If

there is no ScopeEnhancer, c lie n t simply returns se lf.

A temporary variable can be assigned to the response to the message:

I c lie n t I
c lie n t := s e l f c lie n t.
If c lie n t is now sent messages instead of s e l f then the protocol is fully empatiietic. Messages sent to

c lien t, the ScopeEnhancer, immediately form a new DelegationEvent that directs the message to the first

object in the community, which is the most specific.

The message ‘s e lf c lien t’ finds the ScopeEnhancer by raising tiie doesNotUnderstand signal. The

specialisation of the DelegationEvent detects the clienü-message, and treats it specially. The

DelegationEvent returns tiie ScopeEnhancer as tiie response to tiie c lien t message. If the

doesNotUnderstand signal is not handled, tiien there is no ScopeEnhancer. The c lien t protocol detects this

situaticm and returns s e l f in response to the message. Protocols using the c lien t variable without a

ScopeEnhancer have all messages sent to s e l f rather tiian a community. In this case, s e l f is tiie most

specific in a community of one.

With c lie n t the ScopeEnhancer can emulate explicit delegation. In delegation, a cl ient delegates a message

to a specified proxy. A specialisation of the ScopeEnhancer, with a single object as the community, emulates

the proxy. The message is sent to this ScopeEnhancer. The specialised behaviour notes the object sending the

message, the delegating c lien t. The ScopeEnhancer finds this c lie n t by accessing the message contexts,

just as exceptions access signal handlers. When the proxy object sends the client-message, rather than

returns a ScopeEnhancer with just the proxy, this specialised ScopeEnhancer adds the delegating-client to

the community as the most specific object. The delegating-client then overrides all message sent to the

c lien t and the r em ain in g proxy behaviours in the community acts as defeults.

122

Object -Oriented Softwtre RepreMntation of Polymer Miteiiab Infbimttion in Engineering Design

Even with c lien t, the programming style needs to change. If the programmer uses the variable se lf , then

the programmer does not expect delegation. If the programmer does expect delegation, tiiai programmmg

must change to allow the ScopeEnhancer to support the empathy.

4.4 Hierarchical Schema Evolution
Sçhana evolution in POISE is not a common activity. Once the classification is initially set up, only

occasionally will it change when a user adds new classes of polymers or properties. Even so, user interactions

must be effective. For example, excessive delay would be unacceptable when processing a change. Excessive

delays were incurred when making a series of changes using the development system’s mechanism for

schema evolution, the ClassBuilder. Long waits occur after each change to the schema, so a source of

optimisation was sought

The development system’s ClassBuilder evolves class specifications; in particular, the scope of variables

declared by a class and accessible by its instances. Changing the class’s name and global’s scope, such as

class variables and pool variables, only requires minor changes to foe state of foe class object. Methods too

only affect foe method dictionary of the class. Subclasses implicitly inherit these changes and they need not

change themselves. This is not the case for changes to the format of instances. The most common change is

foe number of instance variables. This changes foe integer fijrmat descriptor (ttiat encodes the storage layout

of instances) and has much more extœsive consequences.

Subclasses and instances inheriting instance variables, and any other format information, from a superclass

must explicitly coerce their own format to matdi changes in the superclass. A change in a class can affect a

number of subclasses and many more instances. The addition of an instance variable, for example, requires

each subclass to change their format For eadi instance the class generates a new instance under foe new

format, copies across foe states of the instance variables and makes foe old instance become foe new. With

the change in instance variable position within instances, each method of the subclasses requires recompiling.

The ClassBuilder coordinates all these modifications to foe hierarchy.

The schema of foe ClassBuilder shows significant inefficiencies when moving an instance variable from a

subclass to a superclass. The schema dictate that the name of an instance variable is unique within foe

inherited scope of a class. The subclass must first remove an instance variable before adding it to a

superclass. Otherwise adding the same named instance variable to the superclass will conflict with foe

existing named variable in foe subclass. Removing foe name reduces foe number o f instance variables

causing a reduction in data structure of all instances of the subclass. All methods are also recompiled. Only

123

Object -Oriented Softwire RepnMntation of Polymer Mmtetiml: Infbnnetion in Engineermg Deegn

then can the superclass add the instance variable. This adds the instance variable back to a subclass, by

inheriting from the superclass. All the instances of the subclass restructure again. Now the structure holds no

data for the moved variable. The values were lost when foe instance variable was removed from the subclass

and foe structure reduced. All foe subclass’s methods are recompiled a second time..

WhCT. properties move, the variable they define move. Moving propaties up and down the inheritance graph

is called promotion and demotion (§3.3.2.1). Moving instance variables up and down foe inhoitance graph is

inefficient and causes a loss of data. Since this is a significant activity when modifying foe classification, a

new schema was developed to schedule foe changes to foe classification.

chonoefCICBsBulder with: changer
a: C h an g e r Class

Builder

i s - a : Object

Supercl

S u b c la u e

Subsyitem: HleTQTChy VlSW
_________controller
_ root:

ch angerN cm ed :
a c c e p t

< 5 5

lla « h y v t» a

loot

POISE
Hierarchy
C h an g er

l8 -a : Object

d b a i o*ct palB of dn n n i
Mkjr t r Iko o n T n p a ty Aa opted
Avtec(«te><dte
A o f t e id ddeoi

M m a g a H ienrcfay

a: Polymer class

i s - a : POISE cl«M

a: POISE Class
C h an g er End

iB-a: POBEClMChncr

C la n to change

checker odciProperty: property
checker removeProperty: property

POISE Class
C h an g er '

l8 -a : Object

(NAwnorne)

a: Property
Property

a: C h an g er
Consistency Inheritance f^cki

a: Superclass
C onsistency

C h eck
i s - a : Objectis - a : Object

C heck
is -a : Object

Propertylrconsbtencytviotttler
probtemDescrtptor string
options: orroyOIStrings.

^ubayatcm: MVC ^

Request O p en notlflers

J

superckJssConslstencyCtTecker
moveCtieck; ckBsCtiecker

Figure 15: Schema- hierarchy editor

124

Object -Oriented Softwtre Representmtion of Polymer Mtteriab bfbnnation in Engineering Design

The HierarchyEditor is POlSE’s user intofece fer evolving the polymer classificaticm (§3.3.3). The interfece

is the user’s view into a mechanism that radically changes Smalltalk’s traditional class evolution. The new

mechanism boasts the following features:

• Batching changes by class to minimise processing.

• Abstracting inheritance by property radier than by method.

• Prevent loss of data through instance r%tructuring

• Improving re-compilation efficiency by extending metiiod representation.

Figure 15 is a schematic representation of the mechanism supporting the first two points, batching and

inheritance checking by property. The ChangerClassBuilder does the actual evolution of the polymer

classification. Improving the re-compilation is addressed later, in §4.4.5.

4A.1 Assigning Properties to Qasses
When a new intafece on the hierarchy opens it initiates a new POISEHierarchyChanger (PHC), the batch

manager of the session’s changes. The PHC creates and records ClassChangers (cc) upon request. CCs record

the changes for eadi class. The CCs fiirm a hierarchy transposed fi-om the existing class hierarchy. A

ChangerEnd object terminates the scope of the PHC at the root of the hiawchy, thereby limiting the range of

class modifications to some domain in the Smalltalk hierarchy. For the polymer hierarchy, this limit is set to

the POISE class, the superclass of Polymer.

I h e Instance varrft>le 'current' Is a QassChanger currently being checked during recurs he
behaviours. The Instance verrlble ‘oflendets' are ClassChangere that confflct with the cwreN
process. The Instance verrlble 'superseders' are ClassChangers that have redurxbnt sta tes (kie to
the current process. The Instance variable 'originator' is the changer the process wHI act on."

cons1stencydxeckForAddlng
"current Is a subchanger d an originator v ^ Is adcBng a property. Has current removed the propert
explicitly Oils session, causing a direct conflict?"

(current hasRemoved: property) ifTrue: [offenders add:
current].

"Does current define the property that It win now Inherit"
(current properties includes: property) ifTrue:[siqierseders

add: current].
"Recursively check subclasses"

current subChangersDo:
[:ch I
current := ch.
self cons is tencyCheckForAdding]

coBBlsteacyCbeckForRflo»vlng
"current Is a subchanger of an originator who Is remoMng a property.
Has ciment added the property explicitly this session, and now should define the property"

(current hasAdded: property) ifTrue: [offenders add:
current].

"Recursively check s itc leases"
current subCbangersDo:

[:ch I
current := ch.
coif concictQncyChaclcS’orRemoving]

Figure 16: Code- ClassChanger consistency checking for adding and removing
Modifications to the schema are directed to the individual CCs concerned. The view requests the CC by class

name in the message changerNamed:. A CC can add, remove, demote or promote a property. A CC can change

its supa-class or its name. New CCs are seated for non-existent classes that will be added to the hierarchy.

125

Object -Oriented Softwue Repreeeatmtiom of Polymer Miteriab Infbnnition in Engineering Design

Each request changing the schema initiates a consistency check. A ClassConsistencyChecker (CCC) is set

with the £q)propriate check flag: add, remove, promote, or demote. The descriptions of these consistency

checks are given in §3.3.2.1. Any inconsistency causes a N otifier to open giving the user qipropriate

options or else for aborting the request for change. After completing foe consistaicy check, foe checker

updates foe cc. The code implementing foe checks in this schema is given in Figure 16 and Figure 17. Note

these methods recursively call foemselves as foe check goes through foe hierarchy of ClassChangers.

damoteCheok
T h e originator Is any one of the sut)clas8es of a superclass that defines property. The demote will
remove the property Irom that superclass and add the property to It's subclasses such that the
originator defines the property. Hence all superclasses of the originator will not inherit or define the
property."
"Current starts a s the Immedtate superclass (changer) of the originator"
• Any superclass that has had the property explicitly added Is now having the property removed -
hence a conflict. Add conflicts to offenders"

(current hasAdded: property) ifTrue: [offenders add: current].
"Collect up the superclasses of the originator. Their subclasses (not In the line of Inheritance of tfw
originator) will require property to be added"

supersodorc addi currant.
"Continue recursion untfi the superclass that defines the property is found"

(current properties includes: property)
ifFalse:
[current :■ current superChanger.
self donoteCheclc]

promoteChack
"Current Is a class that will have a property added. (Often It Is InitiaJIt the sam e as originator when
adding). Check to see If current can Inherit the property from Ifs superclass (superchanger). To dc
this, all sidx lasses of superchanger must also define property.
Current will be left at the highest superchanger which will accept property"

I superChanger subChangers|
superChanger := current superChanger.
(superChanger hasRemoved: property) ifTrue:

"Property has been explicitly removed. Do not promote"
[^self] .

"Check the subclasses of this superclass, excluding current which Is ha\4ng the property added.
Check they all define property. If a single one doesnl, promotion is not possible"

subChangers := OrderedCollection new: 10.
superChanger subChangersDo:

[:ch I
ch == current ifFalse:

[(ch properties includes : property)
ifFalse: [''self].

subChangers add: ch]
] .

"Promotion possible. All these subclasses will need to have the property removed so they can
inherit It from superchanger. Add them to supersedere. "

superseders addAll: subChangers.
"Now recursively check to se e If the property can be promoted to the next superclass"

current :■ superChanger.
self promoteCheck

Figure 17: Code- ClassChanger consistency checking for demoting and promoting
The primary consistency checks are concerned with inheritance conflicts. The checkers are also able to

interact with Property objects to ensure that mutually exclusive properties are not both accessible to the

same class. Each Property determines foe existmce of other Properties it depends on.

When a class changes its superclass, it affects the inheritance of the class and its subclasses. The properties

subsumed from foe new superclass are checked against foe properties defined by the class and each subclass.

Coordinating these checks is a SuperclassConsistencyChecker (scc). Essentially this object iterates

126

Object -Oriented Software Repreaeolation of Polymer Material: Information in Engineering Design

through all the properties of the class being moved. If the property is not inherited from the new superclass

then it is defined on the class being moved. The moved class will only increase its property base. The SCC

then checks each subclass to see if the newly inherited properties conflict with any subclass property

definitions.

see utilises a number of cecs to ensure the new superclass does not conflict with the class’s properties.

Unlike user driven property changes, Notif ie rs are not raised. Instead, defeult actions are taken, such as

removing properties that are now inhaited and adding properties that were previously inherited. Such

changes are visible in the hierardiy view before any permanent change is made to POISE, allowing the user to

make adjustments.

The SCC also checks for an invalid inheritance structure. The new superclass must not be the moved class or

any of its Subclasses, thereby creating an inheritance loop. At all times foe changes are consistait with foe

inheritance rules and any other rules imposed by the properties.

4A.2 Building Classes
The benefit of a separate model fiir representing the changes to foe hierarchy is that POISE can control foe

order foe changes occur in foe classification hierarchy. When foe uso" decides to accept foe changes, POISE

always begins modifying the most general class first, which are foe classes at foe top of the hierarchy.

Another benefit is that there is no heed for consistency checks as they have already been made, unlike foe

ClassBuilder of the Smalltalk development system. Instead a new ChangerClassBuilder, (CCB) does the

changes. The individual CCs specify the new classes to foe CCB.

Each CC specifies a new class object This specification includes foe superclass and an aggregation of

property objects. The property objects specify the behaviours and state variables of the new class. The CCB

collects the instance variables and defines foe new class, but installing foe mefoods is foe responsibility of the

property objects.

POISE allows behaviours specific to Polymer classes that are not specific to a property. These behaviours use

standard Smalltalk methods. Any code not derived from a property object, but is specific to foe class, requires

copying over from the old class’s method dictionary. The builder does this after installing foe properties,

allowing foe class specific behaviour to over-ride a property specific behaviour.

The CCB starts at foe root of foe hierarchy. Building superclasses occurs before building subclasses and every

new class built is initially absent of subclasses. After building each class, building starts on its subclasses.

127

Object -Oriented Softwtre RepreMntation of Polymer Material: Inftmnttion in Engineering De:ign

The subclasses inherit the changes of the newly built supercla^. A subclass will not expect changes in the

superclass after building the subclass, thereby ending rq>eating evolution of subclass structure and methods.

Also, there are no subclasses when building a (super) class. The builder does not recursively update any

subclasses.

Once the new class objects are built, the builder coerces the instances (if any in primary memory, §4.5) of the

old classes across to new instances of the new classes. Since this is only done once at the end of all schona

changes, no data is lost. Data associated with an instance variable in the old class moves to the same named

variable in the new class, regardless of the variables position in the instances data structure.

After accq)ting the hierarchy and foe POISE class hioarchy has been rebuilt, foe new classes substitute foe old

classes, thoi foe old classes along with foe old instances, foe PHC and all its CCs, are all garbage collected (see

§4.5.8).

The only part of foe story left to tell is how property objects describe foe methods of foe class. Each CC,

which collects foe properties, passes foe new class to each property. It is up to foe propaties to install their

behaviours on foe new class.

4.4.3 Properties and Partial Temf̂ ate Objects
A material class is a template fi)r foe behaviour of grades. This tenq>late comprises of an aggregation of

properties. Each property contributes a part to the template. Objecta with the ability to partially describe

classes, and thereby the instances, are abstractly known as Partial Template Objects^^, (PTO).

The Hierarchical Schema interfiice collects the properties as the user directs fijr each class. With PTOs, foe

user defines the material classes template, and thereby the behaviour of grades. The process of composing the

material class involves the information in foe PTO, and some coercion of foe instances.

Smalltalk’s development environment provides the programmer with schema evolution for dynamically

adding instance variables and mefoods to classes. At its simplest, foe PTC is a similar description of change,

where foe declaration of instance variables and methods using text, as entered by the programmer, generates

a macro like function.

Each property is an independent collection of behaviours. Instance variables in a property description support

the implementation of the property’s methods. Usually the variable holds foe specific engineering value for

each grade and mefoods provide foe interpretaticm. The instance variables are few and specific to the

property. The description of the mefoods are in turn limited to accessing these instance variables, some global

128

Object -Oriented Software Rejaoentatioo of Polymer Material: Infbimation in Engineering De:ign

variables and accessing other states of the receiver through messages to se lf. Global variables always bind to

the same objects. S e lf always binds to the receiver. Instance variables though bind to locations within the

structure of the receiver. This structure is different for different classes of object. Since the PTO’s protocols

are not defined for any particular class, the instance variables complicate the compilation of PTO protocols.

For each PTC the scope of variables the methods may access, the instance variables, globals, arguments and

temporaries etc, are consistent regardless of the class of receiver. Only the physical binding of instance

variables is unknown. Initially the programmer represents each protocol as text (the source) whidi is then

compiled. The PTC could keep the text representation though any errors in the text would not become known

until the text was compiled for a particular class. Instead, POISE extends the compiler to cater for PTO

protocols. The compiler optimises the protocols, converting text to pseudo code, see §4.4.5.

If die protocols are correct, they are only correct for classes that siqiport the instance variables required by

the property. Before a Polymer class adds foe protocols of a PTO, the class adds foe instance variables. Then

foe PTOs can ‘install’ the protocols on foe class and each instance in memory.

With the help of the ChangerClassBuilder, part of the hierarchy schema, PTOs also simplify the addition of

instance variables. They remove the responsibility fi'om the ClassBuilder and foe rest of foe hierarchy

system from dealing with foe complexities of foe development system’s compiler, scoping rules and naming

conventions.

4.4.4 A Mechanism for Partial Template Objects
In POISE any instance of the class PartialTenplate or its subclasses, such as Property, is a PTO. The

abstract description of PartialTenç)late is:

Object subclass: PartialTemplate
instance variable names

templateName
classMahods instanceMethods classSoope instanceScope
prerequisites preclusions classesInstalledOn

instance method for installing
installOn; aClass

PartialTençilate supphes foe following abstract specification of a PTO:

Ability to insert methods. — A PTO associates a dictionary of instanceMethods and a dictionary of

classMethods. These mefoods are “partially compiled” (see §4.4.5) for extra portability and efficient

compilation into any class installing foe PTO. The instanceMethods contribute behaviours of instances, while

classMethods contribute behaviours to foe Polymer class itself

129

Otgect -Oriented Software ReptaMntttxm of Polymer Materiab Infinmatkm m Engineermg Deaign

Protected scope o f variable r^erence, local to the set o f inserted methods. — instanceScope and

classScope express variable definitions accessible to tiie instance methods and class metiiods (respectively).

A class-installing the PTO adds these variables as necessary. The scopes comprise (i) instance variables

visible to all methods affecting the instances of the class, (ii) community-pool variables visible to all

instanc^ethods and classMethods of the PTO, (üi) Smalltalk global variables visible to all Smalltalk

methods generally. The community-pool variables are a local enclosing scope of the PTO behavioural

“community”. These local variable definitions are not otiierwise available to other methods of the affected

class.

A record o f all classes that the current pro has been installed. — classesInstalledO n stores this set of

classes as part of a mechanism ensuring change propagate to them when modifying the PTO.

Any given class template may install more tiian one PTO. In order to control multiple installation the

specification of PartialTengplate also incorporates the following:

Prerequisites. — These are other ptos which a class must install (or inherit) before installing the current PTO.

This attempts to provide for control over inter-module dependencies that arise if methods of tiie current PTO

call metiiods in other ptos.

Preclusions. — These are other ptos with conflicting behavioural definitions.

This specification of PTOs supports a cohesive description of the partial contents of Polymer classes. They

attempt to provide the classes tiiey affect with a well-composed character, in the sense that each set of

installed properties observes a scoping regime common to members of the set but othowise private.

4.4.5 Generating a Behaviour of a PartiaiTempiateObject
Within POISE, the Property object implements tiie PTO as part of its role. The user, using a PropertyEditor

browser, creates a new prqierty. Then a second specialised Propert^ethodBrowser browser adds

behaviours to the property. See Figure 45 for examples of the browser. Each property behaviour generates a

PartiallyConpiledMethod (pcm). In Figure 18 the schema of the process generating the PCM fi'om source

code is the subject of this section.

The schema is a modification of the procMS that compiles standard Smalltalk code. The schema foows both

compilations, with a different method activating each. A dashed line demarcates the two methods in the

initial context.

130

<5.

Object -Oriented Software ReprewoWion of Polymer Miterkh Infbnntfioii in Engineering Deaign .

The behaviour specialising the PCM compilation is mainly in the class PartCodeStream, a subclass of the

CodeStream that normal class-bound compiled methods use. The PartCodeStream class c^tures the extra

information that the PCM requires from the source.

Compiling code requires tiie text source code and a NameScope. The NameScope contains the mapping

between variable names and tiieir storage location. The NameScope is a nested structure, an extendible

ordering of the variables descriptions. The nesting allows the addition of temporary variables while

generating code. This ordoing has little effect on the compilation other than when optimising some structures

in code that do not require access to parts of the NameScope. In mœt cases, only the overall variable visibility

is of any concern.

NameScope contain two basic types of variable definitifms, which are StaticV ariables and

InstanceVariables. The StaticV ariables are typically globals. Access to globals is the same for all

methods, so will not be any different far a classless PCM. InstanceVariables are class dependent

InstanceVariables define the name and the index within instances of the class. Since a class is not known,

the PCM compiles for a PTO, and tiie PTO provides the names and indexes of valid instance variables. As long

as these variables are unique and the indexes are unicpie, the standard compila; will accept them. Later the

PCM will explicitly modify the indexes to complete tiie compilation ftir given classes.

A compiler is a translator of ‘high-level’ source code to ‘low-level’ code. It typically consists of a lexical

analyser that converts the source text into tokens, a Parser that converts the sequence of tokens into a syntax

tree, an attribute collector and distributor tiiat apply the contextual constraints of the source language, and a

code generator and optimiser that translates the syntax tree into tiie low level code®̂ . In the schema.

Figure 18, these modules of behaviour can be seen as follows. The lexical analyser is the general behaviour

of the Parser’s superclass, LexicalScanner. The specific subclass Parser describes the syntax of

Smalltalk’s one-look-ahead grammar language. Subclassing off the scanner makes the schema amenable to

other language syntax.

A sentenee in the Smalltalk language composes of a sequence of tokens called terminals. The Parser applies

rules for groiq)ing terminals with other terminals and other groups of terminals. These rules are called

production rules.

Production rules generate a ‘syntax tree’, which is a hierarchy with tiie terminals as leaves and the groups as

nodes. The simplest representation of a syntax tree is a hierarchy of terminal and non-terminal symbols for

132

Object -Oriented Softvnre RepreMutatioii of Polymer Mmtetiml: Infbrmmtion in Engineering Demign

the nodes. Each node is marked by a ‘non-terminal’ name that identifies the production rule used to produce

the node. These names convey the semantics of the sentence. Lata, they instruct the compila how to

construct the code in the output language.

The compila applies denotation semantics, which means each component of a sentoice corresponds to a

component of the language’s semantics. The syntax tree is a decomposition of the sentence into semantic

components. The production rules identify each node and tiieir corresponding semantic. The language’s

semantics are rules for constructing low-level code fi’om the components of nodes. Each node combines

simpla nodes and terminals. At each node, code combines until the compila constructs code for the whole

sentence.

With the importance of the nodes evident, it become clear why compilers often aeate elaborate syntax trees.

Each pi oductlon rule in foe Parser nuqis to a type of node. In Smalltalk, ratha than use a symbol, the Parser

aeates a message corresponding to foe production rule, and sends the message to the interfece of a

NodeBuilder object. Messages to the NodeBuilder instantiates Node objects and generates foe syntax tree. As

the Parser scans foe source code, each application of a production rule causes a cascade of message sends to

the NodeBuilder, which builds foe tree. A fta scanning and all messages to the NodeBuilder are complete,

foe Parser is left with one distinguished node, or top-node, which is the root of the syntax tree. In Figure 18,

the syntax tree is the hierarchy rooted in ProgramNode, the top-node of foe hiaarchy. More specifically, this

hierarchy composes of instance from subclasses of Node, each class distinguishing different types of node.

The NodeBuilder provides an interfiice between foe production rules of the language and the Node objects

used in the syntax tree. The Parser uses none of the node’s instance behaviours. The NodeBuilder only uses

instantiation behaviour of the Node classes. This leaves foe behaviour of Node, and its subclasses, a clean

representation fi)r the language semantics. Thaefi)re, although only syntactic information is used to genaate

foe syntax tree, it is already a semantically powerful structure.

One abstract Node subclass represents variables. This node is specialised fi)r temporary variables, arguments,

instance variables and globals. The production rules do not provide the infi)rmation to differentiate between

them. This information comes from foe variable scope, which foe class usually provides. Instead, foe PTO

provides foe initial variable declaratiois.

The parser returns foe top node of the syntax tree to the imdalying context, which then initiates checks on

the contextual validity of foe tree. Smalltalk is not a context-free grammar The choice of production rules at

133

Object-Oriented Software RepreMDttfion of Polyin«Materiib Infbnnation in Engineering Deiign

a point in a program depends on rules previously applied, eg a temporary variable must be declared before it

can be assigned a value. The requirement that a variable is declared forms part of the contextual description

at some point in the program. This ‘program-context’ description is part of the behaviour of the CodeStream

object. Since the formulation of the program-context is an important part of code generation, the CodeStre^

also gffisates code while the contextual checks are being performed by the syntax tree. So, although the

checks are initiated by underlying compiling context by passing a new CodeStream with the NameScope,

messages pass back and forth between each node and the code stream, some for checking, some for code

generation. y

Code generation is a combination of the following activities:

• Binary instructions are sequentially added to a byte array.

• Collect litCTals (objects accessible by any code: integers, characters, selectors, references to global

variables,) the code uses.

• For each inner-block the code uses the compiler generates a new CodeStream.

The inna-block is a unit of code within a protocol. An example is in Figure 14,‘ (pp 109), which contains a

handle-block and a do-block inside the main protocol. A separate CodeStream compiles each block. L ata the

code for these blocks will join the literals as attributes of the main protocol object.

In addition to these activities of the CodeStream, the PartCodeStream collects every reference made in the

byte array to an instance variable. Two kinds of instructiais in the code refer to instance variables, and they

are eifoa an accessor or an updator. The NameScope supplies the index of the instance variable, which

follows the instruction code. The PartCodeStream collects the locaticm in foe code of this index (the ‘location

in code’ in Figure 19) and associates it with foe name of foe instance variable.

A fta foe checks and foe initial pass of code generation, foe final stq> usually makes the method, a Smalltalk

protocol. The CodeStream constructs foe components of a method. It do% not presort these components in a

way the virtual machine can execute. Executing code is foe independait intention of anotha object, the

ConpiledCode. Each CodeStream makes a ConpiledCode object The CompiledCode presents the components

simply and uniformly within its own instance variables for foe virtual machine to access. For foe PTO,

PartCodeStream constructs a PartiallyConçiiedCode (pcc) (Figure 19) that is only partially of the same

type and do not execute. This object is not a subclass of ConpiledCode but it can goierate a kind of

CompiledCode when the PTC transfers protocols to a class.

134

Object -Oriented Software RepreMntation of Polymer Materiab Infbnnation in Engineering Deaign

A PCC defines a subset of CompiledCode behaviour so it can masquerade as a method in code browsers. To

this behaviour, the PCC adds its own behaviour for re-compiling foe code for a given class. This behaviour

croates a mapping between instanoe variable names of the PCC and the indexes of instance variables of the

same names in foe class. A simple recursive Class behaviour collects the ordered lists of instance variable

names defined by the class and its superclasses. The position of the names in this list provides foe correct

ordinal number of the slot in foe instances.

Location in code

Property

is -a :
PartiaiTempiateObject

Pjgfaod
d ic t io n a iy

a: P artia lly

Compiled C o d ^
is-a: Object_______

A .
a: Mutable

Compiled
Method

is -a : CompiledMethod
a: Compiled

Mettled

is -a : Compiled Code

Byte Array

is-a : Array

istanceA COPY

otlons

Code

Class
Subclusei Instance

Variable

a: Byte Array
References

is-a : Array

An InsfnnnA

Class pointer
Inst Var I
Inst Var 2 Location!

Inst Var n

Recursive
collection

Figure 19: Schema- PTO linking

Like CompiledCode, the PCC can contain inner-blocks of code with foe literals, but they too are PCC, not

CompiledCode. Each separate PCC keeps a mapping of instance variable in their local code. The PCC is

therefore a hierarchical structure. With foe literals of a root PCC (an attribute not shown in Figure 19) there

are PCCs as inner-blocks, which in turn can hold other PCCs with their literals. When a PTO installs PCC onto a

class, it sends a re-compile message with the class as an argument to each root PCC. This creates foe mapping

for the class. A copy of the local code updates for foe new indexes. The collection of literals in each PCC are

copied (the literals themselves are not copied). The re-compile message then passes to each pcc found in the

new collection of literals, which recursively pass on to their inner-blocks down the hierardiy. With the copy

135

Object -Oriented Softwtre Repietentation of Polymer Materiab infbnnation in Engineering Deaign

of litaals and modified copy of code', each inner PCC creates and returns a new CompiledBlock, the subclass

of CompiledCode representing inner-blocks of code. The exception is the first outer PCC, the root PCC,' which

generates a MutableCompiledMethod (MCM) object, a kind of CompiledMethod, and not a compiled block. '

The PCC could make a standard CompiledMethod, which is the normal kind of CompiledCode that classes

manage and code browsers manipulate. The MutableCompiledMethod adds a more efficient re-compilation

behaviour. When instance variables change, or the class moves to a new superclass, all the mefoods of the

class re-compile. A standard method re-compiles by sourcing the original text (fi-om secondary storage) and

going through parsing, syntax tree construction, and compiling. The MutableCompiledMethod, on the other

hand, keeps a reference of the PCC, which can re-compile foe method for any mapping of instance variables

by changing instance variable indexes in foe byte stream. When foe MCM receives the message to re-compile

from a class, it passes the message to foe pcc , which returns a new mcm. The class then replaces foe old MCM

with the new one.

4.5 Data Storage
Data storage is a broad research topic. The issue at hand though is object storage fi)r POISE. The requirements

in §3.8.5 summarise foe issues. Attempts to find a commercial system satisfying these recjuirements fiiiled.

This is due to two fiictors; first, Smalltalk is a particularly expressive object-rented language, suppcating

large and complex object relations. A database supporting £q>plications in Smalltalk requires an equally

expressive data descn-ipticm language. Secxmdly, many OODBMS compete with RDBMS. Consequently, their

design emphasis is on data retrieval not data modelling, so foe expressiveness of foe data description

languages is secondary to the access speed associated wifo the data manipulation language. The development

of POISE necessitated research into foe field of database d^ign, though with foe very specific goals specified

in §3.8.5.

The object storage fia POISE is an issue of persistence fia portable objects in foe Smalltalk environment.

Research into persistence of Smalltalk Objects is a broad topic in itself with contemporary work often

involving implementing a new Smalltalk kernel̂ ®. These persistent objects will not port between different

Smalltalk sessions and a choice of Smalltalk kernel had already been made.

An altonative approach implements a storage mechanism within Smalltalk. Smalltalk code manipulates an

external file structure that is portable .between sessions. Since foe mechanism is in Smalltalk code, foe

mechanisms benefits firom Sm alltalk as foe data description language. Any data management POISE needs can

136

(%ject -Oriented Software Repretcntation of Polymer Materiab Information in Engineering Deaign

be added later. The search was for a storage mechanism tiiat satisfies most of poise’s data storage

requirements.

Within the development œvironment of ObjectWorks 4.0, thae is an Object protocol for representing

instances on a byte stream. This protocol provides a fimdamental record fiomat fia genoal representation of

objects similar to the structure mentioned in §4.1.1. It does not provide any management of the

representation. Applications storing objects in records even need to create the medium for the record (the

disk file) and remember where the record is in that medium. In contrast, the commercial class library ISAM

provides for the management of object storage. ISAM is one of many task specific class libraries

commercially available fia enhancing the productivity of Smalltalk development.

4.5.1 Attempt 1: ISAM
Two different commercial class libraries, or ‘Toolboxes’, supporting storage mechanisms were examined

The first commercial mechanism was the ISAM—Indexed Sequential Access Mechanism—Toolbox*^. The

toolbox focuses on managemoit of objects stored in records on a file. The classes in foe toolbox define a

technique fia creating and accessing records programmable from Smalltalk. The main class defines a set of

access protocols for collecting and iterating forough records in sequœce and by index on attribute, so ISAM is

both indexed and sequential access. For example, grades could be sequenced by polymer femily keeping

similar grades together and indexed by trade name fiar direct access.

In order to store and retrieve an object in a file, stored as a record, ISAM requires them to abide by a type

specification. All subclasses ISAMrecord class inherit this type specification. Typically, only objects

inheriting firom ISAMrecord are stored. The type specification includes a specification fia foe structure of

each record as a template aggregating itons. An item is an attribute that is an instance inheriting fi’om foe

ISAMitem class. Subclasses of ISAMitem represent basic Smalltalk objects, such as text and numbers, in

binary form.

The ISAM representation is like a hierarchical data model. The class hierarchy of iSAMrecords form a

hierarchy of structural description of different records. The CODASYL network model (§2.3.1) extends foe

hierarchical data model with many to one relaticms represented by pointers between records. Likewise, foe

first experiment in POISE extends foe expressiveness of ISAMrocords with a pointer item fia representing

complex structures.

ISAM uses Smalltalk as a data description language but each description is explicit. It stores only objects

inheriting fi’om ISAMrecord and as a type of ISAM object they explicitly define their behaviour of logical

137

Otject -Orioited Softwue Reprewmtedon of Polymer Mmlerimh Inftmnetiom in Engineering D e s ^

representation, ie tiie attributes representing the state of the object. Each subclass of ISAMrecord transforms

instances into a set of attributes and visa versa. The inheritance between subclasses forms the hierarchical

relationship between records and is the only relation available to ISAM. The addition of the pointer-item

allowed other orthogonal relations, but they too must relate to an ISAMrecord. Although ISAM uses

Smalltalk as a data definition language, tiie specification of behaviour or protocols of the ISAMrecord define

the syntax and limit the semantics of records. As will be seen, repr^enting the fiill semantics of Smalltalk

addresses many issues beyond simply the network of relations between objects.

ISAM semantics are those of fixed aggregations of attributes and they are less expressive than the binary

relational file discussed. ISAM is inoqiable of representing arbitrarily complex data structures on a file, let

alone supporting diange to those structures. Storing the representations in POISE needs comply data

representation and transparent access §3.8, so the ISAM toolbox was extended.

In principle, by extending ISAM to include pointa-items, a general mechanism is possible for encoding on

disk specialised subclass of ISAMrecords, provided each instance variable in the subclass was a type of

ISAMrecord or ISAMitem. The network of inter-related records on disk directly model the inter-relationships

of Smalltalk objects in memory. These pointas though introduce a numba of complexities, which will be

addressed lata. ‘Circular references’ are a particular problem if objects are not idoitified as already stored.

ISAM does not define an independent portable data store. The data model, the subclass defining the structure

of the records and the semantics of the objects into which the records transftmn, is a property of the

application, not the data store. Specific £q>plications specify items and record types explicitly, but thoe

specifications are ;mrt of the application, and not integrated into the data stae. Data stores can port only

between {applications that share common cl{iss definitions.

ISAM provides both an ordaed access and a random (uxxss interfiice to stored objects. The interfece is a

characteristic of the data manipulation isam supports. Before an application manipulates an object on the data

store, it must access the object via the interfiice. This distinguishes the manipulation of objects on ISAM firom

the munipiilfltion of objects in memory. The access requires the application désigna to identify the pasistent

objects prima-fecie, to cata jfor the intafece protocols. A stored object can receive a message, only a fta

ISAM retrieves the object The task of telling ISAM to retrieve the object fiills on all classes of object, which

send messages to ISAMrecords. A fta processing the message, the senders must also tell ISAM to save the

object.

138

(%ject -Oriented Software RepreMntation of Polymer Materiab Information in Engineering Deaign

‘Transparent access’ is the process of data manipulation of stored objects that does not require explicit

interaction with the storage management Accessing ISAM is not transparent An initial attempt at

transparency uses an Enhancer as an object proxy responsible for communicating with foe ISAM storage

management

4.5.2 The Role of Database Proxies
Just as a proxy vote is handled by a third party as though the voters had voted foemselves, the database proxy

receives messages in place of an object stored on the database. As a subclass of Enhancer, the proxy is a

small primary-memory resident object and all messages evoke its doesNotUnderstand: protocol, which

creates a primary memory representation of foe persistent object and passes it foe original message. The

proxy communicates with the object storage manager in order to achieve this task.

Objects can only receive messages from foe other memory-resident object that reference them, ie their

referencers. Therefiae, proxies exist only for stored objects with memory resident referencers. In

consequence;

• There can be many more objects on foe database referenced by other objects on foe database for

which there are no proxies.

• Proxies consume less space than foe database objects they represent and so do not compromise foe

purpose of the database to achieve primary-memory economy.

Evoking only the one behaviour, regardless of the message is a trait of the Enhancer. The employment of

Enhancer as a proxy—usually one per staed object with a memory resident referencer—is transparent to foe

referencer, and hence the qjplication in primary memory, which sends foe messages. Stored objects ^)pear to

receive messages like any otha object.

Upon receiving a message, the proxy requ%ts from foe database management system, a memory resident

representation of the stored object. The proxy then passes the message on to fois object. Upon completion of

the message, the proxy requests foe database to store foe curroit state of foe object Both foe importing and

exporting of the object to foe object manager occurs transparently with respect to the message sender.

The structure of an object in primary memory is as an aggregation of object relations, see Figure 11. In

accord with other network models, an object on secondary memory is a record of pointers to other records.

When reading an object into memoy, each of foe objects in the aggregation previously without a memory

resident referencer now have one; foe object aggregating foose relations is a memory résidait referenca. By

foe above rule, a proxy represents each relation in primary memory. An inta-record pointa on foe data store

139

Object -Oriented Software Reprctentition of Polymer Mmteiimh hifbrmetron in Engineering Deeign

represents an Enhancer as a future proxy. This finding simplified the problem of object retrieval, and led to a

re-write of Tigris™®* and BOSS™*®, which were parts of foe second data-store examined

4.5.3 Attempt 2: Tigris and BOSS
ISAM still had foe problem of requiring an explicit declaration the record structure fiir each type of object it

stored. Tigris staes objects without need for an explicit declaration of object structure. Tigris is an indexed

access mechanism wifo general object storage capabilities, and in conjunction wifo transparency through

proxies, initially seemed to satisfy poise’s storage requirements. Unfiotunately, problems were found wifo

foe identity of objects retrieved.

The strmgfo of the Tigris interfece is its similarity to a Smalltalk Dictionary. Natural language dictionaries

sorts words by character orda for consistent access and associates foe words with their meaning. A Smalltalk

Dictionary is a collection of object pairs, one sorted for access with foe ofoa object associated for retrieval.

Tigris stores each object against a unique name used for retrieving foe stored object.

Transparent access to Tigris uses foe same mechanism, the Enhancer as a database proxy, which extended

ISAM. The Enhancer keeps the key for looking up foe object in foe Tigris database. When the Enhancer

receives a message it sends foe key to the database to retrieve the object. The message then passes to foe

object returned.

Unfortunately, foe Tigris behaviour was found to differ fi’om foe behaviour of a true Smalltalk Dictionary.

The object a Tigris collection retrieves from may or may not be a copy. A copy is acceptable if the original

object no longer exists within foe Smalltalk environment (ie it has been garbage collected, see §4.5.8). If the

original object exists, it is possible to test for foe identity difference between the original and foe copy. A true

dictionary stores foe original and retrieves the original, so no difference is detectable.

Tigris TTiflinfaina a small cache fia efficiency. If an object is in foe cache, a subsequent request for foe same

object produce the same object. So, in some cases, a copy is not generated depending on the number of

different objects requested fi’om Tigris and foe size of foe cache.

Copies have an adverse effect on many to one relatims, converting relations to many-to-many-copies. If two

different refiaencers both request an object fi’om Tigris they may or may not reference diffiaent objects,

depending on the cache. If they refisrence the same object, the behaviour of one referencer can influence the

behaviour of the otha. Othowise, their behaviours are mutually exclusive. Consequently, behaviours differ

140

Object -Oriented Softwtie Repreieotition of Polymer Miteriab Information in Engineermg Deiign

depending on the activity in foe Tigris cache! In addition, writing one copy will over-write foe other, if using

the same key name to foe dictionary, resulting in possible information loss.

Two parts compose the Tigris toolbox. An outer shell provides the dictionary interfece and object cache. The

inner part is a version of a public domain toolbox called BOSS*®, Binary Object Storage System.

BOSS receives an object from the interfece. As maitioned, each object can be viewed as a record of foe other

objects it references. From any given ‘root’ object, BOSS successfiilly traces foe network of object relaticms,

identifies circularity, and generates a linear sequence of records. A byte stream represents this sequence of

records.

BOSS stores whole object compositicms and reads whole object compositions. Within each compositicm BOSS

recognises and assigns to each object a unique identifier. These identify the relaticms between the objects cm

the stream. BOSS handles multiple references within a composition correctly.

Once a record of an object composition is on the stream, Tigris orders the BOSS to forget all assignments of

object identifiers. If BOSS remembers these assignments, Smalltalk doa not garbage collect the original

objects and release primary memory. Ccmsequently, Tigris does not maintain relaticmships between different

compositions or between compositicms and primary memory except to the root object, which Tigris explicitly

asscmiates in its chcticmary interfece.

Tigris stores each object as an independent compœiticmal unit If foe unit is not independait if objects

elsewhere refer to parts of the composition, then Tigris will not maintain foe relationship. The original part

will remain in memory and whai BOSS reads the compositicm back into memory, it will return an identifiable

copy. If the references elsewhere are also saved to Tigris, then BOSS will recmrd a secxmd copy of the

cxmimcm part

The proxy, providing the transparaît access to Tigris, is also a potential solution for maintaining object

identity between different object compositicms within BOSS. The proxy already maintains object identity for

the compositicms by keeping a single reference between a proxy for each composition and Tigris. The proxy

is the only object that intoacts with Tigris, so it does not m atta if Tigris returns foe object from the cache or

from disk, cmly cme copy is ever in memory. The Enhancer logic ensures a secxmd referencer cannot ever

hold cmto an ‘old’ copy. By applying the same principle to a fina granularity, from object compositicm to

individual objects, a similar solution is found for BOSS.

141

Otgect -Oriented Software Rcjneientatioii of Polymer Materiab bftmnitioii in Engineering Design

4.5.4 The Use of Proxies to Maintain Object Identity: an Application View
Multiple objects referencing one object is a many-to-one relationship. It is quite difiEerent to multiple copies

of one-to-one relationships. If each referencer held a copy of the object, and one cc^y changes, the other

referencers would continue to hold obsolete versions. Mult^le references are generally dependent on the

changing state of the common object.

However, using Enhancers as database proxies can partially solve the problem. When saving an object with

multiple references, after copying the object to a record, rq)lace it wife a new Enhancer wife fee £q)propriate

key. Replacing an existing object wife a new object without referencers causes Smalltalk to garbage collect

fee original object and therefore preventing a second memory copy from existing. All fee saved object’s

referencers now access fee same Enhancer. If any of them are feoi subsequently stored, BOSS will discover

fee Enhancer as part of their composition and can identify fee part already recorded on file. The Enhancer

m aintains a unique 1:1 relationship to fee stored object. This relationship holds regardless of fee stored

object’s memory state. Whoi reading a composition, Tigris remembers fee Enhancers it generates. Before

generating any new Enhancer, Tigris checks fee Enhancers already in memory. If a second composition

attempts to read fee same Enhancers a second time, Tigris substitutes fee existing Enhancers in fee second

composition, feus preventing copies of fee Enhancer to fee same object.

By securing uniqueness of fee proxy, if an object changes state, all references both on and off fee database,

can locate fee new states through fee key kept by fee proxy. The behaviour of fee proxy reflects fee change

and all fee referencers will reflect fee change in their own behaviour.

4.5.5 Attempts.' The WorkBase
Although fee majority of objects are uniquely owned (ie in one-to-many relations), any object is potoitially a

future member of a many to one relation. At fee point of storage there is no guarantee an object will not

multiply share in fee future. A provision fi)r a general object store must preserve fee identity of all objects

stored. Changing fee BOSS sj^tan to maintain identity of every object throughout fee data store requires a

major change to fee Tigris-BOSS model. Instead, aspects of fee BOSS system were used in a new custom-built

database called fee WorkBase. The WorkBase takes advantage of fee proxy concept, introduced to give fee

store transparency, for maintaining object identity. Who-eas POISE applies fee proxy concept to all databases,

fee management of proxies fr)r object identity is particular feature of fee WorkBase.

142

Object -Oriented Softwcte Representation ofPolytner Materiab Infbimation in Engineering Design

The object-orioitation and management of database proxies is an original feature the WorkBase contributes to

object storage systems. From an applications viewpoint of data base storage, the key advantages of the

Enhancer technique is as a proxy for stored objects:

• The proxy separates all data management activities from the persistent objects. The management of

the object on secondary storage is not a property of fee object The objects class does not define fee

behaviour, and objects of fee same class may either be persistent or not

• Database access is transparent to fee applications using fee object Code manipulating objects does

not specify fee storage conditions of fee objects it is manipulating. Changing fee management of an

object from primary memory management to a proxy feat accesses secondary storage is transparent

to fee code manipulating fee object. Smalltalk code %q)pears to handle native objects in fee same way,

irrespective of vfeefeCT they are memory-resident or a proxy retrieves them secretly.

The data management activities—fee data-retrieval strategy, object caching, object updating, housekeeping

of fee store, etc.—are functions of a database’s storage model. The proxy aids an application’s interaction

wife fee database but do% not improve fee storage model yet. The WorkBase storage model uses fee proxies

in fee design of its storage model to solve many difficult problems feat object data structures introduce. It

helps in maintaining object identity, in handling circularity and in caching.

In fee storage model of Smalltalk, §4.1.1, objects record relationships by reference wife other composing

objects. The record is physically an ordering of object IDs. The storage model of a WorkBase is fee same. The

objectID in Figure 11, pp. 98, is a different number but fee WorkBase uses its objectID in fee same way.

Records representing an object are a list of object IDs. The WorkBase finds fee storage location of any object

from fee objectID. Proxies reference persistent objects by remembering fee objectID.

4.5.6 The Use of Proxies to Maintain Object Identity: a Database View
Multiple referencers can exist outside fee database, and these hold a common proxy. Multiple referencers can

also exist within fee database. If fee correct data model to be built >^en reading a referencer, it must hold fee

same proxy as all other referencers in primary memory, A^hetho" feat proxy is representing an object in

memory or not. That same proxy will guarantee fee behaviour, ^ i c h it replaces, is common to all sharing

referencers.

Consider two database objects feat both reference a common third object. Whei fee database reads fee first

object into primary memory it creates a proxy feat references the common object. When fee database reads

fee second object, it cannot create a second proxy to fee common object, since multiple proxies will create

copies of fee common object. How does fee database find out whether a proxy already exists in memory for

a given database reference? This question needs to be answered for all references fee database creates vfeoi

143

Object -Oriented Softwire Representition of Polymer Mmterimh bifbnnitmi in Engineering Deeign

reading an object into primary memory. For the majority of cases, there will not be any other object sharing

the reference, but every reference is potentially shared. ' '

The WorkBase keeps a record of every proxy in memory. Each request to reference a database object the

WorkBase searches the records to see if the proxy already exists.

The WorkBaseMapping is responsible for finding existing proxies. Based on a hashed dictionary, the

WorkBaseMapping keeps an index of proxies against objectID.

When reading an object into memory, the WorkBase,checks each objectID against the WorkBaseMapping.

Finding the objectID also locates, by association, the current proxy for the object in primary memory,

otherwise the WorkBase creates a new proxy. Other objects on the data base may share the new proxy, so the

WorkBaseMapping adds the objectID associated with the new proxy.

Creating a new proxy does not imply that fee WorkBase reads fee persistent object, Wiich fee proxy

references, into primary memory. Only if fee proxy receives a message will fee proxy read fee object into

primary memory. The referencing object, fee object currently being read, must send a message to fee proxy.

For fee majority of fee new proxies, this will not hfqypen. The majority of fee proxies in fee

WorkBaseMapping, and hence in memory, are passive. They represent a link to an object on fee WorkBase that

fee patten of message passing has yet to cross.

When repeatedly accessing an object, fee WorkBaseMapping scfeema provides an efficiency benefit. Once a

passive proxy receives a message and fee object fee proxy represents is in primary memory, fee proxy holds

fee copy of fee object in primary memory. The proxy is then said to be active. Active proxies do not read

fi"om secondary storage but use fee memory copy for further messages and so respond much fiister. Locating

an active proxy in fee WorkBaseMapping is fee same ^ for passive proxies. A passive proxy reads fi-om

secondary storage, whereas a message passing to fee active proxy uses its ^hnary memory copy.

A special case of active proxies is vfeoi referoicing classes. Every object references a class to provide fee

data description and behaviour fi)r objects. Like all objects, objectID (specifically called classIDs) identify

fee memory resident classes. The WorkBaseMapping index them in fee same way as other shared objects. The

WorkBase finds classes like any other object. The object associated wife fee objectID is not a proxy. The

p rim itiv e intoaction of instantiation wife fee class structure prevents fee use of a proxy. Instead, fee

association is wife either fee class or an object representing an obsolete version of a class. Class versions are

described later, §4.5.11.2. The WorkBaseMapping cross reference minimises fee retrieval of classes for

144

Object -Oriented SoAwmre Repiesentttioii of Polymer Meteriali Infbnnition in Engineering Design

representing objects on the database, and also manages versions of data definition between objects on storage

and in memory.

Pioüv

Figure 20: Scanning circularities
4.5.7 Object Circularity
Object circularity is a special form of multiple refisrences. An exanq)le is given in Figure 20. Object

circularity originally arises fi*om practical difficulties with the deepCopy concept within Smalltalk. A

deepCopy is a recursive copy of an object and all its composite objects. A deepCopy attempts to make a copy

of an object that is totally independent of the state of the original, down to tiie finest detail. Usually applied to

strictly hierarchical compositions, the result is a copy of all members of the hierarchy. A strictly hiCTarchical

composition is one whae each ‘higher’ object composes of ‘lower’ objects. Problems occur ^ e n an object

is not a strict hierarchical composition. Since Smalltalk does not guarantee such structures, it is possible for a

lower component object to refer to a higher object creating a loop, or circularity. When deep copying, the

higher object is already copied, and unless the recursive copying is coded otherwise, the copy of the lower

object will request a recursive copy of the highe object. A procedural loop forms, ^\hich runs infinitely— or

at least until memory is no longer available.

A sim ilar difficulty exists in the BOSS system. BOSS reads a vshole object composition at a time so creating a

copy sim ilar to the deepCopy, but differs in the medium the original is on in secondary storage. Circular

references could exist and an extensive mechanism is necessary for identifying the condition and structuring

the composition correctly.

The general mechanism using proxies (§4.5.6) manages all shared references, not just circular ones. This

mechanism manages object identities, and it has made the majority of the BOSS code dealing with circularity

145

Otqect-Oriented Software R qracntition of Polymer Miteriib Infbimation in Engineering D e a ^

redundant Instead, the database management was re-developed, adapting ideas from BOSS, to create the

WorkBase.

An object read from the data store often refers to other objects on the data store. Reading those objects and

the objects they reference ad irjimtum results in large and proliferate transactions, in comparison to other

data models^. Instead, the WorkBase substitutes proxies for the object references (except numbers and

characters and some other special cases), so it only reads the object receiving the messages. Therefijre,

proxies need only read the next object, never the whole composition.

4.5.8 Proxies and Memory Management
The proxy’s purpose in the architectural design of POISE is to mediate indirect database references at the

interfrice between Smalltalk jqjplications and persistent data. A further development of this design is to

augment the definition of proxies with a control strategy for fine-tuning the lifetimes of resident object

representations. Effectively, this implements rules of permanent versus temporary memory residence.

The underlying memory-reclamaticn controller of the application language monitors the lifetime of objects.

Generally, an object dies \riien there are no otiier objects referencing it In Smalltalk, this controller is a

Garbage Collection Manager^*.

The primary memory life of a persistent object dies to free memray. The Garbage Collection Manager role

extends to keeping track of active proxies occupying primary memory. The manage initiates the removal of

old, active proxies by requiring that they ‘commit’ fee memory-resident data to fee data storage mechanism.

Both fee number of message-sends and a FIFO (First In First Out) queue detamine fee expiry choice, or age,

of active proxies. Overall, fee manager does not fi)rce such a decision until available primary memory runs

below a threshold. The manager determines fee length of fee FIFO queue according to fee platfi)rm’s main

memory characteristics, and dynamically adjusts it \^ e n necessary.

The WorkBaseCache manages fee FIFO queue. It provides tuneable parameters for deciding fee number of

active proxies to com mit If they commit too eagerly, it causes run-time penalties. At fee extreme, it commits

immediately after fee proxy services a message. Objects that receive messages many times within an

enclosing context^^ will lose fee benefits of caching between messages.

The lifetime starts \feenever a process sends a message to fee proxy. A passive proxy will become active or

an active proxy will reset its lifetime. Proxies accessed often record a short lifetime, i&hereas proxies that are

not will quickly grow old in primary memory and return to secondary storage.

146

Object -Oriented Softwne Representation of Polymer Materials Information in Engineering Design

The reason for committing objects is to release main memory, not for transaction integrity. At present,

WorkBaseCache implements the policy of committing the oldest objects i\henever the Garbage Collection

Manager notifies a WorkBase that memory is running low. A complementary fecility — implemented as a

Smalltalk background process — utilises spare processor time to keep occurrences of WorkBase objects down

to a maximum number. This then lessens the effect of system feilure causing loss of transaction changes.

4.5.9 Implementation of the Database Proxy
The proxy provides a service to any object requiring persistence. The proxy behaviour is inappropriate under

Object because not all objects will pCTsist and persistence is not a behaviour of an object. Persistence is a

service the language provides to objects, just as the ability for objects to receive messages is a service of the

language. An alternative to the proxy would be to re-write the virtual machine so objectlds could point to

representations on a file in fee same way as feey point to representations in object memory.

The database proxy is fee simplest of fee Enhancers in POISE. Specifically, the Enhancer implementation of

fee proxy is a subclass called fee WorkBaseEnhancer. Each proxy has two exclusive states, either active or

passive. The behaviour of fee proxy is significantly different, requiring a diange in protocol depending on fee

state. When active, messages pass directly to a memory résidait persistent object, but must r^ e t its lifetime.

The WorkBaseCache can also direct fee active proxy to commit changes, and become a passive proxy. The

passive proxy intaucts wife fee WorkBase and changes to fee active state. Normally two different classes of

object define differences in protocol. A proxy could reference different classes of instances to change state.

The different instances would provide fee differences in service described. Two objects would construct each

proxy wife a proxy interfece and an associated object for fee different management An alternative was found

vshich does not require using memory for extra objects. Smalltalk provides a primitive for changing fee class

of an object. A proxy changes its class and thereby changes fee protocols it inherits.

Thae are two different subclasses of fee WorkBaseEnhancer. One is fee ActiveWorkBaseEnhancer vihen fee

proxy is active and fee ofea is fee PassiveWorkBaseEnhancer. When fee PassiveWorkBaseEnhancer

receives a message, it requests fi'om fee WorkBase a memory resident copy of fee object on file and changes

itself to an ActiveWorkBaseEnhancer to service fee message. The ActiveWorkBaseEnhancer records fee time

it receives fee message feen passes fee message to fee pasistent object. The active proxy is part of a cache

system that uses fee last access time to determine vfeich proxies to commit to disk, so releasing primary

memory. Whoi committing, fee proxy passes fee hidden object to fee WorkBase, Wiich checks if fee hiddoi

object differs fi'om fee record on file and updates it accordingly. The active proxy feen changes to a passive

147

Object -Oriented Software Repreaentation of Polymer Materiab Infbimation m Engineering Deaiga

proxy. Since the passive proxy no Icnga keeps record of the memory resident object and the active proxy

was the only referencer, Smalltalk garbage collects the hidden object and releases memory.

4.5.10 File Representation: Adaptations from BOSS
BOSS represents objects in byte arrays. Typically, the arrays of bytes compose a sequence of records on a disk

file. Each array starts with an identifying signature. The objects on the file can always be found by searching

for the signatures. Normally the byte cmmt from the start of the file locates the objects. The signatures help

overcome comçtian, an event common in a developing system.

Bytes support 256 different states and grouping the bytes into sets of four gives 2̂ ̂ states. Each of these

states in an objectID uniquely identifies a different object. This is a finite number, \diich limits the number

of objects a WorkBase represents. BOSS groups pairs of bytes, as fee objectlDs are only unique within each

object record.

After fee signature, fee WorkBase starts fee object record wife fee object’s own objectID. There is a key

from objectID number to fee location in fee file. If ever this key is corrupt, fee WorkBase can iterate through

objects in fee file by locating signatures and re-constructing fee key.

The remaining representation is like fee representation in Smalltalk primary memory (§4.1.1). Each referaice

is an objectID, starting wife fee class of the object or classID. Like fee primary memory model, characters

and integers have special reforenctô that are uniquely encoded to idoitify the character or integer without

fiirfea reference. Consequently, numbers and characters do not require proxies.

BOSS differs from fee WorkBase in fee structure of its records. A record contains many objects, each

contributing to a composition. After representing one object, BOSS immediately represents fee next until it

completes fee \feole composition. The WorkBase puts each of these objects in their own record since any one

may be shared in fee future. The consequence is a need for more object IDs and fee increase from 2-byte

representation of object IDs to 4-bytcâ.

The storage model is a relatively direct extension of fee Smalltalk intonal primary-memory representation

policy. The internal primary-memory representation derives from fee format in fee class definition of stored

instance variable. Trans-migrating fee class definition from fee Smalltalk environment into fee database is

important in automating object-storage.

148

Object -Oriented Software RepreMntation of Polymer Materiab bfinmation in Engineering Detign

4.5.11 Storing Class Information
The storage model discussed so fer cf^tures only the relationships between instances. This is an incomplete

description of an object as it inherits protocols from its class, Wiidi defines the semantics of each object.

4.5.11.1 Requirements for class data definition storage
In a class-based inheritance language, the tenqilates classes supply the data definition of instances. The

retrieval of stored instances also require sufficient template information frir interpreting the stored structure.

A class name is sufficient infrirmation to find a class in a Smalltalk ^iplication and hence the class definition

with a template and protocols. This is fine if class data definitions are static, but POISE provides for

evolutionary modification of domain-modelling classes, so classes are not static. The template in monory

may no Icmger match the structures used in storage.

Maintaining the behavioural integrity of aU objects inheriting from a class throughout its evolution requires

much more representation than simply the name of the class. The class name rqiresentation is the simplest

object specification using an application-based class, and it provides the least integrity. Complete integrity is

possible with a data-based class. Data-based classes completely represent both protocols and structure on the

database and re-construct the class in primary memory on demand.

Initially the WorkBase only considers objects inheriting from application based classes. These are simpler and

fester to retrieve but the class name alone provides insufficient integrity. To entertain evolutionary class

descriptions, the WorkBase supplements the class specification with a version template.

The name of an application-based class is an insufficient representation for an evolving class. When a class

changes its structure, instances in primary memory immediately coerce to the new structure Awhile both the

new and old structure are known. The instances in secondary storage remain unchanged. The WorkBase needs

the information about the old structure vhen it encounters t h ^ obsolete instances. Their data structure

differs from the current class structure. The order of object ID relations in the record depends on the structure

of the class vfeen saved and the order can have no correlation with the current class structure. Without a valid

class template, the ordering of objectID relations is lost, and with it the semantics of records stored on the

database.

The version template provide integrity, or more correctly a consistency between the behaviour of instances

in memory and the stored instances of the same application-based class name. The WorkBase coerces stored

objects to the application’s class structure. The WorkBase stores a version template for each class of any

stored instance, vvhich encodes:

149

Object -Oriented Softwtie Repietentatioii of Polymer Meteriab Information in Engineering Design

• The class’s name.

• The class’s format number.

• A sequence of names of all instance variables defined and inherited.

The version template is only a partial description of the class. For it to be of any use the class’s storage name

must match the name of a class currently in the ^>plication. The format memorises the size of the object on

the WorkBase. The instance variable names relate fee stwed object wife its content, fee objectlDs in fee

record. If names in fee list match names in fee application class specification, fee stored object adopts fee

semantics for fee name in fee class.

If a class has not evolved, feen fee order and names of instance variables is fee same in fee class template and

fee class specification in memory. The records on stcffe ordo* fee relations fee same as new instances and a

simple transcription of information from fee record to a new instance re-creates fee stored object in primary

memory.

If the data structure of the named class changes feen this causes fee addition, removal and change in

sequence of named instance variables. A difference means fee records on fee store are old versions

belonging to an obsolete class definition. Instance variables common between fee version template and fee

current class specification can map data from fee obsolete object on fee database to a current object in

memory on retrieval. The stored object is feen correctly consistent in behaviour wife fee current class

specification. Since this may not have been fee intended behaviour of a stored object, fee integrity may still

be in question.

4.5.11.2 Version management of evolving data definitions
When encountering an instance of an old version fi)r fee first time, fee WorkBase creates ClassVersion object

and records it in fee WBMapping under fee old class’s classID. The WorkBase gives fee current class a new

classID as soon as it saves a new instance to distinguish it from old versions. New instances map to fee class

in fee WBMapping and furfeff encountos wife fee old version immediately map to fee ClassVersion object.

The ClassVersion object and Class are polymorphic wife respect to protocol for creating new current

instances from WorkBase records. On instantiation a ClassVersion object compare fee given old class

definition wife fee current definition and malccs a map between instance variable names. The ClassVersion

keeps a reference to fee current version of fee class in memory. Wife this inframation, it can generate any

curroit instance frmn fee obsolete WorkBace record.

150

Object -Oriented Softwne Representation of Polymer Materiab Infbimation in Engineering Design

The WorkBase represents all classes by a record containing the version template, even the curroit classes.

They therefore have objectlDs associated with them or, more specifically, classIDs. When the WorkBase

reads an object of the class for the first time, it reads the version template first As with all objects the

database reads, the WorkBaseMapping makes a reference. If the class of the stored object is the same version

as currently in memory, the WorkBaseMapping keeps a cross-reference between the classID and the memory

resident class. If the class is an old versicm, it keeps a cross-reference between the classID and the

ClassVersion. The WorkBase will use the object the WorkBaseMapping associates with the classID to

generate instances fi'om fee record.

Whenever a class changes, Smalltalk notifies WorkBases through a ‘dependency’ link (a dictionary associated

relation as opposed to an instance variable). The WorkBase removes fee association between classID and fee

changed class from fee WorkBaseMapping, because that classID no longa designates fee current class

version. If fee WorkBase subsequently writes an instance of this latest class version, it will treat fee instance

fee same as if fee class had never been written to fee WorkBase before. Hence, it writes a new version-

template and assigns a new classID for fee class.

Consequently, a WorkBace may hold multiple versions of fee same class wife a distinct version template and

unique classIP representing each version. The ClassVersion object performs fee translation

9 From the instance variables, fee stored version template describes fee ordering in the arrays of stored

objects:

• ' To a fresh instance of fee current ^plication’s class, matching whae fee descriptions are similar.

As each version template has a unique classID, it creates a unique ClassVersion instance to poform fee

conversion of instances that refer to that version template.

4.5.11.3 Data migration of instances
An accidental consequence of fee ClassVersion management is fee longevity of named instance variables.

The removal and addition of fee same instance variable leads to loss of data in primary memory, §4.1.2,4.4.2.

This data survives in persistait objects on secondary memory and fee ClassVersion can correctly return fee

data on return of fee instance variable.

Data migrates from fee record on file to a new instance of a named application class. In most cases, fee

WorkBase finds fee application-based class matching fee classID in fee record is currait. In this case, fee

migration is simple. The record, an ordering of object IDs, migrates to an array of fee same orda containing

PassiveWorkBaseEnhancers, wife fee corresponding objectlDs. The WorkBase feen coerces fee array to fee

151

Object -Oriented Software RepreMntation of Polymer Mateiiali Information in Engineering Deaign

named class by the changeClassToThatOf : primitive method. This changes the classID of the array in

memory to that of the named class.

If the record is obsolete then, instead of the jqiplicatico-based class, the WorkBase finds a ClassVersion. The

ClassVersion matches the named instance variable in the version template with those in the current

representation and associates the names wife fee currait index. Using fee name-index associations, fee

ClassVersion translates fi-om an ‘old instance index’ to ‘new instance index’, (equivalent to a relational

projection). The rest of fee process is fee same as current versions, but fee process re-ordos fee proxies in fee

array according to fee translation. This translation is precisely what happens to instances in memory during

schema evolution §4.4.

4.5.11.4 Limitations of application inherited classes
The application-based classes are still fee only repository of protocols defining fee semantics of instance

variables. This is fine if there is only one application. Problems occur if thae is more than one Smalltalk

session A\hae fee application-based classes in each differ. Since fee WorkBase does not distinguish classes of

fee same name in different applications thae is fee potential far semantic differences.

Relying on fee definition of classes within fee application can cause behavioural disaepancies in pasistent

objects in a common data store, accessed by different applications. This can breach fee encapsulation of fee

stored objects. The greatrat risk is if one application pamits a state in fee object not acceptable to fee

behaviours in anotha application. Typically, one application’s behaviour assigns a type of object to a named

relation feat ofea applications do not permit This is possible since alfeough fee two applications must both

have classes that agree on fee data structure of fee objects, thae is no agreement on fee method code feat

accesses and changes fee data in fee structure.

Inheriting behaviours fi-om application-based classes is not satisfiictory for a distributed system vfeae

applications could access fee data structures incorrectly. The WorkBase does not provide any means of

ensuring correct, consistent access. An alternative is to store a class completely on fee database that defines

fee complete behaviour of fee objects stored. Complete storage of a class is more in line wife fee object

representation of fully-fledged OODBMS.

4.5.11.5 Requirements and limitations of behaviour storage
A notable example of OODBMS that stores fee complete class behaviour is within fee architecture of

Gemstone 2 .l“ . Gemstone runs an object managa on a s a v a machine. It executes services (in a custom

language, OPAL) remotely in fee serva, iq)on request by an ^iplication (eg in Smalltalk) running on a client

152

Object -Oriented Software RepreMntation of Polymer Materiab Infbnnation in Engineering Deaign

machine. In contrast, the WorkBase strategy aims to esc^e the need of a programmer or end-user to establish

Airiiether a computation occurs as part of an application or part of a remote object manager. A research

attempt involving this same goal was the Rekursiv project^^ into producing a seamlessly integrated object

memory and secondary data storage, by developing special hardware. In the absence of a ready hardware

solution, POISE can execute mrasage-sends to an object only in the main memory occupied by the application,

since the application contains the appropriate class manager and its the compiled code of its methods. From

this follows the pragmatic language design decision to manage only structural-definitions of instances as the

main data managonent task.

The WorkBase is not, essentially, a computational vehicle; it does not provide computation in addition to that

with a Smalltalk application. Nevertheless, it provides a storage format for byte-compiled Smalltalk code,

such as the CompiledMethod class discussed in §4.4.5, and for the syntax of a message-send to an object. It

exploits these formats to provide commands for executing services when under authorisation by an

£q)plication. In feis way, the WorkBase can store a sequence of code as an object for la ta evaluation.

A method is a sequence of code associated with a class of objects. In particular POISE provides the option of

selecting particular methods of a class and makes them persistait along with the class vasion template. This

selective policy is suitable for the evolutionary information-modelling requirements of POISE, since the major

part of an application running in Smalltalk will be the behaviours of domain-modelling objects, vfeich in turn

describe the peculiar activities of that application. This was superseded quickly by the more general

mechanism of complete class storage.

4.5.11.6 Storage of a Smalltalk class
POISE evolves the description of polyma classes. In orda to make these changes pasist the WorkBase must

also store the class. The storage of the class is especially complex because of the relationships it has with the

client image.

Smalltalk constructs the class like all otha objects in the language, §4.1.2. It behaves like a class because it

inherits those ‘class like’ behaviours from the Class class. One of the behaviours a class inherits is the ability

to genaate o tha objects using the information contained in the class object. This is a primitive behaviour

that directly accesses the second instance variable and must contain an intega vriiich describes the format of

the instance. The instance keeps a reference to the generating object (the class) and it is known as its class.

For this instance to work as an object the class object must meet two o tha criterion. The class has anotha

class object (or n il) in the third instance variable as the supaclass and a method dictionary in the fourfe

153

Object -Oriented Software Représentation of Polymer Mateiiab fatfbrmmion in Engioeermg Design

instance variable. This is the most basic requirement for getting a class to fonction. Ofoer requirements are

necessary for the object to fonction as expected in foe Smalltalk environment, but are not necessary to get the

class’s instances fonctioning m the Smalltalk environment

The format being an integer, is easily stored. The superclass can use any of the aforementioned class

representations but not via a proxy. The superclass must inherit directly from the application or the database.

The method dictionary though contains many difficulties. First a proxy cannot be put in the method

dictionary place since the virtual machine expects a dictionary. The dictionary links protocols to their names.

Wife foe list of names, the WorkBase creates a special proxy MethodDictionary.

Reading all the protocols of a class and its superclasses is unnecessary. All objects the WorkBase reads are by

request from a proxy receiving a message, so the WorkBase need only read the protocol matching the

message. The proxy MethodDictionary contains all the names of the protocols, but associates them with a

ConpiledMethod that requests the real protocol from the WorkBase. The message look-up occurs as normal,

and so causes the WorkBase to inqxjrt the protocol. The rest of the difficulties are with representing protocols

on the WorkBase.

ConpiledMethods are, at their most basic, a byte array, vhich contains pseudo-code, compiled at runtime,

and hidden from the user. CoirpiledMethods are simple sequences of code that the WorkBase can easily

represent, vshich are complicated by references to variables that are outside the scope of the immediate

calculation: instance variables and global variables.

ConpiledMethods refer to instance variables by an index, A^ich must correctly correspond to the indexes in

the receiver’s class. It is for fois reason that methods associate uniquely Avith a single class. Smalltalk

search^ for methods by class and the structure guarantees that the method is compiled fr)r foe class. Without

the class, the method is meaningless since it refers to instance variables by a number that have arbitrary

meaning in any other classes.

Globals include class variables and pool variables^. All methods that access a unique global variable share a

reference to a common associatioi, ^ lich contains a name for the global in the key and an arbitrary object in

the value. When a method sends a message to a global association, the value of the association receives the

message. As this is a primitive function the associaticm must be an association not a proxy. The object, as the

association’s value, that receive the messages may be a proxy if the global is only Avithin the domain of the

database. However, a difficulty arises if the global is meant to be an application resident object. In this case.

154

Object •Oriented Software Repretentatioii of Polymer Materials InfbnnatioD in Engineering Design

the Workbase must find the application global before any messages are sent to the global, ie A&hen the method

is read into memory.

The most complex issues in storing a class is the class’s relationship to a superclass and any global variables.

In &ct, the superclass is just another global variable. References to globals should be resolved by a separate

policy object from foe server that has explicit knowledge of the global name space on every client and foe

server. Ofoer foan that, foe class is treated like any other object on foe WorkBase.

4.5.12 Summarising the WorkBase
The WorkBase satisfies foe private storage requirements for a single POISE user (§3.8.5). The unique feature of

foe WorkBase is that vfoen it reads objects it resolves differences in foe schema between client and server,

Aivhich allows the client schema to change independent of the schema of individual objects represented in foe

WorkBase. hnplementing this feature was simplified by the single connection policy between foe POISE

application and foe private single-user WorkBase. Most DBMS focus on supporting multiple connections and

consequently complicate foe client’s dependence on foe server’s schema, whicfo foe server endeavours to

maintain consistent for multiple clioits.

An advanced object storage system is a better description of foe WorkBase foan a DBMS because of its single-

user restriction, and foe %q)plication executes all object behaviours, not foe WorkBase. The WorkBase advances

object storage because it is capable of rqiresenting complex objects, including foe classes of polymers in foe

hierarchy and foe behaviours of engineering properties developed by the user. In addition, with the help from

foe database proxy, the objects maintain their unique identity, usually lost i^hen object storage systems

remove objects frmn foe application aivircnment

Any object is a candidate for storage by a database management system. The DBMS must retrieve foe object

back into primary memory before processing any messages directed at foe object. A general proxy Enhancer

provides a transparent interfece between objects of an iqyplication and objects held in foe DBMS. Messages

sent to database objects via foe proxy Enhancer activate foe enhanced behaviours for requesting foe DBMS

bring foe object into primary memory and frxr updating foe database with any changes. This role of the

database proxy is an abstract feature that can iqxply to any application-database interfru^e.

A specialisation of foe proxy manages object identity on behalf of foe WorkBase. This lets foe WorkBase

retrieve objects individually, rather foan \riiole compositions. The WorkBase only retrieves foe objects

necessary for foe active process. The majority of proxies only remain in memory as long as a process using

155

(%ject -Oriotted Software RopicMntatioii of Polymer Mmterimh Infbrmitioii in Engineering Design

them remains active, thereby promoting memory management Other specialisations include an object

lifetime property of the proxy for collaborating wife the WorkBase’s transaction and memory management

Although the WorkBase is an object storage system, it does adopt many database management features. In

addition to the requirements of the knovdedge rq>resentation, there are database management requiremaits,

which manage the limited computing resources. The WorkBase collaborates with the Smalltalk memory

management, only committing transactions when memory is low thereby maximising the utilisation of

primary memory, and committing all transactions when the user terminates the application. Transaction

management is a complex feature of many OODBMS. This simple policy takes advantage of the single-user

restriction of the WorkBase, since in multi-user applications long transactions prevent other user access.

The one resource foe WorkBase does not manage emotively is foe disk file it uses to store foe state of objects.

This aspect is not pursued because there was an ample resource for experimenting and many DBMS address

foe problem adequately.

Another weakness in foe design of foe WorkBase was foe efficiency of the DBMapping. This object provides

the primary index for foe database. Currently foe DBMapping adopts foe indexing behaviour of foe Set to

provide a simple hashing algorithm with linear probing. This is known to be one of the least effective

mechanisms and doesn’t take into account foe future growth of Set like objects. Further research” , concludes

a dynamic BaaF table^ is more appropriate. It also allows for many smaller WeakArrays of one size, rather

foan one big array that needs to change size. This advance to foe WorkBase was unnecessary for foe

experimental purpose of POISE.

4.6 Summarising the Implementation of POISE
A drawback of foe class-instance relationship is that foe class usually defines instance behaviour exclusively.

The Polymer classes in foe POISE classification do not define grade behaviour exclusively. Grades have foe

properties fi-om foe taxonomic classes a ta ided wifo orthogonal properties by a techmque of mampulating

messages sent to foe grade object. Orthogonal properties are any property not related to foe classification

based on chemical and molecular structural composition, eg those relating to general geometric shape and

process. Instead, a separate class template defines orthogonal properties that can apply to any polymer. POISE

abstracts this manipulation of messages, which makes orthogonal behaviour possible, into a class of objects

called foe Enhancer.

The Enhancer provides a behaviour sharing that differs fi-om foe explicit dynamic messages between

individual objects and differs firom foe static implicit behaviour shared between classes and groups of

156

Object -Oriented Software Repcetentation of Polymer Material: Infbnnation in Engineering Deaign

instances. The Enhancer provides implicit dynamic empathy between individual objects. These are gaieral

descriptions of types of behaviour sharing from foe Treaty of Orlando*. The Enhancer is foerefrire a general

enhancemoit to foe class-instance paradigm, which Smalltalk implements. The implementation of foe

Enhancer uses foe oror trapping mechanisms built into Smalltalk. Although these details are specific to

Smalltalk, foe behaviour sharing that foe Enhancer’s charactoises is significant frir representation.

The Enhancer is a general tool for enhancing any object behaviour. Classes inheriting from foe Enhancer add

specific fimctionality to enhance foe behaviour of a number of objects independent of their classes. The

inheritance statically binds these specific behaviours to foe class. An Enhancer called foe ScopeEnhancer

dynamically binds behaviours from multiple objects. The ScopeEnhancer shares behaviours wifo foe

flexibility often found in languages wifo delegation. Zucker has already demonstrated delegation useful fr)r

representing foe evolution of foe design description, or foe ‘application pospective’. The ScopeEnhancer

demonstrates a similarity wifo delegation by sharing an enhanced behaviour between more than one object.

This initial experiment suggests foe Enhancer can support Zucker’s objectives in a class-instance languages.

Another class inheriting from foe Enhancer resolves deductive inheritance (§2.2.4). The

CombinedDataAbstraction is (me of a number of objects wifo enhanced behaviour that produce foe abstract

polymer behaviour. The CombinedDataAbstraction inherits many abstract properties and deduces a single

abstract property. An enhanced instance from each COTcrete Polymer classes (the ones wifo instances)

represents their abstract properties. The Polymer classes themselves manipulate their messages so they inherit

foe abstract properties. The result is a hierarchy of abstract polymers that generalise propoties typical of foe

grades they classify, from A\hich foe designer can intopret design benefits.

POISE takes advantage of Smalltalk features that are not (foaractoistic of foe class-instance paradigm.

Smalltalk does not distinguish between foe development and runtime states of software. For this, foe

Smalltalk envircmment includes tcmls normally associated wifo development, such as a compiler. The

compiler and ofoer supporting classes let Smalltalk define, declare and instantiate objects during runtime.

This promotes foe development of software by prototyping, but does not distinguish prototyping during

development from foe application of prototyping during runtime. POISE uses these features to evolve classes

through interaction wifo foe user, thereby providing dynamic schema evolution. POISE specialises foe

software t(X)ls to orientate schema changes around polymer propoties, thereby empowering foe domain

expert, rather than foe Smalltalk programmer, to manipulate the polymer classification.

157

Object •Oriented Software Repreeentatioa of Pommer Materiab Infimnation m Engineering Design

The development tools for evolving Smalltalk classes were found highly inefficient. While specialising these

tools for the polymer classification, a new type of protocol objects was defined that is independent of a

physical model. These protocols did not require re-compiling A\hen the physical model changes. Therefore,

these protocols are independent of the class, which defines the physical model of instances. This permits the

definition of partial template objects, pros, vhich are a tool for managing protocols outside the class. Partial

templates are a re-useable set of protocols foat may be installed consistently on many classes. The pro in

POISE represents polymer properties. They provide a classification independent way of relating the similarity

between properties and their contextual application.

158

Object -O riented Softw are R epresentation o f Polym er M aterials Inform ation in Engineering Design

Chapter 5 A Populated, Fully Functional POISE.
POISE s u p p o r t s t h e u s e r w i t h a n u m b e r o f i n t e r f a c e s . T h e a i m o f t h e s e i n t e r f a c e s i s t o r e f l e c t t h e d a t a m o d e l s

d i s c u s s e d . T h e r e h a s b e e n n o f o r m a l c o g n i t i v e d e s i g n o f t h e s e i n t e r f a c e s , a n d t h i s i s n o t a n a r g u m e n t

s u p p o r t i n g t h e m a s t h e b e s t w a y t o d i s p l a y t h e d a t a m o d e l s . T h e y p r o v i d e d a w a y t o l e a r n a b o u t t h e p o l y m e r

d o m a i n a n d t h e m o d e l s u s e d . T h e y w e r e u s e d i n t h e c o u r s e o f d e v e l o p i n g t h e d a t a m o d e l a n d b y S p e d d i n g * i n

h e r r e s e a r c h i n t o a p p r o p r i a t e c l a s s i f i c a t i o n s o f p o l y m e r i n f o r m a t i o n .

T h e f i r s t u s e r i n t e r f a c e s d e v e l o p e d w e r e t h e Comparitor a n d t h e H ierarchyE ditor. T h e s e i n t e r f a c e s h a d

d i r e c t r e l e v a n c e t o t h e r e p r e s e n t a t i o n s o f t h e a b s t r a c t p o l y m e r a n d c l a s s i f i c a t i o n . I n i t i a l l y a c o m m a n d l i n e

i n t e r p r e t e r s t a r t e d a S m a l l t a l k p r o c e s s t h a t o p e n e d t h e s e i n t e r f a c e s . C o m m a n d l i n e s a r e v e r y f l e x i b l e b u t

r e q u i r e a s p e c i f i c s k i l l f o r u s e . C o n s e q u e n t l y , a c e n t r a l i n t e r f a c e w a s d e v e l o p e d f o r t h e d e s i g n e r a n d o t h e r

n o v i c e u s e r s . T h i s c e n t r a l i n t e r f a c e r e p r e s e n t s a n a c t i v e POISE s e s s i o n . T h e f i r s t t a s k o f t h e n o v i c e u s e r i s t o

s t a r t t h e POISE s e s s i o n .

5.1 Entering the Smalltalk Image_______________________
System Transcript =□= Launcf =[£]=□=

±J

B r o w s e r s
U t i l i t i e s
C h a n g e s
S p e c i a l
3 3
TIGRE (t m) ÿ

ri
Quit

Figure 21: Smalltalk image start-up state
T h e a p p l i c a t i o n k n o w n a s poise r e s i d e s w i t h t h e d e v e l o p m e n t t o o l s i n a c o m m o n S m a l l t a l k i m a g e * . T h e

u s e r ’ s a c c e s s t o t h e d e v e l o p m e n t t o o l s i s t h r o u g h a w i n d o w k n o w n a s t h e Launcher (F i g u r e 2 1) . T h e

Launcher p r o v i d e s a l i s t o f o p t i o n s f o r t h e u s e r t o s e l e c t , poise a d d s a n e x t r a o p t i o n a s a g a t e w a y i n t o t h e

w o r l d o f POISE. I n a S m a l l t a l k i m a g e c o n t a i n i n g o n l y POISE, a n d w i t h o u t t h e d e v e l o p m e n t t o o l s , l o a d i n g t h e

i m a g e a u t o m a t i c a l l y e v o k e s t h i s o p t i o n .

T h e s e c o n d w i n d o w i n F i g u r e 2 1 i s t h e S y s t e m T r a n s c r i p t . T h i s w i n d o w p r o v i d e s a g e n e r a l d i s p l a y o f

m e s s a g e s t o t h e u s e r . T h e w i n d o w i s a l s o a t e x t e d i t o r p r o v i d i n g t h e p r o g r a m m e r w i t h a p l a c e t o t y p e a n d

r e q u e s t t h e e v a l u a t i o n o f S m a l l t a l k s y n t a x . I n a n i m a g e c o n t a i n i n g o n l y poise, s u c h a t o o l w o u l d n o t b e

a v a i l a b l e s i n c e i t w o u l d e n a b l e t h e u s e r t o m o d i f y t h e i m a g e i n a n u n p r e d i c t a b l e m a n n e r . L a t e r w e i n t r o d u c e

a s p e c i a l i s e d w i n d o w f o r n o t i f y i n g t h e u s e r o f poise’s a c t i v i t i e s .

* A S m a l l t a l k I m a g e i s t h e d e s c r i p t i o n o f a l l o b j e c t s i n p r i m a r y m e m o r y w h e n s t a r t i n g S m a l l t a l k . T h e I m a g e
p l u s t h e V e r t i a l M a c h i n e m a k e u p t h e w h o l e S m a l l t a l k E n v i r o n m e n t .

159

Object -O riented Softw are R epresentation o f Polym er M aterials Inform ation in Engineering Design

O n e n t e r i n g , POISE o p e n s T i g r e ' s FileC hooser s c r e e n { F i g u r e 2 2) , a s k i n g t h e u s e r t o l o c a t e t h e WorkBase f i l e

c o n t a i n i n g t h e p o l y m e r i n f o r m a t i o n a n d s e s s i o n d e t a i l s .

S y s t e m Transcript

C hoose D atab ase File

Ram Disk

Desktop Folder:
Trash:
POlSEdababase.dat

Volume

Open b
Cancel

±J

B r o w s e r s >
U t i l i t i e s >
C h a n g e s - >
S p e c i a l y
POISE
TIGRE (t m) >
Quit

Figure 22: Selecting the WorkBase
A t t h i s p o i n t poise l o c a t e s r e f e r e n c e s t o p o l y m e r s i n t h e WorkBase a n d a d d s t o e a c h Polymer c l a s s e s a n i n d e x

o f t h e i r p o l y m e r s . O p e n i n g t h e WorkBase c r e a t e s a b a c k g r o u n d p r o c e s s r e s p o n s i b l e f o r m a n a g i n g t h e g a r b a g e

c o l l e c t i n g i n t h e WorkBase f i l e . A m e s s a g e a p p e a r s i n t h e t r a n s c r i p t n o t i f y i n g t h e u s e r o f t h i s p r o c e s s a n d

g i v e s t h e n u m b e r o f g r a d e s POISE f i n d s .

S y s t e m Transcript i D i Launcr 1 0 1 0 1

'Background Garbage Collecting of D B objects - STARTED'
Final population =943

Open saved windows?

±1

B r o w s e r s >
U t i l i t i e s >
C h a n g e s >
S p e c i a l >
POISE
TIGRE (t m) >
Quit

Figure 23: Re-starting POISE
A n e w w i n d o w o p e n s , a s k i n g i f t h e u s e r w i s h e s t o o p e n t h e w i n d o w s s t o r e d i n t h e WorkBase (F i g u r e 2 3) .

T h e s e w i n d o w s w e r e s a v e d i n t h e l a s t s e s s i o n , r e c o r d i n g a n y l i s t s o f g r a d e s o r p a r t i c u l a r c o m p a r i s o n s o f

p o l y m e r f a m i l i e s t h e u s e r w a s p r o c e s s i n g d u r i n g t h e l a s t s e s s i o n .

160

O bject -O riented Softw are R epresentation o f Polym er M aterials Inform ation in Engineering Design

I f s c r e e n s w e r e n o t s a v e d , o r t h e u s e r o p t s n o t t o o p e n t h e m , t h e n o n l y t h e POISEsession s c r e e n o p e n s

(F i g u r e 2 4) . T h e Launcher a n d S y s t e m T r a n s c r i p t s c r e e n s c l o s e a u t o m a t i c a l l y .

POISEsess ion 1 0 1 0 1

POISE
Polymer

Thermoplastic
Amorphous

ABS
ASA
ASAPC
CA
EBA
EVA
MABS

PAF
PBTASii
PC

PCH

W e l c o m e To POISE

Comparator

Domain P roperties

Domain Hierarchy

Clipboard T

G rade Searcii Quit

Figure 24: The POISEsession window
5.2 POISEsession
T h e POISEsession w i n d o w (F i g u r e 2 4) i s a c e n t r a l a c c e s s p o i n t t o a l l o t h e r t o o l s i n POISE. T h e POISEsession

h a s t h r e e p a r t s . O n t h e l e f t i s a s u b - v i e w c o n t a i n i n g a h i e r a r c h y o f Polymer c l a s s e s . T o p - r i g h t i s a

s p e c i a l i s e d s u b v i e w t h a t r e p l a c e s t h e f u n c t i o n a l i t y o f t h e t r a n s c r i p t . T h e t h i r d p a r t i s a s e t o f ' b u t t o n ’ v i e w s ,

w h i c h o p e n v a r i o u s t y p e s o f POISE s c r e e n s w h e n t h e u s e r s e l e c t s t h e m . T h e b u t t o n m a r k e d ‘ c l i p b o a r d ’ a n d

t h e b u t t o n b e l o w a r e e x c e p t i o n s , p r o v i d i n g f u n c t i o n a l i t y t o t h e t r a n s c r i p t p a r t o f t h e POISEsession (i n § 5 . 8) .

Q u i t r e t u r n s b a c k t o t h e Launcher, o f f e r i n g t o s a v e a n y o p e n s c r e e n s .

5.2.1 The User Defines the Classification
T h e s u b - v i e w o n t h e l e f t o f t h e POISEsession i s a c o m p l e t e h i e r a r c h y . T h e h i e r a r c h y i s i n s i d e a

ScrollingW rapper t h a t p r o v i d e s s c r o l l i n g f u n c t i o n a l i t y . T h i s s u b - v i e w i s a f u n c t i o n a l l y c u t - d o w n v e r s i o n o f

t h e H ierarchyE dito r w i n d o w d e s c r i b e d e a r l i e r (§ 3 . 3 . 3) . T h e u s e r e v o k e s f u n c t i o n s b y s e l e c t i n g t h e m e n u ­

b a r , _ _ - i n F i g u r e 2 4 , c a u s i n g a m e n u o f o p t i o n s t o a p p e a r . A c o m p l e t e l i s t o f t h e f u n c t i o n s i s i n T a b l e 7 .

F i g u r e 2 5 d e m o n s t r a t e s t h e ‘ i n s p e c t ’ o p t i o n . T h e i n s p e c t c o m m a n d p r o v i d e s v i s u a l a c c e s s i n t o i n d i v i d u a l

Polymer c l a s s e s . I n t h i s c a s e , t h e t e x t f o r ‘EBA’ w a s p r e v i o u s l y s e l e c t e d i n t h e s u b - v i e w , p r o v i d i n g t h e

c o n t e x t f o r t h e i n s p e c t c o m m a n d .

161

Object -O riented Softw are R epresentation o f Polym er M aterials Inform ation in Engineering Design

POISE

POISE
Pol

copy
add
accept
cancel
hardcopy

ast ic
phous
BS
SA

save
load
^B^BXMsAPC
add grad *

J b a
remove

EVA
MABS

^ W e l c o m e To POISE

Com parator

PO ISEClassChanger ^ ^ 0 1 0 1
1 V 1

-1 ^ POISEClassChanger on
keif 1 ^EBA
name
superchan
hierarchy
properties
addedProi:
removed?
sub classe

/| v|
Figure 25: POISEsession- viewing the schema

T h e i n s p e c t o p t i o n o p e n s a g e n e r a l i n s p e c t o r o n a n i n s t a n c e o f t h e c l a s s POISEClassChanger, i n F i g u r e 2 5 .

T h e s e o b j e c t s r e c o r d t h e s t a t e o f c h a n g e s t o t h e h i e r a r c h y a n d t h e i n s p e c t o r p r o v i d e s a c o n c i s e r e p o r t o f

c h a n g e s p e r c l a s s . A g e n e r a l i n s p e c t o r p r o v i d e s r e p o r t s t h e s t a t e o f t h e o b j e c t ’ s i n s t a n c e v a r i a b l e s f o r t h i s

p u r p o s e . T h e s u b - v i e w o n t h e l e f t l i s t s t h e i n s t a n c e v a r i a b l e . S e l e c t i n g o n e d i s p l a y s t h e c o n t e n t s o f t h e

i n s t a n c e v a r i a b l e i n t h e r i g h t s u b - v i e w a s t e x t , (t h e 'p rin tO n: ' t e x t b e h a v i o u r a l l o b j e c t s h a v e .)

T h e l i s t s h o w s t h e i n s t a n c e v a r i a b l e s t h a t s t o r e c h a n g e s t o t h e poise c l a s s e s w h i l e t h e u s e r o p e r a t e s o n t h e

h i e r a r c h y (i n s c h e m a § 3 . 3 . 2 , e d i t o r w i n d o w § 3 . 3 . 3 , i m p l e m e n t a t i o n § 4 . 4) . T h e superchanger r e f e r e n c e s t h e

Changer o f t h e s u p e r c l a s s t h e c l a s s e s i n h e r i t s . H ierarchy i s a r e f e r e n c e t o t h e o v e r a l l h i e r a r c h y m o d e l . O n

Copy
Add

Accept

Cancel
Hard-copy
Save
Load

Inspect
Add grade

Remove

A s s i g n s t h e v a r i a b l e ‘ C l i p b o a r d ’ t o t h e o b j e c t c u r r e n t l y s e l e c t e d (i n § 5 . 8) .
A d d s a n e w p o l y m e r c l a s s b y f i r s t a s k i n g t h e n a m e o f t h e p o l y m e r f a m i l y a n d s u b c l a s s i n g o f f
t h e c l a s s poise.
C o m p i l e s a l l c h a n g e s t o t h e h i e r a r c h y . T o t h i s p o i n t o n l y a d e s c r i p t i o n o f t h e c h a n g e s a r e
k e p t . POISE d o e s n o t c h a n g e t h e c l a s s e s a n d i n s t a n c e s o f p o l y m e r s t h a t t h e h i e r a r c h y d e s c r i b e s
u n t i l t h e u s e r s e l e c t s t h e a c c e p t o p t i o n .
T h e r e c o r d o f c h a n g e s i s r e s e t .
T h e t e x t i n t h e s u b v i e w i s s e n t t o t h e p r i n t e r .
A d i s k f i l e s a v e s t h e c o n f i g u r a t i o n o f c l a s s e s .
T h e H i e r a r c h y c o m p a r e s t h e c o n f i g u r a t i o n o f c l a s s e s i n a d i s k f i l e w i t h t h e c u r r e n t
c o n f i g u r a t i o n a n d r e c o r d s t h e n e c e s s a r y c h a n g e s .
O p e n s a g e n e r a l o b j e c t i n s p e c t o r o n t h e r e c o r d o f c h a n g e s f o r t h e s e l e c t e d c l a s s .
C r e a t e s a n i n s t a n c e o f t h e s e l e c t e d c l a s s . T h e u s e r i s p r o m p t e d f o r t h e n a m e o f t h e n e w
i n s t a n c e a n d l e f t w i t h a Grade i n s p e c t o r w i n d o w o n t h e n e w g r a d e (i n F i g u r e 2 6 b e l o w)
M a r k s t h e s e l e c t e d c l a s s f o r r e m o v a l f r o m t h e i m a g e . (G r a d e s r e m a i n o n t h e WorkBase b u t t h e
k e y t o t h e m i s l o s t u n t i l t h e u s e r a d d s a c l a s s o f t h e s a m e n a m e a n d r e - o p e n s t h e WorkBase.)

Table 7: User menu-functions over hierarchy editor

162

Dbject -O riented Softw are Representation o f Polym er M aterials Inform ation in Engineering Design

e v e r y c h a n g e , t h e POISEClassChanger c r e a t e s a Checker t o c o n s u l t t h e h i e r a r c h y a n d e n s u r e c h a n g e s a r e

c o n s i s t e n t w i t h t h e i n h e r i t a n c e a n d c l a s s n a m i n g r u l e s o f a S m a l l t a l k h i e r a r c h y . P r o p e r t i e s , addedProperties

a n d rem ovedProperties a r e u s e d b y t h e H ierarchyE dito r f o r c o n f i r m i n g m o d i f i c a t i o n t o t h e p r o p e r t i e s o f

t h e c l a s s .

5.2.2 Adding a Grade
T h e h i e r a r c h y i n t e r f a c e i s a n e a s y p l a c e t o i d e n t i f y a c l a s s o f p o l y m e r . I f a u s e r s e l e c t s a c l a s s , t h e y c a n a d d a

g r a d e t o t h e c l a s s b y s e l e c t i n g t h e a p p r o p r i a t e m e n u i t e m .

W h e n a d d i n g a g r a d e , poise p r o v i d e s a d e f a u l t n a m e ; s i m p l y t h e n u m b e r o f g r a d e s k n o w n p l u s o n e

c o n c a t e n a t e d w i t h t h e g r a d e ’ s f a m i l y n a m e . I n F i g u r e 2 6 , a g r a d e i n s p e c t o r v i e w s t h e n e w eba g r a d e . A t

t h i s p o i n t , t h e g r a d e i n h e r i t s p r o p e r t i e s f r o m t h e p o l y m e r f a m i l y , b u t n o s p e c i f i c v a l u e s a r e k n o w n e x c e p t f o r

t h e g r a d e s n a m e . T h e v i e w p r o v i d e s t h e l i s t o f p r o p e r t i e s i n t h e t o p s u b - v i e w . S c r o l l i n g t o t h e p r o p e r t y

‘ T r a d e n a m e o f p o l y m e r ’ a n d s e l e c t i n g c a u s e s t h e b o t t o m s u b - v i e w t o d i s p l a y a t e x t r e p r e s e n t a t i o n o f t h e

p r o p e r t y ’ s v a l u e . T h e u s e r c a n c h a n g e t h e n a m e h e r e .

EBA # 2 3 0ËF1=
V 1
S tress at yield (50m m /m ini ±J
Supplier of polymer
Tensile strength (.5mm/min)
Text description and use
Therm.exp.coef. long. 23-80oC
Therm.exp coef tran. 23-80oC
Thermal conductivity of melt
Tradename of polymer . ;
Vicat A /50 (ION)
Vicat B /5 0 (50N) 1
Viscosity coeff.
Vater absorption (23oC -sat.) 1 L 1
Young’s modulus (sec . 1mm/min) 1̂

EBA * 2 3 ±i

Figure 26: Grade View over new grade EBA 23
T h e u s e r c a n s e l e c t a n y o f t h e p r o p e r t i e s i n t h e t o p l i s t , m o d i f y t h e t e x t i n t h e b o t t o m t e x t v i e w a n d , t h r o u g h

t h e m e n u o f t h e t e x t v i e w , a c c e p t t h e c h a n g e . T h e v i e w , i n c o n j u n c t i o n w i t h t h e p r o p e r t y o b j e c t , p a r s e s t h e

t e x t , i n t e r p r e t s a v a l u e f o r t h e p r o p e r t y , a n d a s s i g n s i t t o t h e g r a d e . I n t h i s w a y , t h e u s e r c a n f u l l y s p e c i f y a

n e w g r a d e o r m o d i f y o r d e l e t e a n e x i s t i n g g r a d e . A n e x a m p l e o f a cam pus g r a d e i s g i v e n i n F i g u r e 3 5 .

163

Object -O riented Softw are R epresentation o f Polym er M aterials Inform ation in Engineering Design

POISEsession

^ W e l c o m e To POISE

Comparator
 ifh-

Domain P roperties

J
Domain Hierarchy

Property com par iso n m m
Property selection

All Select Polymer #

DwM Û data avalia'blc fo r th û pr«p«rty

Figure 27: Starting a property comparison
5.3 The Comparator
T h e h i e r a r c h y i n t h e POISEsession w i n d o w p r o v i d e s t h e u s e r w i t h t h e t o o l s f o r d e f i n i n g t h e i n i t i a l d a t a b a s e

s c h e m a a n d d a t a e n t r y . A s t h e u s e r c h a n g e s t h e s c h e m a a n d e n t e r s d a t a , POISE c o n s t a n t l y m o d i f i e s

a b s t r a c t i o n s o v e r t h e d o m a i n o f k n o w l e d g e . T h e ‘ b u t t o n ’ i n t h e POISEsession n a m e d Comparator p r o v i d e s

a c c e s s t o t h e s e a b s t r a c t i o n s (F i g u r e 2 7) .

T h e p r o p e r t y c o m p a r i s o n w i n d o w , o r Comparator, i s a d i s p l a y o f t h e g e n e r a l i s a t i o n s d e r i v e d f r o m t h e g r a d e s

i n t h e d o m a i n . POISE g e n e r a l i s e s t h e p r o p e r t i e s o f t h e g r a d e s f r o m e a c h p o l y m e r f a m i l y , f o r m i n g a n

a b s t r a c t i o n , poise m e r g e s t h e s e g e n e r a l i s a t i o n s , a n d w i t h o u t f u r t h e r d o m a i n a n a l y s i s , f o r m s h i g h e r o r d e r

a b s t r a c t i o n s (§ 3 . 5 , § 4 . 2 . 7 . 1) . A n a b s t r a c t i o n e x i s t s f o r e a c h Polymer c l a s s i n t h e h i e r a r c h y , e a c h c o n t r i b u t i n g

t o a l i s t o f g r a d e c a t e g o r i e s a v a i l a b l e f o r d i s p l a y . T h e l i s t o f a b s t r a c t i o n s a p p e a r s w h e n t h e u s e r s e l e c t s t h e

b u t t o n ‘ S e l e c t P o l y m e r ’ , F i g u r e 2 7 . T h e l i s t o f p r o p e r t y g e n e r a l i s a t i o n s a p p e a r s w h e n t h e u s e r s e l e c t s t h e

b u t t o n ‘ P r o p e r t y S e l e c t i o n ’ . F i n a l l y , t h e w i n d o w d i s p l a y s t h e g e n e r a l i s a t i o n i n t h e m a i n c e n t r e s u b - v i e w .

F i g u r e 2 8 .

I n t h e e x a m p l e o f F i g u r e 2 8 , t h e p r o p e r t y Y o u n g ’ s m o d u l u s i s s e l e c t e d a n d t h e c l a s s i f i c a t i o n C ry s ta llin e

(m o r e c o r r e c t l y p a r t i a l l y c r y s t a l l i n e) . L i k e a l l t h e o t h e r p r o p e r t y o b j e c t s , t h e Y o u n g ’ s m o d u l u s p r o p e r t y

s p e c i f i e s a g e n e r i c h i s t o g r a m s u b v i e w t o d i s p l a y t h e g e n e r a l i s e d d a t a . T h e Comparator w i n d o w l o c a t e s t h e

g e n e r a l i s a t i o n f r o m t h e C ry s ta ll in e c l a s s , w h i c h t r a n s p a r e n t l y a c c e s s e s t h e WorkBase. T h e WorkBase s t o r e s

t h e g e n e r a l i s a t i o n a s a s e t o f v a l u e o c c u r r e n c e s . T h e v i e w c o e r c e s t h e s e t i n t o a d a t a t y p e s u i t a b l e f o r d i s p l a y .

A h i s t o g r a m o b j e c t i n t h i s c a s e .

164

O bject -O riented Softw are R epresentation o f Polym er M aterials Inform ation in Engineering Design

Property com parison

Young’s modulus (se c . 1mm/min) MPa T

All Crystalline -

jwooo _

20000

15000 I

10000 S

Sooo

0

14 21 28 35 42 49 56 63 70 77
Tally _____________

85

? -1
Figure 28; Abstraction display of Young’s modulus over (partially) Crystalline polymers

Property co mpa ri so n

Young’s modulus (sec Imm/min)

Crystalline

looo I

? l ^ ^ e e | I A |£ ^ -

Figure 29: Viewing films only for Young’s modulus over Crystalline
T h e h i s t o g r a m s u b v i e w i s f u l l y s c a l a b l e . W h e n t h e u s e r a d j u s t s t h e s i z e o f t h e w i n d o w , t h e s u b - v i e w s s i z e

s c a l e s e q u a l l y , c h a n g i n g t h e s i z e o f e a c h o r d i n a t e p r o p o r t i o n a l l y . I n c r e a s i n g t h e w i n d o w s i z e i n c r e a s e s t h e

r o o m a v a i l a b l e f o r d i s p l a y i n g t h e o r d i n a t e . T h e n u m b e r o f l a b e l l e d i n t e r v a l s a l s o i n c r e a s e a s r o o m b e c o m e s

a v a i l a b l e t o a c c o m m o d a t e t h e f o n t s i z e , w h i c h d o e s n o t s c a l e .

T h e a x i s o n t h e l e f t i s t h e u n i t s o f t h e p r o p e r t y , d i s p l a y e d n e x t t o t h e p r o p e r t y n a m e , MPa f o r M e g a - P a s c a l s

p r e s s u r e . T h e b o t t o m a x i s i s a t a l l y o f o c c u r r e n c e s s o i s u n i t l e s s .

T h e b u t t o n l a b e l l e d ‘ A l l ’ r e f e r s t o t h e w h o l e c l a s s i f i c a t i o n o f C ry s ta llin e . A n y Polymer c l a s s w i t h g r a d e s

e x h i b i t i n g o r t h o g o n a l p r o p e r t i e s w i l l g e n e r a l i s e t h e o r t h o g o n a l p r o p e r t i e s i n t o M ultip leD ataA bstraction

(MDA) o b j e c t s , a s d e s c r i b e d i n § 4 . 2 . 7 . 5 . A n m d a w i l l r e p o r t e a c h o r t h o g o n a l c l a s s t e m p l a t e i n u s e w i t h i n i n

t h e p o l y m e r c l a s s i f i c a t i o n . C u r r e n t l y o r t h o g o n a l c l a s s e s i n c l u d e F ibre, Film a n d ‘ u s e d - b y Lucas’. T h e

165

Object -O riented Softw are Representation o f Polym er M aterials Inform ation in Engineering Design

s e l e c t i o n o f t h i s b u t t o n a l l o w s v i e w i n g o f o n e o f t h e s e c l a s s e s o r , a s s e e n h e r e , a l l . I n F i g u r e 2 9 t h e s e l e c t i o n

c h a n g e s s o t o v i e w o n l y p o l y m e r s u s e d a s f i l m .

Impact strength (Izod) +23oC

Amorphous

«0
300

m .

Crystalline

341.0
1

2W

Î0O r -f
100

»

1.0

kJ/m2
my:

w a v

150 i

100 '

40 SO, 4Ô SO

Figure 30: Comparing abstractions strength across four polymer classes
T h e Comparator a l l o w s c o m p a r i s o n a c r o s s a b s t r a c t i o n s s h a r i n g t h e s a m e p r o p e r t y i n t h e s a m e w i n d o w . B y

s e l e c t i n g t h e ‘ + ’ b u t t o n , i n t h e b o t t o m r i g h t c o r n e r , t h e w i n d o w a d j u s t s t h e s i z e o f t h e s u b - v i e w s t o

a c c o m m o d a t e a s e c o n d h i s t o g r a m d i s p l a y . E a c h d i s p l a y h a s i t s o w n c l a s s i f i c a t i o n b u t t o n s f o r s e l e c t i n g t h e

a b s t r a c t i o n . I n F i g u r e 3 0 f o u r c l a s s i f i c a t i o n s c o m p a r e t h e i r i m p a c t s t r e n g t h . I n F i g u r e 3 1 t h e f i l m s o f

C ry s ta l l in e c o n t r a s t a g a i n s t a l l o f C ry s ta llin e . N o t e t h e p r o p e r t y v a l u e a x i s s c a l e s a c r o s s t h e l a r g e s t

r a n g e o v e r a l l a b s t r a c t i o n s i n t h e d i s p l a y .

Property com pa ri son 10101
Young's modulus (se c . Imm/min) M P a

CrystallineCrystalline
2 4 0 0 0

SOOO20000

15000 15000 '

iOOOO

Figure 31: Comparing abstractions
I n F i g u r e 3 0 t h e r e a r e t w o r e d l i n e s a c r o s s a l l t h e h i s t o g r a m s w i t h a b l u e a r r o w a t t h e e n d s . T h e s e b a r s

a p p e a r w h e n t h e u s e r s e l e c t s t h e ‘ B a r ? ’ b u t t o n T h e r e d l i n e s m o v e a l o n g t h e p r o p e r t y a x i s f o r m i n g a n u p p e r

a n d l o w e r l i m i t . W h i l e t h e s e b a r s a r e a c t i v e , t h e u s e r c a n s e l e c t t h e g r a d e s t h a t f a l l b e t w e e n t h e l i n e s . W h i l e

166

O bject -O riented Softw are R epresentation o f Polym er M aterials Inform ation in Engineering Design

t h e l i n e s a r e n o t a c t i v e , t h e u s e r c a n s e l e c t t h e i n d i v i d u a l b a r s o f t h e h i s t o g r a m s , w h i c h c h a n g e t h e i r c o l o u r t o

r e d w h e n s e l e c t e d .

T h e s e l e c t e d g r a d e s a r e n o t c o l l e c t e d u n t i l t h e u s e r p r e s s e s t h e ‘ s e l e c t ’ b u t t o n . F i n d i n g t h e g r a d e s r e q u i r e s a

s e a r c h t h r o u g h a l l t h e g r a d e s i n t h e a p p r o p r i a t e c l a s s e s i n t h e c l a s s i f i c a t i o n . T h e p r o c e s s c a n l i m i t t h e s e a r c h

b y i n f e r r i n g t h e a b s e n c e o f g r a d e s i n a s u b c l a s s t h a t f a l l s o u t s i d e t h e r a n g e b e i n g s e a r c h e d . I f t h e s e l e c t i o n i s

a c r o s s t h e c l a s s Polymer t h e n p o t e n t i a l l y t h e s e a r c h c o v e r s e v e r y g r a d e i n t h e WorkBase. T h i s i s t i m e

c o n s u m i n g c o m p a r e d w i t h s e l e c t i o n s a c r o s s s p e c i f i c c l a s s e s , e g PA, w h i c h a r e q u i c k .

T h e s e a r c h r e s u l t s i n a w i n d o w l i s t i n g t h e c l a s s e s w h e r e g r a d e s m a t c h t h e s e l e c t i o n . S e l e c t i n g t h e c l a s s

d i s p l a y s a s u b - l i s t o f t h e g r a d e ’ s T r a d e n a m e . T h e c o m p l e t e l i s t o f g r a d e s f o r m s a s u b - s h o r t l i s t . F i g u r e 3 4

p i 6 9 , w h i c h c a n c o n t r i b u t e t o a g l o b a l s h o r t l i s t a v a i l a b l e t o a l l POISE w i n d o w s w h e n t h e u s e r c l o s e s t h e

w i n d o w (i n § 5 . 5 b e l o w) .

T h e Comparator c a n d i s p l a y t h e g l o b a l s h o r t l i s t a s a u s e r - g e n e r a t e d a b s t r a c t i o n . I f t h e ‘ S ’ b u t t o n i s p r e s s e d

i n t h e b o t t o m l e f t c o r n e r o f t h e Comparator, i t d i s p l a y s o n l y t h e g r a d e s i n t h e s h o r t l i s t . E a c h a b s t r a c t i o n v i e w

s t i l l l i m i t s t h e d i s p l a y b y c l a s s i f i c a t i o n a n d p r o p e r t y . T o d i s p l a y t h e w h o l e s h o r t l i s t , t h e c l a s s i f i c a t i o n w o u l d

n e e d t o b e ‘A ll’ a n d ‘Polymers’ w i t h t h e s h o r t l i s t b u t t o n s e l e c t e d .

C l i c k i n g o n t h e b a c k g r o u n d o f a n y s u b v i e w i n t h e Comparator s e l e c t s i t . T h e b o r d e r o f t h e s u b v i e w i n v e r t s

t o i n d i c a t e t h e s e l e c t i o n . I n c o n j u n c t i o n w i t h t h e s c i s s o r s b u t t o n t h e s u b v i e w c a n b e c u t t o t h e c l i p b o a r d , o r

d e l e t e d w i t h t h e m i n u s (‘ - ‘) b u t t o n . T h e Comparator c a n p a s t e i n a s u b - v i e w f i - o m t h e c l i p b o a r d , w h i c h h a s

t h e s a m e f u n c t i o n a s a d d i n g a n e w s u b v i e w a n d s e t t i n g t h e c l a s s i f i c a t i o n .

F i n a l l y t h e ‘ ? ’ b u t t o n d i s p l a y s a t e x t w i n d o w c o n t a i n i n g h e l p i n f o r m a t i o n . H e l p i s g e n e r a l l y s e e n a s a n

i m p o r t a n t f u n c t i o n b u t n o t c r i t i c a l t o t h i s r e s e a r c h . T h e b u t t o n d e m o n s t r a t e s t h e s i m p l i c i t y o f i n t e g r a t i n g a n

a u x i l i a r y s u p p o r t s y s t e m , s u c h a s h e l p , i n t o POISE.

5.4 Grade Search by Query
T h e POISEsession s c r e e n p r o v i d e s a c c e s s t o a n a l t e r n a t i v e t o t h e Comparator f o r f i n d i n g g r a d e s . T h e

‘ S e a r c h ’ b u t t o n o p e n s a G r a d e S e a r c h w i n d o w . L i k e t h e Comparator i t i s p o s s i b l e t o l i m i t t h e s e a r c h t o a

s e l e c t e d c l a s s i f i c a t i o n . T h e s e a r c h i s c u r r e n t l y l i m i t e d t o t h e d o m a i n o f a s i n g l e p r o p e r t y b u t t h i s w a s o n l y t o

s i m p l i f y t h e t o o l . T h e p o t e n t i a l e x i s t s f o r a c o m p l e x q u e r y a t t h e s a m e l e v e l a s t h e PO ISEsession's

t r a n s c r i p t w i n d o w (i n l a t e r § 5 . 8) .

167

Object -O riented Softw are Representation o f Polym er M aterials Inform ation in Engineering Design

Grade S e a r c h l a i H i

Property: Impact strength (IZOd) +23oC y

PA6

m

Grade S e a r c h [0 1 0 1

Property: Impact strength (Izod) +23oC f

PAG

f*ress control C to stop search

1 0 /9 7

Figure 33:Grade search by query search specification Figure 32: Grade search by query search in progress
I n t h e e x a m p l e , F i g u r e 3 3 , t h e p r o p e r t y s e l e c t e d i s i m p a c t s t r e n g t h a n d t h e c l a s s i f i c a t i o n pa6. T h e u s e r e n t e r s

a q u e r y i n t h e l a r g e r c e n t r a l v i e w . T h e v i e w c o m p i l e s t h e t e x t i n t o v a l u e s , a s i n t e r p r e t e d b y t h e p r o p e r t y

o b j e c t . I n t h i s c a s e , t h e p r o p e r t y i n t e r p r e t s ‘ N B ’ a s ‘ N o B r e a k ’ , t h e e x t r e m e r e s u l t o f t h e i m p a c t t e s t w h e r e

t h e s p e c i m e n f a i l s t o b r e a k .

T h e v i e w d i s p l a y s t h e s i z e o f t h e s e a r c h i n t h e b o t t o m r i g h t c o m e r a s t h e n u m b e r s e a r c h e d / t o t a l t o s e a r c h . A s

t h e s e a r c h p r o c e e d s t h e n u m b e r s e a r c h e d i s p e r i o d i c a l l y u p d a t e d a s i n F i g u r e 3 2 . T h e u s e r c a n t e r m i n a t e t h e

s e a r c h b y t y p i n g c o n t r o l ‘ C ’ . S u c h f a c i l i t i e s a r e n e c e s s a r y i n a s y s t e m w i t h t h e p o t e n t i a l f o r l a r g e l i n e a r

s e a r c h e s f o r w h i c h i t i s n o t o p t i m i s e d .

5 . 5 Shortlisting
W h e n t h e s e a r c h i s c o m p l e t e , a SubShortL ist o p e n s w i t h t h e r e s u l t s . I n F i g u r e 34 t h e o n l y c l a s s i s PA6 s i n c e

t h e d o m a i n o f t h e s e a r c h w a s l i m i t e d t o t h i s c l a s s . W h e n t h e u s e r s e l e c t s pa6, i t d i s p l a y s t h e g r a d e ’ s

T r a d e n a m e i n t h e s e c o n d l i s t . A t t h i s p o i n t , t h e m e n u a b o v e pa6 a l l o w s t h e r e m o v a l o f t h e c l a s s o r t h e

g e n e r a t i o n o f a d i s k f i l e c o n t a i n i n g t h e s e t o f g r a d e s . T h e m e n u a l s o a l l o w s t h e a d d i t i o n o f a w h o l e

c l a s s i f i c a t i o n o r f o r a l l c l a s s e s t o b e r e m o v e d o r f i l e d o u t .

T h e m e n u a b o v e t h e g r a d e s e n a b l e s t h e u s e r t o c l e a r t h e l i s t o r r e m o v e i n d i v i d u a l g r a d e s . G r a d e s m a y a l s o b e

f i l e d i n t o a t e x t f i l e i n a dip f o r m a t (i n § 3 . 1 . 1) .

W h e n c l o s i n g t h e SubShortL ist w i n d o w , POISE a s k s i f t h i s s e t o f g r a d e s i s t o j o i n t h e g l o b a l s h o r t l i s t . T h e

g l o b a l s h o r t l i s t i s a s e t o f g r a d e s l i k e t h e s u b - s h o r t l i s t , b u t i t i s u n i q u e f o r a s i n g l e poise s e s s i o n . T h e u s e r

m a y p e r f o r m v a r i o u s s e a r c h e s g e n e r a t i n g s u b - s h o r t l i s t s , w h i c h a r e l o g i c a l l y ORed t o g e t h e r i n t h e g l o b a l

s h o r t l i s t . T h e Comparator c a n l i m i t t h e d o m a i n t o j u s t t h e g l o b a l s h o r t l i s t w h i c h p r o v i d e s a l o g i c a l AND w i t h

168

Object -O riented Softw are R epresentation o f Polym er M aterials Inform ation in Engineering Design

t h e Comparator’s o w n s e l e c t i o n c r i t e r i o n . W i t h t h e s e b r o w s i n g t o o l s , t h e u s e r o b t a i n s s o m e b i n a r y l o g i c o v e r

t h e s e l e c t i o n .

S ubSh or t L is t

Polymer
Grade Select

Grades
V

Add Class t
Remove Class t

PA6 Remove All [
lAPMHWdHcB#
[F i l e O u t ÂÎT

THAN B25TC.
THAN B 2 5T d ,
THAN B30S c.

ÜUHb l HAN Ü JU3 d.
DURE T HA N B 3 1 S K C .
DURE T HA N B 3 1 S K d .
DURE T HA N B4 0 E d.
DURE T HA N B 4 0 S K C .
DURE T HA N B 4 0 S K d .
DURE T HA N B4 0 S K W1 c.
DURE T HA N B4 0 S K W1 d.

d

Inspect]
Figure 34: Sub-shortlist a user defined set of grades

5.6 Grade View
T h e ‘ i n s p e c t ’ b u t t o n i n F i g u r e 3 4 b e c o m e s a c t i v e o n s e l e c t i n g a g r a d e , a n d o p e n s a g r a d e v i e w w i n d o w . T h i s

i s t h e s a m e t y p e o f w i n d o w a s u s e d i n F i g u r e 2 6 , f o r c r e a t i n g a g r a d e . F i g u r e 3 5 g i v e s a c o m p l e t e d e s c r i p t i o n

o f t h e D U R E T H A N B 3 0 S d g r a d e .

ID ------------ DURETHAN B3ÜS d. --[g]iE]i
Eff. thermal diffusivity
Electrolytic corrosion
Flammability UL94 (1 .6 mm)
Flammability UL94 (2nd value)
Flammability UL94 - 5V
Flow front velocity
Freeze Temperature
Heat defl.temp. HDT/A at 1 .8 MPa
Heat defl.temp. HDT/B at 0 .45 MPa
Heat defl.temp. HDT/C at 5 .0 MPa
Impact strength (Izod) +23oC .
Impact strength (Izod) -30oC *
Isotaxie index

±1

NB k J / m 2

Figure 35: Grade view initial text description and specific property

169

Object -O riented Softw are R epresentation o f P olym er M aterials Inform ation in Engineering Design

U n t i l t h e u s e r s e l e c t s a p r o p e r t y t o v i e w , t h e b o t t o m s u b v i e w o f F i g u r e 2 6 d i s p l a y s t h e t e x t p r o p e r t y o n t h e

g r a d e (i n § 3 . 2 . 5 . 2) . W h e n t h e u s e r s e l e c t s a p r o p e r t y , t h e s u b v i e w d i s p l a y s t h e v a l u e . I n t h e c a s e o f

F i g u r e 3 5 , t h e p r o p e r t y i m p a c t s t r e n g t h m a t c h e s t h e q u e r y . T h e b e h a v i o u r g e n e r a t i n g a t e x t r e p r e s e n t a t i o n o f

t h e v a l u e b e l o n g s t o t h e p r o p e r t y o b j e c t a n d t h e v a l u e o b j e c t , n o t t h e w i n d o w o r t h e s u b v i e w . T h i s a l l o w s

d i f f e r e n t t e x t f o r m a t s t o e x i s t f o r d i f f e r e n t p r o p e r t i e s .

5 . 7 Property Definition.
T h e u s e r c a n a d d p r o p e r t i e s a n d m o d i f y e x i s t i n g p r o p e r t i e s u s i n g a P ropertyE dito r. R e t u r n i n g t o t h e

POISEsession, t h e u s e r o p e n s a n e d i t o r t h r o u g h t h e “ D o m a i n P r o p e r t i e s ” b u t t o n . A m e n u o p e n s f o r s e l e c t i n g

t h e s u b j e c t p r o p e r t y , e i t h e r a n e w p r o p e r t y (F i g u r e 3 6) o r a n e x i s t i n g p r o p e r t y , w h i c h l i s t s e i t h e r t h e c l a s s i f i e d

d o m a i n (F i g u r e 3 8) , a n o r t h o g o n a l c l a s s (F i g u r e 3 7) o r u n a s s i g n e d .

Comparator

t D«

I
D

Domain P r o p e r t i e s
S p e c i a l i s t P r o p e r t i e s >
U n a s s i g n e d P r o p e r t i e s >

Grad

Figure 36: Selecting subject property- Start new property

Comparator

D ef i n e New P ro pe r ty
Domain P r o p e r t i e s

jU n a ss i g n ed P r o p e r t i e s >|UsedBy >|Fil>Ti >

Clipboatrd

S p e c i a l i s t P r o p e r t i e s > UsedForO FiAre >

Figure 37:

Crimp Level
C ros s S e c t i o n
E l a s t i c Re co v er y
Elongat ion at break
Fibre F i n e n e s s
Fibre Length
Mois ture Rega in
S t i f f n e s s
T e n a c i t y
T o u g h n e s s ________

Selecting subject property - orthogonal class used for fibre
POISEsess ion = c h a r a c t e r i s t i c d e n s i t y 23oC

I c o m e To POISE

Comparator

D d D e f i n e N ew P ro pe r t y
Domain P r o p e r t i e s
S p e c i a l i s t P r o p e r t i e s >
U n a ss i g n e d P r o p e r t i e s >

Figure 38:

Creep mo du lu s 1h
Deg. o f l i g h t t r a n s m i s s i o n
D e n s i t y
D e n s i t y of m e l t
D i e l e c t r i c s t r e n g t h
D i s s i p a t i o n f a c t o r 1 MHz
D i s s i p a t i o n f a c t o r 50Hz
Eff. th erm al d i f f u s i v i t y
E l e c t r o l y t i c c o r r o s i o n
F l a m m a b i l i t y UL94 (1.5 mm)
F l a m m a b i l i t y UL94 (2nd v a lu e)
F l a m m a b i l i t y UL94 - 5V
F lo w f ron t v e l o c i t y
F r e e z e T e m p e r a t u r e
Heat d e f l . t e m p . HDT/A at 1,8 MPa
Heat d e f l . t e m p . HDT/B a t 0 . 4 5 MPa
Heat d e f l . t e m p . HDT/C a t 5 . 0 MPa
Impac t s t r e n g t h (I zod) +23oC
Impac t s t r e n g t h (I zod) - 3 0 o C
I c n + a v i o i n r l o v

Selecting subject property- classified domain

Jit

170

Object -O riented Softw are R epresentation o f Polym er M aterials Inform ation in Engineenng Design

Property Editor lE lH i

Name

Symbolic

Create

Units

Figure 39; PropertyEditor- new property
Property Editor

Name

Symbolic

Young’s m o d u l u s (s e c . Imrn/rnin)

y'iod

Create

Units
M P a

C 3

D atatype T

Add Domain C lass Polymer

Interval = 3 0 0 0
su g g e st j ------- id

_ | Collectable _J Visible
Attribute;

Comment Methods Remove

Figure 40: PropertyEditor on existing property
S e l e c t i n g a n e w p r o p e r t y w i l l o p e n a n e d i t o r w i t h m o s t o p t i o n s g r e y e d - o u t a n d i n a c t i v e . T h e u s e r m u s t f i l l i n

t h e a c t i v e f i e l d s b e f o r e a c c e p t i n g t h e p r o p e r t y , a d d i n g i t t o t h e d o m a i n . T h e s e a c t i v e f i e l d s . F i g u r e 3 9 ,

i n c l u d e ; t h e p r o p e r t y n a m e , t h e s t r i n g u s e d b y i n t e r f a c e s f o r p r o p e r t y s e l e c t i o n , e g F i g u r e 3 8 ; t h e p r o p e r t y

s y m b o l , w h i c h t h e e d i t o r c h e c k s f o r u n i q u e n e s s a n d Polymer c l a s s e s u s e t o n a m e i n s t a n c e v a r i a b l e s a n d

m e s s a g e s e l e c t o r s f o r t h e p r o p e r t y .

A f t e r t h e u s e r e n t e r s t h e e s s e n t i a l d e s c r i p t i o n s , t h e c r e a t e b u t t o n g e n e r a t e s t h e p r o p e r t y o b j e c t , s e t t i n g o t h e r

a t t r i b u t e s t o t h e d e f a u l t s t a t e s . T h e r e s t o f t h e w i n d o w b e c o m e s a c t i v e a l l o w i n g t h e e d i t i n g o f t h e s e d e f a u l t s .

T h i s i s t h e s a m e f o r w i n d o w s o n e x i s t i n g p r o p e r t i e s , e g Y o u n g ’ s m o d u l u s i n F i g u r e 4 0 .

171

Object -O riented Softw are R epresentation o f Polym er M aterials Inform ation in Engineering Design

E d i t o r s o n e x i s t i n g p r o p e r t i e s d o n o t p e r m i t t h e d e s c r i p t i v e n a m e s t r i n g t o c h a n g e o r t h e n a m e s y m b o l . T h e

s y m b o l i d e n t i f i e s t h e p r o p e r t y s y n t a c t i c a l l y , t h e s t r i n g s e m a n t i c a l l y . O t h e r p r o p e r t y a t t r i b u t e s c a n c h a n g e

t h r o u g h t h e l i f e o f t h e p r o p e r t y .

I f i t i s p o s s i b l e t o g e n e r a l i s e a p r o p e r t y i n t o h i s t o g r a m s , t h e n t h e u s e r c a n s p e c i f y t h e v a l u e i n t h e i n t e r v a l

f i e l d f o r d i s t r i b u t i n g t h e h i s t o g r a m b a r s . T h e s u g g e s t o p t i o n c a u s e s t h e i n t e r f a c e t o q u e r y t h e Polymer c l a s s

f o r t h e p r o p e r t y - v a l u e s e x p r e s s e d b y a l l k n o w n g r a d e s . I f a n y g r a d e s d e f i n e t h e p r o p e r t y a n d a s s i g n v a l u e s ,

t h e n t h e q u e r y r e t u r n s a s e t o f t h o s e v a l u e s . F r o m t h i s s e t , a r u l e o f t h u m b c a l c u l a t i o n , d e r i v e d b y t r i a l a n d

e r r o r , s u g g e s t s a v a l u e f o r d i s t r i b u t i n g t h e h i s t o g r a m s . T h e i n t e r v a l f i e l d d i s p l a y s t h e v a l u e .

Property

Name

^ Symbolic

Units

D atatype

Young’s m o d u l u s (s e c . 1m

y Mod

MPa

Number

Add Domain Class

Interval = 3000
su g g e st j ------------

C o lle c t ib le Visible
Attribu

Comment Methods (g *

M u l t i S e l e c t V i e w
Mutab leCompi l edMethod

N a m e S c o p e
N e a r e s t P a i n t
Ni lEnhancer

N oC on tro l l e r
N o n ln te ra c t iv e C o m p i l er E rr o rH a n d le r

N o t i f i e r
N o t i f i e r C o n t r o l l e r

N o t i f i e r V i e w
N u l lS co p e

Nurrfber
NumberLine

O b je c t
Gb jec tMem ory
Gbje c tW rap pe r
GldChangeSe t

O l d l i g r i s
Gpa que lmage

Gpti mi zedLi ne I n f o r m a t i o n ! ab l e
G rd er e dC o l l e c t i o n

GrderedCol l e c t i o n I n s p e c to r
Grdere dDi ther
OSErrorHolder

GSHandle
QtherChange

G t h e r C h a n g e s V i e w
PA

PA 12
PA12G

PA6
P A 6 1 2
P A 6 3
P A 6 6
PAEK
P ain t

P a i n t P o l i c y
P a in tR e n d er er

P a l e t t e

□ I

Figure 41: Datatype
T h e d a t a t y p e a t t r i b u t e (F i g u r e 4 1) i s a S m a l l t a l k c l a s s . A p r o p e r t y c a n s e l e c t a n y S m a l l t a l k c l a s s t o r e p r e s e n t

t h e v a l u e . T h e o r e t i c a l l y , t h e a t t r i b u t e s h o u l d b e a t y p e , n o t a c l a s s . S t a n d a r d S m a l l t a l k d o e s n o t d i s t i n g u i s h

t y p e s b e y o n d a s i n g l e c l a s s s o poise u s e s a c l a s s . P o l y m o r p h i c c l a s s e s , o f t h e s a m e t y p e , w h i c h d o n o t s h a r e

a s u p e r c l a s s , c a n n o t b o t h r e p r e s e n t a p r o p e r t y s i n c e c u r r e n t l y o n l y o n e c l a s s c a n b e s e l e c t e d .

172

Object -O riented Softw are R epresentation o f Polym er M aterials Inform ation in Engineering Design

I f t h e d a t a o f t h e p r o p e r t y c a n a b s t r a c t i n t o h i s t o g r a m s t h e n t h e “ N o t C o l l e c t a b l e ” a t t r i b u t e (F i g u r e 4 2) c a n b e

t u r n e d o f f . T h e p o l y m e r a b s t r a c t i o n m e c h a n i s m a n d t h e Comparator c h e c k t h i s b i n a r y f l a g . S t r i c t l y i t i s a n

a t t r i b u t e o f t h e p r o p e r t y ’ s d a t a t y p e , n o t o f t h e p r o p e r t y , b u t t h e d e v e l o p m e n t o f P O I S E d i d n o t a d d r e s s u s e r

d e f i n e d d a t a t y p e s f o r e n g i n e e r i n g v a l u e s .

Interval = 3000
su g g e st | -----------

Not Co I lectab le ■ I nv is ib le
Attributes

Comment Methods

Figure 42: Interval, not-collectable, and invisible

T h e f i e l d s i n t h e P ropertyE dito r a r e i m m e d i a t e l y a c t i v e . C h a n g i n g t h e i n t e r v a l w i l l c a u s e a l l h i s t o g r a m s o n

t h e p r o p e r t y t o u p d a t e . A n y Comparators d i s p l a y i n g t h e p r o p e r t y w i l l a l s o u p d a t e . T h e i m m e d i a t e f e e d b a c k

c a n m a k e t h e s e l e c t i o n o f a n i n t e r v a l m u c h e a s i e r , a n d a l l o w s t h e u s e r t o m o d i f y t h e e m p h a s i s o f a p r o p e r t y

h i s t o g r a m (§ 3 . 7 . 1) . W h e n w o r k i n g o n a p a r t i c u l a r d e s i g n , t h e e m p h a s i s o f s p e c i f i c p r o p e r t i e s i s d i f f e r e n t .

C h a n g i n g t h e i n t e r v a l c a n r e f l e c t t h e d i f f e r e n t e m p h a s i s .

T h e “ I n v i s i b l e ” a t t r i b u t e p r e v e n t s v a r i o u s P O I S E i n t e r f a c e s d i s p l a y i n g t h e p r o p e r t y a s a n o p t i o n . M a n y

p r o p e r t i e s t h a t g r a d e s d e s c r i b e a r e o f n o i n t e r e s t t o a d e s i g n e r w i t h a p a r t i c u l a r d e s i g n p r o b l e m . R e m o v i n g

t h e s e p r o p e r t i e s f r o m v i e w l e t s t h e d e s i g n e r f o c u s o n t h e p r o p e r t i e s o f i n t e r e s t .

T h e s t r i n g d e s c r i b i n g t h e p r o p e r t y i s v e r y b r i e f , e n s u r i n g e a s y d i s p l a y t h r o u g h t h e i n t e r f a c e s . A c o m p l e t e

d e s c r i p t i o n o f t h e m e a n i n g o f a p r o p e r t y c a n t a k e a l a r g e s e c t i o n o f t e x t . T h e “ C o m m e n t ” b u t t o n p r o v i d e s

j u s t s u c h a s p a c e . A l t h o u g h t h e e x a m p l e i n F i g u r e 4 3 i s o n l y d i s p l a y i n g a s i n g l e l i n e , t h e c h i l d - w i n d o w i s

c a p a b l e o f u n l i m i t e d t e x t .

I _ j o o i i e c c a D i e _ _ _ _ _ _ _ _ j v i s i b l e _

Comment I Methods I Remove

j o u n g s m od u l u s t e s t e d a t a s t r a i n r a te o f 1 mm per mi nute .

Figure 43: Comment, method and remove

P r o p e r t i e s d e s c r i b e c l a s s e s . T h e l i s t o f c l a s s e s t h i s p r o p e r t y d e s c r i b e s i s g i v e n i n a l i s t s u b - v i e w . I n

F i g u r e 4 0 t h e p r o p e r t y d e s c r i b e s t h e c l a s s Polymer. T h e l i s t d o e s n o t i n c l u d e c l a s s e s i n h e r i t i n g t h e p r o p e r t y

f r o m Polymer. A l t e r n a t i v e l y , t h e p r o p e r t y c o u l d l i s t a n o r t h o g o n a l c l a s s . T h e “ A d d D o m a i n C l a s s ” a d d s t h e

p r o p e r t y t o a c l a s s . T h e b u t t o n l i s t s t h e o r t h o g o n a l c l a s s e s a n d a s e l e c t i o n t o o p e n t h e H ierarchyE ditor. B y

173

()bject -O riented Softw are R epresentation o f Polym er M aterials Inform ation in Engineering Design

d e f i n i t i o n , a p r o p e r t y c a n n o t b e l o n g t o b o t h a n o r t h o g o n a l c l a s s a n d a t a x o n o m i c c l a s s . T h e v i e w w i l l n o t

a d d a p r o p e r t y t o a n i n c o n s i s t e n t c l a s s u n t i l t h e o t h e r o r t h o g o n a l c l a s s r e m o v e s t h e p r o p e r t y .

A c l a s s r e m o v e s a p r o p e r t y b y s e l e c t i n g t h e c l a s s i n t h e l i s t . A r e m o v a l o p t i o n i s f o u n d i n t h e m e n u o f t h e

l i s t . A p r o p e r t y c a n b e r e m o v e d f r o m t h e w h o l e d o m a i n b y s e l e c t i n g t h e “ R e m o v e ” b u t t o n (F i g u r e 4 4) . N o t

o n l y d o a l l c l a s s e s r e m o v e t h e p r o p e r t y b u t a l s o t h e Property c l a s s r e m o v e s t h e p r o p e r t y f r o m a l i s t o f a l l

a s s i g n e d d o m a i n p r o p e r t i e s .

u a i a i y p e Numi>er I

Add Domain C lass Fibre
iFi lm

UsedBy >
POISE h i era rc hy 1

: J Polymer

Interval = 3 0 0 0
su g g est | ----------

± 1

ZJ

Figure 44: Add to orthogonal classification / remove from polymer classification
Polym er Class Bromser

------------------------------ 1 V

> Ins tance I > c l a s s

Density
Water absorption (23oC-sat .) 1L
Young's modulus (sec. 1 mrn/rniti)
Strain at yield (50mm/min)

I iT a stTc i'tiiPërRas s ~
J yMod
±1 yMod:

^elastic! tyPerMass
‘s e l f yMod / (se l f volume * s e l f density)

Property M ethod Bromser 10101
Vicat B /5 0 (SON)
Vicat Softening Point (Lucas Ê1 .2)
Viscosity coeff.
V iscosity-shear rate
V ater absorption (23oC -sat.) 11
"Water vapour permeability
Young’s modulus (s^c. Imm/min)

e l a s t i c i t y P e r M a s s
yMod:
yMod

instance c la ss

e lastic i tyPerMass
‘s e l f yMod / (se l f volume * s e l f density)^

Figure 45: Property method browser

T h e P roperty i s a s p e c i a l pto (§ 4 . 4 . 3) . E a c h Property h a s a s i n g l e i n s t a n c e v a r i a b l e . T h e d e f a u l t b e h a v i o u r

i s t w o m e t h o d s . A n accessor; m e t h o d r e t r i e v e s t h e c o n t e n t s o f t h e i n s t a n c e v a r i a b l e , a n d a n updator t o s e t

t h e c o n t e n t s . B o t h u s e t h e s y m b o l n a m e o f t h e Property, t h e updator a d d i n g a c o l o n a s i s t h e c o n v e n t i o n f o r

m e t h o d s w i t h o n e a r g u m e n t . T h e Property m e t h o d s f o r Y o u n g ’ s m o d u l u s s h o w n i n F i g u r e 4 5 (b o t t o m

174

Object -O riented Softw are Representation o f Polym er M aterials Inform ation in Engineering Design

w i n d o w) a r e t h e accessor: (yMod), updator (yMod:) a n d a u s e r d e f i n e d b e h a v i o u r e las tic ity P erM ass , a u n i t

o f e n e r g y a b s o r p t i o n .

Y o u n g ’ s m o d u l u s i s a p r o p e r t y o f t h e Polymer c l a s s . W h e n a p r o p e r t y c o m p i l e s a b e h a v i o u r , t h e b e h a v i o u r

i m m e d i a t e l y i n s t a l l s o n t h e Polymer c l a s s . F i g u r e 4 5 s h o w s t h e m e t h o d i n Polymer t h r o u g h a s t a n d a r d

S m a l l t a l k b r o w s e r (t o p w i n d o w) . T h e b r o w s e r g r o u p s p r o t o c o l s , n a m i n g e a c h g r o u p a n d l i s t i n g t h e n a m e s i n

t h e t o p - l e f t l i s t . A l l t h e m e t h o d s f r o m t h e Y o u n g ’ s m o d u l u s p r o p e r t y a r e t o g e t h e r u n d e r t h e n a m e o f t h e

p r o p e r t y .

5.8 Transcript
T h e t r a n s c r i p t p a r t o f t h e POISEsession w i n d o w p r o v i d e s t h e d e s i g n e r w i t h a c o m p u t a t i o n a l i n t e r f a c e .

EBA - added to Clipboard POISEsession i

POISE
Polymer

Thermoplast ic
Amorphous

ABS
ASA
ASAPC
CA
EBA
EvJf
MABS

PAF
PBTAS/
PC

PCM

W e l c o m e To POISE

POISEsession I

^ W e l c o m e To POISE
se l f
EBA

C om parator

Domain Properties

Ml
J21J

Domain Hierarchy C om parator

Transcript- selecting abstract polymer
for clipboard

Figure 47: Transcript- self
binds to clipboard contents

Figure 46:

A c c e s s t o o b j e c t s f o r c o m p u t a t i o n i s t h r o u g h a c l i p b o a r d . I n F i g u r e 4 6 , t h e a b s t r a c t p o l y m e r c l a s s eba i s

p l a c e d o n t h e c l i p b o a r d b y s e l e c t i n g t h e n a m e i n t h e h i e r a r c h y . T h e Conparator c a n a l s o p l a c e p o p u l a t i o n s

o f p o l y m e r s o n t h e c l i p b o a r d . T h e c l i p b o a r d n o t i f i e s t h e u s e r w h e n e v e r a n o b j e c t i s p u t t h e r e b y o p e n i n g a

s m a l l N o tif ie r w i n d o w w i t h t h e p r i n t - s t r i n g o f t h e o b j e c t , a n d t h e w o r d s ‘ a d d e d t o C l i p b o a r d ’ .

T h e v a r i a b l e ‘ s e l f ’ a u t o m a t i c a l l y b i n d s t o t h e o b j e c t o n t h e c l i p b o a r d , w h e n c o d e e v a l u a t e s i n t h e

T ran sc rip t. I n F i g u r e 4 7 c o d i n g ‘s e l f r e t u r n s t h e o b j e c t EBA. T h e T ran sc rip t p r i n t s t h e p r i n t - s t r i n g o f

t h e r e t u r n i n g o b j e c t .

175

Object -O riented Softw are R epresentation of Polym er M aterials Inform ation in Engineering Design

PO ISEsession [0 1 0 1

l o p l a s t i c

W e l c o m e To POISE
s e l f
EBA
P r o s p e c t C l a s s e s := S e t w i t h : s e l f

P r o s p e c t C l a s s e s i s u n de c la i r ed . Do you w a n t to add It to th e POISE Cl ipboard?

I n 2 I
EBA
EVA
MABS

PAF
PBTA S/

Figure 48:

Comparator Clipboard T
Domain Properties

Transcript- self is EBA, then select variable for clipboard, changes self
POISEsession 10101

^ W e l c o m e To POISE

I s e l f
EBA

P r o s p e c t C l a s s e s ;= S e t w i t h : s e l f
S e t (EBA)
s e l f
EBA

m
Comparator

n n m A in P r n n A r t iA «
Figure 49: Transcript- define your own variables

PO ISEsession 10101

^ ProspectClasses := Set with: s e l f
S e t (EBA)
I s e l f
* EBA

se l f
S e t (EBA)
ProspectClasses
S e t (EBA)

ConporatDr

Figure 50: Transcript- self and ProspectClasses bound to Set with EBA

A n y v a r i a b l e t h e T ran sc rip t d o e s n o t r e c o g n i s e r a i s e s a N o tif ie r (F i g u r e 4 8) a s k i n g i f t h e v a r i a b l e i s t o b e

‘ a d d e d t o t h e poise C l i p b o a r d ’ . T h e c l i p b o a r d c a n r e c o r d a n u m b e r o f d i f f e r e n t o b j e c t s u n d e r d i f f e r e n t

n a m e s , a n d o n e ‘ a c t i v e ’ o b j e c t u n d e r t h e n a m e “ C l i p b o a r d ” . T o g e t h e r w i t h g l o b a l v a r i a b l e s , t h e c l i p b o a r d

f o r m s t h e v a r i a b l e s c o p e o f t h e c o d e c o m p i l e d i n t h e T ran sc rip t. I n F i g u r e 4 8 , a v a r i a b l e ProspectC lasses

a s s i g n s t o a s e t w i t h s e l f (t h e E B A) . N o t r e c o g n i s i n g t h e v a r i a b l e ProspectC lasses, t h e u s e r i s g i v e n t h e

o p p o r t u n i t y t o a d d i t t o t h e c l i p b o a r d .

176

Object -Oriented Software Representation of Polymer Materials Information in Engineering Design

A f t e r a s s i g n i n g a v a r i a b l e , t h e c l i p b o a r d ’ s a c t i v e v a r i a b l e i s l e f t u n c h a n g e d (e g s t i l l EBA). T h e a c t i v e v a r i a b l e

c h a n g e s f r o m t h e v a r i a b l e ‘ C l i p b o a r d ’ t o a n o t h e r v a r i a b l e (e g ProspectC lasses) b y s e l e c t i n g t h e b u t t o n

c u r r e n t l y m a r k e d ‘ C l i p b o a r d ’ (F i g u r e 4 9) . T h e v a r i a b l e s e l f b i n d s t o t h e v a l u e i n P rospectC lasses a n d t h e

b u t t o n d i s p l a y s t h e n e w a c t i v e v a r i a b l e ’ s n a m e , i n F i g u r e 5 0 .

5.9 Summary
T h e w a l k t h r o u g h i l l u s t r a t e s t h e f u n c t i o n a l i t y b u i l t i n t o POISE a s p r e s e n t e d t o t h e d o m a i n e x p e r t . T h e d o m a i n

e x p e r t c a n d e f i n e n e w s c h e m a c o m p o n e n t s : g r a d e s , p r o p e r t i e s a n d c l a s s e s . T h e u s e r c a n r e - d i s t r i b u t e a n d r e ­

d e f i n e a n y o f t h e s e c o m p o n e n t s . W h i l e POISE c h a n g e s , t h e e f f e c t s o f t h e s e c h a n g e s i m m e d i a t e l y a f f e c t t h e

i n f e r e n c e m e c h a n i s m s i n c l u d i n g t h e S m a l l t a l k s t a n d a r d i n h e r i t a n c e o f g r a d e p r o p e r t i e s a n d t h e POISE s p e c i f i c

a b s t r a c t i o n o f a b s t r a c t p o l y m e r b e h a v i o u r .

T h e Comparator, a l s o i l l u s t r a t e d , i s a w i n d o w f o r b r o w s i n g a b s t r a c t p o l y m e r b e h a v i o u r . T h e f o l l o w i n g

c h a p t e r d i s c u s s e s S p e d d i n g ’ s u s e o f t h i s w i n d o w t o c o n t r a s t t h e p o l y m e r f a m i l i e s w h i l e i n v e s t i g a t i n g

a p p r o p r i a t e c l a s s i f i c a t i o n .

T h e POISEsession l e t s t h e d e s i g n e r e v o l v e a c o m p l e x q u e r y i n a T ra n sc rip t, a n d a s i m p l e e x a m p l e i s g i v e n .

P O I S E r e c o r d s t h e s t a t e o f a n y a c t i v i t y i n t h e Workbase w h e n t h e d e s i g n e r l e a v e s t h e s e s s i o n a n d r e - i n s t a t e s

t h e s e s s i o n w h e n t h e d e s i g n e r r e t u r n s . T h e d e s i g n e r c a n c o n t i n u e d e v e l o p i n g t h e c o m p l e x d e s i g n q u e r i e s ,

s e a r c h e s , s h o r t l i s t s , a n d v i e w s o n p o l y m e r s o n r e t u r n t o t h e s e s s i o n .

177

Object -Oriented Software Representation o f Polymer Materials Information in Engineering Design

178

O bject -O riented Softw are R epresentation o f Polym er M aterials Inform ation in Engineering Design

Chapter 6 Using POISE to Analyse the Polymer Domain
S p e d d i n g * u s e s t h e POISE a p p l i c a t i o n d u r i n g h e r a n a l y s i s o f t h e p o l y m e r d o m a i n . A l t h o u g h h e r o b j e c t i v e o f

d e t e r m i n i n g a n a p p r o p r i a t e c l a s s i f i c a t i o n d i f f e r s f r o m t h e o b j e c t i v e s o f a d e s i g n e r , t h e y b o t h r e q u i r e a s i m i l a r

a n a l y s i s o f t h e d o m a i n , w h i c h i d e n t i f i e s s i m i l a r i t i e s a n d d i f f e r e n c e s b e t w e e n p o l y m e r g r a d e s . A n u m b e r o f

t h e r e l a t i o n s h i p s a n d c h a r a c t e r i s t i c s o f t h e p o l y m e r d o m a i n s h e r e p o r t s f i - o m h e r a n a l y s i s i l l u s t r a t e d i f f e r e n t

w a y s o f u s i n g t h e p o is e t o o l s n o t i n i t i a l l y c o n c e i v e d w h e n t h e y w e r e d e s i g n e d . T h e s e w a y s o f u s i n g t h e t o o l s

a r e l i k e l y t o b e n e f i t t h e d e s i g n e r s i n c e t h e a n a l y s i s i s s i m i l a r .

T h e Comparitor w a s i n i t i a l l y i n t e n d e d t o d e t e r m i n e r e l a t i o n s h i p s b e t w e e n a b s t r a c t p o l y m e r s . F o r e x a m p l e ,

S p e d d i n g i l l u s t r a t e s t h e t e n s i l e s t r e n g t h o f Thermosets i s g e n e r a l l y l e s s t h a n t h e r m o p l a s t i c s . U n f o r t u n a t e l y ,

t h i s p a r t i c u l a r a p p l i c a t i o n o f t h e Comparitor w a s n o t a s e f f e c t i v e a s e x p e c t e d a t e x t e n d i n g t h e c l a s s i f i c a t i o n

b e y o n d t h e p o l y m e r f a m i l i e s . O f t e n t h e n a t u r e o f t h e d a t a o b t a i n e d f r o m CAMPUS r e s t r i c t e d f u r t h e r

c o m p a r i s o n s . A n a l y s i s b e t w e e n a m o r p h o u s a n d p a r t i a l l y C ry s ta lin e s h o w e d f e w e r d i f f e r e n c e s t h a n

e x p e c t e d w h e r e a s t h e Comparitor d i d d i s t i n g u i s h e s c l a s s e s a t t h e c h e m i c a l l e v e l . T h e s t a n d a r d p o l y m e r t e s t s

m a y n o t m e a s u r e t h e e f f e c t o f c r y s t a l i n i t y , p o s s i b l y t o p r e v e n t c a p r i c i o u s n e s s . D e s p i t e t h e i n a b i l i t y t o f u r t h e r

c l a s s i f y , S p e d d i n g f o u n d o t h e r u s e s f o r t h e c o m p a r i s o n s .

A l t h o u g h CAMPUS p o p u l a t e s POISE w i t h o v e r 1 0 0 0 p o l y m e r s , e a c h d e s c r i b i n g 5 0 p r o p e r t i e s , t h e r e a r e a l a r g e

n u m b e r o f Polymer c l a s s e s a n d t h e g r a d e s a r e n o t e v e n l y d i s t r i b u t e d a m o n g s t t h e m . A d d i t i o n a l l y , m a n y

p r o p e r t i e s a r e u n i v e r s a l l y u n p o p u l a r , i e o f t e n s p a r s e o f d a t a , w i t h o n l y 1 2 g i v i n g a d e q u a t e p o p u l a t i o n s .

F u r t h e r , t h e s u p p l i e r s o f p o l y m e r s p r o d u c e g r a d e s f o r s p e c i f i c m a r k e t s . S u p p l i e r s g e n e r a t e m o r e g r a d e s f o r

p r o f i t a b l e m a r k e t s , t h e r e f o r e t h e n u m b e r o f g r a d e s w i t h a c e r t a i n p r o p e r t y p r o f i l e i s n o t a m e a s u r e o f t h e

p o l y m e r ’ s t y p i c a l p r o p e r t i e s b u t a m e a s u r e o f t h e m a r k e t t h a t u s e s t h e p o l y m e r . T h e r e f o r e , t h e a b s t r a c t

b e h a v i o u r o f Polymers, f o r e x a m p l e , i s h i g h l y d i s t o r t e d b y t h e b e h a v i o u r o f Polyamides, w h i c h a r e h i g h l y

p o p u l a t e d . T h e Comparitor d o e s n o t h i d e t h i s b i a s , b u t t h e m e d i a n o r a v e r a g e v a l u e f r o m a n a b s t r a c t p r o p e r t y

w i l l h i d e t h e d i s t o r t i o n . A c o m p a r i s o n o f t h e p o p u l a t i o n s o f Polyamide a n d a l l p o l y m e r s f o r a n y p r o p e r t y w i l l

s h o w Polyamide a s a s t r o n g c o n t r i b u t o r .

A l t h o u g h p o p u l a r m a r k e t s d i s t o r t t h e t o t a l n u m b e r o f g r a d e s w i t h a p a r t i c u l a r p r o p e r t y p r o f i l e s , t h e r a n g e o f

p r o p e r t y p r o f i l e s o f g r a d e s i s r e a s o n a b l y r e p r e s e n t e d . I t i s p o s s i b l e a m a r k e t d r i v e n s o u r c e o f d a t a , s u c h a s

p o l y m e r s f o r t h e a u t o m o t i v e i n d u s t r y , w i l l o n l y r e p r e s e n t p a r t i c u l a r p r o p e r t y p e r f o r m a n c e p r o f i l e s . A r a n g e

o f d i f f e r e n t m a r k e t s f o r p o l y m e r s e n s u r e s t h e d a t a s o u r c e r e p r e s e n t s a r a n g e o f p r o p e r t y p r o f i l e s .

179

O bject -O riented Softw are R epresentation o f Polym er M aterials Inform ation in Engineering Design

S p e d d i n g i l l u s t r a t e s a n e x a m p l e o f a s i g n i f i c a n t l y d i f f e r e n t a p p l i c a t i o n o f p o l y m e r s w h i l e u s i n g t h e

o r t h o g o n a l c l a s s i f i c a t i o n i n poise. S p e d d i n g u s e d t h e s e a r c h u t i l i t y t o f i n d t h e w o r d s “ f i l m ” a n d “ f i b r e ” i n t h e

t e x t d e s c r i p t i o n o f CAMPUS g r a d e s . B e s i d e s t h e c o m p l i c a t i o n o f l o c a t i n g “ F i b r e - r e i n f o r c e m e n t ” , t h e s e a r c h

l o c a t e d a s i g n i f i c a n t n u m b e r o f t h e s e g r a d e s . S p e d d i n g d e c l a r e d a n o r t h o g o n a l c l a s s f o r f i l m s , i n i t i a l l y w i t h

n o p r o p e r t i e s . S h e t h e n a d d e d e a c h o f t h e g r a d e s l o c a t e d w i t h t h e “ f i l m ” t e x t t o t h e o r t h o g o n a l c l a s s Film.

W i t h t h e g r a d e s c l a s s i f i e d u n d e r Film t h e Comparitor c a n d i s p l a y j u s t t h o s e g r a d e s . F r o m t h e Film c l a s s ,

S p e d d i n g f o u n d t h e y g e n e r a l l y h a d r e l a t i v e l y p o o r m e c h a n i c a l p r o p e r t i e s . A c l a s s w i t h a r a n g e o f a p p l i c a t i o n s

w i l l i n c l u d e g r a d e s w i t h a n e x t r e m e i n a p r o p e r t y ’ s p e r f o r m a n c e , a n d g r a d e s w h e r e t h e s a m e p r o p e r t y

p e r f o r m a n c e i s n o t s i g n i f i c a n t , w h i c h w i l l d i s t r i b u t e t h e p r o p e r t y . T h e l a c k o f d a t a p r e v e n t e d a n y f u r t h e r

g e n e r a l i s a t i o n , b u t a g a i n t h e Comparitor a n d t h e c l a s s i f i c a t i o n d e m o n s t r a t e d t h e i r r o l e s i n d e t e r m i n i n g t h i s

c a s e .

A d d i t i v e s a r e a n o t h e r d i s t o r t i n g e f f e c t o n t h e a b s t r a c t i o n s . S o m e p r o p e r t i e s a r e m o r e s i g n i f i c a n t l y a f f e c t e d b y

t h e i r a d d i t i v e s t h a n t h e p o l y m e r c h e m i s t r y . F u r t h e r o r t h o g o n a l c l a s s i f i c a t i o n c o u l d r e m o v e t h i s f a c t o r , b u t

o f t e n t h e e x a c t c o m p o s i t i o n o f a d d i t i v e s i s a p o l y m e r s u p p l i e r ’ s s e c r e t . S p e d d i n g h i g h l i g h t e d t h e i n c l u s i v e

n a t u r e o f t h e p o l y m e r c l a s s i f i c a t i o n p r e v e n t s t h e Comparitor f r o m e x c l u d i n g a n o r t h o g o n a l c l a s s o f

p o l y m e r s , w h i c h i s n e c e s s a r y t o r e m o v e a d i s t o r t i n g f a c t o r . F o r e x a m p l e , t h e Comparitor d o e s n o t s u p p o r t

b r o w s i n g f o r “ s t r o n g e s t p o l y m e r n o t g l a s s f i l l e d ” .

W h i l e b r o w s i n g a p r o p e r t y w i t h t h e Comparitor, S p e d d i n g f o u n d t h e t e x t c o m m e n t s u s e f u l f o r r e l a t i n g t h e

e x t r e m e g r a d e s t o o t h e r p r o p e r t i e s . T h i s i s h o w s h e d e t e r m i n e d t h e e f f e c t o f a d d i t i v e s . T h e t e x t c o m m e n t s c a n

a l s o i n c l u d e t h e a p p l i c a t i o n o f t h e g r a d e , a n d t h e r e f o r e a t y p e o f p r o p e r t y p r o f i l e , o r e v e n s p e c i f i c p r o p e r t y

p r o f i l e s . F o r e x a m p l e , w h i l e b r o w s i n g t h e d e n s i t y o f P olyvynalch lo rides, t h e t e x t o f g r a d e s w i t h h i g h

d e n s i t y h a d l e a d s t a b i l i s a t i o n . I n t h e c l a s s o f Polystyrene h i g h d e n s i t y g r a d e s w e r e n o t e d f o r s t a b i l i t y a n d

r i g i d i t y i m p l y i n g a h i g h Y o u n g ’ s m o d u l u s , w h i c h w a s c o n f i r m e d i n a n o t h e r c o m p a r i s o n . B y r e l a t i n g t h e

d i f f e r e n t i n t e r f a c e t o o l s , S p e d d i n g i n f e r r e d d i f f e r e n t t y p e s o f p r o p e r t y c o r r e l a t i o n s , s u c h a s a s p e c i f i c

c o r r e l a t i o n b e t w e e n d e n s i t y a n d Y o u n g ’ s m o d u l u s f o r PVCs.

I n a n o t h e r c a s e , t h e Comparitor c l e a r l y i d e n t i f i e d m i s s - p l a c e d g r a d e s a n d c l a s s e s . W h i l e i n v e s t i g a t i n g t h e

e x t r e m e i m p a c t s t r e n g t h s o f Polyethylene, S p e d d i n g f o u n d t h e t w o g r a d e s o f t h e pesu s u b c l a s s h a d a h i g h e r

i m p a c t s t r e n g t h . T h e t e x t c o n f i r m e d t h e y w e r e n o t a p o l y e t h y l e n e b u t a Polyethersulphone, w h i c h g i v e s a

h i g h e r i m p a c t s t r e n g t h .

180

O bject -O riented Softw are R epresentation o f Polym er M aterials Inform ation in Engineering Design

Chapter 7 Conclusions
T h e r e p r e s e n t a t i o n p r e s e n t e d f o c u s e s o n t h e c l a s s i f i c a t i o n a n d a b s t r a c t i o n o f p o l y m e r g r a d e s . C l a s s i f i c a t i o n

a n d a b s t r a c t i o n p r e c e d e a b d u c t i o n , a n i n f e r e n c e m e t h o d c o m m o n l y u s e d d u r i n g d e s i g n , w h i c h i n f e r s f a c t s

a b o u t m e m b e r s o f a c l a s s f r o m i n f o r m a t i o n a b s t r a c t e d f r o m t h e c l a s s . C o n c l u s i o n s a b o u t l a r g e v o l u m e s o f

i n f o r m a t i o n a r e i n f e r r e d f r o m a f e w a b s t r a c t f a c t s . T h e r e f o r e , b o t h c l a s s i f i c a t i o n a n d g e n e r a l i s a t i o n a r e

i n t r i n s i c t o t h e r e p r e s e n t a t i o n o f p o l y m e r m a t e r i a l s f o r d e s i g n . A l t h o u g h i n f o r m a t i o n r e p r e s e n t a t i o n

c o m m o n l y i n c l u d e s a c l a s s i f i c a t i o n , t h e s c h e m a i n POISE b u i l d s a c l a s s i f i c a t i o n a n d a b s t r a c t s g e n e r a l

p r o p e r t i e s f r o m t h e c l a s s i f i c a t i o n i n t o m a n y l e v e l s o f r e p r e s e n t a t i o n .

A n o b j e c t - o r i e n t e d s o f t w a r e m o d e l w a s a d o p t e d t o i m p l e m e n t POISE. T h e o b j e c t i s a h i g h l y a b s t r a c t

c o m p u t i n g e l e m e n t t h a t p r o v i d e s a n u m b e r o f b e n e f i t s t o k n o w l e d g e r e p r e s e n t a t i o n . B e h a v i o u r s h a r i n g

b e t w e e n o b j e c t s e n c o u r a g e s a b s t r a c t i o n a n d c l a s s i f i c a t i o n o f k n o w l e d g e a n d o b j e c t e n c a p s u l a t i o n s i m p l i f i e s

t h e e v o l u t i o n o f a k n o w l e d g e r e p r e s e n t a t i o n . C l a s s - i n s t a n c e l a n g u a g e s s p e c i a l i s e o n t h e c l a s s i f i c a t i o n o f

o b j e c t s , a n d S m a l l t a l k i s a n e x a m p l e . C l a s s - i n s t a n c e l a n g u a g e s i m p l e m e n t a s t r i c t c l a s s i f i c a t i o n f o r e x p l i c i t l y

d e s c r i b i n g s o f t w a r e , w h e r e a s r e a l c l a s s i f i c a t i o n i s s t e r e o t y p i c a l , a n d m a i n t a i n s a l e v e l o f g e n e r a l i t y . T h i s

d i f f e r e n c e r a i s e d t h e q u e s t i o n w h e t h e r t h e c l a s s - i n s t a n c e c l a s s i f i c a t i o n c a n r e p r e s e n t r e a l c l a s s i f i c a t i o n , o r i s

i t o n l y a s o f t w a r e d e s i g n m e c h a n i s m ?

T h e m a j o r i t y o f p o l y m e r g r a d e i n f o r m a t i o n d e p e n d s o n t h e g r a d e ’ s c h e m i s t r y , b u t t h e r e i s a l s o i n f o r m a t i o n

r e l a t i n g t o a d d i t i v e s , p r o c e s s i n g a n d a p p l i c a t i o n s o f t h e g r a d e . S i n c e a n i n s t a n c e i n h e r i t s f r o m o n e c l a s s ,

w h i c h d o m i n a t e s t h e i n s t a n c e ’ s b e h a v i o u r , a n i n s t a n c e c a n o n l y r e p r e s e n t d a t a f r o m o n e c l a s s o f i n f o r m a t i o n .

T h e r e f o r e , t h e c l a s s - i n s t a n c e l a n g u a g e c a n r e p r e s e n t s e p a r a t e o r t h o g o n a l p a r t s o f a g r a d e , b u t n o t a c o m p l e t e

r e p r e s e n t a t i o n o f a g r a d e b e c a u s e t h e c o m p l e t e g r a d e d o e s n o t b e l o n g t o a s i n g l e c l a s s i f i c a t i o n . T h e o b v i o u s

s o l u t i o n i s t o u n i t e t h e o r t h o g o n a l p a r t s i n t o a s i n g l e o b j e c t . T h e b e h a v i o u r o f t h i s o b j e c t d e p e n d s o n t h e

c o m p o n e n t s a n d n o t a c l a s s , t h e r e f o r e d o e s n o t f i t t h e c l a s s - i n s t a n c e m o d e l .

A s i n g l e m a t e r i a l s c l a s s i f i c a t i o n d o e s n o t d e f i n e a l l t h e i n f o r m a t i o n o n g r a d e s . T h e r e f o r e , t h e c l a s s - i n s t a n c e

r e l a t i o n s h i p i s t o o r e s t r i c t i v e f o r a n i n s t a n c e t o r e p r e s e n t a g r a d e . I n s t e a d a n u m b e r o f i n s t a n c e s f r o m d i f f e r e n t

c l a s s i f i c a t i o n s c o u l d c o n t r i b u t e t o a g r a d e r e p r e s e n t a t i o n , b u t t h i s d e p e n d s o n t h e l a n g u a g e s a b i l i t y t o t r a v e r s e

t h e s e o b j e c t b o u n d a r i e s t h r o u g h b e h a v i o u r s h a r i n g . POISE e n h a n c e s t h e b e h a v i o u r s h a r i n g i n S m a l l t a l k w i t h

a n o b j e c t c a p a b l e o f u n i f y i n g t h e b e h a v i o u r f r o m m u l t i p l e o b j e c t s , t h e r e b y e x t e n d i n g t h e l a n g u a g e s

r e p r e s e n t a t i o n a l a b i l i t y . T h i s u n i q u e o b j e c t i n h e r i t s t h e a b i l i t y t o s h a r e o t h e r o b j e c t ’ s b e h a v i o u r s f r o m t h e

c l a s s c a l l e d Enhancer.

181

O bject -O riented Softw are R epresentation o f Polym er M aterials Inform ation in Engineering Design

I m p r o v i n g t h e r e p r e s e n t a t i o n a l a b i l i t i e s o f a c l a s s - i n s t a n c e l a n g u a g e i s n o t t h e o n l y b e n e f i t o f t h e Enhancer.

A s p e c i a l i s a t i o n o f t h e Enhancer e x t e n d s t h e e m p a t h y b e t w e e n t h e o b j e c t s i t u n i f i e s . T h e Enhancer p r o v i d e s

b e h a v i o u r s h a r i n g t h a t d i f f e r s f r o m t h e e x p l i c i t d y n a m i c m e s s a g e s b e t w e e n i n d i v i d u a l o b j e c t s a n d d i f f e r s

f i - o m t h e s t a t i c i m p l i c i t b e h a v i o u r s h a r e d b e t w e e n c l a s s e s a n d g r o u p s o f i n s t a n c e s . T h e Enhancer p r o v i d e s

i m p l i c i t d y n a m i c e m p a t h y b e t w e e n i n d i v i d u a l o b j e c t s . T h e s e a r e g e n e r a l d e s c r i p t i o n s o f t y p e s o f b e h a v i o u r

s h a r i n g f i - o m t h e T r e a t y o f O r l a n d o ^ . T h e Enhancer i s t h e r e f o r e a g e n e r a l e n h a n c e m e n t t o t h e c l a s s - i n s t a n c e

p a r a d i g m .

L i k e t h e Enhancer, d e l e g a t i o n i s a n e x a m p l e o f i m p l i c i t d y n a m i c e m p a t h y b e t w e e n o b j e c t s . W o r k b y Z u c k e r

i d e n t i f i e s d e l e g a t i o n a s a n i m p o r t a n t r e p r e s e n t a t i o n a l t o o l f o r p r o t o t y p i n g d e s i g n . T h e r e f o r e , o p p o r t u n i t y

e x i s t s t o r e p r e s e n t d e s i g n p r o t o t y p i n g i n a c l a s s - i n s t a n c e l a n g u a g e u s i n g t h e Enhancer. O t h e r r e s e a r c h

c o m b i n i n g d e l e g a t i o n w i t h t h e c l a s s - i n s t a n c e r e l a t i o n s h i p c a l l s t h i s l a n g u a g e h y b r i d i s a t i o n , s i n c e t h e y a r e

n o r m a l l y c o n t r a r y a p p r o a c h e s c o n t e n d i n g f o r t h e r i g h t t o d e s c r i b e a n o b j e c t . T h e Enhancer i s a n

e n h a n c e m e n t s i n c e i t l e a v e s t h e e x i s t i n g S m a l l t a l k c l a s s - i n s t a n c e o b j e c t s u n a f f e c t e d b y t h e i n t r o d u c t i o n o f

i m p l i c i t d y n a m i c e m p a t h y . O b j e c t s m u s t e x p l i c i t l y p e r m i t i m p l i c i t - b i n d i n g , b y u s i n g t h e c l ie n t m e s s a g e

r a t h e r t h a n s e lf .

T h e Enhancer i s n o t e q u i v a l e n t t o d e l e g a t i o n . T h e n a m e s e l f a l w a y s r e f e r s t o t h e p r o x y o b j e c t t h a t o w n s a

b e h a v i o u r . I n d e l e g a t i o n , s e l f r e f e r s t o t h e d e l e g a t i n g o b j e c t . U s i n g t h e Enhancer, t h e p r o x y ’ s b e h a v i o u r

m u s t l o o k f o r t h e d e l e g a t i n g o b j e c t w i t h t h e m e s s a g e s e l f c l ie n t b e f o r e t h e r e i s a n y e m p a t h y . A l t h o u g h a n

a l t e r n a t i v e a p p r o a c h w a s i n v e s t i g a t e d , w h e r e a S m a l l t a l k c l a s s m o d e l s a p r o t o t y p e b y b e c o m i n g a n i n s t a n c e

o f i t s e l f , t h e u s e o f t h e c l ie n t m e s s a g e w a s n o t c o n s i d e r e d a p r o b l e m f o r e x p l o r a t i v e d e s i g n . T h e Enhancer’s

a b i l i t y t o r e - p r o g r a m t h e w a y i t h a n d l e s m e s s a g e s w a s a d o m i n a n t a d v a n t a g e o v e r t h e a l t e r n a t i v e .

A n i n i t i a l e x p e r i m e n t s u g g e s t s t h e Enhancer c a n s u p p o r t Z u c k e r ’ s o b j e c t i v e s o f m o d e l l i n g e x p l o r a t i v e d e s i g n

i n a c l a s s - i n s t a n c e l a n g u a g e s . I n t h i s e x p e r i m e n t , t h e c l a s s - i n s t a n c e s t r u c t u r e r e p r e s e n t e d c o n c r e t e k n o w l e d g e

o n m a t e r i a l s , p r o c e s s e s a n d g e o m e t r y w h i l e a n Enhancer r e p r e s e n t s t h e d e s i g n , w h i c h d y n a m i c a l l y e x p l o r e s

w a y s o f c o m b i n i n g t h e k n o w l e d g e . T h e POISEsession l e t s t h e d e s i g n e r e v o l v e a c o m p l e x q u e r y i n a

T ran sc rip t. A n e x a m p l e q u e r y , r e p o r t e d e l s e w h e r e ^ ” , t e s t e d t h e d e s i g n p r o p e r t y o f co st, a f u n c t i o n o f a l l t h e

p e r s p e c t i v e s . T h e t e s t d e s i g n w a s s p e c i a l i s e d b y r e f i n i n g t h e m a t e r i a l s p e r s p e c t i v e , t h u s d e m o n s t r a t i n g t h e

d y n a m i c b i n d i n g b e t w e e n d e s i g n a n d t h e p e r s p e c t i v e . E x p e r i m e n t s o t h e r t h a n c o s t w e r e h i n d e r e d b y t h e l a c k

o f a b s t r a c t k n o w l e d g e i n t h e p u b l i c d o m a i n t h a t c o m b i n e s i n f o r m a t i o n f i - o m d i f f e r e n t p e r s p e c t i v e s .

182

O bject -O riented Softw are Representation o f Polym er M aterials Inform ation in Engineering Design

A n o t h e r s p e c i a l i s a t i o n o f t h e Enhancer r e s o l v e s d e d u c t i v e i n h e r i t a n c e (§ 2 . 2 . 4) . T h e

Polym erD ataA hstraction i n h e r i t s a n y n a m e d p r o p e r t y f r o m t h e i n s t a n c e s o f a c l a s s , i n c l u d i n g a n y

o r t h o g o n a l p r o p e r t i e s t h e i n s t a n c e s m a y h a v e . T h e a b s t r a c t i o n b e h a v i o u r t h e n d e d u c e s a s i n g l e a b s t r a c t

r e p r e s e n t a t i o n o f t h e p r o p e r t y f r o m a l l t h e v a l u e s i t i n h e r i t s . T h e CombinedDataAbs t r a c t ion i s a s i m i l a r

o b j e c t , b u t i n f e r s a n a b s t r a c t r e p r e s e n t a t i o n f r o m o t h e r Polym erD ataA bstraction. I n t h e h i e r a r c h y , t h e

CombinedDataAbstraction i n f e r s t h e a b s t r a c t p r o p e r t i e s o f a s u p e r c l a s s f r o m i t s s u b c l a s s ’ s

Polym erD ataA bstractions. T h e Polymer c l a s s e s t h e m s e l v e s m a n i p u l a t e t h e i r m e s s a g e s s o t h e y i n h e r i t t h e i r

a b s t r a c t b e h a v i o u r f r o m e i t h e r a CombinedDataAbstraction o r a Polym erD ataA bstraction. T h e r e s u l t i s a

h i e r a r c h y o f a b s t r a c t p o l y m e r s t h a t g e n e r a l i s e p r o p e r t i e s t y p i c a l o f t h e g r a d e s t h e y c l a s s i f y , f r o m w h i c h t h e

d e s i g n e r c a n i n t e r p r e t t h e d e s i g n b e n e f i t s o f t h e c l a s s .

T h e d y n a m i c e m p a t h y o f t h e e n h a n c e r w a s a d i s t i n c t a d v a n t a g e w h e n e v o l v i n g t h e s c h e m a . T h e S m a l l t a l k

e n v i r o n m e n t m a y e v o l v e c l a s s i n h e r i t a n c e h i e r a r c h i e s , w h i c h h a s a c o n s e q u e n c e o n a b s t r a c t i o n . W h e n

Polymer c l a s s e s c h a n g e t h e i r i n h e r i t a n c e p a t t e r n s , t h e y a l s o c h a n g e t h e p a t t e r n o f a b s t r a c t i o n .

CombinedDataAbstraction d y n a m i c a l l y c o m p o s e t h e i r a b s t r a c t i o n s f r o m t h e s u b c l a s s e s , w h i c h e n s u r e s t h e

a b s t r a c t i o n s a r e a l w a y s c o n s i s t e n t w i t h t h e c l a s s i f i c a t i o n h i e r a r c h y .

S c h e m a e v o l u t i o n i n S m a l l t a l k i s a c o m p l e x m a n i p u l a t i o n t h a t s u b s t i t u t e s a l l a f f e c t e d c l a s s e s a n d i n s t a n c e s

w i t h a n e w m o d i f i e d c o p y . T h e d e v e l o p m e n t t o o l s f o r e v o l v i n g S m a l l t a l k c l a s s e s w e r e f o u n d h i g h l y

i n e f f i c i e n t , o f t e n r e p l a c i n g t h e s a m e h i e r a r c h i e s f o r e a c h c h a n g e . W h i l e s p e c i a l i s i n g t h e s e t o o l s f o r e v o l v i n g

t h e p o l y m e r c l a s s i f i c a t i o n , a n e w t y p e o f p r o t o c o l o b j e c t s w a s d e f i n e d t h a t i s i n d e p e n d e n t o f a p h y s i c a l

m o d e l . T h e s e p r o t o c o l s a r e i n d e p e n d e n t o f t h e c l a s s , w h i c h d e f i n e s t h e p h y s i c a l m o d e l o f i n s t a n c e s p r o t o c o l s

t h e r e f o r e t h e y d o n o t r e q u i r e r e - c o m p i l i n g w h e n t h e c l a s s s c h e m a c h a n g e s .

T h e i m p r o v e m e n t o n s c h e m a e v o l u t i o n w a s a b o n u s f e a t u r e o f t h e i n d e p e n d e n t p r o t o c o l s . T h e s e p r o t o c o l s

h a v e a r e p r e s e n t a t i o n a l r o l e a b s t r a c t l y d e s c r i b i n g p o l y m e r p r o p e r t i e s . A p a r t i a l t e m p l a t e o b j e c t , p to , c o l l e c t s

a n y s e t o f i n t e r a c t i n g i n d e p e n d e n t p r o t o c o l s . A PTO c o l l e c t s a r e - u s e a b l e s e t o f p r o t o c o l s t h a t m a y b e i n s t a l l e d

c o n s i s t e n t l y o n m a n y c l a s s e s . T h e PTO i n POISE r e p r e s e n t s p o l y m e r p r o p e r t i e s i n d e p e n d e n t o f Polymer c l a s s e s

a n d e n c a p s u l a t e s t h e c o m p u t i n g c o n c e p t s o f p r o t o c o l s w i t h a c o n c e p t f a m i l i a r t o t h e d o m a i n e x p e r t .

T h e PTOs t r a n s l a t e t h e c o n c e p t s o f t h e Polymer c l a s s a n d t h e p o l y m e r p r o p e r t y i n t h e Polymer d o m a i n t o t h e

c l a s s a n d p r o t o c o l s i n t h e s o f t w a r e d o m a i n . M o v i n g p r o p e r t i e s b e t w e e n c l a s s e s i s a t a x o n o m i c f i m c t i o n ,

w h i c h n o w h a s a n e q u i v a l e n t p r o c e s s i n t h e s o f t w a r e d o m a i n . P r e s e n t i n g a h i e r a r c h y p o p u l a t e d w i t h d o m a i n

c o n c e p t s , a n d w i t h o u t s o f t w a r e c o n c e p t s , l e t s t h e d o m a i n e x p e r t e v o l v e t h e c l a s s i f i c a t i o n . P r e s e n t e d

183

O bject -O riented Softw are R epresentation o f Polym er M aterials Inform ation in Engineering Design

appropriately, the domain expert can create and position specific properties in classes and specific classes

into a hierarchy, and POISE translates these actions into a manipulation of the software schema.

POISE s u p p o r t s t h e c l a s s i f i c a t i o n p r o c e s s w i t h a v i s u a l a n a l y s i s t o o l c a l l e d t h e Comparator. T h e Comparator i s

a w i n d o w f o r b r o w s i n g a b s t r a c t p o l y m e r b e h a v i o u r , w h i c h d i s p l a y s t h e d a t a a b s t r a c t e d b y t h e c l a s s i f i c a t i o n

h i e r a r c h y a s h i s t o g r a m s . S p e d d i n g ’ s r e s e a r c h ^ u t i l i s e s t h e Comparator e x t e n s i v e l y t o a n a l y s e t h e p o l y m e r

d o m a i n f o r s i m i l a r i t i e s a n d d i f f e r e n c e s b e t w e e n c l a s s e s o f p o l y m e r g r a d e s . T h e Comparator s h o w e d t h a t

a d d i t i v e s h a d a d i s t o r t i n g e f f e c t o n t h e a b s t r a c t i o n s s u p p o r t i n g t h e n e e d f o r o r t h o g o n a l c l a s s e s . U n f o r t u n a t e l y

t h e d a t a o n p o l y m e r s d i d n o t c o n s i s t e n t l y i n d i c a t e t h e n a t u r e o f a d d i t i v e s , a n d a h i g h m a j o r i t y h a d s o m e k i n d

o f a d d i t i v e , s o c l a s s i f y i n g t o r e m o v e t h e e f f e c t o f a d d i t i v e s f i - o m ‘ n a t u r a l ’ p o l y m e r s w a s n o t p o s s i b l e . S i n c e

t h e a d d i t i v e c l a s s e s w e r e n o t c r e a t e d , t h e Comparator w a s n e v e r p r o g r a m m e d t o e x c l u d e o r t h o g o n a l c l a s s e s .

F o r e x a m p l e , t h e Comparator d o e s n o t s u p p o r t b r o w s i n g f o r “ s t r o n g e s t p o l y m e r n o t g l a s s f i l l e d ” . T h e r e i s n o

t e c h n i c a l r e a s o n p r e v e n t i n g o r t h o g o n a l c l a s s e x c l u s i o n .

T h e c o n c u r r e n t r e s e a r c h i n t o a p p r o p r i a t e c l a s s i f i c a t i o n s t e s t e d a n d a d v a n c e d poise a s a c o m p l e t e s y s t e m .

O r t h o g o n a l c l a s s e s , n e w p r o p e r t i e s a n d n e w g r a d e s w e r e a d d e d f o r Films a n d F ib res a n d ‘ U s e d b y Lucas’.

T h e a b s t r a c t i o n m e c h a n i s m a u t o m a t i c a l l y u p d a t e d t o i n c l u d e t h e d e s c r i p t i v e p r o p e r t i e s c o n t r i b u t e d b y t h e

n e w o r t h o g o n a l c l a s s e s a n d p r o p e r t i e s , s o f o r e x a m p l e , t h e Comparator c o u l d d i s p l a y t h e Polymer c l a s s

a g a i a s t f i l m te a r - s t r e n g th s f r o m g r a d e s e n h a n c e d w i t h t h e p r o p e r t y , a l t h o u g h t h e p o l y m e r h i e r a r c h y d o e s

n o t d e f i n e t h e p r o p e r t y .

POISE i m p o r t e d t h e b u l k o f t h e d a t a f r o m CAMPUS. T h e n a t u r e o f d a t a f r o m CAMPUS i d e n t i f i e d s o m e p r o b l e m s

f o r d i s t i n g u i s h i n g c l a s s e s a t d i f f e r e n t l e v e l s o f g e n e r a l i s a t i o n . T h o u g h a p r o p e r t y d i s t i n g u i s h e d p o l y m e r s a t

t h e c h e m i c a l l e v e l , t h e y d i d n o t d i s t i n g u i s h t h e p o l y m e r s s i g n i f i c a n t l y a t h i g h e r l e v e l s o f g e n e r a l i t y , w h i c h

c h a r a c t e r i s e d t h e m a t e r i a l s t r u c t u r e . N o o t h e r p o l y m e r r e p r e s e n t a t i o n r e p r e s e n t s m a t e r i a l s a t d i f f e r e n t l e v e l s

o f g e n e r a l i s a t i o n . C o n s e q u e n t l y , t h e p r o p e r t i e s c u r r e n t l y d e s c r i b i n g p o l y m e r s t e n d t o g e n e r a l i s e o v e r a l l

p o l y m e r s , a n d o f t e n o v e r a l l m a t e r i a l s . T h e s e g e n e r a l p r o p e r t i e s a r e u n a b l e t o d i s t i n g u i s h t h e s p e c i f i c

s t r u c t u r a l d i f f e r e n c e s i n p o l y m e r m a t e r i a l s , h e n c e c l a s s i f i c a t i o n b y s t r u c t u r e a r e n o t d i s t i n g u i s h e d b y t h e s e

g e n e r a l p r o p e r t i e s .

A l o n g w i t h a p o p u l a t i o n o f o v e r 1 0 0 0 g r a d e s i m p o r t e d f r o m CAMPUS, n e w Polymer c l a s s e s a n d p r o p e r t i e s

w e r e g e n e r a t e d , w h i c h t e s t e d t h e d a t a b a s e m a n a g e m e n t . POlSE’s d a t a b a s e f a c i l i t y s t o r e d a l l t h e n e w o b j e c t s ,

a n d t h e s t o r a g e r e m a i n e d t r a n s p a r e n t t o a l l POISE a c t i v i t i e s , t h e r e b y h i d i n g m e m o r y m a n a g e m e n t i s s u e s f r o m

t h e k n o w l e d g e r e p r e s e n t a t i o n a n d t h e d o m a i n u s e r . A g e n e r a l p r o x y Enhancer p r o v i d e s a t r a n s p a r e n t

184

O bject -O riented Softw are Representation o f Polym er M aterials Inform ation in Engineering Design

i n t e r f a c e b e t w e e n o b j e c t s o f a n a p p l i c a t i o n a n d o b j e c t s h e l d i n t h e DBMS. M e s s a g e s s e n t t o d a t a b a s e o b j e c t s

v i a t h e p r o x y Enhancer a c t i v a t e t h e e n h a n c e d b e h a v i o u r s f o r r e q u e s t i n g t h e DBMS t o b r i n g t h e o b j e c t i n t o

p r i m a r y m e m o r y a n d f o r u p d a t i n g t h e d a t a b a s e w i t h a n y c h a n g e s . C l a s s e s d o n o t d e f i n e t h i s b e h a v i o u r ,

t h e r e b y m a k i n g d a t a b a s e s t o r a g e a v a i l a b l e t o o b j e c t s o f a l l c l a s s e s . O b j e c t s u s i n g d a t a b a s e o b j e c t s a s p a r t o f

t h e i r o w n b e h a v i o u r d o n o t n e e d t o d e f i n e t r a n s a c t i o n s . T h e y c a n t r e a t t h e d a t a b a s e o b j e c t l i k e a n y o t h e r

o b j e c t o f t h e s a m e t y p e .

A d a t a b a s e p r o x y s u b s t i t u t e s f o r a n y r e l a t i o n s h i p b e t w e e n t h e a p p l i c a t i o n a n d t h e d a t a b a s e . T h e d a t a b a s e i s

o b j e c t - o r i e n t e d , o n l y e v e r r e a d i n g o n e o b j e c t a n d s u b s t i t u t i n g a l l i t s r e l a t i o n s w i t h p r o x i e s . A p r o x y o n l y

r e t r i e v e s a n o b j e c t s i f a p r o c e s s s e n d s a m e s s a g e t o i t .

POISE s p e c i f i c a t i o n i d e n t i f i e s a d i c h o t o m y i n d a t a b a s e m a n a g e m e n t r e q u i r e m e n t s . D a t a b a s e m a n a g e m e n t f o r

p e r s i s t e n c e o f u s e r d a t a d i f f e r s f r o m t h e i n t e r c h a n g e o f d a t a b e t w e e n u s e r s . T h e m a i n d i f f e r e n c e i s p e r s i s t e n c e

i s s i n g l e - u s e r d a t a , a n d d a t a - i n t e r c h a n g e i s m u l t i - u s e r d a t a . M a n a g i n g m u l t i p l e u s e r s r e q u i r e s t h e d e f i n i t i o n o f

a t r a n s a c t i o n , a n d a t r a n s a c t i o n d i s t i n g u i s h e s a d a t a b a s e p r o c e s s f r o m o t h e r c o m p u t i n g p r o c e s s e s , w h i c h

c o m p l i c a t e s t r a n s p a r e n c y . T h i s t y p e o f d a t a b a s e m a n a g e m e n t i s c o m m o n t o c o m m e r c i a l OODBMS, w i t h a

f o c u s o n t r a n s a c t i o n m a n a g e m e n t a n d i t s i n t e g r i t y . S c h e m a e v o l u t i o n i s a t y p e o f t r a n s a c t i o n t h a t i s t y p i c a l l y

v e r y l a r g e a n d c a u s e s p r o b l e m s f o r t h e s e t r a n s a c t i o n b a s e s s y s t e m s . T h e b e h a v i o u r a l c o m p l e x i t y o f o b j e c t s

w i t h i n POISE a n d t h e i r t e n d e n c y t o e v o l v e p u t s t h e r e p r e s e n t a t i o n b e y o n d e v e n t h e m o s t a d v a n c e d c o m m e r c i a l

OODBMS. F o r t h e p r i v a t e d a t a o f t h e s i n g l e - u s e r i n POISE t h e o b j e c t i v e s a r e m o r e l i m i t e d , a n d m o r e

p o w e r f u l l y f o c u s e d o n r e p r e s e n t a t i o n , t h a n t h e o b j e c t i v e s o f a g e n e r a l - p u r p o s e m a n a g e m e n t s y s t e m .

C o n s e q u e n t l y , POISE h a s a s i n g l e - u s e r d a t a b a s e f o r o b j e c t p e r s i s t e n c e c a l l e d a WorkBase, w h i c h a d o p t s

S m a l l t a l k ’ s m a n i p u l a t i o n c a p a b i l i t i e s , i n c l u d i n g s c h e m a e v o l u t i o n .

T h e u n i q u e f e a t u r e o f t h e WorkBase i s t h a t w h e n i t r e a d s o b j e c t s i t r e s o l v e s d i f f e r e n c e s i n t h e s c h e m a b e t w e e n

c l i e n t a n d s e r v e r , w h i c h a l l o w s t h e c l i e n t s c h e m a a n d s e r v e r s c h e m a t o i n d e p e n d e n t l y u p d a t e i n d i v i d u a l

o b j e c t s . I m p l e m e n t i n g t h i s f e a t u r e w a s s i m p l i f i e d b y t h e s i n g l e c o n n e c t i o n p o l i c y b e t w e e n t h e POISE

a p p l i c a t i o n a n d t h e p r i v a t e s i n g l e - u s e r WorkBase. M o s t DBMS f o c u s o n s u p p o r t i n g m u l t i p l e c o n n e c t i o n s a n d

c o n s e q u e n t l y c o m p l i c a t e t h e c l i e n t ’ s d e p e n d e n c e o n t h e s e r v e r ’ s s c h e m a , w h i c h t h e s e r v e r e n d e a v o u r s t o

m a i n t a i n c o n s i s t e n t f o r m u l t i p l e c l i e n t s .

A n a d v a n c e d o b j e c t s t o r a g e s y s t e m i s a b e t t e r d e s c r i p t i o n o f t h e WorkBase t h a n a DBMS b e c a u s e t h e

a p p l i c a t i o n e x e c u t e s a l l o b j e c t b e h a v i o u r s , n o t t h e WorkBase. T h e WorkBase a d v a n c e s o b j e c t s t o r a g e b e c a u s e

i t i s c a p a b l e o f r e p r e s e n t i n g c o m p l e x o b j e c t s w i t h o u t p r i o r d e c l a r a t i o n o f f i l e s t r u c t u r e , i n c l u d i n g t h e c l a s s e s

185

O bject -O riented Softw are Representation o f Polym er M aterials Inform ation in Engineering Design

o f p o l y m e r s i n t h e h i e r a r c h y a n d t h e b e h a v i o u r s o f e n g i n e e r i n g p r o p e r t i e s d e v e l o p e d b y t h e u s e r . I n a d d i t i o n ,

w i t h t h e h e l p f r o m t h e d a t a b a s e p r o x y , t h e o b j e c t s m a i n t a i n t h e i r u n i q u e i d e n t i t y , u s u a l l y l o s t w h e n o b j e c t

s t o r a g e s y s t e m s r e m o v e o b j e c t s f r o m t h e a p p l i c a t i o n e n v i r o n m e n t .

T h e p r o x y m a n a g e s t h e a c t i v e l i f e t i m e o f t h e o b j e c t . T h e WorkBase i n c o l l a b o r a t i o n w i t h t h e S m a l l t a l k

m e m o r y m a n a g e m e n t , c o m m i t s t h e o l d e s t p r o x i e s w h e n m e m o r y i s l o w t h e r e b y m a x i m i s i n g t h e u t i l i s a t i o n o f

p r i m a r y m e m o r y . T h i s s i m p l e m e m o r y m a n a g e m e n t p o l i c y i s a c o n s e q u e n c e o f t h e s i n g l e - u s e r t r a n s a c t i o n

r e s t r i c t i o n o f t h e WorkBase.

T h e WorkBase a l s o c o m m i t s a l l p r o x i e s w h e n t h e u s e r t e r m i n a t e s t h e a p p l i c a t i o n . POISE r e c o r d s t h e s t a t e of

a n y a c t i v i t y w h e n t h e d e s i g n e r l e a v e s t h e s e s s i o n a n d r e - i n s t a t e s t h e s e s s i o n w h e n t h e d e s i g n e r r e t u r n s . T h e

d e s i g n e r c a n c o n t i n u e d e v e l o p i n g t h e c o m p l e x d e s i g n q u e r i e s , s e a r c h e s , s h o r t l i s t s , a n d v i e w s o n p o l y m e r s o n

r e t u r n t o t h e s e s s i o n .

T h e o n e r e s o u r c e t h e WorkBase d o e s n o t m a n a g e e f f e c t i v e l y i s t h e d i s k f i l e i t u s e s t o s t o r e t h e s t a t e o f o b j e c t s .

A n o t h e r w e a k n e s s i n t h e d e s i g n o f t h e WorkBase w a s t h e e f f i c i e n c y o f t h e DBMapping. T h i s o b j e c t p r o v i d e s

t h e p r i m a r y i n d e x f o r t h e d a t a b a s e . I m p r o v i n g t h e DBMapping a n d m a n a g i n g t h e d i s k f i l e w e r e b o t h

u n n e c e s s a r y f o r t h e e x p e r i m e n t a l p u r p o s e o f POISE.

T h e f o c u s o f t h i s t h e s i s h a s b e e n t h e s o f t w a r e d e v e l o p m e n t o f POISE. T h e s o f t w a r e d e m o n s t r a t e s t h e

f e a s i b i l i t y o f t h e t h e s i s b u t i t s o v e r a l l s u c c e s s o f s u p p o r t i n g d e s i g n , w h i c h i s t h e r e a s o n b e h i n d i t s

d e v e l o p m e n t , d e p e n d s l a r g e l y o n t h e i n f o r m a t i o n i t c o n t a i n s . T h e s o f t w a r e p r i n c i p l e s a r e w e l l e s t a b l i s h e d

w i t h t h e CAMPUS d a t a , b u t i t s g e n e r a l n a t u r e w i l l n o t t h o r o u g h l y t e s t t h e d e s i g n p r i n c i p l e s . T h e i n f o r m a t i o n

POISE c o n t a i n s m u s t s t a r t t o a n s w e r d e s i g n q u e s t i o n s . T h i s m a y r e q u i r e s p e c i f i c p r o p e r t i e s t h a t b e t t e r

d i s t i n g u i s h c l a s s e s f o r s p e c i f i c a p p l i c a t i o n s o r p r o p e r t i e s t h a t n e g o t i a t e w i t h o t h e r p e r s p e c t i v e s t o

c o m p r o m i s e t h e d e s i g n . A t l e a s t t h e s o f t w a r e n o w e x i s t s t h a t e q u i p s t h e d o m a i n e x p e r t w i t h t o o l s t o p e r f o r m

t h e s e e x p e r i m e n t s .

186

O bject -O riented Softw are Representation o f Polym er M aterials Inform ation in Engineering Design

Chapter 8 FutureWork
T h i s t h e s i s h a s f o l l o w e d t h e a r g u m e n t t h a t d e s i g n e r s r e q u i r e a d v a n c e d s o f t w a r e d e s c r i p t i o n s o f c l a s s i f i c a t i o n

a n d a b s t r a c t i o n t o s u p p o r t t h e i r d e c i s i o n t a s k s . A l o n g t h e w a y t h e r e s e a r c h r a i s e d m a n y q u e s t i o n s w i t h i n t h e

c o m p u t e r a n d m a t e r i a l s c i e n c e s . O n e q u e s t i o n i s t h e s u i t a b i l i t y o f m a t e r i a l p r o p e r t i e s t o d e s c r i b e a b s t r a c t

m a t e r i a l s . T h e l a c k o f d i s t i n c t i o n b e t w e e n a m o r p h o u s a n d c r y s t a l l i n e p o l y m e r s w a s c i t e d a s a v i s u a l l y

i n d i s t i n g u i s h a b l e e x a m p l e . T h e n e e d f o r f u r t h e r r e s e a r c h i n t o t h e r e l a t i o n s h i p b e t w e e n c l a s s i f i c a t i o n a n d

p r o p e r t i e s d e s c r i b i n g i t s m e m b e r s i s n o t c o n c l u s i v e w i t h o u t d e t a i l e d r e s e a r c h i n t o h o w d e s i g n e r s u s e

i n f o r m a t i o n . O n e r e a s o n f o r t h i s l a c k o f r e s e a r c h i s t h e a b s e n c e o f a n h i s t o r i c a l l i n k b e t w e e n p r o p e r t y u s e a n d

d e s i g n o u t c o m e t o m e a s u r e t h e e f f e c t i v e n e s s o f p r o p e r t i e s i n d e s i g n . S o f t w a r e l i k e P O I S E t h a t i s c a p a b l e o f

m a n i p u l a t i n g c o m p l e x m a t e r i a l s i n f o r m a t i o n c o u l d h e l p t o d e t e r m i n e t h e e f f e c t i v e n e s s o f s p e c i f i c d e s i g n

m e t h o d s u s i n g p r o p e r t i e s . T h e s o f t w a r e c a n r e c o r d t h e h i s t o r i c a l a p p l i c a t i o n o f m e t h o d s t o w a r d s a d e s i g n . I t

i s p o s s i b l e t h a t s u c h r e s e a r c h w a l l f i n d g e n e r a l p r o p e r t i e s , l i k e t h o s e i n C A M P U S , d o n o t a n s w e r d e s i g n

q u e s t i o n s e f f e c t i v e l y a n d l e a d t o m o r e a p p r o p r i a t e m a t e r i a l s r e s e a r c h .

8.1 Extentions For Further Design Support.
D e s i g n r e q u i r e s c o n t r i b u t i o n s o f i n f o r m a t i o n f r o m m a n y p e r s p e c t i v e s . T h e d e s i g n b e h a v i o u r i s a c o m p l e x

c o m b i n a t i o n o f b e h a v i o u r f r o m d i f f e r e n t p e r s p e c t i v e s . P O I S E o n l y a d d r e s s e s t h e r e p r e s e n t a t i o n o f m a t e r i a l s

i n f o r m a t i o n p r i n c i p l e d u p o n t h e m a t e r i a l ’ s c h e m i s t r y (a n d c o m p o s i t i o n i n t h e c a s e o f f i l l e d p o l y m e r s) a n d i t

l i m i t s i t s d e s i g n s u p p o r t t o p r o v i d i n g a n e x a m p l e o f t o o l s f o r c l a s s i f y i n g a n d v i s u a l i s i n g a b s t r a c t m a t e r i a l s .

E a c h n e w d e s i g n p e r s p e c t i v e i n t r o d u c e s i t s o w n c h a l l e n g e s . F u r t h e r r e s e a r c h i s r e q u i r e d t o r e p r e s e n t t h e o t h e r

p e r s p e c t i v e s , w h i c h c o n t r i b u t e t o a d e s i g n , a n d d e v e l o p u s e f u l d e s i g n m e t h o d s t h a t i n t e g r a t e t h e i r v a r i o u s

s o u r c e s o f i n f o r m a t i o n . O n l y t h e n w i l l c o m p u t e r s a i d t h e p r o c e s s o f d e s i g n a n d p r o p e r l y r e c o r d t h e d e s i g n

h i s t o r y , w h i c h c o u l d m e a s u r e d e s i g n e f f e c t i v e n e s s f o r s t u d y i n g c a s e b a s e d r e a s o n i n g i n d e s i g n .

8.2 Furthering the Role of Object Orientation in Knowledge Representation
P O I S E i s a n e x a m p l e o f a k n o w l e d g e r e p r e s e n t a t i o n t o o l t h a t d o e s n o t b u i l d o n t r a d i t i o n a l e x p e r t s y s t e m s

t h e o r y . P O I S E r e p r e s e n t s m o r e s p e c i f i c m a n i p u l a t i o n r u l e s t h a n r u l e b a s e d e x p e r t s y s t e m s w h e r e t h e g e n e r a l

m a n i p u l a t i o n l o g i c i s e n c o d e d i n a n i n f e r e n c e e n g i n e . P O I S E i s n o t r e s t r i c t e d i n s t r u c t u r i n g i n f o r m a t i o n f o r

t h e e n g i n e . T h e m a n i p u l a t i o n r u l e s i n P O I S E a r e o b j e c t o r i e n t a t e d . C l a s s e s c o n t a i n t h e r u l e s d e v e l o p e d f o r

e a c h t y p e o f o b j e c t , w h i c h c o n t a i n t h e i n f o r m a t i o n s o i n f e r e n c e i s a s p e c i f i c r e l a t i o n s h i p b e t w e e n a n o b j e c t

a n d i t s c l a s s e v o k e d t h r o u g h w e l l - d e f i n e d p a t t e r n s o f m e s s a g e p a s s i n g . P O I S E d e m o n s t r a t e s t h e d i v e r s e

p a t t e r n s g e n e r a t e d b y o b j e c t o r i e n t e d s y s t e m s f o r m s a h i g h l y e x p r e s s i v e k n o w l e d g e r e p r e s e n t a t i o n . F r o m t h i s

d i r e c t i o n , o b j e c t o r i e n t a t i o n n e e d s m o r e s t u d y i n t o t h e r o l e d i v e r s e m e s s a g e h a n d l i n g , w h i c h d r i v e s t h e

p a t t e r n s o f b e h a v i o u r , c o u l d h a v e i n k n o w l e d g e r e p r e s e n t a t i o n .

187

O bject -O riented Softw are Representation o f Polym er M aterials Inform ation in Engineering Design

P O I S E h a s a l s o i n t r o d u c e d s o m e u n i q u e p a t t e r n s o f o b j e c t b e h a v i o u r . P a t t e r n s a r e q u i c k l y b e c o m i n g

i m p o r t a n t d e s c r i p t i o n s o f a b s t r a c t o b j e c t o r i e n t e d s o f t w a r e s o l u t i o n s . P a t t e r n s o f t e n h a v e s o m e i n t e r e s t i n g

a t t r i b u t e s t h a t m a k e t h e m p a r t i c u l a r l y s u i t a b l e f o r s o l v i n g c e r t a i n k i n d s o f s o f t w a r e p r o b l e m s . T h e p a t t e r n s i n

P O I S E a r e i n t e r e s t i n g b e c a u s e t h e y d y n a m i c a l l y c o m p o s e o b j e c t i n t e r f a c e s . M o s t o b j e c t s h a v e a s t a t i c t y p e ,

w h e r e a s t h e E n h a n c e r p e r m i t s d y n a m i c t y p e c o n s t r u c t i o n , a s d e m o n s t r a t e d b y t h e o r t h o g o n a l d e s c r i p t i o n o f

g r a d e s . T h e P T O p e r m i t s t h e r u n t i m e r e - e n g i n e e r i n g o f o b j e c t t y p e s . P O I S E i s a b l e t o c r e a t e t h e s e p a t t e r n s i n

S m a l l t a l k , w h i c h i s a n o n - t y p e d l a n g u a g e . T y p e d l a n g u a g e s r e q u i r e s p e c i f i c t y p e d e f i n i t i o n s t o v a l i d a t e

p r o g r a m e x e c u t i o n . C u r r e n t l y v a l i d e x e c u t i o n o f t h e s e p a t t e r n s i s n o t g u a r a n t e e d a n d v a l i d e x e c u t i o n r e q u i r e s

c a r e f u l i m p l e m e n t a t i o n a n d a p p l i c a t i o n . F u r t h e r r e s e a r c h w o u l d b e n e c e s s a r y t o d e t e r m i n e h o w a t y p e d

l a n g u a g e m i g h t s u p p o r t d y n a m i c t y p i n g g e n e r a t e d b y a s i m i l a r p a t t e r n .

T h i s t h e s i s h a s a h i g h l y f o c u s e d a g e n d a f o r r e p r e s e n t i n g m a t e r i a l s i n f o r m a t i o n i n a c l a s s i n s t a n c e l a n g u a g e .

T h i s f o c u s t a c k l e s s o m e o f t h e m o r e c o m p l e x i s s u e s i n r e p r e s e n t i n g t h e d o m a i n . T h e r e a r e m a n y o t h e r i s s u e s

t h a t f i t t h e o b j e c t - o r i e n t e d p a r a d i g m v e r y w e l l t h a t a t f i r s t a p p e a r t o b e l e s s o f a c h a l l e n g e . O b j e c t o r i e n t a t i o n

h a s m u c h m o r e t o o f f e r C A D d e v e l o p m e n t . T h e s e i n c l u d e m a n a g i n g e n g i n e e r i n g m e a s u r e m e n t s t h a t i n c l u d e

u n i t s a n d a c c u r a c y

E n g i n e e r i n g d e s i g n a l s o i n v o l v e s t h e a p p l i c a t i o n o f d e s i g n c a l c u l a t i o n s . O b j e c t s c a n r e p r e s e n t n o t j u s t a

r e s u l t , b u t t h e w h o l e c a l c u l a t i o n a s a m e t h o d t h a t c o m b i n e s o t h e r c a l c u l a t i o n s w i t h n e w i n p u t p a r a m e t e r s . T h e

r e s u l t s o f c a l c u l a t i o n s a r e n o l o n g e r s u b j e c t t o e x t e r n a l i n t e r p r e t a t i o n . I r o n i c a l l y , t h e r e s u l t d o e s n o t n e e d t o

d e r i v e a s p e c i f i c v a l u e u n t i l t h e d e s i g n e r n e e d s i t . S i n c e m o s t d e s i g n d e c i s i o n s a r e a t r a d e o f f b e t w e e n

p a r a m e t e r s , t h e s p e c i f i c v a l u e s a r e n o t i m p o r t a n t u n t i l t h e d e s i g n e r c o n t r a s t s s p e c i f i c c o m b i n a t i o n s o f d e s i g n

a t t r i b u t e s . T h e o b j e c t c a l c u l a t e s t h e r e s u l t d y n a m i c a l l y w h e n n e e d e d a n d n o t j u s t w h e n t h e i n p u t p a r a m e t e r s

a r e a v a i l a b l e s i n c e t h e s e p a r a m e t e r s m a y c h a n g e .

T h e b e n e f i t s o f a c o m p l e t e l y o b j e c t o r i e n t e d r e p r e s e n t a t i o n o f a d e s i g n m e t h o d i s t h a t t h e d e s i g n p r o c e s s i s

r e c o r d a b l e a n d r e u s a b l e . I f t h e d e s i g n e r d e c i d e s t h a t t h e i n p u t p a r a m e t e r s o r m e t h o d m u s t c h a n g e , a t r a c e a b l e

r o u t e o f d e p e n d e n t d e s i g n d i s c u s s i o n s c a n b e d e t e r m i n e d , w h i c h i n t u r n c a n b e r e - e v a l u a t e d .

F r o m t h i s s c e n a r i o , w e c a n s e e t h a t a n e v o l v i n g d a t a b a s e o f m a t e r i a l s m i g h t i n f a c t n o t i f y t h e d e s i g n e r w h e n

p o t e n t i a l l y b e t t e r m a t e r i a l s h a v e e n t e r e d t h e d a t a b a s e f o r s p e c i f i c d e s i g n s , s i m p l y b e c a u s e t h e s y s t e m r e c o r d s

t h e m e t h o d s u s e d t o i n d e s i g n c o n c l u s i o n s .

188

Object -O riented Softw are Representation o f Polym er M aterials Inform ation in Engineering Design

8.3 Extensions Within the Materials Domain
P O I S E a s s u m e s t h e d o m a i n o f e n g i n e e r i n g p o l y m e r s c a n b e c l a s s i f i e d i n t o a h i e r a r c h y . T h i s a s s u m p t i o n

i g n o r e s s o m e c o m p l e x m a t e r i a l c o n c e p t s , w h i c h c h a l l e n g e a h i e r a r c h i c a l c l a s s i f i c a t i o n , a s h i g h l i g h t e d i n

S p e d d i n g ’ s a n a l y s i s o f t h e d o m a i n . C o - p o l y m e r i s a t i o n a n d a l l o y i n g o f p o l y m e r s g r e a t l y c o m p l i c a t e t h e

r e l a t i o n s h i p b e t w e e n a m a t e r i a l ’ s p a r e n t a g e a n d t h e m a t e r i a l ’ s p h y s i c a l p r o p e r t i e s . W h e t h e r t h e p a r e n t a g e

s h o u l d i n f l u e n c e t h e c l a s s i f i c a t i o n o f t h e s e k i n d s o f m a t e r i a l i s s t i l l s u b j e c t t o f u r t h e r w o r k t h a t m a y s u g g e s t

a l t e r n a t i v e s o f t w a r e m e c h a n i s m s f o r r e p r e s e n t i n g t h e s e c o n c e p t s .

T h e P O I S E d e s i g n c o u l d e x t e n d t h e d o m a i n t o i n c l u d e m e t a l s . T h e c h a r a c t e r i s t i c s o f m e t a l s p r o p e r t i e s a r e

p r o b a b l y b e t t e r u n d e r s t o o d t h a n p o l y m e r s a n d t h e d o m a i n i s a l s o h i g h l y c h a r a c t e r i s e d b y a l l o y s . B o t h t h e s e

c h a r a c t e r i s t i c s o f t h e d o m a i n w o u l d l e n d t o e x p e r i m e n t i n g w i t h t h e c l a s s i f i c a t i o n o f a l l o y s a n d t h e

d e v e l o p m e n t o f m o r e c o m p l e x b e h a v i o u r a l d e s c r i p t i o n s o f m e t a l s . F o r e x a m p l e w o r k h a r d e n i n g a n d

a n n e a l i n g a r e w e l l s t u d i e d i n m e t a l s , a n d a r e p o s s i b l y s u i t a b l e f o r c o m p u t e r m o d e l l i n g . T h e b e n e f i t o f

i n t e g r a t i n g t h e m o d e l l i n g w i t h a d a t a b a s e i s t h a t i t i s m u c h e a s i e r t o r e l a t e t h e t e s t d a t a t o t h e c o m p u t e r

m o d e l s a n d t h e r e f o r e d e r i v e w h e r e t h e m o d e l d e v i a t e s f i - o m r e a l i t y .

M e t a l s a l s o h a v e a s i m p l e r c h e m i c a l d e s c r i p t i o n t h a n p o l y m e r s , b a s e d o n c r y s t a l l i n e a t o m i c a r r a n g e m e n t s

r a t h e r t h a n m o l e c u l e s . T h i s m e a n s a b s t r a c t i o n t e c h n i q u e s m i g h t b e m o r e p r e c i s e . E x a m p l e s c o u l d i n c l u d e

a b s t r a c t i n g t h e p h a s e d i a g r a m s , c o m m o n l y u s e d b y m e t a l l u r g i s t s , f i - o m e x p e r i m e n t a l d a t a a s a n a l t e r n a t i v e t o

h i s t o g r a m s .

C e r a m i c s a r e p r o b a b l y t h e l e a s t w e l l u n d e r s t o o d o f m a t e r i a l s . T h e i r p r o p e r t i e s a r e d o m i n a t e d b y t h e k i n d s o f

l a t t i c e s t r u c t u r e s t h e c h e m i s t r y p r o d u c e s , w h i c h i s s u b j e c t t o t h e p r o c e s s u s e d t o c r e a t e t h e m a t e r i a l a s m u c h

a s t h e c h e m i c a l c o m p o s i t i o n . T h e s t u d y o f t h e i r b e h a v i o u r w i l l b e a s u b j e c t o f f u r t h e r w o r k f o r q u i t e a w h i l e .

T h e d i f f i c u l t y i s d e r i v i n g a p r i n c i p l e d c l a s s i f i c a t i o n , b u t o n c e d e t e r m i n e d , t h e r e i s n o t h i n g t o s u g g e s t t h e

s o f t w a r e p a t t e r n s p r e s e n t e d i n t h i s t h e s i s w i l l n o t b e a b l e t o r e p r e s e n t c e r a m i c s a s w e l l .

J. Zucker (1989): E n g i n e e r i n g d e s i g n c o m p u t e d b y p r o t o t y p e s a n d d e s c r i p t i o n s ; L i b r a r y , O p e n
U n i v e r s i t y , M i l t o n K e y n e s , U K .

A. Goldberg and D. Robson (1983): S m a l l t a l k - 8 0 ™ : T h e L a n g u a g e a n d I t s I m p l e m e n t a t i o n ;
A d d i s o n - W e s l e y R e a d i n g , M a s s a c h u s e t t s .

D. H. H. Ingalls, A. H. Borning (1982): M u l t i p l e i n h e r i t a n c e i n S m a l t a l k - 8 0 ; P r o c e e d i n g s o f N a t i o n a l
C o n f e r e n c e o n A r t i f i c i a l I n t e l l i g e n c e , P i t t s b u r g h , P A , p p 2 3 4 - 2 3 7 .

189

O bject -O riented Softw are Representation o f Polym er M aterials Inform ation in Engineering Design

J. P. Briot (1989); A c t a l k : a T e s t b e d f o r C l a s s i f y i n g a n d D e s i g n i n g A c t o r L a n g u a g e s i n t h e S m a l l t a l k -
8 0 E n i r o n m e n t ; i n E C O O P ' 8 9 , 2 . 3 - 2 . 4 .

L. A. Stein, H. Lieberman and D. Ungar (1988): T h e T r e a t y o f O r l a n d o : A s h a r e d v i e w o f s h a r i n g ;
i n i b i d i 1 0 0 , p p 3 1 - 4 8 .

J. Schmitz, E. Bornschlegel, G. Dupp and G. Erhard (1988): C A M P U S p l a s t i c s d a t a b a s e ; i n
P l a s t v e r a r b e i t e r 3 9 (4) , p p 5 0 - 5 8 .

K. Oberbach (1989): P l a s t i c P r o p e r t i e s f o r D e s i g n - a D a t a b a s e f r o m t h e R a w M a t e r i a l s S u p p l i e r s ; i n
P o l y m e r P r o p e r t i e s F o r C A D / C A M , L o n d o n , P R I , 3 / 1 - 5 .

V. Spedding (1995): A n O b j e c t - O r i e n t e d S y s t e m f o r E n g i n e e r i n g P o l y m e r I n f o r m a t i o n ; L i b r a r y ,
O p e n U n i v e r s i t y , M i l t o n K e y n e s , U K .

M. J. French (1971): E n g i n e e r i n g D e s i g n : T h e c o n c e p t u a l s t a g e ; H E B L o n d o n , I S B N 0 4 3 5 7 1 6 5 0 6 ,

P P 8 .

A. Demaid, S. Ogden, J. Zucker (1992): M a t e r i a l s S e l e c t i o n : O b j e c t - O r i e n t e d S t r u c t u r e s f o r
F a c t o r i n g P o l y m e r I n f o r m a t i o n ; i n C o m p u t e r i s a t i o n a n d N e t w o r k i n g o f M a t e r i a l s D a t a b a s e s : T h i r d
V o l u m e , A S T M S T P 1 1 4 0 , E d s . T h o m a s I B a r r y a n d K e i t h W R e y n a r d , P h i l a d e l p h i a .

E P O S ^ ' ' * : a p r o d u c t o f I C I L t d ; .

RAPRA: P l a s c a m s - 2 2 0 ™ ; R u b b e r a n d P l a s t i c s R e s e a r c h A s s o c i a t i o n , P l a s c a m s T e c h n o l o g y L t d ,
S h a w b u r y , S h r e w s b u r y , S h r o p s h i r e , U K .

A. Hopgood (1989): A n i n f e r e n c e m e t h o d f o r s e l e c t i o n , a n d i t s a p p l i c a t i o n t o p o l y m e r s ; i n A r t i f i c i a l
I n t e l l i g e n c e i n E n g i n e e r i n g 4 (4) , p p 1 9 7 - 2 0 4 .

D. Bassetti (1995): F u z z y m a t U s e r G u i d e ; L a b o r a t o i r e d e T h e r m o d y n a m i q u e e t P h y s i c o - C h i m i e
M é t a l l u r g i q u e s , E N S E E G , r e f 1 6 .

P. Pechambert, Y. Brechet (1995): “ E t u d e d ’ u n e M e t h o d o l o g i e d e C h o i x d e s M a t é r i a u x C o m p o s i t e s ”
a n d “ C o n c e p t i o n d ’ u n L o g i c a l d ’ A i d e à l a F o r m u l a t i o n d e s V e r r e s ” ; L a b o r a t o i r e d e
T h e r m o d y n a m i q u e e t P h y s i c o - C h i m i e M é t a l l u r g i q u e s , E N S E E G , r e f 1 6 .

M. F. Ashby (1997): M a t e r i a l s S e l e c t i o n : M u l t i p l e C o n s t r a i n t s a n d C o m p o u n d O b j e c t i v e s ; i n
A m e r i c a n S o c i e t y f o r T e s t i n g a n d M a t e r i a l s , S T P 1 1 4 0 .

G. E. Dieter (1983): E n g i n e e r i n g D e s i g n : A m a t e r i a l s a n d p r o c e s s i n g A p p r o a c h ; M e d r a w H i l l , I S B N
0 - 0 7 - 0 1 6 8 9 6 - 2 .

18

19

20

G. Lewis (1990): S e l e c t i o n o f E n g i n e e r i n g m a t e r i a l s ; P r e n t i c e H a l l , I S B N 0 - 1 3 - 8 0 2 1 9 0 - 2 .

P. Sargent (1991): M a t e r i a l s i n f o r m a t i o n f o r C A D / C A M ; B u t t e r w o r t h - H e i n e m a n n O x f o r d , C h a p t e r 5 .

Open University (1985): M a n u f a c t u r e , M a t e r i a l s a n d D e s i g n ; O p e n U n i v e r s i t y P r e s s .

190

O bject -O riented Softw are Representation o f Polym er M aterials Inform ation in Engineering Design

22

24

26

27

28

29

30

34

35

R . Ayres (1 9 7 4) : M a t e r i a l s P r o c e s s P r o d u c t M o d e l ; I n t e r n a t i o n a l R e s e a r c h a n d T e c h n o l o g y
C o r p o r a t i o n R e f E n d e a n , 1 9 8 9 # 2 2 .

S . Pugh (1 9 8 6) : C u r r i c u l u m D e s i g n : S p e c i f i c a t i o n p h a s e ; O p e n U n i v e r s i t y P r e s s .

J. Zucker, A. Demaid (1989): A s o f t w a r e m a c h i n e d e s i g n e d f o r s e l e c t i o n ; i n K n o w l e d g e B a s e d
S y s t e m s 2 (3) , p p 1 7 8 - 1 8 4 .

H. A. Simon (1981): T h e S c i e n c e o f t h e A r t i f i c i a l ; M I T P r e s s M a s s a c h u s e t t s .

A. Demaid, J. Zucker (1988): A c o n c e p t u a l m o d e l f o r m a t e r i a l s s e l e c t i o n ; i n M e t a l s a n d M a t e r i a l s
4 (5) , p p l 9 1 - 2 7 1 .

C. S. Peirce (1 9 5 8) : C o l l e c t e d P a p e r s o f C h a r l e s S a n d e r s P e i r c e ; H a r v a r d U n i v e r s i t y P r e s s , 1 9 5 8 .

S. E. Fahlman (1979): N E T L : A s y s t e m f o r r e p r e s e n t i n g a n d U s i n g R e a l - W o r l d K n o w l e d g e ; i n
P r o c e e d i n g s o f t h e N a t i o n a l C o n f e r e n c e o n A r t i f i c i a l I n t e l l i g e n c e , p p 4 - 9

R. Ackerman (1 9 6 5) : T h e o r y o f K n o w l e d g e : A c r i t i c a l i n t r o d u c t i o n ; M c G r a w - H i l l , p p 6 3 - 6 8 & 7 6 - 7 9 ,

(r e f I) .

E. E. Smith, D. L. Medin (1981): C a t e g o r i e s a n d C o n c e p t s ; H a r v a r d U n i v e r s i t y P r e s s , (r e f 1) .

I. Stewart, D. Tall (1977): T h e f o u n d a t i o n s o f m a t h e m a t i c s ; O x f o r d U n i v e r s i t y P r e s s .

D.S. Touretzky (1 9 8 4) : T h e M a t h e m a t i c s o f I n h e r i t a n c e S y s t e m s ; P h D , C o m p u t e r S c i e n c e , C a m e g i e -
M e l l o n , P i t t s b u r g h , P A 1 5 2 1 3 , a l s o P i t m a n / M o r g a n K a u f i n a n n , R e s e a r c h N o t e s i n A r t i f i c i a l
I n t e l l i g e n c e s e r i e s (1 9 8 6) .

M. M. Downs, R G. Greene, D. Rishel (1 9 9 1) : D e v e l o p m e n t o f a n O n - L i n e D a t a D i c t i o n a r y U s i n g
C o n c e p t u a l D a t a M o d e l l i n g ; i n N S F W o r k s h o p I n t e r n a l R e p o r t , A l c o a T e c h n i c a l C e n t r e , U . S . ,
N o v e m b e r p p l 1 - 1 4 .

M. F. Ashby (1989): M a t e r i a l S e l e c t i o n i n E n g i n e e r i n g D e s i g n ; i n M a t e r i a l S c i e n c e a n d T e c h n o l o g y
5 (J u n e) , p p 5 1 7 - 5 2 5 .

M/Vision (1 9 9 5) : A p r o d u c t o f P D A E n g i n e e r i n g ; M a g n e t i c H o u s e , W a t e r f r o n t 2 0 0 0 , S a l f o r d Q u a y s ,
M a n c h e s t e r M 5 2 X W .

J.E. Lee, D.E. Marinaro, M. E. Funkhouser, R.M. Horn, R. P. Jewett (1 9 9 2) : C r e a t i n g a C o m m o n
M a t e r i a l s D a t a b a s e ; i n A d v a n c e d M a t e r i a l s & P r o c e s s e s (N o v e m b e r) , .

A. Demaid, J. Zucker, S. Ogden (1 9 9 2) : O b j e c t - O r i e n t e d m a t e r i a l s E n g i n e e r i n g I n f o r m a t i o n
M o d e l l i n g a n d M a n a g e m e n t ; i n T O O L S , p p l 1 9 - 1 3 4 .

R. Frost (1 9 8 6) : I n t r o d u c t i o n t o K n o w l e d g e B a s e S y s t e m s ; C o l l i n s L o n d o n .

B. Raphael (1 9 6 8) : A c o m p u t e r p r o g r a m f o r s e m a n t i c i n f o r m a t i o n r e t r i e v a l ; i n i b i d i 1 0 2 , .

191

O bject -O riented Softw are Representation o f Polym er M aterials Inform ation in Engineering Design

39

40

42

43

45

46

47

50

51

52

53

54

55

56

R. Quillian (1 9 6 8) : S e m a n t i c m e m o r y ; i n i b i d i 1 0 2 , .

M. Minsky (1975): A f r a m e w o r k f o r r e p r e s e n t i n g k n o w l e d g e ; i n T h e P s y c h o l o g y o f C o m p u t e r
V i s i o n , E d s . P . H . W i n s t o n , M c G r a w - H i l l .

S. E. Fahlman (1989): N E T L : A S y s t e m f o r R e p r e s e n t i n g a n d U s i n g R e a l - W o r l d K n o w l e d g e ; M I T
P r e s s , C a m b r i d g e , M A .

R.J. Brachman (1983): " W h a t I S - A i s a n d i s n ' t " : A n a n a l y s i s o f t a x o n o m i c l i n k s i n a s e m a n t i c
n e t w o r k s ; i n I E E E C o m p u t e r 1 6 (1 0) , p p 3 0 - 3 6 .

E . Decio, P. Petrin, L. Spampinato (1 9 9 0) : P u s h i n g t h e T e r m i n o l o g i c a l B a r r i e r ; i n i b i d i 1 0 1 , .

M. S. Fox (1979): O n I n h e r i t a n c e i n K n o w l e d g e R e p r e s e n t a t i o n ; i n I n t e r n a t i o n a l J o i n t C o n f e r e n c e o n
A r t i f i c i a l I n t e l l i g e n c e , p p 2 8 2 - 2 8 4 .

D. McDermott, J. Doyle (1980): N o n - M o n o t o n i c L o g i c I ; i n A r t i f i c i a l I n t e l l i g e n c e 1 3 (1 , 2) , p p 4 1 - 7 2 .

R. J. Brachman (1985): " I l i e d a b o u t t h e t r e e s " : O r d e f a u l t s a n d d e f i n i t i o n s i n k n o w l e d g e
r e p r e s e n t a t i o n ; i n A I M a g a z i n e 6 (3) , p p 8 0 - 9 3 .

J. F. Horty (1990): A C r e d u l o u s T h e o r y o f M i x e d I n h e r i t a n c e ; i n i b i d i 1 0 1 , pp 1 3 - 2 8 .

P. F. Patel-Schneider (1990): W h a f s I n h e r i t a n c e g o t t o d o w i t h k n o w l e d g e r e p r e s e n t a t i o n ; i n i b i d i
1 0 1 , p p l - 1 0 .

A. Demaid and J. Zucker (1989): S e l e c t i o n o f e n g i n e e r i n g m a t e r i a l s ; i n S c a n d i n a v i a n S y m p o s i u m
o n M a t e r i a l s S c i e n c e , C o p e n h a g e n , D a n i s h S o c i e t y f o r M a t e r i a l s T e s t i n g a n d R e s e a r c h .

D. Hartzband (1985): E n h a n c i n g k n o w l e d g e r e p r e s e n t a t i o n i n e n g i n e e r i n g d a t a b a s e s ; i n I E E E
C o m p u t e r , p p 3 9 - 4 8 .

D. S. Tsichritzis, F.H. Lochovsky (1982): D a t a M o d e l s ; P r e n t i c e - H a l l , E n g l e w o o d C l i f f s , N e w

J e r s e y .

DBTG (1971): T h e D a t a b a s e T a s k G r o u p o f t h e C O D A S Y L P r o g r a m m i n g L a n g u a g e C o m m i t t e e
R e p o r t ; A v a i l a b l e f r o m A C M , B C S a n d l A G , (i n i b i d i 3 7) .

E. F. Codd (1970): A r e l a t i o n a l m o d e l o f d a t a f o r l a r g e s h a r e d d a t a b a n k s ; i n C A C M 1 3 (6) , p p 3 7 7 -

387.

D. Maier (1989): M a k i n g D a t a b a s e S y s t e m s F a s t E n o u g h f o r C A D A p p l i c a t i o n s ; i n i b i d i 1 0 0 , p p 5 7 3 -

582.

S. Ahmed, A. Wong, D. Sriram, R. Logcher (1991): A C o m p a r i s o n o f O b j e c t - o r i e n t e d D a t a b a s e
M a n a g e m e n t S y s t e m s f o r E n g i n e e r i n g A p p l i c a t i o n s ; i n R 9 1 - 1 2 , M I T , (O r d e r n o . l E S L 9 0 - 0 3 , 9 1 - 0 3) .

R. King (1989): M y C a t i s O b j e c t - O r i e n t e d ; i n i b i d i 100, pp23-30.

192

O bject -O riented Softw are Representation o f Polym er M aterials Inform ation in Engineering Design

57

58

59

60

62

63

64

65

66

67

69

70

71

72

73

74

P. P. Chen (1976): T h e E n t i t y - R e l a t i o n s h i p M o d e - T o w a r d s a U n i f i e d V i e w o f D a t a ; i n A C M
T r a n s a c t i o n s o n D a t a b a s e S y s t e m s 1 (1) , p p 9 - 3 6 .

M. J. Smith, D. C. P. Smith (1977): D a t a b a s e A b s t r a c t i o n : A g g r e g a t i o n s a n d G e n e r a l i s a t i o n s ; i n
A C M T r a n s a c t i o n s o n D a t a b a s e S y s t e m s 2 (2) , .

J. Peckham, F. Maryanski (1988): S e m a n t i c D a t a M o d e l s ; i n A C M C o m p u t i n g S u r v e y s 2 0 (3) ,
p p l 5 3 - 1 8 9 .

G. Gardarin, P. Valduriez (1 9 8 9) : R e l a t i o n a l D a t a b a s e s a n d K n o w l e d g e B a s e s ; A d d i s o n - W e s l e y .

G. Blair, J. Gallagher, D. Hutchison, D. Sheperd (1991): O b j e c t - O r i e n t e d L a n g u a g e s , S y s t e m s a n d
A p p l i c a t i o n s ; P i t m a n , L o n d o n , I S B N 0 - 2 7 3 - 0 3 1 3 2 - 5 .

D. G. Bobrow et al. (1986): C o m m o n L o o p s : M e r g i n g L i s p a n d O b j e c t - O r i e n t e d P r o g r a m m i n g ; i n
i b i d i 9 5 , p p 1 7 - 2 9 .

P. Wegner (1987): T h e o b j e c t - o r i e n t e d c l a s s i f i c a t i o n p a r a d i g m ; i n R e s e a r c h D i r e c t i o n s i n O b j e c t -
O r i e n t e d P r o g r a m m i n g , E d s . B . S h r i v e r a n d P . W e g n e r , M I T P r e s s , C a m b r i d g e , M A , p p 4 7 9 - 5 6 0 .

O. Nierstrasz (1 9 8 9) : A s u r v e y o f O b j e c t - O r i e n t e d C o n c e p t s ; i n i b i d i 1 0 0 , .

R. Bred et al (1989): T h e G e m s t o n e D a t a M a n a g e m e n t S y s t e m ; i n i b i d i 1 0 0 , .

W. R. LaLonde (1989): D e s i g n i n g F a m i l i e s o f D a t a T y p e s U s i n g E x e m p l a r s ; i n A C M T O P L A S
1 1 (2) , p p 2 1 2 - 2 4 8 .

C. Hewitt, P. Bishop, R. Steiger (1973): A u n i v e r s a l , m o d u l a r A c t o r f o r m a l i s m f o r A r t i f i c i a l
I n t e l l i g e n c e ; i n I n t e r n a t i o n a l J o i n t C o n f e r e n c e o n A r t i f i c i a l I n t e l l i g e n c e , p p 2 3 5 - 2 4 5 .

K. Kahn (1 9 7 9) : C r e a t i o n o f C o m p u t e r A n i m a n t i o n f r o m S t o r y D e s c r i p t i o n s ; P h D t h e s i s , M I T .

H. Lieberman (1987): C o n c u r r e n t O b j e c t - O r i e n t e d P r o g r a m m i n g i n A c t 1 ; i n O b j e c t - O r i e n t e d
c o n c u r r e n t p r o g r a m m i n g , M I T p r e s s .

H. Lieberman (1986): U s i n g P r o t o t y p i c a l O b j e c t s t o i m p l e m e n t S h a r e d B e h a v i o u r ; i n i b i d i 9 5 , p p
2 1 4 - 2 2 3 .

L. A. Stein (1987): D e l e g a t i o n I s I n h e r i t a n c e ; i n i b i d i 9 6 , p p 1 3 8 - 1 4 6 .

D. Ungar, R, B. Smith (1987): S e l f : t h e p o w e r o f s i m p l i c i t y ; i n i b i d i 9 6 , p p 2 2 7 - 2 4 2 .

A. Mercado Jr. (1988): H i b r i d : I m p l e m e n t i n g C l a s s e s w i t h P r o t o t y p e s ; M a s t e r ' s t h e s i s . T e c h R e p o r t
C S - 8 8 - 1 2 , B r o w n U n i v e r s i t y , P r o v i d e n c e , R I , J u l y 1 9 8 8 .

G. A. Agha (1987): A C T O R S : A m o d e l o f c o n c u r r e n t c o m p u t a t i o n i n d i s t r i b u t e d s y s t e m s ; M I T P r e s s ,
C a m b r i d e , M A .

193

O bject -O riented Softw are R epresentation o f Polym er M aterials Inform ation in Engineering Design

75

76

79

80

82

83

84

86

87

K. J. Lang, B. A. Pearlmutter (1988): O a k l i s p : A n O b j e c t - O r i e n t e d D i a l e c t o f S c h e m e ; i n L i s p a n d
S y m b o l i c C o m p u t a t i o n 1 (1) , K l u w e r A c a d e m i c , p p . 3 9 - 5 1 .

S. Kuldoff (1990): C A P S ; A a c h e n a n d D u b l i n , P o l y d a t a L t d .

S. Ogden, J. Zucker, A. Demaid (1993): A d d i n g p a r t i a l t e m p l a t e s t o c l a s s t e m p l a t e s : m o d e l l i n g
p r o p e r t y c o m m o n a l i t i e s i n a p r o d u c t - e n g i n e e r i n g i n f o r m a t i o n s y s t e m ; i n i b i d i 9 6 , .

S . E . Keene (1 9 8 9) : O b j e c t - O r i e n t a t i o n P r o g r a m m i n g i n C o m m o n L i s p : A P r o g r a m e r ' s G u i d e t o
C L O S ; R e a d i n g , M A , S y m b o l i c s P r e s s / A d d i s o n - W e s l e y .

HyperCard (1985): A p p l e C o m p u t e r s I n c ; C a l i f o r n i a , h t t p : h ^ p e r c a i d . a p p l e . c o n v

S. Ogden, J. Zucker, A. Demaid, (1994): A c c e s s E n h a n c e m e n t O b j e c t s f o r D a t a M a n a g e m e n t i n
S m a l l t a l k ; i n I n t e r n a l R e p o r t , D e s i g n D e p a r t m e n t , O p e n u n i v e r s i t y , U K .

D. J. Penney, J. Stein (1986): C l a s s m o d i f i c a t i o n i n t h e G e m s t o n e o b j e c t - o r i e n t e d D B M S ; i n i b i d i 9 5 ,
p p l l l - 1 1 7 .

J. Grant, T. Sellis (1987): D e d u c t i v e H e t e r o g e n e o u s D a t a b a s e s ; i n M e t h o d o l o g i e s f o r I n t e l l i g e n t
S y s t e m s , E d . Z b i g n i e w W . R a s a n d M a r i a Z e m a n k o v a , E l s e v i e r , I S B N 0 - 4 4 4 - 0 1 2 9 5 - 8 .

D. A. Moon (1986): O b j e c t - O r i e n t e d p r o g r a m m i n g w i t h F l a v o r s ; i n i b i d i 9 5 , .

G. A. Pascoe (1986): E n c a p s u l a t o r s : A N e w S o f t w a r e P a r a d i g m i n S m a l l t a l k - 8 0 ; i n i b i d i 9 5 , .

C. A. R. Hoare (1973): M o n i t o r s : A n o p e r a t i n g s y s t e m s t r u c t u r i n g c o n c p t ; i n C o m m , o f A C M 1 8 (1 0) ,
p p 5 4 9 - 5 5 7 .

92

194

S. Ogden, J. Zucker, A. Demaid (1 9 9 3) : A c c e s s E n h a n c e m e n t O b j e c t s f o r S t o r a g e a n d V i s u a l i s a t i o n
i n a S m a l l t a l k I n f o r m a t i o n S y s t e m o f E n g i n e e r i n g P r o p e r t i e s ; i n l E A / A I E 9 3 , .

A. Tonne (1 9 9 0) : T h e I S A M T o o l b o x v e r s i o n 2 . 1 ; v e n d e r G e o r g H e e g , D o r t m u n d ,
h u p : w w w . h e e g . d e .

T i g r i s ^ ' ' * (1 9 9 1) : T i g r e I n t e r f a c e D e s i g n e r , T i g r e O b j e c t S y s t e m ; 3 0 0 4 M i s s i o n S t r e e t , S a n t a C r u z , C A
9 5 0 6 0 , A p p a r e n t l y D i s c o n t i n u e d .

BOSS© (1 9 8 9) : B i n a r y O b j e c t S t o r a g e S y s t e m f o r S m a l l t a l k - 8 0 ; X e r o x I n t e l l e g e n t S y s t e m s
L a b o r a t o r y , P a l o A l t o , C a l i f o r n i a . A l s o p u b l i s h e d b y U M I S T S m a l l t a l k G o o d i e s L i b r a r y .

S. Khoshafian, D. Frank (1 9 8 8) : I m p l e m e n t a t i o n t e c h n i q u e s f o r o b j e c t - o r i e n t e d d a t a b a s e s ; i n
A d v a n c e s i n O b j e c t - O r i e n t e d D a t a b a s e S y s t e m s , e d s . B a n e r j e e , J . , K i m , W . a n d K i m , K , B a d
M ü n s t e r , W e s t G e r m a n y , S p r i n g e r - V e r l a g .

A. Goldberg, D. Robson (1 9 8 3) : T h e I m p l e m e n t a t i o n ; i n i b i d i 2 , p p 5 4 1 - 5 6 6 .

A. Goldberg (1 9 8 4) : F i n d i n g O u t A b o u t S y s t e m C l a s s e s ; i n S m a l l t a l k ™ - 8 0 t h e I n t e r a c t i v e
P r o g r a m m i n g E n v i r o n m e n t , A d d i s o n - W e s l e y , p p 1 6 1 - 1 9 4 .

http://www.heeg.de

O bject -O riented Softw are Representation o f Polym er M aterials Inform ation in Engineering Design

93

94

95

96

97

98

100

101

102

D. M . Harland, B. Drummond (1991): R e k u r s i v O b j e c t - o r i e n t e d H a r d w a r e ; i n i b i d i 6 1 , p p 2 7 0 - 2 9 8 .

G . Larson (1978): D y n a m i c H a s h A l g o r i t h m s , i b i d i 3 7 .

OOPSLA (1986): O b j e c t - O r i e n t e d P r o g r a m m i n g S y s t e m s , L a n g u a g e s a n d A p p l i c a t i o n s ; C o n f e r e n c e
P r o c e e d i n g s o f A m e r i c a n C o m p u t i n g M a c h i n e s (A C M) , e d s . , S I G P L A N N o t i c e s , 2 1 (1 1) .

OOPSLA (1987): S e c o n d O b j e c t - O r i e n t e d P r o g r a m m i n g S y s t e m s , L a n g u a g e s a n d A p p l i c a t i o n s ;
C o n f e r e n c e P r o c e e d i n g s o f A m e r i c a n C o m p u t i n g M a c h i n e s (A C M) , S I G P L A N N o t i c e s 2 2 (1 0) .

OOPSLA (1993): O b j e c t - O r i e n t e d P r o g r a m m i n g S y s t e m s , L a n g u a g e s a n d A p p l i c a t i o n s ; C o n f e r e n c e
P r o c e e d i n g s o f A m e r i c a n C o m p u t i n g M a c h i n e s (A C M) , e d s . , S I G P L A N N o t i c e s , ? .

ECOOP (1989): E u r o p e a n C o n f e r e n c e o n O b j e c t - O r i e n t e d P r o g r a m m i n g ; .

lEA/AIE (1993): I n d u s t r i a l a n d E n g i n e e r i n g A p p l i c a t i o n s o f A r t i f i c i a l I n t e l l i g e n c e a n d E x p e r t
s y s t e m s ; P r o c e e d i n g s o f t h e S i x t h I n t e r n a t i o n a l C o n f e r e n c e , E d i n b u r g h , S c o t l a n d , J u n e 1 - 4 , 1 9 9 3 ,
G o r d o n a n d B r e a c h S c i e n c e P u b l i s h e r s .

W. Kim, F. H. Lochovsky (1989): O b j e c t - O r i e n t e d C o n c e p t s , D a t a b a s e s , a n d A p p l i c a t i o n s ; A C M
p r e s s , A d d i s o n - W e s l e y , N Y , I S B N 0 - 2 0 1 - 1 4 4 1 0 - 7 .

M. Lenzerini, D. Nardi, M. Simi (1990): I n h e r i t a n c e H i e r a r c h i e s i n K n o w l e d g e R e p r e s e n t a t i o n a n d
P r o g r a m m i n g L a n g u a g e s ; W i l e y .

M. Minsky (1968): S e m a n t i c I n f o r m a t i o n P r o c e s s i n g ; M I T P r e s s .

195

