
Open Research Online
The Open University’s repository of research publications
and other research outputs

The role of endo--1,4-glucanase in strawberry fruit
development
Thesis
How to cite:

Woolley, Lindsey C (2001). The role of endo--1,4-glucanase in strawberry fruit development. PhD thesis.
The Open University.

For guidance on citations see FAQs.

c© 2001 Lindsey C. Woolley

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html


0 2 5 0 1 4 4  4 WAie.£-rr*icT£a>

THE ROLE OF ENDO-|3-1,4-GLUCANASE IN STRAWBERRY

FRUIT DEVELOPMENT

LINDSEY C. WOOLLEY, MA Hons.

A Thesis Submitted to the Open University 

for the Degree of Doctor of Philosophy

September 2000

Department of Plant Genetics and Biotechnology 

Horticulture Research International 

Wellesboume, Warwick
X

CV35 9EF, UK ,____      :------------

3 )A T &  o f  s u a / r x . w i e r *  . - a i
e>f i I O 0 i i o o /



ProQuest Number: 27727906

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 27727906

Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



ABSTRACT

The ripening of strawberry fruit is characterized by changes in the composition and 

structure of the cell wall polysaccharides leading to textural changes and loss of 

firmness of the fruit. An endo-P-1,4-glucanase (EGase) was purified from ripe 

strawberry (Fragaria x ananassa Duch.) fruit using cellulose affinity chromatography. 

The purified enzyme gave a single protein band of 54 kDa on sodium dqdecyl sulphate- 

polyaciylamide gel electrophoresis. A 25 amino acid N-terminal sequence showed 

strong homology with the proteins encoded by recently identified EGase genes from 

different strawberry cultivars and from Arabidopsis, pepper and tomato. The enzyme 

specifically cleaved the p-l,4-glucosyl linkages of xyloglucan but was unable to 

hydrolyze those of insoluble cellulose. The pH optimum and Km of the enzyme against 

the artificial substrate carboxymethylcellulose (CMC) were pH 5.0 to 7.0 and 1.3 mg 

ml"1 respectively. A cDNA of the corresponding ripening-enhanced, fruit-specific gene, 

cell, was isolated from a ripe fruit cDNA library. This was used to down-regulate cell 

expression in transgenic strawberry plants in order to assess the potential role(s) played 

by Cell during strawberry fruit ripening. In several transgenic lines, Cell mRNA was 

suppressed to undetectable levels in ripe fruit. However, EGase activity and firmness of 

these fruit were indistinguishable from control fruit. A second strawberry EGase gene, 

cell, is also expressed in ripening fruit and this presence has prevented specific down- 

regulation of cell from revealing its role in fruit softening. Southern analysis of cell and 

cell revealed the presence of related sequences in the strawberry genome indicating a 

small multigene family, consistent with the isolation of two different EGase cDNAs 

from strawberry.
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CHAPTER 1. INTRODUCTION

1.1 STRAWBERRY FRUIT DEVELOPMENT

1.1.1 Commercial strawberry production

The strawberry is grown commercially in all temperate regions of the world. The 

cultivated strawberry {Fragaria x ananassa Duch.) is a complex interspecific hybrid 

octoploid complex derived from two natural octoploid species F. chiloensis and F. 

virginiana. The octoploid Fragaria genome is designated AAA’A’BBBB, where the 

AA genomes are derived from the modem diploids F. vesca and F. viridis (Senanayake 

and Bringhurst, 1967). The strawberry is classified botanically as a false fruit, consisting 

of an enlarged fleshy receptacle with the achenes (seeds) on the surface of the fruit and 

belongs to the group generally known as soft fruits that includes various berries and 

currants. Strawberries are amongst the most economically important of the soft fruits, 

along with raspberries and blackcurrants, with around 2.5 M tonnes grown annually 

worldwide. Europe is responsible for almost half of the world’s production of 

strawberries and the USA for almost a quarter, the remainder being grown in many 

countries on a smaller scale. In the UK, strawberry production is more than double that 

of either raspberries or currants (Manning, 1993) and has an estimated value of around 

£55 M (Department of Trade and Industry Foresight programme report, 1997).

Strawberries are valued as a fresh fruit crop for their unique flavour, colour, texture and 

nutritional quality attributes which make them attractive to the consumer. Strawberries

1



and, as their name implies, soft fruit in general, lack a firm texture and as a result they 

have a short postharvest shelf life, a characteristic which is undesirable for producers 

and consumers alike. Tissue firmness is the major factor affecting postharvest 

deterioration in soft fruit as it renders the fruit susceptible to mechanical damage and 

subsequent microbial attack. Thus the handling of soft fruits commercially throughout 

the harvesting, packaging and distribution processes is minimized to reduce damage. 

The use of refrigeration and modified atmosphere conditions during transportation and 

storage is widely used to slow down the ripening and senescence of the fruit, reduce 

dehydration and inhibit microbial growth. Other approaches have been investigated in 

an attempt to reduce postharvest deterioration of strawberry fruit during storage. Heat 

treatment of ripe fruit was found to prevent fungal development and decrease the 

number of damaged fruits during storage. This treatment was also shown to retard the 

rate of ripening of the fruit as indicated by the reduced softening rate and colour 

development, suggesting that the method may be useful for extending the postharvest 

shelf life (Civello et a l, 1997). Modified atmosphere packaging systems for 

strawberries usually involve the use of various plastic films (Garcia et al., 1998b; Sanz 

et al., 1999) which are designed to produce optimum Ô2 and CO2 concentrations around 

the friiit and minimize water loss. An alternative method of controlling gaseous 

exchange has been evaluated in which a semipermeable, plasticized, starch-based 

coating was applied directly to the fruit. This was found to modify the internal fruit 

atmosphere and decrease water evaporation and resulted in extended storage life of the 

fruit (Garcia et al., 1998a). Gamma irradiation has the potential to extend the shelf life 

of fruit by reducing ripening and microbial spoilage. However, the use of irradiation is 

limited in strawberries as it has been shown to cause extensive tissue softening by

2



partial degradation of cellulose and polygalacturonic acid chains of pectin (d’Àmour et 

a l, 1993).

The problem of postharvest deterioration, and hence short shelf life, associated 

with strawberries and soft fruits in general, results in many of these being processed into 

products such as frozen or canned whole fruit, jams and fruit juices. The quality of 

strawberries as a fresh product depends primarily on the underlying textural changes 

which occur in the fruit during ripening, although there are a number of other 

biochemical factors affecting colour and flavour during ripening that influence quality. 

Improvements in the handling and storage characteristics of strawberries and the 

development of novel ways to maintain fresh fruit quality require a better understanding 

of the biochemistry and molecular biology of fruit ripening, and in particular softening. 

The ability to manipulate strawberry fruit ripening in a way that reduces the postharvest 

deterioration in fruit quality and extends the shelf life of the fruit is likely to have 

significant commercial importance.

1.1.2 Physiology of strawberry fruit development

Anatomically the strawberry is not a true fruit, since the fleshy part is derived from 

receptacle tissue rather than the ovary itself. The true fruits, or achenes which arise from 

fertilized ovules, are located on the outside of the fleshy receptacle and are attached to it 

by vascular connections. However, physiologically the receptacle exhibits the 

characteristics of a fruit in that it becomes fleshy, accumulates water and many organic 

compounds and undergoes ripening. It thus provides a suitable environment for seed

3



development and a mechanism for the dispersal of the mature seeds by virtue of its 

attractiveness as a food source.

The development of strawberry fruits shares similarities with a diverse range of both 

edible and inedible fleshy fruits. Different fruits display variations of the developmental 

program which can be divided into phases (Gillaspy et al., 1993). The earliest phase 

after anthesis is referred to as fruit set and marks the commitment to proceed with fruit 

development. The initial phase of fruit growth is due primarily to cell division, occuring 

for the first 7 to 10 days after fruit set in strawberry (Woodward, 1972) and tomato 

(Gillaspy et a l, 1993). Once cell division has ceased, fruit growth continues, mostly as a 

result of cell expansion, until the fruit reaches its final size. Cell number is believed to 

contribute to the variation in fruit size within a species, but in general the increase in 

cell volume makes the greatest contribution to the final size of a fruit (Coombe, 1976). 

The interval from anthesis to fruit maturity varies for different species. For strawberry 

fruits, the length of this developmental period ranges from 20 to 60 days, with an 

average of 30 days, and is dependent on temperature (Stutte and Darnell, 1987). 

Typically, strawberry fruit growth has been shown to follow a single sigmoid growth 

curve (Woodward, 1972; Coombe, 1976; Mudge et aL, 1981; Stutte and Darnell, 1987). 

However, there are reports of biphasic or double sigmoidal growth curves (Mudge et al., 

1981; Archbold and Dennis, 1984; Veluthambi et aL, 1985) indicating that the kinetics 

of strawberry fruit growth may vary with cultivar. Fruit size at maturity is correlated, 

within a cultivar, with both the position of the fruit on the inflorescence (cyme) and the 

number and size of developed achenes (Moore et aL, 1970; Stutte and Darnell, 1987), 

Fruits decline in size from primary to secondary to tertiary positions on the cyme. The
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smaller size of secondary fruit compared to primary fruit was correlated with a lag 

period in secondary fruit growth, following fertilization, although the relative growth 

rates were similar once growth was initiated. This delay was independent of 

environmental conditions and appears to be physiologically regulated. The lag in 

secondary fruit growth may be the result of inter-fruit competition as secondary fruit 

increased in weight if primary fruit exerting the stronger sink activity were removed 

from the inflorescence. Alternatively, there may be some form of apical regulation 

occuring within an inflorescence (Stutte and Darnell, 1987) similar to apical dominance 

in shoots. Differences in size exist not only between fruit from different positions on an 

inflorescence but also between fruit from different cultivars. Thus, fruit size is also 

genetically determined and a close relationship is observed between fruit weight and 

developed achene number and size. Small fruits arising from lower flower positions or 

from small-fruited cultivars were found to have fewer and smaller achenes than larger 

fruit (Moore et aL, 1970). Indeed, it has been clearly shown that the growth of the 

receptacle is dependent on, and regulated by, the fertilized achenes and that strawberry 

receptacle weight is proportional to the number of fertilized ovules or achenes present 

(Nitsch, 1950).

Following the early stages of growth and development, fruits enter a maturation 

phase during which they acquire the ability to ripen. The ripening phase can be 

characterized by a set of distinct biochemical events that result in important changes 

affecting the quality attributes of fruit. These include the colour, texture and flavour 

changes characteristic of each fruit. Thus ripening is defined by a programmed series of 

changes in gene expression and the resultant de novo protein synthesis and /or 

degradation. It is a highly coordinated phase at the end of a continuous process of fruit
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development. As such it is far more complex than the early perception of ripening which 

was described in terms of the catabolic events associated with the breakdown of cell 

structural integrity, referred to as ‘organizational resistance’ (Brady, 1987).

1.1.3 Non-climacteric fruit

Fruits in general can be classified as climacteric or non-climacteric depending on their 

patterns of respiration and ethylene synthesis during ripening and several reviews exist 

on this subject (Tucker and Grierson, 1987; Tucker, 1990,1993). Climacteric fruit are 

characterized by a burst of autocatalytic ethylene production and a peak of respiratory 

activity, termed the respiratory climacteric, during ripening. The transient increases in 

both ethylene synthesis and respiration usually occur at an early stage of ripening but the 

magnitude of the increases varies considerably between different fruits (Table 1.1). In 

any particular fruit, the rate of peak ethylene production is generally proportional to the 

peak respiration rate. Similarly, the timing of the peaks in ethylene production and 

respiration in relation to each other, and in relation to the stage of ripening, is different 

depending on the fruit. In most fruits, the increase in ethylene synthesis occurs before, or 

is coincident with, the respiratory climacteric, although in some the respiratory increase 

precedes the rise in ethylene. These events may occur prior to optimum eating ripeness, 

as in the case of tomato and apple, or they may coincide with, or follow ripeness, as 

observed in banana and avocado.
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Table 1.1 Maximum CO2 and ethylene production of selected climacteric and non

climacteric fruits (after Tucker, 1990)

Fruit CO2 (ml kg'1 h '1) Ethylene (ppm)

Climacteric

Avocado 155 500

Banana 60 40

Cherimoya 170 219

Pear 33 40

Tomato 20 27

Non-climacteric

Cherry 25 -

Grape 20 -

Lemon 5 0.15

Pineapple 17 0.30

Strawberry 21 -

In contrast, the ripening of non-climacteric fruits is not accompanied by an increase in 

respiratory activity or ethylene production. In most cases there is actually a gradual 

decline in respiration rate as ripening procédés. Although non-climacteric fruit do 

produce low levels of ethylene, as do most plant tissues, there is no increase in synthesis 

as seen for climacteric fruit. Instead they exhibit a slow decline in ethylene levels from
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the mature green to the ripe stage of development in parallel with the decline in 

respiration. However, as with climacteric fruits, both the respiratory rate and level of 

ethylene production vary between different non-climacteric fruits (Table 1.1). In 

general, fruits with higher respiratory and ethylene synthesis rates tend to ripen faster 

and hence have a shorter shelf life. Thus, non-climacteric fruits such as strawberry and 

cherry are more perishable than climacteric fruits such as tomato since, although they do 

not show a respiratory peak, their respiration rates are consistently higher (Table 1.1).

The two classes of fruit also differ in their synthesis of endogenous ethylene and 

response to exogenous ethylene. Non-climacteric fruit respond to exogenous ethylene 

with an increased respiration rate which is proportional to the concentration of 

exogenous ethylene and is dependent on its continued presence. The basal level of 

ethylene production is unaffected. The resulting rise in respiration rate is responsible for 

a corresponding increase in the rate of ripening. However, the effect of exogenous 

ethylene on climacteric fruit is to accelerate the onset of the respiratory climacteric 

without causing any change in the magnitude of the peak respiratory rate. In this case, it 

is the extent to which the climacteric is brought forward in time that is proportional to 

the concentration of exogenous ethylene. These differences can be explained by the 

autocatalytic synthesis of ethylene in climacteric fruit, which is absent in non

climacteric fruit and which led to the suggestion that two control systems for ethylene 

synthesis exist in fruit (McMurchie et aL, 1972). Thus, exogenous ethylene triggers the 

autocatalytic production of endogenous ethylene by system II in climacteric fruit and 

advances the respiratory climacteric. In contrast, non-climacteric fruit possess only 

system I ethylene, which is responsible for both background and wound ethylene
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production in all tissues, and hence are unable to respond autocatalytically to exogenous 

ethylene.

The autocatalytic response of climacteric fruit to exogenous ethylene is believed 

to be identical to the autocatalytic response to an increase in endogenous ethylene levels 

that occurs during fruit development and induces ripening in these fruit. Ethylene is 

synthesized from S-adenosyl methionine (SAM) which is converted to 1- 

aminocyclopropane-1 -carboxylic acid (ACC) by ACC synthase and then to ethylene by 

ACC oxidase. Developmental regulation of ACC synthase and ACC oxidase is believed 

to initiate the rise in endogenous ethylene levels that in turn activates the autocatalytic 

production of endogenous ethylene. Thus ethylene is considered to play an essential role 

in the regulation of ripening in climacteric fruits, but not in non-climacteric fruits, which 

are considered to be ethylene-independent (Lelievre et al., 1997).

On this basis, ripening of strawberry fruit is classified as being non-climactéric. 

There is a lack of increased respiration and ethylene production during ripening (Knee et 

al., 1977; Abeles and Takeda, 1990; Perkins-Veazie et al., 1996). In addition, inhibitors 

of the ethylene biosynthetic enzyme ACC synthase (aminoethoxyvinylglycine) or 

ethylene action (silver thiosulphate, norbomadiene) failed to retard the onset of ripening 

as measured by anthocyanin accumulation (Given et al., 1988c) indicating that ethylene 

is not required for the induction of ripening in strawberry.

1.1.4 Biochemical changes during strawberry fruit ripening

The ripening phase of fruit development can be characterized by a set of physico

chemical changes characteristic of each fruit. These result in important changes



affecting the main quality attributes of flavour, colour and texture. The biochemical 

events that occur in many fleshy fruits include the production of flavours and aromas 

which affect the palatability of the fruit, the production of new pigments which affect 

the aesthetic quality and texture changes resulting in tissue softening which affect the 

postharvest shelf life.

1.1.4.1 Flavour

Flavour is one of the most important factors affecting strawberry fruit quality and its 

perception can be separated into two components, taste and aroma. Flavour changes 

result from a combination of the accumulation of various sugars, organic acids and 

phenolics and the synthesis and interaction of complex mixtures of volatile compounds.

Sugars are one of the major soluble components in strawberry fruit. The fruit are 

strong sinks for photosynthetic assimilate from the leaves and accumulate sugars 

throughout their development, including the ripening phase. This requires that the fruit 

has to ripen on the plant if acceptable flavour is to develop. Consequently, the 

harvesting of strawberry fruits prior to ripening in order to prolong shelf life results in 

inferior flavour in contrast to fruits such as tomato which accumulate most of their 

sugars before the onset of ripening.

In strawberry, sucrose is the main carbohydrate translocated to the fruit. 

Experiments using 14C-labelled sugars have indicated that sucrose is unloaded 

apoplastically and is hydrolyzed in the free space before uptake as hexoses into the fruit. 

Some intact sucrose may also accumulate in the fruit (Forney and Breen, 1986). The 

presence of a cell wall bound invertase has been reported in strawberry fruit, the activity
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of which increases during the initial growth of the receptacle, suggesting that it could be 

important in establishing a strong sink activity in the growing fruit (Poovaiah and 

Veluthambi, 1985). Hydrolysis of sucrose in the free space by invertase can also account 

for the greater accumulation of the hexoses, glucose and fructose, over sucrose observed 

in strawberry fruit (Forney and Breen, 1986). Sucrose levels are very low in strawberry 

fruit for the first ÎO days after anthesis but then rapidly increase to reach a maximum at 

the turning stage before declining as fruit ripen (Forney and Breen, 1986). This pattern 

was accounted for by the activity of a soluble invertase (Poovaiah and Veluthambi,

1985) that declined after an initial high activity at anthesis and then increased again at 

the time of ripening. Glucose, fructose and sucrose account for more than 99% of the 

total sugars in ripe fruit, as is also the case for raspberry and blackcurrant. Sorbitol, 

xylitol and xylose are other sugars which are present in trace amounts (Makinen and 

Soderling, 1980).

Organic acids also constitute a significant proportion of the soluble solids in strawberry 

and are important components of flavour. The balance between sugar and acid levels is 

considered to be of importance in determining the level of flavour acceptance of the 

fruit. Acids can also affect flavour directly and may influence the processing quality of 

the fruit since they affect the formation of off-flavours and the gelling properties of 

pectin (Manning, 1993). The major acids found in strawberry fruit, as in many fruit, are 

citric and malic acids, with several others, including shikimic and quinic acids, present 

in trace amounts (Montera et a l, 1996). Total acid content has been shown to increase 

on a per fruit basis during strawberry fruit development with a decline in over-ripe fruit 

(Woodward, 1972). This is in contrast to most fruits and to raspberry fruits in particular
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which exhibited a decline in total acid levels per unit FW throughout development 

(Perkins-Veazie and Nonnecke, 1992). The most important acid in fruits from the point 

of nutritional quality is ascorbic acid (vitamin C) and strawberries have been shown to 

contain considerable levels of this compound (Montera et aL, 1996).

Phenolics, although present at relatively low levels in ripe fruits, are important 

contributors to their taste, palatability and nutritional value. Several different phenolic 

compounds have been isolated from fruit and they represent a diverse range of 

substances including the secondary plant metabolites polyphenols (tannins), 

proanthocyanidins (condensed tannins) and esters of hydroxybenzoic and 

hydroxycinnamic acids. Phenolics are responsible for the astringency of fruits, which 

generally decreases as fruit ripen and may ensure that the fruit are only consumed when 

they are ripe and the seeds are ready for dispersal. Astringency is thought to be caused 

by the interaction of phenolics with the proteins and mucopolysaccharides in saliva. It 

has been suggested that loss of astringency during ripening may be due to interactions 

between soluble pectins and polyphenols, disrupting the binding of polyphenols to 

proteins (Ozawa et aL, 1987). In addition, a reduction in proanthocyanidin phenolic 

compounds and a concomitant loss of astringency is likely to occur as they are the 

precursors of the anthocyanin pigments synthesized in ripe fruit.

The sugars, organic acids and phenolics found in fruits contribute greatly to determining 

the taste component of flavour. However, the aroma is a result of the presence of a 

complex range of volatile compounds. Some of these compounds are common to many 

fruits whereas others are specific to a particular fruit and are responsible for the unique
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and characteristic aroma and flavour of the fruit. In strawberry fruit over two hundred 

different volatile compounds have been identified comprising alcohols, aldehydes, 

esters, carbonyls, sulphur compounds and furanone-derived compounds. Only a small 

proportion of these are likely to contribute to aroma, with furaneol (2,5-dimethyl-4- 

hydroxy-3 (2H)-furanone) being one of the most important (Pickenhagen et aL, 1981). 

Fatty acids are quantitatively the major precursors of volatile compounds responsible for 

aroma in plants. Many of the volatile alcohols, aldehydes, acids and esters are generated 

from the oxidative degradation of linoleic and linolenic acids by lipoxygenase and 

hydroperoxide lyase (Perez et aL, 1999). Both enzymes have been identified in 

strawberry fruit and their sequential activities are responsible for the production of the 

C-6 aldehydes hexenal and hexanal. Hexenal levels are relatively constant throughout 

ripening whereas hexanal levels increase sharply in over-ripe fruit. This rise could be 

attributable to a change in the substrate specificity of the hydroperoxide lyase during 

ripening, yielding a different product (Perez et aL, 1999). Indeed, it seems likely that 

enzymes with ai broad substrate specificity could account for the diverse range of 

volatile compounds produced (Manning, 1993). Hexenal and hexanal are also the 

precursors of hexyl and hexenyl esters formed by the action of alcohol acyltransferase, 

which has also been isolated from strawberry fruit (Perez et aL, 1999). Lipoxygenase 

activity is also involved in the production of hexenal in tomato. It has been suggested 

that of the two lipoxygenase genes identified in tomato, the gene tomloxB may be more 

specifically involved in this reaction as its expression is fruit specific and highest in ripe 

fruit (Ferrie et aL, 1994).
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1.1.4.2 Colour

For many fruits a change of colour is a natural indicator of fruit ripeness. Colour is an 

important aesthetic component of ripe fruits and results from a combination of the 

degradation of existing pigments, such as chlorophyll, and the synthesis of new 

pigments such as carotenoids and/or anthocyanins (Tucker, 1993). During the ripening 

of strawberry fruit there is degradation of chlorophyll, consistent with the disappearance 

of chloroplasts, and a decrease in the content of carotenoids (Gross, 1982). The 

reddening of the fruit as they ripen is a result of the increased synthesis and 

accumulation of anthocyanins (Woodward, 1972). Anthocyanins, the glycosidic 

derivatives of anthocyanidins, comprise a diverse range of pigments that are localized 

within the vacuole of the plant cell (Tucker, 1993). In strawberry they are inherently 

unstable during processing with the result that fruit colour is adversely affected by heat 

and freezing treatments. Anthocyanins are derived from flavonoid compounds 

synthesized from the primary metabolic precursor phenylalanine, an aromatic amino 

acid. In strawberry fruit, the accumulation of anthocyanins coincides with the induction 

of phenylalanine ammonia-lyase (PAL) activity (Given et aL, 1988a). This is the first 

and key enzyme in phenylpropanoid metabolism and as such may be involved in the 

synthesis of several classes of compounds other than flavonoids. The increase in PAL 

activity was shown to be due to de novo synthesis of the enzyme rather than activation 

of pre-existing enzyme (Given et aL, 1988b). However, the activity of uridine 

diphosphate glucose:flavonoid 0 3-transferase (UDPGFT), the terminal enzyme in the 

synthesis of pelargonidin-3-glucoside, the principal anthocyanin in strawberry, was also 

induced as anthocyanin content increased, suggesting that both enzymes regulate
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anthocyanin synthesis (Given et a l, 1988a). The competitive inhibitor of PAL, L-a- 

aminoxy-p-phenylpropionic acid (L-AOPP) inhibited anthocyanin synthesis 

demonstrating that PAL activity is necessary for the accumulation of anthocyanins in 

ripening strawberry fruit (Given et al., 1988a).

1.1.4.3 Texture

The majority of fruits undergo textural changes during ripening leading to extensive 

softening. Tissue firmness is a major factor determining fruit quality and postharvest 

shelf life and can vary widely between fruits from different species and within cultivars 

of the same species. The variation in the extent and rate of softening is likely to reflect 

different underlying mechanisms causing the textural changes. Turgor loss is associated 

with postharvest dehydration of fruit and may contribute to textural changes during fruit 

storage. Starch degradation may account for considerable textural changes in fruit such 

as banana, where starch comprises a high percentage of the fresh weight. However, it is 

generally considered that softening and textural changes during ripening of fruits are the 

result of modification and degradation of the fruit cell walls. Strawberry fruit undergo 

remarkable softening throughout development and particularly during ripening 

eventually resulting in almost total liquefaction and a correspondingly short postharvest 

shelf life. Of the soft fruits, the strawberry has been the most extensively studied in 

relation to textural changes, although the accompanying alterations in the composition 

and structure of the cell wall are still not well characterized.

15



Most work on strawberry has focused on the pectic fraction of the cell wall. During 

ripening there is swelling and hydration of the cell wall and middle lamella associated 

with an increase in soluble polyuronides (Woodward, 1972; Knee et al., 1977; Huber, 

1984). There is a loss of the neutral sugars arabinose, galactose and rhamnose from the 

cell wall consistent with higher levels of these sugars in the soluble polyuronide fraction 

(Knee et aL, 1977; Huber, 1984). Huber (1984) suggested that the increased levels of 

soluble polyuronides may be due to increased synthesis of a modified, more soluble 

form of polyuronide during ripening, and that the higher proportion of arabinose, 

galactose and rhamnose present may contribute to this. Arabinose and galactose can be 

linked to the polygalacturonan backbone via the rhamnosyl moiety, which itself can 

influence the conformation of the polymer and hence its interaction with other 

polysaccharides. This addition of less firmly bound, more freely soluble polyuronides 

may affect the structural integrity of the cell wall resulting in fruit softening. This idea is 

supported further by the observation that there is no detectable depolymerization of 

polyuronide as evidenced by the constant average molecular size of these soluble 

polymers during ripening (Huber, 1984). Polyuronide solublization in strawberry has not 

been attributed to the enzymic hydrolysis of pectin polymers as many studies show that 

strawberries lack endopolygalacturonase (PG) activity (Neal, 1965; Barnes and Patchett, 

1976; Huber, 1984; Abeles and Takeda, 1990), contrary to one early report of its 

presence (Gizis, 1964). Alternatively, it has been suggested that increased méthylation 

of strawberry polyuronides during ripening is responsible for their solubilization by 

removing the sites available for Ca2+ cross-linking (Neal, 1965). This is consistent with 

the observed reduction in pectinmethylesterase (PME) activity in the later stages of 

ripening (Barnes and Patchett, 1976). Recently, the ripening-enhanced expression of a
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gene with sequence homology to pectate lyase from higher plants has been reported in 

strawberry (Medina-Escobar et aL, 1997b). Pectate lyases randomly cleave p-l,4-linked 

galacturonosyl residues of pectins. Thus it is possible that pectate lyase activity may 

contribute to pectin solubilization in strawberry. However, to be consistent with the 

constant molecular size of strawberry pectin polymers throughout ripening, its mode of 

action would be unlikely to involve hydrolysis in the middle of pectin polymers which 

would result in depolymerization of the polyuronide fraction.

In contrast to the pectic fraction of the wall, the hemicellulose fraction undergoes 

marked depolymerization during ripeness as evidenced by a significant reduction in the 

molecular weight of hemicellulosic polymers extracted from strawberry fruit cell walls. 

This change is temporally related to fruit softening and has been attributed to enzymic 

degradation, although there is little alteration in the neutral sugar content of the 

hemicellulose polymers (Huber, 1984). Knee et al. (1977) also suggested that 

hemicelluloses are degraded during ripening as an increase in xylose, mannose and 

glucose, residues characteristic of hemicellulosic polymers, occurs in soluble cell wall 

fractions. The possibilty that the endo-|3-1,4-glucanase (EGase) activity detected in ripe 

strawberry fruit is involved in hemicellulose degradation has been suggested as it was 

unable to degrade insoluble cellulose (Barnes and Patchett, 1976). This idea is supported 

by the observation that the content of cellulose is essentially constant in strawberry fruit 

throughout development. The composition and structure of cell walls and their 

modification during fruit ripening is discussed more generally in section 1.2.
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1.1.5 Gene expression during strawberry fruit development

The biochemical events that characterize ripening fruits are the result of a 

developmentally regulated series of changes in gene expression and the resultant de. 

novo protein synthesis and/or degradation. Labelling experiments have clearly 

demonstrated that both protein and mRNA synthesis occur in fruit during ripening. 

Fractionation by 2-D polyacrylamide gel electrophoresis (2-D PAGE) of the labelled in 

vitro translation products of mRNAs from tomato fruit has revealed considerable 

differences between unripe and ripe fruit. Some mRNAs persisted as the fruit ripened, 

whereas the synthesis of others declined or ceased, whilst some new mRNAs appeared 

as ripening progressed (Tucker and Grierson, 1987).

The changes in gene expression that occur during the ripening of strawberry fruit have 

been studied by a variety of approaches. The qualitative changes in mRNA have been 

studied by the in vitro translation of total RNA isolated from strawberry receptacle 

tissue at various stages from immature green to over-ripe (Manning, 1994). The 

translation products were analyzed by 2D-PAGE and a change in the abundance of more 

than 50 mRNAs was observed throughout this period of development. The most 

prominent changes were observed at or just before the onset of ripening (when 

anthocyanins accumulate) and involved both the increase and decrease of specific 

mRNAs. The translated products of a number of mRNAs undetectable in immature 

green fruit increased as the fruit matured and ripened. Another group decreased before 

die onset of ripening and yet others were prominent in both immature green and ripe 

fruit, but were reduced or undetectable in fruits between these two stages. Protein
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synthesis at different stages of strawberry fruit ripening has also been analyzed by 

electrophoresis of labelled proteins extracted from receptacle tissue incubated with 35S- 

methionine (Civello et aL, 1996). Whilst many proteins were present at all ripening 

stages, some either increased or decreased during ripening as subsequently observed for 

mRNA levels.

Polymerase chain reaction (PCR) differential display has been used to compare 

differences in gene expression between white (unripe) and red (ripe) strawberry fruit 

(Wilkinson et al., 1995). Five mRNAs with ripening-enhanced expression were 

identified by PCR amplification of cDNA subpopulations using a specific set of 

oligonucleotide primers. Three of these had homology to known proteins including 

chalcone synthase, an enzyme involved in anthocyanin biosynthesis. A cDNA 

subtractive library representing genes expressed in red but not green fruit has been used 

to successfully isolate ripening-specific cDNAs (Medina-Escobar et al., 1997a). 

Conventional differential screening of the library followed by PCR-Southem blot 

differential screening (PCR-SBDS) identified eight genes that were expressed only in 

red fruit.

However, standard differential screening of a ripe fruit cDNA library using 

cDNA from ripe and white fruits has identified the greatest number of ripening-related 

genes from strawberry (Manning, 1998a). More than 100 ripening-enhanced clones were 

isolated, representing 26 different gene families. Those identified with putative 

functions related to quality traits are shown in Table 1.2.
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Table 1.2 Selected strawberry ripening-related genes and their putative functions

Gene Function

O-methyltransferase 
Chalcone synthase Phenylpropanoid metabolism
Chalcone reductase (colour, astringency)
Flavonoid-3-hydroxylase 
UDPG-glucosyl transferase

Sucrose transporter Sugar accumulation (taste)

Endo-P-1,4-glucanase Cell wall metabolism (texture)

Acyl carrier protein Lipid biosynthesis (aroma)

Five of the genes appear to encode enzymes involved in phenylpropanoid metabolism. 

Anthocyanins are derived from secondary metabolites of phenylpropanoid metabolism 

and the coordinated upregulation of the expression of these genes may be necessary for 

anthocyanin accumulation. Two of the genes, chalcone synthase and flavonoid-3- 

hydroxylase, are also expressed in immature strawberry finit. The products of these 

genes act at intermediate steps in the phenylpropanoid pathway, which produces many 

phenolic compounds besides anthocyanins. The expression patterns of these genes 

suggest they may initially be involved in the synthesis of the astringent phenolics found 

in unripe finit, after which synthesis is redirected towards anthocyanin production as the 

finit mature and their phenolic content declines (Manning, 1998b). Sugars are an 

important component of flavour in fruits and have to be imported into these sink organs. 

Sucrose accumulates in strawberry finit along with the hexoses glucose and fructose. 

The increased expression of genes encoding two cell wall invertases (isolated
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independently of the differential screen) and a sucrose transporter in ripe fruit is 

consistent with the accumulation of the hexose products of sucrose hydrolysis and the 

uptake of intact sucrose into the fruit. The expression of a gene encoding acyl carrier 

protein, an essential component of the fatty acid synthetase complex catalysing lipid 

biosynthesis, is also upregulated in ripe fruit. Although strawberry fruit do not 

accumulate fatty acids and the lipid composition changes little during development, fatty 

acids are one of the main precursors of the numerous flavour volatiles produced in ripe 

strawberry fruit. Thus it may be expected that fatty acid synthesis must be maintained to 

sustain the production of these volatile flavour compounds that are lost from the fruit. 

The ripening-enhanced endo-P-1,4-glucanase (EGase) gene identified from this 

differential screen was the basis for the research on the role of EGases in cell wall 

metabolism during strawberry fruit development described in this thesis. The approach 

of differentially screening a ripe fruit cDNA library has also been applied to the wild 

strawberry F. vesca (Nam et al.} 1999). Of the 8 ripening-induced cDNAs isolated, two 

had putative identities that were the same as those of the cDNAs isolated from the 

cultivated strawberry, namely acyl carrier protein and O-methyltransferase.

Ripening-enhanced cDNAs have also been isolated from grape (Davies and 

Robinson, 2000), melon (Aggelis et aL, 1997; Hadfield et a l, 2000), peach (Callahan et 

aL, 1993), raspberry (Jones et aL, 1998a), blackcurrant (Woodhead et aL, 1998) and 

kiwifruit (Ledger and Gardner, 1994) by differential screening, showing that this 

technique can be used effectively for studying climacteric and non-climacteric fruit, 

particularly when there are numerous changes in gene expression during development.
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1.1.6 Regulation of strawberry fruit development

The ripening of strawberry fruit is typically non-climacteric in that it is independent of 

the hormone ethylene. Early work revealed that the hormone auxin is essential for 

strawberry fruit growth (Nitsch, 1950). Since then the hormonal regulation of strawberry 

fruit development has been studied in detail and a principal role for auxin has emerged.

1.1.6.1 Auxin

The work of Nitsch (1950,1955) demonstrated that i) the growth of the strawberry 

receptacle is regulated by the achenes, ii) the growth of receptacles from which the 

achenes have been removed can be restored by the application of synthetic auxins and 

iii) the achenes are a source of the biologically active free auxin indole-3-acetic acid 

(IAA). The level of free IAA in the achenes has been shown to reach a maximum 10-12 

days after pollination, after which time the level declines, whereas in the receptacle, free 

IAA was found to be absent or only present in trace amounts (Nitsch, 1955; Dreher and 

Poovaiah, 1982). In contrast, conjugated forms of IAA, in which IAA is attached 

through either an ester or amide linkage to a sugar or amino acid moiety, were found to 

be predominant in the receptacle but were present at only a small proportion of the free 

IAA levels in the achenes (Dreher and Poovaiah, 1982). However, other workers have 

reported much higher levels of both free IAA in the receptacle, reaching a maximum 

concurrently with the maximum level in the achenes, and conjugated IAA in the achenes 

(Archbold and Dennis, 1984). The inter-relationships between the free and conjugated 

forms of IAA are not well understood. Conjugated IAA may serve as a source of free
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IAA in the achenes in the early stages of development in addition to IAA synthesized de 

novo. Conjugates of IAA may also represent temporary storage forms of IAA or 

inactivated end-products of IAA metabolism (Archbold and Dennis, 1984). Studies 

using labelled auxins have shown that strawberry finit are able to conjugate free IAA 

and metabolize conjugated IAA (Darnell and Martin, 1987).

Thus it is generally accepted that the achenes are able to synthesize free auxin 

which they export to the receptacle. A continuous supply of auxin is required to 

maintain receptacle expansion. Several reports describe the inhibition of fruit growth by 

the removal of the achenes which can be restored by the application of various auxin 

analogues (Mudge et al., 1981; Archbold and Dennis, 1985). The effectiveness of 

particular auxins in stimulating growth varied between cultivars suggesting that there 

were differences either in auxin specificity or in the transport and metabolism of auxins 

between cultivars (Mudge et al., 1981; Darnell et al., 1987).

The achenes not only have an essential role in fruit growth during the early 

stages of strawberry fruit development, they also play a role in ripening. For example, 

removal of the achenes from one half of a mature green fruit accelerated ripening in the 

de-achened half, as evidenced by increased anthocyanin content and PAL activity and 

decreased firmness and chlorophyll content compared to the intact control half (Given et 

al., 1988c). In addition, this accelerated ripening was prevented by the application of 

synthetic auxins such as 1 -naphthaleneacetic acid (1-NAA), but not by the inactive 

auxin analogue phenoxyacetic acid (POA), indicating an auxin-specific effect. These 

results lead to the hypothesis that auxin produced by the achenes inhibits ripening in 

green fruit and that the declining level of auxin in the achenes as the fruit continues to 

develop (Dreher and Poovaiah, 1982) modulates the rate of ripening (Given et al..
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1988c). Thus auxin appears to be the principal hormone regulating all stages of 

strawberry fruit development. High concentrations of auxin in the early stages of fruit 

development are required for receptacle growth and also suppress ripening. As fruit (and 

achenes) mature auxin levels decline in the receptacle allowing ripening to proceed.

The regulation of strawberry fruit development by auxin has been investigated at the 

level of gene expression. The patterns of polypeptides obtained from in vitro translation 

of total RNA extracted from de-achened receptacle tissue treated either with water 

(control) or with auxin indicates that auxin regulates gene expression in ripening 

strawberry (Manning, 1994). The pattern produced from the de-achened receptacle 

treated with auxin which did not ripen was similar to that for normal intact unripe fruit. 

The ripened de-achened control receptacle produced a translation profile similar to that 

of normal ripe fruit as did the de-achened receptacle treated with POA which ripened 

normally indicating that active auxin is a repressor of ripening in strawberry.

Changes in the abundance of specific polypeptides during strawberry fruit 

development have been reported (Veluthambi and Poovaiah, 1984). Removal of the 

achenes from small green fruit retarded growth and suppressed the appearance of 

polypeptides of 81, 76 and 37 kDa. Application of auxin to the de-achened fruit restored 

growth and the formation of these polypeptides indicating that they are induced by 

auxin. In contrast, two polypeptides of 52 and 57 kDa were present in de-achened fruit 

but absent in auxin-treated de-achened fruit indicating that they are repressed by auxin 

and may inhibit fruit growth in the absence of auxin. This is consistent with the 

correlation shown between a lack of receptacle growth and the accumulation of a 52 

kDa polypeptide in a strawberry variant genotype (Veluthambi et aL, 1985). Receptacle
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growth of the variant genotype required the application of auxin which also abolished 

the 52 kDa polypeptide.

The cDNA (XSAR5) of an auxin-repressed gene has been identified in 

strawberry (Reddy and Poovaiah, 1990). The expression of this gene is blocked by 

endogenous auxin during normal finit development. In the variant genotype referred to 

above, transcripts were 50-fold more abundant in the untreated finit which did not grow, 

than in the auxin-treated fruit which did grow, suggesting that the product of this gene is 

required for fruit growth. In addition, the cDNAs (XSAR1 and XSAR2) of two auxin- 

inducible genes have been isolated, which show the opposite patterns of expression to 

the auxin-repressed gene in normal fruit and in fruit of the variant genotype (Reddy et 

ai., 1990). Thus, auxin regulates strawberry finit development by both inducing and 

repressing the expression of specific genes.

1.1.6.2 Ethylene

A principal role for auxin in the regulation of strawberry fruit development contrasts 

with the apparent lack of any involvement of ethylene in this process. As a typical non

climacteric finit (section 1.1.3), the strawberry does not exhibit increased respiration 

and ethylene production during ripening (Knee et aL, 1977; Abeles and Takeda, 1990). 

Its ripening is unaffected by exogenous ethylene and by inhibitors of ethylene synthesis 

or action (Given et aL, 1988c), indicating that ethylene does not have a role in the 

regulation of strawberry fruit development. The results of a study on the effect of 

ethylene on RNA metabolism in strawberry fruit after harvest appear to contradict this 

idea (Luo and Liu, 1994). The authors found that fruit treated with ethylene had
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increased total and polyA RNA content, although the identity of the induced mRNAs 

was not investigated. However, non-climacteric fruit are known to respond to 

exogenous ethylene with an increased respiration rate, possibly as a result of a general 

increase in metabolism including increased gene expression. Conversely, a reduced 

respiration rate and slowed ripening may also account for the extended shelf life of 

strawberries which were stored in a reduced ethylene environment (Wills and Kim,

1995).

However, studies on other non-climacteric fruit have implicated endogenous ethylene in 

the regulation of certain aspects of ripening. In citrus fruit, endogenous ethylene appears 

to regulate the degreening process. Ethylene antagonists prevent colour changes of the 

flavedo tissue and both chlorophyll degradation and carotenoid biosynthesis, processes 

that result in degreening, are stimulated by ethylene (Lelievre et al., 1997). Several 

cDNAs corresponding to ethylene-inducible mRNAs have been isolated from citrus fruit 

and three of these showed increased expression in fruit between the green and fully 

coloured stages of ripening (Alonso et aL, 1995). It is also interesting that anthocyanin 

accumulation is unaffected by ethylene in strawberry (Given et aL, 1988c) and cherry 

whereas anthocyanin biosynthesis is stimulated by exogenous ethylene in grape 

(Lelievre et aL, 1997).
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1.1.6.3 Other growth regulators

Most studies on the regulation of strawberry fruit development have focused on the role 

of auxin. However, there are a few reports on the effects of other growth regulators on 

strawberry development in vitro.

The effects of gibberellin and cytokinin in conjunction with auxin were studied 

on intact fruit cultured in vitro (Kano and Asahira, 1978). Gibberellin was found to act 

synergistically with auxin to promote growth and ripening, whilst cytokinin repressed 

growth and ripening. This work also indicated that the achenes are a source of cytokinin 

in addition to auxin and that the promotive effect of auxin on fruit growth is balanced by 

an inhibitory effect of cytokinin. It was concluded that auxin was the dominant hormone 

regulating growth and ripening, but that its effects could be modulated by other growth 

regulators. The reported effect of exogenous gibberellin and auxin together on ripening 

contrasts with the effect of gibberellin alone. When gibberellin was applied to whole 

and de-achened mature green strawberry fruit it delayed ripening as measured by a 

reduction in the anthocyanin production and chlorophyll degradation (Martinez et al, 

1994). This achene removal did not affect the response to gibberellin, indicating that 

auxin was not involved. Gibberellin was also found to decrease respiratory activity in 

ripening fruit, leading to the conclusion that gibberellin inhibits general metabolic 

activity rather than the ripening process itself.

Abscisic acid (ABA) was found to decline in the achenes in the early stages of 

fruit development before accumulating during ripening (Archbold and Dennis, 1984). 

The concentration of ABA was consistently higher in the achenes than the receptacle 

throughout development and the increase in ABA levels during ripening was much less
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in the receptacle. Thus there is a declining ratio of auxin to ABA in the achenes as fruit 

ripen although no significant correlation with fruit growth or ripening was found. In a 

separate study, exogenous ABA stimulated ripening in receptacles cultured in vitro 

(Kano and Asahira, 1981). However, as with all in vitro studies with growth regulators, 

the results should be interpreted carefully as detached fruit develop more slowly than 

fruit on the plant and the levels of growth regulators present in them may not represent 

the true levels present in intact fruit (Manning, 1993).

One of the more recently identified endogenous plant growth regulators is 

jasmonic acid (JA) and its volatile methyl ester, methyl jasmonate (JAMe) (Staswick, 

1996), the main activities of which include the promotion of senescence. The effect of 

JAMe on strawberry fruit ripening has been studied in vitro (Perez et aL, 1997). A 

significant increase in respiration and ethylene production was observed in immature 

fruit as was a transitory induction of anthocyanin biosynthesis and chlorophyll 

degradation. A role for JAMe as an inducer of ripening in strawberry was suggested. 

However, as with gibberellin which appears to inhibit ripening, it may be that the effects 

on ripening are the result of the altered respiration rate and hence altered general 

metabolic activity rather than a specific effect on aspects of ripening.

The possible involvement of polyamines in strawberry fruit development has 

been investigated after reports that polyamines affect fruit growth (Ponappa and Miller,

1996). Application of auxin to de-achened strawberry receptacles not only re-initiated 

growth of the receptacle but also caused an increase in the polyamine concentration in 

the receptacle. However, in normal fruit development total polyamine concentration 

decreased from a maximum at the early stages of receptacle development to a minimum 

in ripe receptacles. A similar pattern was observed in the achenes, although the
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concentration of polyamines was higher than in receptacles. In addition, application of 

exogenous polyamines did not induce receptacle growth. Thus it appears that 

polyamines do not act as hormonal regulators of strawberry fruit growth, although their 

biosynthesis is auxin-inducible. Polyamines are implicated in cell division and the high 

polyamine levels coincide with the period of cell division that occurs early in strawberry 

fruit development and is induced by auxin treatment. The high polyamine concentration 

may also influence the early development of the achenes and in doing so may indirectly 

affect development of the whole fruit.
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1.2 CELL WALL STRUCTURE AND FRUIT TEXTURE

The plant cell wall has many functions, the most important being related to structural 

properties. The cell wall determines the size and shape of the cell, attaches it to its 

neighbours and provides rigidity to the cell. In doing so, the wall makes a key 

contribution to the structural strength of the whole plant. Selective reversible weakening 

of the wall allows controlled growth of the cell while maintaining the overall structural 

integrity of the wall and cell. The structure of the cell wall and its net negative charge 

are an obstacle to the movement of large and positively charged molecules into and out 

of the cell. Water and low molecular weight molecules are able to pass between cells 

across the cell wall, as are cell signalling compounds which are generally small and 

either neutral or negatively charged. Certain wall components may themselves act as 

regulatory molecules with a role in cell-cell communication. The walls of neighbouring 

cells are in direct contact and together with the intercellular space, they constitute the 

apoplast, a major transport pathway that allows movement of materials external to the 

cell cytoplasm. The nature of the wall that causes it to be a barrier becomes an 

advantage in the protection of the cell from attack by pathogens. Thus cell walls are 

actively involved in a wide range of metabolic processes. There is active synthesis and 

modification or degradation of the cell wall during cell growth and in response to attack 

and specific degradation of the wall during particular developmental processes such as 

fruit ripening, abcission and senescence. The variety of roles that the cell wall fulfils 

may explain its complex structure and the tight control exerted over the structural . 

changes that occur in the wall throughout development,
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Cell structure and the nature of the polymers in the cell wall determine the 

physical characteristics of plant tissues. Thus the texture of fruit is determined by the 

underlying composition and structural integrity of the fruit cell walls. Turgor pressure 

acting against the cell wall also contributes to tissue firmness. During ripening, physical 

changes occur in the structure of fruit cell walls leading to a loss in their integrity often 

resulting in separation of the cells. Hence, the composition of fruit cell walls, the 

changes they undergo during ripening and the mechanisms responsible for these changes 

have all been studied in an attempt to understand what determines the texture of ripe 

fruits.

1.2.1 Composition and structure of the plant primary cell wall

1.2.1.1 Structural components o f the cell wall

The plant cell wall is deposited as a series of layers with the earliest layers being on the 

exterior, adjacent to the neighbouring cells. The layer between adjacent cells is known 

as the middle lamella and occupies the site of the cell plate that was laid down at cell 

division. The primary cell wall is deposited on the middle lamella during the growth of 

the cell that follows cell division and continues to be deposited as long as the cell 

continues to grow. Primary cell walls are generally of a similar thickness in most cell 

types ranging between 0.1 pm and 1.0 pm. In contrast, some specialized cells go on to 

produce a thicker secondary cell wall, which is internal to the primary wall, after cell 

growth has ceased and the cell begins to differentiate.



The structural components of a typical growing primary cell wall comprise 90-95% 

carbohydrate polymers and 5-10% glycoprotein. The types of polysaccharide polymers 

present in the primary wall fall into three classes, cellulose, hemicelluloses and pectins, 

and are found in all higher plants. However, the proportion of each type of 

polysaccharide present varies with cell type and between species. This variation is most 

marked in grasses where the pectin and hemicellulose content differs considerably from 

that typical of other higher plants (Fry, 1988). The classification of the polysaccharides 

was originally based on the methods used for their extraction from the cell wall. The 

pectic fraction can be obtained by extraction with a hot, aqueous solution of a chelating 

agent or hot, dilute acid, the hemicellulose fraction with alkaline solutions and the 

remaining insoluble fraction is cellulose. However, in reality not all the various 

polysaccharides within a particular class will extract equally under the same conditions 

and some cross-contamination of fractions may occur. Water can also be considered as a 

structural component of cell walls. Growing primary walls are composed of about 65% 

water which influences the conformation of certain polymers in the wall (Fry, 1988).

Cellulose is usually about 30% of the dry weight of the primary wall and is an 

unbranched polymer of D-glucose residues joined by p-(l-»4) linkages. The linear 

chains of P-( 1 ->4)-D-glucan associate with each other via hydrogen bonds to form 

fibrillar structures called microfibrils of about 10 nm diameter. X-ray diffraction and 

chemical studies indicate that the bulk of the microfibril is made up of cellulose chains 

organized in a crystalline lattice giving the microfibril considerable strength. Less 

crystalline regions may exist around the crystalline core of the microfibril (Brett and 

Waldron, 1996).
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Hemicelluloses, unlike cellulose, are comprised of a variety of different sugars, the 

major ones being glucose, xylose, arabinose and glucuronic acid, and are able to form 

hydrogen bonds with cellulose. A variety of different hemicellulosic polymers exist 

including xylans, xyloglucans, glucomannans and P-(l-»3)(l-»4)-glucans. Depending 

on the plant or cell type, one type of hemicellulose usually predominates in the primary 

wall with others present in lesser amounts. Xyloglucan is the major hemicellulose in 

dicots accounting for about 20% of the dry weight of the primary wall, with 

glucomannans and galactoglucomannans also present (Tucker, 1993). Xyloglucans are 

neutral polysaccharides and have a backbone of P-l,4-linked glucose residues as found 

in cellulose. Xylose-containing side chains are attached to the majority of the glucose 

residues in the backbone by a-(l->6) bonds. The most common side chain consists 

solely of D-xylose but in some xyloglucans some of the xylose residues may be further 

substituted by the disaccharide fucose-a-(l->2)-galactose-p-(l —>2) or arabinose-(l->2) 

(Fry, 1988). Glucomannans consist of a backbone of P-l,4-linked glucose and mannose 

residues with a slightly higher proportion of mannose than glucose. In some cases single 

galactose residues are present as side chains to produce galactoglucomannans (Brett and 

Waldron, 1996). Xylans and P-( 1 ->3)( 1 ->4)-glucans are found predominantly in 

grasses. Arabinogalactan II has been classed as a hemicellulose, but as described later, 

these molecules may be the polysaccharide component of arabinogalactan proteins.

Pectins are polysaccharides rich in D-galacturonic acid as well as arabinose, galactose 

and rhamnose. They can be subdivided into the neutral pectins comprising arabinans, 

galactans and arabinogalactans and the acidic pectins consisting of rhamnogalacturonans 

and homogalacturonans (polygalacturonic acid, PGA). Pectins have been described as
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having a block structure with homogalacturonan and rhamnogalacturonan covalently 

linked in the same molecule (Fry, 1988). The ‘smooth’ regions of homogalacturonan 

consist mainly of an unbranched backbone of D-galacturonic acid residues joined by a- 

(1—>4) linkages punctuated by the occasional <x-l,2-linked rhamnose residue. These 

regions are covalently joined to ‘hairy’ regions of rhamnogalacturonan (RG) which 

exists in two forms, RG I and RG II. RG I consists of a backbone of alternating ct-1,4- 

linked galacturonic acid and a-l,2-linked rhamnose residues with arabinose and 

galactose-rich side chains (‘hairs’) attached to the 4-position of the rhamnose. RG II 

contains a greater variety of sugars and appears to be built up of a galacturonic acid-rich 

core with very specific side chains. The neutral arabinan, galactan and arabinogalactan 

pectins may also be linked to the rhamnogalacturonan backbone via the rhamnose 

residues as further side chains in the ‘hairy’ regions. Arabinans are highly branched 

molecules containing a backbone of a-l,5-linked arabinose with side chains of single 

arabinose residues or a-l,5-linked arabinose oligosaccharides linked by a-(l->2) or a- 

(l->3) bonds to the main chain. Galactans consist mainly of P-l,4-linked galactose 

residues whilst arabinogalactan I polymers have short a -1,5-linked arabinose side chains 

attached to the p-(l->4)-galactan backbone. In addition to being attached to the acidic 

pectin backbone, neutral pectins also exist as independent molecules (Brett and 

Waldron, 1996).

Some of the galacturonic acid residues in the ‘smooth’ homogalacturonan 

regions may be methyl esterified. It is not clear whether distinct blocks of methylated 

galacturonic acid residues exist interspersed with regions that are not esterified or if the 

distribution of methyl ester groups is more random (Fry, 1988). Regions of un-esterified 

residues can chelate calcium ions allowing adjacent pectin molecules to be cross-linked



together non-covalently by Ca2+ bridges forming PGA ‘junction zones’ and producing 

an ‘egg-box’ structure.

In addition to polysaccharide polymers, structural proteins are an important part of the 

primary cell wall. The majority are glycosylated and frequently have an unusual amino 

acid composition rich in hydroxyproline. For this reason they are often referred to as 

HRGPs (hydroxyproline-rich glycoproteins). One of the best studied families of cell 

wall glycoproteins is the extensin family. Extensins contain high proportions of 

hydroxyproline, serine and lysine residues with the sequence Ser-(Hyp)4 repeated 

throughout the molecule. The hydroxyproline residues are attachment sites for tri- and 

tetra-arabinose oligosaccharides and the serine residues are linked to single galactose 

residues. Tyrosine residues are also present which are able to cross-link to form 

intramolecular and possibly intermolecular covalent bonds (Brett and Waldron, 1996).

A second class of cell wall glycoproteins is the arabinogalactan proteins (AGPs). 

The polypeptide backbone is rich in hydroxyproline, serine, alanine and glycine. Long 

polysaccharide side chains are attached to the hydroxyproline residues via a ^-galactose 

linkage. These polysaccharides are similar to arabinogalactan II with their galactan 

backbones joined by p-(l->3) and p-(l->6) linkages and side chains containing 

arabinose and smaller amounts of glucuronic acid and galacturonic acid (Fry, 1988).

Phenolic compounds are present in much smaller amounts in the cell wall and the most 

abundant, lignin, is mainly confined to specialized secondary cell walls. Ferulic acid 

may be present in primary cell walls, usually esterified to arabinose and galactose
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residues in neutral pectins. It may have a role in cross-linking these pectins via covalent 

difemlic acid bonds (Brett and Waldron, 1996).

1.2.1.2 Structure o f the primary cell wall

Early models of plant primary cell wall structure envisaged cellulose microfibrils coated 

with xyloglucan which was also attached to arabinogalactans, with further links between 

arabinogalactans and acidic pectins, and pectins and extensin (Keegstra et al., 1973). 

This separate layered construction was based on the polysaccharides and proteins that 

had been characterized at the time. In this model, xyloglucans were hydrogen bonded to 

the cellulose microfibrils and all other polymers were linked by covalent bonds, 

although little evidence was available to confirm the type of interaction or bonding 

between the different components. The current model of the primary cell wall (Figure 

1.1, Carpita and Gibeaut, 1993) describes a far less static structure and accounts for 

growth of the wall during cell expansion. In addition, it is now clear that non-covalent 

bonding, such as hydrogen bonding and ionic bonding, plays a significant role in linking 

the different polymers in the wall together, rather than the predominance of covalent 

bonds postulated by the early model. It is difficult to distinguish intra- and inter- 

molecular covalent linkages in cell wall polymers and so relatively few types of covalent 

cross-link have been characterized. Covalent linkages also probably exist between other 

polymers in the wall, for example pectin and protein (Brett and Waldron, 1996). 

Essentially the primary cell wall consists of cellulose microfibrils coated with 

hemicellulose embedded in a matrix of pectins and structural proteins. More 

specifically, the wall comprises three structurally independent but interacting networks



or domains which interlink to form the overall complex structure that is the primary cell 

wall (Carpita and Gibeaut, 1993; Brett and Waldron, 1996).

Primary cell wall structure in flowering plants

Cellulose

PGA
junction

Xyloglucan

Pectin

Figure 1.1 Structural model o f the primary cell wall o f most flowering plants (after 

Carpita and Gibeaut, 1993)
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The first and most fundamental of these networks is the cellulose-hemicellulose 

framework. In most higher plants (Type I walls) this is a cellulose-xyloglucan network, 

xyloglucan being the predominant hemicellulose in these plants. In grasses (Type II 

walls), the major hemicellulose is different and the resulting structure will not be 

considered here. Xyloglucans in Type I walls are able to hydrogen bond to cellulose and 

these polymers coat the surface of the microfibrils. The coating is restricted to a single 

layer as hydrogen bonds can only be formed on one side of the xyloglucan molecule. 

However, as cellulose and xyloglucan are present in the primary wall in about equal 

amounts, not all of the xyloglucan can exist as a monolayer coating the microfibrils. The 

remainder is thought to span the gaps between microfibrils and these cross-links have 

been observed by electron microscopy. In this way the xyloglucan molecules act as 

‘molecular tethers’ to interlock the microfibrils and they may also bind to other matrix 

components. It has also been suggested that in coating the microfibrils the xyloglucan 

prevents them from hydrogen bonding to each other (Hayashi, 1989) and in doing so 

allows the microfibrils to move as necessary during cell growth. In dividing cells and 

during isodiametric cell expansion, the microfibrils are wound around the cell randomly. 

When cell elongation begins, the microfibrils are wound transversely or in a shallow 

helix around the longitudinal axis of the cell, restricting cell expansion to one 

dimension. These move further apart as the cell expands and can then be finally locked 

back into place once growth has stopped (Carpita and Gibeaut, 1993). The substantial 

number of hydrogen bonds that form between the surface of microfibrils and xyloglucan 

molecules is likely to be structurally significant in anchoring the microfibrils into the 

matrix of the wall. Thus the cellulose-xyloglucan network is considered to be the 

dominant load-bearing structure in the growing cell wall. Hemicelluloses are also likely
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to hydrogen bond to each other. Xyloglucan molecules may bind pairwise, since it is not 

possible for several molecules to stack together because the xylosyl residues protrude 

from one side of the molecule. The differential extraction of three structurally distinct 

xyloglucan fractions from cell walls isolated from pea has extended the existing model 

of the cellulose-xyloglucan network (Pauly et al., 1999). These authors propose the 

existence of three different macromolecular domains of xyloglucan. The first comprises 

the xyloglucan cross-links between microfibrils and any exposed regions of xyloglucan 

molecules that extend away from the microfibril surface. This domain is covalently 

attached to the. second domain, which consists of xyloglucan hydrogen bonded to the 

surface of the microfibrils as described by current cell wall models. In addition, a third 

unlinked xyloglucan domain is believed to be entrapped within or between cellulose 

microfibrils in relatively non-crystalline regions of the microfibril. The xyloglucan 

cross-link domain is predicted to be the only one accessible to cell wall enzymes and 

hence likely to be the domain modified during changes in the cell wall.

The cellulose-xyloglucan network is embedded in the second network formed by the 

pectin matrix, which although independent, probably interacts with the cellulose- 

xyloglucan framework (Carpita and Gibeaut, 1993). There is some evidence for covalent 

bonding between xyloglucan and pectin polymers (Brett and Waldron, 1996). 

Xyloglucan may be linked to the arabinogalactan side chains attached to 

rhamnogalacturonan I. It is possible that the linkage is a glycosidic bond between the 

reducing group (=0) of the xyloglucan and a hydroxyl group (-0H) in the pectin side 

chain (Fry, 1988). Non-covalent hydrogen bonds may also form between hemicellulosic 

and pectic polysaccharides in the matrix (Fry, 1988). Strong cross-links can be formed
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between pectin molecules in regions termed ‘junction zones’. Stretches of unmethylated 

polygalacturonic acid in the pectin backbone can bind Ca2+ ions allowing multiple 

pectin molecules to be linked together by non-covalent ionic Ca2+ bridges to produce 

‘egg-box’ like structures. When regions of pectin are heavily methylated or calcium 

levels in the wall are low the junction zones may be held together by hydrogen bonds 

instead (Brett and Waldron, 1996). Some pectins in the matrix may also form covalent 

cross-links with other pectins if ferulic acid is present in their side chains. Ferulic acid is 

usually found esterified to arabinose and galactose residues and can form difemlic acid 

bonds linking two molecules together. Whilst the cellulose-xyloglucan network provides 

the main structural strength of the growing cell wall, the pectin matrix is believed to 

determine the porosity of the wall. The location of de-esterified polygalacturonic acid, 

the size and abundance of junction zones and the size and conformation of the attached 

side chains could all influence the nature of the gel formed by the pectin and hence 

determine the pore size (Carpita and Gibeaut, 1993). Water is also important in the 

formation of gels in the pectin matrix (Fry, 1988). By affecting the movement of 

macromolecules through the wall the pectin network may control the access of cell wall 

modifying enzymes to the different components of the wall embedded within it and thus 

indirectly influence the mechanical properties of the wall.

The third network is that of the structural proteins. The major contributor is extensin and 

this forms an insoluble network that is structurally independent of the polysaccharide 

networks (Carpita and Gibeaut, 1993). The nature of the cross-links between extensin 

molecules and other structural proteins is not clear. Tyrosine residues form covalent 

isodityrosine bonds within an extensin molecule and may also link these molecules
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together. Cross-links between tyrosine and lysine are another possibility. The 

arrangement of the extensin network is the key to its contribution to cell wall structure. 

The cellulose microfibrils are laid down parallel to the plasma membrane in the 

transverse axis of the cell and are cross-linked by xyloglucan molecules in the 

longitudinal axis. The extensin network is believed to be oriented radially, that is, 

perpendicular to the plasma membrane and the cellulose-xyloglucan framework (Carpita 

and Gibeaut, 1993). In this way extensins are proposed to interlock and hold the layers 

of the cellulose-xyloglucan network together, fixing the shape of the cell. The extensin 

network may also form non-covalent and covalent bonds with the polysaccharide 

networks, for example ionic bonds may form with pectins.

Thus the primary cell wall is composed of three structurally independent, yet 

interacting domains. The components of each of these domains can change 

independently such that the cell wall is a dynamic, highly ordered, developmentally 

regulated network.

1.2.2 Changes in the cell wall during fruit ripening

Structurally, fruit cell walls appear to be very similar to the generalized model of a 

typical primary cell wall. Analysis of the monomer composition of apple and strawberry 

fruit cell walls revealed low amounts of xylose and mannose and higher levels of 

galacturonic acid, arabinose and galactose (Knee and Bartley, 1982). This may indicate 

that fruit cell walls contain relatively more pectic polysaccharides and less 

hemicellulosic polymers and proteins than other plant cell walls. This suggests that fruit
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cell walls may have a higher ratio of pectin-rich middle lamella to primary wall which is 

likely to be important in the softening process.

Textural changes and extensive tissue softening accompany the ripening of the 

majority of fruits and this is predominantly due to the modification and degradation of 

the fruit cell wall structure, including the middle lamella. The different extents to which 

different fruits soften reflects the underlying variations in the specific composition of 

their cell walls and hence the changes these polymers undergo during ripening. The 

specific cell wall changes that occur during the ripening of strawberry fruit have already 

been discussed in detail (section 1.1.4). Generally, fruits undergo similar types of 

modification but to varying degrees, and these usually involve the solubilization and/or 

depolymerization of the pectic and hemicellulosic polymers in the wall, resulting in 

softening of the fruit tissue.

Changes in cell wall structure during ripening have been observed under both the light 

and electron microscope in many fruit. The most apparent change is the dissolution of 

the pectin-rich middle lamella which is seen as a loss of electron density in this region 

for example in the ultrastructural studies of avocado (Platt-Aloia et al.f 1980). 

Breakdown of the middle lamella also occurs in tomato, strawberry, plum and 

persimmon where swelling of the wall in the middle lamella region has been observed 

under the light microscope (Redgwell et aL> 1997). In extreme cases, swelling of the cell 

wall and dissolution of the middle lamella results in complete separation of adjacent 

cells. Swelling of the wall appears to be linked to pectin solubilization and increased 

hydration of the wall.
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Ultrastructural studies also often show disorganization of the fibrillar structures 

of the wall under the electron microscope. This has been observed in ripening avocado, 

pear and apple (Fischer and Bennett, 1991) and was attributed to degradation of the 

cellulose microfibrils. However, the relatively constant cellulose content of most fruits 

during ripening does not support this view. In avocado, a loss of the organization and 

density of the wall striations was observed representing a loss of fibrillar material (Pesis 

et a l, 1978; Platt-Aloia et al., 1980). O’Donoghue et al. (1994) suggested that the 

observed loss of cohesiveness of cellulose microfibrils was due to limited degradation of 

the non-crystalline regions of the microfibrils, resulting in disorganization within the 

fibril structure and disruption of the binding of the associated matrix polysaccharides. 

Thus, the ultrastructural changes in microfibrillar organization may also result from the 

disruption of other, non-cellulosic components associated with the microfibrils (Fischer 

and Bennett, 1991).

Changes in the pectic fraction of fruit cell walls have been the most commonly studied.

In many fruits, there is a net loss or solubilization of non-cellulosic neutral sugars from 

the wall during ripening. These sugars comprise mainly galactose and arabinose, both of 

which are major components of neutral pectins (Gross and Sams, 1984), which may 

exist as side chains on the acidic pectin backbone or as independent polymers. Whilst in 

strawberry fruit the loss of these sugars from the cell wall corresponds to an increase in 

the soluble polyuronide fraction (Knee et al., 1977; Huber, 1984), this is not the case for 

tomato, where the loss of galactose and arabinose is associated with an increase in the 

total free sugars (Tucker and Grierson, 1987). Differences in the texture of ‘crisp’ and 

‘soft’ cherry fruit are thought to be related to their neutral sugar content (Bâtisse et al..
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1996). The higher content of neutral sugars in the crisp fruit compared with the soft fruit 

may indicate that the pectins are more highly branched in crisp fruit. This could result in 

a greater interaction between polymers, leading to a stronger cell wall structure. Another 

major change in the pectins observed during the softening of tomato fruit is an increase 

in the solubility of the polyuronides comprising the acidic pectin fraction (Tucker and 

Grierson, 1987). This increased polyuronide solubilization is believed to be independent 

of the loss of neutral sugars, which is not associated with softening of the fruit (Tucker 

and Grierson, 1987). Evidence supporting this is found in fruits of the tomato ripening 

mutant rin9 which have lower levels of cell wall galactose and arabinose than wild type 

fruits and exhibit little pectin solubilization or softening (Huber, 1983). The increase in 

polyuronide solubility indicates that covalent cross-links to insoluble polymers have 

been cleaved* releasing pectin polymers that are subsequently water or chelator soluble 

(Fischer and Bennett, 1991). However, in strawberry it has been suggested that the 

increase in soluble polyuronides may result from the synthesis of new, more soluble 

polymers (Huber, 1984).

Size fractionation of extracted pectins by gel filtration has revealed that in many 

fruits the average molecular size of the pectins decreases dramatically during ripening. 

This indicates that in addition to the breakage of cross-links which releases soluble 

pectin polymers, the rhamnogalacturonan backbone is also cleaved to produce lower 

molecular weight polymers (Fischer and Bennett, 1991). It is possible that the removal 

of the neutral side chains and the disruption of cross-links makes the pectin backbone 

more accessible to degradation by cell wall hydrolases, resulting in the overall 

depolymerization of the pectic fraction (Tucker and Grierson, 1987). Avocado 

polyuronides exhibited a marked downshift in molecular weight during ripening,
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indicating that substantial depolymerization of the solubilized pectin had occurred 

(Sakurai and Nevins, 1997). Less rapid and less extensive depolymerization was 

observed in tomato (Huber and O’Donoghue, 1993) and also in pear (Yoshioka et a l,

1992). In contrast, soluble polyuronides of apple (Yoshioka et «/„ 1992) and strawberry 

(Huber, 1984) do not undergo depolymerization.

The degree and pattern of methyl estérification of the polyuronide fraction may 

also change during ripening (Tucker, 1993). Only unesterified pectin is available to bind 

Ca2+ ions and form cross-links with adjacent pectin molecules via Ca2+ bridges.

Changes in the estérification of polyuronides and in the level of Ca2+ ions in the wall 

may alter pectin stability. The increase in soluble pectins during the softening of apple 

fruit could be partly explained by an increase in the degree of polyuronide estérification 

resulting in fewer ionic cross-links between pectin molecules (Huber, 1983). However, 

in tomato there is a decline in esterified polyuronide during ripening (Tucker, 1993). 

Similarly, a reduction in the levels of Ca2+ in the wall reported in ripening fruit could 

destabilize the pectin matrix (Huber, 1983). Calcium treatment of apple fruits was found 

to preserve the structural integrity of the cell wall and maintain cell cohesiveness 

(Seymour and Gross, 1996). Unesterified pectin and Ca2+ levels were found to be 

highest in the middle lamella and comer junctions of intercellular spaces in tomato fruit 

cell walls (Seymour and Gross, 1996). Destabilization of the pectin in these areas is 

consistent with the observed dissolution of the middle lamella and loss of cell 

cohesiveness that occurs as fruit ripen.

Changes in the hemicellulose fraction of the cell wall also occur during the ripening of 

most fruits, although they are not as well characterized as those of the pectic fraction. In
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general, the hemicellulose content of the wall is not significantly altered during ripening 

(Fischer and Bennett, 1991) and neither is the content of the major hemicellulose 

monomers, xylose, glucose and mannose (Tucker and Grierson, 1987). However, gel 

filtration demonstrates a significant reduction in the average molecular weight of 

hemicellulose polymers extracted from the cell walls of many fruits during ripening 

(Seymour and Gross, 1996) which is taken as evidence that they undergo 

depolymerization. Hemicelluloses from avocado fruit exhibited a broad range of 

polymer sizes and an overall decrease in molecular weight during ripening, as did those 

from strawberry fruit (Huber, 1984). The pattern observed for total hemicelluloses was 

also evident for xyloglucan in avocado fruit. This molecular weight downshift was 

shown to be the consequence of depolymerization and was associated with significant 

changes in fruit texture (O’Donoghue and Huber, 1992; Sakurai and Nevins, 1997). A 

similar situation occurs in ripening tomato fruit where the molecular mass of 

hemicelluloses from red fruit walls was 50% of that from green fruit (Sakurai and 

Nevins, 1993). This difference was associated primarily with the degradation of 

xyloglucans. However, in the non-softening tomato mutant rin, no significant change in 

hemicellulose molecular weight was reported (Seymour and Gross, 1996). It has been 

suggested that the molecular weight shift of hemicelluloses may also involve synthesis 

of small polymers enriched in mannosyl and glucosyl residues, which may be 

glucomannans (Fischer and Bennett, 1991). Changes in the hemicellulose fraction have 

also been studied in the fruit of peach (Hegde and Maness, 1998), hot pepper (Gross et 

al., 1986), papaya (Pauli et al., 1999), kiwifruit (Miceli et al., 1995) and melon (Rose et 

al., 1998), all of which exhibit depolymerization of hemicelluloses during ripening. In
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contrast, apple fruits show no change in the molecular weight profile of hemicellulose 

fractions or xyloglucan polymers during ripening (Percy et a l, 1997).

Other cell wall changes that may occur during fruit ripening include alterations in wall 

pH and altered biosynthesis of wall components. The pH of the plant cell wall is 

generally thought to be in the range of 4.5 to 6.0. The desterification of pectins may 

contribute to the acidity of the wall and changes in pH are likely to alter the activity of 

cell wall bound enzymes, including cell wall modifying enzymes. Wall integrity could 

be altered not only as a result of degradation by cell wall hydrolytic enzymes or 

modification of existing polymers, but also by changes in the synthesis of cell wall 

polymers (Seymour and Gross, 1996). Cell wall synthesis and degradation have been 

shown to occur simultaneously in ripening strawberry fruit (Knee et a l, 1977) and it has 

been suggested that increased polyuronide solubility in strawberry may involve the 

synthesis of more soluble forms of this polymer during ripening (Huber, 1984). 

Radiolabelling has been used to demonstrate an increase in the synthesis of cell wall 

components in tomato fruit during ripening and softening that does not occur in tomato 

ripening mutants. Analysis of the hemicellulose fraction of tomato fruit cell walls 

indicated there may be an increased synthesis of glucomannans during ripening 

(Seymour and Gross, 1996). Thus, it may be that the changes that occur as fruit soften 

are the result of altered cell wall turnover during ripening, that is a combination of 

degradation, modification and synthesis of cell wall polymers rather than just 

degradative processes.
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1.2.3 Cell wall modifying enzymes and proteins

It has been well established that softening and textural changes associated with fruit 

ripening occur largely as the result of modification and degradation of the fruit cell 

walls. These changes are considered to result from the action of cell wall modifying 

enzymes and proteins. The complexity of the wall suggests that there are likely to be a 

number of activities involved and the major classes into which these activities fall are 

described below.

1.2.3.1 Nomenclature

The majority of the cell wall degrading enzymes are hydrolases, breaking glycosidic, 

ester and peptide bonds (Fry, 1988,1995). Most hydrolases are glycosidases {O- 

glycosylhydrolases, EC 3.2.1.-), that is they hydrolyse glycosidic bonds. Glycosidic 

bonds form between the reducing terminus (C=0) of a monosaccharide (glycose) and 

another molecule to give the glycosyl (non-reducing) residue and its joined aglycone. 

Glycosidases can be exo- or endo- acting. Exo-glycosidases attack polysaccharides from 

the non-reducing termini, generally releasing monosaccharides. Thus their activity can 

be detected by a substantial increase in the release of reducing sugars from a 

polysaccharide substrate. They are usually specific for the glycosyl residue hydrolysed 

and require that it is not substituted, but relatively non-specific for the aglycone. Exo- 

glycosidases are unlikely to have much impact on the chain length of wall polymers as 

they only hydrolyze from the ends of the molecules, but they may have a substantial 

effect on the physical properties of a polymer by removing short side chains from the
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backbone. They are also likely to be responsible for the release of neutral sugars that 

occurs during fruit ripening. However, endo-glycosidases (endoglycanases) attack 

polysaccharides at any position except at or near the termini and hence can have a large 

impact on the molecular weight of the polymer and the structural integrity of the cell 

wall. They are likely to be responsible for the depolymerization of pectic and 

hemicellulosic polysaccharides that occurs during ripening. Their activity can be 

detected by a rapid decrease in the viscosity of a soluble polysaccharide substrate and 

also by the release of reducing end-groups. Hydrolase activities that act on carboxy-ester 

bonds found in esterified pectins are also present in cell walls.

Transglycosylase activity (EC 2.4.-.-) has also been detected in plant cell walls 

(Fry, 1988,1995). In this case, the glycosidic bond is cleaved and the glycosyl residue, 

instead of being transferred to water as in hydrolysis, is transferred to the alcohol group 

of another sugar. Many glycosidases also function as transglycosylases when the 

concentration of acceptor substrate (alcohol) is high. Only those enzymes exhibiting 

high levels of transglycosylase activity at low acceptor substrate concentrations are 

classified as true transglycosylases. Depending on the location within the polymer of the 

glycosidic bond that is cleaved, transglycosylases are classed as exo- or endo- as for 

glycosidases. Endo-transglycosylation can attach a section of one polysaccharide onto 

another. The total number of glycosidic bonds is conserved so there is no change in 

average molecular weight of the polymers. This type of activity is likely to be important 

in the molecular rearrangements that lead to loosening of the cell wall that occurs during 

cell expansion and fruit ripening.

Finally, loosening of the cell wall also results from the action of the most 

recently discovered cell wall modifying proteins, expansins. Although the number of
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enzymes and modifying proteins present in the cell wall is likely to be large, most 

studies have focused on the relatively few enzymes that accumulate to high levels in 

particular fruit, such as tomato and avocado. Only the characteristics of those cell wall 

modifiying enzymes and proteins believed to have important roles in fruit softening are 

summarized here.

1.2.3.2 Pectin-degrading and modifying enzymes

Endopolygalacturonase (PG)

Endopolygalacturonase (EC 3.2.1.15) catalyses the hydrolysis of internal a-(l->4) 

linkages between unesterified D-galacturonic acid residues in the polygalacturonic acid 

backbone of pectin polymers. This enzyme is the most thoroughly studied of the cell 

wall hydrolases and has been characterized from a number of different fruits. In many 

fruits, for example, tomato and avocado (Huber and O’Donoghue, 1993), pear 

(Yoshioka et al., 1992), papaya (Pauli et al., 1999) and melon (Rose et al., 1998) PG 

activity can be correlated with fruit softening and pectin depolymerization. The levels of 

PG activity found in these fruits were low or undetectable at the unripe stage and 

increased dramatically during ripening concomitant with a decrease in the average 

molecular weight of the polyuronide fraction of the cell wall. In contrast, PG activity is 

undetectable throughout ripening in the fruit of strawberry (Neal, 1965; Barnes and 

Patchett, 1976; Huber, 1984; Abeles and Takeda, 1990), pepper (Gross et a l, 1986) and 

apple (Yoshioka et a l, 1992) and this correlates with the lack of any depolymerization 

of the polyuronides of these fruits. However, an apparent absence of PG activity in
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persimmon fruit is not consistent with the observed depolymerization of pectic 

polysaccharides extracted from the fruit (Cutillas-Iturralde et al., 1993).

PG has been most extensively studied in tomato fruit where it is synthesized de 

nova at the onset of ripening as a result of increased PG gene expression. It exists as two 

main isoforms PG1 and PG2, where PG1 is composed of PG2 plus a non-catalytic p- 

subunit, and PG cDNA and genomic clones have been characterized (Fischer and 

Bennett, 1991). PG activity is highly correlated with softening in wild type tomato 

fruits. In addition, in the Nr tomato mutant which has a slow rate of softening, PG 

activity is only 10% of wild type activity and is absent in the rin tomato mutant which 

does not soften at all (Tucker and Grierson, 1987). However, in transgenic plants where 

PG levels were reduced to 1% of wild type, fruits apparently softened normally and 

pectins were solubilized, although they did show reduced depolymerization (Smith et 

al., 1990a). In other transgenic experiments, the over-expression of PG in the non

softening mutant rin failed to induce softening, although pectin solubilization and 

depolymerization did occur (Giovannoni et al., 1989). These results suggest that PG is 

involved in the depolymerization but not the solubilization of pectins. Thus, although 

there is evidence supporting a primary role for PG in pectin degradation and fruit 

softening (Fischer and Bennett, 1991), results from experiments using transgenic plants 

suggest that PG alone is not sufficient to cause softening (Seymour and Gross, 1996). 

Furthermore, although in vitro degradation of tomato fruit cell walls by purified tomato 

PG mimics in vivo pectin degradation, it does not proceed to the same extent suggesting 

that other enzymes may be involved in vivo (Tucker and Grierson, 1987). A recent study 

has looked at the effect of purified avocado PG on polyuronides extracted from avocado 

fruit at various stages of ripening compared to the in vivo changes in these polymers
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(Wakabayashi et a l, 2000). The results indicated that although PG plays the central role 

in polyuronide degradation in ripening avocado fruit cell walls, the prior action of the 

enzyme pectin methylesterase (PME) is required to increase the susceptibility of the 

polyuronide to degradation by PG in the later stages of softening. Thus, PG activity 

combined with that of other pectin-degrading enzymes may be required for extensive 

polyuronide depolymerization. A comparison of the extent of polyuronide 

depolymerization in avocado and tomato fruit relative to their levels of PG and PME 

activity has led to the suggestion that the full capacity for polyuronide depolymerization 

in tomato fruit is restricted in vivo (Huber and O’Donoghue, 1993; Wakabayashi et al., 

2000). It may be that apoplastic pH and ionic conditions in avocado fruit are inherently 

more conducive to enzymic hydrolysis or reduced Ca2+ bridges than in tomato fruit. The 

glycoprotein P-subunit ofPGl may also have a role in limiting PG action in vivo, as 

transgenic plants in which the P-subunit was drastically down-regulated showed 

enhanced pectin solubilization and depolymerization (Watson et al., 1994). Irrespective 

of the enzymes or conditions required for pectin depolymerization, the depolymerization 

itself is not a prime determinant of softening in fruit as evidenced by fruits that do not 

exhibit pectin depolymerization, but do soften, such as strawberry, and by fruit of 

transgenic rin tomato mutants that do not soften despite the over-expression of PG 

causing pectin depolymerization.

Pectin methylesterase (PME)

Pectin methylesterase (EC 3.1.1.11), also referred to as pectinesterase, catalyzes the 

déméthylation of the C6 carboxyl group of galacturonosyl residues. PME activity has 

been detected in a wide range of fruits including strawberry, tomato, avocado, banana
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and mango and is generally present at a high level in unripe fruit (Tucker and Grierson, 

1987). In strawberry, PME activity increases as fruit ripen, but then declines in the ripe 

and over-ripe stages (Barnes and Patchett, 1976). Two isoforms were detected, PE I and 

PE H, with PE II being the predominant form in the later stages of ripening. In tomato, 

PME activity is present throughout fruit development, with activity increasing slightly 

during ripening (Tucker and Grierson, 1987). Two groups of isoforms have been 

identified in this fruit and various isoenzymes have been isolated. As in strawberry, one 

isoform predominates over the other as ripening progresses. Since PG degrades 

demethylated pectin it has been suggested that PME may act to de-esterify the acidic 

pectin polymers prior to the action of PG. Thus, PME may play an important role in 

determining the extent to which pectin is accessible to depolymerization by PG. 

Transgenic tomato fruit in which PME activity was reduced by up to 93% apparently 

softened to the same extent as wild type fruit although their pectin had a higher degree 

of estérification (Hall et al., 1993). In a separate study, pectins from low PME tomato 

fruit also showed reduced depolymerization and solubility (Seymour and Gross, 1996). 

Thus, PME has a role in pectin de-esterification in vivo, consistent with the reduced 

degree of pectin estérification found in ripe tomato fruit relative to mature green fruit. 

The low PME transgenic tomato fruit were also more susceptible to a loss of tissue 

integrity (Tieman and Handa, 1994), presumably due to the increased méthylation level 

of their pectins resulting in fewer Ca2+ cross-links between pectin polymers. This is not 

consistent with the increasing PME levels detected in wild type fruit as they ripen, 

although it has been suggested that the decline in PME activity in ripe strawberry fruit 

may be responsible for the increased pectin solubility (Neal, 1965).
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P-Galactosidase (fi-Gal)

P-Galactosidase (EC 3.2.1.23) activity is characterized by the ability to release galactose 

from p-nitrophenyl-p-D-galactopyranoside. All P-Gal activities detected in fruit so far 

have been exo-acting and some are believed to be capable o f removing galactosyl 

residues from cell wall polymers. In many fruits, there is a net loss of wall-bound 

neutral sugar residues, particularly galactose, during ripening (Gross and Sams, 1984). It 

has been proposed that p-Gal activity is responsible for this solubilization of galactose 

observed during ripening (Fischer and Bennett, 1991). Galactosyl residues are lost 

mainly from pectic polymers, and more specifically from the neutral galactan-rich 

pectins. This has led to the suggestion that P-Gal may be involved in enhancing pectin 

solubilization and depolymerization (Seymour and Gross, 1996). Three P-Gal 

isoenzymes have been identified in tomato fruit, although only one isoform, p-Gal II, 

was found to be capable of hydrolyzing a ( 1 ->4)-P-D-galactan isolated from tomato 

fruit cell walls (Carey et a l, 1995). The activity of P-Gal II increases during ripening, 

which is consistent with its potential role as an exo-(l—»4)-p-D-galactanase causing 

galactose solubilization from a galactan-rich polymer. Analysis of cell wall 

polysaccharide fragments revealed that the loss of galactose from the cell wall resulted 

from the removal of p-(l—>4)-linked galactose, which could have been due to the action 

of an exo-(l ->4)-P-D-galactanase (Fischer and Bennett, 1991). Thus, p-Gal II may also 

play a key part in tomato fruit softening, an idea which is supported by the finding that 

its activity does not increase in the non-ripening tomato mutants nor and rin.

P-Gal isoforms have also been isolated from the fruit of papaya (Ali et al.,

1998), Japanese pear (Kitagawa et al., 1995), kiwifruit (Ross et al., 1993) and apple 

(Ross et al., 1994). The enzyme from kiwifruit was found to release galactose from a
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variety of kiwifruit pectic and hemicellulosic wall polymers. The apple enzyme was 

shown to be active against polysaccharides extracted from apple fruit cell walls, 

indicating that it could degrade native p-(l—»4)-linked galactans and hence may have an 

effect on pectin solubility by reducing the size of the pectin side chains. The apple and 

tomato P-Gal enzymes are encoded by multigene families and it may be that these genes 

encode isoenzymes with differing substrate specificities (Seymour and Gross, 1996).

1.2.3.3 Hemicellulose-degrading and modifying enzymes and proteins

Endo-/3-l,4-glucanase (EGase)

Endo-P-1,4-glucanase (EC 3.2.1.4), also known as cellulase, catalyzes the hydrolysis of 

internal p-(l-»4) linkages between adjacent glucose residues which occur in cellulose, 

xyloglucans and mixed-linkage glucans. EGase activity is generally characterized by the 

ability to degrade the synthetic substrate carboxymethylcellulose (CMC). In dicots, 

xyloglucans are considered to be the most likely endogenous substrate of EGases 

(Cosgrove, 1999) given the apparent inability of EGases to degrade insoluble or 

crystalline forms of cellulose (Fischer and Bennett, 1991) and that cellulose is not 

significantly modified during ripening (Seymour and Gross, 1996). EGase activity 

increases dramatically during the ripening of many fruits and is often correlated with 

hemicellulose degradation and softening. The properties and functions of plant EGases 

are discussed further in section 1.3.
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Xyloglucan endotransglycosylase (XET)

Xyloglucan endotransglycosylase catalyzes the cleavage of the backbone of a 

xyloglucan molecule and the subsequent transfer of the generated reducing end onto the 

non-reducing end of another xyloglucan molecule. The new bond formed is identical to 

the P-(l—>4)-glucosyl bond broken in the donor molecule, thus the number of bonds is 

conserved (Fry, 1995). XET activity could contribute to xyloglucan rearrangement 

and/or incorporation of newly synthesized xyloglucan polymers into the cell wall during 

ripening. In addition, if XET acted to join a cleaved xyloglucan molecule to a smaller 

fragment, a reduction in xyloglucan molecular weight would result, and this could be a 

mechanism for xyloglucan depolymerization.

XET activity has been detected in many dicots. Activity is generally high in 

growing stems and some fruits (Fry, 1995), including persimmon (Cutillas-Iturralde et 

al., 1994) and apple (Percy et a l, 1996), suggesting a role for XET in the cell wall 

loosening associated with cell expansion and fruit softening. XET activity was found to 

increase during the ripening of tomato fruit concomitant with a decline in the molecular 

weight of the xyloglucan fraction of the cell wall (Maclachlan and Brady, 1994). In the 

ripening mutant rin, there was neither a decrease in xyloglucan molecular weight nor an 

increase in XET activity as in the wild type. It was suggested that XET and EGase are 

the enzymes most likely to be responsible for the observed depolymerization of 

xyloglucan in ripening tomato fruit, Two tomato fruit XET cDNAs have been cloned 

and are believed to be members of a small multigene family (Arrowsmith and de Silva, 

1995). One of these clones was expressed in E. coli and the recombinant protein 

demonstrated XET activity with no detectable hydrolytic activity. XET activity has also 

been shown to increase during the ripening of kiwifruit when there is a decrease in the
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molecular weight of xyloglucan (Redgwell and Fry, 1993). Kiwifruit XET was found to 

be active against xyloglucan and insoluble cell wall material purified from kiwifruit cell 

walls, suggesting a potential role in modifying the fruit cell wall during ripening. The 

authors suggested that oligosaccharides produced by the enzymic hydrolysis of 

xyloglucan polymers could act as acceptor molecules in the XET transglycosylation 

reaction, resulting in a decrease in the molecular weight of the xyloglucan. An XET has 

been purified from ripe kiwifruit and shown to have both hydrolytic and 

endotransglycosylase activity (Schroder et a/., 1998). Again, it was suggested that, 

depending on the nature of the available substrates, the XET could depolymerize 

xyloglucan by acting as a hydrolase in the presence of undegraded xyloglucan and as an 

endotransglycosylase in the presence of xyloglucan-derived oligosaccharides. Thus XET 

transglycosylase activity could play a role in xyloglucan degradation during fruit 

ripening, acting in conjunction with other xyloglucan degrading activities. The isolation 

of six XET cDNA clones from ripe kiwifruit indicates, in common with tomato, the 

presence of a multigene family (Schroder et al., 1998), and different members may show 

specific expression patterns and preferred substrates.

Expansins

Expansins are a recently discovered class of wall-modifying proteins isolated as the 

mediators of acid-growth of cell walls. Their proposed action as cell wall-loosening 

agents has led to considerable interest in them and many recent reviews have been 

published (McQueen-Mason, 1995; Cosgrove, 1998,1999,2000). Acid growth refers to 

the increase in growth rate of plant cells when placed in acidic solutions as a result of 

increased wall extensibility. Plant cell walls that were treated to denature wall proteins
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showed reduced extensibility and were insensitive to pH. Addition of the plant cell wall 

proteins now termed expansins restored acid-inducible extension of the walls and 

expansins are now considered as primary cell wall loosening agents (Cosgrove, 1999). 

Most work has been carried out on expansins isolated from cucumber hypocotyls which 

have been shown to bind tightly to the cell wall, apparently to the non-crystalline 

regions of cellulose microfibrils or at the interface between cellulose and tightly bound 

hemicellulose (Cosgrove, 1998). The cloning of different expansins has identified two 

families, a-expansins and ^-expansins, of which the a-expansin family has been studied 

in greatest detail (Cosgrove, 2000).

Expansins do not exhibit hydrolytic activity against cell wall components and 

indeed a-expansin does not lead to a progressive, time-dependent weakening of the cell 

wall as would be expected of a hydrolase (Cosgrove, 1999). Instead, expansins have 

been shown to weaken pure cellulose paper without detectable hydrolysis, suggesting 

that they may disrupt the non-covalent hydrogen bonds between glucan molecules 

(Cosgrove,1998). Thus the proposed model of expansin action hypothesizes that the 

expansin protein is anchored to the surface of the microfibril by a putative binding 

domain. The putative catalytic domain would then be able to interact with hemicellulose 

at the microfibril surface or in the matrix between microfibrils to disrupt the hydrogen 

bonds between the two polymers (Cosgrove, 2000). In this way, expansins may render 

the hemicellulose polymers more susceptible to attack by wall enzymes, thus weakening 

the hemicellulose interactions. In a cell wall under tension, such as found in a growing 

cell, this loosening would allow the hemicellulose polymers to creep, presumably 

dragging other attached polymers with them and allowing cell expansion. This model 

has been developed to explain how expansins might induce cell wall loosening leading



to cell expansion. However, there is evidence that expansins have roles in other 

processes such as fruit ripening, where their ability to loosen the cell wall and render it 

more susceptible to attack by wall enzymes could be important in contributing to the 

cell wall disassembly that occurs during fruit softening.

A fruit-specific, ripening-regulated expansin (LeExpl) has been identified in 

tomato (Rose et aL, 1997). LeExpl was specifically expressed at high levels in ripening 

tomato fruit. In contrast, transcript abundance in the fruit of the non-softening tomato 

mutants nor and rin was severely reduced compared to wild type levels. cDNAs closely 

related to LeExpl were also identified in ripening melon and strawberry fruit, suggesting 

that expansins are a common feature of fruit undergoing rapid softening and may 

contribute to the process of cell wall disassembly. The production of transgenic tomato 

plants in which LeExpl accumulation was both suppressed and overexpressed 

confirmed a role for expansins in fruit softening (Brummell et al., 1999b). Fruits with 

reduced LeExpl expression were firmer than controls while fruit overexpressing LeExpl 

were softer and had altered depolymerization of their polyuronide and hemicellulose 

polymers. These data indicate that the cell wall-loosening action of expansin is required 

for fruit softening in addition to the action of cell wall-modifying enzymes, and that 

some of these enzymes require the prior action of expansins to be fully effective. This is 

consistent with the suggestion that the synergistic action of a suite of cell wall- 

modifying enzymes and proteins, such as expansins, EGases and XETs, is required for 

coordinated cell wall modification in both growing vegetative tissues and expanding and 

ripening fruit (Rose and Bennett, 1999).

Seven unique expansin genes in total have now been identified in tomato (Rose 

et a l, 1997; Brummell et a l, 1999c; Catala et a l, 2000). The specific expression
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patterns of each of these indicate that expansins are involved in cell wall-loosening 

during growth and softening of fruit in addition to cell expansion. A family of expansin 

genes is also present in strawberry (Harrison, McQueen-Mason and Manning, personal 

communication), each one having its own specific pattern of expression, A cDNA 

encoding a ripening-related expansin, FaExp2, isolated from strawberry fruit was most 

closely related to an expansin expressed in early tomato fruit development (JLeExpS) 

rather than the ripening-specific tomato expansin LeExpl and also to expansins 

expressed in apricot fruit (Civello et al., 1999).
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1.3 PLANT ENDO-P-M-GLUCANASES

Plants have long been known to possess enzyme activities capable of the in vitro 

hydrolysis of soluble cellulose derivatives such as carboxymethylcellulose (CMC). The 

enzymes responsible for this activity were called cellulases but are now known to differ 

considerably from their microbial counterparts. Microbial cellulases are of the C% type 

which can degrade native crystalline cellulose. Plant cellulases are of the Cx type 

capable of hydrolyzing only soluble substituted cellulose derivatives (Brummell et a i, 

1994). The microbial true cellulases are usually multi-enzyme complexes composed of 

endo-P-1,4-glucanases, cellobiohydrolases and cellobiases which act in a synergistic 

manner to degrade insoluble cellulose (Bayer et al., 1998). Since plant cellulases have 

not been shown to possess this type of activity, they are now more correctly termed 

endo-P-1,4-glucanases, a name which refers to the bond hydrolyzed rather than to the 

substrate. To date, EGases have been characterized from many species and tissues at 

both the level of gene expression and enzyme activity. A summary of the properties and 

functions of plant EGases is given here. More detailed information on specific EGases 

and their relationships to each other can be found in the individual chapter discussions.

1.3.1 Properties of plant endo-p-1,4-glucanases

Endo-P-1,4-glucanase activity has been reported in numerous plant species and tissues 

and is usually associated with developmental processes where the cell wall is 

undergoing modification or degradation. Such processes occur in growing and senescing 

tissues and include cell growth and expansion, organ abscission and fruit ripening.
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Several EGases have been purified and this has allowed characterization of their 

biochemical properties (Table 1.3). The enzymes from avocado and pepper fruit, bean 

leaf, sweet pea anthers and tobacco callus were all effectively purified by affinity 

chromatography on cellulose. Most of the purified EGases exhibited pH optima between 

pH 5 and 7 and this is likely to reflect the pH of the cell wall space where their 

substrates are located (Brummell et al., 1994). The majority of the enzymes had 

molecular masses in the range 46-70 kDa, with the exception of the much smaller 

EGases from pea and periwinkle.

Characterization of the substrate specificities of the purifed EGases confirms that 

plant EGases are unable to significantly degrade the crystalline cellulose found in the 

cell wall. The exceptions appear to be the EGases isolated from pea epicotyls (Wong et 

aL, 1977) and periwinkle (Smriti and Sanwal, 1999) which have been reported to 

hydrolyze insoluble and swollen forms of cellulose. However, the rates of hydrolysis 

were much lower than those towards CMC and neither report has been confirmed. In 

addition, ultrastructural studies of the cell walls of ripening avocado have shown 

disruption of cellulose microfibrils (Platt-Aloia et aL, 1980). In the absence of any 

activity of avocado EGase towards avocado xyloglucan in vitro (O’Donoghue and 

Huber, 1992), it was suggested that avocado fruit EGase may cause limited hydrolysis of 

microfibrils at accessible sites in the non-crystalline regions, resulting in disruption of 

microfibril structure and organization (O’Donoghue et aL, 1994).
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Table 1.3 Biochemical properties of purified plant EGases

(- denotes that values were not determined; AZ, abscission zone)

Plant Tissue Mr

(kDa)

pH

optimum
pi Reference

Peach Leaf AZ 54 - 9.5 Bonghi ef a/. (1998)

Elder Leaf AZ 54 7.0 - Webb et al. (1993)

Bean Leaf AZ 51 6.0-8.5 9.5 Durbin and Lewis (1988)

Bean Cotyledon 70 4.S-5.6 4.8 Lew and Lewis (1974)

70 5.1-62 4.5

Coleus Leaf AZ 56 5.0, 7.2 4.7 Wang et al. (1994b)

62 4.7

Avocado Fruit 49 - 4.7 Awad and Lewis (1980)

Pepper Fruit 54 - 8.5 Ferrarese et al. (1995)

Apple Fruit 67 - - Abeles and Biles (1991)

Sweet pea Anther 49 65-6.8 8.0 Sexton et al. (1990)

51 7.8

Poplar Cell 50 6.0 5.5 Nakamura and Hayashi (1993)

culture 47 6.5 5.6 Ohmiya et al. (1995)

Tobacco Callus 50, 52 5.5t6.5 8.2 Truelsen and Wyndaele (1991)

Periwinkle Stem 25 5.2 - Smriti and Sanwal (1999)

Pea Stem 46 - Hayashi and Ohsumi (1994)

Pea Epicotyl 15 5.5-6.0 5.2 Byrne et al. (1975)

70 5.5-6.0 6.9
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However, xyloglucan is thought to be the most likely in vivo substrate of EGases 

(Hayashi et al., 1989). Activity against xyloglucan has been demonstrated for the 

EGases from tobacco callus (Truelsen and Wyndaele, 1991), pea epicotyls (Hayashi et 

aL, 1994) and poplar (Nakamura and Hayashi, 1993; Ohmiya et aL, 1995). Avocado 

EGase, although apparently inactive against avocado xyloglucan, showed limited 

activity towards soybean xyloglucan (Hatfield and Nevins, 1986). EGases appear to 

show differing activities towards xyloglucans isolated from different sources. This 

suggests that they each have their own specific substrate requirements, as xyloglucan 

polymers exhibit differing structures and substitution patterns (Hayashi, 1989). It is also 

possible that the extraction of xyloglucan polymers from the cell wall may alter their 

structure so that the level of activity of EGases determined against isolated substrates 

may not reflect the true situation in vivo.

Multiple EGase isoforms are common in plants, for example the pi 9.5 and 4.5 isoforms 

present in bean leaf abscission zones (Durbin and Lewis, 1988), the pi 9.5 and 6.5 

isoforms in peach fruit and leaf and fruit abscission zones (Bonghi et al., 1998) and the 

buffer-soluble and insoluble forms identified in pea (Byrne et aL, 1975). Multiple forms 

of EGase with differing pis have been detected in ripening avocado fruit (De Francesco 

et aL, 1989; Kanellis and Kalaitzis, 1992) and these result from transcript heterogeneity. 

This was explained by the existence of a small multigene family of EGases in avocado 

for which there is some evidence (Tucker et aL, 1987). However, Cass et al. (1990) 

demonstrated that despite the identification of two genes encoding EGase, a single gene 

was responsible for all the EGase transcripts in ripe fruit, which led to an alternative 

explanation of posttranscriptional processing to account for the multiple forms of EGase
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(De Francesco et al., 1989). EGases in most species appear to be encoded by multigene 

families and many members of these families have been cloned (Table 1.4). Analysis of 

the expression patterns of each of the family members generally reveals that each 

exhibits a specific pattern of temporal and spatial expression. This differential 

expression of a set of genes within a tissue suggests each has a distinct physiological 

function which may be coordinated with that of other family members (Fischer and 

Bennett, 1991). In addition, EGase genes may be differentially regulated by the plant 

hormones ethylene and auxin thereby allowing specific regulation of their expression in 

different developmental processes. The presence of multiple, differentially expressed 

and regulated EGase genes not only reflects the wide range of physiological processes 

involving cell wall modification in which EGases participate but also reflects the 

underlying complexity of the cell wall structure requiring these different activities.
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Table 1A  EGase genes characterized from higher plants

(AZ, abscission zones; FR, fruit ripening; CS, cell separation events; CE,

cell growth and expansion)

Plant Gene Major areas of 

expression

Putative

functions

Reference

Tomato cell Fruit, AZ FR, CS Lashbrook et al. (1994)

cel2 Fruit, AZ FR, CS Lashbrook et al. (1994)

cel3 Expanding tissues CE Brummell et al. (1997a)

cel4 Expanding tissues CE Brummell et al. (1997b)

cel5 Fruit, AZ FR, CS del Campillo and Bennett 

(1996); Kalaitzis et al. (1999)

cel6 AZ CS del Campillo & Bennett (1996)

cel? Expanding tissues CE Catala et al. (1997)

Pepper PCEL1 Fruit FR Harpster et al. (1997)

cCel2 AZ CS Trainotti et al. (1998a)

cCel3 AZ CS Trainotti et al. (1998b)

Arabidopsis cell Expanding tissues CE Shani et al. (1997)

Peach ppEGl AZ CS Trainotti et al. (1997)

Elder JET1 AZ CS Taylor et al. (1994)

Avocado cell Fruit, fruit AZ FR, CS Cass et al. (1990); Tonutti et

cel2 Not known al. (1995)

Bean BAC10 AZ CS Tucker & Milligan (1991)

Soybean pSACl AZ CS Kemmerer & Tucker (1994)

Pea pEGLl Expanding tissues CE Wu et al. (1996)

Orange CEL-al

CEL-bl

AZ CS Bums et al. (1998)

Sweet pea pLAC Anthers CS Neelam & Sexton (1995)

Pine PrCell

PrCeU

Expanding tissues CE Loopstra et al. (1998)
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1.3.2 Role of endo-p-1,4-glucanases in plant development

Endo-p-1,4-glucanases participate in developmental processes where modification or 

degradation of the cell wall is required or complete cell separation occurs. The three 

main processes with which EGases are associated are cell growth and expansion in 

growing tissues, fruit ripening and abscission. EGases are also involved in the 

development of flower reproductive organs (del Campillo et al., 1992; Milligan and 

Gasser, 1995; Neelam and Sexton, 1996), adventitious root initiation (Kemmerer and 

Tucker, 1994) and differentiating tissues (Brummell et aL, 1994). In many cases a 

particular EGase may participate in more than one developmental process within the 

plant indicating the need for complex regulatory control and differential expression. 

Examples of EGases involved in the three main physiological processes are described 

here, in particular with reference to their hormonal control.

1.3.2.1 Cell expansion

In order for irreversible cell expansion to take place, plants must partially and 

selectively weaken or loosen the structural integrity of their primary cell walls to allow 

incorporation of newly synthesized polymers into the wall and permit growth. Thus 

EGases could potentially be involved in modification of the xyloglucan fraction of the 

wall allowing loosening of the cellulose-xyloglucan framework. In growing tissues, 

induction of EGase transcript and activity levels by auxin have been observed. The two 

EGases purified from pea were isolated from auxin-treated epicotyls. Within five days 

of auxin treatment a 100-fold increase in their activities was observed (Byrne et al..



1975). A 10-fold increase in transcript levels of the buffer-soluble isoform was induced 

in auxin-treated epicotyls within 48 h of treatment and there was no evidence for any 

pre-existing untranslated mRNA for this form in untreated control epicotyls (Verma et 

al., 1975). In another study, auxin treatment of pea epicotyls in vivo resulted in the 

induction of EGase activity, a reduction in the average degree of polymerization of the 

xyloglucan fraction and an increase in soluble xyloglucan (Hayashi et aL, 1984). The 

pea EGases were found to be capable of hydrolyzing pea xyloglucan in vitro suggesting 

that xyloglucan is the substrate for these EGases associated with cell expansion in 

growing tissue. Treatment of azuki bean epicotyls with auxin caused a similar decrease 

in the average molecular mass of xyloglucans and this was attributed in part to the 

action of an EGase (Hoson et aL, 1995). Auxin has also been shown to induce a 10-fold 

increase in the accumulation of transcripts of the pea EGase gene EGL1 in rapidly 

elongating epicotyls (Wu et aL, 1996) indicating that auxin induces the de novo 

synthesis of EGase.

Auxin was shown to induce the expression of two members of the tomato EGase 

gene family, cel4 (Brummell et aL, 1997b) and cell (Catala et aL, 1997) in the 

expanding hypocotyls of intact seedlings. Expression of cel4, which is found 

predominantly in the apical region of the hypocotyl, was also induced by ethylene, 

whereas cell, which is expressed equally in the apical and basal regions, showed a 

decrease in transcript accumulation in response to ethylene. However, auxin has been 

shown to induce ethylene biosynthesis in tomato hypocotyls and it may be that cel4 is 

not regulated by auxin itself, only by the ethylene synthesized as a result of the applied 

auxin (Brummell et aL, 1997b). A third gene, cel3, also expressed in expanding 

hypocotyls, was not induced by auxin or ethylene in intact seedlings (Brummell et aL,
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1997a), demonstrating the differential regulation of divergent EGase genes in the same 

tissue.

Thus these EGase genes are potential candidates for mediating the xyloglucan 

modification that occurs during auxin-induced cell expansion. Analysis of the time- 

course for tomato cel? induction after auxin treatment compared to the induction of 

hypocotyl elongation indicated that this EGase may be involved in sustained cell 

expansion rather than the rapid growth responses to auxin (Catala et aL, 1997). This 

may also be true for other plants in which rapid changes in growth and xyloglucan are 

followed by a later increase in EGase activity (Brummell et aL, 1994; Maclachlan and 

Carrington, 1991).

1.3.2.2 Fruit Ripening

Increasing EGase activity in ripening fruit is often correlated with fruit softening and 

hemicellulose degradation indicating that EGases are likely to be involved in the cell 

wall modification leading to texture changes and fruit softening. Once again, multiple 

EGase genes are often differentially expressed during ripening and may be subject to 

distinct regulatory control (Gonzalez-Bosch et aL, 1996) allowing the coordinated 

disassembly of the cell wall during ripening.

The EGase that increases in activity most dramatically during ripening is that 

from avocado fruit. The increase was found to be directly correlated with the climacteric 

rise in respiration, ethylene synthesis and fruit softening (Pesis et aL, 1978; Awad and 

Young, 1979). The polypeptide for EGase has also been shown to appear during the 

climacteric rise in respiration (Christoffersen et aL, 1984). Preclimacteric avocado fruit
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lack both EGase activity and detectable antigen indicating de novo synthesis of EGase 

protein, which occurs as a result of a 50-fold increase in EGase transcript levels 

(Christoffersen et a l, 1984). Avocado EGase is synthesized as a high molecular weight 

precursor which undergoes glycosylation and carbohydrate trimming on its way to the 

cell wall (Bennett and Christoffersen, 1986).

Ethylene has been shown to induce EGase activity in avocado finit (Pesis et a l, 

1978) at the same time as accelerating the onset of ripening. Ethylene treatment also 

induced EGase gene expression, with an increase in transcript being detected after 8 h 

(De Francesco et al, 1989). Similarly, in ripening tomato fruit, the expression of the 

EGase genes cell and cel2 follows the initiation of ethylene synthesis. The 

accumulation of transcripts from both cell and cel2 was severely inhibited in fruit 

treated with the ethylene action inhibitor 2,4-norbomadiene (NBD) indicating that the 

expression of cell and cel2 is regulated by ethylene (Lashbrook et a l, 1994). A similar 

inhibition of fruit softening, EGase transcript accumulation and EGase activity by NBD 

was observed in peach fruit. Two isoforms exist in peach, the pi 9.5 EGase being most 

abundant during ripening and the pi 6.5 EGase being the only form present during the 

early stages of growth (Bonghi et a l, 1998). Propylene treatment reduced the pi 6.5 

EGase activity during early fruit development but increased pi 9.5 EGase activity and 

transcript accumulation and accelerated the loss of firmness during ripening. Thus 

ethylene is again found to induce ripening-related EGase gene expression,

Although the ripening of pepper fruit is accompanied by a respiratory 

climacteric, the rise in CO2 production is minor and only very low levels of endogenous 

ethylene can he detected in ripening fruit. Despite this, a role for ethylene in ripening 

has been suggested (Harpster et a l, 1997). Immature green fruit and nearly ripe fruit
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appear to be unresponsive to ethylene but the ripening of mature green fruit is 

accelerated in the presence of ethylene. However, prolonged ethylene treatment was 

found to induce accumulation of PCEL1 transcripts and the corresponding PCEL1 

protein in addition to EGase activity in immature green fruit. Although the induced 

levels were not as high as those found in untreated mature red fruit, the results indicated 

that ethylene may act as a regulator of pepper fruit ripening (Harpster et aL, 1997). 

Ferrarese et al. (1995) also demonstrated a strong promotitive effect of exogenous 

ethylene on the ripening and induction of EGase activity in mature green fruit and 

showed that the increase was the result of de novo synthesis of the protein.

In contrast, the increase in EGase activity during non-climacteric strawberry fruit 

ripening is not induced by exogenous ethylene (Abeles and Takeda, 1990). This is 

consistent with earlier findings that ethylene does not appear to regulate strawberry fruit 

ripening, which may also be the case for other non-climacteric fruit.

1.3.2.3 Abscission

During the shedding of plant organs, abscission zones develop in which localized cell 

wall breakdown leads to cell separation resulting in abscission of the organ. An increase 

in EGase activity in abscising tissue has been reported in many plants. The accumulation 

of EGase activity and the abscission process itself are stimulated by exogenous ethylene 

and retarded by auxin and inhibitors of ethylene synthesis or action (Brummell et aL, 

1994). EGases associated with the abscission of leaves, flowers and fruit have been 

characterized from different plants, the EGase involved in bean leaf abscission being the 

most studied.
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In bean leaf abscission zones several forms of EGase have been detected. Two 

acidic forms with isoelectric points of 4.5 and 4.8 (Lew and Lewis, 1974) and one basic 

form with a pi of 9.5 (Koehler et al.91981) have been purified. Using antibodies specific 

for the pi 9.5 isoform it has been shown that this isoform is undetectable in the 

abscission zone prior to induction of abscission (Durbin et aL, 1981). Following 

induction with ethylene, there was an increase in the activity of this isoform prior to a 

decrease in integrity of the abscission zone cell walls. Thus de novo synthesis of the pi 

9.5 isoform is induced by ethylene. Levels of the pi 4.5 isoform decreased in response to 

ethylene indicating that it is not involved in the abscission process. The presence of this 

form in young tissues throughout the plant suggests it may be involved in cell growth 

and expansion. The pi 4.5 isoform is also responsible for the low levels of EGase 

activity detected in uninduced abscission zones (Durbin et al., 1981). Specific 

localization of the pi 9.5 EGase in activated leaf abscission zones has also been 

demonstrated in bean (del Campillo et aL, 1990). Nitrocellulose tissue prints 

immunoblotted with the pi 9.5 EGase antibody showed that ethylene induced the pi 9.5 

isoform in the separation layers of the two abscission zones, which comprise a narrow 

band of cells at the site of the fracture. Expression of the gene encoding the pi 9.5 

EGase was also regulated by ethylene. After 24 h exposure to ethylene there was an 

accumulation of the pi 9.5 EGase mRNA which corresponded with the increases in 

EGase activity and immunodetectahle pi 9.5 protein (Tucker et aL, 1988). Tissue 

exposed to ethylene to initiate abscission was subsequently treated with NBD to inhibit 

ethylene action due to endogenous ethylene. The level of mRNA and EGase activity 

declined demonstrating that the continued presence of ethylene is necessary to maintain 

EGase expression (Tucker et aL, 1988). Auxin was shown to be a negative regulator of

72



abscission as tissue exposed to auxin prior to exposure to ethylene failed to accumulate 

pi 9.5 EGase transcripts and abscission was inhibited (Tucker et aL, 1988). Localization 

of pi 9.5 EGase transcripts in bean leaf abscission zones showed accumulation in the 

separation layers, a distribution that is consistent with immunolocalization of the 

corresponding protein in the same tissue (Tucker et al., 1991). An EGase 

immunologically similar to the bean pi 9.5 isoform has also been detected in soybean 

leaf, flower and pod abscission zones after induction of abscission with ethylene 

(Kemmerer and Tucker, 1994). However, the form of EGase that is induced in 

abscission zones of coleus is different to the bean abscission EGase (Wang et aL,

1994a). The coleus enzyme has an acidic pi of 4.7, more similar to the bean pi 4.5 

isoform that is not associated with abscission. The hormonal regulation of the two is 

different though, with the coleus enzyme activity being inhibited by auxin and promoted 

by ethylene, consistent with its involvement in the abscission process.

In tomato, multiple EGase transcripts are found in abscising tissues. The 

expression of cel5 increased in flower and leaf abscission zones in response to ethylene 

treatment and was inhibited by pretreatment with auxin and silver thiosulphate, an 

inhibitor of ethylene action (Kalaitzis et aL, 1999). Ethylene-induced abscission of 

tomato flowers was correlated with increased expression of tomato cell and cel2 EGase 

genes, which were shown to be regulated by ethylene (Lashbrook et aL, 1994). 

Breakstrength and EGase gene expression were studied during tomato flower abscission. 

The expression of cell, cel5 and cel6 was found to correlate with flower shedding (del 

Campillo and Bennett, 1996). While cell and cel5 expression appeared to be affected by 

auxin and ethylene in a manner consistent with their involvement in the abscission 

process, cel6 expression increased after auxin treatment. This response, together with
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the observation that cel6 transcript accumulation declined in the final stage of 

abscission, suggests that abscission of tomato flowers requires the differential 

expression of divergent EGase genes brought about by distinct regulatory control. 

Antibodies raised against a fusion protein encoding a region of the Cell polypeptide 

cross-reacted with proteins in flower abscission zones induced to abscise by ethylene, 

further confirming Cell involvement in abscission (Gonzalez-Bosch et al., 1997).

Multiple EGases involved in abscission have also been characterized from 

abscission zones of pepper leaves (Ferrarese et al., 1995) and flowers (Trainotti et al., 

1998a), peach leâves and fruit (Trainotti et al., 1997) and orange fruit, leaves and 

flowers (Bums et al., 1998) and found to be regulated by ethylene.
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RESEARCH OBJECTIVES

The ripening of many fruits is characterized by textural changes which lead to softening. 

This results in an edible product, but also has significant implications for post-harvest 

fruit quality, since excessive softening results in increased susceptibility to mechanical 

damage and disease during handling and storage and drastically reduces shelf-life. 

Changes in texture and firmness are considered to be a consequence of alterations in the 

composition and structure of cell wall polysaccharides brought about by a combination 

of cell wall hydrolases and wall-modifying proteins. EGase has been one of the most 

studied of the hydrolytic enzymes in relation to fruit softening because its activity 

increases to relatively high levels and is temporally correlated with loss of firmness in 

many fruits, including strawberry, suggesting an important role in fruit softening.

The overall aim of the present work was to determine more precisely what role 

EGase might have in strawberry fruit development and this was approached in two 

ways. The modification of gene expression in transgenic plants has been used 

extensively in the study of fruit ripening in tomato, particularly with respect to 

understanding the changes in cell wall metabolism. The aim here was to use transgenic 

plants to study the role of EGase in strawberry fruit ripening and in particular to 

evaluate its effect on fruit texture. The first requirement therefore was to .isolate a 

ripening-related EGase cDNA clone. This would enable the expression of the 

corresponding EGase gene to be characterized. In addition, it would allow the genetic 

manipulation of EGase levels by antisense and sense suppression in transgenic 

strawberry plants. Transgenic fruits exhibiting reduced expression of the endogenous 

EGase gene would be analyzed for changes in their ripening behaviour in order to assess
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the physiological function of the corresponding enzyme. In addition to the molecular 

studies, the aim was to biochemically characterize the corresponding ripening-related 

EGase enzyme to elucidate the in vivo role of EGase in strawberry fruit softening. This 

required purification of the enzyme from ripe fruit and determination of its properties. 

Determination of the preferred substrate of the purified EGase in vitro would provide 

information on the cell wall components) most likely to be the in vivo target of the 

enzyme. This would give an indication of its role in the modification of cell wall 

structure that results in fruit softening.

76



CHAPTER 2. MATERIALS AND METHODS

2.1 CHEMICALS AND ENZYMES

All chemicals were of analytical, tissue culture or molecular biology grade and were 

purchased from Sigma-Aldrich Company Ltd. (Dorset, UK) or Merck Ltd. (Leics, UK) 

unless otherwise stated. Bacterial media were supplied by Oxoid (Unipath Ltd., 

Hampshire, UK) and radiochemicals by Amersham Pharmacia Biotech (Herts, UK). 

Enzymes were purchased from Boéhringer Mannheim (East Sussex, UK) or Promega 

UK (Southampton, UK) unless otherwise stated.

All media, buffers and solutions were made up in reverse-osmosed, deionized, double 

distilled water as described in Appendix A. Where required, they were sterilized by 

autoclaving at 101 kPa for 20 min.

2.2 PLANT MATERIAL

The strawberry (Fragaria x ananassa Duch.) cultivars used in this work were the day 

neutral cultivar (cv) Brighton, cv Elsanta and cv Calypso. The cDNA library screened in 

this work was constructed from fruit of cv Brighton. Plants were obtained from 

micropropagated material and grown in a compost mixture consisting of Richmoor Mix 

1, Osmocote Plus and Suscon Green (900 litres : 4 kg : 550 g). They were maintained in 

a glasshouse with night/day temperatures of 12°C/18°C. The large amount of ripe fruit 

required for the protein purification was obtained from cv Elsanta, grown commercially.
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The cultivar Calypso was used for transformation. This cultivar was chosen because of 

its relatively high transformation efficiency compared with other cultivars (D. J. James, 

personal communication). The plants used were micropropagated aseptically from 

meristems. Initially meristems were placed on 85 proliferation medium to produce 

shoots. Shoots were transferred to R13 rooting medium for 4 d and then onto R37 

rooting medium in honey jars to produce small plants. A supply of plants was 

maintained by subculturing the innermost petiole with the growing tip onto fresh R37 

medium every 6 weeks to 3 months when the plants had filled the jars. The plants were 

grown under controlled environmental conditions at 20-22°C, 16 h day and at a light 

intensity of 70 pmol m"2 s'1 (Phillips 70 W Type 84 fluorescent tubes sited 25 cm above 

the shelf).

2.3 MOLECULAR BIOLOGY

2.3.1 Preparation of plasmid DNA

Individual cDNAs cloned into the vector pBK-CMV (Stratagene Ltd.) were stored at - 

70°C as bacterial glycerol stocks prepared from single, isolated colonies using the host 

bacterium E. coli XL 1-Blue MRF' (Stratagene Ltd.). Plasmids were prepared using an 

alkaline lysis method. A scrape of the glycerol stock was resuspended in sterile Terrific 

Broth (TB) medium containing 50 pg ml'1 kanamycin and incubated at 37°C overnight 

with shaking (250 rpm). The cells from 1.5 ml of culture were pelleted by centrifugation 

at 12 OOOxg for 5 min in a microcentrifuge and the supernatant discarded. The pellet was 

resuspended in 100 pi resuspension buffer. After incubation on ice for 10 min, 200 pi

78



lysis buffer were added and the tube inverted gently several times to mix. After a further 

10 min on ice, 150 jil 5 M potassium acetate, pH 4.8 was added and the tube mixed. 

Precipitated proteins, chromosomal DNA and cellular debris were pelleted by 

centrifugation at 12 OOOxg for 15 min and the supernatant containing the plasmid DNA 

was collected. An equal volume of isopropanol was added followed by centrifugation at 

12 OOOxg for 10 min. The pellet was washed consecutively with 1 ml each of 70% and 

100% ice-cold ethanol and dried under vacuum. To remove contaminating RNA the 

pellet was dissolved in 0.5 ml TE, pH 8.0, and incubated with 1 Unit of RNase ONE™ 

(Promega UK) at 37°C for 1 h. To pellet the plasmid DNA, leaving the digested RNA in 

solution, an equal volume of 13% (w/v) PEG in 1.6 M NaCl was added, mixed by 

vortexing, incubated at room temperature (RT) for 5 min and centrifuged at 12 000 g for 

10 min. The final plasmid DNA pellet was washed with ethanol as before, dried under 

vacuum and redissolved in 25 (il TE, pH 8.0. For larger scale preparations of plasmid 

DNA volumes were adjusted accordingly.

2.3.2 Determination of RNA and DNA concentration

The concentration of RNA and DNA in solution was determined by measuring the 

absorbance at 230, 260, and 280 nm in a 10 mm cuvette. An absorbance value at 260 nm 

of 1.0 corresponds to approximately 40 jig ml'1 for RNA and single-stranded DNA and 

50 fig ml*1 for double-stranded DNA. The absorbance ratios at 260/280 nm and 260/230 

nm provide an indication of the purity of the nucleic acid sample. A ratio at 260/280 nm 

>1.8 indicates no significant protein contamination and that at 260/230 nm > 2.0 shows 

no significant polyphenol contamination.
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2.3.3 Digestion of DNA with restriction endonucleases

DNA was digested with the appropriate restriction enzyme in 1 x reaction buffer for that 

enzyme. Up to 10 pg of DNA was digested in a total reaction volume of 50 pi. For the 

enzymes EcdR. I and Hind ID, 4 mM spermidine was included for optimal digestion 

(Bouche, 1981). Reactions containing 5 Units enzyme pg"1 DNA were incubated at the 

optimum temperature for the enzyme (usually 37°C) for 1 h then stopped by the addition 

of 0.5 M EDTA, pH 8.0 to give a final concentration of 10 mM. The digested DNA was 

precipitated free of salts by adding 0.5 volume 6 M ammonium acetate, 1 pi glycogen 

and 2 volumes ice-cold 100% ethanol. Incubation on ice for 20 min was followed by 

centrifugation at 12 OOOxg for 10 min. The pellet was washed with ice-cold 100% 

ethanol and dried.

2.3.4 Agarose gel electrophoresis

Agarose gels for the elecrophoresis of DNA prepared with 0.8% or 1% (w/v) agarose in 

1 x TAE buffer containing 0.5 pg ml"1 ethidium bromide were cast in a horizontal gel 

tank. Samples were made up in 1 x DNA sample loading buffer, loaded into the wells 

and the gel was run at 5 V cm'1 in 1 x TAE buffer. The DNA was visualized under UV 

light and the sizes of the bands were determined by comparison with markers obtained 

by restricting X DNA with Sty I.
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2.3.5 Purification of DNA from agarose gels

Gel slices containing fragments of DNA were excised with a clean scalpel blade and the 

DNA purified using the QIAEXII gel extraction kit (QIAGEN Ltd., West Sussex, UK). 

Three volumes of Buffer QX1 were added to 1 volume of gel (300 pi QX1 to 100 mg 

gel). QIAEX II particles were resuspended and 30 pi added to the gel and buffer. The 

gel was dissolved by incubating at 50°C for 10 min with mixing every 2 min to keep the 

particles in suspension. The DNA adsorbs to the QIAEX II particles in the high salt 

conditions. The particles and DNA were pelleted by centrifugation at 12 OOOxg for 30 s 

and the supernatant removed. To remove agarose contaminants, the pellet was washed 

with 500 pi Buffer QX1 by resuspending, centrifugation and removal of the supernatant 

as before. Residual salt contaminants were removed by washing with 2 x 500 pi Buffer 

PE as before. The pellet containing the purified DNA was then air dried for 30 min or 

until the pellet became white. The DNA was eluted by resuspension in 20 pi TE, pH 8.0 

and incubation at RT for 5 min. A final centrifugation pelleted the particles and the 

supernatant containing the DNA was recovered. For sizes of DNA fragments or amounts 

outside the range given above, addition volumes and incubation times were adjusted as 

described in the kit protocol.

2.3.6 Preparation o f  digûxigenin-11 -dUTP labelled cDNA probes

A non-radioactive DNA labelling kit (Boehringer Mannheim) was used to incorporate 

the nucleotide analogue digoxigeniii-11-dUTP (DIG-11 -dUTP) into DNA by the 

random primed labelling technique. The DNA to be labelled (20 ng ina  total volume of



15 (il) was denatured for 10 min at 100°C and cooled immediately on ice/ethanol. The 

denatured DNA was mixed with 2 jil hexanucleotide mixture in 10 x reaction buffer, 2 

|il 10 x dNTP labelling mixture (1 mM each dATP, dCTP, dGTP, 0.65 mM dTTP and 

0.35 mM DIG-dUTP, pH 6.5) and 1 pi Klenow enzyme (2 U) and incubated at 37°C 

overnight. The reaction was stopped by adding 2 pi 0.2 M EDTA, pH 8.0.

2.3.7 Preparation of radiolabelled cDNA probes

A random primer labelling kit (Prime-It H, Stratagene Ltd.) was used to radioactively 

label cDNA with [ct32P]-dCTP. The DNA (25 ng in 24 pi) plus 10 pi random 

oligonucleotide primers were denatured for 5 min at 100°C, cooled to RT and mixed 

with 10 pi 5 x dCTP buffer followed by the addition of 5 pi [a32P]-dCTP (3000 Ci 

mmol'1) and 1 pi Exo(-)Klenow enzyme (5 U). The reaction was incubated at 37°C for 

10 min and 2 pi stop mix was added. Unincorporated nucleotides were removed by gel 

filtration chromatography on Probe-Quant G-50 Micro columns (Amersham Pharmacia 

Biotech) in STE buffer (0.1 M NaCl, 10 mM Tris-HCl pH 8.0,1 mM EDTA). The 

column matrix was resuspended by vortexing and the buffer was removed by 

centrifugation at 735xg for 1 min. The labelled probe was carefully loaded onto the top 

of the column and centrifuged at 735 g for 2 min to remove unincorporated nucleotides.

2.3.8 Isolation of a full-length cDNA

For isolation of a full-length ripening-related cDNA encoding endo-P-1,4-glucanase 

(EGase), an amplified cDNA library prepared from ripe receptacle tissue of strawberry



(Fragaria x ananassa Duch. cv Brighton) was screened. The library was constructed in 

the cloning vector XgtlO with EcoK I as the cloning site (Manning, 1998a). The 

bacterial host for the library was E. coli C600 A/7A150.

2.3.8.1 Library plating

For screening the cDNA library, 100 mm2 TYN plates were prepared. Sterile TYN 

medium containing 0.2% (w/v) maltose was inoculated with host cells from a frozen 

glycerol stock and cultured overnight at 37°C. The titre of the amplified cDNA library 

was 1.33 x 10* pfii ml"1 and 60 000 pfu were used for the primary screen. Six aliquots of 

10 000 pfu in 100 pi phage dilution buffer (PDB) were incubated at RT for 20-30 min 

with 200 pi of the overnight culture to allow the phage to adhere to the bacterial cell 

walls. The cell/phage suspension was then rapidly mixed with 5 ml molten TYN top 

agarose at 50°C and immediately poured onto a TYN plate pre-incubated at 37°C. The 

plates were swirled to ensure an even coverage without bubbles and after the top agarose 

had set were incubated inverted at 37°C overnight.

2.3.8.2 Plaque lifts

After the clear plaques formed by lysis of the plating cells by the phage had become 

visible overnight, the plates were chilled at 4°C to allow the top agarose to harden. 

Hybond-N nylon membrane (Amersham Pharmacia Biotech) 100 mm2 was placed onto 

the surface of the plate ensuring there were no air bubbles or movement of the 

membrane once in position. Duplicate lifts were taken for each plate; the first was left in
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contact with the top agarose for 1 min and the second for 1.5 min for equivalent transfer 

of plaques. After the lifts were taken the plates were stored at 4°C to minimize diffusion 

of phage out of the plaques. The membranes were placed in denaturing solution for 1 

min to denature the phage DNA, then transferred to neutralizing solution for 5 min and 

finally washed in 2 x SSC for at least 5 min. After drying in air the DNA was fixed to 

the membranes by baking at 120°C for 30 min.

2.3.8.3 Probing with partial-length EGase cDNA (FAN R9 7)

The membranes were pre-hybridized in 0.2 pm filtered, boiled HYBSOL buffer (Yang 

et al., 1993) at 65°C for > 4 h. Hybridization was carried out overnight at 65°C in fresh 

HYBSOL buffer containing approximately 10 ng ml'1 denatured DIG-labelled FAN7R97 

cDNA insert (as described in section 2.3.6) as probe. The membranes were washed for 2 

x 15 min at RT in 2 x SSC, 0.1% (w/v) SDS and then for 2x15  min at 65°C in 0.1 x 

SSC, 0.1% (w/v) SDS.

2.3.8.4 Chemiluminescent detection o f hybridized probe

The detection was carried out using a DIG nucleic acid detection kit (Boehringer 

Mannheim) with modifications. The membranes were washed in Buffer 1 for 5 min at 

RT. They were then incubated for > 60 min at RT in Blocking buffer 2. The anti-DIG- 

alkaline phosphatase conjugate was diluted 10 000-fold in Blocking buffer 2 and 

incubated with the membranes at RT for 30 min. The membranes were then washed for 

4 x 10 min at RT in Buffer 1. Finally they were equilbrated for 5 min at RT in Buffer 3.
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The chemiluminescent substrate CDP-Star (Boehringer Mannheim) was diluted 500- 

fold in Buffer 3 and the membranes were incubated briefly in the solution so the 

surfaces were covered. The membranes were enclosed in Saran wrap to prevent them 

from drying out and exposed to Kodak X-Omat AR film (Sigma). By aligning the film 

with the membranes and plates positive plaque regions could be identified. The density 

of plating for the primary screen did not allow individual plaques to be identified so the 

wide end of a glass pasteur pipette was used to remove an agar plug from the region of a 

positive plaque. From the primary screen, 12 of the strongest hybridizing plaques were 

chosen, 2 from each of the 6 plates. Each agar plug was placed in 500 pi PDB 

containing 50 pi chloroform at 4°C to allow the phage to diffuse out of the agar into the 

buffer. Each of the positives was then re-plated at a 500 000-fold dilution to give 20-30 

well isolated plaques per plate for the secondary screen. This was carried out exactly as 

for the primary screen except that the hybridization and second wash temperatures were 

increased from 65°C to 68°C to increase the stringency. The single, well-isolated 

positive plaques (7 out of the original 12) were each removed into 100 pi PDB plus 10 

pi chloroform and stored at 40C.

Z 3.8.5 Estimation o f insert size by polymerase chain reaction (PCR)

The sizes of the cDNA inserts in the positive clones were estimated by PCR. The 

isolated plaques in 100 pi PDB plus 10 pi chloroform described above were used as the 

template DNA. Standard XgtlO primers were obtained from Sigma. The dNTP mix 

(Amersham Pharmacia Biotech) contained 10 mM each of dATP, dTTP, dGTP and 

dCTP in water, pH 7.5. The 10 x Taq Extender™ buffer (Stratagene Ltd.) contained 200
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mM Tris-HCl, pH 8.8,100 mM KC1,100 mM (NH^SCU, 20 mM MgS04, 1% Triton 

X-100,1 mg ml'1 bovine serum albumen (BSA). All the components were mixed 

together in a 0.5 ml microfiige tube and kept on ice. The DNA polymerase (Flowgen) 

was added last and the mixture overlaid with one drop of mineral oil.

Each reaction was set up as follows :

Component Volume Final Amount

XgtlO forward primer (0.8 pmol pi'1) 12.5 pi 10 pmol

XgtlO reverse primer (1.0 pmol pi'1) 10 pi 10 pmol

Ultrapure dNTP mix (10 mM) Ip l 200 pM each

10 x Taq Extender™ buffer 5 pl 1 X

sterile distilled water 19.5 pi

template DNA Ip l

Taq Extender™ (5 Uni"1) 0.5 pl 2.5 U

Dynazyme™ DNA polymerase (5 U pi"1) 0.5 pl 2.5 U

Total volume 50 pl

86



The PCR was carried out in a thermal cycler (Omn-E, Hybaid Ltd.) with the following 

cycle program:

95°C for 5 min 1 cycle

Denature at 95°C for 0.8 min ]
Anneal at 58°C for 1 min ] 35 cycles
Extend at 72°C for 1.5 min ]

Final extension at 72°C for 6 min 1 cycle

The sizes of the PCR products were analyzed by electrophoresis on 1.5% (w/v) agarose 

gels. The clones with the longest length cDNA inserts were amplified in E. coli to 

prepare X DNA as described below.

2.3.8.6 Phage A DNA preparation - scraped plate lysates

To prepare X DNA from the chosen positive clones, the phage were grown to confluent 

lysis on 90 mm diameter TYN plates. A 10 pl aliquot of each isolated plaque in PDB 

was made up to 100 pl in PDB, mixed with 200 pl E. coli plating cells and plated as 

described in section 2.3.8.1, except that only 2.5 ml top agarose was used. After 

incubation at 37°C overnight the plates were cooled to 4°C for 1 h. The top agarose was 

scraped into 7 ml PDB plus 140 pl chloroform. After vigorous shaking the lysate was 

incubated at RT for .1 h with occasional shaking. The lysate was centrifuged at 10 OOOxg 

at 4°C for 10 min and 6 ml of the supernatant containing the phage particles was 

collected. Stocks of the phage were prepared at this stage by mixing 93 pl supernatant 

with 7 pl dimethylsulphoxide (DMSO), freezing in liquid nitrogen and storage at -70°C.
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The collected lysate was incubated with 6 p.1 each of 1 mg ml'1 DNase I and 10 mg ml'1 

RNase A at 37°C for 30 min to digest bacterial DNA and RNA. To precipitate the phage 

particles 6 ml 20% (w/v) PEG in 2M NaCl were added followed by incubation on ice 

for 1 h. The phage were collected by centrifugation at 10 OOOxg at 4°C for 20 min, 

resuspended in 0.5 ml TE, pH 8.0 and transferred to a microfuge tube. The phage were 

incubated at 68°C for 5 min after the addition of 5 pl 10% (w/v) SDS then 10 pl 5 M 

NaCl were added. An equal volume of phenol:chloroform:isoamyl alcohol (IAA) 

(25:24:1) was added, mixed by vortexing and the phases separated by centrifugation at 

12 000 g for 30 s. The upper aqueous layer was collected and the extraction repeated. 

The extraction was repeated a third time with chloroform only. An equal volume o f- 

20°C isopropanol was added followed by incubation at -70°C for 15 min. The phage 

nucleic acid was precipitated by centrifugation at 12 OOOxg for 15 min at 4°C and 

washed with 70% ethanol at -20°C. The pellet was dried under vacuum and redissolved 

in 0.5 ml TE, pH 7.5 at RT for approximately 30 min. Ten units of RNase ONE™ 

(Promega UK) were added and incubated at 37°C for 30 min to digest residual RNA. An 

equal volume of 13% (w/v) PEG in 1.6 M NaCl was added, incubated at RT for 5 min 

and centrifuged at 12 OOOxg for 10 min. The pellet of phage DNA was washed twice 

with 70% ethanol at RT, once with 100% ethanol at RT and dried under vacuum. The 

phage X DNA was finally redissolved in up to 50 pl 10 mM Tris, pH 8.0 at 4°C 

overnight.
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2.3.9 Sub-cloning of isolated cDNAs

2.3.9.1 Preparation o f cDNA insert and vector DNA

The cDNA insert for cloning was released from the X DNA by restriction with EcoK I, 

separated on a 1% (w/v) agarose gel and purified from the gel as described previously. 

The insert was dephosphorylated using calf intestinal alkaline phosphatase (CLAP) to 

prevent cloning of multiple inserts in the same vector molecule. Insert DNA (up to 10 

pmol ends) was incubated with 5 pi 10 x CLAP buffer (0.5 M Tris-HCl, pH9.0, 10 mM 

MgCh, 1 mM ZnCh, 10 mM spermidine) and 0.5 U GAP in a total volume of 50 pl at 

37°C for 30 min. A further 0.5 U CLAP was added and incubated as before. The reaction 

was terminated by adding 300 pl stop buffer (10 mM Tris-HCl, pH 7.5,1 mM EDTA, 

pH 7.5, 200 mM NaCl, 0.5% SDS). An equal volume of phenolxhloroform (1:1) was 

added, mixed by vortexing and centrifuged at 12 OOOxg for 30 s. The upper aqueous 

phase was transferred to a clean tube. The extraction was repeated with chloroform only. 

The DNA was precipitated by adding 0.5 volume of 6 M ammonium acetate, 1 pl 

glycogen, 2 volumes of 100% ethanol at -20°C and incubated at -70°C for 15 min. The 

DNA was pelleted by centrifugation at 12 OOOxg for 15 min and washed once with each 

of 70% and 100% ethanol at -20°C. After drying under vacuum the dephosphorylated 

insert DNA was redissolved in 7.5 pl 5 mM Tris, pH 7.4, 0.1 mM EDTA ready for 

ligation into the vector.

The cDNA insert was sub-cloned into the vector pBK-CMV (Stratagene Ltd.). The pBK 

vector DNA was supplied digested and ready to use.
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2.3.9.2 Ligation o f insert

It was determined from test ligations that the ratio of insert-to-vector DNA that gave the 

highest ligation efficiency was 10:1, measured in picomole ends. The amount ofpBK 

vector DNA used in the ligation reaction was 50 ng which corresponds to approximately 

0.03 pmol ends. The following equation was used to calculate the amount of insert DNA 

required to give the desired ratio :

pmol ends / pg DNA = (2 x 10*)/ (length in bp x 660)

The 10 x ligase buffer contained 300 mM Tris-HCl, pH 7.8,100 mM MgCb, 100 mM 

dithiothreitol (DTT), 5 mM ATP.

The ligation reaction was set up as follows :

Component Volume Final Amount

digested pBK-CMV vector (50 ng pl'1) in i 0.03 pmol ends

dephosphorylated cDNA insert 7.5 pl 0.3 pmol ends

10 x ligase buffer Ip l 1 X

T4 DNA ligase 
(4 Weiss Uni"1)

0.5 pl 2 U

Total volume 10 pl
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The reaction was incubated at 16°C overnight and then stored at 4°C until ready for 

transformation.

2.3.9.3 Transformation into competent bacterial cells

The ligation mixture was transformed into supercompetent E. coli XL 1-Blue MRF cells 

using the protocol supplied (Stratagene Ltd.). These cells allow blue-white colour 

selection for transformants (pBK vector containing cDNA insert). The cells were 

thawed on ice and gently mixed by hand. Falcon 2059 polypropylene tubes were placed 

on ice to chill. A 100 pl aliquot of cells was added to a pre-chilled tube and mixed 

gently with 1.7 pl 1.42 M P-mercaptoethanol. The cells were incubated on ice for 10 

min with gentle swirling every 2 min before 2 pl of the ligation reaction were added. A 

control transformation was set up using 1 pl of the pUCIS control plasmid supplied 

with the cells. The cells and DNA were mixed gently by swirling and incubated on ice 

for 30 min. A 45 s heat-pulse at .42°C was immediately followed by incubation on ice 

for 2 min to transform the cells with the ligated DNA. SOC medium was pre-heated to 

42°C and 0.9 ml was added to the transformed cells. The cells were finally incubated at 

37°C for 1 h with shaking at 225-250 rpm. During this time, LB plates containing 50 pg 

ml"1 kanamycin and 12.5 pg ml'1 tetracycline and an LB plate containing 50 pg ml'1 

ampicillin were spread with 40 pl each of 2% (w/v) IPTG and 2% (w/v) X-gal for blue- 

white colour selection and allowed to dry at 37°C. After the 1 h incubation the 

transformation mix was plated onto the appropriate plates. The control transformation 

mix was plated on the LB-ampicillin plate using 5 pl diluted with 200 pl SOC medium



and spread evenly over the plate with a sterile spreader. For the ligation reaction 

transformations, 50,100,150 and 200 pl aliquots of transformation mix were made up 

to a volume of 200 pl with SOC medium as necessary and spread on separate LB- 

tetracycline-kanamycin plates. The plates were then incubated inverted at 37°C 

overnight. Transformed cells with inserts grew into white colonies which were picked 

off individually into 200 pl SOB medium. The resuspended cells were re-streaked onto 

fresh plates and well isolated colonies were selected for analysis.

2.3.9.4 Confirmation o f transformation

Confirmation that the transformed colonies contained a cDNA insert was by PCR and 

restriction analysis. White colonies were picked off into 50 pl TB, resuspended by 

vortexing and 5 pl was used as the template DNA for PCR. The reaction mixture was as 

described in section 2.3.8.5 except that 10 pmol each of T3 and 17 primers (Promega 

UK) were used. The cycle programme was also as described in section 2.3.8.5 but with 

the annealing step carried out at 55°C. The reactions were analyzed on a 1% (w/v) 

agarose gel to confirm the presence of a cDNA insert of the correct size. For confirmed 

transformants, the remaining resuspended colony was used to grow an overnight culture 

of the cells in TB plus 50 pg ml'1 kanamycin as described in section 2.3.1. A glycerol 

stock for long-term storage of the cells at -70°C was prepared by taking 0.85 ml culture 

plus 0.15 ml glycerol, vortexing to mix and rapidly freezing in liquid nitrogen. To 

determine the cDNA insert size accurately, plasmid DNA was prepared (section 2.3.1) 

and restricted with KcoK 1. The plasmid containing the longest insert was sequenced.
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2.3.10 Isolation of a cDNA fragment by reverse transcription-polymerase chain reaction 

(RT-PCR)

A short cDNA fragment encoding a second form of EGase (ce/2) in strawberry was 

obtained by RT-PCR for use as a probe. Degenerate oligonucleotide primers were 

designed to the C-terminal region of the published sequence (Llop-Tous et a l, 1999) 

and used for first strand cDNA synthesis and subsequent PCR. First strand cDNA was 

synthesized from 10 pg total RNA isolated from ripe receptacle tissue of strawberry 

(Fragaria x ananassa Duch. cv Calypso) using Moloney murine leukemia virus (M- 

MLV) reverse transcriptase (Superscript H, Life Technologies Ltd., Paisley, UK) and 

Cel2 reverse primer (5’ T GC/TT GA/GTC A/GC AA/GTT A/GT G A/GAA 3’, nucleotide 

1784 to 1765) according to the manufacturer’s instructions. Amplification by PCR was 

performed in a total reaction volume of 20 pl containing single-stranded cDNA 

synthesized from 0.5 pg total RNA, 400 nM each of reverse and forward 

(5’ GAC/TAAC/TTAC/TGAA/GCAA/GACNGA 3’, nucleotide 1522 to 1541) Cel2 

primers, 100 pM dNTPs and 0.5 U Dynazyme II (Flowgen). The PCR was carried out in 

a PCT200 Thermal Cycler (MJ Research) with the following cycle program:

95°C for 5 min, 45°C for 1 min, 72°C for 2 min 1 cycle

Denature at 94°C for 45 s ]
Anneal at 45°C for 1 min ] 34 cycles
Extend at 72°C for 2 min ]

Final extension at 72°C for 10 min 1 cycle
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The reaction products were analyzed by gel electrophoresis and a fragment of the 

expected size was cloned into pCR-Script™ SK(+) (Stratagene Ltd.) and sequenced.

2.3.11 DNA sequencing

A fluorescence-based dideoxynucleotide chain termination method (Sanger et al., 1977) 

was used to obtain DNA sequence by cycle sequencing using dye-labelled terminators. 

Sequencing reactions were performed using the ABI PRISM™ Dye Terminator Cycle 

Sequencing Ready Reaction Kit (PE Applied Biosystems) according to the protocol 

(Revision A). The sequenced samples were analyzed on an automated DNA sequencer 

(PE Applied Biosystems). The templates used for sequencing were double-stranded (ds) 

plasmid DNA prepared as described in section 2.3.1. Appropriate primers were used 

depending on the nature of the templates. The terminator premix contained A, C, T and 

G-Dye Terminators, dATP, dCTP, dTTP, and dITP in place of dGTP to minimize band 

compressions, Tris-HCl (pH 9.0), MgCl2, a thermal stable pyrophosphatase and 

AmpliTaq DNA polymerase FS. The components were mixed together in a 0.5 ml 

microfuge tube and overlaid with one drop of mineral oil.
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The sequencing reactions were set up as follows :

Component Volume Final Amount

Terminator premix 8 pl

ds plasmid DNA template 
+ dH20

8.8 pl 250-500 ng

Primer (1 pmol pl'1) 3.2 pl 3.2 pmol

Total volume 20 pl

The sequencing reaction was carried out in a thermal cycler (Omn-E, Hybaid Ltd.) with 

the following cycle program:

Pre-heat to 96°C

96°C for 30 s ]
50°C for 15 s ] 25 cycles
60°C for 4 min ]

Hold at 4°C

The extension products were purified by ethanol precipitation to remove excess dye 

terminators. For each reaction, 2 pl 3 M sodium acetate, pH 4.6 and 50 pl 100% ethanol 

were added to a 1.5 ml microfuge tube. The entire 20 pl sequencing reaction was added, 

mixed by vortexing and incubated on ice for 10 min. The extension products were then 

pelleted by centrifugation at 12 OOOxg for 30 min. The pellet was rinsed with 250 pl 

70% ethanol and then allowed to air dry. The dried pellet was sequenced by Durham
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University Sequencing Service on an automated DNA sequencer (PE Applied 

Biosystems).

2.3.12 Computer analysis of sequence data

Sequence data was analyzed using the University of Wisconsin Genetics Computer 

Group (GCG) software package. (Devereux et al., 1984). Raw sequence data was 

converted into GCG format using the program REFORMAT and edited as necessary 

using SEQED. The EMBL and Genbank nucleic acid databases were searched for 

related sequences using FASTA and BLAST programs. The derived amino acid 

sequence was obtained from the DNA sequence data using the program TRANSLATE. 

This derived protein sequence was then compared against the translated EMBL and 

Genbank databases using TFASTA and BLAST programs. Comparison of two nucleic 

acid or protein sequences was conducted using the BESTFIT and GAP programs. 

Multiple sequence alignments were conducted using the programs GCLUSTALW and 

PILEUP. A restriction map of a sequence for all or specified restriction enzymes was 

created using the program MAP.

2.3.13 Extraction of total RNA

Total RNA was extracted from strawberry receptacle, leaf, petiole and root as described 

by Manning (1991). Solutions were autoclaved where appropriate and labware was 

baked at 160°C overnight. All tissues were frozen in liquid nitrogen immediately after 

harvest and stored at -70°C until extraction. Frozen tissue (typically 5 g FW) was ground
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to a fine powder in a pre-chilled mortar. Three volumes of RNA extraction buffer at RT 

were added with further grinding. The homogenate was extracted immediately with an 

equal volume of phenolxhloroform (1:1) at RT and mixed by shaking. The phases were 

separated by centrifugation at 20 OOOxg for 10 min at RT and the upper aqueous phase 

was transferred to a clean tube. The interphase and lower phase were shaken with a 

further 3 volumes of extraction buffer, centrifuged as before and the upper phase was 

combined with the first one. The combined upper phases were extracted with an equal 

volume of phenolxhloroform (1:1) as before. Differential precipitation of nucleic acids 

was started by adding 1.4 volumes water, 0.1 volume 1 M sodium acetate/acetic acid 

buffer, pH 4.5 and 0.4 volumes 2-butoxyethanol (2-BE) to 1 volume upper phenol 

phase. Following incubation on ice for 30 min, the contaminating polysaccharides were 

precipitated and pelleted by centrifugation at 20 OOOxg for 10 min at 0°C. The 

supernatant was collected and 0.6 volumes (with respect to the diluted aqueous phenol 

phase) 2-BE was added. After a further 30 min on ice the nucleic acids were precipitated 

by centrifugation as before. The pellet was washed consecutively with extraction 

buffer:2-BE (1:1 (v/v)) to remove traces of polyphenols, 70% (v/y) ethanol containing 

0.1 M potassium acetate/acetic acid, pH 6.0 and 100% ethanol. The pellet was then 

dried under vacuum and redissolved in sterile distilled water on ice to give a 

concentration not less than 500 pg ml"1. This nucleic acid solution was adjusted to 3 M 

LiCl by adding 0.25 volume 0,2 pm sterile filtered 12 M LiCl and incubated on ice for 1 

h to precipitate the RNA. The RNA was pelleted by centrifugation at 11 600xg for 10 

min at 4°C and washed with 2 x 1 ml 3 M LiCl, 1 ml 70% (v/v) ethanol and finally 1 ml 

100% ethanol. The ethanol was removed and the pellet then dried under vacuum. The 

final RNA pellet was redissolved in sterile distilled water to give a concentration of
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approximately 4 pg pl'1. Aliquots of 5 pl were taken for determination of RNA 

concentration by spectrophotometry (section 2.3.2). The RNA was then stored either 

dissolved in RNA loading buffer at -70° (short-term) or precipitated as a pellet and 

stored under 100% ethanol at -70° C (long-term).

2.3.14 Northern analysis

2.3.14.1 Denaturing RNA gel electrophoresis

Denaturing formaldehyde-agarose gels for electrophoresis of RNA were prepared with 

1% (w/v) agarose in 1 x MOPS buffer containing 0.22 M formaldehyde. The gel was 

cast in a horizontal gel tank and submerged in the same buffer. Samples of RNA (20 pg) 

and RNA markers (Promega Ltd.) were made up in RNA loading buffer and heated at 

65°C for 15 min prior to loading. The gel was run first at 2.5 V cm'1 until the samples 

had entered the wells and then at 5 V cm"1 until the bromophenol blue front was 

approximately 1 cm from the end of the gel.

2.3.14.2 Northern blotting

After electrophoresis, the RNA was transferred onto Hybond-N nylon membrane 

(Amersham Pharmacia Biotech) using a capillary blotting unit (BIOS). The wick of the 

blotting unit was wetted with ethanol and rinsed well with sterile water. A sheet of 

Whatman 3 MM filter paper the same size as the gel was placed on the wick and the gel 

placed upside-down on top. The Hybond-N membrane was pre-wetted in 20 x SSC then
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placed on the gel ensuring no air bubbles were trapped. Three pieces of pre-wetted 

3MM filter paper followed by a stack of blotting pads (Sigma) were placed on top of the 

gel. The wick around the gel stack was masked with Saran wrap to prevent short- 

circuiting of the blotting buffer from the unit to the blotting pads. Transfer was carried 

out overnight at RT in 500 ml 20 x SSC which was added to the wick tray of the 

blotting unit. Following transfer, the membrane was rinsed in 2 x SSC for 2 min and air 

dried. The membrane and gel were visualized under UV light to check that efficient 

transfer had occurred and the RNA was cross-linked to the membrane by UV irradiation 

for 5 min. During this time the positions of the RNA markers and wells were marked on 

the membrane.

2.3.14.3 Probing northern blots with radiolabelled cDNA probes

The membrane was pre-hybridized in 5 x SSPE, 5 x Denhardt's solution, 1% (w/v) SDS 

and 100 pg ml'1 denatured salmon sperm DNA at 65°C for at least 4 h. Hybridization 

was carried out overnight at 650C in fresh solution containing the 32P-labelled cDNA 

probe prepared as described in section 2.3.7. Immediately before use the probe was 

denatured by heating for 5 min at 100°C followed by cooling on ice/ethanol. The 

membrane was washed for 2 x 20 min at 65°C in 3 x SSC, 0.1% (w/v) SDS followed by 

1 x 20 min at 65°C in 0.3 x SSC, 0.1% (w/v) SDS. The membrane was placed in Saran 

wrap and exposed to Kodak X-Omat AR film (Sigma) with an intensifying screen at - 

70°C.
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2.3.15 Extraction of genomic DNA

Genomic DNA was extracted from young leaf tissue in a small-scale method using 

CTAB (H.Y. Yang, personal communication) with minor modifications. A leaf disc was 

collected into a microfuge tube using the lid to cut out the disc and then frozen in liquid 

nitrogen. The disc was quickly powdered using a microfuge pestle and 0.5 ml CTAB 

extraction buffer, pre-warmed to 65°C, was added. After homogenization using the 

pestle the extract was incubated at 65°C for 10 min to disrupt the cell membranes. The 

extract was emulsified by adding 0.5 ml dichloromethaneiisoamyl alcohol (24:1) and 

centrifuged at 12 OOOxg in a microfuge for 2 min at RT. The upper phase was collected 

into a clean tube and 300 pl isopropanol was added to precipitate the DNA. The DNA 

pellet was collected by centrifugation for 2 min at RT as before. The supernatant was 

discarded and the pellet was washed for 2 min with 0.5 ml wash buffer. The pellet was 

collected by centrifugation and allowed to air dry. The dried DNA pellet was dissolved 

in 30 pl sterile distilled water. An aliquot of 5 pl was taken for determination of DNA 

concentration by spectrophotometry (section 2.3.2).

2.3.16 Southern analysis

2.3.16.1 Digestion o f DNA and gel electrophoresis

Genomic DNA samples (10 pg) were incubated with 1 Unit RNase ONE™ (Promega 

UK) at 37°C for 30 min to digest contaminating RNA. Samples were then digested with 

the required restriction enzyme. Reactions (100 pl) containing the DNA, 50 Units of
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enzyme and 1 x reaction buffer were incubated overnight at the temperature required by 

the enzyme. The digested DNA was precipitated (section 2.3.3), dissolved in 15 pl TE, 

pH 8.0 and heated at 56°C for 3 min before separation on a 1% TAE-agarose gel 

(section 2.3.4).

2.3.16.2 Southern blotting

Following electrophoresis, the gel was photographed under UV light to record the 

positions of the DNA markers. The DNA was depurinated by submerging the gel in 0.25 

M HC1 for 15 min. After rinsing in sterile distilled water the DNA was denatured in 0.5 

M NaOH, 1.5 M NaCl for 30 min. The gel was then neutralized in 0.5 M Tris-HCl, pH

7.5,1.5 M NaCl for 30 min. A final incubation in 20 x SSC for 20 min was carried out 

before the DNA was transferred to positively-charged nylon membrane (Boehringer 

Mannheim) by blotting overnight in 20 x SSC as described in section 2.3.14.2. 

Following transfer, the membrane was rinsed in 2 x SSC for 2 min and air dried. The 

DNA was fixed to the membrane by baking at 120°C for 30 min and irradiated by UV 

light for 3 min.

2.3.16.3 Probing Southern blots with radiolabelled cDNA probes

The membrane was pre-hybridized and hybridized with the 32P-labelled cDNA probe as 

described in section 2.3.14.3. The membrane was washed at high stringency twice in 

0.25 x SSC, 0.1% (w/v) SDS at RT for 5 min followed by twice in 0.25 x SSC, 0.1%
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(w/v) SDS at 65°C for 15 min. The membrane was placed in Saran wrap and exposed to 

Kodak X-Omat AR film (Sigma) with an intensifying screen at -70°C

2,4 PROTEIN PURIFICATION AND CHARACTERIZATION

2.4.1 Rapid enzyme extraction from strawberry for endo-P-1,4-glucanase (EGase) 

assay

Strawberry fruit were frozen in liquid nitrogen and stored at -70°C until use. Frozen fruit 

were ground to a fine powder in a pestle and mortar and mixed with 5 volumes Buffer A 

(CTAB extraction buffer, Appendix A2) at RT. The extract was centrifuged at 10 OOOxg 

for 10 min. The supernatant was filtered through Miracloth to remove insoluble material 

and 3 volumes of acetone at -20°C were added. After incubation on ice for 5 min the 

protein was precipitated by centrifugation at 3 300xg at 4°C for 10 min. The pellet was 

washed with acetone at -20°C and allowed to air dry. At this stage the protein pellet 

could be stored at -20°C for future use or used immediately to assay EGase activity. The 

pellet was dissolved in Buffer B (Appendix A2) at a concentration equivalent to 2 g FW 

ml'1. In most cases 1 ml (2 g FW) of the enzyme solution was used per assay.
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2.4.2 Viscometric assay of EGase activity

2.4.2.1 Theory

Endoglucanase activity in crude extracts is usually assayed by viscometric methods 

which provide a rapid, precise and sensitive assay and which are not affected by 

endogenous reducing substances that may be present. Enzyme is incubated with a 

solution of a high molecular weight cellulose derivative (carboxymethylcellulose, CMC) 

as the substrate and the resulting reduction in viscosity of the substrate is used as a 

measure of the EGase activity in the reaction. The viscosity is determined at intervals 

after the start of the reaction by measuring the time taken for a fixed volume of the 

reaction solution to flow through a suspended-level (Ubbelhode) capillary viscometer. 

An arbitrary but linear relationship is found between inverse specific viscosity (risp*1) 

and time-point of the reaction (T). The gradient of this relationship, the increase in 

inverse specific viscosity with time, is linearly related to EGase activity over a wide 

range and is proportional to the amount of enzyme added.

2.4.2.2 Calibration o f viscometers

Prior to their first use, viscometers were cleaned with chromic acid and thoroughly 

rinsed in distilled water. The Hagenbach-Couette equation, r| = p (At - B / 1) corrects 

for non-ideal flow in capillaries.
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It can be rearranged to give r|t / p = At2 - B where :

A, B viscometer constants 

t flow-through time of assay solution

p density of assay solution

r| viscosity of assay solution

From this equation, plotting t2 against r\t/ p gives à linear relationship, where the 

gradient gives the constant A and the intercept on the y-axis gives the constant B. The 

viscometers were individually calibrated by measuring the flow-through time, t, for 

three Newtonian fluids (water, 50% (w/w) sucrose and 60% (w/w) sucrose) of known 

viscosity and calculating the constants A and B.

In practice, each viscometer was filled with 20 ml of each standard solution in 

turn. The flow-through time was measured at 30°C for each of the solutions until three 

readings within 0.1 s were obtained. The average of the three readings was calculated 

for each solution and used with the p and r| values (Table 2.1 A) to determine t2 and T]t / 

p. For each viscometer, the three values for each of t2 and ^ t / p  were plotted and the 

gradient and intercept determined to give the constants A and B, respectively (Table 

2.IB). These values were then used in the calculation of EGase activities in assays.
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Table 2.1A Viscosity and density of standard solutions used in calibration of

viscometers (taken from National Bureau of Standards Circular C440, 

Table 132,673 (1942) ed. F. J. Bates)

Standard solution Viscosity, r] (centipoise at 30°C) Density, p (g ml'1 at 30°C)

Water 0.7975 0.99565

50% (w/w) sucrose 10.18 1.22495

60% (w/w) sucrose 34.07 1.28144

Table 2. IB Calculated values of the constants A and B for individual viscometers

Viscometer number Constant A Constant B

4153 1.0668 -3.4342

4149 1.0375 -2.7144

5457 1.0542 -3.192

1866 1.0468 -2.4247

5576 1.0753 -3.0775

5430 1.0606 -2.9368

5443 1.0403 -2.0598

6784 1.1145 -1.825
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2.4.2.3 Assay

Viscometry was used to assay EGase in crude enzyme extracts from fruit and during the 

purification of EGase. The reaction mixture (20 ml) contained 1.5% (w/v) CMC and 

enzyme in 50 mM acetic acid/NaOH, pH 5.0 (Buffer B) in a viscometer suspended in a 

water-bath at 30°C. The enzyme was added last, the assay solution mixed and the start 

time of the assay (E + S) recorded. The flow-through time (t) of the CMC solution was 

measured to 0.01 s with a stop-watch at recorded time-points (T) over a 2 h incubation.

Using the Hagenbach-Couette equation, r|cmc = pcmc (At - B / 1) 

where pCmc density of 1.5% CMC substrate = 1.0085

A, B viscometer constants determined from calibration 

t measured flow-through time of assay solution in seconds

T]cmc, the viscosity of the solution, was calculated.

T|r, the relative viscosity, was calculated by r\r = rjcmc / riwatcr where T]watcr = 0.7975 

centipoise at 30°C.

T]sp, the specific viscosity, was calculated as %p = % -1 and this value was used to give 

risp'1, the inverse specific viscosity of the assay solution.

The accurate time-point (T + 0.5t) of each flow-through measurement was calculated as 

the time-point of the measurement (T) minus the assay start time (E + S) plus half of the 

flow-through time (t) in seconds. This takes account of the change in viscosity occurring 

during the measurement.

The time-point of reaction (T + 0.5t) in seconds was plotted against the inverse specific 

viscosity (qsp1), to give a linear relationship (Figure 2.1). The gradient was calculated as
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the change (increase) in inverse specific viscosity with time (At̂ p'1 s'1), and this value 

was used as a measure of the EGase activity in the assay.
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Figure 2.1 An example of a plot of inverse specific viscosity against reaction time- 

point used in the viscometric determination of EGase activity
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2.4.3 Determination of EGase activity by reducing sugar assay

Activity of purified EGase was determined by the release of reducing groups from the 

substrate. This method, used for purified enzyme, enabled substrates that were either 

insoluble or did not produce a suitably viscous solution to be examined. The assay was 

adapted from Schales and Schales (1945) and Kidby and Davidson (1973) to allow 

reactions to be run in microfuge tubes. For assay 100 pi of sample was mixed with 25 pi 

ferricyanide reagent. The reactions were heated at 100°C for 5 min, cooled rapidly in 

cold water and 0.875 ml water was added to each. The reactions were then mixed and 

the absorbance at 237 nm was read. Standards were prepared using 0 -20  nmoles 

glucose. Assays were conducted in duplicate and the amount of reducing sugar in the 

sample was determined from a standard curve (Figure 2.2).
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Figure 2.2 A typical standard curve of glucose for the determination of EGase 

activity by the release of reducing groups from CMC substrate
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2.4.4 Assay of EGase activity in strawberry finit throughout development

Fruit were harvested at the following stages according to their receptacle colour and 

size: small green, white with green achenes, white with yellow achenes, turning, orange, 

red ripe and over-ripe. The finit were frozen in liquid nitrogen and the achenes were 

removed: Proteins were extracted from powdered frozen receptacle tissue prepared from 

5 g FW of tissue as described in section 2.4.1. EGase activity in the crude extracts was 

assayed in duplicate by viscometry using the equivalent of 2 g FW per assay. Activity 

was expressed on a g FW basis.

2.4.5 Measurement of fruit firmness

Strawberry fruit firmness was measured at RT using a motorized penetrometer (Stevens 

CR Analyzer). Fruit were harvested at the stages described in Section 2.4.4 and stored at 

4°C until measurement, which was carried out as soon as possible after harvesting. 

Individual fruit were cut in half longitudinally and halved fruit placed with the cut 

surface on the measurement platform. A thin layer of skin was removed with a new 

scalpel blade from the upper side of the fruit parallel with the platform to remove the 

achenes and provide a flat surface of receptacle tissue for measurement. For each 

sample, measurements were taken on both halves of each of five fruit and the average of 

these ten readings was used as a measure of receptacle firmness. The penetrometer was 

equipped with a cylindrical probe with a diameter of 5 mm. The test speed was set to 5 

mm min'1 and the probe was pushed 5 mm into the fruit. The maximum force (N)
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recorded during the measurement from 0 to 5 mm was used as a measure of fruit 

firmness.

2.4.6 Assay of EGase activity in fruit of other species

Endoglucanase activity was measured in a range of different fruits; ripe avocado 

mesocarp, ripe tomato (cv Ailsa Craig) pericarp, ripe apple (cv Golden Delicious) 

cortex, red pepper fruit and ripe raspberry fruit. As before, the tissue was frozen in 

liquid nitrogen and powdered. Proteins were extracted from 10 g powdered frozen tissue 

as described in section 2.4.1. EGase enzyme assays were conducted on the crude extract 

in duplicate. The amount of protein in the extract was determined (section 2.4.8.1) and 

used to calculate the specific activity of EGase.

2.4.7 Isolation of a strawberry EGase

2.4.7.1 Extraction o f soluble proteins from strawberry fruit

Soluble enzymes were extracted by the acetone powder method as described by Given et 

al. (1988a) with minor alterations. All steps were carried out at 4°C unless otherwise 

stated.

Ripe strawberry (cv Elsanta) fruit were frozen in liquid nitrogen and stored at -70°C 

until use. Frozen fruit were ground to a fine powder in a coffee grinder. The powder was 

added to 10 volumes (with respect to fruit FW) of acetone at -20°C and ground briefly in 

a pestle and mortar before filtering under vacuum onto Whatman 541 filter paper. The
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residue was washed with a further 10 volumes of acetone at -20°C and dried under 

vacuum for at least 1 h. The resulting acetone powder was stored at -70°C until use. The 

acetone powder was added to 3 volumes (with respect to fruit FW) of enzyme extraction 

buffer and extracted with stirring for 1 h. The extract was filtered through a nylon mesh 

bag then through Miracloth (Calbiochem-Novabiochem (UK) Ltd.) and centrifuged at 

22 500xg for 30 min. The supernatant was collected and adjusted with 1 M CaCh to a 

final concentration of 50 mM. Solid ammonium sulphate was added to 20% (w/v) 

saturation (114 g I"1 at 25°C) and dissolved by stirring for 1 h. The precipitated pectin 

was pelleted by centrifugation at 10 OOOxg for 10 min. The supernatant was collected 

and solid ammonium sulphate was added to 80% (w/v) saturation (538 g I'1 at 25°C) and 

dissolved by stirring overnight. Precipitated proteins were pelleted by centrifugation at 

10 OOOxg for 10 min and as much of the supernatant as possible was removed. The 

protein pellet was allowed to air dry for at least 2 h and stored at -20°C until use.

2.4.7.2 Purification o f a strawberry EGase

Soluble protein extracted from ripe fruit of cv Elsanta was used in the purification of 

EGase. All procedures were carried out at RT. The protein pellets obtained by 

ammonium sulphate precipitation from 300 g FW tissue were dissolved in 20 ml Buffer 

B (Appendix A2) to a concentration of 15 g FW ml*1. The protein extract was applied to 

a 10 ml (5.7 cm x 1.5 cm diameter) column ofCFll  cellulose (Whatman) which had 

first been equilibrated in Buffer B and the flow rate adjusted to 1 ml min'1. One column 

volume (10 ml) of Buffer B was added to displace the remaining extract from the 

column. The column was then washed sequentially with 5 column volumes of Buffer B
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to remove unbound protein. The adsorbed EGase protein was eluted with 3 column 

volumes of elution buffer (50 mM citrate-phosphate-Tris buffer (CPT), pH 9.0 

containing 1 M NaCl and 0.1 M cellobiose) and the eluate containing the EGase protein 

was collected. The eluate was reduced to a volume of 1.0-1.5 ml by ultrafiltration on 

PM 10 membranes (Amicon) and made up to 10 ml in Buffer B to sufficiently dilute the 

cellobiose present to enable the EGase protein to bind again to cellulose. The 10 ml of 

eluate was then applied to a 5 ml (2.8 cm x 1.5 cm diameter) column of CF11 cellulose 

in Buffer B and the procedure repeated as for the first column, adjusting the volumes 

accordingly for the smaller column. The EGase was eluted with 3 column volumes of 

elution buffer and ultrafiltrated as before. The eluate from the second column was then 

applied to a third and final CEI 1 cellulose column exactly as for the second column.

The final eluate after a final ultrafiltration step to remove the cellobiose was designated 

the purified EGase protein. For characterization of the purified enzyme the final eluate 

was concentrated to a volume of approximately 1 ml.

2.4.8 Characterization of the purified EGase enzyme

2.4.8.1 Protein assay

Protein concentrations were determined by the protein-dye binding method of Bradford 

(1976) using microtitre plates. Samples were diluted as necessary and standards were 

prepared using bovine serum albumen (BSA) diluted in the same buffer as the sample at 

concentrations of 0 -150 pg 100 pi'1. For assay, 100 pi of each standard or sample were 

mixed with 100 pi Coomassie protein reagent in a microtitre plate well, incubated at RT
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for 5 min and the absorbance was read at 600 nm. All assays were conducted in 

duplicate and the amount of protein in the samples was determined from a standard 

curve of protein concentration (Figure 2.3).
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Figure 2.3 A typical standard curve of BSA for the determination of protein 

concentration
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2. 4. 8.2 Concentration o f protein in dilute solutions

Protein was concentrated from very dilute solutions as described by Wessel and Flugge 

(1984). In a 2 ml tube, one volume (0.2 ml) of dilute protein solution and 4 volumes (0.8 

ml) of methanol were vortexed and centrifuged at 12 OOOxg in a microfuge for ÎO s to 

collect the whole sample. One volume (0.2 ml) of chloroform was added and the sample 

was vortexed and centrifuged as before. Three volumes (0.6 ml) of water were added 

and the sample was vortexed vigorously and centrifuged for 1 min to separate the 

phases. The upper phase was discarded and a further 3 volumes (0.6 ml) of methanol 

were added to the lower phase and interphase containing the protein. After vortexing 

and centrifugation for 2 min the protein pellet was allowed to dry in air. For analysis by 

SDS-PAGE the pellet was redissolved in 1 x Laemmli sample buffer.

2.4.8.3 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

SDS-PAGE was conducted using the discontinuous buffer method of Laemmli (1970). 

The Bio-Rad Protean H mini-gel system was used to pour and run 0.5 mm thick vertical 

gels. The composition of the gels is described in Appendix A. Resolving gels (10% 

(w/v) acrylamide) were poured between ethanol-cleaned glass plates and overlaid with 

water until polymerized. The water was replaced with resolving gel buffer stock diluted 

1:4 and the gel allowed to polymerize fully overnight. The overlay was removed and the 

stacking gel (3.75% (w/v) acrylamide) poured with a comb in place to form the wells. 

Once the gel had polymerized, the comb was removed and the wells were rinsed with 

distilled water to remove any traces of acrylamide. The gel was then set up ready for

115



electrophoresis in 1 x SDS-PAGE running buffer. Samples and SDS-PAGE molecular 

weight protein markers were made up in 1 x Laemmli sample buffer, heated to 100°C 

for 5 min then cooled on ice before loading into the wells. The gel was run at 100 V (40 

mA) through the stacking gel and at 200 V (80 mA) through the resolving gel until the 

bromophenol blue dye front was at the bottom of the gel. The proteins were visualized 

by staining with Coomassie Blue as described in section 2.4.8.4.I.

2.4.8.4 Staining for proteins

2.4.8.4.1 Coomassie Blue staining

Following electrophoresis, proteins were visualized by staining with Coomassie Blue. 

Gels were incubated for 1 h in 0.05% (w/v) Coomassie Brilliant Blue R-250 in 25% 

(v/v) methanol and 8% (v/v) acetic acid until the whole gel was a deep blue. Gels were 

then destained in 25% (v/v) methanol and 8% (v/v) acetic acid with shaking until 

protein bands were visible on a clear background.

2.4.8.4.2 Silver staining of proteins

Coomassie Blue staining is not sensitive enough to detect very low levels of protein and 

in these cases the more sensitive method of silver staining was used.

All steps were carried out at RT with shaking. Following electrophoresis, the gel was 

fixed in Fix/Stop solution for 15 min, washed in 10 gel volumes of distilled water for 3 

x 2 min and stained in 5 volumes Stain solution for 10 min. During this time 5 volumes
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of developer was freshly prepared on ice. After staining the gel was rinsed in distilled 

water for 10 s before the ice-cold developer was added. Bands appeared within 

approximately 3 min and these were fixed in Fix/Stop solution for 2-3 min. The gel was 

rinsed in distilled water for 2 x 2 min, 2% (w/v) NaOH for 2-3 min and finally in 30% 

(v/v) Fix/Stop solution for 3 min without shaking.

2.4.8.5 Electroblotting

Proteins were transferred from gel to membrane by electroblotting using a BIO-RAD 

Mini Trans-Blot electrophoretic transfer cell according to the manufacturer’s protocol. 

Prior to blotting the gel and the membrane were equilibrated in the transfer buffer to be 

used. Electroblotting was carried out at 90 V for 80 min at 4°C.

2.4.8.6 Protein sequencing

The eluate containing the purified EGase protein was first concentrated before 20 fig 

was resolved by SDS-PAGE. The protein was electroblotted from the gel onto 

polyvinylidene difluoride (PVDF) membrane (Immobilon-PSQ, Millipore) in transfer 

buffer containing 10 mM 3-(cyclohexylamino)-1 -propane-sulphonic acid (CAPS), pH 

11,10% (v/v) methanol. The PVDF membrane was wetted in 100% methanol for 15 s 

and washed with distilled water prior to use. Both the gel and the membrane were 

equilibrated in transfer buffer for 15 min prior to blotting. After blotting, the membrane 

was allowed to air dry to improve protein binding. The membrane was then re-wetted in 

100% methanol and stained with 0.1% Coomassie Blue R-250 in 1% (v/v) acetic acid
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and 40% (v/v) methanol for 1 min. De-staining was carried out in 50% methanol and 

the membrane was allowed to dry. The protein band was cut out and sequenced from the 

N-terminus using a Gas Phase protein sequencer (Pat Barker, The Babraham Institute, 

Cambridge, UK).

2.4.8.7 Determination o f physico-chemical properties

2.4.8.7.1 pH activity profile

The pH optimum of the purified EGase enzyme was determined by viscometric assay 

over the range pH 3.0 to 9.0, with reaction mixtures containing approximately 7.5 pg 

purified EGase enzyme. The buffer used was a combination of sodium citrate, sodium 

phosphate and Tris (CPT) at 50 mM to allow continuity of pH without changing buffer. 

Control reactions containing no enzyme were carried out at each pH to take account of 

any effect of pH on the viscosity of the substrate.

2.4.5.7.2 Effect of substrate concentration

The activity of the purified EGase was measured at the following substrate 

concentrations, 0, 0.15, 0.3, 0.6, 0.9, 1.5 and 2.25% CMC, by reducing sugar assay. The 

reaction mixture contained the CMC substrate and approximately 1.5 pg purified EGase 

enzyme in Buffer B (Appendix A2) in a total volume of 100 pi. The reactions were 

incubated at 30°C and stopped by adding assay reagent after 30 min. To obtain zero

time values assay reagent was added to the reaction mixture before the enzyme. EGase
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activity was determined by measuring the amount of reducing sugars released (section 

2.4.3) in the first 30 min of the reaction.

2.4.8 8 Determination o f substrate specificity

Activity of the purified EGase against various substrates was determined by reducing 

sugar assay and compared with its activity against CMC taken as a standard. The 

substrates examined were insoluble CEI 1 cellulose (medium fibrous, Whatman), starch 

(soluble potato), laminarin (from Laminaria digitata), lichenan (from Cetraria 

islandica), xylan (birchwood, >90% xylose), pectin {Citrus, partially methoxylated 

polygalacturonic acid) (Sigma), xyloglucan (tamarind, amyloid, Ara:Gal:Xyl:Glc 

3:16:36:45) and galactan (lupin, Gal:Ara:Rha:Xyl:GalUA 91:2:1.8:0.2:5) (Megazyme). 

Reactions contained 1% substrate and approximately 0.5 fig purified EGase in Buffer B 

in a total volume of 100 pi for the soluble substrates or increased to 0.75 pg purified 

EGase in 150 pi for the insoluble substrates (cellulose, lichenan). The reactions were 

incubated at 30°C and stopped by adding assay reagent after 60 min. To obtain zero

time values assay reagent was added to the reaction mixture before the enzyme. EGase 

activity was determined by the release of reducing sugars as described in section 2.4.3. 

Reactions with insoluble substrates were centrifuged briefly and 100 pi supernatant 

were taken to determine the release of soluble reducing sugars. To assay reducing 

groups on the residual insoluble fraction the substrate was washed with 2 x 1 ml sterile 

water and resuspended in 150 pi water before 37.5 pi ferricyanide reagent was added.
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2.5 GENERATION AND ANALYSIS OF TRANSGENIC STRAWBERRY 

PLANTS

2.5.1 Construction of transformation vectors

2.5.1.1 Construction o f antisense and sense expression cassettes in the 

intermediate vector pJRIRi

The 1779 bp cell cDNA insert was excised from the pBK-CMV vector by digestion 

with the restriction enzyme EcdK I, separated on an agarose gel and purified. The sticky- 

ends were then polished using cloned Pfu DNA polymerase (Stratagene Ltd.) to produce 

blunt-ends. The purified cDNA insert was incubated with 2 pi 10 mM dNTP mix, 2 pi 

10 x cloned Pfu reaction buffer (200 mM Tris-HCl, pH 8.75,100 mM KC1,100 mM 

(NH4)2SC>4, 20 mM MgSC>4, 1% Triton X-100, 1 mg ml'1 BSA) and 4 pi cloned Pfu 

DNA polymerase (10 U) in a total volume of 28 pi at 72°C for 30 min. The DNA was 

precipitated and redissolved in TE, pH 8.0 ready for ligation into pJRIRi.

The pJRIRi vector was linearized with the restriction enzyme Sma I to leave blunt- 

ends. These were dephosphorylated to prevent the vector recircularizing during the 

ligation.

The blunt-end ligation of the cell cDNA into pJRIRi in either orientation was 

performed using the pCR-Script™ SK(+) cloning kit reagents (Stratagene Ltd.). For a 

blunt-end ligation the molar ratio of insert-to-vector DNA used was 100:1. The polished 

cell cDNA and dephosphorylated pJRIRi vector in a total volume of 15 pi were
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incubated with 2 pi 10 x pCR-Script reaction buffer (250 mM Tris-HCl, pH 7.5,100 

mM MgCl2, 100 mM DTT, 200 pg ml -1 BSA), 1 pi 10 mM rATP and 2 pi T4 DNA 

ligase (8 U) at 16°C overnight.

The ligation mixture was diluted 5-fold in TE, pH 7.5 and 5 pi was transformed into 100 

pi DH5a™ competent cells (Life Technologies Ltd.) using the protocol supplied. This 

was essentially the same as the method described in section 2.3.9.3 for supercompetant 

E. coli XLi-Blue MRF cells but without the addition of P-mercaptoethanol. The 

transformation mixture was spread on LB plates containing 50 pg ml'1 kanamycin. A 

control transformation was set up using 5 pi pUC19 control plasmid supplied with the 

cells, diluted 1:10 and spread on an LB plate containing 50 pg ml'1 ampicillin. 

Transformed cells grew into white colonies and these were picked off individually into 

50 pi TB ready for PCR analysis to confirm a) the presence of pJRIRi containing the 

cell cDNA and b) the orientation of the cDNA between the promoter and terminator.

PCR was carried out using 2 pi of the resuspended colonies as the template DNA. 

Primers were designed to the CaMV 35S promoter (5’ ACTATCCTTCGCAAGA 

CCCTTCCT 3’), the nos 3' terminator (5* ATCATCGCAAGACCGGCAACAGGA 3’) 

and a 5' region of the cell cDNA (5’ TGAAGGCCÀCGGCGGTTCCTGGCG 3’). Each 

of the three combinations of primers were used for each template DNA. Reaction 

conditions and cycles were as described previously (section 2.3.8.5) but at an annealing 

temperature of 70°C. The PCR products were separated on an agarose gel to ascertain 

the presence of the cell cDNA and its orientation. This was verified by DNA 

sequencing using the CaMV 35S primer. The confirmed antisense and sense expression 

cassettes were then cloned into pBINPLUS.



2.5.1.2 Cloning o f antisense, sense.and control expression cassettes into the 

binary vector pBINPLUS

The antisense and sense expression cassettes from the transformants and the control 

cassette (promoter and terminator only) were excised from pJRIRi by digestion with the 

restriction enzymes EcoR. I and Hind IE, purified and dephosphorylated. The vector 

pBINPLUS was cut with the same enzymes to allow directional cloning of the cassettes 

into the vector. The ligation was carried out with an insert-to-vector molar ratio of 10:1 

and transformed into DH5a™ competent cells as described before. Colonies were 

analyzed by PCR as in section 2.5.1.1) to confirm transformants. Restriction analysis 

was also performed using Pac I and Asc I as final confirmation of the presence of each 

of the expression cassettes in pBINPLUS.

2.5.1.3 Transformation o f vectors into Agrobacterium

The vectors were transformed into the hypervimlent Agrobacterium tumefaciens strain 

EHA105 (Hood et a l, 1993) by electroporation. This strain is streptomycin resistant 

(SmR) but kanamycin sensitive (Kin8) allowing selection of the transformation vectors 

which contain the kanamycin resistance gene (nptlll).

A culture of EHA105 was grown in 100 ml LB medium containing 0.1% (w/v) glucose 

and 200 pg ml'1 streptomycin at 29°C overnight with shaking until an ODôôo of 1-1.5 

was attained. To prepare electrocompetent cells the culture was chilled on ice for 15 min 

and centrifuged at 2 300xg for 20 min at 4°C to pellet the cells. The pellet was washed
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in 3 x 10 ml ice-cold 1 mM HEPES, pH 7.0 and 1 x 10 ml 10% (w/v) glycerol in 1 mM 

HEPES, pH 7.0. The pellet was finally resuspended in 500 fil 10% (w/v) glycerol in 1 

mM HEPES, pH 7.0, distributed into 45 pi aliquots, frozen in liquid nitrogen and stored 

at -70°C.

For electroporation, 500 ng of each of the three transformation vectors was used. 

Aliquots of electrocompetent cells were thawed on ice, the vector DNA added and the 

mixture transferred to a pre-chilled electroporation cuvette (0.1 cm electrode gap). The 

load resistance was set to 100 O, the capacitance to 1.5 kV and the electric pulse 

applied. The cells were diluted immediately in 1 ml SOC medium at RT and incubated 

at 29°C for 1-1.5 h with shaking. The cells were plated on LB plates containing 50 pg 

ml"1 kanamycin and incubated at 29°C for 2 d.

A transformed colony, confirmed by PCR as before (section 2.5.1.1), for each of the 

three transformation vectors was chosen and the remaining resuspended cells were used 

to grow a culture in YEP medium containing 50 pg ml'1 kanamycin at 29°C for 2 d. A 

glycerol stock was prepared for each by mixing 0.5 ml culture with 0.5 ml glycerol, 

freezing in liquid nitrogen and stored at -70°C. The stocks were used to prepare the 

Agrobacterium containing the antisense, sense and control vectors for transforming ' 

strawberry.
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2.5.2 Transformation of strawberry

Strawberry plants were transformed with Agrobacterium tumefaciens EHA105, 

containing either the antisense, sense or control transformation vector, using the 

methods described by James et or/. (1990) with modifications.

The stages of the transformation of strawberry (Fragaria x ananassa Duch. cv. Calypso) 

are described below.

2.5.2.1 Preparation o f Agrobacterium containing the transformation

vectors

Day 1

A scrape from each of the three transformed Agrobacterium tumefaciens EHA105 

glycerol stocks was streaked onto an LB plate containing 50 pg ml*1 kanamycin and 

incubated at 29°C for 2 d.

Day 3

am A single colony of each of the three transformed Agrobacterium was inoculated 

into 5 ml YEP medium and incubated at 29°C with shaking at 200 rpm. 

pm Kanamycin was added to a concentration of 50 pg ml'1 and the cultures 

incubated as before overnight.
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Day 4

For each culture 1 ml was inoculated into 9 ml fresh YEP medium containing 50 jig ml'1 

kanamycin and incubated at 29°C with shaking overnight.

2.5.2.2 Preparation o f strawberry explants and infection with Agrobacterium

Day 5

The OD420 of the Agrobacterium cultures were determined and the cells were pelleted 

by centrifugation at 3 OOOxg for 15 min. Each pellet was redissolved in a volume of 

MS20 solution equal in ml to the OD420 x 200, separated into 10 ml aliquots and 

incubated at 20°C with shaking at 200 rpm for 5 h.

The strawberry explants were prepared from aseptically micropropagated plants at 

approximately 8 weeks old. Leaf discs were cut from the leaves using a sterile no.2 cork 

borer and placed onto 100 mm2 ZN102 plates ensuring good contact with the agar. For 

each plate 25 discs were placed in a 5 x 5 grid. For each Agrobacterium transformation 

100 explants were infected (4 plates). In addition to the transformations, two controls 

were set up; no infection/no selection and no infection/with selection using 50 explants 

(2 plates) for each.

The explants were innoculated with the relevant Agrobacterium by adding a 10 ml 

aliquot of bacteria per plate and incubated for 20 min, occasionally swirling the plates. 

The leaf discs were blotted on sterile filter paper and then transferred to fresh ZN102 

plates with 2 sterile filter papers dampened with 0.5 ml MS20 on top. As before, they
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were arranged in a 5 x 5 grid. The plates were sealed with parafilm and incubated at 

22°C in the dark for 2 d to allow infection of the leaf discs with Agrobacterium.

2.5.2.3 Washing and regeneration o f infected explants

Dav 8

The leaf discs from each plate were transferred into 10 ml wash solution in a 30 ml 

sterilin tube. The tubes were shaken sideways at 50 rpm for 5 hat RT. After washing, 

the discs were blotted on sterile filter paper and transferred to the relevant plates. 

Explants infected with Agrobacterium and the no infection/with selection controls were 

placed on selection repli plates (ZN102 containing 100 pg ml'1 kanamycin and 200 pg 

ml"1 cefotaxime to kill any remaining Agrobacterium cells). The no infection/no 

selection controls were placed on plain ZN102 repli plates. The plates were placed in 

controlled environmental conditions at 20-22°C, 16 h day and at a light intensity of 70 

pmol m"2 s'1 (Phillips 70 W Type 84 fluorescent tubes sited 25 cm above the shelf) for 3 

weeks.

3 weeks onwards

After 3 weeks, explants were transferred onto regeneration repli plates with no selection 

(ZN102 containing 200 pg ml"1 cefotaxime only) and the first shoots started to appear at 

4-6 weeks. Shoots were removed and placed on S5 proliferation medium in Coulter pots 

for 2 weeks (weeks 6-8) to increase in size. Shoots were then screened again on S5 

medium containing 50 pg m l1 kanamycin to select for transformed shoots and those 

surviving were considered putative transformants and rooted. To root, shoots were
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placed on R13 rooting medium in Coulter pots for 4 d and then transferred to R37 

rooting medium in honey jars. After 4-8 weeks the roots were well established and the 

plants were at least 5 cm tall. At this stage the plants were removed from aseptic media 

and transferred to Levingtons F2 compost (medium nutrient/standard pH/fine structure) 

in 6.5 cm pots. The compost was heat sterilized by autoclaving to reduce the risk of 

fungal or bacterial contamination during establishment. The plants were placed in a 

propagator with the vents closed and grown at 20-22°C, in a 16 h day, and at a light 

intensity of 70 pmol m"2 s-1. After 1 week the vents were gradually opened and after 2 

weeks the lid was removed and the plants were hardened off. The plants were then 

transferred to 9 cm pots in a compost mix consisting of Richmoor Mix 1, Osmocote 

Plus and Suscon Green (900 litres : 4 kg : 550 g) and placed in the glasshouse.

2.5.3 PCR analysis of putative transformants

Putative transformants that had survived the kanamycin selection were analyzed for the 

presence of the transformation vector by PCR using genomic DNA extracted from 

young leaf tissue in a small scale method (section 2.3.15) as the template. Genomic 

DNA from a wild-type plant was used as a negative control. The primers used were 

designed to the nptll gene:

NPTH 156 5’ CCTGTCCGGTGCCCTCiAATGAAC 3’

NPTH 631 5’ GGCCACAGTCGATGAATCCAGAAAAG 3'.

Each reaction contained 100 ng template DNA, 10 pmoles of each NPTH primer and a 

Ready-To-Go® PCR Bead (Amersham Pharmacia Biotech), containing 200 pM of each 

dNTP, ~1.5 units of Taq, 10 mM Tris-HCl, pH 9.0, 50 mM KC1 and 1.5 mM MgCk, in
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a total volume of 25 jj.1. The PCR was carried out in a thermal cycler (Omn-E, Hybaid 

Ltd.) with the following cycle program :

95°C for 5 min 1 cycle

95°C for 0.8 min 
65°C for 1 min 
73°c for 1.5 min

]
]

35 cycles

73°C for 6 min 1 cycle

The PCR products were analyzed by electrophoresis for the presence of a band of the 

expected size of 475 bp to confirm that they were transformed. Confirmed primary 

transformants were grown to maturity in the glasshouse. In addition, transformed plants 

that tested negative for the transformation vector (non-transformed) and wild-type 

(untransformed) plants were grown as controls.

2.5.4 Southern analysis of the primary transformants

Southern analysis was used to confirm the presence of the antisense or sense transgene 

in the genomes of the ce/7-transformed lines. Genomic DNA was extracted from young 

leaf tissue in a small scale method, digested with the restriction enzyme Him  II and 

blotted onto membrane. The 542 bp CaMV 35S promoter fragment, isolated from 

pJRIRi by restriction with EcoR. I and Kpn I, was used as the probe in Southern blot 

hybridizations as previously described (sections 2.3.15 and 2.3.16). Hybridizing bands 

of 1466 bp and 1169 bp should be present in antisense and sense ce/7-transformed 

plants respectively.
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2.5.5 Northern analysis of the primary transformants

The expression of both cell and cell in ripe fruit of all the primary transformants was 

determined by northern analysis. Ripe receptacle tissue from each transformed line, non

transformed line and a wild-type untransformed control was frozen in liquid nitrogen, 

ground to a fine powder in a pestle and mortar and stored at -70°C until extraction. RNA 

was extracted in a scaled-down version of the method described previously (section 

2.3.13). For each sample, a 1 g aliquot of frozen, powdered tissue was weighed into 2.5 

ml of RNA extraction buffer at RT in a pestle and mortar and ground thoroughly. Two 

0.9 ml aliquots were transferred to two 2 ml microfuge tubes on ice. An equal volume 

(0.9 ml) of phenohchloroform (1:1) was added and mixed by shaking. The phases were 

separated by centrifugation at 12 OOOxg for 5 min at RT in a microfuge and the upper 

aqueous phase was transferred to a 10 ml tube. The upper phase was made up to a 

volume of 4.32 ml with sterile distilled water, 0.18 ml 1 M sodium acetate/acetic acid 

buffer, pH 4.5 and 1.8 ml 2-BE were added and mixed by shaking. After incubation on 

ice for 30 min and centrifugation at 20 OOOxg for 10 min at 4°C, the supernatant was 

transferred to a clean tube. A further 2.7 ml 2-BE was added, mixed and incubated on 

ice for 30 min. The precipitated nucleic acids were pelleted by centrifugation at 20 

OOOxg for 10 min at 4°C and the supernatant was discarded. The pellet was washed 

sequentially with 5 ml 40 mM sodium acetate, pH 4.5:2-BE (1:1 (v/v)), cold 70% (v/v) 

ethanol and 100% ethanol before being dried under vacuum. The pellet was redissolved 

in 0.3 ml TE, pH 8.0 on ice for 1 h and transferred to a 1.5 ml microfuge tube. To 

precipitate the RNA, 01 ml 12 M LiCl was added and incubated on ice for at least 1 h, 

The RNA pellet was collected by centrifugation at 12. OOOxg for 10 min at RT, washed
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sequentially with 0.5 ml 3 M LiCl, cold 70% (v/v) ethanol and 100% ethanol and dried 

under vacuum. The RNA was redissolved in 40 (il sterile distilled water on ice for at 

least 1 h. An 8 jil aliquot was taken for determination of RNA concentration by 

spectrophotometry (section 2.3 .2). The remaining 32 pi of RNA solution was re

precipitated for storage by adding 1.3 pi 4M  sodium acetate/acetic acid buffer, pH 6.0 

and 2.5 volumes 100% ethanol in a total volume of 125 pi, incubated at -70°C for 15 

min and centrifuged at 12 OOOxg for 15 min at RT. The pellet was washed with 0.5 ml 

cold 70% (v/v) and 100% ethanol and stored at -70°C under 100% ethanol until 

required.

The RNA pellets were dissolved in sterile distilled water on ice to give a concentration 

of 3 pg pi'1. For each sample, two 15 pg aliquots of RNA were made up in RNA loading 

buffer, run on duplicate RNA denaturing gels and blotted. The duplicate blots were 

hybridized first with the cell cDNA probe and then with the cel2 cDNA fiagment probe 

(after removal of cell probe) as previously described (section 2.3.14).

2.5.6 Assay of EGase activity in the primary transformants

Endoglucanase activity was determined in ripe fruit of all the primary transformants. For 

each sample, proteins were extracted from a 5 g aliquot of the frozen, powdered ripe 

receptacle tissue prepared for RNA extraction (section 2.5.5) as previously described 

(section 2.4.1). The dried protein pellet was dissolved at a concentration equivalent to 2 

g FW ml"1 and 1 ml was used per viscometric assay (section 2.4.2.3). EGase activity was 

determined from the mean value of two replicate assays for each sample. Similarly, two
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replicate protein assays were carried out on the extract from each sample (section 

2.4.8.1) and the mean EGase specific activity was calculated for each primary 

transformant.

2.5.7 Measurement of fruit firmness of the primary transformants

The firmness of ripe fruit from all the primary transformants was determined by 

penetrometry as previously described (section 2.4.5). The measurements were 

necessarily conducted on separate fruit to those used for the RNA and protein 

extractions due to the destructive nature of the firmness assay.
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CHAPTER 3. ISOLATION AND CHARACTERIZATION OF A

STRAWBERRY ENDO-P-l,4-GLUCANASE cDNA

3.1 INTRODUCTION

In an effort to understand the role of cell wall hydrolases in modifying cell wall structure 

and hence texture during fruit ripening, much research has focused on the isolation of 

ripening-related cDNAs encoding hydrolytic enzymes in order to allow characterization 

of the corresponding genes. Endo-p-1,4-glucanase (EGase) in particular is considered to 

play an important role in the softening of many fruits and ripening-related cDNAs 

encoding EGases have been isolated from several fruits including tomato, avocado and 

pepper. In tomato, two different cDNAs have been identified in the fruit indicating the 

expression of multiple EGase genes {cell and cell) during ripening. The individual 

family members are differentially expressed suggesting that multiple activities are 

required for the cooperative disassembly of the cell wall during ripening and that each 

may have a distinct role to play (Lashbrook et al., 1994). In contrast, all cDNAs isolated 

from ripe fruit of avocado are derived from a single gene, cell (Cass et al., 1990). Of 

three cDNAs isolated from pepper, one encodes Cell, the ripening-related EGase 

present in ripe fruit (Harpster et al., 1997).

Isolation of a cDNA provides the potential for genetic manipulation of the level 

of the corresponding enzyme in transgenic plants. The expression of both cell and cel2 

genes has been suppressed in transgenic tomato plants to study their roles in fruit 

softening (Lashbrook et al., 1998; Brummell et al., 1999a). In order to produce 

transgenic plants for elucidating the in vivo role of EGase in ripening strawberry fruit it
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was necessary to isolate a ripening-related EGase cDNA clone. Previous work has 

identified a partial-length EGase cDNA clone (FAN R97) from a ripe strawberry 

receptacle cDNA library (Manning, 1998a) by differential screening. This cDNA was 

used as a probe to re-screen the ripe library and isolate the full-length homologue which 

could then be characterized.

3.2 RESULTS

3.2.1 Isolation of a full-length EGase cDNA from strawberry

To isolate a full-length ripening-related EGase cDNA clone the amplified cDNA library 

prepared from ripe receptacle tissue of strawberry (cv Brighton) was screened with the 

partial-length EGase cDNA (FAN R 97,1.5 kb) as a homologous probe. In the primary 

round of screening, 60 000 pfu were plated. From these, 12 of the strongest hybridizing 

plaques were isolated and taken through a higher stringency secondary screen. After the 

second round of screening, 7 out of the original 12 clones were positive. Representative 

hybridizing plaques from the primary and secondary rounds of screening are shown in 

Figure 3.1. A few well-isolated plaques from each positive clone were taken to estimate 

the size of the cDNA inserts by PCR analysis. The sizes ranged from 1.4 kb to 2.7 kb 

(Table 3.1). The cDNA inserts of four of the longest clones (1.1,1.2,3.2 and 4.2) were 

released from the XgtlO vector by restriction with ZscoR I to allow sub-cloning into the 

vector pBK-CMV. However, the pattern of bands observed after restriction did not 

agree with the PCR results in all cases. One clone (3.2) did not contain an insert at all. 

Two clones (1.1 and 4.2) produced multiple bands on restriction with EcoR I. In each
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case the size of the largest fragment was the sum of the sizes of the two smaller 

fragments indicating that the cDNAs contained internal EcoR. I sites which had been 

partially restricted. It is unlikely that the multiple fragments represented different 

cDNAs cloned into XgtlO as the apparent insert size from PCR analysis would have 

been much larger.

Table 3.1 Putative strawberry EGase cDNAs isolated by screening a cDNA

library prepared from ripe fruit with the partial-length EGase cDNA, 

FAN R97, as a homologous probe

Positive clone 

from 1° screen

Clone positive 

after 2° screen

Approx. insert size 

from PCR analysis (kb)

Approx. insert size from 

restriction analysis (kb)

1.1 + 2.5 2.7, 2.0 and 0.7

1.2 + 1.8 1.9

2.1 - . -

2.2 - - -

3.1 + 1.4 -

3.2 + 1.8 no insert

4.1 - - -

4.2 + 2.7 2.8,1.9 and 0.9

5.1 - - -

5.2 + 1.8 -

6.1 + 1.7 -

6.2 - - -
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A.

Figure 3.1 Isolation o f positive plaques from the first (A) and second (B) round

screens of the ripe fruit cDNA library from strawberry hybridizing with 

the partial-length EGase cDNA probe, FAN R97
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To facilitate subsequent sub-cloning and manipulation, the clone with an insert of 1.8- 

1.9 kb and lacking an internal EcoK I site (clone 1.2), was selected for further analysis. 

The cDNA insert from this clone was sub-cloned into the vector pBK-CMV and 

partially sequenced in both directions using M l3 forward and reverse primers 

Sequences were obtained from each end of the clone and analyzed using the University 

of Wisconsin GCG software package. Comparison of the sequence with the partial- 

length EGase cDNA, FAN R97, used as the probe and sequences in the nucleic acid 

databases confirmed that the cDNA encoded a EGase. Alignment of the 5* end of the 

nucleic acid sequence of this clone, designated cell, with that of FAN R97 is shown in 

Figure 3.2. The two mismatches are likely to be due to errors in the sequence of FAN 

R97 which was generated in a single pass for the purpose of database homology 

searching only and was not verified by sequencing the opposite strand.
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1 GGGACGGAGCAGAGGAACGCGGTCAAGGCGTTACGGTGGGGGACAGACTA 50 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

366 gggacggagcagaggaacgcggtcaaggcgttacggtgggggacagacta 415
51 CCTCCTGAAGGCCACGGCGGTTCCTGGCGTCGTCTTCGTCCAAGTCGGCG 100 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

416 -cctcctgaaggccacggcggttcctggcgtcgtcttcgtccaagtcggcg 465
101 ACCCATACTCCGATCACAACTGCTGGGAGAGGCCGGAAGACATGGACACA 150 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
466 acccatactccgatcacaactgctgggagaagccggaagacatggacaca 515
151 CGCCGCACGGTGTACAAAATCGACCACAACAACCCGGGATCCGACGTGGC 200 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
516 cgccgcacggtgtacaaaatcgaccacaacaacccgggatccgacgtggc 565
201 AGGCGAAACCGCAGCCGCGCTCGCCGCCGCCTCTATCGTTTTCAGGTCAC 250 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
566 aggcgaaaccgcagccgcgctcgccgccgcctccatcgttttcaggtcac 615
251 GTGACCCCGCTTACTCGAGACTGCTTCTCAATCGAGCCGTTAAGGTTTTC 300 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I Î I I I I I I I I I I I I I I I I I I I I I 
616 gtgaccccgcttactcgagactgcttctcaatcgagccgttaaggttttc 665
301 GAGTTCGCTGATACCCACCGCGGCGCGTACAGCTCCAGCCTCAAAAACGC 350 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
666 gagttcgctgatacccaccgcggcgcgtacagçtccagcctcaaaaacgc 715
351 CGTGTGCCCTTTTTACTGCGACGTCAACGG 380

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
716 cgtgtgccctttttactgcgacgtcaacgg 745

Figure 3.2 Alignment of the nucleic acid sequence of the 5’ end of the partial-length 

cDNA FAN R97 (uppercase) with that of the isolated full-length cDNA 

cell (lowercase) .
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3.2.2 Characterization of the EGase cDNA cell from strawberry

/

The EGase cDNA cell was fully sequenced on both strands by designing primers to 

walk along the sequence from the 3’ and 5’ ends. The complete nucleotide sequence and 

deduced amino acid sequence is shown in Figure 3.3. This clone had an insert size of 

1779 bp with an open reading frame from nucleotides 24 to 1511. Analysis of the cDNA 

identified 23 bp of 5’ untranslated sequence upstream of the putative ATG initiation 

codon and 268 bp of 3’ untranslated sequence, containing a potential polyadenylation 

signal (AATAAA) approximately 30 nucleotides upstream of the poly(A) tail. The open 

reading frame encodes a polypeptide o f496 amino acids. The polypeptide contains a 

putative signal sequence with a predicted cleavage site (von Heijne, 1986) at or close to 

the Ala residue at position 32. The mature protein with the signal peptide removed has a 

predicted molecular mass of 53 kDa. The mature protein is a basic protein with a 

calculated pi of 9.18 and contains one potential glycosylation site (Asn-X-Ser/Thr). 

Since this work was completed, further EGase cDNAs have been isolated from different 

strawberry cultivars, namely cvs Chandler (database accession numbers AJ006348, 

Trainotti et ah, 1999b; AF074923, Harpster et al., 1998) and Selva (database accession 

number AF051346, Llop-Tous et al:, 1999). A comparison of the deduced amino acid 

sequences of these with that of the cell cDNA is shown in Figure 3.4. Alignment of the 

isolated cell cDNA (from cv Brighton) with the cDNAs from the other cultivars 

revealed a high level of similarity, but not identity, between the sequences. The deduced 

Cell protein showed 11 amino acid differences to the deduced amino acid sequence of 

the cell cDNA from cv Selva and 3 and 9 amino acid differences to those of two 

independant cell cDNAs from cv Chandler. Only one of these differences was common
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to all and it was a conserved amino acid substitution from Arg to Lys at position 158 

(double underlined in Figure 3.4) within one of thé highly conserved domains 

characteristic of plant EGases. It is interesting to note that amino acid differences exist 

between the reported sequences of the two independently isolated cell cDNAs from cv 

Chandler. The database comparisons highlighted the presence of a second EGase gene 

in strawberry, cell. Two cDNAs encoding cel2 have been isolated, one from cv 

Chandler (database accession number AJ006349, Trainotti et ai., 1999b) and the other 

from cv Selva (database accession number AF054615, Llop-Tous et al., 1999). The 

deduced amino acid sequences of both are considerably less homologous to the deduced 

Cell sequence, with only 48% identity at the amino acid level (Figure 3.4). This is 

primarily due to the presence of an unusually long C-terminus peptide in Cel2 which is 

absent from both strawberry Cell and EGases from other plants. Comparison of the 

deduced amino acid sequence of the cell cDNA with those of other plant EGases 

indicates that strawberry Cell has highest homology with Arabidopsis Cell (Shani et 

a l, 1997), pepper Cel3 (Trainotti et a l, 1998b) and tomato Cel2 (Lashbrook et a l, 

1994) showing 82%, 81% and 80% identity at the amino acid level respectively (Figure 

3.5).
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GCAAAAACGAGAGAGAAAAAAAAATGGCGCGAAATGGCCTTTGCTTACCGGGAAATGCTCCCGCATTTCG 7 0 
k n e r e k k m a r n g l c l p g n a p a f r  

CGCAACACTCGTCCTCTCGCTGCTCCTGCTTCTCCAGCCAATCCGCGCCGGCCACGACTACCACGACGCC 1 4 0  
a t l v l s l l l l l q p i r a » G H D Y H D A  

CTCCGCAAGAGCATCCTCTTCTTCGAAGGCCAGCGCTCCGGCAAGCTCCCGCCCGATCAACGCCTCAAAT 2 1 0  
L R K S  I L F F E G Q R S G K L P P D Q R L K W  
GGCGCCGCGACTCCGCATTGCACGACGGCTCCACCGCCGGCGTAGACTTAACCGGCGGCTACTACGACGC 2 8 0  

R R D S A L H D G S T A G V D L T G G Y Y D A  
GGGGGAGAAGGTGAAGTTGGGGTTTGGGATGGGGTTGAGGACCAGTCTGGTGCCGTGGAGCATTATAGAG 3 5 0  

G D N V K F G F P M A F T T T L L A W S  I  I  D 
TTCGGGAGGGTCATGGGGACGGAGCAGAGGAACGCGGTCAAGGCGTTACGGTGGGGGACAGACTACCTCC 4 2 0  
F G R V M G T E Q R N A V K A L R W G T  D Y L L  
TGAAGGCCACGGCGGTTCCTGGCGTCGTCTTCGTCCAAGTCGGCGACCCATACTCCGATCACAACTGCTG 4 9 0  

K A T A V P G V V F V Q V G D P Y S D H N C W  
GGAGAAGCCGGAAGACATGGACACACGCCGCACGGTGTACAAAATCGACCACAACAACCCGGGATCCGAC 5 6 0  ■ 

E K P E D M D T R R T V Y K I D H N N P G S D  
GTGGCAGGCGAAACCGCAGCCGCGCTCGCCGCCGCCTCCATCGTTTTCAGGTCACGTGACCCCGCTTACT 6 3 0  
V A G E T A A A L A A A S  I V F R S R D P A Y  S 
CGAGACTGCTTCTCAATCGAGCCGTTAAGGTTTTCGAGTTCGCTGATACCCACCGCGGCGCGTACAGCTC 7 0 0  

R L L L N R A V K V F E F A D T H R G A Y S S  
CAGCCTCAAAAACGCCGTGTGCCCTTTTTACTGCGACGTCAACGGCTTCCAGGATGAGTTACTGTGGGGA 7 7 0  

S L K N A V C P F Y C D V N G F Q D E L L W G  
GCAGCGTGGTTGCACAAGGCGTCGAGAAGGCGGCAGTACAGAGAATACATAGTGAGAAACGAGGTCATTT 8 4 0  
A A W L H K A S R R R Q Y R E Y I V R N E V I L  
TGAGAGCTGGAGATACCATTAACGAGTTTGGTTGGGATAACAAGCATGCTGGGATTAATATTCTCATTTC 9 1 0  

R A G  D T I N E F G W D N K H A G I N I L I S  
TAAGGAAGTGCTTATGGGAAAAGCAGATTATTTCGAATCTTTCAAGCAAAATGCAGATGGATTTATATGC 9 8 0  

K E V L M G K A D Y F E S F K Q N A D G F I C  
TCTGTTTTGCCTGGACTTGCCCATACCCAAGTCCAATATTCTCCAGGTGGTTTGATCTTCAAGCCTGGAG 1 0 5 0  
S V L P G L A H T Q V Q Y S P G G L I  F K P G G  
GGAGTAACATGCAGCATGTAACTTCGCTATCGTTCCTGCTTTTGACTTATTCCAACTATCTAAGCCACGC 1 1 2 0  

S N M Q H V T S L S F L  L L T Y S N Y L S H A  
CAATAAGAACGTGCCGTGTGGCATGACCTCCGCCTCCCCGGCCTTCCTCAAACAATTGGCTAAACGCCAG 1 1 9 0  

N K N V P C G M T S A S P A F L K Q L A K R Q  
GTGGATTACATTTTGGGTGACAATCCATTAAGAATGTCTTACATGGTTGGATATGGGCCGCGTTACCCGC 1 2 6 0  
V D Y I L G D N P L R M S Y M V G Y G P R Y P Q  
AGAGGATTCACCACCGGGGCAGCTCACTTCCATCCGTGCAGGCCCATCCGGCCCGTATCGGATGCAAAGC 1 3 3 0  

R I  H H R G S  S L P S V Q A H P A R I  G C K A  
CGGTTGTGATTATTTTÇTGAGTGCGAATCCAAACCCGAATAAATTAGTCGGGGCTGTTGTGGGCGGACCC 1 4 0 0  

G S H Y F L S P N P N P N K L V G A V ' V G G P  
AATAGCTCGGATGCATTTCCGGACTCGAGGCCTTACTTTCAAGAGTCTGAGCCCACGACGTACATAAATG 1 4 7 0  
N S S D A F P D S R P Y F Q E S E P T T Y I N A  
CGCCTCTTGTGGGCCTACTTTCGTATTTTGCAGCCCATTACTAATTCTCGAAGTGTAAACAGTGATTGAG 1 5 4 0  

P L V G L L S Y F A A H Y *  
AATTTGTTGTGGTGCGCCAATACTCACCCACCAATCCCCCACACTACCAATTGTTGTTACTTTTGGAAAG 1 6 1 0  
TTCTAAATTTAAGAAATTGTTAAGAAAGAAAATGGCCCAAGCTTAGTTATGGAATTTAGTCTCAAAAGCC 1 6 8 0  
CTACTGTTGTGCTTTTGAAATGTTCTAGCTGTAACATAATTTCTATCAATGAATAAAGAAAATGGGCCAA 1 7 5 0  
GCCTAAATGTGGAAAAAAAAAAAAAAAAA 1 7 7 9

Figure 3.3 Nucleotide sequence and deduced amino acid sequence of the cell

cDNA. The translation initiation codon (position 24) and corresponding 

methionine residue are shown in bold. The putative signal sequence 

is shown in lowercase. The predicted cleavage site is indicated by ». A 

potential glycosylation site is shown in bold italics and a potential 

polyadenylation signal is shown in bold underlined
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A F 0 4 1 4 0 5
A F 0 7 4 9 2 3
A F 0 5 1 3 4 6
A J 0 0 6 3 4 8
A F 0 5 4 6 1 5
A J 0 0 6 3 4 9

A F 0 4 1 4 0 5
A F 0 7 4 9 2 3
A F 0 5 1 3 4 6
A J 0 0 6 3 4 8
ab'054615
A J 0 0 6 3 4 9

A F 0 4 1 4 0 5
A F 0 7 4 9 2 3
A F 0 5 1 3 4 6
A J 0 0 6 3 4 8
A F 0 5 4 6 1 5
A J 0 0 6 3 4 9

A F 0 4 1 4 0 5
A F 0 7 4 9 2 3
A F 0 5 1 3 4 6
A J 0 0 6 3 4 8
A F 0 5 4 6 1 5
A J 0 0 6 3 4 9

A F 0 4 1 4 0 5
A F 0 7 4 9 2 3
A F 0 5 1 3 4 6
A J 0 0 6 3 4 8
A F 0 5 4 6 1 5
A J 0 0 6 3 4 9

A F 0 4 1 4 0 5
A F 0 7 4 9 2 3
A F 0 5 1 3 4 6
A J 0 0 6 3 4 8
A F 0 5 4 6 1 5
A J 0 0 6 3 4 9

A F 0 4 1 4 0 5
A F 0 7 4 9 2 3
A F 0 5 1 3 4 6
A J 0 0 6 3 4 8
A F 0 5 4 6 1 5
A J 0 0 6 3 4 9

A F 0 4 1 4 0 5
A F 0 7 4 9 2 3
A F 0 5 1 3 4 6
A J 0 0 6 3 4 8
A F 0 S 4 6 1 S
A J 0 0 6 3 4 9

Figure 3.4

I
m: : : : : : : : : : s

*  • * •  • * * *  * •  * * * * *  *  * * * * * * * * * * *  * *  * *  * *  . *  *  * ,  * *

• • •  • •  • • •  *  * . . * * * * * . . * *  .  *  * . .  . * * *  * *  *

PYPQESBPTTYINAPLVGLL8XEAABY*. .
FÏFQESEPTTYIM APLV6LLSYFAAHY*    4 9 6
PYPQESSPTTYINM LVaLLSYS'JUHY* .................................................................................................................................. 4 9 6
PYFŒSEPTTYINAPLVGLLSYFAAHY* ............................................................................................................................... 4 9 6

.......................  -.............................  4 9 6

................................   4 9 6
   496. . . IFHNCDQQVWEDTQ*............. .!!.!.!. . 496

Y STTV TN KSG ICPU lN IJCLTISK LÏG PLW G LTK Tœ syVPPaillW SIJACK SIÆ PvÿiH Â ÂsÂ ÂN V LV SsŸ siÂ *
5 6 1
6 2 0

Alignment of the deduced amino acid sequence of the isolated 

strawberry cDNA cell (database accession number AF041405) with 

those of EGase cDNAs isolated from other strawberry cultivars 

(database accession numbers AF074923 to AJ006349). Identical amino 

acids are represented by asterisks and conservative substitutions by dots
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A F041405 MABNQLCLPGNAFAFRATLVLflLLLLL. Q P I . RAOHDYHDAXJWSILFFEGQRSGKLPPDQRLKWRHDSALHDGSTAGVD 78
X 98544 MARK8LIFP.VILHAVLLF8. PPIY8AGHDYBDALRKSILFFEQQRS<SKLPPDQRLKWHHD8ALRDG88AOVD 71
X 97189 MAPK..........................H . . . IFLLLLLISIRHS8GGGHDYHDALRKSILFYEGQRSGKLPPDQRIKWRRD8ALHDGASAGVD 67
U 13055 MAPK..........................YTSIIFLFLLFNSFSCSFGGGHDYHDALRKSILFYEGQRSGKLPPDQRIKMRRDSALHDGASAGfVD 70

* *  . . * * * *  * * * * * * * * * . * * * * * * * * * * * * * . * * * * * * * *  * ♦ . . * * * *

A F041405 LTGGYYDAtffiNVKFGFPMM'TTTLLAWSI IDFGKVMSTEORNAVXALHMGTDYLLKATAVPGWFVQVGDPYSDHNCWBX 158
X 98544 L8GGYYDAS3NIKFGFK4MTTTMLSW8IIDFGlCIMCPELHNAVKAVKWGTDYLIiKATAIPGVVFVaVGDAY8DHNCW£R 151
X 97189 LAGGYYDAGDNVKFVFmAFTATLLSWSIIDFKRNMQSELGNAVKAVKWATDFLLKATAKEGWYVQVGDPFSDHSCWER 147
U 13055 LTGGYYDAGDNVKFVFFMAFTTTLLSWSIIDFKRNIGNEI/aiAVKXVKWGTDFLLKATAHDGVIYVaVGDAFSDHSCWER 150*>********.** ******.*.*.****** . .* * *****..*.**.****** **..*****..***.***,

A F041405 PEDMDTRRTVYKIDHNNPG8DVAaETAXAI.AAASrVFRSRDPAY8RLLLNRAVKVFEFADTHRfiAY888LKNAVCPFYCD 238
X 98544 PKDMDTLRTVYKIDRAHPGSDVXGEIAAAUUUISIVFHKRDPAYSRLLLDRATRVFAFANKYRGAYSNSLYHADCPFYCD 231
X 97189 PEDMDTLRTVYKnxyHPGSDVAGEIAAALAAASrVFRSLDASYSNLLLDRAVKVFEFANRHRGAYSSSLHSAVCPFYCD 227
0 1 3 0 5 5  PEDMDTLRTVYKIDANHPGSDVAGEIAAXLAAASfvFRSLDSSYSNLLLDRAVXVFDFANRHRGUVYSSSLHSAVCPFYCD 230

* * * * * *  * * * * * * *  . * * * * * * * *  * * * * * * * * * * * *  * . . * *  * * * . * *  . * *  * * .  * * * * * . * *  *  * * * * * *

A F 041405 VNGFQDELLWGAXWXiHKASRRRQYREYIVRNEVILRACDTINEFGWDNKHAGINILISKEVIMGKADYFESFKQNADGFI 318
X98544 FNGYQDELLWCAAWLHXASRKRAYREFrVKNEVILKAGDTINKFGWDNKHAGINVLI8KEVU4GKAEYFE8FKQNM>GFI 311
X 97189 FMGYQPBLLWGMMLHKXTRRRQYBEYZVKNEyiLRAGDTZHEFGWDMKHAGIMVLISKEVZMSRAPDLKSFQVKADAFI 307
0 1 3 0 5 5  FNCYQDBLLifaAASILHXXTRRRQYRBYIVXNEVILRXQDTINEFGHDNKHAGINVLISKBVIMGKAPDLXSFQVNAnAFI 310

* * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  . * *  * * * . * *

A F041405 CSVLPGLAHTQVQYSPGGLIFKPGGSMMQHVTSLSFLLLTYSNYLSHANKNVPCGMTSASPAFLRQLAKROVDYILQJNP 398
X 98544 CaiLPOISHPQVQYSRGGLLVKTGGSNMQHVTSLSFLLLAYSNYLSHAKKWPCGELTASPSLLRQIAXRQVDYILGDMP 391
X 97189 CSILPGIAHPQVQYSPGGLIVKPGVCNMQHVTSLSFLFLAYSNYLSHANHWPCGSMSATPALLKHIAKRQVDYILGDNP 387
0 1 3 0 5 5  C8ILPOI8HPaVQY8POQLIVKPOVCNMBHVTSL8FLLLTY8NYL8HANHWPCG8MTATPALLKHIAKRQVDYILGDNP 390

* * . * * * . . *  * * * * *  * * * .  *  *  * * * * * * * * * * * * * * * * * * * *  * * * *  . * . * , _ * , ,  * * * * * * * * * * * * *

A F 041405 LHM8YMVQYOPRYPQRIHHR088LP8VQMHPARI0CKAO8HYFL8PNPNPNKLVGAWGGPNSSDAFPD8RPYFQE8BPT 478
X 98544 MSLSYMVGYQQKFPRIlIHHRGSSVPSVSAHPSHIGCKBGSKYFLSPNPNPNLLVGAWGQPNVTDiAFPDSRPYFQQSBPT 471
X97189 QBMSYMVOYGPHYPLMHHRBS8LP8MAAH8ARIGCKBO8RYFF8PNPNPNRLI0AWGGPNLID8FPI1AR8FFQESBPT 467
0 1 3 0 5 5  QRMSYMVGYGPHYPQRIHHRGS8VPSVATH SARIGGKEGSRYFFSPKFNPNRLIOAWGGPNLTDSFPDARPYFQKSEPT 470

.******* .*  **** * * * * .* * .  . * . .  **** ** ********** ********** * * * * * * *  * * * * * *

A F041405 TYINAPLVGLL8YFAAHY*. . .  496
X 98544 TYIMAPLVGLLGYFSAHSTNR* 492
X 97189 TYVNAPLVGLLAYFSAHS*. . .  485
0 1 3 0 5 5  TYVNAPLVRLLAYFAAHRN*, 489

Figure 3.5 Alignment of the deduced amino acid sequence of the isolated strawberry

cDNA cell (database accession number AF041405) with those of 

EGase cDNAs isolated from Arabidopsis (X98544), pepper (X97189) 

and tomato (U13055). Identical amino acids are represented as asterisks 

and conservative substitutions by dots
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3.2.3 Isolation of a cel2 cDNA fragment from strawberry

RT-PCR with degenerate primers was used to amplify the 3* end of a second EGase 

cDNA, cell, from strawberry (cv Calypso). A product of the expected size of 262 bp 

was obtained and sequenced. The deduced amino acid sequence of the C-terminus was 

compared with those of the two full-length cel2 cDNAs that have been isolated from 

strawberry cv Selva (database accession number AF054615, Llop-Tous et al., 1999) and 

cv Chandler (database accession number AJ006349, Trainotti et al., 1999b). The 

translated sequence of the cel2 cDNA fragment from cv Calypso was identical to that of 

the corresponding region of the cel2 cDNA from cv Chandler except for 2 amino acid 

differences at positions 552 and 553 (Figure 3.6A). Thus sequence differences between 

cultivars of octoploid strawberry are a feature of cell and cel2. However, the 

comparison between the translated cel2 cDNA fragment and that of the corresponding 

region of the cel2 cDNA from cv Selva revealed 15 mostly consecutive amino acid 

differences (Figure 3.6B). This is considerably higher variation than that seen between 

any of the cell homologues from different cultivars. In addition, if the translated 

sequences of the two full-length cel2 cDNAs are compared they show no homology 

from position 539 onwards and only the sequence from cv Chandler indicates the 

presence of a potential glycosylation site (Figure 3.7). The reason for this becomes clear 

from a comparison of the nucleotide sequences of the two cDNAs (Figure 3.8). The 

sequence of the cel2 cDNA from cv Selva contains an additional base (G) at nucleotide 

position 1733 which is absent in the sequence from cv Chandler. This base is also 

absent from the cel2 cDNA fragment from cv Calypso which accounts for its high 

homology with the cDNA from cv Chandler and not with that from cv Selva.
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1 DNYEQTEPATYNNAPLIGILARLGGGQSSYNQLLPWTSQPKQTPVPKLT. 50
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

468 dnyeqtepatynnapligilarlgggqssynqllpvvtsqpkqtpvpklt 517 .
51 PAAPASTSGPIAIAQKVTSSWVSKGVTYYRYSTTAIN 87

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
518 paapastsqpiaiaqkvtsswvskgvtyyrysttvtn 554

1 DN YEQTE PAT YNNAPLIGILARLGGGQS S YNQLL PWTSQPKQT PVPKLT 50 
I I I I I I I I I i I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

468 dnyeqtepatynnapligilarlgggqssynqllpvvtsqpkqtpvpklt 517
51 PAAPAS T S G PI AI AQKVT S S W V S KG VT Y YR Y S T T AI N 87

I I I I I I I I I I I I I I I I I I I I I - I 
518 paapastsgpiaiaqkvtsswgfqgsnllqifhncdq 554

Figure 3.6 Alignment of the deduced amino acid sequence of the cel2 cDNA 

fragment from strawberry cv Calypso (uppercase) with that of the 

corresponding region of the cel2 cDNAs from cv Chandler (A) and cv 

Selva (B) (lowercase)

468
468
518
518
568 
618

Figure 3.7 Alignment of the C-terminus of the deduced amino acid sequence of the 

two full-length cel2 cDNAs from cv Chandler (uppercase) and cv Selva 

(lowercase). The potential glycosylation site in the sequence from cv 

Chandler is shown in bold

DNYEQTEPATYNNAPLIGILARLGGGQSSYNQLLPWTSQPKQTPVPKLT 517 
I I I I I I I I I. I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
dnyeqtepatynnapligilarlgggqssynqllpvvtsqpkqtpvpklt 517
PAAPASTSGPIAIAQKVTSSWVSKGVTYYRYSTTVTNKSGKTLNNLKLTI 567 
I I I I I I I I I I I I I I I I I I I I I • I • I
paapastsgpiaiaqkvtsswgfqgsnllq...ifhncdqqvwedtq*.. 561
SKLYGPLWGLTKTGDSYVFPSWLNSLPAGKSLEFVYIHAASAANVLVSSY 617 
SLA* 620
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1524 GACAACTATGAACAGACTGAACCTGCTACCTACAACAATGCTCCTCTTAT
i i i I I i i i i I I i I I I I i I I I I I i i i I i i i i i i i i i i i i i i i i i i i i i i r

1573
1522

Il 1 1 1 II II 1 1 1 1 1, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
gacaactatgagcagactgaacctgctacctacaacaatgctcctcttat 1571

1574 CGGTATATTGGCTCGTCTGGGAGGTGGTCAGAGCAGCTATAACCAGCTTC
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I  1 1 1 1 1 I 1 1 1 1 I I  1 M  1

1623
1572

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II 
tggtatattggctcgtctaggaggtggtcagagcagctataaccagcttc 1621

1624 TTCCAGTTGTTACATCCCAGCCAAAACAAACCCCAGTACCTAAGCTTACT 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
ttccagttgttacatcccagccaaaacaaaccccagtacctaagcttact

1673
1622 1671
1674 CCAGCTGCCCCAGCTTCAACTTCTGGCCCAATTGCAATAGCACAGAAGGT 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
ccagctgccccagcttcaacttctggcccaattgcaatagcacagaaggt

1723
1672 1721
1724 GACATCTTCAT.GGGTTTCCAAGGGAGTAACTTACTACAGATATTCCACA

1 1 1 1 I II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
gacatcttcatggggtttccaagggagtaacttactacagatattccaca

1772
1722 1771
1773 ACTGTGACCAACA

i i i i i i i i i i i i i
1785

1772
1 1 1 1 1 1 1 1 1 II 1 1 
actgtgaccaaca 1784

Figure 3.8 Alignment of the nucleotide sequences of the two full-length cel2 cDNAs

from cv Chandler (uppercase) and cv Selva (lowercase) over the region 

corresponding to the cell cDNA fragment from cv Calypso. The 

additional base (g) present in the sequence from cv Selva is shown in 

bold
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3.2.4 Expression analysis of cell and cel2

Northern analysis of total RNA was used to follow cell and cel2 expression throughout 

fruit development. Duplicate northern blots were hybridized with cell or cell cDNA 

probes and exposed to X-ray film for the same length of time. Fruit were studied at the 

following stages as defined by their receptacle colour and size: small green, white with 

green achenes, white with yellow achenes, turning, orange, red ripe and over-ripe 

(Figure 3.9). Differences in the temporal patterns of transcript accumulation in fruit 

were observed for the two EGase genes and is taken as evidence that the probes did not 

cross-hybridize. There was no detectable cell .expression in unripe fruit. Cell transcripts 

were detected when fruit showed the first development of red colour at the turning stage. 

Thereafter Cell mRNA accumulated significantly during ripening to reach a maximum 

in red ripe fruit. The level of message then declined slightly in over-ripe fruit (Figure 

3.10). The size of the transcript was estimated at 1.9 kb. In contrast, Cel2 transcripts 

were first detected in small green fruit at the earliest stage of fruit development. Levels 

of Cel2 mRNA then increased as fruit progressed from green to white. Expression 

increased significantly as ripening proceeded and, as observed for cell, reached a 

maximum in red ripe fruit (Figure 3.11). The size of the Cel2 transcript was estimated at

2.6 kb. Expression of the two EGase genes was also studied in other tissues of 

strawberry. Cell transcripts were not detected in fully expanded leaf, petiole or root 

tissue indicating that cell expression is specific to ripening fruit (Figure 3.10). However 

cell expression was not restricted to fruits, although transcript levels in other tissues 

were low in comparison with fruit. Cell mRNA was detected in petiole tissue, to a 

lesser extent in root tissue and was barely detectable in leaf tissue (Figure 3.11).
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Figure 3.9 Representative examples of strawberry fruit sampled at various stages 

throughout fruit development. (Left to right: SG, small green; W+G, 

white with green achenes; W+Y, white with yellow achenes; T, turning; 

O, orange; R, red ripe; OR, over-ripe)
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A.

SG W+G W+Y T O R OR

Figure 3.10 Northern analysis o f cell expression in developing fruit (SG, small 

green; W+G, white with green achenes; W+Y, white with yellow 

achenes; T, turning; O, orange; R, red ripe; OR, over-ripe) and other 

tissues (1, red ripe fruit; 2, leaf; 3, petiole; 4, root) of strawberry cv 

Calypso plants (A). The gel was stained with ethidium bromide and 

photographed under UV light to verify equal loading o f RNA samples 

(B)
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2.6 kb — ►

Figure 3.11 Northern analysis of cel2 expression in developing fruit (SG, small 

green; W+G, white with green achenes; W+Y, white with yellow 

achenes; T, turning; O, orange; R, red ripe; OR, over-ripe) and other 

tissues of strawberry cv Calypso plants
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3.2.5 Southern analysis of cell and cell

Southern blot analysis of genomic DNA was carried out at high stringency using both 

the cell cDNA and cell cDNA fragments as probes hybridized to duplicate Southern 

blots to identify any related sequences present in the strawberry genome. Genomic DNA 

was digested to completion with the restriction enzymes Bel I, Sal I, Spe I and Xba I, 

none o f which cut within the cell cDNA or the published full-length sequence for the 

cell cDNA. Genomic DNA from the diploid Fragaha vesca was analyzed alongside 

that from F. x ananassa Duch. cv Calypso. The octoploid nature of the F. x ananassa 

genome produces complex hybridization patterns (Medina-Escobar et al., 1997b) which 

can confuse interpretations of Southern analysis. The inclusion of the diploid strawberry 

genome in the analysis allows a more accurate assessment to be made of the copy 

number o f EGase genes in strawberry. Comparison of the Southern blots showed that 

each probe hybridized to a distinct set of fragments indicating that the probes for cell 

and cel2 did not cross-hybridize. The patterns of bands observed in the F. vesca blots 

were a subset of those seen in the F. x ananassa blots. Both probes showed strong 

hybridization to single bands in each diploid digest which suggests the presence of a 

single gene per diploid genome for each of cell and cel2. Other fragments hybridized 

more weakly indicating the presence of related sequences that may represent a small 

EGase multigene family in strawberry (Figure 3.12).
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B.

Figure 3.12

F. vesca F x ananassa 
cv. Calypso

F. vesca F .x ananassa 
cv. Calypso

Southern analysis of cell (A) and cel2 (B). Genomic DNA from 

strawberry F. vesca and F. x ananassa Duch. cv Calypso was digested 

with the restriction enzymes shown and hybridized to the cell cDNA or 

cel2 cDNA fragment
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3.3 SUMMARY

A full-length cDNA clone, ce/7, encoding a ripening-related EGase from strawberry, 

was isolated from a cDNA library prepared from ripe fruit and probed with the partial- 

length cDNA FAN R97. The cell clone had an open reading frame encoding a 

polypeptide of 496 amino acids. The predicted molecular mass of the mature protein 

after cleavage of the putative signal sequence was 53 kDa and the predicted pi was 9.18.

Comparison of the deduced amino acid sequence of the cell clone with homologues 

recently isolated from different strawberry cultivars revealed a high degree of homology, 

but not identity, between the sequences. The comparison also showed a much lower 

level of homology with a second strawberry EGase, Gel2. When compared with EGases 

from other plants, the deduced strawberry Cell sequence was most closely related to 

Arabidopsis Cell, tomato Cel2 and pepper Cel3. RT-PCR was used to amplify the 3’ 

end of a second EGase cDNA, cell, from strawberry. The deduced amino acid sequence 

of the cel2 cDNA fragment showed a high degree of homology with the corresponding 

region of a full-length cel2 cDNA isolated from strawberry cv Chandler, but not with 

that from cv Selva.

Northern analysis revealed that expression of strawberry cell is fruit-specific and 

ripening-enhanced, with maximum expression in ripe fruit. Strawberry cel2, however, is 

not fruit-specific as it was also expressed in petiole, root and leaf tissue although at 

much lower levels than in fruit. Cel2 expression was also less tightly linked to ripening 

as, unlike Cell, Cel2 transcripts were present in unripe fruit.
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Southern analysis of cell and cell revealed the presence of related sequences in the 

strawberry genome, indicating a small multigene family. This is consistent with the 

isolation of two different EGase cDNAs from strawberry.

3.4 DISCUSSION

CHARACTERIZATION OF THE ENDO-P-1,4-GLUCANASE cDNA CTZ/ FROM 

STRAWBERRY

The strawberry cell cDNA encodes a polypeptide with a hydrophobic signal sequence at 

its N-terminus and a single consensus site (Asn-X-Ser/Thr) for potential N-glycosylatipn 

near the C-terminus. The majority of plant EGases identified to date, and indeed many 

cell wall modifying proteins, possess typical eukaryotic signal sequences which are 

characteristic of secreted proteins and target them to the endomembrane system for 

processing and secretion to the cell surface. This allows EGases to be directed to their 

proposed site of action, the cell wall. The cDNA sequences of many plant EGases also 

predict the presence of sites for potential N-glycosylation in the mature proteins. 

Avocado EGase has been shown to be a glycoprotein that is synthesized with a signal 

peptide at the N-terminus. The signal peptide is removed prior to glycosylation of the 

protein to a membrane-associated secretory form which undergoes further processing 

during transport to the cell wall (Bennett and Christoffersen, 1986). Thus, avocado 

EGase appears to be produced via the typical eukaryotic pathway for secretory 

glycoproteins (Christoffersen, 1987). The presence of two oligosaccharide side-çhains in 

the mature glycoprotein indicated by partial endoglycosidase H digestion was found to
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be in agreement with the number of potential glycosylation sites predicted from the 

corresponding cDNA sequence (Tucker et al., 1987). The pepper ripening-related EGase 

cDNA, Cell, contains three consensus glycosylation sites (Harpster et al., 1997; 

Trainotti et al, 1998b) and the corresponding purified protein was shown to be 

glycosylated (Ferrarese et al., 1995). The other two identified pepper EGases, Cel3 and 

Cel2, contain one and no potential glycosylation sites respectively (Trainotti et al, 

1998b). EGase cDNAs isolated from peach (Trainotti et al., 1997), poplar (Nakamura et 

al., 1995) and elder (Taylor et al., 1994), in addition to tomato Cell and Cel2 

(Lashbrook et al., 1994) and Arabidopsis cell (Shani et ah, 1997) cDNAs, also predict 

glycosylation sites in the proteins. In contrast, the cDNAs of a bean abscission EGase 

(Tucker and Milligan, 1991), pea EGase (Wu et al., 1996) and the tomato cDNAs Cel4 

(Milligan and Gasser, 1995) and Cel? (Catala et al., 1997) indicated the presence of a 

signal peptide, but not of glycosylation sites. One plant EGase is highly divergent from 

other plant EGases and does not follow the general structure exhibited by them. The 

tomato EGase cDNA Cel3 encodes a polypeptide that lacks the typical cleavable signal 

peptide, yet possesses seven potential N-glycosylation sites. It has a structure more 

characteristic of an integral membrane protein which accounts for its localization on 

Golgi and plasma membranes instead of the cell wall location suggested for plant 

EGases (Brummell et al., 1997a).

Thus the strawberry cell gene encodes a polypeptide that shares characteristics 

with the majority of plant EGases. EGases have been grouped into six major families (A 

to F) identified by homology of their catalytic cores based on hydrophobic cluster 

analysis (Henrissat et al., 1989; Béguin, 1990). All identified plant EGases belong to the 

E family and more specifically the Ez subgroup, which also contains bacterial EGases
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but no fungal representatives. Sequence analysis of the catalytic cores of the members of 

this subgroup reveal several amino acid domains that are conserved. The two most 

highly conserved motifs are represented by GGYYDAGDN and DELLWGAA in 

strawberry Cell. It is likely that these domains contain amino acid residues that are 

required for catalytic activity, substrate binding or the tertiary structure of the protein 

(Gilkes et a l, 1991; Brummell etaL, 1994).

Comparison of the deduced amino acid sequence of the cell cDNA with those of 

other plant EGases indicates that strawberry Cell has highest homology with 

Arabidopsis Cell (Shani et a l, 1997), pepper Cel3 (Trainotti et al., 1998b) and tomato 

Cel2 (Lashbrook et a l, 1994). Strawberry Cell also shares 60-63% amino acid identity 

with tomato Cel4 (Milligan and Gasser, 1995) and Cel5 (Kalaitzis et a l, 1999), pine 

Cell and Cel2 (Loopstra et a l, 1998), pepper Cel2 (Trainotti et a l, 1998a) and poplar 

Cell (Nakamura et a l, 1995). It may be expected that EGases that share high levels of 

sequence homology also share similar expression patterns and physiological functions. 

Based on phylogenetic analysis of deduced amino acid sequences, it has been suggested 

that plant EGases fall into two main groups (Brummell et a l, 1994). The first contains 

members which are found to be expressed in abscission zones and are hence involved in 

abscission processes, such as the bean abscission EGase. The second group includes 

members expressed predominantly in ripening fruit or vegetative tissues which are 

associated with fruit ripening and cell expansion such as avocado Cell and pea EGL1 

respectively (Wu et a l, 1996; Brummell et al., 1997a,b; Catala et a l, 1997). Indeed, 

tomato Cell is involved in cell separation events and shows greatest sequence homology 

to the bean abscission zone EGase (68% amino acid identity). Tomato Cel2, however, is 

most abundant in ripening fruit and is most similar (57% amino acid identity) to
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avocado fruit EGase (Lashbrook et a l, 1994). Strawberry Cell is also ripening-related 

and exhibits 80% amino acid identity with tomato Cel2. However, strawberry Cell 

shows similarly high amino acid identities of 82% and 81% with the elongation-specific 

Arabidopsis Cell and the abscission-related pepper Cel3 respectively. In addition, 

strawberry Cell is considerably less similar to the ripening-related EGases avocado 

Cell (Tucker et al., 1987) and pepper Cell (Harpster et al., 1997), showing 60% and 

54% amino acid identity, respectively. This clearly indicates that despite the general 

phylogenetic grouping described above, similarity between amino acid sequences does 

not neccessarily correlate with similarity in expression pattern and protein function. An 

imperfect correlation between sequence similarity and expression pattern was also 

revealed from a phylogenetic comparison of tomato Cel5 with other plant EGases. At 

best, the resulting dendogram could only provide clues as to the expression pattern of 

related genes (Kalaitzis et al., 1999). Similarly, comparison of pepper Cell with other 

plant EGases indicated that it is not possible to reliably group EGases of specific 

expression patterns or physiological function on the basis of their amino acid sequence 

relatedness. Pepper Cell exhibits highest sequence homology to tomato Cell, yet its 

expression profile is different and is instead more like that of the predominantly fruit 

expressed tomato Cel2. Likewise, pepper Cell is ripening-related but is more 

homologous to the bean abscission EGase than to the ripening-related avocado EGase 

(Harpster et ah, 1997). The opposite situation is seen for pepper Cel2 which is 

expressed in abscission zones and has a higher similarity to the avocado ripening EGase 

than the bean abscission EGase (Trainotti et ah, 1998a). This is also the case for the 

peach abscission EGase, ppEGl, and again questions the usefulness of grouping EGases 

with similar sequences on the basis of physiological function (Trainotti et ah, 1997).
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Since this work was completed, further ÈGase cDNAs have been isolated from 

different strawberry cultivars. Alignment of the strawberry cell cDNA isolated here 

(from cv Brighton) with the cDNAs from the different cultivars has revealed a high 

degree of similarity, but not identity, between the sequences. The deduced Cell protein 

exhibited 98% amino acid identity with the deduced amino acid sequence of the cell 

cDNA from cv Selva (Llop-Tous et al., 1999) in addition to 99% and 98% amino acid 

identity with those of two independent cell cDNAs from cv Chandler (Trainotti et al., 

1999b and Harpster et al., 1998 respectively). The subtle differences revealed included 

only one that was common between all cultivars. The deduced Cell protein from cv 

Brighton has a conserved amino acid substitution from Arg to Lys at position 158 within 

one of the highly conserved domains characteristic of all plant EGases. The high level of 

amino acid identity shared between the individual sequences suggests that the cDNAs 

represent homologues of the cell gene in the different cultivars and that the minor 

sequence differences may be because of cultivar variability. Different cultivars have 

widely different parentage as they originate from different continents, so some variation 

is not surprising. It is not known if any of the cultivar-specifrc sequence variations affect 

the functional properties of the enzymes. It is possible that the differences may subtly 

affect the catalytic activity, suhstrate-specifrcity or tertiary structure of the enzymes.

This could account for the variations observed in the texture characteristics of the fruit 

from different cultivars. Cultivar-specifrc variations in sequence were also observed for 

tomato Cel5. A cDNA (TAC1) was isolated from tomato cv Rutgers (Kalaitzis et al., 

1999) and the deduced protein was found to have 99% amino acid identity with that of 

the cel5 cDNA independently isolated from tomato cv Castlemart (del Campillo and 

Bennett, 1996). It was suggested that cel5 and TAC1 were likely to be allelic, encoding
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the same gene in the two different cultivars (Kalaitzis et al., 1999). Similarly, minor 

sequence variation observed between two cDNAs encoding pepper Cell that were 

independently isolated from different cultivars was attributed to cultivar variability 

(Trainotti etaL, 1998b).

Comparison of the cell homologues from different cultivars has also revealed 

sequence variation within a cultivar. The two independently isolated cell cDNAs from 

cv Chandler (Harpster et al., 1998 and Trainotti et a l, 1999b) showed 98% identity at 

the amino acid level. An explanation for this may lie in the fact that strawberry 

(Fragaria x ananassa Duch.) is a polyploid species and more specifically octoploid. 

This polyploidization resulted from the merging of fully differentiated genomes, known 

as allopolyploidy (Wendel, 2000), to give the genomic constitution AAA’A’BBBB, 

where the AA genomes come from Fragaria vesca and Fragaria viridis (Senanayake 

and Bringshurst, 1967). Thus, strawberry contains multiple copies, or homoeologues, of 

all its genes. As the homoeologues are originally derived from different species, slight 

variations in sequence at the same locus may be expected. Hence, the different cell 

cDNAs isolated from cv Chandler most likely represent different cell homoeologues, 

that is the cell locus from the different genomes present within octoploid strawberry. It 

is possible that sequence variation due to polyploidy also accounts for the cultivar 

variations observed in that different individual homoeologues were isolated from each 

cultivar. However, it is still probable that the generation of different cultivars has 

introduced further sequence variations. Genes present in multiple copies due to 

polyploidy may retain their original or similar function, undergo diversification in 

protein function or regulation, or become silenced (Wendel, 2000). What happens to
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each of the cell homoeologues may vary between cultivars and may result in subtle 

physiological differences between cultivars.

The database comparison of strawberry Cell highlighted the presence of a 

second, distinct EGase gene in strawberry, cell. Two cDNAs encoding the divergent 

Cel2 have been independently isolated (Trainotti et al., 1999b; Llop-Tous et al., 1999). 

The deduced Cell sequence shares only 48% amino acid identity with that of Cel2. This 

is mainly due to the presence of an unusually long C-terminus peptide in Cel2 which is 

absent from Cell and EGases from other plants. The C-terminal extension of about 130 

amino acids has not been found in any other plant EGase and has some similarity to 

microbial EGases. In fact it contains a sequence which has the characteristics of a 

putative microbial cellulose binding domain (Trainotti et al., 1999b). Cellulose binding 

domains (CBDs) are non-catalytic elements coupled to the catalytic core of microbial 

cellulolytic enzymes by a linker sequence. Some CBDs have been shown to be capable 

of binding the cellulose substrate (Beguin and Aubert, 1994). This feature, along with 

the ability of individual cellulolytic enzymes to assemble into a structure known as a 

cellulosome and act in a synergistic manner, is believed to account for the ability of 

microbes to efficiently degrade crystalline cellulose (Bayer et al., 1998). Endogenous 

EGases of two plant-parasitic cyst nematodes have also been found to contain bacterial- 

like CBDs and it was suggested that these allow the enzymes to partially degrade the 

cell wall to allow the nematode entry into the plant (Smant et a i, 1998). Thus the 

potential presence of a CBD in a plant EGase raises questions about the presence of 

novel biochemical properties of the enzyme and may indicate a mode of action or 

substrate specificity not yet observed for plant EGases.
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EXPRESSION OF STRAWBERRY CEL1 AND CEL2

The characterization of a second EGase gene in strawberry confirms the results of 

Southern analysis which indicated the presence of an EGase multigene family in 

strawberry. Multigene families for EGase have been observed in many plants, as they 

have for many other cell wall modifying proteins. The presence of multigene families 

whose members have different or overlapping patterns of temporal and spatial 

expression suggests that they each have a particular defined role and can work in a 

synergistic and coordinated manner to effect the various physiological processes that 

require modification of the cell wall. Strawberry fruit exhibit overlapping temporal 

expression of the two genes cell and cel2. The expression of strawberry cell is fruit- 

specific and ripening-enhanced, with maximum expression in ripe fruit. Strawberry cel2 

expression also reaches a maximum in ripe fruit. However, it appears to be less tightly 

linked to the ripening process than cell since it is initially expressed in the fruit well 

before the colour and texture changes associated with ripening. The increase in EGase 

activity throughout fruit development (Barnes and Patchett, 1976; Abeles and Takeda, 

1990; Chapter 3) parallels increases in Cell and Cel2 transcripts. Taken together, the 

expression of cell and cel2 could account for the observed pattern of EGase activity in 

the fruit. The coincidence of maximum expression of cell and cel2 just prior to the time 

of greatest EGase activity and ripening-associated loss of firmness strongly suggests that 

these genes have roles in fruit softening and may act cooperatively to alter texture. The 

additional presence of Cel2 mRNA in unripe fruit suggests that Cel2 may also be 

involved in the early modification of the cell wall prior to the ripening-associated 

textural changes. Ultrastructural studies in strawberry have shown a progressive
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disorganization of cellulose microfibrils first apparent in white fruit (Trainotti et al., 

1999a) and some hemicellulose degradation is already evident in fruit before the white 

stage (Huber, 1984). It is possible that cel2 expression could account for these changes.

The expression of cel2 is not fruit-specific and Cel2 transcripts are also present 

in petiole, root and leaf tissue. This more widespread tissue-specificity of cel2 compared 

to cell indicates it participates in other processes in addition to fruit softening. The 

expression of cel2 in young developing fruit and vegetative tissues suggests that Cell 

may also facilitate cell growth and expansion.

The situation in strawberry of multiple EGase genes differentially expressed and 

with different roles is paralleled in many other plants. Most work has been carried out 

on tomato where to date, seven different EGase genes have been identified, each with its 

own specific pattern of expression and hence involvement in different processes. The 

overlapping accumulation of different transcripts in the same tissue again suggests that 

multiple activities are required for the cooperative disassembly of the cell wall. Tomato 

cell and cel2 are comparable to strawberry cell and cel2 in that they are both expressed 

in ripening fruit (Lashbrook et a l, 1994). In fruit, tomato Cel2 transcripts only 

accumulate in the latest stages of ripening in a manner similar to that of strawberry Cell 

transcripts, whereas both tomato cell and strawberry cel2 are expressed in young 

developing fruit too. However, tomato cel2 differs from strawberry cell in that it is not 

truly fruit-specific and is also expressed in other tissues, including abscission zones, at 

lower levels. Strawberry cel2 may be important in similar processes to tomato cel4 

(Milligan and Gasser, 1995; Brummell et al., 1997b), cel? (Catala et al., 1997)and celS 

(Brummell et al., 1997a) which are believed to be involved predominantly in cell 

expansion as they are expressed in tissues undergoing rapid expansion such as young
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flower pistils, etiolated hypocotyls and young fruit (cel4) and elongating hypocotyls 

(celS and cel 7). Transcripts of tomato cel5 and cel6 were found to accumulate in 

abscission zones (del Campillo and Bennett, 1996) along with those of the tomato ceil 

gene (Lashbrook et a l, 1994) which therefore appears to have a role in both fruit 

ripening and abscission. In pepper, cell is responsible for the EGase activity found in 

ripe fruit (Harpster et a i, 1997). However, it is also expressed in abscission zones 

although to a much lesser extent than either ceI2 or cel3 (Ferrarese et a i, 1995). 

Interestingly, Cel3 transcripts were also detected in developing fruit and may play a role 

in cell expansion similar to that proposed for strawberry cel2 (Trainotti et al., 1999b). 

The ppEGl gene of peach is predominantly expressed in abscission zones but is also 

present at a much reduced level in a very late stage of fruit ripening suggesting it may 

also be involved in fruit softening (Trainotti et al., 1997). Similarly, avocado cell is 

involved in both the ripening and abscission of avocado fruit (Tonutti et al., 1995). The 

unique expression patterns of four EGase genes of sweet pea are observed to overlap in 

anthers throughout their development. Three of these genes have a second role as they 

are also expressed in stigma and style tissue, along with a further member that is not 

expressed in anthers (Neelam and Sexton, 1995). Of course, there are examples of plant 

EGase genes that, like strawberry cell, so far appear to be involved in only one cell 

separation process in the plant. These include the bean abscission EGase gene (Tucker 

et al., 1988), the pea EGL1 gene involved in cell elongation (Wu et al., 1996) and the 

Arabidopsis cell gene which is also elongation-specific (Shani et al., 1997).

Multigene families whose members are coordinately expressed to carry out a 

range of physiological processes are not limited to EGases. For example, six expansin 

genes have been characterized in tomato and each one has its own specific pattern of
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expression during fruit growth and ripening. Expression of Expl is fruit-specific and 

ripening-enhanced (Rose et al., 1997) much like the strawberry cell gene. Exp3 is also 

fruit-specific but its transcripts accumulated to a higher level during earlier fruit growth 

and devopment than during ripening. Transcripts of Exp4 and Exp5 were present only 

during the earliest stages of fruit growth and development but were also detected in 

vegetative tissues. Finally, Exp6 and Exp7 mRNA was much less abundant than that of 

the other members and again was only found in young fruit. Hence more expansins are 

involved in green fruit development than in ripening (Brummell et ah, 1999c).

Similarly, there are multiple expansin genes expressed in strawberry again each with 

their own expression profile (Harrison, McQueen-Mason and Manning, personal 

communication). Thus, many cell wall modifying proteins arise from multigene families 

and in this way a complex range of cell wall modifying proteins is produced such that 

specific requirements can be met for the various processes occuring in particular tissues. 

The complex nature of the cell wall and the subtle variations that may exist in its 

composition even within different tissues of the same plant (Carpita and Gibeaut, 1993; 

Brett and Waldron, 1996) necessitates the ability to fine-tune the mechanism for cell 

wall modification. This is provided for by the sets of genes, encoding different isoforms 

of different cell wall modifying proteins, that are expressed in both a temporally and 

spatially-specific manner.
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CHAPTER 4. PURIFICATION AND CHARACTERIZATION OF A

STRAWBERRY ENDO-P-l,4-GLUCANASE

4.1 INTRODUCTION

The changes in texture and firmness that accompany fruit ripening are considered to be 

the result of alterations in the composition and structure of the cell wall. The 

modification of cell wall polysaccharides is brought about by the coordinated activities 

of a range of cell wall hydrolases and wall-modifying proteins. The relative activities of 

cell wall hydrolytic enzymes in fruits and hence the changes that they effect in the cell 

wall differ with species or cultivar and may account for the differences in softening 

behaviour observed between different fruits.

In strawberry fruit, polyuronide solubility increases during ripening and occurs 

without enzymic depolymerization, consistent with the generally observed lack of 

endopolygalacturonase activity in the fruit (Neal, 1965; Barnes and Patchett, 1976; 

Huber, 1984; Abeles and Takeda, 1990). However, the hemicellulose component in 

strawberry is depolymerized during ripening and this is temporally correlated with 

softening (Huber, 1984). In contrast, the cellulose content of strawberry cell walls does 

not vary significantly during ripening although cellulase activity has been shown to 

increase throughout ripening and is temporally correlated with a loss in firmness of the 

fruit (Barnes and Patchett, 1976; Abeles and Takeda, 1990). The activity suggested by 

the term “cellulase” does not accord with the invariant cellulose content. The term 

cellulase more commonly refers to microbial enzymes that are able to hydrolyze 

cellulose. The p-l,4-glucan links found in cellulose also occur in other plant polymers
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including xyloglucans. The name endo-P-1,4-glucanasê (EGase) is now often used in 

place of cellulase and refers to the type of bond cleaved by the enzyme rather than to the 

substrate. Indeed the EGase in crude extracts from strawberry fruit is unable to degrade 

insoluble cellulose and hence an involvement in the hemicellulose degradation has been 

suggested (Barnes and Patchett, 1976).

Taken together these findings indicate that EGase may play an important role in 

the softening of strawberry fruit. In order to determine more precisely what this role 

might be and to establish potential substrates within the cell wall, it was necessary to 

purify a ripening-related EGase. Endoglucanases have been purified from a range of 

plant species and tissues including the fruit of avocado (Awad and Lewis, 1980), pepper 

(Ferrarese et al., 1995) and apple (Abeles and Biles, 1991), as well as bean leaf (Koehler 

et a l, 1981; Durbin and Lewis, 1988), sweet pea anthers (Sexton et al., 1990), tobacco 

callus (Tmelsen and Wyndaele, 1991), and elder leaf (Webb et al., 1993). All these 

enzymes were isolated by affinity chromatography on cellulose columns and elution 

with a buffer containing cellobiose. The majority of these EGases have a basic 

isoelectric point and Durbin and Lewis (1988) noted that this method was more 

effective for purifying the basic rather than the acidic forms of bean EGase. The 

calculated pi of the polypeptide encoded by the cell cDNA isolated here is also basic. 

Consequently, cellulose affinity chromatography was investigated for the purification of 

the corresponding ripening-related EGase, Cell, from strawberry.
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4.2 RESULTS

4.2.1 Optimization of EGase assay.

4.2.1.1 Selection o f optimum extraction method

Different methods for extracting protein from strawberry fruit were compared in terms 

of their ability to extract EGase activity. An standard buffer consisting of Buffer B 

(Appendix A2) with and without the addition of NaCl was compared with the Buffer A 

method described in section 3.2.3 and the acetone powder method described in section 

3.2.9.1. Powdered, frozen fruit tissue was extracted in 2 volumes of Buffer B with and 

without the addition of NaCl to 1 M at RT. The extract was centrifuged at 10 OOOxg for 

10 min. The supernatant was then filtered through Miracloth and followed by a further 

centrifugation step as before. The extract was then assayed for EGase activity. 

Extractions were carried out in triplicate for each method. The EGase activities 

expressed per g FW are shown in Table. 4.1 as the mean ± standard error of the mean 

(SEM).
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Table 4.1 Effect of extraction method on the release of EGase activity. EGase

activity is expressed as the mean of three replicates ± SEM

Extraction method EGase activity

(A V 1 s"' g FW"1)

Buffer B (50 mM acetic acid, pH 5.0) 9.7 x 10"9 ± 1.0 x 10"’

Buffer B (50 mM acetic acid, pH 5.0) + 1 M NaCl 8.7 x 10"9 ± 1.1 x 10-’

Buffer A (CTAB extraction buffer) 2.1 x 10~7±2.1 x 10"*

Acetone powder extraction 1.3 X l 0 ' 7 ±  6.2x10-*

EGase activity in extracts using Buffer B was only just detectable whereas the Buffer A 

and acetone powder methods produced activities that were an order of magnitude 

higher. The Buffer A method was more suitable for rapid, multiple extractions than the 

acetone powder method. The Buffer A method was therefore chosen to produce enzyme 

extracts for the reproducible assay of EGase.
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4.2.1.2 Determination of optimum pHfor assay

EGase activity has previously been measured in strawberry fruit using a viscometric 

assay (Barnes and Patchett* 1976; Abeles and Takeda, 1990) in the range pH 5.0 to pH 

7.0. Here, the optimum pH for the assay using a crude extract was determined by 

viscometric assay over the range pH 3.0 to 9.0. Activity was detected over a fairly broad 

range of pH with significant reduction only occurring at the extremes. The optimum was 

determined to be pH 5.0 in agreement with the previous reports (Figure 4.1) and this 

was used in all subsequent EGase assays.

4.2.1.3 Effect o f enzyme amount and addition o f cellobiose

Assays were carried out containing varying amounts of enzyme extract to determine if 

there was a linear relationship between the amount of EGase enzyme in the assay and 

the activity detected. The assays were carried out with and without the addition of 0.1 M 

cellobiose to determine if cellobiose carried over from the purification could affect the 

activity detected. A linear relationship validating the viscometric assay was 

demonstrated in both cases (Figure 4.2). The effect of cellobiose was considered 

negligible as the maximum concentration of cellobiose likely to be present is 10 mM.
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4.2.2 EGase activity in strawberry fruit throughout development

EGase activity was measured in strawberry fruit at various stages of development 

(Figure 4.3). EGase activity was low at the first three stages (small green to white with 

yellow achenes). Activity increased steadily from the turning stage reaching a maximum 

in over-ripe fruit. There was just over a 6-fold increase in EGase activity from the small 

green to the over-ripe stages. The largest increase was asociated with fruit as they 

became over-ripe.

4.2.3 Firmness of strawberry fruit throughout development

To study temporal changes in firmness strawberry fruit were sampled from the small 

green through to the over-ripe stage. Firmness was initially high in unripe fruit and then 

decreased by two orders of magnitude throughout fruit development (Figure 4.4). Two 

main phases of softening were observed. The first occurred in the early stages of 

development corresponding to the phase of growth and expansion of the receptacle. The 

second phase was associated with changes in the fruit between the ripe and over-ripe 

stages.
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4.2.4 EGase activity in other fruit

EGase activity has been measured in fruit from many different species (Brummell et aL, 

1994) but it is difficult to compare relative activities. The methods used to extract and 

assay EGase activity vary and activities cannot be directly compared. In order to 

compare EGase activity in strawberry with that measured in other fruits, a common 

extraction and assay method was used. Fruits and tissues examined were avocado 

mesocarp, tomato (cv Ailsa Craig ) pericarp, apple (cv Golden Delicious) cortex, red 

pepper fruit and raspberry fruit, all at the ripe stage of development. Assays were 

conducted on the extracts in duplicate (Table 4.2).

Table 4.2 EGase activity in strawberry compared to other fruit

Fruit EGase activity 

(aV s"' 8 FW"1)

EGase specific activity 

(Arisp-1 s"1 g"1 protein)

Specific activity 

relative to strawberry

Strawberry 2.1 x 10"7 2.0x10* 1

Avocado 7.0 x 10"5 1.9,x 10"1 95

Tomato 5.9x10'* 4.8x10* 0.02

Apple 7 .6x10* 1.7 xlO"4 0.09

Red pepper 1.5 x 10"6 8.4 x 10* 4

Raspberry 5.1 x 10"7 5.8 x 10* 3
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Avocado fruit contained very high levels of EGase activity, almost 100-fold more than 

that detected in strawberry. Pepper and raspberry fruit contained similar levels of EGase 

activity to strawberry whereas the activities detected in apple and tomato fruit were 10- 

and 50-fold lower than strawberry, respectively.

4.2.5 Isolation of a strawberry EGase x

4.2.5.1 Preliminary experiments

Preliminary experiments were carried out to determine the ability of strawberry EGase 

to bind to a column of CF11 cellulose and be eluted by cellobiose. Proteins were 

extracted from 30 g FW receptacle tissue of ripe fruit as described in section 3.2.3. The 

protein pellet was dissolved in 10 ml Buffer B (Appendix A2), 1 ml was retained to 

assay initial activity in the extract and the rest was applied to a 1 ml (2.6 cm x 0.7 cm 

diameter) column of CF11 cellulose, equilibrated in Buffer B, in 1 ml aliquots. The 

column was washed with 5 column volumes of Buffer B in 1 ml aliquots. The column 

was eluted with 1 ml aliquots of Buffer B containing 0.1 M cellobiose. Fractions of 1 ml 

were collected individually from the column during the binding and elution steps and at 

the first and last washing steps and assayed for cellulase activity and total protein 

(Figure 4.5).

About 50% of the applied cellulase activity bound to the column from which about half 

was eluted with cellobiose. This equates to the elution of about 10% of the total activity 

applied. Different conditions were then tested in order to increase the proportion of 

EGase that bound to the CF11 column. Batch binding experiments were carried out in



which aliquots of enzyme extract were incubated with excess CF11 cellulose for 0 to 

150 min at RT or 4°C. After incubation, the mixtures were centrifuged and the 

supernatants were assayed for EGase activity. The amount of EGase activity bound to 

the CF11 as a percentage of the initial activity was plotted against incubation time 

(Figure 4.6). The results show that even after 2.5 h there is still only 50% of the initial 

EGase activity bound to the CF11. In fact most of the binding occurred within the first 

20 min. Incubation at 4°C resulted in the same level of binding as that observed at RT. 

The extract prepared in the initial experiments was fairly crude. It is possible that 

insoluble contaminants were present which interfered with the binding process. To test 

the solubility of the protein in the extract, EGase activity was assayed in the extract 

before and after it was filtered through a glass fibre filter. Only 17% of the initial 

activity was present in the filtered extract confirming that the majority of the EGase 

protein was associated with insoluble contaminants that prevented it passing through the 

filter. Although this does not affect the ability to detect activity in the assay it may affect 

the ability of the enzyme to bind to the column. Consequently, a method for the 

extraction of soluble proteins from strawberry fruit as described by Given et al. (1988a) 

was used routinely to produce protein from which to purify EGase.
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4.25.2 Optimization o f elution conditions

Recovery of EGase activity bound to the column was low. The effect of pH and 

cellobiose, salt and detergent concentrations on the elution of EGase was examined. 

Experiments were carried out in which batches of CF11 cellulose to which EGase had 

been bound were incubated with various elution buffers at RT for 10 min. After 

centrifugation, the supernatant from each sample was assayed for the EGase activity 

eluted and compared with that eluted by the buffer used previously (Buffer B plus 0.1 M 

cellobiose). (Table 4.3).

Table 4.3 Effect of pH, salt and detergent on the elution of EGase from CF11

cellulose

Buffer pH Cellobiose NaCl Triton

X-100

Total activity 

eluted (Arisp"1 s ' 1)

Factor

increase

Buffer B 5.0 0.1 M 0 2.7x 10'8 1

Buffer B 5.0 0.1 M 0.1 M 4.8x1 O'7 18

Buffer B 5.0 0.1 M 1.0 M 5.9 xlO '7 22

Buffer B 5.0 0.1 M 0 0.1 % 4.6x1 O'8 1.7

50 mM CPT 7.0 0.1 M 0 7.7x1 O'7 29

50 mM CPT 3.0 0.1 M 0 3.9 x 10'8 1.5

50 mM CPT 9.0 0.1 M 0 9.1 x 10'7 34

Buffer B 5.0 0.25 M 0 5.4 xlO '8 2
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The results show that adding the detergent Triton X-100 or increasing the cellobiose 

concentration above 0.1 M did not appreciably improve the elution of EGase. Addition 

of NaCl to 0.1 M gave an 18-fold improvement in yield. This increased further to 22- 

fold by using 1 M NaCl. Lowering the pH from pH 5.0 to 3.0 had little effect. However, 

increasing the pH from pH 5.0 to 7.0 resulted in a 29-fold improvement and pH 9.0 

produced the greatest single effect on the elution with a 34-fold increase. The optimum 

conditions for eluting strawberry EGase were therefore 50 mM CPT, pH 9.0 containing 

0.1 M cellobiose and 1 M NaCl.

4.2.5.3 Purification o f a strawberry EGase

Soluble proteins were extracted from ripe strawberry fruit and applied to a column of 

CF11 cellulose in Buffer B. Elution with 50 mM CPT, pH 9.0 containing 0.1 M 

cellobiose and 1 M NaCl yielded a single peak of EGase activity almost immediately 

after application (Figure 4.7). The eluate obtained was then passed through two further 

columns ofC Fll cellulose to remove as much contaminating protein as possible. The 

eluate from the third column contained a major protein species when run on SDS-PAGE 

and was designated the purified EGase protein (Figure 4.8). This purification is 

summarized in Table 4.4. The specific activity of the purified enzyme was 1.36 x 10"7 

units pg'1 enzyme and it was purified 1030-fold relative to protein in the crude extract.
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Table 4.4 Summary of the purification of strawberry EGase from ripe fruit

Purification
step

Total
EGase
activity

(AtUp'V )

EGase activity
(A n ,/ s '  

ml"1)

Protein 
(pg ml'1)

Specific 
activity 

(Arisp"1 s"1 ng"1 
protein)

Purification
factor

80%
(NH4)2S04
precipitate

8.76 xlO"5 1.99x10"* 15100 1.32 xlO"10 1

1st cellulose 
column + 

concentration

1.22 x 10"5 6.96x10"* 615 1.13x10"* 86

2nd cellulose 
column + 

concentration

9.10 x 10 ‘ 1.30 x 10 s 118 1.10 x 107 833

3rd cellulose 
column + 

concentration

4.45 x 10"6 6.64x10"* 49 1.36 xlO"7 1030
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4.2.6 Characterization o f purified strawberry EGase

4.2.6.1 Molecular mass

The molecular mass of the EGase protein was estimated as 54 kDa from SDS-PAGE. 

This was consistent with the predicted molecular mass of 53 kDa deduced from the 

isolated cell cDNA. A minor protein band was present in some preparations of purified 

EGase with an estimated size of 66 kDa.

4.2.6.2 Amino acid sequence

The purified EGase protein was blotted onto PVDF membrane and 25 amino acids of N- 

terminal sequence were obtained (Table 4.5).

Table 4.5 Amino acid N-terminus sequence of the purified strawberry EGase

1 2 3 4 5 6 7 8 9 10 11 12 13

I D Y K D A L G K s I L F

14 15 16 17 18 19 20 21 22 23 24 25

F E G Q R S G K L P N N/S
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The predicted N-terminus, after cleavage of the signal peptide, of the protein deduced 

from the cell cDNA was in close agreement with the N-terminus sequenced from the 

purified EGase. The N-terminal sequence showed strong similarity, but not identity, to 

the deduced amino acid sequence of strawberry cell cDNA and the proteins encoded by 

other recently identified EGase genes from different strawberry cultivars (Harpster et 

al., 1998; Llop-Tous et al., 1999) (Figure 4.9). Similarly, there was strong homology to 

the proteins encoded by EGase genes from Arabidopsis (Shani et al., 1997), pepper 

(Trainotti et a l, 1998b) and tomato (Lashbrook et al., 1994) (Figure 4.9).

4.2.6.3 pH  optimum

The pH optimum of the purified EGase was determined over the range pH 3.0 to pH 9.0 

in citrate-phosphate-Tris buffer. The enzyme exhibited at least 50% of its maximum 

activity over the whole pH range and over 90% in the range pH 5.0 to 7.0. The optimum 

pH was determined to be pH 7.0 (Figure 4.10). This is slightly shifted from the optimum 

pH of 5.0 that allowed maximum detection of EGase activity in a crude extract (Figure 

4.1).
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4.2.6À Km

The effect of substrate concentration on the activity of purified strawberry EGase was 

determined by reducing sugar assay using CMC as substrate. Endoglucanase activity is 

expressed as the amount of reducing sugars released from single reactions at each 

substrate concentration. The enzyme exhibited Michaelis-Menten kinetics with a Km of

1.3 mg ml"1 and a VmttK of 1 nmole min"1 pg'1 protein. At substrate concentrations above 

approximately 1.0% CMC a decrease in EGase activity was observed. This was 

manifested by an upward curvature at low values of 1 / [CMC] (Figures 4.11 and 4.12).

4.2.6.5 Substrate specificity

The substrate specificity of the purified EGase was examined using a range of 

polysaccharides. The reduction in viscosity of CMC suggests that EGase acts on internal 

P-l,4-glycosidic linkages present in a glucan. The action of the strawberry enzyme on a 

range of polysaccharides representing polymers found in plants with different sugar 

backbones and glycosidic linkages was investigated (Table 4.6).
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Table 4.6 Activity of purified strawberry EGase against a range of

polysaccharide substrates

Substrate Sugar backbone Linkage EGase activity

(nmoles 
reducing sugar 
released h"1)

Relative

activity

(%)

CMC Glucose P-1,4 25.7 100

CF11 cellulose Glucose P-1,4 0 0

(SN)

CF11 cellulose Glucose P-1,4 0 0

(PPT)

Xyloglucan Glucose, xylose 
branches

P-1,4 11.2 44

Laminarin Glucose P-1,3 2.5 9

Pectin Galacturonic
acid

a -1,4 0.7 3

Galactan Galactose P-1,4 0 0

Xylan Xylose P-1,4 0 0

Starch Glucose a -1,4 0 0

Lichenan (SN) Glucose (P"l,3)( P-1,4) 2.2 8

Lichenan (PPT) Glucose (P-l,3)( p-1,4) 0 0
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As expected, the enzyme showed greatest activity against CMC (the substrate used in 

the viscometric assay of EGase), a soluble cellulose derivative with carboxymethyl 

groups substituted on some of the P-l,4-linked glucose residues in the backbone. 

However, no activity was detected against insoluble CF11 cellulose which only 

comprises P-l,4-linked glucosyl residues. Activity was detected against xyloglucan 

(tamarind, amyloid, Ara:Gal:Xyl:Glc 3:16:36:45) containing a P-1,4-glucose backbone 

with p-1,6-xylose side chains. Very low activity was shown against lichenan (from 

Cetraria islandica) with a mixed p-1,3- and P-l,4-linked glucose backbone. No activity 

was detected against galactan (lupin, Gal:Ara:Rha:Xyl:GalUA 91:2:1.8:0.2:5), xylan 

(birchwood, >90% xylose) or starch (soluble potato), none of which contain P-1,4- 

linked glucosyl residues. Very low activities were detected against pectin {Citrus, 

partially methoxylated polygalacturonic acid) and laminarin (from Laminaria digitatd) 

despite the absence of P-l,4-linked glucosyl residues. The activity against CMC was 

taken as 100% and the activities against the other substrates were calculated as a 

percentage of this maximum to give the relative activity (Table 4.6).

4.3 SUMMARY

EGase activity was measured in strawberry fruit using a viscometric assay with CMC as 

the substrate. Activity was initially very low in the early stages of fruit development. At 

the turning stage, when fruit begin to turn pink as anthocyanins accumulate, EGase 

activity started to increase and continued to do so up to the over-ripe stage. From the 

small green to over-ripe stages there was a 6-fold increase in EGase activity on a FW 

basis. The unripe fruit were very firm but as they developed there was a substantial
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decline in firmness, in particular between the ripe and over-ripe stages, corresponding to 

the softening associated with ripening. In a comparison of ripe fruits, strawberries were 

found to contain similar levels of EGase activity to pepper and raspberry, 100-fold lower 

activity than avocado but 10» and 50-fold higher activity than apple and tomato fruit, 

respectively.

An EGase from strawberry was purified by affinity chromatography on successive 

cellulose columns. The bound EGase was eluted with a high pH buffer containing 

cellobiose and NaCl. When analyzed by SDS-PAGE the purified EGase protein ran as a 

major band estimated to have a molecular mass of 54 kDa. This was consistent with the 

predicted molecular mass of 53 kDa of the deduced polypeptide of the isolated cell 

cDNA. In some cases a minor band of about 66 kDa was also present.

The N-terminal amino acid sequence of the purified protein was determined. The 

predicted N-terminus of the deduced protein of the cell cDNA, after removal of the 

signal peptide, corresponded to the N-terminus of the purified protein. The N-terminal 

sequence showed a high degree of homology to the deduced amino acid sequence of the 

cell cDNA and exhibited strong homology to EGases from different strawberry 

cultivars and other plant EGases, confirming the identity of the purified protein. The 

enzyme retained 50% of its activity over the pH range 3.0 to 9.0 and has a pH optimum 

of 7.0. The Km of the enzyme for CMC as substrate was 1.3 mg ml'1 and the VmBX was 1 

nmole min'1 pg'1 protein. Apart from CMC, xyloglucan was the only substrate against 

which the purified EGase had considerable activity.
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4.4 DISCUSSION

ENDO-p-1,4-GLUCANASE ACTIVITY AND SOFTENING OF FRUIT 

THROUGHOUT DEVELOPMENT IN STRAWBERRY

An efficient and rapid method for extracting EGase activity was required for the analysis 

of many samples of strawberry finit. An extraction method using acetone powders 

(Given et ah, 1988a) overcomes many of the difficulties associated with the extraction 

of proteins from strawberry fruit tissue due to the high levels of phenols and pectin but 

the procedure is unsuitable for multiple extractions. A buffer consisting of 50 mM acetic 

acid/NaOH, pH 5.0 (Buffer B) with and without the addition of 1M NaCl, commonly 

used to release proteins associated with cell walls, released less than 5% of extractable 

EGase activity from ripe fruit. Proteins can be efficiently extracted by the anionic 

detergent SDS (Martinez-Garcia et a l, 1999) but activity is not usually preserved. 

However, the cationic detergent CTAB has been used for the electrophoretic analysis of 

protein molecular weight with retention of enzyme activity (Akins et al., 1992) and is 

widely used to isolate nucleic acids free of contaminants from plant tissues. These 

properties of CTAB were utilized in a novel and highly effective method for extracting 

active EGase from strawberry fruit tissue for assay.

Fruit firmness is considered to have two components, skin strength and the 

firmness of the underlying flesh. Penetrometric methods have been used to assess the 

firmness of both raspberry (Sexton et al., 1997) and strawberry (Hietaranta and Linna, 

1999) fruit but in both cases the skin was left intact so that the measurement was not a 

true indication of flesh firmness. In this work, a motorized penetrometer was used but a
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layer of the fruit containing the skin and achenes was removed prior to measurement to 

provide a flat surface of receptacle tissue for the probe to penetrate. The measurements 

therefore represented the firmness of the receptacle tissue alone without any 

contribution from the skin or achenes. The maximum force recorded as the probe 

penetrated the tissue represents the yield point and was used as the measure of fruit 

firmness. This has been deemed the best parameter for the assessment of firmness by 

penetrometry (Hietaranta and Linna, 1999).

EGase activity was detected in strawberry fruit throughout development. 

Activity was low in unripe fruit and increased 6-fold to reach a maximum in over-ripe 

fruit on a fresh weight basis. The greatest increase was associated with fruit as they 

became over-ripe. This is in agreement with previous data (Barnes and Patchett, 1976; 

Abeles and Takeda, 1990) and parallels the pattern of cell expression in the ripening 

phase (section 3.2.4, Chapter 3). The softening of strawberry fruit occurred in two main 

phases. The first phase, early in development, coincides with the rapid growth and 

expansion of the receptacle whilst the second is associated with ripening of the fruit. 

There is a good correlation between the second phase of softening as the fruit turn from 

ripe to over-ripe and the observed increase in EGase activity.

The temporal correlation between EGase activity and softening reported here 

strongly suggests that EGase has a role in fruit softening in strawberry. When other cell 

wall changes that occur in ripening strawberry fruit are also considered, the case for a 

principal role for EGase in softening is strengthened. During ripening there is swelling 

and hydration of the cell wall and middle lamella and polyuronide solubility increases 

with loss of the neutral sugars arabinose, galactose and rhanmose from the wall 

(Woodward, 1972; Knee et a/.,1977). However, there is no detectable depolymerization
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of polyuronide, as evidenced by a constant molecular weight profile throughout 

ripening, indicating that the observed solubilization is not the result of enzymic 

degradation of pectin polymers (Barnes and Patchett, 1976; Huber, 1984). This is in 

agreement with the generally observed lack of endopolygalacturonase (PG) activity in 

strawberry (Neal, 1965; Barnes and Patchett, 1976; Huber, 1984; Abeles and Takeda, 

1990) and is also consistent with the findings that in tomato, PG is primarily responsible 

for pectin depolymerization but not solubilization (Hadfield and Bennett, 1998). It has 

been suggested that increased méthylation of strawberry polyuronides during ripening is 

responsible for their solubilization by removing the sites available for Ca2+ cross-linking 

(Neal, 1965). This is consisent with the observed reduction in pectinmethylesterase 

(PME) activity in the later stages of ripening (Barnes and Patchett, 1976). Recently, the 

strawberry was the first fruit in which the ripening-enhanced expression of a pectate 

lyase gene was reported (Medina-Escobar et al., 1997b). However, the presence of an 

enzyme that hydrolyses 0-1,4-galacturonosyl bonds in pectin is difficult to reconcile 

with the lack of pectin depolymerization (Huber, 1984). In any case, work on tomato has 

indicated that PG-mediated pectin depolymerization is not necessary or sufficient for 

complete fruit softening (Hadfield and Bennett, 1998) implying that other cell wall 

modifying proteins are required for fruit softening.

The hemicellulosic polymers extracted from the cell walls of strawberry fruit 

undergo a marked shift from high molecular weight to low molecular weight as ripening 

progresses, a change which is temporally related to softening. This has been attributed to 

enzymic hydrolysis, although their neutral sugar content remains constant (Huber,

1984). The inability of the strawberry EGase purified here to degrade insoluble cellulose 

leads to the possibility that it is involved in hemicellulose degradation during fruit
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ripening (Barnes and Patchett, 1976), a suggestion which has since been extended to 

embrace plant EGases as a whole (Hayashi, 1989). Taken together, these findings 

implicate EGase in the softening process. Subsequent to this work, other studies on 

strawberry fruit have reported a ripening-related increase in EGase activity, although a 

direct comparison with the data here is not possible as the fruits were not assayed at 

equivalent developmental stages (Harpster et aLt 1998; Trainotti et al.9 1999a). This 

increase also paralleled the accumulation of a cell transcript during ripening.

EGase is also proposed to play a role in the softening of many other fruits where 

its activity has been shown to increase during ripening. This is the case for blackberry 

which, like strawberry, does not contain any detectable PG activity (Abeles and Takeda, 

1989). In common with strawberry, pepper fruit exhibit increased EGase activity 

(Ferrarese et al., 1995), an absence of PG activity and similar changes in cell wall 

polymers during ripening (Harpster et a l, 1997; Gross et al., 1986). In some fruits, other 

cell wall hydrolase activities, such as PG, may act in conjunction with EGase to cause 

softening. EGase activity in avocado fruit was found to be directly correlated to a 

decrease in fruit firmness and the climacteric rise in respiration and ethylene production. 

Before the fruit became fully ripe, variations in EGase activity in different parts of the 

fruit were inversely related to the firmness of these parts (Pesis et a l, 1978). The 

increase in EGase activity from the very beginning of the ripening phase in this fruit 

indicated that EGase was involved in the initial phase of softening while the subsequent 

increase in PG activity was related to the later softening events (Awad and Young,

1979). The depolymerization of xyloglucan and pectin (Sakurai and Nevins, 1997) and 

the ultrastmdtural changes observed in the walls of ripening avocado (Platt-Aloia et al.,

1980) appear to involve both of these enzymes. The integrated action of EGase and PG
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was also suggested for date (Hasegawa and Smolensky, 1971), mango (Roe and 

Bruemmer, 1981; Abu-Sarra and Abu-Goukh, 1992) and cherimoya (Sanchez et al., 

1998). In carambola fruit, increased EGase and PG activities in the later stages of 

ripening are coincident with the greatest decrease in firmness and marked 

depolymerization of hemicellulose and polyuronide (Chin et al., 1999). Similarly, wall- 

bound EGase and PG activities increased when the decline in tissue firmness in ripening 

olive fruit was most rapid (Femandez-Bolanos et a l, 1995). In sweet cherry, PME was 

also implicated in softening (Andrews and Li, 1995).

In some fruits, for example peach (Hinton and Pressey, 1974; Bonghi et a l,

1998), papaya (Pauli and Chen, 1983) and guava (Mowlah and Itoo, 1983), an increase 

in EGase activity precedes a significant change in fruit firmness. The presence of high 

EGase activity early in the ripening process indicates that EGase is involved in the 

initial phase of tissue softening with pectin-degrading hydrolases becoming involved 

later on as fruit soften fully. A decrease in the molecular size of pectin and 

hemicellulose fractions from papaya cell walls occurred as the fruit softened. The 

changes in the pectin were not correlated with the early softening events (Pauli et a l,

1999) supporting the involvement of EGase, rather than PG, in the initial softening 

phase. In peach there was a general decrease in molecular size of the more tightly bound 

xyloglucan fraction during the early stages of softening (Hegde and Maness, 1998) 

similar to that observed in strawberry. In kiwifruit, although there was no direct 

association with loss of firmness, EGase activity did increase in the later stages of 

softening, as did other cell wall degrading enzymes. Application of propylene to this 

climacteric fruit stimulated the fruit to soften and increased EGase activity (Bonghi et 

al, 1996). Degradation of both hemicellulose and polyuronide polymers in kiwifruit
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during ripening again indicates that a combination of enzymes are required in the 

softening process (Miceli et a l, 1995). Sexton et a l  (1997) showed that there is a 

marked increase in EGase activity and extensive breakdown of mesocarp cell walls 

during softening of raspberry druplets. A substantial increase in three other hydrolases, 

PG, PME and P-galactosidase (P-gal) in addition to EGase during the ripening of 

raspberry has recently been reported, although only PG activity correlated with the rapid 

softening in red ripe fruit (lannetta et a l, 1999). Studies on tomato have consistently 

shown that EGase activity is present in young fruit, declines during fruit swelling and 

then increases again during ripening. This has lead some workers to suggest that EGase 

is involved in the early stages of fruit development and that pectin-degrading enzymes 

whose activity increases in the later stages are responsible for softening (Babbitt et a l, 

1973; Hobson, 1968). However, degradation of xyloglucan occurs in softening tomato 

fruit and this is associated with increased EGase activity when softening was most rapid 

(Sakurai and Nevins, 1993; Maclachlan and Brady, 1994). In transgenic tomato plants in 

which PG was down-regulated in wild-type fruit (Smith et al.9 1990a) and over

expressed in the non-softening rin mutant (Giovannoni et al., 1989), polyuronide 

degradation by PG was not necessary or sufficient for fruit softening. This indicates that 

other cell wall degrading enzymes, possibly including EGase, are required for softening.

Finally, there are some fruit in which EGase activity does not increase during 

ripening or is not detected at all implying that in these cases other cell wall modifying 

proteins must be responsible for fruit softening. In apple fruit, EGase activity was 

detected in young expanding fruit and then decreased as fruit ripened. Endo-PG activity 

was not detected. This is perhaps not surprising considering that apple fruit maintain a 

steady, continuous loss of firmness. A role for EGase in growth rather than softening
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was suggested although the possibility that the extraction technique was unable to 

release the enzyme from the cell wall was acknowledged (Abeles and Takeda, 1990; 

Abeles and Biles, 1991). However, there is no depolymerization of either polyuronide 

(Yoshioka et a l, 1992) or xyloglucan (Percy et al., 1997) in apple cell walls during 

ripening suggesting that apple fruit are unique. Pear fruit soften more rapidly than apple 

and contain increasing PG activity which correlates with a decrease in soluble 

polyuronide molecular weight during softening (Yoshioka et al., 1992). EGase activity 

has not been detected in pear (Knee et a l, 1991). In durian fruit EGase activity was 

unaltered during ripening suggesting that it may not be required for softening (Ketsa and 

Daengkanit, 1999).

The extent to which EGase is believed to play a role in fruit softening varies 

widely depending on species. In addition to EGase there is a range of cell wall 

hydrolases and modifying proteins active in ripening fruit and it is likely that a 

combination of these are required to bring about cell wall modification and hence fruit 

softening. Some or all of the possible enzymes and proteins are likely to participate to 

varying degrees in different species reflecting the underlying differences in the 

composition of the cell walls and the changes they undergo during ripening.

A variation in EGase activity detected in ripe fruit from different species is 

reported here. EGase activity has been assayed in fruit from many species (Brummell et 

al, 1994) and very high levels have been reported in avocado fruit where the activity 

was more than 100 times higher than that in tomato and peach fruits (Awad and Lewis, 

1980). These differences may reflect varying roles for EGase in the softening 

mechanism and may account for the differences in softening behaviour observed 

between the fruit of different species.
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PURIFICATION OF A STRAWBERRY ENDO-p-1,4-GLUCANASE

Correlations between EGase activity and the softening of strawberry fruit during 

ripening indicate that EGase may play a key role in the softening process. In order to 

identify a substrate for strawberry EGase and assess its role in fruit softening it was 

necessary to purify and characterize a ripening-related EGase from ripe fruit. Cellulose 

affinity chromatography has been used to purify EGases from a range of tissues. This 

approach was first used to purify the EGases from avocado fruit (Awad and Lewis,

1980) and bean leaf (Koehler et al., 1981). In both cases the EGase was adsorbed to a 

column of CF11 cellulose and eluted with a buffer containing 0.1 M cellobiose. Passage 

of the enzyme through a second column resulted in a highly purified protein appearing 

as a single band after SDS-PAGE. The form of EGase that was selectively purified from 

bean leaf had a basic pi of 9.5 whereas the pi of the avocado enzyme was acidic. 

However, this method was not successful for purifying the acidic (pi 4.5) form from 

bean that could adsorb to the cellulose but not be adequately eluted. Likewise, the 

EGase from apple fruit (Abeles and Biles, 1991), also with an acidic pi, showed poor 

recovery. The other EGases that have been effectively purified by cellulose affinity 

chromatography, from pepper fruit (Ferrarese et al.9 1995), sweet pea anthers (Sexton et 

al., 1990) and tobaco callus (Truelsen and Wyndaele, 1991), have basic pis. The 

predicted polypeptide of the isolated cell cDNA from strawberry has a calculated basic 

pi of 9.18. From the available evidence, cellulose affinity chromatography appears to be 

most effective in purifying basic EGases and so this approach was investigated for the 

purification of the ripening-related EGase, Cell, from strawberry.
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Indeed, after optimization of the elution conditions, cellulose affinity 

chromatography alone resulted in a 1030-fold purification of EGase, relative to the 

crude enzyme extract. This was substantially higher than the 550- to 700-fold 

purification achieved for other affinity purified EGases. The resulting major protein 

band with a molecular mass of 54 kDa, as estimated by SDS-PAGE, was confirmed as a 

EGase by analysis of the N-terminal amino acid sequence. This indicated that the 

purified EGase was strawberry Cell, the protein corresponding to the isolated cell 

cDNA. The molecular mass, N-terminus and N-terminal amino acid sequence of the 

purified protein were in close agreement with those of the deduced polypeptide of the 

cell cDNA. The minor differences between the predicted and analyzed N-terminal 

sequences may be due to the different cultivars used (Brighton and Elsanta, 

respectively). This variation was evident in the translated sequences of cell cDNAs 

isolated from the cvs Brighton, Chandler and Selva (section 3.2.2, Chapter 3). Variation 

in EGase sequences between cultivars has also been observed in avocado where the 

EGase present in ripe fruit possesses a slightly different pi and apparant molecular mass 

depending on the cultivar being studied (Brummell et al., 1994). Alternatively, the 

differences may be due to the presence of multiple cell homoeologues in octoploid 

strawberry or the presence of another EGase gene. The molecular mass of the strawberry 

protein was similar to the value obtained from a western blot of total soluble proteins 

from strawberry using an antibody raised to a basic, 54 kDa, ripening-related EGase 

from peach (Trainotti et al., 1999a). However, the value reported by Harpster et al. 

(1998), estimated from a western blot of total soluble proteins from strawberry using an 

antibody raised to a protein A/Cell fusion protein, was 62 kDa, This was significantly 

higher than the value for the mature Cell protein predicted from the cDNA but it was
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suggested that aberrant migration on SDS gels or posttranslational modification could 

have accounted for these differences. The molecular mass of the purified protein here 

was similar to that reported for EGases from ripe fruit of pepper (Ferrarese et a l, 1995) 

and avocado (Kanellis and Kalaitzis, 1992) and elder leaf abscission zone (Webb et al.,

1993). It is also within the range of 46 to 70 kDa reported for most plant EGases that 

have been purified (Brummell et al., 1994), the exceptions being EGases of 20 kDa 

from pea epicotyls (Byrne et al., 1975), 29 kDa from nasturtium seeds (Edwards et al., 

1986) and 25 kDa from periwinkle (Smriti and Sanwal, 1999). The preferential 

purification of strawberry Cell over the second form, Cel2, by cellulose affinity 

chromatography could be due to the more basic pi of the Cell protein. Although the 

predicted pi of 9.9 for the Cel2 protein deduced from the cel2 cDNA (Trainotti et al, 

1999b) is more basic than that of Cell, the pi of a second form of EGase in strawberry 

detected by activity on an isoelectric focusing gel of total proteins was 7.9 compared to 

a value of 9.0 for Cell (Trainotti et al., 1999a). Values for pi deduced from primary 

sequence information do not take into account protein tertiary structure and hence may 

not correspond to the actual pi of the native protein. This is clearly demonstrated in the 

case of the bean abscission EGase which has an actual pi of 9.5 in contrast to the 

predicted value of 7.8 (Tucker and Milligan, 1991). Therefore, it is probable that the 

second strawberry EGase isoform detected with an actual pi of 7.9 was Cel2 suggesting 

that Cel2 may be more acidic than Cell. It is interesting that in some preparations of 

Cell in this work a minor band of about 66 kDa was present on an SDS gel. This is 

consistent with the predicted size of the deduced polypeptide of the cel2 cDNA isolated 

from strawberry (Trainotti et al., 1999b) and it may be that on some occasions the 

purification yielded a small proportion of Cel2 protein in addition to the bulk of Cell.
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Unfortunately there was never enough of this minor band to allow it to be blotted and 

sequenced.

Characterization of the purified Cell revealed optimum activity at pH 7.0. This 

is in accordance with the pH optima described for most plant EGases and is likely to 

reflect the pH of the cell wall space where they act (Brummell et al., 1994). The enzyme 

exhibited near maximum activity in a fairly broad pH range from 5.0 to 7.0, a feature 

that is often observed for plant EGases. A comparison of the pH profiles of the activity 

of purified Cell EGase and EGase present in a crude extract reveals a more acidic pH 

optimum for EGase activity in a crude extract. This suggests the presence of further 

form(s) of EGase in strawberry fruit, which are active in more acidic conditions, in 

addition to Cell. Indeed, this was found to be the case with the discovery of Cel2.

The apparent Km of the EGase was 1.3 mg ml'1 for CMC indicating that it had a 

similar affinity for CMC as did two EGases from poplar with Kms of 1.0 mg ml"1 and 1.2 

mg ml"1 (Nakamura and Hayashi, 1993; Ohmiya et a l, 1995). A comparison of the Kms 

of two EGases from pea (3.5 and 3.6 mg ml'1, Wong et al., 1977; Hayashi et al., 1984) 

and an EGase from periwinkle (0.44 mg ml'1, Smriti and Sanwal, 1999) indicated that 

amongst the EGases the strawberry enzyme had an intermediate affinity for CMC. The 

affinities of the pea EGases for pea cell wall and amyloid seed xyloglucan were similar 

to those for CMC. However, another EGase from pea, specific for xyloglucan, had a 

much higher affinity for pea xyloglucan with a Km of 0.64 mg ml"1 (Matsumoto et al., 

1997). The kinetic analysis of the EGase revealed that there was a decrease in activity at 

high substrate concentrations. This phenomenon is usually referred to as substrate 

inhibition where an excess of substrate available for binding somehow inhibits the 

catalytic activity of the enzyme. In this case, due to the nature of the substrate, it may be
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that at high concentrations the increased viscosity of the CMC interferes with the 

molecular interaction of the enzyme with the substrate and thus inhibits effective 

catalytic activity. It is also possible that the accumulation of the reducing sugar end- 

product of the reaction may have an inhibitory effect on the enzyme activity.

SUBSTRATE SPECIFICITY OF STRAWBERRY ENDO-p-1,4-GLUCANASE AND 

ITS POTENTIAL ROLE IN CELL WALL MODIFICATION DURING RIPENING

The purified strawberry Cell was most active against the soluble cellulose derivative 

CMC, the substrate used in the viscometric assay of the enzyme. This substrate consists 

of p-l,4-linked glucosyl residues that are the proposed site of action for EGases (Fry, 

1995). In contrast, the enzyme was unable to degrade insoluble cellulose despite the 

presence of the same sugar linkages. This absence of activity against insoluble cellulose 

was previously reported for a crude enzyme extract from strawberry (Barnes and 

Patchett, 1976) and is consistent with data that indicate that the cellulose content of 

strawberry fruit cell walls does not vary significantly during ripening (Wade, 1964; 

Neal, 1965). Plant EGases are generally believed to be unable to extensively hydrolyze 

insoluble crystalline cellulose (Brummell et al., 1994). This has been reported for 

several EGases including those isolated from bean (Durbin and Lewis, 1988) and coleus 

(Wang et al., 1994b) leaf abscission zones and from avocado fruit (Hatfield and Nevins, 

1986) where the cellulose content was also constant throughout ripening (Sakurai and 

Nevins, 1997). However, ultrastructural analyses of avocado fruit cell walls have 

revealed an apparent loss of cellulose fibrillar components and structural integrity of the 

wall during ripening which was attributed to the action of EGase (Platt-Aloia et ah.
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1980). Similar studies have noted that the generally observed lack of cellulose 

hydrolysis may in reality reflect degradation that does not generate detectable soluble 

products or that extensive hydrolysis is not required to effect the observed softening of 

the fruit. This work has lead to the suggestion that avocado fruit EGase can disrupt 

cellulose microfibril organization by limited hydrolysis at accessible sites in the 

noncrystalline regions of the fibrils. This would affect both microfibril structure and the 

interactions between cellulose and matrix polysaccharides thereby compromising the 

strength of the wall (O’Donoghue et al., 1994). This supports an earlier suggestion that 

avocado EGase, rather than acting to rapidly solubilize cell wall components, instead 

disrupts and loosens the cell wall matrix (Hatfield and Nevins, 1986). In contrast, it has 

been reported that EGases isolated from pea epicotyls (Wong et a l, 1977) and 

periwinkle (Smriti and Sanwal, 1999) are able to hydrolyze both insoluble crystalline 

and swollen forms of cellulose, although at rates which are lower than those towards 

CMC. In this respect, they resemble microbial EGase systems which are able to 

effectively degrade native cellulose (Beguin, 1990).

Since most plant EGases are apparently inactive towards native cellulose, and 

given the correlation between EGase activity and xyloglucan degradation that is often 

observed, it has been suggested that the other cell wall component with P-l,4-glucosyl 

linkages, xyloglucan, is the true in vivo target of these enzymes (Hayashi et al., 1989). 

Indeed, activity against xyloglucan has been reported for EGases from tobacco callus 

(Truelsen and Wyndaele, 1991) and pea epicotyls (Hayashi et a i, 1984). It is interesting 

to note that the tobacco EGase, whilst degrading native tobacco cell wall xyloglucan at a 

faster rate than CMC, was inactive against amyloid seed xyloglucan. The pea enzymes, 

however, were able to hydrolyze both native and amyloid forms equally effectively,
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although the rate was slower than for CMC. Similarly, two EGases from poplar 

suspension culture cells hydrolyzed amyloid xyloglucan at a slower rate than CMC 

(Nakamura and Hayashi, 1993; Ohmiya et al., 1995). In contrast, bean leaf abscission 

EGase was unable to degrade amyloid xyloglucan (Durbin and Lewis, 1988). The 

differences in relative activities have been attributed to the different degree of 

substitution of the P-l,4-glucosidic backbone of the substrates relative to the structural 

requirement of the enzymes for binding. The availability of the required sites to enable 

the enzyme access to the substrate obviously affects the rate at which it can be 

hydrolyzed by the enzyme. In the case of the pea EGases, they possess a binding site that 

recognizes at least six consecutive P-l,4-linked glucose units. The random limited 

substitution at the Cg position in CMC does not interfere with the binding or hydrolysis 

of the substrate whereas the xyloglucan backbone is only hydrolyzable at every fourth 

glucose residue due to the substitution pattern. Such structural constraints are believed 

to account for the different relative activities of the enzymes towards these substrates 

(Hayashi et al., 1984). Similarly, xyloglucans with different substitution patterns 

(Hayashi, 1989) may be differentially hydrolyzed by the same enzyme. Avocado EGase 

showed limited activity against soybean hypocotyl cell wall xyloglucan (Hatfield and 

Nevins, 1986) although no degradation of avocado fruit cell wall xyloglucan was 

detected in vitro, despite the observed depolymerization of xyloglucan during ripening.

It was suggested that xyloglucan, when associated with cellulose in vivo, may satisfy the 

structural requirements for hydrolysis by EGase that are absent in the soluble xyloglucan 

in vitro (O’Donoghue and Huber, 1992). Activity of avocado EGase against xyloglucan 

can be reconciled with the ultrastructural studies suggesting it can modify cellulose 

(Platt-Aloia et al., 1980; O’Donoghue et al., 1994) in that degradation of hemicellulosic
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components of the cell wall may result in the observed disorganization of fibrillar 

cellulose by disrupting the cellulose-xyloglucan network (Fischer and Bennett, 1991). 

Xyloglucan has previously been proposed as a substrate for strawberry EGase (Barnes 

and Patchett, 1976) and this is supported by the finding that, other than CMC, the only 

substrate the purified strawberry EGase showed appreciable activity towards was 

amyloid xyloglucan. For strawberry, the considerable activity of this EGase against 

xyloglucan and the decline in the average molecular weight of the hemicellulosic 

fraction of the cell wall during ripening which has been attributed to enzymic hydrolysis 

(Huber, 1984), together suggest that xyloglucan is the principal in vivo substrate for this 

enzyme. Xyloglucan, the predominant hemicellulose in dicotyledons (Brummell et al.t 

1994), is believed to coat and form extensive cross-links with cellulose microfibrils. In 

doing so it produces the major load-bearing structure in the wall and hence plays an 

important role in maintaining the integrity of the cell wall (Rose and Bennett, 1999).

The action of EGase on xyloglucan would disrupt the cellulose-xyloglucan network with 

the resultant loosening of the cell wall leading to fruit softening. Evidence of this 

disruption in strawberry has come from ultrastructural studies that show a progressive 

disorganization of the cellulose microfibrils, first apparent in white fruit (Trainotti et al., 

1999a). Some degradation of the hemicellulose fraction is evident in the fruit before the 

white stage (Huber, 1984). It may be that the second form of EGase in strawberry, Cel2, 

which is expressed in fruit from the earliest stages of development, acts on xyloglucan 

prior to the ripening-related induction of Cell. These findings indicate that a synergistic 

interaction of both enzymes may be required for the subsequent softening of the fruit. It 

has been suggested that expansins, which are present in ripening strawberry fruit (Rose 

et al., 1997), should also be included in the set of cell wall modifying proteins that act in
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a coordinated manner to disassemble the cellulose-xyloglucan network and cause 

softening during fruit ripening (Rose and Bennett, 1999).

The presence of Cel2 in strawberry fruit early on in their development and the 

observed degradation of hemicellulose polymers at this time prior to the onset of fruit 

softening indicate that EGase is not solely involved in fruit softening. Young fruit 

undergo a period of cell growth and expansion and this may be facilitated by the action 

of Cel2. A role for EGases in cell growth and expansion in young rapidly-growing 

tissues has been proposed (Fry, 1989). The most studied of these EGases are the auxin- 

induced enzymes of pea (Hayashi et al., 1984), but a correlation between increased 

EGase activity, xyloglucan degradation and cell growth has also been shown in soybean 

(Koyama et a l, 1981) and azuki bean (Hoson et al., 1995).

The only other substrate tested that was degraded by strawberry Cell was 

lichenan which was also hydrolyzed by EGases from avocado fruit (Hatfield and 

Nevins, 1986), pea epicotyls (Wong et a i, 1977) and suspension-cultured poplar cells 

(Nakamura and Hayashi, 1993; Ohmiya et al., 1995). Barley (3-glucan with mixed

1,3 ; 1,4-p-glucosidic linkages was hydrolyzed by tobacco callus EGase (Truelsen and 

Wyndaele, 1991). The weak activity of strawberry Cell against lichenan compared to 

the greater activities exhibited by the other EGases indicates that the P-1,3 linkages 

present in this polymer hinder access of the enzyme to the target (3-1,4 linkages, again 

highlighting the differences in the specific requirements of individual EGases for 

binding. The specificity of the strawberry enzyme for a |3-l,4-linked glucan polymer was 

confirmed by its lack of activity against substrates containing different glycosidic 

linkages and different sugar residues, as reported for the other plant EGases that have 

been characterized. The unexpected but low activities detected against pectin and
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laminarin could be due to contamination by other polymers present in the commercial 

preparations of these substrates.

The differences observed in the substrate specificities of EGases isolated from 

different species suggest that plant EGases comprise a group of related enzymes that act 

on distinct polysaccharide substrates in different tissues. Thus individual EGases may 

have different roles in cell wall breakdown depending on the species and tissue that they 

exist in. It is also possible that an apparant lack of activity towards a particular substrate 

in vitro may be the result of a difference in the isolated substrate compared to its native 

state and may not reflect the true ability of the enzyme to degrade the substrate in vivo.
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CHAPTERS. GENERATION AND ANALYSIS OF ENDO-p-1,4- 

GLUCANASE TRANSGENIC STRAWBERRY PLANTS

5.1 INTRODUCTION

The modification of gene expression in plants by the introduction of a transgene has 

produced physiological and biochemical information on a range of metabolic pathways, 

aspects of development and the function of individual genes. It is also widely used to 

manipulate specific traits in plants with the aim of crop improvement. For example, the 

reduction of polygalacturonase (PG) activity in ripe tomato fruit (Smith et al., 1988; 

Sheehy et al., 1988) has resulted in enhanced resistance to mechanical damage, leading 

to improved shelf-life and flavour and improved processing properties (Gray et al.,

1994). The production of novel flower colours and pigmentation patterns has been 

achieved by the manipulation of levels of chalcone synthase (CHS), a key enzyme in the 

anthocyanin biosynthesis pathway, and the potential to alter the composition of fatty 

acids in seeds has been demonstrated (Bourque, 1995).

Suppression of endogenous gene expression can be achieved by the introduction 

of a homologous transgene in either the antisense or sense orientation and has been 

termed homology-dependent gene silencing. In some cases, the use of a transgene in the 

sense orientation causes both the endogenous gene and the transgene to be suppressed, a 

phenomenon referred to as cosuppression (Hamilton et al., 1995). In this way there is 

the potential to determine the function of a particular gene by down-regulating its 

expression and examining the phenotypic effects on the transgenic plants produced. The 

ideal transformant for such studies would contain a single copy of the transgene that
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would segregate as a stably inherited Mendelian trait and show uniform expression from 

one generation to the next. However, in reality, variability is generally observed from 

one transgenic plant to the next due to the inherent randomness of the integration of the 

transgene into the plant genome (Hansen and Wright, 1999), Thus the design and 

analysis of transgenic experiments must be carefully considered if any useful 

information is to be gained from them.

Antisense and sense suppression was used to specifically down-regulate cell 

expression in transgenic strawberry fruit. Fruit exhibiting reduced expression of cell 

were analyzed for changes in their ripening behaviour in an attempt to characterize the 

in vivo role of Cell in strawberry fruit ripening in relation to fruit texture.

5.2 RESULTS

5.2.1 Construction of transformation vectors

The isolated ripening-related endo-P-1,4-glucanase (EGase) full-length cDNA cell was 

used in the transformation vectors to produce both antisense and sense gene constructs. 

The vector pJRIRi contains the cauliflower mosaic virus (CaMV) 35S promoter and the 

nopaline synthase (nos) 3' terminator and was used as an intermediate vector to provide 

the expression cassettes. The cell cDNA was cloned between the promoter and 

terminator in either orientation to generate the antisense and sense expression cassettes. 

The orientation of the cDNA in pJRIRi was confirmed by DNA sequencing using a 

primer to the CaMV 35S promoter. In addition, a cassette consisting of only the 

promoter and terminator and no cDNA was used as a control. The expression cassettes
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were then excised from pJRIRi using EcoK I and Hind III and directionally cloned into 

the corresponding sites of the multiple cloning site of the binary transformation vector 

pBINPLUS (van Engelen et al, 1995). This produced three transformation vectors with 

the 35S promoter of the expression cassette (antisense, sense or control) adjacent to the 

right border of the T-DNA and the plant kanamycin resistance gene (non-mutant nptll) 

adjacent to the left border as shown in Figure 5.1.

Left Border nos 5

nptll

nos 3

pBINPLUStt?//AS and cellS

14175 bp

nos 3 "  Hind III

cell cDNA
(antisense and sense 

orientations)
CaMV 35S 
promoter

EcoRl

Right Border

Figure 5.1 Map of the transformation vector used to transform strawberry cv

Calypso plants. The CaMV 35S/nos expression cassette alone (control) 

or containing the cell cDNA (antisense and sense) was inserted into the 

binary transformation vector pBINPLUS
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5.2.2 PCR analysis of putative transformants

PCR analysis was used for the preliminary confirmation of the transformation status of 

the 90 plants that had survived the kanamycin selection. Only six of these plants did not 

produce the 475 bp PCR product. These six negative plants were maintained as non

transformed controls.

5.2.3 Presence of the transgene in EGase transgenic strawberry plants

A total of 71 out of the 90 plants that resulted from the transformations grew to maturity 

and produced fruit for analysis. These comprised 21 control-transformed lines and 25 

each of antisense and sense ce/7-transformed lines. The remaining 19 plants showed a 

variety of abnormal phenotypes, including stunted growth without flowers and 

proliferation of small flowers that failed to pollinate, and this was likely to be the result 

of events occurring during the regeneration of the plants in tissue culture. The antisense 

and sense lines were re-tested by Southern analysis to confirm the presence and nature 

of the transgene in their genomes. Genomic DNA from each of these 50 independent 

lines was digested with Hinc II which only cuts at one site in the CaMV 35S promoter 

(at position 117) and at one site in the cell transgene (at position 744) (Figure 5.2). Only 

5 lines, plant numbers W1 29,106,133,139 and 161, were found not to contain the 

vector (non-transformed) as indicated by the absence of a hybridizing fragment of 1466 

bp or 1169 bp. Three of these had tested negative in the PCR analysis, but the remaining 

two had given a PCR product of the correct size. Unexpectedly, many of the positive 

transformed lines thought to be sense transformants did not contain the expected 1169
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bp hybridizing fragment. A total of 37 plants were confirmed as antisense lines by the 

presence of a 1466 bp band but only 8 were confirmed as sense lines by the presence of 

a 1169 bp band. It appears that a labelling error occurred during the process of shoot 

regeneration, resulting in mature plants with incorrect identities. As expected, no 

hybridizing fragments were observed in the wild-type strawberry cv Calypso plants. 

Detection of the transgene by Southern analysis of single digests of genomic DNA 

extracted from each ce/7-transformed line is shown in Figure 5.3.

RB CaMV 35S
(542 bp)

cell cDNA
(1779 bp)

nos 3’
(267 bp)

nptll LB

117

Hinc II Hinc II

.....................................M-------M ►

425 bp 744 bp 1169 bp sense

425 bp 1041 bp 1466 bp antisense

Figure 5.2 Representation of the cell transgene in the binary vector pBINPLUS.

Restriction with Hinc II produces the fragments shown which hybridize 

to the CaMV 35S probe in Southern analysis
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A S  ► NT < A S -------------- ► NT NT <--------------------- AS  ►

Figure 5.3 Detection o f the transgene by Southern analysis. Each plant number (eg.

W1 101, W2 58) is an independent transformation line. WT indicates an 

untransformed wild-type strawberry cv Calypso control plant. AS and S 

represent antisense and sense ce/7-transformed lines respectively. NT 

(non-transformed) represents lines that were not successfully 

transformed. The positions of the hybridizing fragments (bp) are shown 

on the right. Sizes of DNA molecular mass markers (kb) are shown on 

the left (continued overleaf)
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W1 W2
- »  4 ---------------- ► 4 -

W1 W2 w i
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101 122 102 139 58 79 86 21 31 83 87 253 49 52 141 16 19 252

kb

2.7

1.9
1.5

0.93

1466 bp 
1169 bp

AS- -> s S S AS AS AS

Figure 5.3 Detection o f the transgene by Southern analysis, continued
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5.2.4 Analysis of cell and cel2 expression in EGase transgenic strawberry plants

Duplicate northern blots of total RNA extracted from each primary transformant were 

hybridized with cell and cel2 cDNA probes and exposed to X-ray film for the same 

length o f time. The levels of expression of cell varied over a wide range between the 

different ce/7-transformed lines and the control plants (Figure 5.4). In ripe fruit from 

several independent antisense and sense ce/7-transformed lines (plant numbers W l 31, 

159, 160, 163, W2 86 and W2 49, 50, 51, 52, 53, 137 respectively) there were no 

detectable Cell transcripts. These plants represented approximately 25% of the 

confirmed ce/7-transformed lines. In further ce/7-transformed lines (antisense W l 77,

83, 143, W2 72, 79, 95, 104 and sense W2 141) the accumulation of Cell mRNA in ripe 

fruit was strongly suppressed compared to that in the control-transformed lines, non- 

transformed and untransformed wild-type control plants. In fruit from one sense line 

(W2 142), cell expression was higher than in the control plants. It should be noted that 

the cell cDNA probe used should hybridize to both the endogenous Cell transcripts and 

the transcripts derived from the cell transgene. The endogenous cell gene produces a 

transcript of size 1.9 kb whereas the cell transgene should produce a transcript of size 

1779 bp, corresponding to the size o f the cell cDNA used to construct the transgene.

The sizes of these transcripts are too similar to allow their corresponding hybridizing 

bands to be distinguished from each other on the northern blot. However, the absence of 

any detectable transcripts in the lines described indicates that the expression of both the 

endogenous cell gene and the transgene were concomitantly down-regulated. In ripe 

fruit the down-regulation of cell expression did not affect the expression of cel2, which 

remained relatively constant in all plants (Figure 5.5).
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Figure 5.4 Northern analysis of cell expression in transgenic strawberry plants.

Each plant number is an independent transformation line. WT indicates 

an untransformed wild-type strawberry cv Calypso control plant. AS and 

S represent antisense and sense ce/7-transformed lines respectively. NT 

(non-transformed) represents lines that were not successfully 

transformed. The size of the transcript is shown on the left (kb)
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Figure 5.4 Northern analysis of cell expression in transgenic strawberry plants, 

continued
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Figure 5.5 Northern analysis o f ce/2 expression in transgenic strawberry plants.

Each plant number is an independent transformation line. WT indicates 

an untransformed wild-type strawberry cv Calypso control plant. AS and 

S represent antisense and sense ce/7-transformed lines respectively. NT 

(non-transformed) represents lines that were not successfully 

transformed. The size of the transcript is shown on the left (kb)
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Figure 5.5 Northern analysis of ce/2 expression in transgenic strawberry plants, 

continued
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5.2.5 Phenotype of EGase transgenic strawberry plants

There were no observed transgene-related phenotypic differences between the cell- 

transformed strawberry plants and the control-transformed, the non-transformed and the 

untransformed wild-type control plants (Figure 5.6).

PARTIAL
SEN SEA N T IS E N SE  i

Figure 5.6 Phenotypes of control-transformed and ce/f-transformed strawberry cv

Calypso plants
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5.2.6 Effect of down-regulation of cell on EGase activity in EGase transgenic 

strawberry plants

Endoglucanase activity was measured viscometrically in ripe fruit from each antisense, 

sense and control-transformed line along with non-transformed and untransformed wild- 

type control plants. Substantial differences were observed in the specific enzyme 

activities between the plants. Three cell -transformed lines (plant numbers Wl 19,122 

and W2 79) showed markedly lower EGase specific activities than any of the other lines 

and two showed higher levels (plant numbers W2 95 and 142). However, there was no 

statistically significant difference in the activity of any of the ce/7-transgenic lines when 

compared to the control transgenic lines and the non-transformed and untransformed 

wild-type control plants (Figure 5.7).

5.2.7 Effect of down-regulation of cell on fruit firmness of EGase transgenic 

strawberry plants

The firmness of ripe fruit from each antisense, sense and control-transformed line along 

with non-transformed and untransformed wild-type control plants showed lower 

variation between plant lines than did the EGase specific activities. None of the lines 

showed markedly lower or higher fruit firmness values than any of the other lines. No 

statistically significant differences in texture, as measured with a penetrometer, were 

found between ce/7-transformed lines and control-transformed lines and non- 

transformed and untransformed wild-type control plants (Figure 5.8).
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I ^x^xxxxxxxxxxxvxxxxxxxxyxxxys -uyyyyyyyyyyyyyyyyyg
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5.3 SUMMARY

The isolated ripening-related EGase cDNA cell was used in the binary transformation 

vector pBINPLUS to produce both antisense and sense transgene constructs to modify 

the expression of strawberry cell. Strawberry cv Calypso plants were successfully 

transformed with the constructs and also with a control construct lacking the cell 

transgene. Southern analysis was used to confirm the presence of the transgene in 45 

independent ce/7-transformed lines. Of these, 37 lines contained the antisense transgene 

and the remainder contained the sense transgene.

Northern analysis showed no detectable Cell transcripts were present in ripe fruit of 

25% of the cell -transformed lines. In further lines the accumulation of Cell mRNA in 

ripe fruit was strongly suppressed compared to that in the control plants. The down- 

regulation of cell did not affect the expression of cell, which remained relatively 

constant in all plants.

There were no apparent phenotypic differences in the ce/7-transformed plants or their 

finit compared to any of the controls. Similarly, no statistically significant differences in 

the EGase activity or firmness of ripe fruit were found between ce/7-transformed lines 

and the control plants,
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5.4 DISCUSSION

GENERATION OF ENDO-P-1,4-GLUCANASE TRANSGENIC STRAWBERRY 

PLANTS

Strawberry plants were successfully transformed with both an antisense and sense cell 

transgene under the control of the constitutive CaMV 35S promoter in the binary vector 

pBINPLUS. This vector has the plant selectable marker gene nptll fox kanamycin 

resistance adjacent to the left T-DNA border and the transgene expression cassette 

adjacent to the right T-DNA border. Since transfer of the T-DNA from Agrobacterium 

to plant cell occurs from right to left (Sheng and Citovsky, 1996) kanamycin-resistant 

transformed plants should contain the transgene.

Agrobacterium-mzdti&ted transformation procedures have been reported for 

different cultivars of octoploid strawberry, Fragaria x ananassa Duch. (James et al., 

1990; Nehra et al., 1990a,b; Mathews et al., 1995; Barcelo et al., 1998) and also for the 

diploid Fragaria vesca (El Mansouri et al., 1996; Haymes and Davis, 1998). The 

transformation frequencies reported vary depending on the cultivar and transformation 

procedure used. The cultivar used in this work, Fragaria x ananassa Duch. cv Calypso, 

was chosen for its high transformation efficiency compared to the other cultivars studied 

(D, J. James, personal communication). A limited selection strategy was used for the 

selection of transformed tissue. A period of 3 weeks selection on kanamycin was 

followed by 6-8 weeks without kanamycin. This allows a compromise between 

minimizing the number of escapes and reducing the regeneration time of transformed 

tissue (James et a l, 1990; Barcelo et al,., 1998). The initial antibiotic selection reduces

228



the proliferation of non-transformed cells which can lead to the regeneration of non

transformed shoots or chimaeras containing both transformed and non-transformed 

cells, known as escapes. The removal of selection then allows the regeneration of 

shoots, the majority of which should be transformed, without antibiotics present to 

interfere with their development. A minimal regeneration time is preferable to reduce 

the possibility of somaclonal variation in the plants. A final period of regeneration on 

kanamycin provides a further round of selection.

Southern analysis confirmed that the transgene was present in 45 of the 50 

putative independent antisense and sense cell-transformed lines. The 5 lines that did not 

contain the transgene were considered escapes. The differences in relative intensities of 

the predicted hybridizing bands from these lines suggests that some transformants 

contain a low number of transgene insertions (eg. W1 152 and 115) whilst others may 

contain several insertions (eg. W1 87 and 163). The presence of multiple hybridizing 

bands in some lines (eg. W1 130 and 143) indicates that rearrangement of the inserted 

transgene may have occurred (Register, 1997).

DOWN-REGULATION OF CEL1 EXPRESSION IN TRANSGENIC STRAWBERRY 

PLANTS

To address the role of Cell in fruit softening, strawberry plants were transformed to 

down-regulate cell expression. Northern analysis revealed considerable differences in 

Cell transcript levels between independently transformed lines. This observed variation 

is characteristic of primary transformants and is believed to be a result of the random 

nature of the integration of the transgene into the plant genome (Hansen and Wright,
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1999). Both the chromosomal location of the insertion and the number and arrangement 

of the copies will vary between independent primary transformants such that one or 

more intact or rearranged transgene copies are integrated at one or more unlinked loci 

(Vaucheret et ah, 1998). These factors may affect the degree of expression of the 

transgene and consequently the expression of the target endogenous gene, resulting in 

primary transformants with different levels of down-regulation. Indeed the Southern 

analysis suggested the presence of different copy numbers of the transgene in the 

independent cell primary transformants, although the sites of insertion could not be 

determined from this particular analysis.

Position effects have been demonstrated in experiments in which 

polygalacturonase (PG) was down-regulated by an antisense transgene in tomato (Smith 

et al., 1990a). Transformed plants that contained a single copy of the transgene had 50- 

95% lower PG activity, indicating that the integration site of the transgene must have 

influenced the degree of PG suppression. However, selfed progeny of these plants that 

were homozygous for the transgene exhibited a further reduction in PG enzyme 

expression, down to 1% of wild-type activity, clearly demonstrating a gene dosage effect 

(Smith et al., 1990a). Transgenic petunia plants exhibited no correlation between the 

number of antisense chalcone synthase (CHS) transgene copies inserted and the level of 

antisense mRNA, indicating the influence of the transgene insertion site on the level of 

gene expression. In turn, the level of antisense mRNA did not correlate with the flower 

phenotype achieved (van der Krol et al., 1988). In transgenic petunia in which a sense 

dihydroflavonol-4-reductase (DPR) gene was introduced, again no correlation was 

observed between transgene copy number or transcript levels and the degree of 

endogenous gene suppression or the resulting flower phenotype (van der Krol et al..
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1990). Many transgenic experiments have demonstrated that there is little or no 

correlation between the level of down-regulation and the transgene copy number or 

expression level (Bourque, 1995).

The cell primary transformants exhibited expression of cell that ranged from 

wild-type levels to complete suppression in 25% of the lines. In lines in which cell 

expression was strongly down-regulated but not totally suppressed the residual 

transcripts could have resulted from expression of either the endogenous gene or the 

transgene, or both. The sizes of the two transcripts are too similar to allow a reliable 

distinction between them from the northern analysis. In the antisense lines the use of 

single-stranded antisense or sense probes would have enabled the specific detection of 

the endogenous transcript or transgene transcript, respectively. However in the sense 

lines, only a probe designed to the 5’ sequence of the cell gene, which is absent in the 

transgene, could have distinguished both transcripts.

In every cell-transformed line which showed total down-regulation of cell 

expression there was concomitant suppression of the expression of both the endogenous 

cell gene and the cell transgene. Such coordinate down-regulation was first observed 

when homologous CHS genes were introduced into petunia. Transcripts from both the 

endogenous CHS gene and the introduced CHS gene were suppressed demonstrating the 

phenomenon of cosuppression of homologous genes in trans (Napoli et al., 1990; van 

der Krol et al, 1990). This effect has also been observed in transgenic tomatoes where a 

chimaeric sense transgene, homologous to both PG and pectinesterase (PE), caused 

simultaneous down-regulation of both endogenous PG and PE genes and the transgene 

itself (Seymour et a l, 1993), Down-regulation of PG alone has also been achieved in 

tomato by cosuppression (Smith et a l, 1990b).
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Thus cosuppression is generally used to describe the suppression of endogenous 

gene expression by the introduction of a homologous (sense) transgene which itself is 

concomitantly silenced (Stam et al.> 1997; Depicker and Van Montague, 1997). 

However, of the 25% of ce/7-transformed lines that exhibited down-regulation of both 

the endogenous gene and transgene, only about half of them were transformed with the 

sense transgene. The other half contained the antisense transgene indicating that 

cosuppression can occur regardless of the orientation of the introduced transgene. There 

are a few instances in which limited cosuppression has been observed in antisense plants 

(Hamilton et al., 1995). In transgenic tomatoes containing an antisense PG transgene, 

reduction in endogenous PG expression correlated with a reduction in the expression of 

the antisense transgene (Smith et al., 1988). In a similar experiment, Sheehy et al.

(1988) also reported that levels of an antisense PG transcript may have been decreased 

in tomato plants in which endogenous PG was down-regulated. However there are 

numerous reports of antisense suppression of endogenous genes where the antisense 

transcript is clearly still present. It may be that the phenomenon of cosuppression occurs 

less frequently and with greater variation in antisense plants than in sense plants 

(Hamilton et al., 1995). The observation that cosuppression can occur in antisense 

plants and sense plants has lead to the suggestion that similar mechanisms of 

suppression may operate in both situations (Hamilton et al., 1995; Bruening 1998).
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RELATIONSHIP BETWEEN CEL1 EXPRESSION, ENDO-|3-l,4-GLUCANASE 

ACTIVITY AND FIRMNESS IN FRUIT OF TRANSGENIC STRAWBERRY 

PLANTS

Ripe finit from each of the transformed lines were analyzed for EGase activity and fruit 

firmness. Although variation was observed in both parameters, down-regulation of cell 

expression, even to undetectable levels, had no statistically significant effect on the 

EGase activity or firmness of ripe fruit from any of the ce/7-transgeniç lines when 

compared to the control plants.

In fruit where cell expression was not completely suppressed the reduced 

transcript level may still allow normal levels of Cell enzyme to accumulate such that 

levels of EGase activity remain unchanged. This was observed when antisense 

transgenes to thylakoid membrane proteins in tobacco successfully modified the 

transcript levels, in some cases down to 10% of untransformed levels, but not levels of 

the corresponding proteins (Palomares et al., 1993). However, a close correlation is 

usually observed between the reduction in transcript levels and the reduction in enzyme 

activity. In transformed tomato, the expression of PG mRNA was reduced to 15-20% of 

wild-type levels and PG activity was also reduced to 20% (Smith et al., 1990a). In 

transformed petunia, down-regulation of CHS resulted in an almost complete loss of 

both endogenous CHS mRNA and protein (van der Krol et al., 1990).

The unchanged level of EGase activity in fruit with reduced or undetectable cell 

expression may be explained by the presence of a second EGase gene (cell) in 

strawberry, which was identified after this work was initiated. The cell transgene used 

should specifically down-regulate cell as cell and cell are only 59% homologous at the
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nucleotide level. In this case, the activity of Cel2 must increase to compensate for the 

expected loss of Cell activity. The extent of the expected increase in Cel2 cannot be 

predicted as the relative contributions of Cell and Cel2 to the total activity are 

unknown. The assay for EGase detects total activity and does not differentiate between 

the different isoforms. However, northern analysis showed that the expression of cel2 

was essentially unaffected in the ce/i-suppressed plants indicating there was little 

compensation by the cel2 gene. In addition, contribution of, and possible compensation 

by, any as yet undetected EGase isoforms must also be considered. Physiological 

compensation for a deficient enzyme by the production of a functionally equivalent 

protein has been reported in tobacco plants. Class I p-l,3-glucanase activity, which is 

believed to be involved in plant defense responses to pathogen attack, was down- 

regulated by the introduction of an antisense transgene. Induction of the enzyme after 

pathogen infection was inhibited but was compensated for by the production of a 

distinct P-l,3-glucanase (Beffa et al., 1993).

Given the unchanged EGase activity as a result of cell suppression it is not 

surprising that there was no apparent effect on fruit firmness. Although the role of Cell 

in fruit softening has not been revealed, the absence of any effect of cell suppression on 

fruit texture implicates the involvement of other cell wall proteins, including Cel2 in the 

softening process. In cases where a cell wall modifying enzyme has been successfully 

down-regulated these do not always provide information about its role in fruit softening. 

When a substantial reduction in the corresponding enzyme activity is achieved there 

may be several possible reasons why an effect on cell wall metabolism and fruit 

softening is not observed: a) the residual enzyme activity may be sufficient to maintain 

normal function, b) the method chosen for analysis of fruit texture may not be able to
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detect any underlying changes that have occurred in cell wall metabolism, c) other 

isoforms of the enzyme may be dominant in the softening process, d) the coordinate 

action of several cell wall modifying enzymes may be required for softening, none of 

which by themselves are fully responsible for changes in fruit texture, e) the enzyme is 

not involved in softening and may have an alternative role in the cell.

Extensive transgenic studies on the cell wall metabolism of ripening tomato fruit 

have clearly demonstrated the potential difficulties that can be encountered. Down- 

regulation of PG enzyme activity in transgenic tomato plants containing an antisense PG 

transgene had no effect on fruit softening as measured by fruit compressibility (Smith et 

a l, 1988). However, ripe fruit from the progeny of these plants did show reduced 

depolymerization of the soluble pectin, although pectin solubilization was unaffected 

and the compressibility of these fruit was also unchanged. It was suggested that, in the 

case of tomato fruits, compressibility is only one aspect of softening and that other 

physical parameters that were not measured may have changed (Smith et al., 1990a). In 

fact, although softening of these fruits appeared indistinguishable from that of wild-type 

fruit, their pectin metabolism was affected and this resulted in altered characteristics that 

were only discovered after further study. The fruit were found to be more resistant to 

mechanical damage and produced pastes with higher viscosity and increased soluble 

solids, characteristics which are commercially valuable (Gray et a l, 1994). The residual 

low PG activity in the transgenic plants may have been sufficient to maintain normal 

levels of pectin solubilization (Smith et a l, 1990a). This demonstrates the importance of 

the type of analysis performed on fruit with altered levels of cell wall enzymes and 

highlights the difficulties with interpretation that can occur when enzyme activity has 

not been completely suppressed.
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The expression of a fruit-specific pectinmethylesterase (PME) antisense 

transgene in tomato greatly reduced the activity of the group I isoforms of PME present 

in fruit. It had no effect on the activity of the group II isoforms present in either fruit or 

vegetative tissues. The absence of any noticeable effects on growth and development led 

to the suggestion that the group I PME isoforms were not involved in fruit development 

and ripening. However, the possibility that the different isoforms have different modes 

of action on pectins or that the action of group II isoforms may substitute for group I 

isoforms in their absence was also considered. The conclusion was that the role of PME 

could not be determined by studying a specific isoform alone and that a study of the 

effect of manipulating the other isoforms in transgenic plants was also necessary (Gaffe 

et al., 1994). As in the case of the PG antisense tomatoes, further work was able to 

reveal an effect of the suppressed enzyme. The fruit-specific PME enzyme did not affect 

fruit firmness during ripening, but was shown to cause an almost complete loss of tissue 

integrity during fruit senescence (Tieman and Handa, 1994).

The roles of specific EGases in tomato fruit ripening have been investigated in a 

similar way as the role of Cell has been studied in strawberry, by the down-regulation 

of a single EGase gene in transgenic plants. In tomato there are at least seven different 

isoforms of EGase resulting from a divergent gene family. The expression of two 

members of this gene family, cell and cel2, increases during fruit ripening (Lashbrook 

et al., 1994). The pattern of tomato CM2 mRNA accumulation in fruit parallels that of 

strawberry Cell transcripts, whilst the expression of tomato cell in fruit is more similar 

to that of strawberry cel2. However, the expression of both tomato cell and cel2 is not 

restricted to fruit and so in this respect they are more similar to strawberry cel2 than to 

strawberry cell, which is fruit-specific. In separate studies the expression of tomato cell
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and cel2 genes was independently down-regulated by antisense suppression. The 

constitutive expression of an antisense cell transgene resulted in the reduction of Cell 

transcripts to trace levels in ripening fruit of transgenic tomato plants. Transgenic fruits 

in which cell expression was suppressed to less than 0.1% of wild-type levels exhibited 

normal growth and softening behaviour, indicating that Cell is not a primary 

determinant of cell expansion in early fruit development or softening of tomato fruit. 

This may be expected as cell is only transiently expressed in immature green fruit and 

reaches a maximum in pink fruit before declining in over-ripe fruit (Lashbrook et a l, 

1994). However, as already discussed, the authors noted that the absence of an effect of 

Cell on softening as measured by fruit compressibility may not reflect a lack of any 

effect on cell wall structure (Lashbrook et ah, 1998).

In similar experiments. Cell mRNA abundance was reduced by >95% in ripe 

fruit of transgenic tomato plants. The softening of fruit in which cell was suppressed 

was indistinguishable from that of control fruit as determined by measurement of fruit 

firmness. Hence the role of Cel2 in softening or textural changes in fruit during ripening 

suggested by its considerable accumulation in the later stages of ripening, was not 

revealed by the suppression of cell expression (Bmmmell et al., 1999a).

However, the level of the corresponding EGase enzyme activity in the transgenic 

fruit was not determined in either case. It may be that although both Cell and Cell 

transcript levels were reduced, the level of EGase activity remained constant as one 

isoform compensated for the lack of the other, as discussed for the strawberry cell- 

suppressed plants. It may be, therefore, that the suppression of both isoforms together is 

required to observe any effect on softening or fruit quality characteristics.
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Parallels can be drawn from the results from the suppression of specific EGase 

genes in tomato and those obtained here from the down-regulation of cell in strawberry. 

It is clear that suppressing an individual EGase gene in fruit where other members of the 

EGase gene family are expressed does not neccessarily reveal its role in fruit softening. 

At the very least, it is likely that transgenic strawberry plants reduced in the ability to 

express all fruit-specific EGase genes will be required to determine the role of EGase in 

softening.

However, it is possible that even this approach may not be sufficient. Although 

fruit of the tomato non-softening rin mutant lack both Cell and Cel2 mRNA they are 

also deficient in mRNAs encoding a whole range of cell wall modifying enymes 

including PG, expansins and p-galactosidase. They also have reduced levels of activity 

of xyloglucan endotransglycosylase (XET), p-galactanase and probably other enzymes 

(Brummell et al., 1999a). Thus softening is likely to be the result of the synergistic 

activity of many cell wall modifying enzymes all of which may play a role to varying 

extents in the cell wall disassembly that leads to fruit softening. It is therefore possible 

that even the suppression of all isoforms of one particular enzyme may not have a 

distinct, measurable effect on fruit softening due to the presence of other enzyme 

activities that contribute to the overall softening process. Any observed effect on 

softening may depend on whether a particular enzyme affects the cell wall either directly 

or influences the action of other cell wall modifying proteins. In one recent report it has 

been demonstrated that modification of expansin activity in transgenic tomato plants 

had a direct effect on fruit softening. Fruits in which Expl protein accumulation was 

suppressed to 3% of wild type levels resulted in firmer fruit whilst overexpression of 

expl enhanced fruit softening. The results indicate a direct role for expansin in cell wall
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disruption but also that expansin action may indirectly affect changes in the cell wall 

brought about by cell wall hydrolases (Brummell et a l, 1999b).

It can be seen therefore that elucidation of the roles of cell wall modifying 

proteins in fruit softening may require the coordinate suppression of multiple isoforms 

of one or more different proteins. This reflects the complex nature of the action of the 

enymes and proteins that effect the cell wall disruption leading to fruit softening. This 

approach appears to be feasible as the down-regulation of two (or more) non- 

homologous genes has already been demonstrated in transgenic tomato plants by the use 

of single chimaeric transgenes (Seymour et al.y 1993; Jones et al.y 1998b; Simons and 

Tucker, 1999).
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GENERAL DISCUSSION AND FURTHER WORK

ROLE OF ENDO-P-1,4-GLUCANASES EST PLANT DEVELOPMENT

The results of this study indicate a role for EGases in the softening associated with 

strawberry fruit ripening. The increase in EGase activity in strawberry fruit throughout 

development parallels increases in the expression of the two strawberry EGase genes 

identified, cell and cel2. The coincidence of maximum expression of cell and ce/2 just 

prior to the time of greatest EGase activity and ripening-associated loss of fruit firmness 

strongly suggests that the products of these genes, Cell and Cel2, have roles in fruit 

softening. Purified strawberry Cell was found to be capable of hydrolyzing xyloglucan 

and thus the role of strawberry Cell, at least, in fruit softening may be to disrupt the 

cellulose-xyloglucan network and cause loosening of the cell wall by its action on 

xyloglucan. Down-regulation of cell expression in transgenic strawberry plants 

implicated the involvement of other cell wall modifying proteins, including Cel2, in the 

softening process. A role for specific EGases in fruit softening has been reported for 

many other plants, the most well-studied being tomato Cell and Cell (Lashbrook et al., 

1994), avocado Cell (Cass et al., 1990) and pepper Cell (Harpster et a l, 1997).

In addition to their role in fruit softening, plant EGases are involved in a range of 

physiological processes that require cell wall modification including cell expansion and 

abscission, events in which cell wall loosening or cell separation is necessitated. The 

expression of strawberry cel2 in young developing fruit and vegetative tissues, in 

addition to ripening fruit, indicates that Cel2 may also facilitate cell growth and
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expansion by loosening the cell wall. The Arabidopsis cell gene has been reported to 

show strong expression in the elongating zone of flowering stems but transcripts were 

undetectable in fully expanded leaves. Transgenic tobacco plants containing the 

Arahidnpsis cell promoter driving expression of the gus reporter gene showed the 

promoter was active in shoot and root elongating zones suggesting an involvement of 

Cell in cell expansion in Arabidopsis (Shani et a l, 1997). Similarly, the pea EGL1 gene 

is thought to have a role in cell elongation. The transcript was found to accumulate 

predominantly in flowers and young pods undergoing rapid growth but levels declined 

rapidly in pods when they were no longer elongating. A high level of expression of this 

gene was also detected in elongating epicotyls (Wu et a l, 1996).

Abscission-related EGases have also been well characterized in many plants and 

are implicated in developmental processes involving the abscission of a variety of 

different organs (Brummell et a l, 1994). Expression of the avocado EGase Cell was 

associated with the abscission of mature fruits as well as their softening. Transcripts of 

this gene accumulated in activated fruit abscission zones, as well as ripe mesocarp, and 

an antibody raised against the EGase protein isolated from ripe fruit cross-reacted with a 

protein in extracts from fruit abscission zones (Tonutti et a l, 1995). Two isoforms of 

EGase were detected in fruit abscission zones of orange by isoelectric focusing. The 

corresponding genes were expressed in activated fruit abscission zones and in activated 

leaf and floral abscission zones (Rums et a l, 1998). Similarly, fruit abscission in peach 

is associated with two EGase isoforms and these are also present in leaf abscission 

zones, although at considerably higher levels (Bonghi et a l, 1992). In contrast, although 

bean leaf abscission zones contain two isoforms of EGase, only the basic form is 

involved in abscission (Tucker et a l, 1988). Three of the multiple tomato EGase genes,
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cell, cel5 and cel6, were expressed predominantly in floral abscission zones and the 

accumulation of their transcripts was correlated with flower shedding (del Campillo and 

Bennett, 1996). Cel5 mRNA has also been detected in leaf abscission zones (Kalaitzis et 

a l, 1999).

Thus, plant EGases from many different species have been linked to a variety of 

physiological processes either by the identification of EGase genes and their temporal 

and spatial expression patterns or by the purification of EGase isoforms and 

characterization of their activities. All of these processes in which EGases are reported 

to have a role involve cell wall modifications, either leading to loosening of the wall or 

to complete degradation. However, further work is required to fully understand the 

mechanism of action and the extent to which EGases are involved in these processes.

FURTHER WORK

This study has started to explore the role of EGases in strawberry fruit development by 

examining the ripening-related EGase Cell. The confirmation that there is a multigene 

family for EGase in strawberry necessitates investigation into the role of each isoform in 

fruit development and how the different isoforms may interact to modify strawberry 

fruit cell walls and cause softening. The following are suggestions for further work 

which should provide a fuller understanding of the role of EGases in strawberry fruit 

development.
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a) Strawberry endo-P-l,4-glucanase genes

So far two distinct EGase genes have been identified in strawberry. The multiple gene 

families for EGase in other plants and the results of the Southern analysis here 

indicating the presence of a small gene family in strawberry, suggest that further EGase 

genes may be present in strawberry. This possibility could explain the results from the 

cel 1 -transformed plants and any future experiments to down-regulate EGase activity in 

strawberry fruit would have to take this into account. A lower stringency screening of 

the ripe fruit cDNA library may identify additional EGases that are present in ripe fruit. 

However, a more comprehensive approach to identify all EGases in strawberry would be 

to use degenerate primers designed to the conserved regions of EGase genes to perform 

PCR with genomic DNA as template. Alternatively, degenerate primers could be used in 

RT-PCR with RNA isolated from a range of strawbeny tissues to examine EGases 

specifically expressed in these tissues. This would allow the identification of genes that 

may be involved in aspects of strawberry development other than fruit softening, the 

expression patterns of which could then be characterized. The octoploid nature of 

strawberry must be taken into account during the identification of further genes. The 

multiple copies, or homeologues, of a particular gene in a polyploid species are not 

always identical. Thus, any further EGase genes identified in octoploid strawberry that 

share just less than 100% sequence identity with others most likely represent different 

homeologues of the same locus and not divergent members of the gene family.

Individual homeologues may not share the same expression patterns and there may be 

considerable difficulties in distinguishing the expression of genes with highly similar 

sequences. Indeed a cell genomic clone has been isolated from cv Brighton whose
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sequence in the coding region differs by 3 nucleotides from the cell cDNA isolated 

from cv Brighton here (Manning, personal communication) and it is possible that the 

genomic clone represents a different homeologue to the cDNA clone.

b) Antibodies to strawberry Cell

The generation of antibodies raised to Cell would allow the level of Cell protein 

throughout fruit development to be determined and correlated with the increase in cell 

expression and the total EGase activity in the fruit. More importantly it would allow 

levels of Cell protein to be determined in fruit from the cell -transformed plants. If, as 

may be expected, in transformed lines in which cell expression was completely 

suppressed in the fruit there was no Cell protein, then the unchanged EGase activity in 

these fruit must be the result of compensation by other EGase isoforms.

c) Activity of strawberry Cell against strawberry cell walls

The substrate specificity of strawberry Cell was tested against a range of cell wall 

polymers found in plants. However, it would be relevant to determine the activity of 

Cell against the cell walls of strawberry fruit at different stages of development and also 

specific fractions of the cell wall. This would provide further information about the true 

in vivo substrate of the enzyme and at which developmental stage the substrate is 

susceptible to degradation by the enzyme. This may reveal whether the substrate has 

been modified in any way before Cell is able to act on it and hence give a better
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understanding of the coordinated activities of multiple cell wall modifying proteins that 

may be required to cause cell wall degradation and fruit softening.

d) Strawbeny Cel2

Purification of the second strawberry EGase isoform, Cel2, would allow its substrate 

specificity to be determined as for Cell. This may reveal differences in the preferred 

substrates of the two enzymes which could help in understanding the different roles of 

the two isoforms in fruit development and how they may cooperate to modify the cell 

wall. A different strategy to purify Cel2 would be required from the one successfully 

used for Cell. An alternative approach would be to examine the properties of 

recombinant Cel2 protein. However, as the native protein is likely to be glycosylated the 

recombinant protein would need to be processed correctly.

e) Further studies in transgenic plants

The aim of down-regulating cell expression in strawberry plants was to produce fruit 

which contained no EGase activity. However, this approach was unsuccessful due to the 

presence of a further EGase gene, ce/2, in strawberry which has since been identified 

and possibly the existence of further EGase genes in strawberry, as yet unidentified. It 

would be of interest to purify the EGase from transgenic plants in which Cell was 

completely suppressed. In order to determine the role of EGases in strawberry fruit 

softening, it is likely that plants in which the expression of all EGase genes is

245



suppressed will be required. Only then could plants be obtained in which no detectable 

EGase actvity was present and the result of this on fruit softening could be assessed.

A marked inhibition of fruit softening may only be possible if several cell wall 

associated proteins are down-regulated together. These might include 

pectinmethylesterase(s), expansin(s), xyloglucan endotransglycosylase(s) and p- 

galactosidase(s). The role of EGases in the softening of strawberry fruit may be revealed 

more clearly if the influence of other synergistically acting proteins is elucidated.
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APPENDIX A. COMPOSITION OF MEDIA, BUFFERS AND SOLUTIONS

Al. MOLECULAR BIOLOGICAL REAGENTS

BACTERIAL MEDIA

Terrific Broth (TB) medium

12 g bactotryptone, 24 g yeast extract, 0.4 ml glycerol, 23.14 g KH2PO4 and 16.43 g 

K2HPO4.3H2O were dissolved in distilled water and made up to 11. The medium was 

sterilized by autoclaving and stored at 4°C.

TYN medium

10 g bactotryptone, 5 g yeast extract and 5 g NaCl were dissolved in distilled water and 

made up to 11. The medium was sterilized by autoclaving and stored at 4°C.

TYN plates

15 g agar was added to 11 TYN medium before autoclaving.

TYN ton agarose

0.7 g agarose was added to 100 ml TYN medium before autoclaving. The medium was 

cooled to 50°C and sterile 1 M MgCh was added to a final concentration of lOmM. 

SOB medium

20 g bactotryptone, 5 g yeast extract and 0.5 g NaCl were dissolved in distilled water 

and made up to 11. The medium was sterilized by autoclaving. Before use, 10 ml each 

of sterile 1 M MgCh and 1 M MgS04 were added.

SOC medium

2 ml sterile 20% (w/v) glucose were added to 100 ml SOB medium prior to use.
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LB (Luria-Bertani) medium

10 g bactotryptone, 5 g yeast extract and 10 g NaCl were dissolved in distilled water and 

made up to 11. The medium was sterilized by autoclaving and stored at 4°C.

LB plates

20 g agar was added to 1 1 LB medium before autoclaving. After the medium had cooled 

to 50°C, antibiotics were added where required at the appropriate concentration.

YEP medium

10 g yeast extract, 10 g bactopeptone and 5 g NaCl were dissolved in distilled water and 

made up to 11. The medium was sterilized by autoclaving and stored at 4°C.

ANTIBIOTIC STOCK SOLUTIONS

Ampicillin

The sodium salt of ampicillin was dissolved in sterile distilled water at a concentration 

of 25 mg ml'1. The solution was sterilized by filtering through a 0.2 pm filter and stored 

at -20°C.

Tetracycline

Tetracycline hydrochloride was dissolved in ethanol/sterile distilled water (50% v/v) at a 

concentration of 12.5 mg ml'1. The solution was sterilized by filtering through a 0.2 pm 

filter and stored in the dark at -20°C.

Kanamvcin

Kanamycin sulphate was dissolved in sterile distilled water at a concentration of 50 mg 

ml'1. The solution was sterilized by filtering through a 0.2 pm filter and stored at -2O°C.
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Streptomycin

Streptomycin sulphate was dissolved in sterile distilled water at a concentration of 50 

mg ml'1. The solution was sterilized by filtering through a 0.2 pm filter and stored at - 

20°C.

Cefotaxime

The sodium salt of cefotaxime was dissolved in sterile distilled water at a concentration 

of 100 mg ml'1. The solution was sterilized by filtering through a 0.2 pm filter and 

stored at -20°C.

PLANT TISSUE CULTURE MEDIA 

S5 Proliferation medium

4.4 g Murashige & Skoog (MS) basal salt mixture (Sigma) and 30 g sucrose were 

dissolved in 900 ml sterile distilled water, adjusted to pH 5.7 and made up to 11. 7.5 g

agar powder (Merck) was added and the medium was autoclaved and allowed to cool to 

35-45°C. The following sterile solutions were added :

1.0 ml 1 mg ml' 1 6-benzyladenine purine (BAP)
0.1 ml 1 mg ml' 1 3-indolebutyric acid (DBA)
0.2 ml 1 mg ml"1 giberellic acid 3 (GA3)
1.0 ml 1000 x strawberry vitamins

and the medium poured into sterile Coulter pots (10 ml per pot).

R13 Rooting medium

4.4 g MS basal salt mixture and 30 g sucrose were dissolved in 900 ml sterile distilled 

water, adjusted to pH 5.7 and made up to 11. 7.5 g agar powder was added and the 

medium was autoclaved. After cooling, 3 ml 1 mg ml"1 DBA was added and the medium 

poured into sterile Coulter pots.
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R37 Rooting medium

2.2 g MS basal salt mixture and 30 g sucrose were dissolved in 900 ml sterile distilled 

water, adjusted to pH 5.7 and made up to 1 1. 7.5 g agar powder was added and the 

medium autoclaved and poured into sterile honey jars (100 ml per jar).

1 mg ml' 1 6 -Benzvladenine purine (BAP)

0.1 g BAP was dissolved in 1 ml 1 M NaOH and made up to 100 ml in sterile distilled 

water. The solution was sterilized by filtering through a 0.2 pm filter and stored at - 

20°C.

1 mg ml' 1 3-Indolebutvric acid (IBA)

0.1 g DBA was dissolved in 1 ml 1 M NaOH and made up to 100 ml in sterile distilled 

water. The solution was sterilized by filtering through a 0.2 pm filter and stored at - 

20°C.

1 mg ml' 1 Gibberellic acid 3 fGAO

0.1 g GA3 was dissolved in 1 ml 1 M NaOH and made up to 100 ml in sterile distilled 

water. The solution was sterilized by filtering through a 0.2 pm filter and stored at - 

20°C.

1000 x Strawberry vitamins

0.05 g nicotinic acid, 0.05 g pyridoxine-HCl and 0.01 g thiamine-HCl were dissolved in 

100 ml sterile distilled water. The solution was sterilized by filtering through a 0.2 pm 

filter and stored at -20°C.

MS20 solution

4.4 g MS basal salt mixture and 20 g sucrose were dissolved in distilled water and made 

up to 11. To each 1 ml of MS20 solution, 1 pi each of acctosyringone (AS) and betaine
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phosphate (BP) solutions were added just before use. The pH was adjusted to 5.2 and 

the solution was sterilized by filtering through a 0.2 pm filter.

Acetosvringone (AS)

0.098 g AS was dissolved in 5 ml 100% ethanol. The solution was sterilized by filtering 

through a 0.2 pm filter and stored at 4°C.

Betaine phosphate (BP)

1.076 g BP was dissolved in 5 ml sterile distilled water. The solution was sterilized by 

filtering through a 0.2 pm filter and stored at 4°C.

Wash solution

0.05 g augmentin and 0.02 g cefotaxime were dissolved in 100 ml sterile distilled water. 

The pH of the solution was ajusted to 5.2 and sterilized by filtering through a 0.2 pm 

filter and stored at 4°C.

ZN102 medium

4.4 g MS basal salt mixture and 10 g sucrose were dissolved in 900 ml sterile distilled 

water, adjusted to pH 5.7 and made up to 11. 2.5 g gelrite (Sigma) was added and the 

medium was autoclaved. After cooling, 1 ml 1 mg ml'1 thidiazuron (TDZ) and 200 pi 1 

mg ml"1 a-naphthaleneacetic acid (NAA) were added.

BUFFERS AND SOLUTIONS

TE Buffer. pH 7.5/8.0 (10 mM Tris, 1 mM EDTA)

1.211 g Tris and 0.372 g disodium ethylene diamine tetraacetate.2H^O 

(Na^EDTA.2H^O) were dissolved in 800 ml distilled water, adjusted to pH 7.5/8.0 and 

made up to 1 1. The solution was sterilized by autoclaving.
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10 mM Tris. pH 8.0

1.211 g Tris base was dissolved in 800 ml distilled water, adjusted to pH 8.0 with HC1 

and made up to 11. The solution was sterilized by autoclaving.

0 5 M EDTA. p H  8 0

186.1 g NaiEDTA.ZHzO was dissolved in 800 ml distilled water, adjusted to pH 8.0 

with NaOH and made up to 11. The solution was sterilized by autoclaving. 

Resuspension buffer (50 mM glucose, 10 mM EDTA, 25 mM Tris-HCl, pH 8.0)

0.45 g glucose, 0.186 g Na^EDTA.2H^O and 0.151 g Tris were dissolved in 40 ml 

sterile distilled water, adjusted to pH 8.0 with HC1 and made up to a final volume of 50 

ml. The solution was sterilized by filtering through a 0.2 pm filter and stored at 4°C. 

Before use, lysozyme was added to a concentration of 2 mg ml'1.

Lvsis Buffer (0.2 M NaOH, 1% (w/v) SDS)

2 ml 5 M NaOH and 5 ml 10% (w/v) sodium dodecyl sulphate (SDS) were made up to 

50 ml in sterile distilled water just before use.

50 x Tris-Acetate (TAE) buffer (2 M Tris, 0.05 M EDTA, pH 8.0)

242.3 g Tris and 18.6 g Na^EDTA.2H^O were dissolved in 800 ml distilled water, 

adjusted to pH 8.0 with glacial acetic acid and made up to 11. The solution was 

sterilized by autoclaving. The stock solution was diluted 50 times to give a 1 x working 

solution.

TAE-agarose gel

1 g agarose was melted by heating in 2 ml 50 x TAE buffer and 98 ml sterile distilled 

water.

10 x DNA Sample Loading Buffer (50% (w/v) glycerol, 1 mM EDTA, 0.4% (w/v) 

bromophenol blue (BPB), pH 8.0)
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25 ml glycerol, 0.1 ml 0.5 M EDTA, pH 8.0 and 0.2 g BPB were dissolved in distilled 

water to a final volume of 50 ml.

CTAB DNA Extraction Buffer (2% (w/v) CTAB, 1.4 M NaCl, 20 mM EDTA, 100 mM 

Tris, pH 8.0,2% (w/v) PVP-40,1% (v/v) 2-mercaptoethanol)

100 ml 10% (w/v) hexadecyltrimethylammonium bromide (CTAB), 40.91 g NaCl, 3.7 g 

Na^EDTA.2H^C, 50 ml 1M Tris, pH 8.0 and 10 g polyvinylpyrrolidone-40 (PVP) were 

dissolved in distilled water to a final volume of 500 ml. Just before use 5 ml 2- 

mercaptoethanol was added.

CTAB Wash Buffer (76% (v/v) ethanol, 10 mM ammonium acetate)

380 ml 100% ethanol and 0.83 ml 6 M ammonium acetate were made up to a final 

volume of 500 ml in distilled water.

Phage Dilution Buffer fPDB") (50 mM Tris, 100 mM NaCl, 0.01% (w/v) gelatin, pH 

7.9)

5.844 g NaCl, 6.057 g Tris base and 0.1 g gelatin were dissolved in 800 ml distilled 

water, adjusted to pH 7.9 with HC1 and made up to 11. The solution was sterilized by 

autoclaving, cooled to RT and sterile 1 M MgCh added to a final concentration of 

lOmM.

Buffer 1 (0.1 M maleic acid, 0.15 M NaCl, pH 7.5)

11.608 g maleic acid and 8.768 g NaCl were dissolved in 800 ml distilled water, 

adjusted to pH 7.5 and made up to 11 The solution was sterilized by autoclaving.

10% (w/v) Blocking Reagent

10 g Blocking reagent (Boehringer Mannheim UK) were dissolved in 100 ml Buffer 1 

and autoclaved.
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Blocking Buffer 2

10% Blocking reagent was diluted 10-fold in Buffer 1 to give a final concentration of 

1%.

Buffer 3 (0.1 M Tris-HCl, 0.1 M NaCl, 50 mM MgCl2, pH 9.5)

12.11 g Tris, 0.844 g NaCl were dissolved in 800 ml distilled water and adjusted to 

approximately pH 9.5.10.165 g MgCh were dissolved in water first then added to the 

solution. The pH was adjusted to pH 9.5.

RNA extraction buffer (0.2 M boric acid/Tris, 10 mM EDTA, pH 7.6)

12.366 g boric acid and 3.722 g Na2EDTA.2H2C were dissolved in distilled water, 

adjusted to pH 7.6 with Tris and made up to 11. The solution was sterilized by 

autoclaving. Before use, 20 ml 25% (w/v) SDS and 20 ml 2-mercaptoethanol were 

added.

10 x MOPS buffer (0.2 M MOPS, 50mM sodium acetate, 10 mM EDTA, pH 7.0) 

41.86 g MOPS free acid, 6.8 g sodium acetate and 3.72 g Na2EDTA.2H2O were 

dissolved in 800 ml distilled water, adjusted to pH 7.0 with NaOH and made up to 11. 

The solution was sterilized by autoclaving.

Denaturing RNA gel

1 g agarose was melted by heating in 88.2 ml sterile distileed water and allowed to cool 

to approximately 50°C. 10 ml 10 x MOPS buffer and 1.85 ml 11.9 M formaldehyde 

solution were added.

RNA loading buffer

RNA samples were dissolved in buffer containing final concentrations of 1 x MOPS 

buffer, 2.2 M formaldehyde, 50% formamide, 10 jig ml'1 ethidium bromide, 5% 

glycerol, 0.1 mM EDTA, 0.04% BPB.
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20 x SSC (3 M NaCl, 0.3 M trisodium citrate, pH 7.0)

175.3 g NaCl and 88.2 g trisodium citrate were dissolved in 800 ml distilled water, 

adjusted to pH 7.0 with NaOH and made up to 11. The solution was sterilized by 

autoclaving.

10 x SSPE (3 M NaCl, 0.2 M sodium phosphate, 20 mM EDTA, pH 7.4)

87.65 g NaCl, 13.8 g NaHzPO^HzO and 3.7 g Na^EDTA.2H^O were dissolved in 800 

ml distilled water, adjusted to pH 7.4 with NaOH and made up to 11. The solution was 

sterilized by autoclaving and filtered through a 0.2 pm filter.

5 M Potassium Acetate. pH 4.8

24.535 g potassium acetate were dissolved in 50 ml distilled water. Glacial acetic acid 

was added until the solution was pH 4.8. The solution was sterilized by filtering through 

a 0.2 pm filter and stored at RT.

1 M Magnesium Chloride

20.33 g MgCl^.6H^O was dissolved in sterile distilled water and made up to 100 ml. The 

solution was sterilized by filtering through a 0.2 pm filter and stored at 4°C.

1 M Magnesium Sulphate

24.65 g MgSO/iJHaO was dissolved in sterile distilled water and made up to 100 ml. 

The solution was sterilized by filtering through a 0.2 pm filter and stored at 4°C.

20% (w/v) Maltose or Glucose

20 g maltose or glucose was dissolved in sterile distilled water and made up to 100 ml. 

The solution was sterilized by filtering through a 0.2 pm filter and stored at 4°C.

13% (w/v) PEG in 1.6 M NaCl

13 g polyethylene glycol (PEG) 8000 and 9.352 g NaCl were dissolved in sterile 

distilled water, made up to 100 ml and sterilized by filtering through a 0.2 pm filter.
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20% (w/v) PEG in 2 M NaCl

200 g PEG 8000 and 116.9 g NaCl were dissolved in distilled water and made up to 11. 

Denaturing Solution (0.5 M NaOH, 1.5 M NaCl)

20 g NaOH and 87.66 g NaCl were dissolved in distilled water and made up to 1 1 

Neutralizing Solution (0.5 M Tris, 1.5 M NaCl, pH 7.4)

87.66 g NaCl and 60.57 g Tris were dissolved in 800 ml distilled water, adjusted to pH

7.4 with HC1 and made up to 11.

HYBSOL (0.15 M NaCl, 10 mM NaH2P04, 1 mM EDTA, 7% (w/v) SDS, 10% (w/v) 

PEG, 100 jig ml'1 herring sperm DNA, 250 pg ml"1 heparin, pH 7.2)

8.75 g NaCl, 1.56 g NaH2PO4.2H2O, 0.37 g Na2EDTA.2H2O, 70 g SDS and 100 g PEG 

8000 were dissolved in 800 ml sterile distilled water and adjusted to pH 7.2 with NaOH. 

10 ml 10 mg ml"1 herring sperm DNA and 0.25 g heparin were added and the volume 

made up to 11. Before use, the solution was sterilized by filtering through a 0.2 pm 

filter.

DNase I

DNase I was dissolved in sterile distilled water to a final concentration of 10 mg ml"1, 

dispensed into aliquots and stored at -20°C.

RNase A

RNase A was dissolved in sterile distilled water to a final concentration of 10 mg ml"1. 

The solution was heated to 100°C for 15 min, dispensed into aliquots and stored at - 

20°C.
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Phenol:Chloroform:Isoamvl alcohol GAA) (25:24:1)

500 \i\ phenol, 480 pi chloroform and 20 pi IAA were mixed by vortexing in a 

microfuge tube. The mixture was centrifuged at low speed in a microcentrifuge for 1 

min, the upper phase discarded and the lower phase was used for extractions.

Phenol : Chloroform (1:1)

Equal volumes of phenol and chloroform were mixed by vortexing and centrifuged at 

2300 g for 5 min or low speed for 1 min in a microcentrifuge. The lower phase was used 

for extractions.

2% (w/v) Isopropyl-1 -thio-B-D-ealactopyranoside (TPTG1

0.2 g IPTG was dissolved in 10 ml sterile distilled water, sterilized by filtering through a 

0.2 pm filter and stored at -20°C.

2% (w/v) 5-bromo-4-chloro-3-indovl-B-D-galactopvranoside (X-Gal)

0.2 g X-gal was dissolved in 10 ml dimethylformamide (DMF) and stored at -20°C.

50 x Denhardt's Solution (1% (w/v) each of Ficoll, PVP, BSA)

5 g Ficoll (Type 400, Sigma), 5 g polyvinylpyrrolidone (PVP) and 5 g bovine serum 

albumen (BSA Fraction V, Boehringer Mannhekn UK) were dissolved in sterile 

distilled water and made up to 500 ml. The solution was sterilized by filtering through a 

0.2 pm filter and stored at -20°C.

Salmon Sperm DNA

Salmon sperm DNA (Type m  sodium salt, Sigma) was dissolved overnight in sterile 

distilled water at a concentration of 10 mg ml’1. The NaCl concentration was adjusted to 

0.1 M and the DNA extracted with an equal volume of phenol, followed by an equal 

volume of phenol:chloroform (1:1). Each time the solutions were mixed by vortexing, 

centrifuged at 20 800 g for 10 min and the upper aqueous phase was collected. The
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DNA was sheared by passing it 12 times rapidly through a 17-gauge needle. The DNA 

was precipitated by adding 2 volumes ice-cold 100% ethanol and collected by 

centrifugation at 10 000 g for 10 min. The pellet was dried and redissolved in sterile 

distilled water to a concentration of approximately 10 mg ml"1. The OD260 was 

determined and the exact concentration was calculated before storade in aliquots at - 

20°C. Before use, the DNA was denatured by heating at 100°C for 10 min then cooling 

rapidly on ice/ethanol.

A2. BIOCHEMICAL REAGENTS

Buffer A (CTAB extraction buffer: 10 mM MOPS, 0.5% (w/v) CTAB, 30% (w/v) 

glycerol, pH 7.0)

2.093 g MOPS free acid, 5 g CTAB and 300 g glycerol were dissolved in 800 ml 

distilled water, adjusted to pH 7.0 with NaOH and made up to 11.

Buffer B (50 mM acetic acid/NaOH, pH 5.0)

3 g acetic acid was made up to 800 ml with distilled water, adjusted to pH 5.0 with 

NaOH and made up to 11.

Enzyme Extraction Buffer (76 mM Na^HPO^, 27 mM NaH^PO^, 9.2 mM Na^B^O ,̂ 13 

mM H3BO3, 5 mM EDTA, 5 mM DTT, 0.25 mM PMSF, 5% (w/v) PVPP, pH 7.6)

A 2 x concentrate was prepared by dissolving 27.054 g Na2HP04 2H]0, 7.45 g 

NaH2P04 .H20 , 7.016 g Na2B4O7.10H20 , 1.606 g H3BO3 and 3.724 g Na2EDTA.2H20 

in 800 ml distilled water. The pH was adjusted to pH 7.6 and the volume made up to 11. 

Before use the final buffer was prepared with 150 ml 2 x buffer, 1.5 ml 1 M
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dithiothreitol (DTT), 750 (il 100 mM phenylmethanesulphonyl fluoride (PMSF) and 15 

g polyvinylpolypyrrolidone (PVPP) made up to 300 ml, per 100 g FW of original tissue. 

0.4 M Citrate-Phosphate-Tris (CPT) buffer

58.8 g trisodium citrate monohydrate, 27.6 g Nal^PCU.I^O and 24.2 g Tris base were 

dissolved in 400 ml distilled water, adjusted to pH 9.0 with HC1 and made up to 500 ml. 

The solution was diluted to 50 mM in working solutions.

Resolving Gel Buffer (1.5 M Tris, pH 8.8)

181.71 g Tris base was dissolved in 800 ml distilled water, adjusted to pH 8.8 with HC1 

and made up to 11.

Stacking Gel Buffer (0.5 M Tris, pH 6.8)

30.29 g Tris base was dissolved in 400 ml distilled water, adjusted to pH 6.8 with HC1 

and made up to 500 ml.

20% (w/v) Sodium Dodecvl Sulphate (SDS)

20 g SDS was dissolved in distilled water, made up to 100 ml and heated until 

dissolved.

10% (w/v) Ammonium Persulphate

0.1 g ammonium persulphate was dissolved in 1 ml distilled water just before use and 

stored at 4°C for a maximum of 1 day.
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SDS-PAGE Resolving and Stacking Gpk

Stock Solution 10% Resolving Cel 3.75% Stacking Gel

Resolving gel buffer 3.75 ml -

Stacking gel buffer - 3.75 ml

30 % Acrylamide (Bio-Rad) 5.0 ml 1.875 ml

20% (w/v) SDS 75 pi 75 pi

10% (w/v) Ammonium persulphate 75 pi 75 pi

TEMED 7.5 pi 15 pi

H20 6.1 ml 9.21ml

Total volume (for 2 gels) 15 ml 15 ml

2 x Laemmli Sample Buffer (125 mM Tris, 20% (v/v) glycerol, 4% (w/v) SDS, 0.01% 

(w /v) bromophenol blue, pH 6.8)

6.25 ml 1 M Tris, pH 6.8, 10 ml glycerol, 20 ml 10% (w/v) SDS and 0.5 ml 1% (w/v) 

BPB in 50 mM NaOH were made up to 50 ml with distilled water.

10 x SDS-PAGE Runninp Rnffer (0.25 M Tris, 1.92 M glycine, 1% (w/v) SDS)

30.3 g Tris base, 144.2 g glycine and 10 g SDS were dissolved in 1 1 distilled water. The 

pH was checked and should be approximately pH 8.3 without adjustment.

20 mM CAPS Buffer

4.426 g CAPS was dissolved in 800 ml distilled water, adjusted to pH 11.0 with NaOH 

and made up to 11.

Transfer Buffer (10 mM CAPS, 10% (v/v) methanol)

500 ml 20 mM CAPS buffer was combined with 100 ml methanol and 400 ml water.
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Carboxvmethvlcellulose fCMQ Substrate (1.875% (w/v) CMC)

500 ml sterile distilled water was mixed on slow speed in a sterile Waring blender with

18.75 g CMC. Further water was added until the blender was nearly full and the solution 

was mixed for approximately 2 min. The solution was poured into a 11 volumetric flask 

and stored at 4°C overnight to allow the bubbles to settle out. The solution was allowed 

to reach RT, made up to 11 and centrifuged in sterile Oakridge tubes at 36 900 g for 20 

min at RT. The solution was poured off into a sterile bottle and stored at 4°C for up to 6 

months.

Ferricvanide Reagent

0.25 g KjFe(CN)6, 14 g K2HPO4 and 4.2 g K3PO4 were dissolved in 100 ml distilled 

water.

100 mM PMSF

0.871 g PMSF was dissolved in 50 ml methanol and stored at 4°C.

1 M DTT

3.855 g DTT was dissolved in 25 ml distilled water and stored at -20°C in aliquots. 

Coomassie Protein Reagent (0.01% (w/v) Coomassie Brilliant Blue G-250, 4.7% (w/v) 

ethanol, 8.5% (w/v) phosphoric acid)

0.05 g Coomassie Brilliant Blue G-250 was dissolved in 25 ml ethanol, 50 ml 85%

(w/v) phosphoric acid and made up to 500 ml with distilled water. The solution was 

filtered through a 0.45 pm filter before use.

Coomassie Blue Stain (0.05% (w/v) Coomassie Brilliant Blue R-250,25% (v/v) 

methanol, 8% (v/v) acetic acid)

0.25 g Coomassie Brilliant Blue R-250 was dissolved in 125 ml methanol. 40 ml acetic 

acid was added and the volume made up to 500 ml with distilled water.
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Destain (25% (v/v) methanol, 8% (v/v) acetic acid)

250 ml methanol and 80 ml acetic acid were made up to 11 with distilled water. 

Fix/Stop Solution (10% (v/v) acetic acid)

50 ml acetic acid was made up to 500 ml with distilled water.

Stain Solution (0.1% (w/v) silver nitrate, 0.05% (v/v) formaldehyde)

0.025 g AgNOg was dissolved in distilled water and made up to a volume of 25 ml. 37.5 

pi 37% formaldehyde was added and the solution was stored in the dark.

Developer (3% (w/v) sodium carbonate, 2 pg ml'1 sodium thiosulphate, 0.05% (v/v) 

formaldehyde)

3 g NaiCOg was dissolved in distilled water, made up to 100 ml and stored at 4°C. Just 

before use 4 pi 10 mg ml"1 sodium thiosulphate and 30 pi 37% formaldehyde were 

added to 20 ml developer solution.

10 mg ml'1 Sodium Thiosulphate

0.1 g Na thiosulphate was dissolved in 10 ml distilled water and stored at 4°C.
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