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Abstract

Statements on social media can be analysed to identify individuals who are experi-
encing red flag medical symptoms, allowing early detection of the spread of disease
such as influenza. Since disease does not respect cultural borders and may spread
between populations speaking different languages, we would like to build multilin-
gual models. However, the data required to train models for every language may
be difficult, expensive and time-consuming to obtain, particularly for low-resource
languages. Taking Japanese as our target language, we explore methods by which
data in one language might be used to build models for a different language. We
evaluate strategies of training on machine translated data and of zero-shot transfer
through the use of multilingual models. We find that the choice of source language
impacts the performance, with Chinese-Japanese being a better language pair than
English-Japanese. Training on machine translated data shows promise, especially
when used in conjunction with a small amount of target language data.

1 Introduction

The spread of influenza is a major health concern. Without appropriate preventative measures, this
can escalate to an epidemic, causing high levels of mortality. A potential route to early detection is to
analyse statements on social media platforms to identify individuals who have reported experiencing
symptoms of the illness. These numbers can be used as a proxy to monitor the spread of the virus.

Since disease does not respect cultural borders and may spread between populations speaking different
languages, we would like to build models for several languages without going through the difficult,
expensive and time-consuming process of generating task-specific labelled data for each language. In
this paper we explore ways of taking data and models generated in one language and transferring to
other languages for which there is little or no data.

2 Related Work

Previously, authors have created multilingual models which should allow transfer between languages
by aligning models [van der Plas and Tiedemann, 2006] or embedding spaces [Johnson et al., 2019,
Alaux et al., 2019]. An alternative is translation of a high-resource language into the target low-
resource language; for instance, [Chaudhary et al., 2019] combined translation with subsequent
selective correction by active learning of uncertain words and phrases believed to describe entities, to
create a labelled dataset for named entity recognition.
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3 MedWeb Dataset

We use the MedWeb (“Medical Natural Language Processing for Web Document”) dataset [Wakamiya
et al., 2017] that was provided as part of a subtask at the NTCIR-13 Conference [Kato and Liu,
2017]. The data is summarised in Table 1. There are a total of 2,560 pseudo-tweets in three different
languages: Japanese (ja), English (en) and Chinese (zh). These were created in Japanese and then
manually translated into English and Chinese (see Figure 1). Each pseudo-tweet is labelled with a
subset of the following 8 labels: influenza, diarrhoea/stomach ache, hay fever, cough/sore throat,
headache, fever, runny nose, and cold. A positive label is assigned if the author (or someone they live
with) has the symptom in question. As such it is more than a named entity recognition task, as can be
seen in pseudo-tweet #3 in Figure 1 where the term “flu” is mentioned but the label is negative.

Table 1: MedWeb dataset overview statistics.
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Training 1,920 0.997 106 182 163 227 251 345 375 265 530

Test 640 0.933 24 64 46 80 77 93 123 90 195

Pseudo-tweet Labels
(ja) 風邪を引くと全身がだるくなる。

Cold(en) The cold makes my whole body weak.

(zh) 一感冒就身酸无力。

(ja) アトピーと花粉症が重なってつらい Hay fever

(en) It’s really bad. My eczema and allergies are acting up at the same time. &

(zh) 敏症加花粉症，受死了。 Runny nose

(ja) 今日インフルの手術じゃないただの注射なのにビビる

No labels(en) I’m so scared of today’s flu shot, and it’s not even surgery or anything.

(zh) 今天只打不做流感手，但是害怕。

Figure 1: Example pseudo-tweet triplets.

4 Methods

Bidirectional Encoder Representations from Transformers (BERT): The BERT model [Devlin
et al., 2018] base version is a 12-layer Transformer model trained on two self-supervised tasks using
a large corpus of text. In the first (denoising autoencoding) task, the model must map input sentences
with some words replaced with a special “MASK” token back to the original unmasked sentences. In
the second (binary classification) task, the model is given two sentences and must predict whether
or not the second sentence immediately follows the first in the corpus. The output of the final
Transformer layer is passed through a logistic output layer for classification. We have used the
original (English) BERT-base1, trained on Wikipedia and books corpus [Zhu et al., 2015], and a
Japanese BERT (jBERT) [Kikuta, 2019] trained on Japanese Wikipedia. The original BERT model
and jBERT use a standard sentence piece tokeniser with roughly 30,000 tokens.

1PyTorch code and pre-trained models for BERT: https://github.com/huggingface/transformers
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Multilingual BERT: Multilingual BERT (mBERT)2 is a BERT model simultaneously trained on
Wikipedia in 100 different languages. It makes use of a shared sentence piece tokeniser with roughly
100,000 tokens trained on the same data. This model provides state-of-the-art zero-shot transfer
results on natural language inference and part-of-speech tagging tasks [Pires et al., 2019].

Translation: We use two publicly available machine translation systems to provide two possible
translations for each original sentence: Google’s neural translation system [Wu et al., 2016] via
Google Cloud3, and Amazon Translate4. We experiment using the translations singly and together.

Training procedure: Models are trained for 20 epochs, using the Adam optimiser [Kingma and
Ba, 2014] and a cyclical learning rate [Smith, 2017] varied linearly between 5× 10−6 and 3× 10−5.

5 Experiments

Using the multilingual BERT model, we run three experiments as described below. The “exact match”
metric from the original MedWeb challenge is reported, which means that all labels must be predicted
correctly for a given pseudo-tweet to be considered correct; macro-averaged F1 is also reported.
Each experiment is run 5 times (with different random seeds) and the mean performance is shown in
Table 2. Our experiments are focused around using Japanese as the low-resource target language,
with English and Chinese as the more readily available source languages.

Table 2: Overall results, given as mean (standard deviation) of 5 runs, for different training/test data
pairs. The leading results on the original challenge are shown as baselines for benchmarking purposes.
EN - English, JA - Japanese, ZH - Chinese, TJA - Translated Japanese.

Model Source Train Test Exact Match Accuracy F1 macro
Baselines
Majority class classifier - - - 0.305 -

Random classifier - - - 0.130 (0.012) 0.118 (0.007)

Iso et al. [2017] - EN EN 0.795 -

Iso et al. [2017] - JA JA 0.825 -

Iso et al. [2017] - ZH ZH 0.809 -

BERT - EN EN 0.847 (0.003) 0.884 (0.004)

jBERT - JA JA 0.843 (0.012) 0.880 (0.006)

mBERT - ZH ZH 0.835 (0.004) 0.876 (0.006)

Zero-shot transfer
mBERT - EN JA 0.305 (0.001) -

mBERT - ZH JA 0.507 (0.007) 0.484 (0.032)

Machine translation
mBERT EN TJA JA 0.740 (0.011) 0.740 (0.012)

mBERT ZH TJA JA 0.774 (0.008) 0.821 (0.010)

mBERT EN TJA (x2) JA 0.754 (0.009) 0.758 (0.034)

mBERT ZH TJA (x2) JA 0.804 (0.004) 0.849 (0.098)

2Multilingual BERT Models: https://github.com/google-research/bert/blob/master/multilingual.md
3Cloud Translation | Google Cloud: https://cloud.google.com/translate/
4Amazon Translate: Neural Machine Translation: https://aws.amazon.com/translate/
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5.1 Baselines

To establish a target for our transfer techniques we train and test models on a single language, i.e.
English to English, Japanese to Japanese, and Chinese to Chinese. For English we use the uncased
base-BERT, for Japanese we use jBERT, and for Chinese we use mBERT (since there is no Chinese-
specific model available in the public domain). This last choice seems reasonable since mBERT
performed similarly to the single-language models when trained and tested on the same language.

For comparison, we show the results of Iso et al. [2017] who created the most successful model
for the MedWeb challenge. Their final system was an ensemble of 120 trained models, using two
architectures: a hierarchical attention network and a convolutional neural network. They exploited
the fact that parallel data is available in three languages by ensuring consistency between outputs of
the models in each language, giving a final exact match score of 0.880. However, for the purpose
of demonstrating language transfer we report their highest single-model scores to show that our
single-language models are competitive with the released results. We also show results for a majority
class classifier (predicting all negative labels, see Table 1) and a random classifier that uses the label
frequencies from the training set to randomly predict labels.

5.2 Zero-shot transfer with multilingual pre-training

Our first experiment investigates the zero-shot transfer ability of multilingual BERT. If mBERT has
learned a shared embedding space for all languages, we would expect that if the model is fine-tuned
on the English training dataset, then it should be applicable also to the Japanese dataset. To test this
we have run this with both the English and Chinese training data, results are shown in Table 2. We
ran additional experiments where we froze layers within BERT, but observed no improvement.

The results indicate poor transfer, especially between English and Japanese. To investigate why the
model does not perform well, we visualise the output vectors of mBERT using t-SNE [Maaten and
Hinton, 2008] in Figure 2. We can see that the language representations occupy separate parts of
the representation space, with only small amounts of overlap. Further, no clear correlation can be
observed between sentence pairs.

Zh-Ja Pairs
En-Ja Pairs
English
Japanese
Chinese

Figure 2: Max-pooled output of mBERT final layer (before fine tuning), reduced using principal
component analysis (to reduce from 768 to 50 dimensions) followed by t-SNE (to project into 2
dimensions). 20 sentence triplets are linked to give an idea of the mapping between languages.

The better transfer between Chinese and Japanese likely reflects the fact that these languages share
tokens; one of the Japanese alphabets (the Kanji logographic alphabet) consists of Chinese characters.
There is 21% vocabulary overlap for the training data and 19% for the test data, whereas there is no
token overlap between English and Japanese. Our finding is consistent with previous claims that
token overlap impacts mBERT’s transfer capability [Pires et al., 2019].
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5.3 Training on machine translated data

Our second experiment investigates the use of machine translated data for training a model. We train
on the machine translated source data and test on the target test set. Results are shown in Table 2.
Augmenting the data by using two sets of translations rather than one proves beneficial. In the end,
the difference between training on real Japanese and training on translations from English is around
9% while training on translations from Chinese is around 4%.

5.4 Mixing translated data with original data

Whilst the results for translated data are promising, we would like to bridge the gap to the performance
of the original target data. Our premise is that we start with a fixed-size dataset in the source language,
and we have a limited annotation budget to manually translate a proportion of this data into the
target language. For this experiment we mix all the translated data with different portions of original
Japanese data, varying the amount between 1% and 100%. The results of these experiments are
shown in Figure 3. Using the translated data with just 10% of the original Japanese data, we close the
gap by half, with 50% we match the single-language model, and with 100% appear to even achieve a
small improvement (for English), likely through the data augmentation provided by the translations.
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Figure 3: Exact match accuracy when training on different proportions of the original Japanese
training set, with or without either the original English data or the translated data. The pink and
orange dashed lines show the accuracy of the full set of translated Japanese data (from English and
Chinese respectively) and the blue dashed line shows the accuracy of the full original Japanese data.

6 Discussion and Conclusions

Zero-shot transfer using multilingual BERT performs poorly when transferring to Japanese on the
MedWeb data. However, training on machine translations gives promising performance, and this
performance can be increased by adding small amounts of original target data. On inspection, the
drop in performance between translated and original Japanese was often a result of translations that
were reasonable but not consistent with the labels. For example, when translating the first example in
Figure 1, both machine translations map “風邪”, which means cold (the illness), into “寒さ”, which
means cold (low temperature). Another example is where the Japanese pseudo-tweet “花粉症の
時期はすごい疲れる。” was provided alongside an English pseudo-tweet “Allergy season is so
exhausting.”. Here, the Japanese word for hay fever “花粉症。” has been manually mapped to the
less specific word “allergies” in English; the machine translation maps back to Japanese using the
word for “allergies” i.e. “アレルギー” in the katakana alphabet (katakana is used to express words
derived from foreign languages), since there is no kanji character for the concept of allergies. In
future work, it would be interesting to understand how to detect such ambiguities in order to best
deploy our annotation budget.
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