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Abstract 

Marine fish are an irreplaceable resource but are currently under threat due to 

overfishing and climate change. To date, most of the emphasis has been on single stocks or 

populations of economic importance. However, commercially valuable species are embedded 

in assemblages of many species and there is only limited understanding of the extent to which 

the structure of whole communities has altered in recent years. Most assemblages are 

dominated by one or a few species, with these highly abundant species underpinning 

ecosystem services and harvesting decisions.  

This paper shows that there have been marked temporal changes in the dominance 

structure of Scottish marine assemblages over the last three decades, where dominance is 

measured as the proportional numerical abundance of the most dominant species. We report 

contrasting patterns in both the identity of the dominant species, and shifts in the relative 

abundance of the dominant in assemblages to the east and west of Scotland. This result 

highlights the importance of multi-species analyses of harvested stocks and has implications 

not only for fisheries management but also for consumer choices. 
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Significance statement 

Currently marine biodiversity is facing multiple threats from factors such as over 

exploitation and climate change. This paper investigates patterns in the dominance structure 

of two geographically close, yet distinct coastal ecosystems and highlights the importance of 

examining fish communities as a whole rather than by population. 

 

Introduction 

The ongoing biodiversity crisis is the consequence of a combination of anthropogenic 

impacts including over exploitation and climate change (Jackson, 2008; García Molinos et 

al., 2016; Cheung, 2018). To date, many of the evaluations of marine fish assemblages, 

particularly in the context of stock assessment, have focussed on trends in individual species 

(Pershing et al., 2015; Boyd et al., 2018). Many of these (Baudron et al., 2011; Engelhard et 

al., 2014; Dutz et al., 2016) report marked changes over the last few years. Recently, 

however, attention has turned to the dynamics of entire marine assemblages (Greenwood and 

Maitland, 2009), with investigators, e.g. (Jung and Houde, 2003; Magurran et al., 2015; 

Morley et al., 2017; Iacarella et al., 2018), increasingly recognising the need to quantify 

spatial and temporal change in biodiversity.  Shifts in species richness (Daan, 2006; Hiddink 
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and Ter Hofstede, 2008; ter Hofstede et al., 2010) and size (Bell et al., 2018) have been 

reported, but as biodiversity is a multifaceted concept (Magurran, 2013) there is still much to 

be learnt about the nature of biodiversity change in assemblages of wild fish. 

One frequently used measure of biodiversity is relative species abundance; this 

quantifies the commonness or rarity of species in comparison to the overall abundance of the 

assemblage. Species abundance distributions (SADs), which describe the pattern of relative 

abundance within an assemblage, generally follow the shape of a ‘hollow curve’ with a few 

abundant species and many rare ones. The most dominant species typically account for a 

large fraction of the overall abundance, and play an important role in ecosystem function 

(Davies et al., 2011; Ellingsen et al., 2015; Wohlgemuth et al., 2016; Jones and Magurran, 

2018). For this reason the relative dominance of the most numerically abundant species in an 

assemblage is an informative measure of community structure and can potentially reveal 

changes that would otherwise be unseen using metrics such as species richness or total 

abundance (see Supplementary Figure 1).  

Here we draw on time-series data of fish assemblages to the east and west of Scotland 

to ask how the dominance structure of these commercially important regions has changed 

over three decades. This time scale represents the period over which high quality assemblage 

data are available (ICES, 2014). The study areas being compared in the analysis are 

geographically close, yet are exposed to different climatic conditions and exploitation 

practices; as such they provide an insight into the extent of recent change in assemblage 

dominance structure in heavily fished regions of the North East Atlantic. 

We know that fish assemblages to the west of Scotland are experiencing considerable 

reorganisation as a result of biotic homogenization (Magurran et al., 2015), and that biotic 

homogenization and homogenization of water temperatures are correlated in the west coast 

assemblages. In contrast, the North Sea to the east of Scotland has exhibited a smaller overall 

increase in water temperature during the same period (ter Hofstede et al., 2010).  Thus, we 

expect to detect a shift in dominance structure in west coast fishes over the time frame of 

interest, with latitudinal heterogeneity in the response. No a priori predictions are made for 

east coast assemblages, which are included to extend the scope of the analysis and provide a 

comparison with west coast changes.   

 

Materials and Methods 

Materials and Data 

The Scottish West Coast Groundfish survey (DATRAS, 2013) takes place annually in 

January, February and March whilst the North Sea International Bottom Trawl survey 

(DATRAS, 2015) is carried out biannually in the first and third quarters (where the first 

quarter is January, February and March and the third quarter is July, August and September). 

We used the filter ‘All Species’ when selecting the scientific trawl data; this meant that both 

non-commercial and commercial species were included in the analysis. CPUE (catch per unit 

effort) per length per haul per thirty minutes was chosen as the measure of abundance as it 

provided the most comprehensive dataset for both systems. Quarter 1 contains the most 

consistently sampled areas from both systems and is also the only quarter where all years 

were sampled. To maintain a fair comparison between the areas only Quarter 1 data are used 

here with 1985 as the starting point in both cases. Both surveys use an ICES statistical 
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rectangle (rectangles represent a 30’ latitude by 1° longitude grid cell) based sampling 

strategy which is consistent through time.   

The Grande Overture Verticale (GOV) trawl method is the recommended gear for all 

bottom trawl surveys carried out by ICES. A full description and figures detailing the gear 

can be found in the ICES Manual for the International Bottom Trawl Surveys (ICES, 2015). A 

comparative study carried out in 2012 (Reid et al., 2012) showed that the results of trawling 

using this gear performed similarly to that using a standard commercial trawl. In order to 

ensure consistency between systems our study only uses the data sampled using the GOV 

gear.  

Species and temperature data were sourced from the International Council for the 

Exploration of the Sea (ICES) data portal (ICES, 2014). The species data are taken from two 

standardised surveys incorporating the ICES regions VIa (West coast), IVa and IVb (North 

Sea). The trawl survey gear provides an adequate sample of a wide range of species and 

sizes; the complete list of fish included in the recorded catch data (“BTSSurveySpecies.xlsx” 

– worksheet tab allSpecies) and the subset of those featured in the study set (worksheet tab - 

studySpecies) are included in the supplementary materials. Surveys adhere to strict protocols 

(ICES, 2015) with all species within a haul identified to the lowest taxonomic level possible. 

Additional information is also recorded, where possible, for length, age, sex and maturity, 

though these data are not used in our analysis. 

Electronic equipment is used to monitor net geometry during all trawls; this allows for 

the appropriate adjustment of sweep length according to water depth (ICES, 2015). The 

depths where hauls are recorded range from 10m to 250m. 

 

 
 

Figure 1: Study Area 

The green shaded areas show the 35 ICES statistical rectangles used in the West Coast survey, whilst 

the blue shaded rectangles represent the 35 used in the North Sea survey. The underlying hatched area 

represents the ICES rectangles from the wider area and the central column of figures corresponds to 

the latitudinal bands used in analysis. 
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We selected the 35 ICES west coast rectangles (see Figure 1), as these were the ones 

which had been most consistently sampled (Magurran et al., 2015), and chose 35 

correspondingly well sampled, similarly positioned east coast rectangles for comparison. 

Each rectangle was assigned to its respective latitudinal band (0.5 degrees wide). The spatial 

coverage on the west coast extends from 55.5 degrees to 59.5 degrees north and includes 134 

species (128 finfish). The corresponding 35 ICES rectangles (see Figure 1) on the east coast 

extend from 56.5 degrees to 61.5 degrees and include 138 species (129 finfish).  For the 

purposes of this analysis the focus was on finfish but the numerical abundance of the 

dominant species was computed in relation to the entire assemblage - which also includes a 

few macroinvertebrates such as the European common squid Alloteuthis subulata (Lamarck 

1798) - as these are the species amongst which resources are partitioned. 

Sea surface (≤10m) temperature data (Cº) are collected as part of monitoring and were 

assigned to the relevant latitudinal band for this analysis (see Figure 1). 

 

 

Methods  

The study data comprises nine latitudinal bands on the west coast and eleven on the 

east. Community time series were compiled for each latitudinal band following sample based 

rarefaction (Dornelas et al., 2014) (see Supporting Information – Code). Because species 

richness and other diversity metrics are sensitive to sample size, raw (unrarefied) data can 

lead to bias. Rarefaction (Gotelli and Colwell, 2011) is a statistical resampling methodology 

that reduces this bias. Here the minimum number of samples per year, per latitudinal band, 

was resampled to generate a constant number of samples to be used in the analyses. Sample-

based rarefaction was used in this study as – in contrast to individual based rarefaction- it 

retains species identity.  

The most numerically abundant species in each latitudinal band, and each year, was 

defined as the dominant species.  In the case of a tie (where two or more species were jointly 

most abundant) the species occurring first in the list of species was chosen. Relative 

dominance was then calculated as a proportion of the total abundance of species contained 

within each assemblage. (R code for this function and others can be found in the 

supplementary R markdown document (see Supporting Information – Code)).  

We first quantified the overall annual trend in relative dominance, on each coast, 

using ordinary least squares (OLS). Next, we computed overall annual change in the 

composition of the assemblage, in each latitudinal band and on each coast, relative to the first 

year in the time series (1985), using the Morisita-Horn dissimilarity index (vegdist function 

in the vegan package (Oksanen et al., 2017)), and described the trend using an OLS 

regression. East and west coast trends in mean overall temperature data were treated in the 

same way. Morisita-Horn was chosen to quantify overall compositional change as it is 

sensitive to the abundances of the most abundant species (Magurran, 2013). 

 

Finally we used two-way analysis of variance (ANOVA), with an interaction term, to 

test for differences in dominance between coasts.  

 

model<-aov(relative dominance~year*coast) 
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All analyses used R statistical software (RCoreTeam, 2018). Mapping functions were 

carried out using the ESRI GIS software ArcGIS (ESRI, 2015). 

 

Results 

 

 
 

Figure 2: Upper panel of the plot shows the relative dominance (as a percentage) for the numerical 

abundance on each coast. This plot is the same as Figure 2 within the main text but has yearly points 

coloured by the changing identities of the dominant species. The dotted lines in both panels represent 

Ordinary Least Squares (OLS) regression trend lines. The dominant species identities are similar in 

both calculation methods (numerical abundance and length as a proxy for biomass). In addition the 

trends follow similar patterns although when using biomass the inclines are flatter in both ecosystems.  

West coast system - numerical abundance, slope=0.007, p-value=0.012; biomass, slope=0.003, p-

value=0.33. East coast system - numerical abundance, slope=0.004, p-value=0.1; biomass, 

slope=0.0001, p-value=0.93. 

 

As Figure 2 clearly demonstrates, the dominance structure of these marine 

assemblages changed over the thirty year duration of the study (see Figure 2).  However, 

although dominance increased in both systems, this increase was significant only for the west 

coast (OLS regression: west coast p-value=0.012, east coast p-value=0.102). This result is 

supported by a two-way ANOVA which revealed significant differences in dominance 

between years (F1, 56=8.493 p=0.005) and between coasts F1, 56=5.175 p=0.03), (see 

Supplementary Table 2) but no significant interaction for year x coast [F1, 56=0.633, p=0.43] 

(for full ANOVA results see Supplementary Table 1). 

 

Both systems became increasingly dissimilar (see Figure 3) in composition over time 

(relative to the first year in the time series), with a significant rise in dissimilarity in the west 

coast, (OLS regression: p-value=0.001), but not the east coast (OLS regression: p-value=0.3). 

Mean sea surface temperatures from the same locations during Quarter 1 also increased in 
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both systems, by 1.3° C on the west coast and 0.7° C on the east coast. Once again, the trend 

was significant only for the west coast (OLS regression: west coast p-value=0.013, east coast 

p-value=0.423). 
 

 
 

Figure 3: Trend in dissimilarity by year 

Morisita-Horn dissimilarity (using Year 1 – 1985 as a baseline) with an OLS regression trend line 

added. The trend is increasing in both systems but only significantly on the west coast (p-

value=0.001). 

 

Overall differences between the two ecosystems were underlain by within-system 

differences in relative dominance (see Figure 4, Supplementary Table 2 and Supplementary 

Figure 3). Overall dominance varied significantly over time (F1, 256=10.65, p=0.001), on the 

west coast, but there was no effect of latitude, (F1, 256=0.1, p=0.75), and no interaction 

between latitude and time (F1, 256=0.6, p=0.44). In contrast, on the east coast there was a 

significant interaction between latitude and time, [F1, 306=4.84, p=0.03], and a significant 

effect of latitude (F1, 306=21. 05, p<0.0001) but not of time (F1, 306=0.04, p=0.84) (see 

Supplementary Table 1 for further details). 

 

 
 

Figure 4: Map showing spatio-temporal changes in dominants (identity and amount) 

The map illustrates changes in the dominance of the most dominant species by latitudinal band. Each 

pie summarises a 10 year period and is colour coded to show the relative dominance of the most 

dominant species.  
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Discussion 

The focus here on marine fish assemblages, rather than fish populations, reveals 

community wide changes that can be obscured in single species studies. A spatio-temporal 

approach (Henderson, 2017) in combination with examination of key attributes of community 

structure, such as the changes in dominance, is an important starting point for understanding 

the consequences of the melting pot of pressures these systems are currently under (Majewski 

et al., 2017).   

The two coastal systems show distinct differences not only in the proportion of 

dominance but also in the identity of the most dominant species. Interestingly, it was in the 

west coast assemblages that we detected the greatest change.  Previous work (Magurran et 

al., 2015) highlighted an increase in biotic homogenization over the same period and 

hypothesized that changes in water temperature may have contributed to this pattern. Another 

recent study (Hansen et al., 2017) found that there were shifts in species dominance expected 

in freshwater lake systems as a result of warming waters. The observed differences in 

dominance found between the east and west coasts are therefore potentially linked to the 

different patterns of change in sea surface temperatures (Simpson et al., 2011; Stuart-Smith et 

al., 2017; Townhill et al., 2017) since water temperature is a key driver of  distribution 

patterns in marine fishes (Perry et al., 2005) . Indeed, the impact of climate change on North 

Sea circulation and its fish stocks has been discussed elsewhere (Turrell, 1992; Baudron et 

al., 2013; Hiddink et al., 2014).  However, temporal variation in sea surface temperatures 

(Genner et al., 2004; Henderson et al., 2011; Miller et al., 2011) is unlikely to be the only 

driver influencing the trends since fishing pressure also leads to marked changes in the 

structure of marine assemblages (Jackson et al., 2001). 

The contrasting outcomes in these two geographic localities illustrate why it is 

difficult to predict how different systems will respond to environmental and anthropogenic 

drivers (Poloczanska et al., 2016). Such spatial heterogeneity may be a widespread 

phenomenon. Contrasting patterns of biodiversity change were also evident in two zones of a 

bay in Brazil,  monitored over three decades,  (Araújo et al., 2016).  

On the east coast - which exhibits less temporal variation in identity of the most 

dominant species - the Norway pout Trisopterus esmarkii (Nilsson, 1855) is the overall 

dominant for around two thirds of the time series with the exception of the initial decade 

where haddock Melanogrammus aeglefinus L. features more prominently. In contrast, on the 

west coast the identities change from Atlantic herring Clupea harengus L. in the first decade, 

to T. esmarkii in the second and finally Atlantic mackerel Scomber scombrus L. in the third. 

These species make different contributions to ecosystem function and have different 

economic values. For example, S. scombrus is thought to be a predator of juvenile T. esmarkii 

(ICES, 2005), and while S. scombrus catches have high commercial value, T. esmarkii is 

considered useful only as food in the aquaculture industry (ICES, 2005). 

Historically, Scotland’s economy has enjoyed a significant contribution from the 

fishing sector and it is important that this tradition be maintained, but only if it can be done in 

a sustainable manner. A better understanding of fish communities can lead to more efficient 

management strategies (Cheung et al., 2018; Moriarty et al., 2018). Currently there are new 

opportunities for the development of broader, constructive approaches to fisheries 
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management (Jacobs et al., 2018) where fish biology plays an important role in informing 

wild fisheries and their continued sustainability.  

Science has a vital part to play in the conservation and management of fish resources 

(Obregón et al., 2018) but, as this study has demonstrated, greater understanding of how fish 

assemblages respond to change can be gained if fisheries managers take advantages of the 

rich toolkit of biodiversity metrics. Even simple measures, such as the dominance index used 

here, reveal patterns that have hitherto been masked in population based analyses (Perry et 

al., 2010). As such they have the potential to shed new light on the causes and consequences 

of ecosystem restructuring.  
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