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Fixation-related N400 for scenes 

 

Abstract 21 

In vision science, a particularly controversial topic is whether and how quickly the 22 

semantic information about objects is available outside foveal vision. Here, we aimed at 23 

contributing to this debate by co-registering eye-movements and EEG while participants 24 

viewed photographs of indoor scenes that contained a semantically consistent or inconsistent 25 

target object. Linear deconvolution modelling was used to analyse the event-related 26 

potentials (ERP) evoked by scene onset as well as the fixation-related potentials (FRPs) 27 

elicited by the fixation on the target object (t) and by the preceding fixation (t-1). Object-28 

scene consistency did not influence the probability of immediate target fixation or the ERP 29 

evoked by scene onset, which suggests that object-scene semantics was not accessed 30 

immediately. However, during the subsequent scene exploration, inconsistent objects were 31 

prioritized over consistent objects in extrafoveal vision (i.e., looked at earlier) and were more 32 

effortful to process in foveal vision (i.e., looked at longer). In FRPs, we demonstrate a 33 

fixation-related N300/N400 effect, whereby inconsistent objects elicit a larger frontocentral 34 

negativity than consistent objects. In line with the behavioural findings, this effect was 35 

already seen in FRPs aligned to the pre-target fixation t-1 and persisted throughout fixation t, 36 

indicating that the extraction of object semantics can already begin in extrafoveal vision. 37 

Taken together, the results emphasize the usefulness of combined EEG/eye-movement 38 

recordings for understanding the mechanisms of object-scene integration during natural 39 

viewing. 40 

 41 

Keywords: object-scene integration; foveal and peripheral vision; semantic processing; 42 

fixation-related potentials, eye tracking, N300/N400, regression-ERPs43 
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Introduction 44 

In our daily activities, for example when we search for something in a room, our 45 

attention is mostly oriented to objects. The time course of object recognition and the role of 46 

overt attention in this process are therefore topics of considerable interest in the visual 47 

sciences. In the context of real-world scene perception, the question of what constitutes an 48 

object is a more complex question than intuition would suggest (e.g., Wolfe, Alvarez, 49 

Rosenholtz, Kuzmova, & Sherman, 2011). An object is likely a hierarchical construct (e.g., 50 

Feldman, 2003), with both low-level features (e.g., visual saliency) and high-level properties 51 

(e.g., semantics) contributing to its identity. Accordingly, when a natural scene is inspected 52 

with eye-movements, the observer’s attentional selection is thought to be based either on 53 

objects (e.g., Nuthmann & Henderson, 2010), image features (saliency; Itti, Koch, & Niebur, 54 

1998) or some combination of the two (e.g., Stoll, Thrun, Nuthmann, & Einhäuser, 2015). 55 

An early and uncontroversial finding is that the recognition of objects is mediated by 56 

their semantic consistency. For example, an object that the observer would not expect to 57 

occur in a particular scene (e.g., a toothbrush in a kitchen) is recognized less accurately (e.g., 58 

Biederman, 1972; Davenport & Potter, 2004; Fenske, Aminoff, Gronau, & Bar, 2006) and 59 

looked at for longer that an expected object (e.g., Cornelissen & Võ, 2017; De Graef, 60 

Christiaens, & D’Ydewalle, 1990; Henderson, Weeks Jr, & Hollingworth, 1999).  61 

What is more controversial, however, is the exact time course along which the 62 

meaning of an object is processed and how this semantic processing then influences the overt 63 

allocation of visual attention (see Wu, Wick, & Pomplun, 2014, for a review). Two 64 

interrelated questions are at the core of this debate: (1) How much time is needed to access 65 

the meaning of objects after a scene is displayed and (2) can object semantics be extracted 66 

before the object is overtly attended, that is, while the object is still outside of high-acuity 67 

foveal vision (> 1° eccentricity) or even in the periphery (> 5° eccentricity).  68 
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Evidence that the meaning of not-yet-fixated objects can capture overt attention comes 69 

from experiments that have used sparse displays of several standalone objects (e.g., Belke, 70 

Humphreys, Watson, Derrick, Meyer, & Telling, 2008; Cimminella, Della Sala & Coco, in 71 

press; Moores, Laiti, & Chelazzi, 2003; Nuthmann, de Groot, Huettig, & Olivers, 2019). For 72 

example, across three different experiments Nuthmann et al. found that the very first saccade 73 

in the display was directed more frequently to objects that were semantically related to a 74 

target object rather than to unrelated objects.  75 

Whether such findings generalize to objects embedded in real-world scenes is 76 

currently an open research question. The size of the visual span – that is the area of the visual 77 

field from which observers can take in useful information (see Rayner, 2014 for review) – is 78 

large in scene viewing. For object-in-scene search, it corresponded to approximately 8º in 79 

each direction from fixation (Nuthmann, 2013). This opens up the possibility that both low-80 

level and high-level object properties can be processed outside the fovea. This is the case for 81 

low-level visual features: objects that are highly salient (i.e., visually distinct) are 82 

preferentially selected for fixation (e.g., Stoll et al., 2015). But what about high-level 83 

semantic information? If extra-foveal semantic processing takes place, then objects that are 84 

inconsistent with the scene context (which are also thought to be more informative, Antes, 85 

1974) should be fixated earlier in time than consistent ones (Loftus & Mackworth, 1978; 86 

Mackworth & Morandi, 1967). 87 

However, results from eye-movement studies on this issue have been mixed. A 88 

number of studies have indeed reported evidence for an inconsistent object advantage (e.g., 89 

Bonitz & Gordon, 2008; Borges, Fernandes, & Coco, 2019; LaPointe & Milliken, 2016; 90 

Loftus & Mackworth, 1978; Underwood, Templeman, Lamming, & Foulsham, 2008). 91 

Among these studies, only Loftus & Mackworth (1978) have reported evidence for immediate 92 

extrafoveal attentional capture (i.e. within the first fixation) by object-scene semantics. In this 93 
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study, which used relatively sparse line drawings of scenes, the mean amplitude of the 94 

saccade into the critical object was more than 7°, suggesting that viewers could process 95 

semantic information based on peripheral information obtained in a single fixation. Several 96 

other studies, however, have failed to find any advantage for inconsistent objects in attracting 97 

overt attention (e.g., De Graef, Christiaens, & D’Ydewalle, 1990; Henderson, Weeks, & 98 

Hollingworth, 1999; Võ & Henderson, 2009, 2011). In these experiments, only measures of 99 

foveal processing – such as gaze duration – were influenced by object-scene consistency, 100 

with longer fixations times on inconsistent than on consistent objects. 101 

Interestingly, a similar controversy exists in the literature on eye guidance in sentence 102 

reading. Although some degree of parafoveal processing during reading is uncontroversial, it 103 

is less clear whether semantic information is acquired from the parafovea (Andrews & 104 

Veldre, 2019, for review). Most evidence from studies involving readers of English has been 105 

negative (e.g., Rayner, Balota, & Pollatsek, 1986), whereas results from reading German 106 

(e.g., Hohenstein & Kliegl, 2014) and Chinese (e.g., Yan, Richter, Shu, & Kliegl, 2009) 107 

suggest that parafoveal processing can advance up to the level of semantic processing. 108 

The processing of object-scene inconsistencies and its time course have also been 109 

investigated in electrophysiological studies (e.g., Ganis & Kutas, 2003; Mudrik, Lamy, & 110 

Deouell, 2010). In event-related potentials (ERPs), it is commonly found that scene-111 

inconsistent objects elicit a larger negative brain response compared to consistent ones. This 112 

long-lasting negative shift typically starts as early as 200-250 ms after stimulus onset (e.g., 113 

Mudrik, Shalgi, Lamy, & Deouell, 2014; Draschkow, Heikel, Võ, Fiebach, & Sassenhagen, 114 

2018) and has its maximum at frontocentral scalp sites, in contrast to the centroparietal N400 115 

effect for words (e.g., Kutas & Federmeier, 2011). The effect was found for objects that 116 

appeared at a cued location after the scene background was already shown (Ganis & Kutas, 117 

2003), for objects that were photoshopped into the scene (Mudrik, Lamy, & Deouell, 2010; 118 
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Mudrik, et al., 2014; Coco, Araujo, & Petersson, 2017), and for objects that were part of 119 

realistic photographs (Võ & Wolfe, 2013). These ERP effects of object-scene consistency 120 

have typically been subdivided into two distinct components: N300 and N400. The earlier 121 

part of the negative response, usually referred to as N300, has been taken to reflect the 122 

context-dependent difficulty of object identification, whereas the later N400 has been linked 123 

to semantic integration processes after the object is identified (e.g., Dyck & Brodeur, 2015). 124 

The present study was not designed to differentiate between these two subcomponents, 125 

especially considering that their scalp distribution is strongly overlapping or even 126 

topographically indistinguishable (Draschkow et al., 2018). Thus, for reasons of simplicity, 127 

we will in most cases simply refer to all frontocentral negativities as “N400”. 128 

One limiting factor of existing ERP studies is that the data were gathered using steady-129 

fixation paradigms in which the free exploration of the scene through eye-movements was not 130 

permitted. Instead, the critical object was typically large and/or located relatively close to the 131 

centre of the screen, and ERPs were time-locked to the onset of the image (e.g., Mudrik et al., 132 

2010). Due to these limitations, it remains unclear whether foveation of the object is a 133 

necessary condition for processing object-scene consistencies, or whether such processing 134 

can at least begin in extrafoveal vision.  135 

In the current study, we used fixation-related potentials (FRPs), that is EEG 136 

waveforms aligned to fixation onset, to shed new light on the controversial findings of the 137 

role of foveal versus extrafoveal vision in extracting object semantics, while providing 138 

insights into the patterns of brain activity that underlie them (for reviews about FRPs see 139 

Dimigen, Sommer, Hohlfeld, Jacobs, & Kliegl, 2011; Nikolaev, Meghanathan, & van 140 

Leeuwen, 2016).  141 

FRPs have previously been used to investigate the brain-electric correlates of natural 142 

reading, as opposed to serial word presentation, helping researchers to provide finer details 143 
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about the online processing of linguistic features (such as word predictability, Kretzschmar, 144 

Bornkessel-Schlesewsky, & Schlesewsky, 2009; Kliegl, Dambacher, Dimigen, Jacobs, & 145 

Sommer, 2012) or the dynamics of the perceptual span during reading (e.g., parafovea-on-146 

fovea effects, Niefind & Dimigen, 2016). More recently, the co-registration method has also 147 

been applied to investigate active visual search (e.g., Devillez, Guyader, & Guerin-Dugue, 148 

2015; Kamienkowski, Ison, Quiroga, & Sigman, 2012; Kaunitz et al., 2014), object 149 

identification (Rämä & Baccino, 2010), and affective processing in natural scene viewing 150 

(Simola, Le Fevre, Torniainen, & Baccino, 2015).  151 

In the present study, we simultaneously recorded eye-movements and FRPs during the 152 

viewing of real-world scenes to distinguish between three alternative hypotheses on object-153 

scene integration that can be derived from the literature: (A) one glance of the scene is 154 

sufficient to extract object semantics from extrafoveal vision (e.g., Loftus & Mackworth, 155 

1978), (B) extrafoveal processing of object-scene semantics is possible but takes some time to 156 

unfold (e.g., Bonitz & Gordon, 2008; Underwood et al., 2008), and (C) the processing of 157 

object semantics requires foveal vision, that is, a direct fixation of the critical object (e.g., De 158 

Graef et al., 1990; Henderson et al., 1999; Võ & Henderson, 2009). We note that these 159 

possibilities are not mutually exclusive, an issue we elaborate on in the General Discussion. 160 

For the behavioural data, these hypotheses translate as follows: under (A), the 161 

probability of immediate target fixation should reveal that already the first saccade on the 162 

scene goes more often towards inconsistent than consistent objects. Under (B), there should 163 

be no effect on the first eye-movement, but the latency to first fixation on the critical object 164 

should be shorter for inconsistent than consistent objects. Under (C), only fixation times on 165 

the critical object itself should differ as a function of object-scene consistency, with longer 166 

gaze durations on inconsistent objects.  167 
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For the electrophysiological data analysis, we used a novel regression-based analysis 168 

approach (linear deconvolution modelling; Cornelissen, Sassenhagen, & Võ, 2019, Dandekar, 169 

Privitera, Carney, & Klein, 2011; Dimigen & Ehinger, 2019; Ehinger & Dimigen, 2018; 170 

Smith & Kutas, 2015b), which allowed us to control for the confounding influences of 171 

overlapping potentials and oculomotor covariates during natural viewing, which can 172 

otherwise distort the neural responses. In the EEG, hypothesis (A) can be tested by computing 173 

the ERP time-locked to the onset of the scene on the display, following the traditional 174 

approach. Given that the critical objects in our study were not placed directly in the centre of 175 

the screen from which observers started their exploration of the scene, any effect of object-176 

scene congruency in this ERP would suggest that object semantics is rapidly processed in 177 

extrafoveal vision, even before the first eye-movement is generated, in line with Loftus & 178 

Mackworth, 1978. Under hypothesis (B) we would not expect to see an effect in the scene-179 

onset ERP. Instead, we should find a negative brain potential (N400) for inconsistent as 180 

compared to consistent objects in the FRP aligned to the fixation that precedes the one that 181 

first lands on the critical object. Finally, if (C) is correct, an N400 for inconsistent objects 182 

should only arise once the critical object is foveated, i.e., in the FRP aligned to the target 183 

fixation (fixation t). In contrast, no consistency effects should appear in the scene-onset ERP 184 

or in the FRP aligned to the pre-target fixation (fixation t-1). To preview the results, both the 185 

eye-movement as well as the EEG data lend support for hypothesis (B). 186 

Methods 187 

Design and task overview 188 

We designed a short-term visual working memory change detection task, illustrated in 189 

Figure 1 and 2. During the study phase, participants were exposed to photographs of indoor 190 

scenes (e.g., a bathroom), each of which contained a target object that was either semantically 191 
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consistent (e.g., toothpaste) or inconsistent (e.g., a flashlight) with the scene context. In the 192 

following recognition phase, after a short retention interval of 900 ms, the same scene was 193 

shown again, but in half of the trials either the identity, the location, or both the identity and 194 

location of the target object had changed relative to the study phase. 195 

Insert Figure 1 and 2 about here 196 

The participants’ task was to indicate with a keyboard press whether or not a change had 197 

happened to the scene (see also LaPointe & Milliken, 2016). All eye-movement and EEG 198 

analyses in the present article focus on the semantic consistency manipulation of the target 199 

object during the study phase.  200 

Participants 201 

Twenty-four participants (9 male) between the ages of 18 and 33 (mean: 25.0 years) 202 

took part in the experiment after providing written informed consent. They were compensated 203 

with £7 per hour. All participants had normal or corrected-to-normal vision. Data from an 204 

additional two participants was recorded but removed from the analysis due to excessive 205 

scalp muscle (EMG) activity or skin potentials in the raw EEG. Ethics approval was obtained 206 

from the Psychology Research Ethics Committee of the University of Edinburgh. 207 

Apparatus and Recording 208 

Scenes were presented on a 19" CRT monitor (Iiyama Vision Master Pro 454) at a 209 

vertical refresh rate of 75 Hz. At the viewing distance of 60 cm, each scene subtended 35.8º  210 

26.9º (width  height). Eye-movements were recorded monocularly from the dominant eye 211 

using an SR Research EyeLink 1000 desktop-mounted system at a sampling rate of 1000 Hz. 212 

Eye dominance for each participant was determined with a parallax test. A chin and forehead 213 

rest was used to stabilize the participant’s head. Nine-point calibrations were run at the 214 
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beginning of each session and whenever the participant’s fixation deviated by > 0.5° 215 

horizontally or > 1° vertically from a drift correction point presented at trial onset.  216 

The EEG was recorded from 64 active electrodes at a sampling rate of 512 Hz using 217 

BioSemi ActiveTwo amplifiers. Four electrodes, located near the left and right canthus and 218 

above and below the right eye, recorded the electro-oculogram (EOG). All channels were 219 

referenced against the BioSemi common mode sense (CMS; active electrode) and grounded 220 

to a passive electrode. The BioSemi hardware is DC coupled and applies digital low-pass 221 

filtering through the A/D-converter’s decimation filter, which has a 5th order sinc response 222 

with a -3 dB point at 1/5th of the sample rate (corresponding approximately to a 100 Hz low-223 

pass filter). 224 

Offline, the EEG was re-referenced to the average of all scalp electrodes and filtered 225 

using EEGLAB’s (Delorme & Makeig, 2004) Hamming-windowed sinc FIR filter 226 

(pop_eegfiltnew.m) with default settings. The lower edge of the filter’s passband was set to 227 

0.2 Hz (with -6 dB attenuation at 0.1 Hz) and the upper edge to 30 Hz (with -6 dB attenuation 228 

at 33.75 Hz). Eye tracking and EEG were synchronized using shared triggers sent via the 229 

parallel port of the stimulus presentation PC to the two recording computers. Synchronization 230 

was performed offline using the EYE-EEG extension (v0.8) for EEGLAB (Dimigen et al., 231 

2011). All datasets were aligned with a mean synchronization error  2 ms as computed based 232 

on trigger alignment after synchronization. 233 

Materials & Rating 234 

Stimuli consisted of 192 colour photographs of indoor scenes (e.g., bedrooms, 235 

bathrooms, offices). Real target objects were placed in the physical scene, before each picture 236 

was taken with a tripod under controlled lighting conditions and with a fixed aperture (i.e., 237 

there was no photo-editing). One scene is shown in Figure 1; miniature version of all stimuli 238 

used in the present study are found as part of the Supplementary Materials. Of the 192 scenes, 239 
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96 were conceived as change items and 96 as no-change items. Each one of the 96 change 240 

scenes was created in four versions. In particular, each scene (e.g., a bathroom) was 241 

photographed with two alternative target objects in it, one that was consistent with the scene 242 

context (e.g., a toothbrush) and one that was not (e.g., a flashlight). Moreover, each of these 243 

two objects was placed at two alternative locations (left or right side) within the scene (e.g., 244 

either on the sink or on the bathtub). Accordingly, three types of change were implemented 245 

during the recognition phase (Congruency, Location, and Both); see Procedure section below.  246 

Each of the 96 no-change scenes was also a real photograph with either a consistent or 247 

an inconsistent object in it, which was again located in either the left or right half of the 248 

scene. Across the 96 no-change scenes, factors consistency (consistent vs. inconsistent 249 

objects) and location (left and right) were also balanced. However, each no-change scene was 250 

unique, that is, we did not create four different versions of each no-change scene. The data of 251 

the 96 no-change scenes, which were originally conceived to be filler trials, was included to 252 

improve the signal-to-noise ratio of the EEG analyses, as these scenes also had a balanced 253 

distribution of inconsistent and consistent objects. 254 

As explained above, each scene contained a critical object that was either consistent or 255 

inconsistent with the scene context. Object consistency was assessed in a pre-test rating study 256 

by eight naïve participants who were not involved in any other aspect of the study. Each 257 

participant rated all of the no-changes scenes as well as one of the four versions of each 258 

change-scene (counterbalanced across raters). Together with each scene, raters saw a box 259 

with a cropped image of the critical object. They were asked (a) to write down the name for 260 

the displayed object, and (b) to respond to the question “How likely is it that this object would 261 

be found in this room?” using a six-point Likert scale (1-6). For the object naming, a mean 262 

naming agreement of 96.35% was obtained. Furthermore, consistent objects were judged as 263 

significantly more likely (mean = 5.78, SD = ± 0.57) to appear in the scene than inconsistent 264 
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objects (1.88 ± 1.11), as confirmed by an independent-samples Kruskal-Wallis H-test (χ2(1) = 265 

616.09, p < .001). 266 

In addition, we ensured that there was no difference between consistent and 267 

inconsistent objects on three important low-level variables: object size (pixels square), 268 

distance from the centre of the scene (degrees of visual angle) and mean visual saliency of the 269 

object as computed using the Adaptive Whitening Saliency model (Garcia-Diaz, Fdez-Vidal, 270 

Pardo, & Dosil, 2012). Table 1 provides additional information about the target object. Paired 271 

t-tests showed no significant difference between consistency conditions in object size, t(476) 272 

= -1.2, p = 0.2; visual saliency, t(476) = 0.1, p = 0.9; and distance from the centre, t(476) = 273 

0.48, p = 0.6.  274 

The position of each target object was marked with an invisible rectangular bounding 275 

box, which was used to implement the gaze contingency mechanism (described in the 276 

Procedure section below) and to determine whether a fixation was inside the target object. 277 

The average width of the bounding box was 6.1° ± 2.0 for consistent objects and 6.1° ± 2.1 278 

for inconsistent objects (see Table 1); the average height was 5.1° ± 1.8 and/or 5.4° ± 2.2, 279 

respectively. The average distance of the object centroid from the centre of the scene was 280 

12.1° (± 2.8) for consistent and 11.7° (± 3.0) for inconsistent objects.  281 

Procedure 282 

A schematic representation of the task is shown in Figure 2. Each trial started with a 283 

drift correction of the eye-tracker. Afterwards, the study scene was presented (e.g., a 284 

bathroom). The display duration of the study scene was controlled by a gaze-contingent 285 

mechanism that ensured that participants fixated the target object (e.g., toothbrush or 286 

flashlight) at least once during the trial. Specifically, the study scene disappeared on average 287 

2000 ms (with a random jitter of ±200 ms, drawn from a uniform distribution) after the 288 

participant’s eyes left the invisible bounding box of the target object (and provided that the 289 
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target had been fixated for at least 150 ms). The jittered delay of about 2000 ms was 290 

implemented to prevent participants from learning to associate the last fixated object during 291 

the study phase with the changed object during the recognition phase. If the participant did 292 

not fixate the target object within 10 s, the study scene disappeared from the screen and the 293 

retention interval was triggered, which lasted for 900 ms. 294 

In the following recognition phase (data not analysed here), the scene was presented 295 

again, either with (50% of trials) or without (50% of trials) a change to an object in the scene. 296 

Three types of object changes occurred with equal probability: Location, Consistency, or 297 

Both. In the (a) Location condition, the target object changed its position and moved either 298 

from left to right or from right to left to another plausible location within the scene (e.g., a 299 

toothbrush was placed elsewhere within the scene). In the (b) Consistency condition, the 300 

object remained in the same location, but was replaced with another object of opposite 301 

semantic consistency (e.g., the toothbrush was replaced by a flashlight or vice-versa). Finally, 302 

in the (c) Both condition, the object was both replaced and moved within the scene (e.g., a 303 

toothbrush was replaced by a flashlight at a different location). 304 

During the recognition phase, participants had to indicate whether they noticed any 305 

kind of change within the scene by pressing the arrow keys on the keyboard. Afterwards, the 306 

scene disappeared and the next trial began. If participants did not respond within 10 s, a 307 

missing response was recorded. 308 

The type of change between trials was fully counterbalanced using a Latin Square 309 

rotation. Specifically, the 96 change trials were distributed across 12 different lists, 310 

implementing the different types of change. This implies that each participant was exposed to 311 

an equal number of consistent and inconsistent change trials. The 96 no-change trials also 312 

comprised an equal number of consistent and inconsistent scenes and were the same for each 313 

participant. All 192 trials were presented in a randomized order. These trials were preceded 314 
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by four practice trials at the start of the session. Written instructions were given to explain the 315 

task which took 20-40 minutes to complete. The experiment was implemented using the SR 316 

Research Experiment Builder software. 317 

Data preprocessing  318 

Eye-movement events and data exclusion 319 

Fixations and saccades events were extracted from the raw gaze data using the SR Research 320 

Data Viewer software, which performs saccade detection based on velocity and acceleration 321 

thresholds of 30° s–1 and 9,500° s–2, respectively. To provide directly comparable results for 322 

eye-movement behaviour and FRP analyses, we discarded all trials on which we did not have 323 

clean data from both recordings. Specifically, from a total of 4,608 trials (24 participants × 324 

192 trials), we excluded 10 trials (0.2%) because of machine error (i.e., no data was recorded 325 

for those trials), 689 trials (15.0%) because the participant responded incorrectly after the 326 

recognition phase and 494 trials (10.7%) because the target object was not fixated during the 327 

study phase. Finally, we removed an additional 97 trials (2.1%) for which the target fixation 328 

overlapped with intervals of the EEG that contained non-ocular artefacts (see below). The 329 

final dataset therefore comprised 3,318 unique trials: 1,567 for the consistent condition and 330 

1,751 for the inconsistent condition. Per participant, this corresponded to an average of 65.3 331 

trials (± 6.9, range = 48-78) for consistent and 73.0 trials (± 6.9, range = 59-82) for 332 

inconsistent items. Due to the fixation check, participants were always fixating at the screen 333 

centre when the scene appears on the display. This on-going central fixation was removed 334 

from all analyses. 335 

EEG ocular artefact correction  336 

EEG recordings during free viewing are contaminated by three types of ocular 337 

artefacts (e.g., Dimigen, 2018; Plöchl, Ossandón, & König, 2012) which need to be removed 338 

to get at the genuine brain activity. Here we applied an optimized variant (Dimigen, 2018) of 339 
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Independent Component Analysis (ICA, Jung et al., 1998), which uses the information 340 

provided by the eye-tracker to objectively identify ocular ICA components (Plöchl et al., 341 

2012). 342 

In a first step, we created optimized ICA training data by high-pass filtering a copy of 343 

the EEG at 2 Hz (Winkler, Debener, Müller, & Tangermann, 2015; Dimigen, 2018) and 344 

segmenting it into epochs lasting from scene onset until 3 s thereafter. This high pass-filtered 345 

training data was entered into an extended Infomax ICA using EEGLAB, and the resulting 346 

unmixing weights were then transferred to the original (i.e. less strictly filtered) recording 347 

(Viola, Debener, Thorne, & Schneider, 2010). From this original EEG dataset, we then 348 

removed all independent components whose time course varied more strongly during saccade 349 

intervals (defined as lasting from -20 ms before saccade onset until 20 ms after saccade 350 

offset) than during fixations with the threshold for the variance ratio (saccade/fixation, see 351 

Plöchl et al., 2012) set to 1.3. The artefact-corrected continuous EEG was then back-projected 352 

to the sensor space. For a validation of the ICA procedure, please refer to Supplementary 353 

Figure S1. 354 

In a next step, intervals with residual non-ocular artefacts (e.g., EMG bursts) were 355 

detected by shifting a 2000 ms moving window in steps of 100 ms across the continuous 356 

recording. Whenever the voltages within the window exceeded a peak-to-peak threshold of 357 

100 µV in at least one of the channels, all data within the window was marked as “bad” and 358 

subsequently excluded from analysis. Within the linear deconvolution framework (see 359 

below), this can easily be done by setting all predictors to zero during these bad EEG 360 

intervals (Smith & Kutas, 2015b), meaning that the data in these intervals will not affect the 361 

computation.  362 
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Analysis 363 

Eye-movement data 364 

Dependent measures: Behavioural analyses focused on four eye-movement measures 365 

commonly reported in the semantic consistency literature: (a) cumulative probability of 366 

having fixated the target object as a function of the ordinal fixation number, (b) the 367 

probability of immediate object fixation, (c) the latency to first fixation on the target object, 368 

and (d) the gaze duration on the target object (cf. Võ & Henderson, 2009).  369 

Linear-mixed effect modelling: Eye-movement data were analysed using linear mixed-370 

effects models (LMM) and generalized linear mixed-effects models (GLMM) as implemented 371 

in the lme4 package in R (Bates et al., 2015). The only exception was the cumulative 372 

probability of first-fixations on the target for which a generalized linear model (GLM) was 373 

used. One advantage of (G)LMM modelling is that it allows one to simultaneously model the 374 

intrinsic variability of both participants and scenes (e.g., Nuthmann & Einhäuser, 2015). 375 

In all analyses, the main predictor was the Consistency of the critical object (contrast 376 

coding: Consistent = -0.5, Inconsistent = 0.5) in the study scene. In the (G)LMMs, Participant 377 

(24) and Scene (192) were included as random intercepts1. The cumulative probability of object 378 

fixation was analysed using a GLM with a binomial (probit) link. This model included the 379 

Ordinal Number of Fixation on the scene as a predictor; it was entered as a continuous variable 380 

ranging from 1 to a maximum of 28 (the 99th quantile).  381 

In the tables of results, we report the beta coefficients, t-values (LMM), z-values 382 

(GLMM), and p-values for each model. The level of significance was calculated from an F-test 383 

                                                 

 

1 We did not include random slopes for two reasons: For Participant, the inclusion of a random slope led to 

a small variance and perfect correlation between intercept and slope. For the random effect Scene, only 

the change trials were fully counterbalanced in terms of location and consistency, meaning that the 

slope for Consistency could not be estimated for the no-change trials. 
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based on the Satterthwaite approximation to the effective degrees of freedom (Satterthwaite, 384 

1946), where p-values in GLMMs are based on asymptotic Wald tests. 385 

Electrophysiological data  386 

Linear Deconvolution Modelling (first level of analysis): EEG measurements during active 387 

vision are associated with two major methodological problems: overlapping potentials and 388 

low-level signal variability (Dimigen & Ehinger, 2019). Overlapping potentials arise from the 389 

rapid pace of active information sampling through eye-movements, which causes the neural 390 

responses that are evoked by subsequent fixations on the stimulus to overlap with each other. 391 

Because the average fixation duration usually varies between conditions, this changing 392 

overlap can easily confound the measured waveforms. A related issue is the mutual overlap 393 

between the ERP elicited by the initial presentation of the stimulus and the FRPs evoked by 394 

the subsequent fixations on it. This second type of overlap is especially important in 395 

experiments like ours, in which the critical fixations occurred at different latencies after scene 396 

onset in the two experimental conditions. 397 

The problem of signal variability refers to the fact that low-level visual and 398 

oculomotor variables can also influence the morphology of the predominantly visually-399 

evoked fixation-related neural responses (e.g., Dimigen et al., 2011; Kristensen, Rivet, & 400 

Guerin-Dugué, 2017; Nikolaev et al., 2016). The most relevant of these variables, which is 401 

known to modulate the entire FRP waveform, is the amplitude of the saccade that precedes 402 

fixation onset (e.g., Dandekar et al., 2011; Thickbroom, Knezevič, Carroll, & Mastaglia, 403 

1991). One option for controlling the effect of saccade amplitude is to include it as a 404 

continuous covariate in a massive univariate regression-model (Smith & Kutas, 2015a, 405 

2015b), in which a separate regression model is computed for each EEG time point and 406 

channel (Weiss, Knakker & Vidnyánszky, 2016). However, this method does not account for 407 

overlapping potentials.  408 
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An approach that allows one to simultaneously control for overlapping potentials and 409 

low-level covariates is deconvolution within the linear model (for tutorial reviews see 410 

Dimigen & Ehinger, 2019; Smith & Kutas, 2015a, 2015b), sometimes also called continuous-411 

time regression (Smith & Kutas, 2015b). Initially developed to separate overlapping BOLD 412 

responses (e.g., Serences, 2004), linear deconvolution has also been applied to separate 413 

overlapping potentials in ERP (Smith & Kutas, 2015b) and FRP paradigms (Cornelissen et 414 

al., 2019; Dandekar et al., 2011; Ehinger & Dimigen, 2018; Kristensen, et al. 2017). Another 415 

elegant property of this approach is that the ERPs elicited by scene onset and the FRPs 416 

elicited by fixations on the scene can be disentangled and simultaneously estimated in the 417 

same regression model. The benefits of deconvolution are illustrated in more detail in 418 

Supplementary Figures S2 and S3. 419 

Here, we applied this technique by using the new unfold toolbox (Ehinger & Dimigen, 420 

2018), which represents the first-level analysis and provides us with the partial effects (i.e. 421 

the beta coefficients or “regression-ERPs”, Smith & Kutas, 2015a, 2015b) for each predictor 422 

of interest. In a first step, both stimulus onset events and fixation onset events were included 423 

as stick functions (also called finite impulse responses, FIR) in the design matrix of the 424 

regression model. To account for overlapping activity from adjacent experimental events, the 425 

design matrix was then time-expanded in a time window between -300 and +800 ms around 426 

each stimulus and fixation onset event. Time-expansion means that the time points within this 427 

window are added as predictors to the regression model. Because the temporal distance 428 

between subsequent events in the experiment is variable, it is possible to disentangle their 429 

overlapping responses. Time-expansion with stick functions is explained in Serences (2004) 430 

and Ehinger & Dimigen (2018, see their Figure 2). The model was run on EEG data sampled 431 

at the original 512 Hz, that is, no down-sampling was performed. 432 

Using Wilkinson notation, the model formula for scene onset events was defined as:  433 
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ERP ~ 1 + Consistency 434 

In this formula, the beta coefficients for the intercept (1) capture the shape of the overall 435 

waveform of the stimulus-ERP in the consistent condition, which was used as the reference 436 

level, whereas those for Consistency capture the differential effect of presenting an 437 

inconsistent object in the scene (relative to a consistent object) on the ERP. The coefficients 438 

for the predictor Consistency are therefore analogous to a difference waveform in a traditional 439 

ERP analysis (Smith & Kutas, 2015a, 2015b) and would reveal if semantic processing 440 

already occurs immediately after the initial presentation of the scene. 441 

In the same regression model, we also included the onsets of all fixations made on the 442 

scene. Fixation onsets were modelled with the formula 443 

FRP ~ 1 + Consistency * Type + Sacc_Amplitude 444 

Thus, we predicted the FRP for each time-point as a function of the semantic Consistency of 445 

the target object (Consistent vs. Inconsistent; Consistent as reference level) in interaction with 446 

the Type of fixation (Critical fixation vs. Non-target fixation; Non-target fixation as reference 447 

level). In this model, any FRP consistency effects elicited by the pre-target or target fixation 448 

would appear as an interaction between Consistency and fixation Type. In addition, we 449 

included the incoming Saccade Amplitude (in degrees of visual angle) as a continuous linear 450 

covariate to control for the effect of saccade size on the FRP waveform2. Thus, the full model 451 

was as follows: 452 

                                                 

 

2 Other low-level variables, such as local image features in the currently foveated image region (e.g., 

luminance, spatial frequency) are also known to modulate the FRP waveform. In the model presented 

here, we did not include these other covariates because (1) their influence on the FRP waveform is 

small compared to that of saccade amplitude and (2) the properties of the target object (such as its 

visual saliency) did not differ between the two levels of object consistency (see Materials and Rating). 

For reasons of simplicity, saccade amplitude was included as a linear predictor in the current model, 

although its influence on the FRP becomes non-linear for large saccades (e.g., Dandekar et al., 2011).. 
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{ERP ~ 1 + Consistency,  453 

FRP ~ 1 + Consistency * Type + Sacc_Amplitude} 454 

 455 

This regression model was then solved for the betas using MATLAB’s glmfit solver (without 456 

regularization). 457 

The deconvolution model specified by the formula above was run twice: in one 458 

version, we treated the pre-target fixation (t-1) as the critical fixation, in the other version the 459 

target fixation (t). In a given model, all fixations but the critical ones were defined as non-460 

target fixations. FRPs for fixation t-1 and for fixation t were estimated in two separate runs of 461 

the model, rather than simultaneously within the same model, because the estimation of 462 

overlapping activity was much more stable in this case. In other words, while the 463 

deconvolution method allowed us to control for much of the overlapping brain activity from 464 

other fixations, we were not able to use the model to directly separate the (two) N400 465 

consistency effects elicited by the fixations t-1 and t 3.  466 

                                                 

 

However, virtually identical results were obtained when we included it as a non-linear (spline) predictor 

instead (Dimigen & Ehinger, 2019). 
3 In theory, a more elegant model would include Type as a three-level predictor, with levels pre-target, 

target, and non-target fixation. In principle, this would allow us to dissociate which parts of the N400 

consistency effects are elicited by fixation t-1 versus fixation t. The practical disadvantage of this 

approach is that the overlapping activities from both t-1 and t would then be estimated on 

comparatively fewer observations (compared to the extremely stable estimate for the numerous non-

target fixations). This is critical because compared to the limited amount of jitter in natural fixation 

durations, N400 effects are a long-lasting response, which makes the deconvolution more challenging. 

Specifically, we found that with the three-level model, model outputs became extremely noisy and did 

not yield significant consistency effects for any EEG time-locking point. By defining either fixation t-1 

or fixation t as the critical fixation in two separate runs of the model, and by treating all other fixations 

as non-target fixations, the estimation becomes very robust. This simpler model still removes most of 

the overlapping activity from other fixations. However, the consistency-specific activity evoked by 

fixation t-1 (i.e., the N400 effect) will not be removed from the FRP aligned to the fixation t and vice 

versa. 
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Both runs of the model (the one for t-1 and t) also yield an estimate for the scene 467 

onset-ERP, but because the results for the scene-onset ERP were virtually identical, we 468 

present the betas from the first run of the model. 469 

The average number of events entering the model per participant was 65.7 and 73.6 for 470 

scene onsets (consistent and inconsistent condition, respectively), 864.2 and 887.9 for non-471 

target fixations (nt), 58.3 and 59.8 for pre-target fixations (t-1), and 63.8 and 70.6 for target 472 

fixations (t). 473 

Baseline placement for FRPs: Another challenging issue for free-viewing EEG 474 

experiments is the choice of an appropriate neutral baseline interval for the FRP waveforms 475 

(Dimigen et al., 2011; Nikolaev et al., 2016). Baseline placement is particularly relevant for 476 

experiments on extrafoveal processing where we do not know in advance when EEG 477 

differences will arise, and whether they may already develop prior to fixation onset.  478 

For the pre-target fixation t-1 and non-target fixations nt, we used a standard baseline 479 

interval by subtracting the mean channel voltages between -200 and 0 ms before the event 480 

(note that the saccadic spike potential ramping up at the end of this interval was almost 481 

completely removed by our ICA procedure; see Figure A1). For fixation t, we cannot use 482 

such a baseline because semantic processing may already be ongoing by the time the target 483 

object is fixated. Thus, to apply a neutral baseline to fixation t, we subtracted the mean 484 

channel voltages in the 200 ms interval before the preceding fixation t-1 also from the FRP 485 

aligned to the target fixations t (see Nikolaev et al., 2016 for similar procedures). The scene-486 

onset ERP was corrected with a standard pre-stimulus baseline (-200 to 0 ms). 487 

Group statistics for EEG (second level of analysis): To perform second-level group 488 

statistics, averaged EEG waveforms at the single-subject level (“regression-ERPs”) were 489 

reconstructed from the beta coefficients of the linear deconvolution model. These regression-490 

based ERPs are directly analogous to subject-level averages in a traditional ERP analysis 491 
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(Smith & Kutas, 2015a). We then used two complementary statistical approaches to examine 492 

consistency effect in the EEG: linear mixed models and a cluster-based permutation test. 493 

LMM in a-priori defined time windows. LMM were used to provide hypothesis-based 494 

testing motivated by existing literature. Specifically, we adopted the spatiotemporal 495 

definitions by Võ & Wolfe (2013) and compared the consistent and inconsistent condition in 496 

the time windows from 250 – 350 ms (early effect) and 350 – 600 ms (late effect) at a mid-497 

central region-of-interest (ROI) of nine electrodes (comprising FC1, FCz, FC2, C1, Cz, C2, 498 

CP1, CPz, and CP2). Because the outputs provided by the linear deconvolution model (the 499 

first-level analysis) are already aggregated at the level of subject-averages, the only predictor 500 

included in these LMMs was the Consistency of the object. Furthermore, to minimize the risk 501 

of Type I error (Barr, Levy, Scheepers, & Tily, 2013) we started with a random effect 502 

structure with Participant as random intercept and slope for the Consistency predictor. This 503 

random effect structure was then evaluated and backwards-reduced using the step function 504 

of the lmerTest package (Kuznetsova, Brockhoff, & Christensen, 2017) to retain the model 505 

that was justified by the data, i.e., it converged, and it was parsimonious in the number of 506 

parameters (Matuschek, Kliegl, Vasishth, Baayen, & Bates, 2017). 507 

Cluster permutation tests. It is still largely unknown to what extent the topography of 508 

traditional ERP effects translates to natural viewing. Therefore, in order to test for 509 

consistency effects across all channels and time points, we additionally applied the 510 

Threshold-Free Cluster Enhancement (TFCE) procedure developed by Smith & Nichols 511 

(2009) and adapted for EEG data by Mensen & Khatami (2013, 512 

http://github.com/Mensen/ept_TFCE-matlab). In a nutshell, TFCE is a non-parametric 513 

permutation test that controls for multiple comparisons across time and space, while 514 

maintaining relatively high sensitivity (e.g. compared to a Bonferroni correction). Its 515 

advantage over previous cluster permutation tests (e.g., Maris & Oostenveld, 2007) is that it 516 

http://github.com/Mensen/ept_TFCE-matlab
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does not require the experimenter to set an arbitrary cluster-forming threshold. In the first 517 

stage of the TFCE procedure, a raw statistical measure (here: t-values) is weighted according 518 

to the support provided by clusters of similar values at surrounding electrodes and time 519 

points. In the second stage, these cluster-enhanced t-values are then compared to the 520 

maximum cluster-enhanced values observed under the null hypotheses (based on n=2000 521 

random permutations of the data). In the present manuscript (Figures 4 and 5), we not only 522 

report the global result of the test, but also plot the spatiotemporal extent of the first-stage 523 

clusters, since they provide some indication about which time points and electrodes likely 524 

contributed to the overall significant effect established by the test. Please note, however, that 525 

unlike the global test result, these first-stage values are not stringently controlled for false 526 

positives and do not establish precise effect onset or offsets (Sassenhagen & Draschkow, 527 

2019). We report them here as a descriptive statistic. 528 

Insert Figure 3 and Tables 1, 2, 3 about here 529 

Finally, for purely descriptive purposes and to provide a-priori information for future 530 

studies, we also plot the 95% between-subject confidence interval for the consistency effects 531 

at the central ROI (corresponding to sample-by-sample paired t-testing without correction for 532 

multiple comparisons; see also Mudrik et al., 2014) in Figures 4 and 5. 533 

Results 534 

Task performance (change detection task) 535 

Following the recognition phase, participants pressed a button to indicate whether or 536 

not a change had taken place within the scene. Response accuracy in this task was high (mean 537 

= 85.0%± 35.7%) and did not differ as a function of whether the study scene contained a 538 

consistent (84.6%± 36.1%) or an inconsistent (85.3%± 35.3%) target object. 539 
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Eye-movement behaviour  540 

Figure 3A shows the cumulative probability of having fixated the target object as a 541 

function of the ordinal number of fixation and semantic consistency, and Table 2 reports the 542 

corresponding GLM model coefficients.  We found a significant main effect of Consistency; 543 

overall, inconsistent objects were looked at with a higher probability than consistent objects. 544 

As expected, the cumulative probability of looking at the critical object increased as a 545 

function of the Ordinal Number of Fixation. There was also a significant interaction between 546 

the two variables.  547 

Complementing this global analysis, we analysed the very first eye-movement during 548 

scene exploration to assess whether observers had immediate extrafoveal access to object-549 

scene semantics (Loftus & Mackworth, 1978). The mean probability of immediate object 550 

fixation was 12.77%; we observed a numeric advantage of inconsistent objects over 551 

consistent objects (Figure 3B) but this difference was not significant (Table 3). The latency to 552 

first fixation on the target object is another measure to capture the potency of an object in 553 

attracting early attention in extrafoveal vision (e.g., Underwood & Foulsham, 2006; Võ & 554 

Henderson, 2009). This measure is defined as the time elapsed between the onset of the scene 555 

image and the first fixation on the critical object. Importantly, this latency was significantly 556 

shorter for inconsistent as compared to consistent objects (Figure 3C, Table 3).  557 

Moreover, we analysed gaze duration as a measure of foveal object processing time 558 

(e.g., Henderson et al., 1999). First-pass gaze duration for a critical object is defined as the 559 

sum of all fixation durations from first entry to first exit. On average, participants looked 560 

longer at inconsistent (520 ms) than consistent objects (409 ms) before leaving the target 561 

object for the first time, and this difference was significant (Table 3). Table 1 summarizes 562 

additional oculomotor characteristics in the two conditions of object consistency.  563 

  564 
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Supplementary Figures S4 and S5 visualize the locations of the pre-target, target, and 565 

post-target fixations for two example scene stimuli. 566 

Insert Figure 4, 5, 6 and Table 4 here 567 

Electrophysiological results 568 

Figures 4 and 5 depict the ERP evoked by the presentation of the scene as well as the 569 

FRPs for the three types of fixation that were analysed. Results focus on the mid-central ROI 570 

for which effects of object-scene consistency have been previously reported. Waveforms for 571 

other scalp sites are depicted in Supplementary Figures S6 to S9. 572 

Scene-onset ERP. The left panels of Figure 4 show the grand-average ERP aligned to 573 

scene onset. Although inspection of the scalp maps indicated slightly more positive 574 

amplitudes over central right-hemispheric electrodes in the inconsistent condition, these 575 

differences were not statistically significant. Specifically, no effect of Consistency was found 576 

with the LMM analysis in the early or the late time window (see Table 4 for detailed LMM 577 

results). Similarly, the TFCE test across all channels and time points yielded no significant 578 

Consistency effect (all p-values > 0.2, see Figure 4D). Thus, the semantic consistency of the 579 

target object did not influence the neural response to the initial presentation of the scene. 580 

Non-target fixation, nt. Next, we tested whether fixations on scenes with an 581 

inconsistent object evoke a globally different neural response than those on scenes containing 582 

a consistent object. As the right panels of Figure 4 show, this was not the case: Consistency 583 

had no effect on the FRP for non-target (nt) fixations, neither in the LMM analysis (see Table 584 

4) nor in the TFCE statistic (all p-values > 0.2, see Figure 4H). 585 

Pre-target fixation, t-1. Figure 5 depicts the FRPs aligned to the pre-target and target 586 

fixations. Importantly, in the FRP aligned to the pre-target fixation t-1, waveforms began to 587 

clearly diverge between the two consistency conditions, developing into a long-lasting fronto-588 

central negativity in the inconsistent as compared to the consistent condition (Figure 5A and 589 
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5B; see also Figure A6). The scalp distribution of this difference, shown in Figure 6, closely 590 

resembled the frontocentral N400 (and N300) previously reported in ERP studies on object-591 

scene consistency (e.g., Mudrik et al., 2014; Võ & Wolfe, 2013). In the LMM analyses 592 

conducted on the mid-central ROI, this effect was marginally significant (p < 0.1) for the 593 

early time window (250 to 350 ms), but became highly significant between 350 and 600 ms 594 

(p < 0.001, Table 4). The TFCE test across all channels and time points revealed a significant 595 

effect of consistency on the pre-target FRP (p < 0.05). Figure 5C also shows the extents of the 596 

underlying spatiotemporal clusters, computed in the first stage of the TFCE procedure. 597 

Between 372 ms and 721 ms after fixation onset, we observed a cluster of 14 frontocentral 598 

electrodes that was shifted slightly to the left hemisphere. This N400 modulation on the pre-599 

target fixation could be seen even in traditionally-averaged FRP waveforms without any 600 

control of overlapping potentials (see Supplementary Figure S3). In summary, we were able 601 

to measure a significant frontocentral N400 modulation during natural scene viewing that 602 

already emerged in FRPs aligned to the pre-target fixation.  603 

On average, the target fixation t occurred at a median latency of 240 ms (± 18 ms) 604 

after fixation t-1, as marked by the vertical dashed line in Figure 5B. If we take the extent of 605 

the cluster from the TFCE tests as a rough approximation for the likely onset of the effect in 606 

the FRP, this means that, on average, at the time when the ERP consistency effect started 607 

(372 ms) the eyes had been looking at the target object for only 132 ms (372 minus 240 ms). 608 

Target fixation, t. An anterior N400 effect was also clearly visible in the FRP aligned 609 

to fixation t. In the LMM analysis at the central ROI, the effect was significant in both the 610 

early (250-350 ms, p < 0.01) and late window (350-600 ms, p < 0.05; see Table 4). However, 611 

compared to the effect aligned to the pre-target fixation, this N400 was significant at only a 612 

few electrodes in the TFCE statistic (Cz, FCz, and FC1; see Figure 6). Aligned to the target 613 

fixation t, the N400 also peaked extremely early, with the maximum of the difference curve 614 
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already observed at 200 ms after fixation onset (Figure 5G). Qualitatively, a frontocentral 615 

negativity was already visible much earlier than that, within the first 100 ms after fixation 616 

onset (Figure 5D). The TFCE permutation test confirmed an overall effect of consistency (p < 617 

0.05) on the target-locked FRP. Figure 5G also shows the extents of the underlying first-stage 618 

clusters. For the target fixation, clusters only extended across a brief interval between 151 and 619 

263 ms after fixation onset, an interval during which the N400 effect also reached its peak. 620 

Figure 5E shows that, numerically, voltages at the central ROI were more negative in 621 

the inconsistent condition during the baseline interval already, that is, before the critical 622 

object was fixated. To understand the role of activity already present before fixation onset, we 623 

repeated the FRP analyses for fixation t after applying a standard baseline correction, with the 624 

baseline placed immediately before the target fixation itself (-200 to 0 ms). This way, we 625 

eliminate any weak N400-like effects that may have already been on-going before target 626 

fixation onset. Interestingly, in the resulting FRP waveforms, the target-locked N400 effects 627 

were weakened: The N400 effect now failed to reach significance in the TFCE statistic and in 628 

the LMM analysis for the second window (350 to 600 ms; see last row of Table 4) and only 629 

remained significant for the early window (250 to 350 ms). This indicates that some N400-630 

like negativity was already ongoing before target fixation onset. To summarize, we found no 631 

immediate influences of object-scene consistency in ERPs time-locked to scene onset. 632 

However, N400 consistency effects were found in FRPs aligned to the target fixation (t) and 633 

in those aligned to the pre-target fixation (t-1).  634 

Discussion 635 

Substantial research in vision science has been devoted to understanding the 636 

behavioural and neural mechanisms underlying object recognition (e.g., Biederman, 1972; 637 

Loftus & Mackworth, 1978). At the core of this debate are the type of object features that are 638 

accessed (e.g., low-level vs. high-level), the time-course of their processing (e.g., pre-639 
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attentive vs. attentive), and the region of the visual field in which these features can be 640 

acquired (e.g., foveal vs. extrafoveal). A particularly controversial topic is whether and how 641 

quickly the semantic properties of objects are available outside foveal vision. 642 

In the current study, we approached these questions from a new perspective by co-643 

registering eye-movements and EEG while participants freely inspected images of real-world 644 

scenes in which a critical object was either consistent or inconsistent with the scene context. 645 

As a novel finding, we demonstrate a fixation-related N400 effect during natural scene 646 

viewing. Moreover, behavioural and electrophysiological measures converge to suggest that 647 

the extraction of object-scene semantics can already begin in extrafoveal vision, before the 648 

critical object is fixated. 649 

It is a rather undisputed finding that inconsistent objects, such as a flashlight in a 650 

bathroom, require increased processing when selected as targets of overt attention. 651 

Accordingly, several eye-movement studies have reported longer gaze durations on 652 

inconsistent than consistent objects, probably reflecting the greater effort required to resolve 653 

the conflict between object meaning and scene context (e.g., Cornelissen & Võ, 2017; De 654 

Graef et al., 1990; Henderson et al., 1999). In addition, a number of traditional ERP studies 655 

using steady-fixation paradigms have found that inconsistent objects elicit a larger negative 656 

brain response at frontocentral channels (an N300/N400 complex) as compared to consistent 657 

objects (e.g., Coco et al., 2017; Ganis & Kutas, 2003; Mudrik et al., 2010).  658 

However, previous research with eye-movements remained inconclusive on whether 659 

semantic processing can take place prior to foveal inspection of the object. Evidence in 660 

favour of extrafoveal processing of object-scene semantics comes from studies in which 661 

inconsistent objects were selected for fixation earlier than consistent ones (e.g., Borges et al., 662 

2019; LaPointe & Milliken, 2016; Underwood et al., 2008). However, other studies have not 663 

found evidence for earlier selection of inconsistent objects (e.g., De Graef et al., 1990; 664 
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Henderson et al., 1999; Võ & Henderson, 2009, 2011). Extrafoveal and peripheral vision are 665 

known to be crucial for saccadic programming (e.g., Nuthmann, 2014). Therefore, any 666 

demonstration that semantic information can act as a source of guidance for fixation selection 667 

in scenes implies that some semantic processing must have occurred prior to its fixation, that 668 

is, in extrafoveal vision. 669 

ERPs are highly sensitive to semantic processing (Kutas & Federmeier, 2011) and 670 

provide excellent temporal resolution to investigate the time course of object processing. 671 

However, an obvious limitation of existing ERP studies is that observers were not allowed to 672 

explore the scene with saccadic eye-movements, thereby constraining their normal attentional 673 

dynamics. Instead, the critical object was usually large and/or placed near the point of 674 

fixation. Hence, these studies were unable to establish whether semantic processing can take 675 

place prior to its foveal inspection. 676 

In the current study, we addressed this problem by simultaneously recording 677 

behavioural and brain-electric correlates of object processing. Specifically, we analysed 678 

different eye-movement responses that tap into extrafoveal and foveal processing along with 679 

FRPs time-locked to the first fixation on the critical object (t) and the fixation preceding it 680 

(t-1). We also analysed the scene-onset ERP evoked by the trial-initial presentation of the 681 

image. Recent advances in linear deconvolution methods for EEG (e.g., Ehinger & Dimigen, 682 

2018) allowed us to disentangle the overlapping brain potentials produced by the scene onset 683 

and the subsequent fixations, and to control for the modulating influence of saccade 684 

amplitude on the FRP. 685 

The eye-movement behaviour showed no evidence for hypothesis (A) as outlined in 686 

the Introduction, according to which semantic information can exert an immediate effect on 687 

eye-movement control (Loftus & Mackworth, 1978). Specifically, the mean probability of 688 

immediate object fixation was fairly low (12.8%) and not modulated by Consistency. Instead, 689 
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the data lends support to hypothesis (B) according to which extrafoveal processing of object-690 

scene semantics is possible but takes some time to unfold. In particular, the results for the 691 

latency to first fixation of the critical object show that inconsistent objects were, on average, 692 

looked at sooner than consistent objects (cf. Bonitz & Gordon, 2008; Underwood et al., 693 

2008). At the same time, we observed longer gaze durations on inconsistent objects, 694 

replicating previous findings (e.g., De Graef et al., 1990; Henderson et al., 1999; Võ & 695 

Henderson, 2009). Thus, we found behavioural evidence for the extrafoveal processing of 696 

object-scene (in)consistencies, but also differences in the subsequent foveal processing. 697 

The question then remains why existing eye-movement studies have provided very 698 

different results, ranging from rapid processing of semantic information in peripheral vision 699 

to a complete lack of evidence for extrafoveal semantic processing. Researchers have 700 

suggested that the outcome may depend on factors related to the critical object or the scene in 701 

which it is located. Variables that may (or may not) facilitate the appearance of the 702 

incongruency effect include visual saliency (e.g., Henderson et al., 1999; Underwood & 703 

Foulsham, 2006), image clutter (Henderson & Ferreira, 2004), and the critical object’s size 704 

and eccentricity (Gareze & Findlay, 2007). Therefore, an important question for future 705 

research is to identify the specific conditions under which extrafoveal semantic information 706 

can be extracted, or when the three outlined hypotheses and/or outcomes would prevail. 707 

Returning to the present data, the FRP waveforms showed a negative shift over frontal 708 

and central scalp sites when participants fixated a scene-inconsistent object. This result is in 709 

agreement with traditional ERP studies that have shown an frontocentral N300/N400 710 

complex after passive foveal stimulation (e.g., Coco et al., 2017; Ganis & Kutas, 2003; 711 

Mudrik et al., 2014; Võ & Wolfe, 2013) and extends this finding for the first time to a natural 712 

viewing situation with eye-movements. Regarding the time course, the present data suggest 713 
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that the effect was already initiated during the preceding fixation (t-1), but then carried on 714 

through fixation (t) on the target object.  715 

As a cautionary note, we emphasize that it is not trivial to unambiguously ascribe 716 

typical N400 (and N300) effects in the EEG to either extrafoveal or foveal processing. The 717 

reason is that these canonical congruency effects only begin 200-250 ms after stimulus onset 718 

(Draschkow et al., 2018; Mudrik et al., 2010). This means that even a purely extrafoveal 719 

effect would be almost impossible to measure during the pre-target fixation (t-1) itself, since 720 

it would only emerge at a time when the eyes are already moving to the target object. That 721 

being said, three properties of the observed FRP consistency effect suggest that it was already 722 

initiated during the pre-target fixation:  723 

First, due to the temporal jitter introduced by variable fixation durations, an effect that 724 

only arises in foveal vision should be the most robust in the FRP averages aligned to fixation 725 

t, but latency-jittered and attenuated in those aligned to fixation t-1. However, the opposite 726 

was the case: At least qualitatively, a frontocentral N400 effect was seen at more electrodes 727 

(Figure 6) and for longer time intervals (Figure 5) in the FRP aligned to the pre-target fixation 728 

as compared to the actual target fixation. The second argument for extrafoveal contributions 729 

to the effect is the forward-shift in its time course. Relative to fixation t, the observed N400 730 

occurred almost instantly: As the effect topographies in Figure 5H show, the frontocentral 731 

negativity for inconsistent objects was qualitatively visible within the first 100 ms after 732 

fixation onset and the effect reached its peak after just 200 ms. Clusters underlying the TFCE 733 

test were also restricted to an early time range between 151 and 263 ms after fixation onset 734 

and therefore to a much earlier interval to what we would expect from the canonical N300 or 735 

N400 effect elicited by foveal stimulation.  736 

Of course, it is possible that even purely foveal N400 effects may emerge earlier 737 

during active scene exploration with eye movements as compared to the latencies established 738 
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in traditional ERP research. For example, it is reasonable to assume that during natural vision, 739 

observers pre-process some low-level (non-semantic) features of the soon-to-be fixated object 740 

in extrafoveal vision (cf. Nuthmann, 2017). This non-semantic preview benefit might then 741 

speed up the timeline of foveal processing (including the latency of semantic access) once the 742 

object is fixated (cf. Dimigen, et al., 2012, for reading). Moreover, if eye movements are 743 

permitted, observers have more time to build a representation of the scene before they foveate 744 

the target, and this increased contextual constraint may also affect the N400 timing (but see 745 

Kutas & Hillyard, 1984). Importantly, however, neither of these two accounts could explain 746 

why the N400 effect is stronger – rather than much weaker – in the waveforms aligned to 747 

fixation t-1 as compared to fixation t.  The fact that the eye movement data also provided 748 

clear evidences in favour of extra-foveal processing further strengthens our interpretation of 749 

the N400 timing. 750 

Finally, we found that the N400 consistency effect aligned to the target fixation (t) 751 

became weaker (and non-significant in two out of the three statistical measures considered) if 752 

the baseline interval for the FRP analysis was placed directly before this target fixation. 753 

Again, this indicates that at least a weak frontocentral negativity in the inconsistent condition 754 

was already present during the baseline period before the target was fixated. Together, these 755 

results are difficult to reconcile with a pure foveal processing account and are more consistent 756 

with the notion that semantic processing of the object was at least initiated in extrafoveal 757 

vision (and then continued after it was foveated).  758 

Crucially, we did not find any effect of target consistency in the traditional ERP 759 

aligned to scene onset. In line with the behavioural results, this goes against the most extreme 760 

hypothesis A postulating that object semantics can be extracted from peripheral vision 761 

already at the first glance of a scene (Loftus & Mackworth, 1978). Similarly, there was no 762 

effect of consistency on the FRPs evoked by the non-target fixations on the scene (Figure 4); 763 
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this was also the case in a control analysis that only included non-target fixations that 764 

occurred earlier than t-1 and at an extrafoveal distance between 3º and 7º from the target 765 

object (see Supplementary Figure S10). All these analyses suggest that the semantic 766 

information of the critical object started during fixation t-1. However, from any given fixation 767 

there are many candidate locations that could potentially be chosen for the next saccade (cf. 768 

Tatler, Brockmole, & Carpenter, 2017). Thus, it is conceivable that observers may have 769 

partially acquired semantic information of the critical object outside foveal vision prior to 770 

fixation t-1, but without selecting it as a saccade target. Such reasoning leaves open the 771 

possibility that observers may have already picked up some information about the target 772 

object’s semantics during these occasions. 773 

Taken together, our behaviour and electrophysiological findings are consistent with 774 

the claim formulated in hypothesis B that objects can be recognized outside of the fovea or 775 

even in the visual periphery, at least to some degree. Indirectly, our results also speak to the 776 

debate about the unit of saccade targeting and, by inference, attentional selection during scene 777 

viewing. Finding effects of object-scene semantics on eye guidance is evidence in favour of 778 

object- and meaning-based, rather than image-based guidance of attention in scenes (e.g., 779 

Hwang, Wang, & Pomplun, 2011; Henderson, Hayes, Peacock, & Rehrig, 2019). 780 

In sum, our findings converge to suggest that the visual system is capable of accessing 781 

semantic features of objects in extrafoveal vision to guide attention towards objects that do 782 

not fit to the scene’s overall meaning. They also highlight the utility of investigating 783 

attentional and neural mechanisms in parallel to uncover the mechanisms underlying object 784 

recognition during the unconstrained exploration of naturalistic scenes. 785 

 786 

 787 
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Tables 1029 

Table 1  1030 

  Consistent Inconsistent 

  Mean ± SD Mean ± SD 

Eye 

movement 

behaviour 

Ordinal fixation number of first target fixation 7.7 ± 6.0 6.1 ± 5.4 

Fixation duration (t-2), in ms 220.7 ± 105 212.9 ± 95 

Fixation duration (t-1), in ms 207.6 ± 96 197 ± 91 

Fixation duration (t), in ms 261.6 ± 146 263.3 ± 136 

Gaze duration on target, in ms 408.5 ± 367.1 519.1 ± 373.6 

Number of re-fixations on target 1.7 ± 2 2.2 ± 2.1 

Duration of re-fixations on target, in ms 238.9 ± 121.8 250.2 ± 135.7 

Fixation duration (t+1), in ms 245.3 ±148 243.7 ± 146 

Incoming saccade amplitude to t-1 (°) 6.1 ± 5.2 5.9 ± 4.8 

Incoming saccade amplitude to t (°) 8.4 ± 5.2 8.2 ± 4.8 

Incoming saccade amplitude to t+1 (°) 9.5 ± 5.9 10.1 ± 5.8 

Distance of fixation t-1 from closest edge of target (°) 6.7 ± 9.92 6.3 ± 9.77 

Number of fixations after first encountering target 

object until end of trial 
7.3 ± 2.1 7.2 ± 1.7 

Duration of fixations after first encountering target 

object (until end of trial) 
254.6 ± 120.4 251.6 ± 118.8 

Target 

object 

properties 

Distance of target object centre from screen centre (°) 12.1 ± 2.8 11.7 ± 3 

Mean visual saliency (AWS model) 0.35 ± 0.16 0.37 ± 0.16 

Width (°) 6.1 ± 2 6.1 ± 2.1 

Height (°) 5.1 ± 1.8 5.4 ± 2.2 

Area (degrees of visual angle squared) 16.1 ± 8.7 17.3 ± 11.4 

Note. Target object size and distance to target are based on the bounding box around the object. The 

fixation t+1 is the first fixation after leaving the bounding box of the target object. 

Table 1. Eye movement behaviour in the task and properties of the target object.   
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 1031 

 1032 

Table 2 1033 

 1034 

 1035 

 1036 

 1037 

 1038 

 1039 

 1040 

 1041 

 1042 

Table 2. Cumulative probability of having fixated the critical object as a function of the 1043 

ordinal number of fixations on the scene (binomial probit). The centred predictors are 1044 

Consistency (Consistent: -0.5, Inconsistent: 0.5) and Number of Fixation 1045 

  1046 

Predictor Cumulative probability of First Fixation 

 β SE z-value Pr(>|z|) 

Intercept -1.04 0.02 -49.91 0.00001 

Nr. Fixation -2.00 0.05 -35.9 0.00001 

Consistency 0.17 0.03 5.8 0.00001 

Consistency × Nr. Fixation -0.71 0.09 -7.9 0.00001 
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Table 3 1047 

 

 

Predictor 

Probability 

of immediate fixation 
Latency to first fixation Gaze Duration 

β SE z β SE t β SE t 

Intercept -2.93 0.19 -14.73*** 1,904.4 83.8  22.7*** 400.1 20.97 19.08*** 

Consistency  0.21 0.15 1.38 -246.4  64.0 -3.85***  105.0 20.77 7.08*** 

* p < 0.05, ** p < 0.01, *** p < 0.001 

Table 3. Probability of immediate fixation and latency to first fixation. The simple coded 1048 

predictor is Consistency (Consistent =  -0.5, Inconsistent = 0.5). We report the β, the standard 1049 

error, the z- (for binomial link) and t-value. Asterisks indicate significant predictors. 1050 

 1051 

 1052 

 1053 

 1054 

 1055 

 1056 

 1057 

 1058 

 1059 

 1060 

 1061 

 1062 

 1063 

 1064 

 1065 

 1066 
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 1067 

Table 4 1068 

 1069 

 1070 

 1071 

 1072 

 1073 

 1074 

 1075 

 1076 

 1077 

 1078 

 1079 

 1080 

 1081 

 1082 

 1083 

 1084 

 1085 

 1086 

 1087 

 1088 

 1089 

Table 4. Mixed-effects models with maximal random structure for the FRP at the mid-central 1090 

region-of-interest (comprising electrodes FC1, FCz, FC2, C1, Cz, C2, CP1, CPz, and CP2) 1091 

for two temporal windows of analysis (Early, 250-350 ms and Late, 350-600 ms) as predicted 1092 

by Consistency (Consistent = -0.5, Inconsistent = 0.5) of which we report the β the standard 1093 

error, and the t-value. Asterisks indicate the level of significance. 1094 

 1095 

 1096 

 1097 

 1098 

 1099 

 1100 

 1101 

 1102 

 1103 

Type of Event Analysis window β SE t-value 

Scene onset 

Early (250-350 ms) 0.28 0.39 0.71 

Late (350-600 ms) 0.34 0.39 0.37 

nt 

Early (250-350 ms) -0.06 0.07 -0.79 

Late (350-600 ms) -0.09 0.08 -1.10 

t -1 

Early (250-350 ms) -0.28 0.15 -1.77 (*) 

Late (350-600 ms) -0.46 0.12 -3.76 *** 

t 

Early (250-350 ms) -0.52 0.17 -3.03 ** 

Late (350-600 ms) -0.38 0.15 -2.43 * 

t  

(control analysis with 

baseline before fixation t) 

Early (250-350 ms) -0.34 0.16 -2.20 * 

Late (350-600 ms) -0.20 0.17 -1.14 

(*) p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 
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Figures 1105 

 1106 

Figure 1 

 

Figure 1. Example stimuli and conditions in the study. Participants viewed photographs 

of indoor scenes that contained a target object (highlighted with a red circle) that was 

either semantically consistent (here: toothpaste) or semantically inconsistent (here: 

flashlight) with the context of the scene. The target object could be placed at different 

locations within the scene, either on the left or the right side. The example gaze path 

plotted on the right illustrates the three type of fixations analysed in the study: (a) t-1; 

the fixation preceding the first fixation to the target object, (b) t; the first fixation to the 

target and (c) nt; all other (non-target) fixations. Fixation duration is proportional to the 

diameter of the circle, which is red for the critical fixations, and black for the non-target 

fixations. 
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Figure 2 

 

Figure 2. Trial scheme. Following a drift correction, the study scene appeared. The 

display duration of the scene was controlled by a gaze-contingent mechanism and it 

disappeared on average 2000 ms after the target object was fixated. In the following 

retention interval, only a fixation cross was presented. During the recognition phase, the 

scene was presented again until participants pressed a button to indicate whether or not 

a change had occurred within the scene. All analyses in the present paper focus on eye-

movement and EEG data collected during the study phase. 
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Figure 3 

 

Figure 3. Eye-movement correlates of early overt attention towards consistent and 

inconsistent critical objects. A. Cumulative probability of fixating the critical object as 

a function of the ordinal fixation number on the scene. Blue solid line = consistent 

object; red dashed line = inconsistent object. B. Probability of fixating the critical 

object immediately, that is with the first fixation after scene onset. C. Latency until 

fixating the critical object for the first time. D. First-pass gaze duration for the critical 

object, i.e. the sum of all fixation durations from first entry to first exit. Whiskers of 

the boxplots (B, C, D) represent the 25th and 75th percentile of the measure (lower and 

upper quartiles). Dots indicates observations lying beyond the extremes of the 

whiskers.  

 1109 
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Figure 4 

 

Figure 4. Stimulus-ERP aligned to scene onset (left panels) and FRP aligned to non-target 

fixations (right panels) as a function of object-scene consistency. A and E. Grand-average 

ERP/FRP at the central region-of-interest (comprising electrodes FC1, FCz, FC2, C1, Cz, C2, 

CP1, CPz, CP2). Red lines represent the Inconsistent condition, blue lines represent the Consistent 

condition. B and F. Corresponding difference waves (inconsistent minus consistent) at the central 

ROI. Grey shading illustrates the 95% confidence interval (without correction for multiple 

comparisons) of the difference wave with values outside the CI also marked in black below the 

curve. The two windows used for LMM statistics (250-350 and 350-600 ms) are indicated in light 



Fixation-related N400 for scenes 

48 

blue. C and G. Extent of the spatiotemporal clusters underlying the cluster-based permutation 

statistic (TFCE) computed across all electrodes/time points. There were no significant (p < 0.05) 

effects. D and H. Scalp topographies of the consistency effect (inconsistent minus consistent) 

averaged across successive 100 ms time windows. Object-scene consistency had no significant 

effects on the stimulus-ERP or on the FRP elicited by non-target fixations, neither in the LMM 

statistic, nor in the cluster permutation test. 
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Figure 5 

 

Figure 5. Grand-average FRP elicited by pre-target fixation (left panels) and target fixation (right 

panels) as a function of object-scene consistency. (A, E) Grand-average FRPs at the central ROI. 

(B, F) Difference waves at the central ROI. In panel B, the grey distribution shows the onset of 

fixation t relative to the onset of the pre-target fixation t-1, with the vertical dotted line indicating 

the mean latency (260 ms). (C, G) Results of cluster-based permutation testing (TFCE). The 

extent of the clusters from the first stage of the permutation test (marked in red) provides some 

indication which spatiotemporal features of the waveforms likely contributed to the overall 

significant effect of consistency. The temporal extent of the clusters is also illustrated by the red 
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bars in panels B and F. (D, H) Scalp topographies of the consistency effect (inconsistent minus 

consistent) across successive 100 ms time windows. A frontocentral N400 effect emerged in the 

FRP time-locked to fixation t-1 and reached significance shortly after the eyes had moved on to 

fixation t. This effect then continued during fixation t reaching a maximum 200 ms after the start 

of the target fixation. 
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Figure 6 

 

Figure 6. Scalp distribution of frontocentral N400 effects in the time windows significant in the 

TFCE statistic (see also Figure 5). White asterisks highlight the spatial extent of the clusters 

observed in the first stage of the TFCE permutation test for both intervals. In the FRP aligned to 

the pre-target fixation (left), clusters extended from 372 to 721 ms and across 13 frontocentral 

channels. In the FRP aligned to the target fixation (right), clusters extended from 151 and 263 ms 

at three frontocentral channels.  
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