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Abstract 

A major goal of vision science is to understand how the visual system maintains behaviourally 

relevant perceptions given the level of uncertainty in the signals it receives. One proposed solution is 

that the visual system applies predictive coding to its inputs based on the integration of prior 

knowledge and current stimulus features. However, support for some vital aspects of predictive 

coding in the temporal domain is lacking and simpler accounts of temporal integration also exist. The 

aim of this thesis was to test two key attributes of predictive coding in time a) does the visual system 

apply adaptive weighting to prediction errors and b) can the visual system apply probalistic 

information learnt from stimulus sequences when making predictions. In chapters 3 & 4, we tested 

predictive coding’s ideas of how prediction errors are weighted under the theoretical guidance of a 

temporal integration model linked to predictive processing, called the Kalman filter. Here, both 

experiments supported predictive coding. We showed that, consistent with the Kalman filter, visual 

estimates and the way estimation errors were corrected, adapted to stimulus behaviour and viewing 

conditions. In chapter 5, we assessed the ability of the visual system to integrate conditional 

relationships present in sequences of stimuli when making predictions. To do this, we inserted a 

stimulus sequence that changed and omitted trials based on Markov transition probabilities that made 

some transitions more or less probable and assessed reaction times and omission trial responses. 

Reaction time data was consistent with predictive coding, in that more predictable changes elicited 

faster responses.  Omission trials data, was though, less clear. When faced with no stimulus, 

participants did not apply the conditional probabilities in their decisions optimally, instead applying 

non optimal decision strategies, inconsistent with predictive coding. In summary, this thesis supports 

the predictive coding of temporal integration but questions its application in all situations. 
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Chapter one. Vision and uncertainty: how to deal with a dynamic 

and noisy world. 

1. General Introduction  

1.1 Vision: a vital behavioural tool. 

Nervous systems have evolved under natural conditions to extract and compute behaviourally 

important information from the external world (Zeil, Boeddeker, & Hemmi, 2008). Of all parts of the 

nervous system that computes such information the visual system is perhaps the most important. The 

reason why vision is so important, is that we use vision in practically every behaviour we perform. 

Crucial tasks, such as navigating our environment, detecting danger, finding food, using tools and 

successfully interacting with others, all rely heavily on vision. However, despite our heavy reliance on 

vision, as we go about our busy daily lives, in most cases we seldom give thought to how important 

vision is or how it might actually work. One reason for this indifference is that in most situations 

vision seems remarkably easy. In fact, vision, unlike other cognitive processes such as solving a word 

puzzle or a mathematical problem seems remarkably straightforward. No effort at all is really needed 

to produce a solution. All we need do is open our eyes and the world is there before us instantly as a 

constant, accurate and stable perception of the outside world of sufficient resolution and speed to 

facilitate effective behaviours. Nonetheless, this apparent expertise in perceiving the world and the 

ease in which we can guide behaviours using vision belies a task of true complexity for the visual 

cortex.  

1.2. The central problem for vision. 

The crux of the problem facing the visual system is that the visual cortex, in which perception actually 

‘exists’, is firmly encased within the skull. This means that the visual cortex does not have direct 

access to stimuli of interest or events in the external world. Isolation from the world presents an 

inverse problem for the visual system in that it must reliably interpret and adapt to unknown events 

and objects in the environment based only on indirect information (Pizlo, 2001). The source of this 

indirect information is light that reflects or emits from stimuli in the world forming information 

bearing patterns on the retinal surface (Hubel, 1988). Relying on external light signals and the patterns 

they form on the retina to internally interpret the world opens up a myriad of problems for the visual 

cortex which combine to make visual information uncertain (Gregory, 1970; Gordon et al, 2017; Knill 

& Pouget, 2011.; Kwon, Tadin, & Knill, 2015; Levi, Klein, & Chen, 2005; Parr, Rees, & Friston, 

2018; Wei, Wert, & Körding, 2010). The notion of uncertainty is prominent in vision science, thanks 

in no small part to the influence of Swets & Green (1967) and their signal detection theory, plus a 

large body of prominent work into the way sensory systems reconcile noisy and ambiguous visual 

information (Beierholm, Quartz, & Shams, 2009; Casini, Mckay Illari, Russo, & Williamson, 2011; 

Gia Thu & Loc Hung, 2003; Knill, 2007; Knill & Pouget, 2004; Seth, 2014; Yuille & Kersten, 2006) 



2 
 

to name but a few. However, despite the widespread nature of research into how the visual cortex 

resolves uncertainty and the use of the term, exactly why visual information is uncertain is often not 

fully explained.  

 

 

 

 

 

 

 

 

 

1.3. Uncertainty in visual information: variability in visual inputs. 

One way of understanding why visual information is uncertain is to think about the flow of 

information the cortex receives from the retina as carrying statistics adapted to the external world in 

some way (Barlow, 1961; Berry, Warland, & Meister, 1997; Ly & Doiron, 2017) and perception as an 

interpretation of this information. The problem for the visual cortex is that like any system applying 

statistical interpretations to indirect signals from the outside world, the interpretation of signals arising 

from stimuli in the world is never entirely certain (Gregory, 1970; Yuille & Kersten, 2006). This is 

because all sensory information provided to the cortex from retinal measurements of the external 

world and early visual systems is to some extent variable (Knill & Pouget, 2004; Wolpert, 

Ghahramani, & Jordan, 1995; Wolpert, 2007). In the same way that increased variability in 

experimental measurements makes interpretation less certain (Taylor, 1997) (see figure 2 below), it 

also makes the interpretation of information from stimuli in the world more uncertain (Knill, 2007; 

Kwon et al., 2015). Due to the complexity and behaviour of the world and the way the retina and early 

visual systems behave there are a number of sources of variability present in visual information 

received at the cortex.  

 

 

 

Figure 1. An illustration of the position of the isolated occipital cortex at the posterior of the 

brain source and the internal structure of the retina which provides visual information to the 

cortex (Figures A & B adapted from Hubel (1988)).  
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1.4. Sources of variability in visual information. 

The combination of the behaviour of the external natural world and the workings of human anatomy 

means that there are a number of sources of variability present in the visual information that is 

interpreted by the brain (Burge, Ernst, & Banks, 2008; Melcher, 2011; Wei et al., 2010). Importantly, 

the nature of these sources of variability mean that they have different implications for perception 

which can be quite subtle (Burge et al., 2008; Burge, Girshick, & Banks, 2010). To help simplify the 

sources of variability and their significance for perception, we split them into two groups. These are 

external sources of variability from events and stimuli outside of the brain and sources of internal 

variability that comes from the workings of the brain itself.  

 

 

 

Figure 2. The general relationship between variability and uncertainty. Uncertainty simply means that we 

do not know the value of some quantity or outcome of an event, for example the current state of a changing 

stimulus based on an indirect noisy retinal image. The level of variability refers to the relative stability of 

values that we have recorded about the stimulus we are interested in. If we make lots of recordings that are 

around the same value then the variance in these recordings is low. In this case, if we plot the distribution of 

the data points we will have a narrow distribution (see the blue distribution) and we can attach a good level of 

certainty that the current recording of our stimulus if it falls within this distribution. Alternatively, if we make 

recordings that change considerably over time our recordings will carry a higher level of variability and our 

distribution will be broader (red distribution). This means that we can have less confidence that our current 

recording of our stimulus value is accurate. 
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1.5. External variability 

The first type of external variability present in incoming signals is simple. This is variability caused 

by the behaviour of objects and events in the world. When our surroundings are stable, visual 

information pertaining to stimuli is less variable and when our surroundings are changing it is more 

variable. This means that the amount of variability present in visual information can potentially 

provide important cues about what is happening in the external world. In an ideal world, the signals 

produced by stimuli under both changing and stable conditions would be easy to interpret. Small 

levels of variability should be taken to mean stability and high levels of variability would mean 

change has occurred and we should update our interpretation and perceptions accordingly (Denève, 

Duhamel, & Pouget, 2007; Wolpert & Flanagan, 2001). However, in the stream of visual information 

from the world there are other sources of external variance that do not arise from stimuli and their 

behaviours and add unwanted variability to the incoming stimulus information that we receive.  

External variability can often arise from the environmental conditions in which we view the world. 

For example, the local atmospheric conditions through which light signals pass through on the way to 

the retina (See Saleh & Teich (2001) for a comprehensive account of the behaviour of light in 

different atmospheric conditions). If the weather is clear, then light signals and the information they 

contain travel to the retina largely intact (Jägerbrand & Sjöbergh, 2016). In this situation, extraction 

and interpretation of the part of the signal relating the behaviour of the stimuli of interest is more 

straightforward. However, the weather is not always clear. In situations such as fog or rain, the level 

of variability in light signals can be increased or the part of the signal carrying stimulus information 

degraded or lost. This is because light changes its behaviour as it travels between lighter and denser 

mediums such as air and water. When light carrying stimulus information from a car or road sign 

passes thorough a water droplet in a rain shower or low cloud formation (see figure 3 below) only a 

portion of the light from the sign passes through to the retina while the rest scatters. Weather 

conditions can therefore block or deflect some of the information from stimulus in the world and 

prevents the cortex from accessing as much stimulus information that would otherwise be available. 
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Visual information can also become more variable due to light changes during different phases of the 

diurnal cycle. While artificial light is relatively abundant in today’s society the vast majority of the 

basis for signals from external stimuli still comes from direct or indirect light from the sun. As the 

suns elevation declines from it midday peak (60-90°) to the horizon (0°) at sunset, light intensity 

declines approximately 100 fold with the majority of this drop occurring rapidly in the final 5° of 

decline (Warrant & Johnsen, 2013) The effect of reduced light is to produce a gradient decline in the 

intensity of the light carrying stimulus information measured at the retina as the amount of light in the 

environment declines (Jägerbrand & Sjöbergh, 2016). The decline in light has an inverse relationship 

with variability in retinal measurements because as when light levels go down, variability in the 

measurement at the cortex goes up (Cordani et al., 2018) and because the sun sets and rises every day 

represents a twice daily source of additional variability in visual information from stimuli in the world 

(see figure 4 below).  

 

 

 

Figure 3. Effects of poor weather on viewing conditions. Here we see the how the effects of poor weather 

degrade the quality of signals carrying task relevant information. When driving we need to know about the 

behaviour of other cars on the road. However, here water in the atmosphere has blocked some of the light to 

while diffused other parts of the light carrying important signals (image is my own).  
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External variability is also caused by the workings of human anatomy. One such anatomically related 

source of variance is indirectly caused by the structure and organisation of photoreceptors in the 

retina. The retina contains two types of two types of photoreceptors. Namely, Rods and Cones. Rods 

are more numerous, some 120 million, while there are only 6 million cones (see Solomon & Lennie, 

(2007) for a descriptive account of the structure and function of retinal photoreceptors). However, 

while cones are less numerous, they are more tightly packed together in the central fovea of the retina. 

In much the same way increased pixel density provides higher resolution in a television images, the 

high density of cones also promotes high resolution spatial and colour vision in the centre of our 

visual field (Hubel, 1988). The balance between rods and cones and their respective positions and 

densities has proven effective in general terms but it has not come without some cost. Specifically, 

that in order to focus our high resolution spatial and colour central vision on task relevant stimuli, we 

need to constantly move our eyes, head and body to some extent. This means that even during fixation 

our eyes are in motion. Almost constant anatomical motion means that retinal patterns are rarely 

stable on the photoreceptors of the eye (Arathorn et al, 2013; Melcher, 2011). The upshot of 

instability in information bearing patterns on the retina is to introduce motion related variability into 

the image of stimuli in the world and is an almost constant source of uncertainty in visual information.  

 

Figure 4. Effects of reduced light on viewing conditions. Here we can observe a degraded image 

due to failing light. In this case we have a driving in twilight example. We see clear reduction in 

object contrast and spatial frequency due to the decreased light (image is my own). 
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A further source of anatomically related external variability is caused by the need to maintain a 

moving eye. A large part of this maintenance is performed by blinks. Blinks are an essential function 

of the eye that help spread tears across and remove irritants from the surface of the cornea and 

conjunctiva (Hall, 1945). Of course blinks are vital but there is some trade-off between the 

maintenance of the eye and the flow of visual information to the brain. A good way to understand this 

trade-off is to think of blinks as an on and off switch in the flow of stimulus information to the cortex. 

When our eyes are blink free the flow is ‘on’ and during a blink the flow is ‘off’. Clearly, blinks are 

short in duration but they occur very frequently at a rate of approximately 15 times every waking 

minute (Burr, 2005). Due to this frequency, blinks are a very common source of variability in 

information received by the visual cortex as they produce almost constant gaps in the flow of visual 

information.  

1.6. Internal variability. 

Internally produced variability comes from the workings of the brain in the form of neural noise 

(Stein, 2005). Neural noise is perhaps the most intriguing of all of the sources of variability present in 

visual information received at the cortex. This is due to the controversy over whether such variability 

should be considered as noise in the negative sense of the term (Averbeck, Latham, & Pouget, 2006). 

Neural noise is caused by the random electrical firings and fluctuations of neurons in the brain that do 

not appear to be related with encoding an external stimulus directly (Swain & Longtin, 2006). 

Previously, it was thought that neural noise served no benefit and was detrimental to sensory 

processing (Strong et al, 1998). More recently, it has been proposed that neural noise is actually 

beneficial to the computations the brain applies to interpreting uncertain inputs. One idea forwarded 

by proponents of Bayesian brain theories relates to the idea that the brain represents temporal 

information from the world as Poisson probability distributions (Averbeck, Latham, & Pouget, 2006). 

Bayesian computing is done most efficiently when both past information and current information 

carries the same type of probability distributions. It is proposed, that by adding noise to sensory 

information, neurons are trying to make incoming visual information as ‘Poisson’ as possible to match 

the internal representation of past information and thus maximise information transfer (Zylberberg et 

al, 2017). While this idea may or not be correct, we nonetheless include neural noise as a source of 

variability in visual information as it does add variability to information received at the cortex 

regardless of its function. 
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Figure 5. Variability, noise and stimulus information. Here using an example of radio signals we show the 

effects of factors such as the weather and neural noise might have on ‘clean’ stimulus information. Radio signals 

are an apt simile to visual signals as they are much the same as light signals. The only difference in the 

wavelength of the waves which are subject to many of the same sources of noise and variability. In the upper 

panel is a ‘clean’ radio signal. The variability in the frequency of this signal carries information about the 

content of the information transmitted by the sender. On its own interpretation of the clean signal is 

straightforward as the signal carries only variability about the signal of interest. In the middle panel we have 

only noise. Noise is unrelated to the radio signal carrying stimulus information. In radio waves, like light waves, 

noise can arise from atmospheric conditions or noise from other task irrelevant signals such as from other radio 

waves transmitting in a similar channel. It can also arise from components in the radio such as the flow of 

charges in the radio device (much like neural noise). The lower panel illustrates the sum total of signal and noise 

which must be interpreted by the receiving device. As we can see the addition of noise makes the radio signals 

of interest much more variable, which makes the true signal more uncertain and harder to interpret (figure 

adapted from signal and noise https://www.mathworks.com/matlabcentral/mlc-

downloads/downloads/submissions/9554/versions/5/previews/numerical-

tour/denoising_noise_models/index.html accessed 1/10/16). 

 

https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/9554/versions/5/previews/numerical-tour/denoising_noise_models/index.html
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/9554/versions/5/previews/numerical-tour/denoising_noise_models/index.html
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/9554/versions/5/previews/numerical-tour/denoising_noise_models/index.html
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1.7. Variability in signals and measurements produces little effect on perception and behaviour: 

application of prior knowledge. 

The internal and external sources of variability we have presented are certainly not trivial. It is 

apparent that the information that reaches the cortex about stimuli in the world is very often or most 

likely always variable making interpretation of important stimulus information constantly uncertain to 

some degree. Given the nature of the factors which produce uncertainty in visual information we 

might logically expect certain effects of different sources of variability to be present in perception. 

Because we constantly need to blink we might conclude that they would seriously interrupt our flow 

of visual consciousness. In addition, we might also expect our perception of objects in the world to be 

unstable nearly all of the time due to constant retinal instability or perception in bad weather or poor 

light to be worse than it actually is. Furthermore, we might think that neural noise would lead to 

confusion in the interpretation of incoming signals as it adds random fluctuations to the incoming 

information. However, in reality both internal and external variability appear to exert little effect on 

perception and behaviour in normal circumstances. We barely notice blinks despite occurring almost 

constantly, perception is remarkably stable at all times and our perception in bad weather and poor 

light although somewhat decreased in acuity is still normally reliable enough to perceive relevant 

stimuli and respond accordingly. Therefore, the contrast between the variable nature of visual 

information received at the cortex and our subjective visual and behavioural experience raises an 

important and currently unanswered question. Specifically, what computational processing strategies 

is the visual cortex applying to its inputs to extract relevant stimulus information from the mass of 

uncertain visual information emitting from world and turn this information into the high grade 

perceptions we are familiar with.  

Exactly how the brain reconciles uncertainty is not fully understood. However, one strategy the visual 

system does appear to employ is to apply prior knowledge to interpreting current visual inputs 

(Friston, 2010; Kok, & De Lange, 2016). Importantly, the application of previous experience to 

current visual inputs rests on certain rules and characteristics present in the physical world and the 

way stimuli behave (Chun, 2003; Turk-Browne, 2012). Events and the behaviour of stimuli in the 

natural world rarely evolve completely randomly. Usually, the way events unfold and the way stimuli 

behave exhibit temporal regularities and relationships which can potentially be learnt and applied 

when interpreting variable visual information (de Lange, Heilbron, & Kok, 2018). One aspect of 

temporal structures and regularities that is very important to emphasise, is that such structures and 

regularities exist at varying levels of complexity (Barlow, 2001; de Lange, Heilbron, & Kok, 2018; 

Turk-Browne et al, 2009) which effects how they might be utilised by the brain. 

1.8. Types of temporal regularity.  

A common type of temporal regularity present in the behaviour of stimuli and indeed the wider 

environment is that the world is remarkably temporally stable over time or when events do occur they 
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are often repeats of one another (Fischer & Whitney, 2014; Liberman, Fischer, & Whitney, 2014; 

Liberman, Zhang, & Whitney, 2016). While we may not really think much about temporal stability as 

objects that are stable tend not to be behaviourally pressing, stability is nonetheless extremely 

prevalent. Examples of environmental stability are practically everywhere. If you look around your 

office or place of work right now, it is highly likely that very little is changing. Walls and windows 

remain in the same place, your desk does not suddenly appear in another part of the room and a book 

left on a shelf remains in the same location unless moved. Temporal stability can also occur in the 

behaviour of many stimuli in which the actions are simple repeats of themselves. The way people 

walk follows a similar pattern and the way a key goes into a lock and almost always turns clockwise 

provides past information that can be used to help minimize uncertainty. A commonly stable 

environment and repeated common behaviours means that in some instances a good estimate of a 

stimulus value of interest within a stream of noisy visual information is that next value will be the 

same or similar to the current values, at least over a short to medium time span, or that an action or 

event we have just observed will be repeated again. 

In addition to an unchanging world or the simple repeats of behaviours a different type of temporal 

regularity are the conditional probabilities that exist between stimuli and events in the world (de 

Lange et al., 2018; Friston, 2010). For example, one simple type of conditional relationship are cues 

that signal a certain outcome. If you cook food in a microwave and the buzzer sounds we can make a 

judgment that as we have heard the buzzer our food is cooked. Importantly, more complex conditional 

relationships also exist within sequences of events that evolve over time. If you walk through a busy 

train station, you need to negotiate your way through lots of people many going in different directions 

heading to different exits to get onto your required train. Here, there are potentially many different 

paths people could take. One way to predict the position of other people and where they might be next 

might be by combining sequential information about how people will transition from the current to a 

future position based on the previous n-1, n-2, n-3, n-4… time points combined with knowledge of the 

exits and entrances of the station. By using conditional relationships provided by cues and sequences 

of events in our surroundings it is possible to decrease the level of uncertainty of sensory information 

which if judged on an independent basis might be subject to misinterpretation or errors (de Lange et 

al. 2018). 

Empirical support for the idea that the visual system integrates information about the statistical 

regularities of stimuli and the environment is strongest in an area of research termed visual serial 

effects. Serial effects is an umbrella term study of a group of visual phenomena that indicate that 

perception that is not only driven by the stimulus information impinging on the retina at the current 

moment but by what has been observed in the recent past (Barlow, 2001; Gregory, 1970). Research 

areas that comes under serial effects include some very well studied areas such as visual masking, 

priming of pop out, serial dependence and adaptation to name but a few. Studies into such phenomena 
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provide some excellent examples for the general idea of temporal integration in visual perception and 

also highlight some limitations in the understanding of the exact type of strategies by which the visual 

system exploits such regularities  

1.9 Broad evidence that the visual system integrates temporal structure when interpreting 

variable retinal measurements. 

An area of serial effects research that provides a good illustration of temporal integration comes from 

visual masking. Visual masking refers to the phenomena that the current perception of a target 

stimulus is reduced by the presence of another stimuli called a mask (Breitmeyer & Ogmen, 2000). 

With respect to time three types of masking are usually tested; forward, backward, and simultaneous. 

In backward visual masking a target stimuli is presented for a short period of time and followed 

quickly by the “mask” (Kahneman, 1968). In suitable temporal conditions, the trailing mask can 

greatly reduce the perception of the target stimulus, even though the two visual events are separated in 

time (Breitmeyer & Ogmen, 2000; Kafaligonul, Breitmeyer, & Öğmen, 2015).The fact that the mask 

exerts an effect on the perception of the target even though the two events are distinct in time has been 

taken in support of the idea that the visual system retains a representation of the stimuli which it 

integrates in some way with the current retinal image (Breitmeyer & Ogmen, 2000). Because the two 

images are combined the perception of the current image is less accurate as it also contains 

information from the previous measurement (Breitmeyer & Ganz, 1976; Breitmeyer & Ogmen, 2000; 

Swift, 2013). 

Further support for the notion that the visual system integrates information from the recent past into 

current perceptions comes from temporal form part integration. Temporal form-part integration refers 

to the finding in which two different sets of stimuli, presented at different times, are perceived by the 

visual system as a single integrated percept (Brockmole, Wang, & Irwin, 1985; Di Lollo, Hogben, & 

Dixon, 1994) Frequently, temporal form part integration studies use the two field paradigm in which 

stimuli usually comprise two stimuli showing, for instance, small dots or two parts of a matrix of dots 

with one piece or section missing in each stimuli that alone make no sense but together form a 

coherent image (Bachmann, 1997).The separated images are then presented successively with the 

time gap between images varied over trials. The task of the participant is to perform a judgment of 

what structure of the two incomplete patterns represent when combined i.e. letters. Importantly, the 

successful interpretation of a two a two field paradigm presentation can only be performed by 

integrating the first and second incomplete sections of dots into a complete figure. The required 

stimulus information to form a whole image cannot be drawn from either half image alone and can 

only come from the integration of both image sections. Usually, participants respond correctly at 

higher than chance levels when the half images are presented in sequences up to intervals of 120 ms 

between images (Swift, 2013). This repeatedly reported result provides support that the visual system 
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integrates information from images observed in separate time windows to help create a coherent 

image of two uncertain half or interrupted images.  

An especially well studied phenomena studied under the umbrella of serial effects that illustrates the 

way past information can improve the effectiveness of behaviour is repetition priming. Repetition 

priming is a phenomena in which the behavioural response to a stimulus, usually measured in reaction 

times or accuracy, is improved by the repeated presentation of a stimulus (Kristjánsson, 2006; 

Yoshimoto et al., 2013). A number of priming of pop out tasks have provided strong and illustrative 

evidence for the contextualizing and performance enhancing input of previously observed stimuli. 

Commonly, in priming of pop out studies participants are asked to search for a stimulus of odd 

dimensions such as colour or shape relative to distractor stimuli of a similar but distinct nature that 

have another distinguishing feature such as a notch missing or an orientation marker (Becker, 2008; 

Goolsby & Suzuki, 2001; Maljkovic & Nakayama, 1994; Magnussen & Greenlee, 1999; Olivers & 

Meeter, 2008). Participants are then asked to state the nature of the distinguishing feature, i.e. is the 

notch to the right or the left or what orientation is the marker on the stimulus. Results normally report 

that if the target stimuli shares colour or shape with the previous target stimulus, even if the 

distinguishing feature that they are asked to report on is different, then reaction times are decreased or 

accuracy improved (Becker, 2008; Goolsby & Suzuki, 2001; Maljkovic & Nakayama, 1994) 

Crucially, because the priming observed is separate to the task demands then it might be interpreted as 

participants interpreting potentially uncertain information based on an integration of the salient 

features in stimuli. 

Support from research into the various forms of serial effects strongly supports the idea that the visual 

system integrates information from the recent past into current perceptions. It is also highly likely that 

given the nature of such findings and our knowledge of the nature visual information received at the 

cortex that this is performed to aid the extraction and interpretation of uncertain task relevant stimulus 

information. However, there are a number of questions about such assumptions and findings due to 

the level of research serial effects operate at. All of the examples of serial effects literature we have 

presented operate at the empirical as opposed to the theoretical level. To elaborate on this distinction, 

the empirical level applies to observations about what happens under a certain set of experimental 

circumstances. On the other hand, the theoretical level attempts to explain findings from the empirical 

level and say how and why the findings occurred. For example, repetition priming gives an especially 

good illustration of the difference between the empirical and theoretical level research. The decrease 

in reaction times when stimuli are repeatedly presented is interesting but it is simply an observation. It 

is possible to speculate that under an assumption of a stable world that we might be tuned to expect 

what has been observed previously to be repeated and so be able to respond faster. This idea does not 

though say what happens to reaction times under more variable conditions or whether the reaction 

times might be due to the use of conditional relationships present in the sequences of stimuli as 
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opposed to simple repeats. Also, such empirical findings level studies do not touch on the underlying 

computations of integration or what the aim of integrating actually is. Is the aim of integration simply 

to increase signal to noise ratio or to actively reduce the amount of error in perception and responses 

which while appearing to be similar goals potentially arise from different computational strategies. 

Overall, on the basis of such research it could be valid to say that the visual system does integrate 

information over time but that it is also reasonable to say that such empirical research gives no 

theoretical explanation of the factors which mediate integration and the underlying computations that 

underpin integration or what the actual aim of integration might be. However, while much serial 

effects research does function at the empirical level there do exist ideas which do provide theoretical 

explanations of the how and why the brain integrates information over time.  

1.10 Two predictive integration strategies: assume stability and predict based on the average of 

values observed over time or learn the conditional relationships between stimuli and predict.  

Theoretical ideas about how and why the visual system integrates information about the statistical 

regularities of the environment have long concerned the thoughts of some of the most important 

figures in the history of cognitive science. These figures include including Helmholtz, Mach, Pearson, 

Craik, Attneave, Barlow and Gregory giving a clear indication of the level of such research. Due in no 

small part to the ideas of such crucial figures, an important idea has emerged within cognitive science. 

This idea, is that in order to help resolve uncertainty the brain makes forecasts or predictions about the 

content of its variable inputs based on past experience. Here though, it is important to raise an 

important point central to the current thesis. That is that the term prediction can be used in a number 

of ways and there is also more than one way to make a prediction. Over time a number of strategies 

about how the brain might predict the nature of its uncertain inputs have emerged and here we focus 

on two of them. Namely perceptual averaging (Corbett, Venuti, & Melcher, 2016) and perceptual 

inference derived mainly from the early works of Helmholtz (1867).  

1.11 Perceptual averaging and perceptual inference. 

Perceptual averaging is a simple way to make a prediction about variable measurements familiar to 

anyone who has worked with interpreting noisy signals that relies on a simple underlying assumption. 

This assumption is that there is some level of temporal stability in the stimulus under measurement 

but that measurements are also variable to some extent. Under this expectation a good way to predict 

a stimulus value is to base predictions on an average of values observed over time. Importantly, this 

type of prediction is while still a prediction more of a retrodictive type of prediction and relies on past 

information entirely. Perceptual inference on the other hand also involves a type of averaging to 

resolve uncertainty but in this case averaging also makes use of some of the more complex type of 

conditional sequential relationships present in the environment and is perhaps a more ‘true’ or 

prospective type of prediction. In perceptual inference, calculations can include basic regularities such 

as the repetitions or cues but can also factor in knowledge or beliefs about conditional relationships 
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present in more complex sequential information arising from the way stimuli behave or events occur 

in the world. Also, the time frames from which such learnt sequential and contextual knowledge can 

be applied to interpreting current sensory inputs can potentially be garnered from not only the 

previous seconds but potentially from much longer time frames. Crucially the ability to incorporate 

complex sequential relationships allows the construction of complex mental models that simulate 

future states of the environment based on how we expect the world to behave in the future in a more 

prospective manner (Friston, 2010). Examples which can help to distinguish the difference between 

perceptual averaging and perceptual inference can be observed in many day to day situations. 

Anyone who travels to work using any type of large transit system such as an underground subway or 

rail network will have observed people making both predictions based on stability in events in the 

world and those based on more complex sequential or contextual information. Normally, on such 

networks the platform can be on the right or the left of the stopping train depending on the design of 

the station. People who wish to alight at their appropriate stop and miss the rush of people alighting 

from the same carriage must make a prediction about what side the platform will be on before they 

reach their stop so they can position themselves more effectively. This is where we can propose a 

hypothetical situation can help differentiate the two strategies. Say on one line of the network, the 

platform stays on the right hand side for five stops and then on the sixth stop switches to the left. At 

the sixth stop, people unfamiliar with the network, say tourists, will nearly always stand facing the 

right. This is an entirely viable strategy as the previous stops have all had platforms on the right. In 

the same situation it is also possible to observe a more inferential or model based type of prediction. 

People who are familiar with the line, say those who use it for travelling to work are able to model the 

sequential regularities of the platforms on the line. This means that when the train reaches the sixth 

stop they know to face the left side. This example shows the benefits of being able to utilise the 

sequential regularities of events in the world when making predictions. When events are uncertain 

basing predictions solely on what has occurred previously may be a good idea when things are stable 

but this type of prediction is in essence a prediction about the past and as we described will become 

inaccurate when events change in sequence or order. The ability to make predictions based on 

sequential regularities means that we can make more general and flexible predictions to help 

minimize uncertainty that are more about the ‘future’ which in the above subway case led to a more 

successful behavioural outcome. While the examples we discuss relate more to decision making type 

of predictions these general predictive strategies form the basis of two theories of visual processing. 

One which is largely an implied model we term fixed rate perceptual averaging (Kiyonaga, Scimeca, 

Bliss, & Whitney, 2017; Liberman et al., 2016) and a more formal model termed predictive coding 

(Gordon, Koenig-Robert, Tsuchiya, van Boxtel, & Hohwy, 2017; Huang & Rao, 2011; Spratling, 

2008).  
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Fixed rate perceptual averaging is a term that can be applied to explain the finding that people’s 

perceptions of current stimuli appears to revert towards the mean values of previously observed 

stimuli (Albrecht & Scholl, 2010; Albrecht, Scholl, & Chun, 2012; Jones & Dekker, 2018). Mean 

reversion is a century old finding first recorded in an experiment which showed that participants 

frequently choose a probe card that was too large when the cue card was small compared to the other 

cards presented in the experiment and selected a probe card that was too small when the cue card was 

larger (Hollingworth, 1910). Current findings indicting similar averaging behaviours come from both 

the spatial domain, in which the perception of a stimulus ensemble appears to represent the mean of 

shapes and sizes of objects in the current field of view (Campbell & Robson, 1968; Corbett, 

Wurnitsch, Schwartz, & Whitney, 2012a; Parkes, Lund, Angelucci, Solomon, & Morgan, 2001) and 

in the temporal domain in perception appears to represent a reversion to the mean of stimulus values 

observed over time, a phenomena often termed serial dependence (Alais, Leung, & Van Der Burg, 

2017 ; Cicchini et al., 2014.; Corbett, Fischer, & Whitney, 2011; Kiyonaga et al., 2017; Liberman, 

Fischer, & Whitney, 2014; Liberman, Zhang, & Whitney, 2016; Moors, Stein, Wagemans, & Ee, 

2015).  

Serial dependence is defined as bias in participant’ judgments of a current stimulus value towards the 

mean of previous stimulus values (Fischer & Whitney, 2014). In serial dependence literature, mean 

reversion is interpreted under an internal assumption of a stable environment in which measurements 

at the retina are always uncertain to some extent (Fischer & Whitney, 2014). The general idea behind 

the function of serial dependence is that by representing perception as the fixed mean of values 

observed over time, variability in visual information from factors such as blinks and saccades are 

smoothed over allowing more accurate representations of the true values of stimuli of interest than 

those provided by a single uncertain measurement (Liberman et al., 2016; St. John-Saaltink et al., 

2016). However, like any method of averaging or indeed statistical interpretation the implied fixed 

weighted method has its disadvantages and there are additional problems in regard to the way the 

fixed average account of temporal integration is somewhat less than clearly described in the literature.  

There are two main issues with a fixed weighted averaging account of serial dependence. The first 

relates to the simplicity of the assumption of a stable world in which measurements are always 

uncertain. The second is a lack of an explicitly stated model for the fixed averaging perceptual 

integration strategy that is implied in serial dependence literature. The simplicity of applying a fixed 

average to all measurements is straightforward to understand. If you have a set of relatively stable 

statistical measurements from an experiment then averaging at a fixed rate would give a reasonable 

approximation of the underlying trends in the data. However, averaging at a fixed rate when values 

are highly variable but measurements clear leads to what might be considered unnecessary errors. 

This is because, as with any type of statistical averaging, some amount of past measurement values 

are always included in the current estimate. In visual terms, if the behaviour of stimuli is highly 
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variable then basing perceptions on a fixed average of past measurements means perceptions will not 

be indicative of the current state of signal as the perception is anchored on past measurements making 

them lagged in time to large changes in stimuli value. Also, the implied fixed average method of 

perceptual averaging suffers from a lack of an explicitly stated mathematical or computational model 

by which to guide experimental design and compare against other computational account of temporal 

integration. It appears that the general explanation of serial dependence is based on fixed weighted 

average models commonly used in signal processing but this is never actually stated. Without an 

explicitly stated computational account it is difficult to design experiments which test the fixed 

account of integration or compare against other accounts of temporal integration such as predictive 

coding which do have a more formalised if varied computational structure. 

1.12. Predictive coding account of temporal integration: basic ideas 

Predictive coding is a major theoretical movement within cognitive science and potentially represents 

a considerable paradigm shift in the way we think about vision (see Clark, 2013) for an overview of 

predictive coding theory). The general idea of some current and highly influential predictive coding 

models is that is that the visual system contains a series of hierarchical internal model(s) (Friston, 

2010; Spratling, 2015). Each layer of the hierarchy contains an increasingly complex (from lower to 

higher) representation of the statistical regularities of the spatial structure and temporal regularities of 

the world. Based on the general parameters of the internal models the visual system constantly 

extrapolates or predicts the origin and cause of its expected neural and sensory activity such that 

superior hierarchal levels make predictions about activity at inferior levels via top down signals. 

Differences between predictions and measurements produce error or ‘prediction error’ signals which 

are sent back up the hierarchy to update the internal model and the subsequent predictions according 

to the nature of the prediction error.  

In the literature, terms such as measurement and prediction can be used somewhat loosely so we 

define some important terminology. Here, we define prediction as an estimation of what the next 

sensory measurement will be. A measurement can be from the world as made by retinal ganglion cells 

as we have defined previously but in predictive coding also within early cortical regions (Friston, 

2010). The next estimation can be next in time or in space. However, one very important aspect of 

predictive coding to be aware of is that predictive coding is essentially a computational motif. The 

term predictive coding simply means a neural process involving prediction and prediction error 

(Aitchison & Lengyel, 2017) and there are certain aspects of predictive coding that could be 

performed in multiple ways. Indeed, in the literature there exist a number of models that all differ in 

their application and frameworks (see Spratling, 2015 for a good account of a number of predicive 

coding models). An excellent example of predictive coding’s general principles that provides an 

illustration of how spatial measurements, predictions and prediction errors are used to form 
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perceptions while at the same providing a ‘default model’ of predictive coding to highlight some of 

the differences between predictive coding models comes from Rao & Ballard (1999). 

1.13. Rao and Ballard (1999) predictive coding in sensory cortex model. 

Rao and Ballard’s (1999) computational framework provides a specific illustration of the nature of 

predictive coding’s hierarchical models and how the prediction, measurement, prediction error and 

update cycle function in the spatial prediction of image intensities. In Rao & Ballard’s (1999) 

hierarchal model, each level contains a representation of the spatial structures of an image intensities 

within an image. Each level in the hierarchy has an increase in receptive field size dealing with 

increasingly larger and complex areas of the image. In a three-level predictive coding model, level 0 

will consist of a group of modules which deal directly with the measurement. Level 2 receives input 

from all the modules of Level 1 and at the same time feeds level 1 with prediction signals based on 

the probability of surrounding pixel intensities, while level 3 receives input from level two and at the 

same time predicts activity at level two. This hierarchical system functions throughout Rao & Ballards 

(1999) framework, with the highest level having the potential to receive input from all areas of the 

visual field and predict the whole image for the lower levels. Importantly, this cycle of prediction, 

measurement, comparison and prediction error happens constantly and with each iteration prediction 

error is reduced and predictions refined as more and more predictions and measurements are 

compared. 
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Figure 6. Schematic illustration of Rao & Ballard’s (1999) predictive coding model.  

Another key concept of predictive coding that is covered in Rao & Ballard (1999) is how to weight 

prediction errors, a term they call optimization function. For prediction errors to be a useful basis by 

which to inform and update perceptions they must recognize the variable nature of the natural world. 

For instance, greater confidence should be assigned to prediction errors in broad daylight than errors 

in prediction at nightfall (Hohwy, 2012). In Rao & Ballard (1999), prediction errors are weighted 

based on the inverse variance of the squared error between the current prediction and the mean of past 

measurements, such that a low sum of squares indicates a reliable prediction error while a larger sum 

of squares indicates less reliable prediction errors. With a higher level of reliability, internal models 

update and alter subsequent predictions by a larger amount relative to the size of the prediction error 

and with lower reliability the internal model updates and alters subsequent predictions by a smaller 

amount relative to the size of the prediction error. Importantly, the way prediction errors are weighted, 

varies between predictive coding models but normally involves the weighting of variances in 

prediction errors or measurements in some way and is adaptive to the setting in which predictions are 

made.  

1.14 . Missing pieces of the predictive coding puzzle: temporal predictive coding model and 

explicit perceptual averaging model. 

 

One aspect to consider about predictive coding and a reason we use Rao & Ballards (1999) model to 

illustrate its general concepts is that there are a number of ways predictive coding could potentially be 

implemented. Rao & Ballard, (1999) is a computational model for simulating predictive coding in 

spatial image intensities only. The model is excellent for its purpose of explaining spatial predictive 

coding but like all computational predictive coding models it has its own take on the key aspects of 

predictive coding’s general ideas. Within predictive coding literature, various other predictive coding 

models exist that all differ in application and configuration which may have led to some vagueness in 
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some areas of areas of predictive coding and perhaps contributed to some areas of visual processing 

including our area of interest, predictive coding in time, missing a specific account of predictive 

coding altogether.  

In predictive coding literature, in addition to Rao & Ballard (1999), there exist models for predictive 

coding in the retina (Hoyosa & Meister, 2005), Spratling’s PC/BC-DIM model (Spratling, 2015) 

again for spatial predictive coding and more general predictive coding models such as Fristons’s free 

energy model (Friston, 2015) and linear predictive coding (Makhoul, 1975; O’Shaughnessy, 1988). 

Importantly, none of these models apply to the temporal domain directly. Also there are confusing 

accounts of the nature of the internal models probabilistic representation. The dominant predictive 

account is one of a hierarchical system based on conditional probabilities under Bayes optimal 

principles such that interpretation of activity at lower levels is conditioned by those above them 

(Clark, 2013; Friston, 2011; Friston et al., 2002). Rao & Ballards (1999) model also involves a 

hierarchical system seemingly implying the use of conditional probabilities but is primarily a linear 

model with no real need for complex conditional relationships and indeed never actually mentions 

conditional probabilities. Furthermore, exactly how prediction errors are weighted is often ignored in 

studies examining predictive coding in time. Again Rao & Ballard (1999), provide one way of 

weighting prediction errors, based on the inverse variance of errors but their method is based only on 

computational simulations of a model for spatial predictive coding. Overall, conflicting accounts of 

how predictive coding might be realised combined with a lack of a specific model for predictive 

coding in time highlight missing pieces of the predictive coding ‘puzzle’.  

The lack of a specific model for predictive coding is an important piece of the predictive coding 

puzzle that is currently missing. While we have discussed other models of predictive coding in the 

spatial domain and more general models this is not intended so much as a critique but simply to 

highlight the idea that there are potentially a number of ways predictive coding might be implemented 

depending on the sensory domain in question. There is no doubt that models such as Rao & Ballard 

(1999) and those from Spratling (2015) and Friston (2010) are excellent accounts of predictive coding 

but by its very definition the term ‘prediction’ applies to time. Indeed, it is the easiest type of 

prediction to conceptualise. When most people think about prediction, they consider events in time 

and the ability to predict what will happen in the future is absolutely vital to behaviour. Therefore, 

establishing the existence and understanding the computations underlying predictions in time must be 

central to our understanding of predictive coding. However, although predictive coding should apply 

to the temporal domain it is ambiguous as to whether previous studies that have examined predictive 

coding have actually observed predictive coding in time or whether findings are attributable to the 

more simple fixed rate perceptual averaging type of integration outlined in serial dependence which 

itself lacks an explicit model and been can be subject to alternate explanations. 
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1.15. Lack of specific computational temporal models make the behavioural signatures of fixed 

weighted perceptual averaging and predictive coding difficult to identify in current literature 

Conceptually, predictive coding and fixed rate averaging appear markedly different. They each have 

contrasting aims, integrate different types of information and have different levels of complexity. 

However, due to a lack of clear and testable computational models by which to guide experimental 

designs it is open to question whether results interpreted under a fixed perceptual averaging in serial 

dependence literature have been correctly interpreted and also perhaps even more importantly whether 

predictive coding in time has been adequately distinguished (see table 1 below) . In order to illustrate 

the problems in experimental design caused by the lack of an explicit computational accounts of fixed 

perceptual averaging and the lack of an accepted model for predictive coding in time now we provide 

examples of current literature that highlights the nature of this problem.  

Table 1. Predictive coding versus fixed rate perceptual averaging 

Model signatures Predictive coding  Fixed rate perceptual 

averaging 

Fixed or blanket use of 

past information 

No (Friston, 2018) Yes (Fischer & 

Whitney, 2014) 

   

Adaptive use of past 

and current 

information 

 

Yes (Friston, 2018) No (Fischer & 

Whitney, 2014) 

Conditionally 

probabilistic internal 

models 

 

Yes (Spratling, 2017) No (Fischer & 

Whitney, 2014) 

Reduction of 

prediction error over 

time 

 

Yes (Friston, 2018) No (Fischer & 

Whitney, 2014) 

Passive estimate No (Spratling, 2017) Yes (Fischer & 

Whitney, 2014) 

 

 Active prediction Yes (Friston, 2018) No (Fischer & 

Whitney, 2014) 
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1.16. Fixed weighting of past and current measurements or not? Ambiguity in serial dependence 

research. 

Perceptual averaging in the temporal domain is often termed serial dependence. Presently, serial 

dependence is an increasingly popular area of vision science which examines the nature of the 

observed bias or dependence of current perceptions on past stimulus values. Within an influential 

section of serial dependence research, it has been implied that serial dependence functions as a form 

of a fixed weighted average model in which the weights applied to measurements of past and current 

stimulus values included in perceptual estimates always remain at a fixed level (Fischer & Whitney, 

2014; Liberman et al., 2014, 2016). If this idea is correct, a number of key identifying factors should 

exist in the current perceptual estimate of a stimulus value. One is that there should always be some 

influence of previous stimulus values in any current perception of a stimulus value. Another 

potentially identifiable hallmark, is that because the fixed account of serial dependence operates under 

a very simple assumption of a constantly stable but uncertain world the model does not include any 

concept of how the reliability in our perceptions of a stimulus or how the behaviour of a stimulus 

itself might affect integration and does not adapt perceptions to such situations. This means that the 

behaviour of a stimulus and how reliable the perception of a stimulus is does not affect serial 

dependence in any way. However, based on current serial dependence literature it appears that results 

from serial dependence studies may also be interpreted under at least the general principles of 

predictive coding which posits a more adaptive integration strategy.  

Fischer & Whitney (2014), examined serial dependence in the perception of orientation. Their task 

involved presenting a series of orientated Gabor stimuli for 500 ms and then asking participants to 

estimate the orientation of the Gabors they has just seen by moving an adjustment bar (see figure 7 for 

a more detailed illustration) Interestingly, Fischer & Whitney (2014) claimed findings consistent with 

a fixed account of temporal integration and observed a bias in the judgment of both fully random and 

more stable counterbalanced Gabor stimulus orientations. One caveat with this interpretation is that 

the level of dependence while always present to some extent does appear to have been influenced by 

the variability of orientations and the level of variability in the measurement of the stimulus. When 

Gabor orientations had radically different orientations from previous orientations judgments serial 

dependence decreased and when orientations were more similar serial dependence increased 

indicating a role for stimulus variability. Another interesting aspect of Fischer & Whitney (2014) 

experiment is that while Gabor stimuli had a relatively high contrast (25% Michelson), the stimulus 

also had a relatively low spatial frequency (0.33 cycles per degree). The effect of low spatial 

frequency was to make Gabor orientations blurred. Blur has been shown to make judgments of stimuli 

more variable, quite feasibly due to an increase in measurement variability at the cortex (Kayargadde 

et al, , 1996 ). Furthermore, the use of a noise mask in between stimuli and judgment trials and 

presenting stimuli to the left or right of fixation and outside of the foveal representation may also have 
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contributed to increased measurement variability. These factors are important because if the role of 

measurement variability is a factor in temporal integration as in predictive coding (Friston, 2010; 

Gordon et al., 2017), it may be possible that the weighting attached to any prediction errors caused by 

the change in the Gabors orientation did not carry enough weight to update the new prediction to its 

full amount. If the prediction was not updated to the full amount of the prediction error then it may 

appear that the perception lies somewhere between the past and current stimulus measurement and 

appears serially dependent. However, in order to test the role of stimulus variability and measurement 

variability a more rigorous experimental manipulation that takes into account these factors is required. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Fischer & Whitney’s (2014) experimental design and task. Participants viewed a Gabor 

stimulus presented wither to the left or right of fixation interrupted by a noise mask and reported the 

perceived orientation of the Gabor by adjusting the orientation of a response bar.  

In Manassi et al (2018), participants were asked to move a position marker to the position of a 

changing target stimuli. In a similar fashion to Fischer & Whitney (2014) participant’s responses, in 

general, responses appeared to represent the average of the current and previous positions consistent 

with a fixed weighted average type integration. However, closer analysis of the data appears to 

support an alternative explanation consistent to some extent with predictive coding. Again, much like 

in Fischer & Whitney (2014) the level of serial dependence appeared to be modulated by both the 

similarity in position of the previous target stimuli and the presence of measurement variability which 

was caused by the use of an inter trial mask which is known to weaken the perceived contrast of the 

target (Breitmeyer & Ganz, 1976; Breitmeyer & Ogmen, 2000; Breitmeyer, Rudd, & Dunn, 1981). 
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Results showed that when positions of the target stimuli were more similar to previous targets serial 

dependence increased and decreased when further apart. Also, when the inter trial mask was removed 

no serial dependence was observed. Manassi et al (2018) acknowledges this result and explains it 

under the idea that the time reduction of the inter trial interval, reduced by the removal of the mask, 

was the causal factor but offers no theoretical explanation why this may be the case. A potential 

predictive coding explanation why serial dependence dropped out, is that when the mask was removed 

the level of measurement uncertainty in the weighting of any prediction error between the previous 

and current stimulus positions was reduced, meaning any error in the prediction of the current 

positions is weighted as being more reliable. With a more certain prediction error, it is possible that 

the current perception was corrected to the full extent of the prediction error produced by the change 

in stimulus positions. With a total correction to the new measurement no influence of previous 

stimulus values would be detected in the response and thus no serial dependence. Again though, such 

an interpretation is speculative and because the paper does not actually state that averaging is always 

fixed and does not provide any explicit model of the type of averaging implied it is hard to critique the 

findings in terms of the fixed weighted average theory. 

A further interesting serial dependence study that could be subject to dual interpretations is Liberman, 

Zhang & Whitney (2016). This study examined the role that serial dependence has in interpreting 

partially occluded stimuli under the premise that integrating measurements over time helps to 

maintain a coherent perception when measurements are incomplete (Fischer & Whitney, 2014). 

Participants were tasked with judging the orientation of a partially occluded Gabor stimulus that was 

presented as either as continually moving or as a discontinuous series of orientations. Results again 

showed that serial dependence increased when orientations were more similar and decreased when 

further apart. Interestingly, and again providing contradictory evidence with a fixed weighted average 

account of serial dependence, in the discontinuous condition no serial dependence was observed. As 

no serial dependence was observed under more variable stimuli conditions this result could again be 

interpreted under a predictive coding or certainly adaptive accounts of integration in which the level 

of variability in measurements and stimulus behaviours play a role in updating predictions. 

Specifically, if a stimulus is highly variable then the new prediction should recognise this variability 

as a signal of change in the world and adapt to the new measurement value as quickly as possible. 

Once more though, while the role of stimulus variability appears to have played a role in the way 

measurements were integrated but without testing the modulating role of measurement noise in 

conjunction with stimulus variability in the way predictions update it may simply be the result of a 

bottom up driven process rather than a predictive coding type integration. 
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1.17. Predictive coding in time, or alternative explanations? 

In a similar fashion to the way the fixed account of serial dependence research has been subject to a 

lack of clear theoretical guidance when designing adequate experimental designs, predictive coding in 

the temporal domain can also be considered to be subject to a similar problem. Within temporal 

predictive coding literature to date no concrete computational model has been tested and compared to 

the behaviour of human participants. Due to a lack of a clear and testable theory by which to base 

experiments upon it is open to question whether key aspects of predictive coding such the adaptive 

weighting of prediction errors have been tested fully in purely visual term. Furthermore, and perhaps 

most importantly, there are also questions about the type of probabilistic representations and 

complexity of information used to make predictions. To illustrate the limitations related to a lack of a 

clear theoretical model for predictive coding in time we provide evidence from a number of predictive 

coding studies that have claimed to observe predictive coding in time and debate the interpretation of 

such findings. 

A neural phenomena that has been utilised to support the idea that predictive coding applies to the 

temporal domain is repetition suppression. Repetition suppression is defined as the diminished neural 

activation that results from the repeated presentation of a stimulus over time (Henson, 2003; Wiggs & 

Martin, 1998). Explanations for repetition suppression are keenly debated. The original explanation 

for repetition suppression was that reduced activity neural patterns could be explained by simple 

fatigue effects (Grill-Spector, Henson, & Martin, 2003) . By this account, the attenuation of a neural 

response is hypothesized to be due to an overall reduction in a neuron's firing rate as the neurons 

expend their energy or neurotransmitters. An alternative explanation of repetition suppression 

advanced by supporters of predictive coding, is that overall neural activity at lower levels of 

predictive coding’s hierarchy is reduced by top down driven prediction signals when they are 

congruent with expected activity (Auksztulewicz & Friston, 2016; Grotheer, 2016a). Over time a 

number of studies have tested the predictive coding account of repetition suppression by manipulating 

the predictability of stimuli. 

Summerfield Trittschuh, Monti, Mesulam, & Egner (2008) aimed to test the modulatory effect of 

prediction or ‘expectations’ on repetition suppression as indexed by blood-oxygen-level dependent 

(BOLD) imaging (higher BOLD signal is assumed less repetition suppression and lower BOLD 

assumed more repetition suppression). The study presented two types of trial. One type, called a 

repetition trial which comprised of pairs of identical faces and the second an alternation trial which 

showed different faces. To manipulate the expectation of which trial was most likely to occur 

Summerfield et al (2008) presented trials in two blocks termed high probability and low probability. 

In the high probability block the probability of a trial being a repetition trial was 75% and in low 

probability blocks the probability of being presented with repetition trial was 25%. Within blocks all 
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face images were trial unique which ensured that the probability of a repetition and not the repetition 

of a particular face was manipulated. As an incidental task was while observing trials, participants 

were asked to respond to occasional inverted faces the aim of which appears to have been to keep 

participants ‘on trial’. 

Summerfield Trittschuh, Monti, Mesulam, & Egner (2008) reported some interesting findings. Firstly, 

in high probability blocks BOLD signal was decreased with repeated trials in these blocks producing a 

decrease in BOLD signal of around 22% compared to alternation trials. In low probability blocks, 

repetition trials elicited only a reduction of 9% in BOLD signal compared to alternation trials. 

Statistical analysis showed a main effect of trial type on BOLD signal and more importantly a 

significant block type and stimulus interaction effect on BOLD signal meaning that the both the 

overall probability of seeing a repetition and actually seeing a repetition had an effect on BOLD 

signal. In terms of behavioural responses, reaction times to target inverted faces reported no 

significant difference between blocks. Summerfield et al (2008) concluded that the expectation of 

both stimulus repetition and block probability were both predictors of repetition suppression, with the 

context provided by block probability level superseding simple stimulus repetition. However, while 

results reported that the probability of a repetition and a repetition itself did reduce BOLD signal there 

are a number of questions related to the design and interpretation of the study with some aspects of 

Summerfield et al (2008) predictive coding interpretation of results open to debate. 

One question arises from the type of ‘predictions’ in the behavioural aspect of the study. This is 

because participants were presented with a reliable cue. While it is of course still possible to make a 

prediction about the current input based on a cue but the use of cues can be thought of as providing a 

more simple associative relationship as opposed to a more ‘forward’ type of prediction about what 

will happen next based on sequential conditional probabilities. Perhaps some behavioural measure of 

what participants ‘expected’ was going to constitute the next face image should have been added to 

the study by inserting conditional relationships between stimuli into the sequences of trials and 

omitting trials and then asking for a prediction about the next trial might have been a better design. 

Another critique is that the study does not include any notion of the difference between the 

measurement of the stimuli in the world and the actual signals stimuli produce. In a number of 

influential predictive coding models, when the measurement of the stimulus is less certain the weight 

attached to prediction errors is downgraded (Friston, 2018; Spratling, 2015). Presenting clearly visible 

stimuli cannot, therefore, test this notion. In addition, due to the rather simple probabilities assigned to 

blocks and trials, it is open to question whether the neural activity changes observed between high and 

were due to the probabilities of observing repetition or alternation trails. A possible alternative 

explanation is that the visual system, as proposed by a fixed weighted average account of integration, 

models the average of the past and current stimulus measurements and during more changeable 

alternation and less probable blocks simply signals more changes in mean values when the stimulus 
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changes producing more neural activity. A final criticism that also provides a basis for a fixed 

weighted average integration interpretation of Summerfield et al (2008) results, is that even when 

stimulus repetition was rare repetition suppression was never totally absent. In a fixed average 

account some trace of past stimulus measurements always persists as the current estimate always 

contains at least some past stimulus history. The persistence of repetition suppression could reflect the 

persistence of past values as would occur with a fixed weighted account but in predictive coding this 

does not have to be the case. An attractive aspect of predictive coding is that given the correct 

conditions all past stimulus history can be discarded and the response will equate to the current 

stimulus which in theory should extinguish repetition suppression entirely. However, as the design of 

the experiment did not manipulate the reliability of sensory measurements (how well participants 

could see the stimulus) the experimental design was not adequate to test this aspect of the predictive 

coding.  

An illustrative account from predictive coding literature that further illustrates the ambiguity in 

ascertaining which integration strategy has actually been performed comes from Summerfield & 

Koechlin (2008). In this study, the researchers aimed to manipulate predictions and predictions errors 

in upcoming stimuli orientations by providing them with specific perceptual templates that drew upon 

two classical psychophysical tasks. Task 1 was a two alternative forced choice task called the A/B 

task, because participants were shown two orientation lines of different colours (A, red & B, blue) on 

a grey circle separated by 60° on the same stimulus and then asked to report if the grating of a 

subsequently presented Gabor stimulus was the same as A or B . The second task was a yes/no type 

paradigm, in which they were only shown the A orientation and then asked to state whether the 

orientation of the next subsequently presented Gabor stimuli matched the A orientation or not (~A). 

Of total trials 50% of target Gabors in the A/B task were A and 50% B. Also in the A/~A task, 50% of 

the targets were A and 50% were ~A. The type of the target changed randomly from trial to trial in 

both tasks and trials were presented inter leaved blocks of A/B and A/ ~A.  

Summerfield & Koechlin (2008) made separate hypotheses about the level of prediction error each 

trial type should produce. The first hypothesis was that highest level of prediction error should be 

observed in the non matched A/B trials and lowest in matched A/~A trials. In A/~A when the Gabor 

matched A prediction error should be zero but when orientation was a non match or ~A, prediction 

error should be increased in direct proportion to the difference in orientation which in non match trials 

was always 60° in either direction from A i.e. 60° of prediction error. The prediction error hypothesis 

in the A/B task was that prediction error should always be lower than A/~A non match tasks but 

higher than A/~A match tasks. This was because the participants had been presented with competing 

priors on which to base predictions so as a consequence the prediction should be in between the in A 

and B orientations separated which as they were always separated by 60° when presented with either 

an A or B target Gabor orientation prediction error should always be 30°.  
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Behavioural results for the study in the form of reaction times (which Summerfield & Koechlin 

(2008) indexed as a measure of prediction error) agreed with Summerfield & Koechlin’s predictive 

coding (2008) hypotheses. Participants were faster in matched A/~A and slower in ~A trials. Reaction 

times for A/B tasks were also as hypothesized to be in middle of times for matched and non matched 

A/~A. Summerfield & Koechlin (2008) interpreted these results as largely due to the speeding effects 

of fulfilled predictions on behaviour. When predictions were 100% accurate as in matched A/~A trials 

then responses required less processing and were thus quicker. By the same measure, in non-matched 

A/~A trials, predictions were least accurate and required more processing as the prediction error was 

larger than non match matched A/~A and A/B trials and were thus slower. This interpretation applied 

by the study to behavioural data while at first glance plausible is subject to alternative interpretations 

not least due to questions about to the studies important concept of prediction. 

Summerfield and Koechlin (2008) claim they manipulate predictability by presenting prior stimulus 

orientations and target Gabor stimuli orientations with the same stimuli and manipulate predictability 

by changing task demands. However, it is very much open to question whether they manipulated 

predictability at all. Stimuli were not structured in any predictable sequence or tasks designed in such 

a way that asked participants what was going to form the next observation. In both trials types and 

blocks the dominant feature was the A orientation. As the A orientation was always present in both 

sets of trial and in task instructions this raises questions whether participants actually needed to 

‘predict’ the next orientation. An alternate explanation is that the differences in reaction times are 

simply due to an attentional resource constraint. That is in the A/~A participants had to keep in mind 

only one template while in the A/B participants had attend to two templates and attending to two 

templates simply takes more time (Bell, Wyatt, Bootzin, & Schwartz, 1996; Flaherty & Coren, 1974) 

To better test prediction error a design which also manipulated the predictability in the sequence of 

trials in a way that manipulated the conditional relationships between A/B and A/~A would be a 

better way of manipulating predictability more in keeping with current theoretical ideas of predictive 

coding. 

1.18. Summary of chapter one and experimental questions.  

The aim of chapter one was to introduce the notion of uncertainty in visual perception and current 

theory about how uncertainty in perception is resolved by the brain with an emphasis on some of the 

current theoretical limitations within the literature. To this end, we first discussed the importance of 

vision and how visual information is made uncertain by the presence of a number of sources of 

variability from both external and internal sources. We then drew attention to the apparent 

juxtaposition between the variable nature of visual information and then speed and clarity of our 

subjective visual experience. Next, we introduced ideas about of the use of past information about the 

temporal regularities present in the external world that the visual system could potentially capitalize 
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upon to help resolve its uncertain inputs with a detailed distinction about the different types of 

temporal regularities present in the world. We then provided empirical evidence from serial effects 

research that the visual system does integrate past information but explained that much of serial 

effects research operates at the findings level which while vital lacks theoretical understanding about 

why and how the visual system integrates past information. Next, we set out two broad theoretical 

strategies of how the visual system could reconcile uncertainty, namely perceptual averaging and 

perceptual inference and then discussed two current specific theoretical accounts of perceptual 

averaging and perceptual inference which form the basis for our experimental chapters. 

The two current specific theoretical accounts of perceptual averaging and perceptual inference we 

introduce in section three were fixed rate perceptual averaging and predictive coding. Fixed rate 

perceptual averaging is a more implied model in areas of perceptual averaging study such as serial 

dependence while predictive coding is more concrete type of theory albeit with multiple versions 

depending on the sensory domain. The issues we highlight in the presented literature, in regard to both 

models, is that while appearing substantially different some of the key behavioural hallmarks of each 

model are hard to identify and distinguish. We then proposed this is in part due to a lack of 

computational accounts for both predictive coding in time and fixed rate perceptual averaging that 

could be used to guide experimental design. Therefore, chapters 2, 3 & 4 compare how information is 

weighted over time based on theoretical predictions made by model called a Kalman filter which is 

very similar in many ways to predictive coding and a fixed weighed average model which is identical 

to a fixed weighted account of perceptual averaging. In chapter 5, we test the idea of the visual 

perception as a dynamic system constantly making and updating predictions by assessing its ability to 

use conditional relationships in sequences of stimuli to improve behaviours. Results from all chapters 

are discussed in the final chapter, which constitutes our discussion and conclusions. We provide full 

explanations of our models and experiments in the relevant chapters but for now we provide a general 

idea and flow of how our experimental streams and chapters will operate to aid the reader. 

1.19 Research questions and flow of experimental chapters 

The literature presented for both fixed rate perceptual averaging and predictive coding  raised a 

number of issues that could benefit from more theoretically structured experimental analysis. The 

three issues we highlight and further examine here are as follows; the adaptive weighting of prediction 

error versus fixed use of past and current information stimulus values in visual information, the 

adaptive reduction of prediction error over time and the extraction and use of conditional probabilities 

in enhancing behaviour and making predictions. To research these questions we structure our chapters 

as follows; 
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Chapter two. The Kalman filter and the fixed weighted average models. 

Chapter two, provides background. Concepts, terminology and mathematical explanation of the 

Kalman filter and fixed weighted average models and the theoretical motivation for using both models 

in relation to comparing fixed rate perceptual averaging and predictive coding.  

Chapter three. Testing the adaptive versus fixed use of past and current information. 

The first aspect of predictive coding and fixed weight perceptual averaging we wish to test is the 

adaptive weighting of prediction errors versus fixed use of past and current stimulus values outlined in 

perceptual averaging. To allow this comparison, we design experiments based on the ideas of the 

Kalman filter in which the weighting of prediction error adapts to the level of stimulus and 

measurement variability. We use serial dependency as a means to assess the weighting strategy 

underlying participant’s perceptual estimates and compare experimental predictions inspired by the 

Kalman filter and the fixed weighted average models about what should happen to the level of serial 

dependence in perceptual estimates under different levels of stimulus and measurement variability to 

participant’s actual responses. 

Chapter Four. Testing the adaptive correction of error over time. 

Chapter three, examines the adaptive reduction of estimation error posited within predictive coding 

against the fixed reduction of estimation error outlined in perceptual averaging. To allow this 

comparison, we design an experiment based on the ideas of the Kalman filter in which the reduction 

of prediction error adapts to the level of stimulus and measurement variability. We use participants 

step responses as a means to assess how error in participants perceptual estimates is reduced over time 

and again compare experimental predictions inspired by the Kalman filter and the fixed weighted 

average models about how error in perceptual estimates should reduce under different experimental 

conditions with participant’s actual responses 

Chapter Five. Testing the extraction and use of sequential information in enhancing behaviour 

In chapter five, we switch emphasis from looking at the adaptive aspects of predictive coding and 

examine the ability of the visual system to use conditional sequential transition information to make 

predictions. To examine such an ability, we test an experiment that manipulates sequential transition 

probabilities using a Markov chain. Here, we examine how participants learn and use these 

probabilities by analysing reaction times when presented with more and less predictable transitions 

and how they apply such information to make predictions in a forward manner.  
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Chapter 6. Discussion and conclusion  

Chapter 6, presents our discussion and conclusion. Here, we recap the validity of our methods, discuss 

our main contributions to the literature and conclude whether our findings provide enough evidence to 

support the predictive coding account of temporal integration in the visual system. 
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Chapter 2. The Kalman filter and fixed weighted average models- 

Concepts, math and motivations.  

Chapter two fulfils a key role in the current thesis. Its purpose is to set out the concepts and 

motivation behind our use of the Kalman Filter as a candidate model for predictive coding in time and 

fixed weighted average models as a model for fixed rate perceptual averaging. We also provide in 

depth math and equations for each model on pages 42-46 of the current chapter. Both the fixed 

weighted average and the Kalman filter models play key roles in experimental chapters 3 and 4, which 

largely focus on testing the adaptive nature of predictive coding. We begin with the simplest of our 

models, the fixed weighted average model. 

2.1. Weighted average model: concepts, assumptions and example.  

The model of temporal integration that has been implied in serial dependence literature (Corbett, 

Wurnitsch, Schwartz, & Whitney, 2012; Corbett et al., 2011; Fischer & Whitney, 2014; Kiyonaga et 

al., 2017) is the same as a fixed weighted average model (see equations 2-5, pages 42 and 43 for 

mathematical proof of this concept). A fixed weighted average model is a simple generic temporal 

smoothing model used to estimate stimulus values contained within variable measurements. This type 

of model, is perhaps the most commonly used model in signal processing and is used for estimating 

stimulus values in many applications such as global positioning systems (GPS) and radar (Lucas & 

Saccucci, 1990). The basic premise behind the use of fixed and more general weighted average 

models in signal processing, is that given a set of variable measurements, a good way reduce 

estimation error is to take an average value on a number of measurements recorded over time 

(Takahashi & Miwa, 1994; Zetterberg, 1958). Much like the stated role of averaging in serial 

dependence in perception, the model assumes that the underlying stimulus value is to some extent 

stable over time and that more random variability in measurements is due to more random noise 

unrelated to the activity of stimuli (Hua et al., 2017). The estimation process outlined in a fixed 

average models is dependent on a specific averaging calculation (see equations 2-5, pages 42-43). 

A fixed weighted average model, is based on an averaging calculation in which each measurement of 

a stimulus value included in the calculation is assigned and multiplied by a fixed weight before 

summing to an average value. The number of measured stimulus values included in the averaging 

calculation includes the current amount and potentially any amount of previously recorded values. For 

example, in a fixed weighted average calculation with three values, the current measurement value 

might always carry a weight of 0.5 in the new estimate and n-1 value 0.3 and n-2 value, carrying 0.2 

(weights must add to 1). Normally, some values in the calculation carry different weights according to 

when they were measured. Typically, the weights attached to measurements degrade as a function of 

time so that most recent values carry more weight and less recent values carry less weight but this is 

not always the case. Although the calculations involved in a fixed weighted average appear 
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remarkably simple they can be very effective if certain assumptions are met but like any temporal 

integration model fixed weighted average models also carry a number of disadvantages.  

Assumptions, Advantages and disadvantages of the fixed weighted average model. 

The assumptions for effective use of fixed weighted averages are simple. These are that the stimulus 

component within a measurement is relatively stable over time but the measurement of the stimulus 

also contains includes more random noise components (Rukhin, 2009). If this is the case then 

averaging acts to smooth over fluctuations caused by noise thus extracting a more accurate 

representation of the underlying but unknown stimulus value of interest in a very simple and easy to 

implement way. It is true that many situations meet such assumptions and due to just how often time 

series data exhibits such properties, fixed weighted average models and their variants are perhaps the 

most widely used of all temporal integration models. However, due to the simplicity of fixed weighted 

averages assumptions and its calculations they also carry a substantial number of disadvantages.  

The main problem for fixed weighted average models are large or sudden changes in stimulus value. 

If there is a sudden fluctuation in stimulus value that is drastically different to previous values 

estimates based on a fixed weighted average will be inaccurate as they will be lagged towards the 

outlying past stimulus value potentially by large amounts. Another important disadvantage of fixed 

averaging calculations in terms of lagged responses is that if a value is invalid or missing then the 

model cannot perform its averaging calculations. This leads to a fixed minimum delay in the 

formation of a new estimate until a sufficient number of values are recorded. The lagged and non 

adaptive aspects of fixed averaging calculations are perhaps the most obvious criticisms of fixed 

weighted average models but there are also more subtle disadvantages in comparison to more 

complex temporal integration models caused by an inability to take into account information about the 

way stimulus behaviours evolve over time. In fixed average models, the assumption is that stimulus 

values under measurement will be noisy and stable. Stability is only one type of statistical regularity 

present in the way a stimulus can behave over time and the type that perhaps offers the least amount 

of information when trying to estimate values over time and other models do incorporate such models 

in a way that can be updated over time to build in more complex aspects of the data to help improve 

estimates. To illustrate the advantages and disadvantages of fixed weighted average models we 

provide an example of how a fixed weighted average models provide an estimate of voltage in an 

electrical substation which is a realistic example of an application for fixed weighted average models. 

Weighted average: substation example.  

A good way to illustrate the way a fixed weighted average model estimates stimulus values with 

different variances and noise levels within its measurements is by showing how a fixed weighted 

average makes estimates of sharply changing voltage values. In this example, we want to estimate the 

level of voltage emitting from a substation that takes in electricity from a power station and increases 
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the charge ready to send over long distances via the power grid. The normal output from the 

substation is 0.4 mega volts (MV) but recently, the level of voltage sent to the grid from the substation 

has appeared to sharply fluctuate and then stabilize at values between 0.1 and 0.9 MV, indicating that 

there may be an underlying issue with the substation. However, the measurements made by the 

measuring system also appear to be more variable than usual and may not be accurate and before 

shutting down the station for repair the operations team need to provide a more accurate level of the 

true level of voltage sent from the substation. To do this, they use a fixed weighted average to 

estimate the true underlying voltage values. The fixed weighted average they use comprises two 

values with a weight of 0.5 attached to each value which they apply to four test data sets which each 

comprise 30 data points 1 second apart. All of the data sets contains different levels of voltage 

fluctuations and noise. In this example, we also assume we know the true voltage value although in 

the real world we would not. The output of the four tests are illustrated below in figure 1 which we 

use to highlight the advantages and disadvantages of the fixed weighted average model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. How a fixed weighted average makes estimates of fluctuating voltage values. Here we 

see the advantages and disadvantages of the way a fixed weighted average model makes estimates 

under different levels of stimulus and measurement variability. In sub figure A, the change in voltage 

is relatively small and the measurements relatively ‘clean’. In this case, the variability in 

measurements from noise is smoothed over quite well and the estimates are more accurate than the 

measurements alone and while there is some lag during the change of the stimulus it is not too bad 

and overall the estimates are improved. In sub figure B there is a similar situation to figure A. In this 

situation, noise is higher and the measurements more variable. In this case, the fixed average model 

works very well to smooth out the noise and make estimates closer to the true value although as 

always with a fixed average there is still some lag but the estimates are improved. In sub figure C, we 

observe the major problems with averaging at a fixed value. Here, the voltage suddenly increases by a 

large amount and the estimates are much lagged behind the true stimulus value. In this case estimates 

are made worse than those given by the measurements. In sub figure D, we again observe the severe 

lag caused by the sudden change in stimulus. Again, noise is smoothed over but the cost to accuracy 

and is very high and this estimate would not be accurate or fast enough to be useful. 

 

2.2 The Kalman Filter: aims, concepts and example. 

A powerful approach for estimating the true value of uncertain stimulus values recorded over time is 

recursive Bayesian estimation theory (see Haug, 2012 for an excellent account of Bayesian estimation 

theory). A special case of recursive Bayesian estimation theory is the Kalman filter (Kalman & Bucy, 

1963). The Kalman filter, is an algorithm that takes a series of variable measurements recorded over 

time and produces estimates of current and potentially future stimulus values that are more reliable 

than those based on individual measurements alone (Hu, Chen, Chen, & Liu, 2003; Kalman, Mi, & 

Bezier, 2008). Since its introduction in the 1960’s, the Kalman filter has come to be regarded as one 
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of the most significant engineering results of the mid-20th century (Welch & Bishop, 2006). If the 

Kalman filters assumptions are met then the model is the optimal way to reduce the level of mean 

squared error in estimates of dynamic systems and is still a very useful estimator in an even larger 

class of systems which do not technically meet all of its assumptions such is its utility.  

There are four main assumptions required for the optimal use of the Kalman filter. These assumptions 

are that a) the stimulus in questions behaviour is linear over time and follows a Gauss-Markov process 

b) noise in the behaviour of the stimulus is normally distributed, c) the observation process is linear 

and finally d) observation or measurement noise is also normally distributed (Grover Brown & 

Hwang, 1999; Praveena & Ravikumar, 2013). In the world of time series analysis and signal 

processing, many dynamic systems meet such assumptions and the Kalman filter has seen huge 

application in these areas. Applications include, lunar exploration and missile guidance, terrestrially 

based navigational tools such as GPS (Grover Brown & Hwang, 1999) and is also used in many 

computer vision systems for tasks such as feature tracking and stabilizing depth measurements (Chen, 

2012; Nummiaro, Koller-Meier, & Van Gool, 2003).  

The way Kalman filter produces a reliable estimate of both current and future values of stimuli is 

reliant on two recursive steps. We define these steps as the prediction step and the correction step. 

Importantly, the prediction step also uses a model of the behaviour of the stimulus in question which 

capitalizes on conditional transition relationships in the behaviour of the measured stimulus over time 

and rules of the situation the system operates in.  

Step phases: aims, terms and concepts. 

Before outlining the details of the prediction and estimation correction steps of the Kalman filter it is 

important to be clear about what each step is attempting to do and define some terms as the concepts 

and terminology in the steps be subtle and a little confusing. The overall aim of the Kalman filter, is 

as stated, to optimize the level of mean square error in estimates of stimulus values and each step in 

the Kalman filter plays a specific role in this overall aim. In the prediction step, the Kalman filter 

calculations take information about the current value of the stimulus based on a weighted estimate of 

the difference between the previous prediction and current measurement of the stimulus value made in 

previous estimation correction step (the Kalman filter is recursive and each of the steps can be 

considered to be ‘first’, although accounts generally start with the prediction step) and then factors in 

model based knowledge of the way the stimulus behaves over time and how accurate predictions are 

and calculates a new prediction about what the next estimated value might be (Kalman et al., 2008). 

Importantly, the Kalman filter recognizes that the behaviour of the stimulus may change and the 

accuracy of measurements can become variable, potentially making its model of the stimulus 

incorrect (Welch & Bishop, 2006). This means that the Kalman filter needs to update its estimates so 

that they continue to supply relevant information in order to keep its model of the stimulus in question 
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up to date and prevent predictions from diverging from their actual values and increasing mean square 

error (Zarchan & Musoff, 2000). This step is performed in the estimation correction step of the 

Kalman filter each time a new stimulus measurement is made and by combining both prediction and 

estimation update steps the model is able to recursively drive down error over multiple iterations. To 

distinguish between prediction and estimate, which admittedly can be unclear, we define prediction as 

the next expected value of the stimulus which is made in the prediction step and passed forward for 

correction in the estimation update step and estimation as the current estimate of the stimulus value.  

The prediction step: make a prediction by combining our previous estimates and our stimulus 

model information. 

The prediction step calculates two important values. The first value is the variability of predictions 

which gives an idea about how accurate predictions might be. The calculations for deriving prediction 

variance are perhaps the real ‘trick’ of the Kalman filter as they provide an indirect means to ascertain 

the behaviour of the true, unobtainable, stimulus in the world and help inform how to weight the 

estimates in the estimation correction step (see equation 12 for a general solution). Generally, if 

prediction variance is low then predictions are considered accurate and if prediction variance is high 

then predictions are considered unreliable. The second value, is an actual prediction about the next 

stimulus value based on the current estimated value made in the previous estimation update step and a 

model of how the stimulus behaves over time that incorporates prediction variance and some rules or 

knowledge about the behaviour of the stimulus and the environment it operates in.  

The idea behind the use of a model in the Kalman filter, is that given some knowledge of the current 

estimated stimulus value and how its behaviour evolves over time, it is possible to combine both 

sources of information make a forward prediction about what the next stimulus value will be. 

However, while combining current measurements with model based information provides a good 

general basis for predicting the forward value of stimulus values there is a problem in relying on 

predictions and error variance calculations made in the prediction step alone for more than one or two 

forward projections. If the stimulus remains at a constant value then predictions remain accurate and 

prediction variance low as the stimulus is unchanging but when stimulus values change in a way not 

encompassed by the model or the level of noise fluctuates by a large amount then predictions will pick 

up error and diverge from the true stimulus value over multiple iterations, with divergence normally 

in proportion to the variability in stimulus values over time. To solve this problem, Kalman (1963) 

built in the estimation correction step of the model which feeds back new information in to the 

prediction step recursively every time a new measurement is recorded.  
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The estimation correction step: update the stimulus model, prediction variance and subsequent 

predictions based on new information.  

The estimation correction step is crucial to the way the Kalman filter keeps ‘on track’ with both its 

stimulus model and new predictions as it allows the Kalman filter to update its model of the 

stimulus’s behaviour. The update provided in the estimation correction step is based on a comparison 

of the previous prediction made in the prediction step and the current measurement of the stimulus 

values which when different produce errors termed ‘prediction errors’. The magnitude of prediction 

error provides information about how much the stimulus might have changed since the previous 

prediction and how much the next estimate to be passed to the prediction step should update and also 

provides information about current prediction variability. Importantly, because all stimulus 

measurements contain varying amounts of noise and measurement error, prediction errors need to be 

weighted for reliability before updating the new estimate. The weighting of prediction errors in the 

estimation update step is modulated by an adaptive weighting factor called the Kalman gain. 

The optimal Kalman gain has a closed form solution that depends on just two variance values: the 

variance of the current measurement of the stimulus (as opposed to the stimulus itself) which we term 

the proximal stimulus and proximal variance and the variance of previous predictions (see previous 

paragraph) which is largely derived from the variance in the behaviour of the external stimuli which 

we define as the distal stimulus and distal variance (see fig 2). The Kalman filter considers proximal 

variance as “noise” which it wants to filter out, while it considers distal variance to represent true 

changes that its wants to keep. Understanding how the ratio of distal and proximal variance affect 

Kalman gain and how Kalman gain modulates the way prediction errors are weighted and the 

recursive process of the Kalman filter is key to understanding how the Kalman filter works and indeed 

much of the current thesis. 

How much to update our estimates: prediction, distal and proximal variance and the Kalman 

gain 

Kalman gain is vital to understanding the use of the Kalman filter in the two subsequent experimental 

chapters. This is due to the way Kalman gain optimally modulates how past and current information 

are integrated and the rate by which error is reduced over time. Kalman gain is an adaptive weighting 

factor that runs from 0-1 and is calculated based on the ratio between prediction variance and 

proximal variance. When prediction variance is larger, which is normally due to changes in distal 

stimulus values, relative to proximal variance, a higher Kalman gain closer to one is produced. With a 

higher Kalman gain, the Kalman filter weights prediction errors as being more reliable and updates 

new estimates by a larger amount and corrects faster towards the full extent of the prediction error the 

closer to one the Kalman gain becomes i.e. a gain of one means the new estimate will update to the 

full extent of the prediction error instantly. Alternatively, when proximal variance is higher relative to 

prediction variance, normally due to factors that disrupt the measurement of the stimulus of interest, 
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then a Kalman gain closer to 0 is produced. With a Kalman gain closer to zero, prediction errors are 

considered less reliable and new estimates update slower and by a lesser amount relative to the 

prediction error i.e. a gain of zero means the new prediction totally ignores the prediction error and 

remains unchanged. Importantly, the whole update, measurement, prediction error and weighting 

process is adaptive and unlike the fixed weighted average model optimally updates its estimates to 

deal with more or less uncertain situations. 

Advantages and disadvantages of the Kalman filter. 

In a similar fashion to fixed weighted average models the Kalman filter has a number of advantages 

and disadvantages. One major advantage is that unlike fixed weighted average models the Kalman 

filter is adaptive to the level of stimulus change and measurement variability. When faced with a 

rapidly changing stimulus values (high distal variance) and low measurement variability (proximal 

variance) the Kalman filter can increase Kalman gain and change its estimates to match the level of 

change signalled by prediction errors entirely. The same idea applies to situations when measurements 

are highly variable and stimulus changes small, meaning distinguishing between noise and true 

change can be difficult. In this case the Kalman filter can ‘hedge its bets’ and reduce Kalman gain 

making estimates less responsive to untrusted measurement change and smooth over noise. 

Furthermore, due to the nature of the model which takes information from the adaptive estimation 

correction step, estimates can be updated to take into account previously unmodelled aspects of the 

data set and changes in the behaviour of the stimulus over time. This use of a predictive model also 

means that if a data point is missing the model can use the last prediction to some extent meaning the 

new estimate is not delayed. By factoring in and updating quantities such as prediction error alongside 

prediction, distal and proximal variance data the Kalman filter can also provide an adaptive weight 

that can further refine mean squared error almost instantly without the need to wait for additional 

values or attaching a fixed weight to previous values. Another benefit of the recursive structure of the 

Kalman filter is that there is no need for memory per se as all that is retained is the previous state 

estimate making the model computationally ‘light. The final benefit of the Kalman filter we list and 

perhaps its main contribution to the field of signal processing is the way the model can determine the 

reliability of its predictions without direct access to the stimulus in question which when thinking 

about the applications of the Kalman filter in estimating remotely provided GPS or radar signals is 

imperative. However, despite the Kalman filter being a more adaptable and effective model given 

certain assumptions it does also have its disadvantages.  

The main disadvantage of the Kalman filter largely stems, from its use of a model to help reduce 

estimation error which somewhat ironically is perhaps also its biggest strength. Using knowledge of 

the systems dynamics works well if the systems behaviour is known. Normally, in signalling 

processing applications this is the case. However, if the systems behaviour is not correctly modelled 
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then it can create errors in predictions which generally suffer from over or under shoots. This is 

because incorrect information is factored into the prediction step which skews predictions towards an 

incorrect assumption about the behaviour of the stimulus. Due to the recursive nature of the Kalman 

filter the stimulus model can be updated but this can still be a problem especially in the first few 

iterations before the Kalman filter has had a chance to correct its model.  

Another drawback is that the Kalman filter has quite a lot of assumptions for its optimal use. It 

requires that measurements and noise be linear and Gaussian. These assumptions not always met in 

many dynamic systems and although there are variants of the Kalman filter that can deal with such 

instances the Kalman filter in its original form is not appropriate for dealing with these occasions. The 

concepts of the Kalman filter and integration processes we describe are more complex than that 

outlined in fixed average models and also factors such as proximal and distal variance are admittedly 

more abstract. Although we do provide full mathematical explanation later in the current chapter it is 

again useful to provide illustration of an example in which the Kalman filters principles can be 

outlined. For this purpose, we again make use of our voltage estimation example we used to illustrate 

the fixed weighted average model using exactly the same scenarios and data sets we used previously 

and also include an additional figure to explain distal and proximal variance. 

The Kalman filter: Substation example 

Before illustrating the way a Kalman filter would hypothetically estimate uncertain and fluctuating 

voltage values it is useful to provide an example of exactly what constitutes proximal and distal 

variance in our example. 
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Figure 2. Example of the distinction between proximal and distal variance. Here, we illustrate the 

key distinction between proximal and distal variance. In our voltage example the distal stimulus is the 

actual voltage value while distal variance is the level of variability in the behaviour of voltages over 

time. Importantly, the value of the distal stimuli is unknown to the model and is what the Kalman 

filter is actually trying to model over multiple iterations until the error between the models estimates 

and true value becomes zero or ‘steady state’ is achieved. The proximal stimuli is the measurement of 

the voltage with proximal variance the variability in measurements over time. This is the aspect of the 

data that the model is trying to ‘filter’ as it represents unimportant variability that is unrelated to the 

behaviour of the stimulus and is considered noise. 
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Figure 3. How a Kalman filter makes estimates of fluctuating voltage values. In this figure we 

observe the way the adaptive Kalman filter makes estimates under different levels of distal and 

proximal variability. In sub figure A we have a situation in which we have a relatively stable distal 

stimuli and low measurement variability. In this case, due to the low measurement variability or 

proximal variance, coupled with low prediction error variance due to a relatively stable stimulus we 

have a high Kalman gain close to one. In this case the estimate corrects almost entirely and instantly 

to the step in voltage values with very little error between the true stimulus value and the Kalman 

filters estimate. In sub figure B we observe a situation in which Kalman gain is reduced and is closer 

to zero. This is because the level of proximal variance is increased combined with low prediction error 

variance due to a quite stable stimulus. The effects of reduced Kalman gain is to smooth out noise and 

be less responsive to prediction errors that are trusted less. In sub figure C, we again observe the 

effects of higher Kalman gain we saw in sub figure A but they are more pronounced. The large step in 

voltage values causes a large increase in prediction error but because the level of proximal variance is 

low a gain very close to one is produced meaning prediction errors are corrected immediately despite 

the size of the change in value. Sub figure D again shows how the ratio of prediction variance and 

proximal variance modulate Kalman gain allowing the model to smooth over such variability and 

stabilize estimates. In this situation proximal variance is higher than in sub figure C and the model 

therefore reduces Kalman gain closer to zero which smooths out variability in measurements. 
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2.3 Equations.  

Fixed weighted average and Kalman filter models 

This section details the mathematical formulations of our fixed weighted average model and our 

Kalman filter model and a number of related issues (all equations for the Kalman filter are taken from 

(Orfanidis, 1988 with those for the fixed weighted average model based on generic averaging 

calculations). Both models deal with variables that change over time as well as variables that depend 

on different time periods. For simplification, we now outline notation. X will be used to refer to the 

true distal stimulus value, Y will be used to refer to measurements available to the observer (i.e. the 

proximal stimulus), and a hat identifies an estimate of a quantity. (E.g. X̂ is the observer’s estimate of 

the stimulus value). This section will adopt a notation that distinguishes between the current time 

point and the time from which previous information is being used. Subscripts will be used to identify 

different time points. A single subscript (e.g. Yn) is used when the value only depends on a single time 

point. Two subscripts will be used to identify the time point and the information available to the 

variable. For example, Xn|n means the value of X at time point n given all information up to n, X̂(n|n) is 

the observer’s estimate of X at time n given all information up to and including the observation at 

time n. While X̂(n|n-1) is the observer’s estimate of X at time n before having information, that is the 

observers prediction of what X will be at time n. For the following sections, we will assume the 

observers measurement Y reflects the true stimulus value X plus additive white Gaussian noise (EQ 

1). Therefore, the reliability of the observer’s measurement (σ2
m). 

 Yn = Xn + εm , εm ~ N (0, σ2
m)      EQ 1 

  

2.3.1 Fixed weighted average model  

 

�̂�𝑛|𝑛 = ∑ 𝑊𝑝−𝑖

𝑝−1

𝑖=0

𝑌𝑛−𝑖 

 EQ 2 

 

 ∑ 𝑊𝑖

𝑝

𝑖=0

= 1 

  EQ 3 

 

If the weighted average is computed using just the current and previous trial it simplifies  

Rearranging and grouping terms provides the linear equation 

                                                    �̂�𝑛|𝑛 − 𝑌𝑛 = 𝑊(𝑌𝑛−1 − 𝑌𝑛)                           EQ 5 

 �̂�𝑛|𝑛 = (1 − 𝑊)𝑌𝑛 + 𝑊𝑌𝑛−1  EQ4  
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Equation 4 shows that for a simple weighted average of two past stimulus values the weight can be 

found by doing a linear regression that relates the current error to the change in stimulus values. As 

shown by equation 5 the slope of this linear regression (W) can be interpreted as the weight applied to 

the previous trial as shown in equation 5. Several previous studies have used this equation to estimate 

serial dependencies and therefore implicitly assume a weighted average of the current and previous 

trial (Fischer & Whitney, 2014; Manassi et al 2018; Liberman, Fischer & Whitney, 2014; John 

Saaltink, Kok & de Lange, 2016). Describing the problem in this form is equivalent to restricting 

solutions to be a finite impulse response (FIR) filter of the observations. The optimal weights (in 

terms of mean square error) can then be found by solving for the finite impulse response Wiener filter. 

However, while the finite impulse response constraint is useful in some contexts it is not needed for 

neural systems. While the Wiener filter can also be solved for without the FIR constraint, the Kalman 

filter provides a more useful conceptual framework for this problem. So we will now turn to 

explaining in detail the Kalman filter solution.  

2.3.2. Kalman Filter. 

The full form of the Kalman filter provides a general solution of estimating a changing variable that 

can be described by a linear system of equations in which measurements contain Gaussian noise. In 

this section we will use a restricted form of the Kalman filter that applies directly to our current 

experiments. 

 �̂�𝑛|𝑛 = �̂�𝑛|𝑛−1 + 𝐺(𝑌𝑛 − �̂�𝑛|𝑛−1) EQ6 

 

  
𝐺 =

𝜎𝑝𝑟𝑒𝑑
2

𝜎𝑚
2 + 𝜎𝑝𝑟𝑒𝑑

2  
                           EQ7 

 

In equation 6 the estimate of the stimulus value on trial n given all information up to trial n is X̂n|n. The 

estimate of the stimulus value on trial n given all information up to the previous trial is X̂n|n-1 that is the 

prediction of the stimulus value. The current perceived measurement of the stimulus value is Yn. The 

Kalman filter creates an estimate of the current stimulus values by taking the predicted value and 

recursively updating based on a proportion (G, Kalman gain) of the prediction error shown in equation 

7. 
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Kalman gain. 

The key quantity for the Kalman filter and conceptualising its adaptive integration strategy is Kalman 

gain. To calculate its value we need to determine the variance of the prediction (σ2
pred). The solution 

for determining prediction variance is one of the key results of the Kalman filter. The prediction 

incorporates both past measurements as well as how the stimulus changes over time. Therefore, a 

model of how the distal stimulus changes over time is needed. It should be noted that the Kalman 

filter algorithm is an iterative algorithm and values are updated on every iteration based on the current 

measurement. The solutions presented below represent the values the Kalman filter will be after the 

estimate has achieved steady state. Furthermore, the general Kalman filter allows the model to be any 

linear system. In order to present the filter in a more intuitive way, here we will consider solutions to 

three restricted situations; uncorrelated stimuli, stable stimuli and a stimuli that follows a random 

walk. The uncorrelated model corresponds to the common experimental design choice to present 

stimuli in a random order. The stable model represents the extreme of a stable world in which the 

stimulus is stable and does not change. The random walk is used here and later in the thesis and 

provides a simple changing value that has some level of predictability. All three of these cases can be 

seen as special cases of a one term autoregressive model (EQ8&9). 

 𝑋𝑛 = 𝑐 + 𝑎𝑋𝑛−1 + 𝜖𝑑 
 

EQ8  

 𝜖𝑑~𝑁(0, 𝜎𝑑)  EQ9 
 

Performing Kalman filtering requires predicting the next measurement and then using the error 

between the measurement and prediction to update the current estimate of the stimulus by a 

proportional amount governed by the Kalman gain (G). Given the model in equations 8 and 9 the 

solution for these values are given by  

 
 

�̂�𝑛|𝑛−1 = 𝑎�̂�𝑛−1|𝑛−1 + 𝑐  
 EQ10 

   
 
 𝜎𝑑

2 = 𝜎𝑝𝑟𝑒𝑑
2 −

𝜎𝑝𝑟𝑒𝑑
2 𝜎𝑚

2 𝑎2

𝜎𝑝𝑟𝑒𝑑
2 + 𝜎𝑚

2
  

 EQ 11 

 

Where σ2
m is the variance of the measurement (proximal), σ2

d is the variance of the stimulus and σ2
pred 

is the variance of the prediction of the next value X̂n|n-1. Equation 12, is a solution to the Riccati 

equation outlined in equation 11, solving the equation for the prediction variance. 
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𝜎𝑝𝑟𝑒𝑑

2 =
1

2
(±√2(𝑎2 + 1)𝜎𝑑

2𝜎𝑚
2 + (𝑎2 − 1)2𝜎𝑚

4 + 𝜎𝑑
4 + 𝑎2𝜎𝑚

2 + 𝜎𝑑
2 − 𝜎𝑚

2 ) 

 
  

As we can see in equation 12, even in the case of a fairly simple stimulus model solving the variance 

of the prediction becomes quite a complex equation. In order to provide intuition for this equation, we 

will now show solutions to three specific cases. 

Uncorrelated  

For a presented stimulus that is randomly chosen, with no correlation to previous stimuli, prediction 

variance is equivalent to setting parameters a and c to 0. 

 𝑋𝑛 = 𝜖𝑑   EQ13 
 

 
�̂�𝑛|𝑛−1 =0 

 EQ14 
 

 𝜎𝑝𝑟𝑒𝑑
2 = 𝜎𝑑

2  EQ15 

   
 

𝐺 =
𝜎𝑑

2

𝜎𝑚
2 + 𝜎𝑑

2  
 EQ16 

 

This result represents the fact that if the stimulus has no predictability then the prediction should only 

represent the distribution the stimulus values are drawn. In this case, a uniform distribution. The gain 

is then identical to combining the measurement value with the mean of the stimulus distribution each 

weighted by their inverse variance.  

Stable 

To represent a stimulus that is completely stable we can set a and 𝜎𝑑to 0. 

 𝑋𝑛 = 𝑐 EQ17 
 

 
�̂�𝑛|𝑛−1 = �̂�𝑛−1|𝑛−1 

EQ18 
 

 𝜎𝑝𝑟𝑒𝑑
2 = 0 EQ19 

   
 𝐺 = 0 EQ20 

 

This finding of a Kalman gain of 0 may seem nonsensical as it means one should completely ignore the 

current measurement and purely respond only to previous values. However, these solutions represent 

the steady-state solution for the Kalman Gain. That is it’s the gain value that is achieved by the filter in 

EQ12 
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the limit of an infinite number of measurements. What really happens is that if the world is completely 

stable, all information should be integrated with each new value getting progressively less weight in 

order to represent the sum total of all values. Because the value of the stimulus never changes, every 

measurement can be used to estimate the fixed value and with each new measurement the prediction 

becomes more reliable, and 𝜎𝑝𝑟𝑒𝑑
2  monotonically decreases to 0. 

 

 Gaussian Random Walk. 

 

 𝑋𝑛 = 𝑋𝑛−1 + 𝜖𝑑 EQ21 
 

 �̂�𝑛|𝑛−1 = �̂�𝑛−1|𝑛−1 EQ22 
 

 
 𝜎𝑝𝑟𝑒𝑑

2 =
𝜎𝑑

2 + √𝜎𝑑
4+4𝜎𝑑

2𝜎𝑚
2  

2
=

𝜎𝑑
2 + 𝜎𝑑√𝜎𝑑

2 + 4𝜎𝑚
2  

2
 

EQ23 

 

In this case, we have a stimulus value taking random steps drawn from a Gaussian distribution (EQ21 

& 22). This creates a minimum level of predictability because the next value of the stimulus is related 

only to the previous time step. In order to build intuition, it is useful to consider the case where the 

measurement error is reduced to zero. In this case, the prediction variance becomes identical to the 

measurement and the variance is bound by the randomness of the stimulus and the Kalman gain 

becomes 1. This means that the prediction becomes identical to the measurement and the variance of 

the prediction is bound by the randomness of the stimulus (EQ23). As you add noise to the 

measurement the prediction variance becomes higher because a perfect estimate of the true value of 

the stimulus cannot be obtained. However this increase is sublinear. 

2.5.3. Motivation for use of fixed weighted average models and link to experimental chapters 3 

& 4. 

Both the fixed weighted average and Kalman filter models play a central role in the next two 

experimental chapters. This is due to the marked similarities in the models to the method of 

integration implied in perceptual averaging literature in the case of the fixed weighted average model 

(Fischer & Whitney, 2014) and the more explicitly linked Kalman filter in the case of predictive 

coding (Rao & Ballard, 1999; Wolpert, 2007). Based on the concepts and mathematical formulations 

each model should produce behavioural aspects that can equate to aspects of fixed rate perceptual 

averaging and predictive coding that lack the experimental and computational clarity we outlined in 

chapter 1. Namely, the adaptive use of prior and current information and the adaptive reduction of 

error over time. 
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Use of fixed weighted average models and the Kalman filter to test the fixed versus adaptive 

weighting of past and current information to be tested in chapter 3 

If the integration of past and current information over time functions at a fixed rate, as implied in 

serial dependence literature, then participant’s behaviour should be approximated by a fixed weighted 

average model and certain signatures apparent. The most apparent signatures, would be that the level 

of past and current information in any estimate of a stimulus value should remain constant in any 

situation and at least some influence of past stimulus information should always be present (see 

equations 2-5). This is because the fixed weighted average model makes no distinction between 

variance caused by the change in stimulus or variance caused by viewing conditions and cannot adapt 

its estimates to recognize situations in which such factors may arise. Attaching a fixed weight to 

measurements also means that any amount of error produced by change in a stimulus value should 

remain constant when a change is repeated regardless of any viewing conditions or predictability of 

change. Another signature of a fixed weighted averaging strategy should be that responses should 

always be lagged or biased towards at least one previous stimulus value. Moreover, because the model 

does not contain any model of the behaviour of the external stimulus as proposed in predictive coding 

any predictive relationships in the sequential regularities in the behaviour of the stimulus would make 

no impact on the way estimates are formed.  

If the integration of past and current information is adaptive, as proposed in predictive coding, then 

participants behaviour should be well approximated by the Kalman filter. The most obvious 

behavioural signature would be that due to way the Kalman filter adaptively weights prediction errors, 

the weight attached to past and current stimulus values should appear to change under different levels 

of proximal and distal variance. If we have a stimulus with high distal variance but low proximal 

variance, a higher Kalman gain should be calculated. With a higher Kalman gain, prediction errors are 

weighted as being more reliable and the new estimate is updated by a larger amount (see equations 

13-20). Crucially, because when estimates update by a larger amount towards the new stimulus 

measurement value the estimate appears closer to the current distal stimulus value and further from 

the previous value (see equation 6). Alternatively, when the stimuli have low distal but high proximal 

variance a lower Kalman gain is produced. With a lower Kalman gain then prediction errors are 

weighted as being less reliable and the new estimate in the estimation correction phase of the Kalman 

filter will be closer to the previous prediction and appear biased towards previous stimulus values. 

Another behavioural signature should be the influence of sequential regularities or correlations in the 

behaviour of the distal stimuli over time (see equations 10-12). If the behaviour of the distal stimulus 

is correlated over time then this should produce some impact on the level of past information in 

estimates, especially in conditions of high proximal variance. 
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Use of fixed weighted average models and the Kalman filter to test adaptive reduction of error 

over time to be tested in chapter 4. 

In the fixed weighted average strategy implied in serial dependence literature, the way estimates are 

formed are based on simple equations (see equations 2-5) in which a fixed weight is attached to each 

new stimulus value as they are measured. This means that this is a non adaptive model in which 

estimates do not update in a way modulated by any changes in proximal or distal variance. If this 

estimation strategy is approximated in humans then a similar pattern of lagged or speeded corrections 

in which the rate of correction is not modulated by the ratio of proximal and distal variance calculated 

as in the Kalman filter. In predictive coding, the way prediction error is reduced occurs in such a way 

that it reduces each time new comparisons between predictions and sensory inputs are over compared. 

This process can be considered an iterative process in a very similar way to the way the Kalman filter 

corrects error over time. If the way participant’s correct error over time is approximated by the 

Kalman filter then we would expect past and current information and the way error reduces to be 

governed by the level of Kalman gain. With a high Kalman gain, less current information should be 

present in estimate and error should reduce more quickly and with a low Kalman gain more current 

information should be present in estimates which should reduce error more slowly. The next two 

experimental chapters tests these ideas directly.  
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Chapter 3. Testing the Adaptive Weighting of Prediction Errors: 

Serial Dependence and the Kalman filter. 

3.1 Abstract. 

Predictive coding offers a current theory of how the brain extracts and encodes behaviourally relevant 

information from the environment. However, while predictive coding is increasingly popular, certain 

tenets of the model lack behavioural support and computational understanding. One such idea is the 

precision weighting of prediction errors that mediate prediction updating. In predictive coding, 

precision relates to the best estimate of the reliability of prediction errors. If prediction errors are 

weighted by too high an amount predictions will update to change in the world that may not have 

occurred. Alternatively, if weighted by too low an amount predictions might be too slow to update to 

change. Technically, optimally estimating precision corresponds to optimizing the Kalman gain in the 

Kalman filter. In computational terms, Kalman gain underpins the optimal combining of different 

sensory information streams that differ in their variability as seen in multisensory studies but seldom 

tested in purely visual terms. Here, we model and behaviourally test the adaptive weighting of 

information over time outlined within the Kalman filter against the fixed use of past and current 

stimulus values implied in ideas of perceptual averaging using a fixed weighted average model. As it 

is not possible to isolate prediction errors directly via behavioural means we use serial dependence as 

a proxy measure of temporal integration and test model based hypotheses about what should happen 

to serial dependence under a number of experimental manipulations. According to the Kalman filter, 

the magnitude of serial dependence should adapt to different levels of measurement and stimulus 

variability while in the fixed weighted average model serial dependence should remain at a fixed level 

regardless of conditions. We tested both ideas using an experimental design from a study that had 

previously observed serial dependence (Fischer & Whitney, 2014) measurement and stimulus 

variability. In experiment one, we observed that when participants viewed highly variable randomly 

presented Gabors in two different contrast conditions (5 & 20%), less serial dependence was recorded 

consistent with our Kalman filter model predictions for a highly variable but clear stimulus. In 

experiment two, we reduced variability in our stimulus by introducing a correlated sequence into the 

orientations of stimuli across trials. In this experiment, we recorded a high level of serial dependence 

in the 5% contrast condition but no serial dependence in the 20%, again consistent with our Kalman 

filter model predictions for a less visible but more stable stimulus. Lastly, we report a supplemental 

experiment designed to replicate Fischer & Whitney’s (2014) paradigm more closely. This experiment 

also reported no serial dependence, again consistent with our Kalman filter model predictions, 

providing general support for the predictive coding account of temporal integration. 
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3.2. Introduction. 

Predictive coding is perhaps the most interesting theory of neural function to emerge in the last 30 

years. Over time, a significant body of literature has emerged in support of predictive coding’s ideas 

from many areas of psychology not least neuroimaging  (den Ouden, Kok, & de Lange, 2012; 

Summerfield & Koechlin, 2008; Summerfield, Wyart, Johnen, & de Gardelle, 2011), psychophysics( 

Denison, Piazza, & Silver, 2011; Grotheer, 2016; Schmitt, Klingenhoefer, & Bremmer, 2018) and 

computational neuroscience (Friston, Parr, & Zeidman, 2016 ; Parr, Rees, & Friston, 2018; Spratling, 

2008, 2015). However, despite a large body of literature in support of predictive coding and an 

increasing acceptance of at least its general principles, in some areas of sensory processing sections of 

predictive coding’s computational ‘puzzle’ remain missing or incomplete. One such signature that 

lacks support is the precision weighting of prediction errors we discussed in chapter 1.  

Determining the reliability of predictions relative to incoming sensory information is vital to 

predictive coding (see Friston, (2018) for an interesting debate about the importance of precison 

weighting in predicive coding). If the weight attached to sensory information is too low then 

prediction errors might not be weighted sufficiently. This could potentially lead to an over reliance on 

predictive information from the past and a delay in correcting to change in the world. Alternatively, if 

we attach too high a weight to potentially unreliable sensory input, we might over weight prediction 

errors leading to an over reliance on potentially unreliable sensory information, making perception too 

quick to correct errors when a real change may not have occurred. In predictive coding literature, 

there are a number of models (O’Shaughnessy, 1988; Rao, 1999; Friston, 2010; Spratling, 2015) 

which provide explanations of how prediction errors are weighted for reliability in different 

circumstances in a number of visual modalities. However, to date, there is no accepted tractable 

computational account of predictive coding that explains the way prediction errors are weighted in the 

temporal domain. One rich source of ideas that has great potential for providing models for testing 

adaptive weighting of prediction errors over time that have become prevalent outside of purely visual 

error processing is control theory. 

Ideas from control theory: the Kalman filter and fixed weighted averaging models. 

Control theory and the related field of control system engineering have vast experience in how to deal 

with uncertain inputs and correcting estimation errors in dynamic systems. One approach from control 

theory, increasingly used for understanding how errors in multi-sensory estimates should be weighted 

is recursive Bayesian estimation theory (see Haug, 2012 for an excellent account). An especially 

important concept contained in recursive Bayesian estimation theory, is the distinction between two 

related but distinct sources of variance. These sources of variance are variance in the behaviour of 

stimuli in the world or the distal stimuli and variability in the measurement of the distal stimulus at 

the measuring device or the proximal stimulus (Berger, 1985) that we explained in chapter 2. 
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Importantly, distal variance and proximal variance have different consequences for perception. Distal 

variance normally means that something in the world is changing that could be important so we want 

to keep this variability-on the other hand proximal variance tends to arise from factors such as poor 

lighting and weather conditions and can be thought of as noise which we want to remove. In Bayesian 

estimation theory, the interaction between proximal and distal variance has an important impact on the 

way predictions and estimation errors are weighted. A special case of recursive Bayesian estimation 

theory in which the relationship between distal and proximal variance on the way estimation errors are 

weighted is particularly well conceptualised is the Kalman filter (Kalman & Bucy, 1963) (See chapter 

two). The Kalman filter has been widely applied in an area of literature closely related to predictive 

coding termed Bayesian visou-motor integration that we have explained in depth in chapter 2.  

The use of the Kalman filter to explain adaptive weighting of visou motor errors  

Bayesian visuomotor integration deals with the problem of optimally combining noisy visual and 

motor information to produce an accurate estimate of our body in relation to its surroundings 

(Berniker & Kording, 2011) An interesting type of visuomotor experiment that often uses the Kalman 

filter as an explanatory model are reaching tasks (Baddeley, Ingram, & Miall, 2003; Knill, 2007; 

Wolpert & Flanagan, 2001). When reaching to point at a stimulus, estimates of hand position are 

uncertain due to noise in the motor system and in the visual estimates of hand and stimulus position 

(Knill, 2007; Kwon et al., 2015). This means the movement of the hand to the target is often 

inaccurate, especially initially. Visual feedback about the position of the hand can be used to guide the 

reaching but due to visual noise exactly how reliable this feedback is can be variable and sensory 

systems, if the aim is an optimal response, should represent this uncertainty in weighting visual 

feedback when correcting reaching errors (Denève, Duhamel, & Pouget, 2007). For example, when 

the hand is hidden is partially hidden or in the periphery of the visual field, visual feedback about the 

position of the hand should be weighted less than when fully visible or in the centre of the visual field 

(Knill & Pouget, 2004.). By the same measure, errors in hand motions should also be adaptively 

weighted. When the hand is moving quickly, motion signals should be considered less reliable then 

when the hand is moving more slowly (Wolpert, 2007).  

Recent work has provided solid support that participants do indeed correct reaching errors in a way 

consistent with Kalman filter theory. A body psychophysical work has indicated a number of Kalman 

filter like response properties in the way humans correct reaching errors. A number of such studies 

have reported that humans use continuous on line feedback from the hand to correct errors in reaching 

which mirrors the adaptive process of the Kalman filter (Cluff, Crevecoeur, & Scott, 2015; Scheidt, 

Dingwell, & Mussa-Ivaldi, 2001; Wei & Körding, 2010; Wei et al., 2010). Furthermore, the 

weightings applied to both haptic and visual cues does appear to depend in part on the sensory noise 

(proximal variance) associated with each cue. (Baddeley et al., 2003; Harris & Wolpert, 1998) 
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Furthermore, evidence suggests that not only do participants weight the reliability of different cues 

based on their sensory noise levels but when variability is experimentally added to the visual feedback 

about the position of the hand (distal variance) this information is also optimally weighted when 

determining how much to correct previous errors (Burge, Ernst, & Banks, 2008; Burge, Girshick, & 

Banks, 2010; Cressman & Henriques, 2011; Saijo & Gomi, 2012) Based on such findings, which 

indicate that reaching errors are corrected based on the reliability of sensory information and level of 

stimulus change it is therefore logical to think that such an adaptive strategy may also be applied to 

purely visual integration . However, findings from visou-motor integration may represent the actions 

of distinct mechanisms than those of purely visual integration perhaps due to the high level of noise 

contained in motor commands (Lee, et al., 2016). Indeed, there is large amount of research about the 

way purely visual information is integrated which posits a simpler non adaptive strategy to interpret 

the world.  

An alternate account: perceptual averaging and serial dependence 

In the area of visual integration research termed perceptual averaging a much simpler way to interpret 

variable stimulus values has been proposed than that in predictive coding or the Kalman filter. 

Perceptual averaging studies have based their interpretation of temporal integration on the finding that 

the visual system appears to summarise the statistical values of stimulus values observed spatially and 

temporally (Ariely, 2001; Chong & Treisman, 2005; Cicchini et al., 2016; Corbett & Oriet, 2011; 

Corbett, Wurnitsch, Schwartz, & Whitney, 2012) as the mean of observed values. Such findings have 

been used to support the notion that because visual signals contain a substantial amount of noise but 

that the world is generally stable a good predictive strategy is simply to average together observed 

values (Liberman et al., 2014). In this way, variability from noise and retinal motion in individual 

retinal images is smoothed over making perceptions less noisy and more accurate than relying on 

individual potentially unreliable individual retinal samples (Corbett, Venuti, & Melcher, 2016). 

Although perceptual averaging is long standing finding (Gibson & Radner, 1937) it has recently 

received renewed popularity in the form of serial dependence. 

Serial dependence is defined as the bias in current perceptions towards the average of previous 

stimulus values (Fischer & Whitney, 2014). In serial dependence literature the averaging strategy 

applied has been implied to function in a simple way. Specifically, it is implied that averaging is 

pervasive and functions at a fixed level across task demands or conditions (Corbett, Fischer, & 

Whitney, 2011; Fischer & Whitney, 2014; Liberman, Zhang, & Whitney, 2016). This is despite data 

indicating that serial dependency does appear to be adaptively modulated in many serial dependency 

experiments. For example, Fischer & Whitney report serial dependence to both totally random and 

counterbalanced stimulus orientations. However, when stimulus orientations were closer to one 

another they observed more serial dependence than when orientations were further apart with similar 
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findings indicating modulation of serial dependence by stimulus variability reported in a number of 

serial dependence papers (Bliss, Sun, & D’Esposito, 2017; Corbett, Fischer, & Whitney, 2011; 

Liberman et al., 2014, 2016; Taubert & Alais, 2016). 

3.2.1. Theoretical motivation, aims and hypotheses of the current chapter.  

The precision weighting of prediction error is central to predictive coding. The Kalman filter, already 

used in areas linked to predictive processing (Friston, 2018; Wolpert, 2007) offers an optimal model 

of how weighting might function. By providing the optimal Kalman gain, based on the ratio of distal 

to proximal variance, estimation errors are optimally weighted to prevent an over or under reliance on 

past and current information. However, most evidence for a Kalman filter type weighting comes from 

visou-motor work. It is possible that vision relies on a simpler averaging type mechanism which 

simply attaches a fixed weighted average to past and current stimulus values (Fischer & Whitney, 

2014; Kiyonaga et al., 2017; Liberman et al., 2016). The current chapter aims to test the fixed 

weighting account of stimulus values outlined in serial dependency research versus the adaptive 

weighting of prediction errors as outlined in predictive coding and the Kalman filter. However, while 

the fixed weighting average integration strategy is relatively easy to test as it is based on actual 

stimulus values, isolating prediction errors is actually impossible behaviourally. This is because we 

cannot have access to the individual’s actual prediction inside the brain if indeed this even exits. 

Therefore, we need an indirect experimental medium to test the adaptive weighting of prediction 

errors outlined in the Kalman filter and the fixed strategy outlined in fixed weighted average models. 

In various parts of predictive coding literature a number of behavioural mediums have been linked to 

isolating and quantifying prediction errors. For example, reaction times (Summerfield & Egner, 2009; 

Summerfield & Koechlin, 2008) and task accuracy (Heeger, 2017). While we make use of both of 

these measures in subsequent chapters, at this initial stage we are more interested in testing the basic 

adaptive prediction error weighting strategy of the Kalman filter against the fixed weighting of 

implied in weighted average models as general commentary for the validity of predictive coding. A 

current and indeed useful medium for testing adaptive versus fixed weighting of information over 

time we have already introduced is serial dependence (Fischer & Whitney, 2014). 

Serial dependencies are a good model phenomena for comparing the Kalman filter against the fixed 

weighted average model for multiple reasons. Firstly, considering that the Kalman filter has been 

previously linked with integrating visual and motor integration it is especially important to model a 

purely visual integrative phenomena. In this regard, a number of excellent control experiments by 

Fischer & Whitney (2014) have provided support that serial dependence is a visual phenomenon. 

Secondly, previous serial dependence studies have utilised some simple but effective experimental 

designs that lend well to manipulation under the ideas of distal and proximal variance (Fischer & 

Whitney, 2014) contained within the Kalman filter. Additionally, the way serial dependence is 
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calculated provides an easy to understand statistical measure of the way information is 

weighted/averaged by the visual system over time. Furthermore, both the Kalman filter and fixed 

weighted average models make strong and clearly defined experimental hypotheses about serial 

dependence in our experiments.  

If the adaptive, predictive coding, account of prediction error weighting outlined in the Kalman filter 

is correct then Kalman gains and modelled trial stimulus weightings should predict the level of serial 

dependency over trials. With higher Kalman gains we should observe less serial dependence. This is 

because with a Kalman gain of one prediction errors (𝑌𝑛 − �̂�𝑛|𝑛−1) are weighted fully in a new 

estimate. When prediction errors are weighted fully estimates shift entirely towards the new 𝑌𝑛 

stimulus measurement and past stimulus information has no influence making estimates appear 

entirely serially independent. Alternatively, with a Kalman gain of zero, total serial dependency 

should be observed. This is because with Kalman gains closer to zero prediction errors carry no 

weight and new estimates do not change and remain the same as the previous �̂�𝑛|𝑛−1 estimate. 

Alternatively, if the fixed average account of stimulus weighting implied in perceptual averaging 

literature is correct then changes in Kalman gain should not predict the magnitude of serial 

dependence. In this case the magnitude of serial dependence should always be the same and remain at 

a fixed weight on trials regardless of any manipulation of distal or proximal variance. 

3.3. Methods 

Ethics 

All calibration and experimental procedures were approved by the University of St Andrews Teaching 

and Research Ethics Committee. All participants gave informed consent. 

Stimuli design and presentation. 

In all experimental and calibration procedures visual stimuli were created in MATLAB 2015b (The 

Mathworks Inc) and presented using PsychToolbox (Brainard, 2007).  

3.3.1 Proximal variance calibration experiment. 

In order to provide an estimate of proximal variance that will allow the calculation of participant 

estimated Kalman gains we first undertake a proximal variance calibration experiment (see 3.8.2 page 

64 for how we calculate proximal variance and relate it to our serial dependence experiments).  
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Participants  

A total of eight participants undertook the proximal variance calibration experiment which followed a 

two alternative forced choice paradigm. (6 females, mean age 22, range 19-41). All participants were 

volunteers and recruited from the St Andrews SONA recruitment database. 

Stimulus design and procedure 

The proximal variance calibration experiment followed a two alternative forced choice paradigm in 

which participants were presented with an orientation discrimination task. Stimuli were oriented 

Gabor patches presented at either 5 or 20% contrast. All Gabors were embedded in Gaussian white 

noise (SD=15.5 cd/m2) Noise following Gabors is also Gaussian white noise and covered the whole 

screen. All Gabor patches had a radius of 8 visual degrees and had a spatial frequency 0.5 cycles per 

visual degree. In trials pairs of Gabor stimuli were presented one after another in which the second 

Gabor was presented at a series of 7 different orientations from the first Gabor in the pair. These were 

+/- 1.5°, +/- 3.6°, +/- 5.7°, +/- 7.9°, +/- .10.1°, +/-12.16° and +/- 14.3. Each block presented 5 trials at 

both 5% and 20% contrast at each orientation difference giving 70 trials per block with each 

participant completing 3 blocks thus performing 210 trials in total. Fixations were positioned centrally 

(see Fig 1 below). The procedure of the experiment in outlined in figure 1 below. 
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Figure 1. Proximal variance calibration experimental procedure. Participants were seated 57 cm 

from a CRT monitor. Each trial began with the presentation of a fixation cross in the centre of the 

screen for 250ms. Then a randomly oriented Gabor patch was presented for 500ms at 5% or 20% 

contrast depending on the condition then a noise mask for 500ms. Next a second Gabor was presented 

at one of 7 different angles ranging from (+/- 1.5°, +/- 3.6°, +/- 5.7°, +/- 7.9°, +/- 10.1°, +/-12.16° and 

+/- 14.3°) anti clock wise or clock wise from the first Gabor and then a second noise mask for 500ms. 

The task of the participant was to fixate on the fixation cross and then discriminate whether the 

orientation of the second Gabor was clock wise or anti clock wise of the first Gabor orientation. This 

was signalled by pressing j for clock wise and f for anti-clock wise. Each trial took approximately 6-8 

seconds depending on how the response of the participants. After making a response, there was a 2-s 

delay during which only the fixation point was present before the onset of the next trial. 
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3.3.2 Main experiment one. Testing serial dependence under conditions of high distal 

variance versus low and high proximal variance. 

Experiment one aimed to produce a high level of distal variance and a range of proximal variance 

conditions and to assess serial dependence under such conditions. 

Participants. 

Main experiment one had a total of 10 participants (eight females, mean age 23, range 19-41) 

Participants were a different set to those who had completed the proximal variance calibration 

experiment. 

Stimulus design and procedure 

To produce a high level of distal variance, Gabor orientations were presented in a fully random 

sequence between 0 & 360°. We manipulated proximal variance, based in part on our proximal 

variance calibration and presented Gabors in the 5% and 20% contrasts used in this calibration 

experiment but also presented Gabors at 10% contrast as an exploratory measure. However, upon 

analysing the basic error variances for the 10% contrast condition we did not detect any differences 

between the 10% and 20% contrast conditions so do include data for this condition in our analyses 

and modelling. Gabor patches had a radius of 8 visual degrees and had a spatial frequency 0.5 cycles 

per visual degree. All Gabors were embedded in Gaussian white noise (SD=15.5 cd/m2). Each 

participant completed 3 blocks of trials. Each block comprised 210 trials comprised of 70 trials in 

each contrast condition (5%, 10% & 20%). This meant each participant completed 210 trials in each 

contrast condition and 630 trials in total. Condition order presentation was randomized across 

participants. Blocks held the method of orientation change constant. The procedure and timings of the 

experiment are shown below in figure 2. 
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Figure 2. Stimulus design and procedure. Here we show how the experiment ran over two 

individual trials. Each trial began with the presentation of a blank screen (inter trial interval) for 

250ms. Next a Gabor patch was shown in the centre of the screen for 500 ms, then a noise patch was 

presented for 500ms then an adjustment response bar was presented. The task of the participant was to 

move the adjustment response bar to try and match the orientation of the Gabor they had just 

observed. Each trial lasted approximately 6-8 seconds. After making a response, there was a 250 ms 

delay during which only a blank screen was present before the onset of the next trial.  

3.3.2 Main experiment two. Testing serial dependence under low distal variance versus low and 

high proximal variance. 

Experiment two, aimed to produce a lower level of distal variance than in experiment 1 and two levels 

(high and low) of proximal variance conditions and to assess the magnitude of serial dependence 

under such conditions. 

Participants. 

A total of 9 participants took part in experiment two (seven females, mean age 24, range 19-41). 

Participants were a different group to experiment one and the proximal variance calibration 

experiment. All participants were recruited from St Andrews SONA recruitment database. 

Stimulus design and procedure 

Stimuli design, timings and procedure were identical to experiment one with the only difference being 

the variability of Gabor orientations. To reduce the distal variance of our Gabor stimulus orientations 

were presented in a sequence that followed a Gaussian random walk (μ=0, SD=11.552), (see below for 

details and an explanation of the reason for this). As the 10% contrast condition recorded no 

differences in proximal variance to the 5% or 20% contrast conditions in experiment one, we did not 

include the 10% contrast condition in experiment two. Each participant completed 3 blocks. Each 
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block comprised 210 trials of 105 trials in each contrast condition. This meant each participant 

completed 315 trials in each contrast condition and 630 trials in total. Contrast condition order 

presentation was randomized across participants across blocks. All blocks kept the method of 

orientation change constant. 

The reason we use a Gaussian random walk in our presentation of orientations in experiment 

two. 

The term random walk, describes a stochastic process that follows a series of steps in some 

mathematical space. In a Gaussian random walk, steps are drawn from a normal distribution with the 

variability of values from the mean of values determined by the standard deviation of the Gaussian 

distribution. In terms understanding the use of a Gaussian random walk in the current experiment, 

which has a mean of zero, it simply means that the next orientation value can be considered to be the 

same as the previous with some level of variance, which here is a standard deviation of 11.552. This 

has the twin effect of introducing some level of predictability in the sequence of orientations and as 

how far from the mean orientations are presented is constrained by the standard deviation of the 

random walk built into the stimulus design code, the overall level of variability in orientations over 

time is reduced.  

3.4 Analyses and statistical tests 

 
Equations 

 
Equations for both the Kalman filter for both a randomly changing and correlated stimulus which we 

use in the current chapter and a fixed weighted average model are fully outlined in chapter 2, pages 

44-46. 

Confidence intervals. 

We report standard (parametric) 95 % confidence intervals of the mean.  

Correction for potential ambiguity in responses using circular stimuli. 

Recording responses and associated error from circular stimuli using a straight response bar can 

potentially be problematic. The reason for this problem is because the response line participants use to 

signal their estimate of orientation partially spans the diameter of the circle and points to two different 

angles. For example, a line at 60° also lies at 240° at the other side of the circle. This means that if an 

orientation on a trial is presented at 60° and the subject responds at say 65°, it is possible to record a 

response of both 65 giving 5° of error or 245° giving 180° of error. The way we and others (Fischer & 

Whitney, 2014) deal with this issue is to assume the response angle closest to the true trial orientation 

angle, as the angle the participant meant to signal and calculate the minimum angle difference 

between response and trial orientation as the response. This is performed by calculating the raw 
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difference between response and trial orientation and converting this to vector form using sin and cos 

and then converting this value back to an angle using the Matlab four-quadrant inverse tangent 

function (Mathworks Inc, 2012).  

Proximal variance calibration calculations and relationship to Kalman filter equations. 

To calculate proximal variance from our proximal calibration procedure we fit cumulative normal 

psychometric functions to the participants’ responses data for both the 5% and 20% contrast 

conditions using the Palamedes toolbox’s fitted variance parameter (Prins & Kingdom (2009). We 

take the variance (degs2) of the width of the slope of fitted cumulative normal psychometric function 

as our measure of proximal variance i.e. a narrower slope indicates a less variable response (for 

example, a slope with a variance of 20 (deg2) indicates a less variable perception of the stimulus in 

comparison to a slope with variance of 120 (degs2) for the 5% contrast condition). To provide an 

estimate of proximal variance for a single stimulus presentation used in the main experimental 

conditions we divide the square root of the variance by two. Importantly, the variance we record 

represents the vital quantity of measurement variance (σ2
m) or the reliability of the observer’s 

measurement in the Kalman filter equations and can be used to form an estimate of participants 

Kalman gain for a response to a single stimulus presentation in conjunction with a figure for distal 

variance (see equation 7, page 48). To test for differences between proximal variances across 

participants for both contrast conditions we perform repeated measure t tests. 

Estimated Kalman gains, Model fitted Kalman gains and fitted weights to participant data. 

To calculate an estimated level of Kalman gain at the group level, we took our mean proximal 

variance measurements from our proximal variance calibration experiment and pre-set mean distal 

variance figures and followed the Kalman gain equation (see methods equations page 48). It should be 

noted, that due to the nature of presenting random orientations which produces a uniform distribution 

(high variance) and a Gaussian random walk (lower variance) the level of distal variance changes 

between each block and for each participant in each experimental session. This meant that the distal 

variance data was not the same for every participant. This meant that any statistical tests we ran on 

estimated Kalman gains for individual participants might not have provided unbiased comparisons so 

this aspect of our analysis is only intended to provide an approximate estimate of Kalman gains at a 

group level. In addition to estimating approximate Kalman gains, we computationally modelled 

participant Kalman gains. 

Modelling of participant Kalman gains was carried out by running a nonlinear squares fit to ascertain 

which level of Kalman gain explained participant’s responses (corrected for circular stimuli) most 

appropriately. A least squares model fit is a mathematical procedure for finding the best fitting 

regression slope or curve to a given set of data points. Here, this works by plotting a regression model 

based on the equations for estimation in the Kalman filter (chapter 2, page 43, and equation 6) at a 
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number of Kalman gain levels to participants’ responses until the regression slope with the least 

residual squared error is found. The gain at which point is reached is taken as the participants’ model 

fitted Kalman gain 

Our modelling analysis of Kalman gain produces a specific level of Kalman gain in each subject and 

therefore is suitable for statistical comparison. Statistical analysis of model fitted Kalman gains 

between contrast conditions is carried out using paired sample t tests (Bonferroni-corrected). We 

report 95% confidence intervals. We also modelled participant responses with a fixed weighted 

average simulation model by running another nonlinear least squares fit to find the best fitting weights 

from the preceding 6 trial orientations to the current participant response.  

Serial dependence calculations 

To assess the magnitude of serial dependence across contrast conditions and experiments we 

calculated serial dependence based on Fischer & Whitney (2014). We first calculated and plotted the 

error in degrees on each individual trial on the Y axis (corrected for circular responses). Error is 

calculated as the participant response minus the actual stimulus orientation. Positive errors indicate 

responses clockwise of the true current trial orientation and negative errors indicating responses anti 

clockwise of the true trial orientation. Next, we plotted the relative orientation of the current stimulus 

in comparison to the previous stimulus orientation. Relative orientation is calculated as the previous 

(n-1) stimulus orientation minus the current stimulus orientation. To measure the magnitude of serial 

dependence over all trials we fit standard regression slopes corrected for symmetrical and circular 

stimuli to error and relative orientation. By this measure serial dependence is directly related to the 

steepness and intercept of the regression slope. In both experiments, statistical analysis of regression 

slopes used paired t tests (Bonferroni corrected).  

N-back serial dependence analysis. 

Previous studies have shown that participant’s responses are not only serially dependent on the 

immediately preceding trial but that responses also depend on trials presented over the last 10-15 

seconds (Fischer & Whitney, 2014). To assess how serial dependence changed as a function of time in 

our experiments we measured serial dependence between not just the current and immediately 

previous trial but between the current and previous six trials. This was calculated in the same way as 

serial dependence but instead of only comparing error on the current trial against the relative 

orientation of the current trial compared to immediately previous trial but also error on the current 

trial compared to the relative orientation of the previous six trials. Again, we fit regression slopes 

corrected for circular and symmetrical stimuli to participant’s data and report standard deviations and 

95% confidence intervals. 

 



62 
 

3.5. Results. 

3.5.1 Proximal variance calibration. 

Analysis of proximal variance data reported significant differences in the variability (degs2) of 

cumulative psychometric functions fitted to participants responses between the 5% (M=141.66, CI 

[198.02, 91.88]) and 20% contrast conditions (M=38.50, CI [67.34, 19.05].) t (6) =4.01. p=.007. 

Significant differences between contrast conditions indicate that our experimental manipulation of 

contrast and our measurement paradigm were successful and this result is given extra validity by non 

overlapping 95% confidence intervals (see figure 4). One aspect of the results to draw attention to is 

how well participants could see the stimuli in the 20% contrast. Despite the presence of a noise mask, 

all participants were very accurate in observing changes between the first and second presented 

Gabors as soon as orientation changes became more than a few degrees (see figure 3 for an individual 

example).  

 

 

 

 

 

 

 

 

 

Figure 3. Typical individual 2AFC cumulative psychometric fit from our proximal variance 

calibration experiments All participants recorded less variability and greater accuracy in the 

judgment of the stimulus orientation relative to the previous in the more visible low proximal variance 

condition (20% contrast) as indicated by the steeper slope of the psychometric function in comparison 

to the less visible high proximal variance (5% contrast) condition which in all cases had a broader 

slope.  
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Figure 4.Group level differences in proximal variance obtained during our proximal variance 

calibration experiment-Note the large and significant difference in response variability between 

contrast conditions. In the 20% contrast condition participants performed well in nearly all cases. This 

contrasted with performance in the 5% contrast condition in which participants were less accurate in 

all cases. 

3.5.2. Main experiment one. 

Distal variance levels 

The level of distal variance was determined by the variability of our stimulus orientations which in 

this case was high due to being presented completely randomly. As the level of variability inevitably 

changed over blocks due to the way orientations were presented randomly we needed to provide a 

mean figure we could plug into the equation for Kalman gain. Therefore, we took the mean variance 

figure from each block from all participants and divided it by the total number of blocks carried out in 

all experimental sessions to provide an approximate figure for distal variance. This figure was 2700 

(deg2). 

Estimated Kalman gains 

In experiment one we calculated estimated Kalman gains of 0.95 (5% contrast) and 0.98 (20% 

contrast) based on the calculations for the Kalman filter provided in chapter 2 page and our proximal 

variance calibration data for each contrast condition corrected for a single stimulus presentation (see 

figure 5 below). 
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Model fitted Kalman gains 

Analysis of model fitted Kalman gain data mirrored results from our predicted Kalman gains and 

reported Kalman gains exactly the same as our estimated Kalman gains (see figure 5 below). In 

addition, no effects of contrast conditions on Kalman gain were observed in our analysis of model 

fitted Kalman gains with 5% (M= 0.95 SD=0.09, CI [1.00, 0.90]) and 20% (M=0.98, SD =0.07, CI 

[1.02, 0.93) t (9) =-2.270. p=0.059. No difference between conditions in modelled Kalman gains is 

confirmed by overlapping upper and lower bound 95% confidence intervals for the 5% contrast 

condition and 20% contrast condition, albeit with as expected slightly less variability in the more 

visible 20% contrast condition (see figure 5 below) 

 

Estimated Modelled

Figure 5. Estimated and model fitted Kalman gains for experiment one averaged across all 

participants. Note both predicted and model fitted Kalman gains are identical at close to one 
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Mean model fitted weights 

In our fitted weight simulations in experiment one, we recorded weights at around one for the current 

trial orientation and around zero for both the 5% and 20% contrast conditions, (or in fact slightly 

negative weights in some cases), for all other 6 included n back trials in both contrast conditions (see 

figure 6 and table 1). This result, is consistent with Kalman gains of one we recorded in both contrast 

conditions in this experiment indicating that participant’s responses, were all in cases centred on the 

current trial orientation. Interestingly, we also appear to observe a small of amount of negative 

weighting in both the 5% and 20 % contrast conditions. At this stage we cannot be sure of the reason 

for this and may be down to random effects or modelling errors and it will be interesting to see if it 

translates into serial dependence analysis directly. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Mean model fitted weights for experiment one. Sub figures A & B illustrate mean model 

fitted weights in the 5% (A) & 20% (B) contrast condition on the current and previous 5 trial 

orientations. As expected based on our predicted and modelled Kalman gains we observed no 

indication of any influence of trial history in modelled weights or in our n back participant data. 

Model fitted weights are at 1 for the current trial orientation with no weight on any previous 

orientation. Note, as mentioned above we also appear to observe a small of amount of negative 

weighting in both the 5% and 20 % contrast conditions. 
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Table 1. Current and N back trial weights and 95% confidence intervals for experiment one 

   5% Contrast                                                             20% Contrast  

 Weight on trial   CI (LL, UL) Weight on trial  CI(LL, UL) 

Trial     

Current 1.02 [1.00, 1.36] 1.03 [ 0.84, 1.15] 

N-1 0.09 [0.00, 0.20] 0.00 [-0.04, 0.06] 

N-2 0.07 [-0.08, 0.08], 0.00 [0.03, 0.03] 

N-3 0.00 [-0.05, 0.05] 0.00 [-0.04, -0.06] 

N-4 -0.09 [-0.06, 0.13] -0.01 [-0.06, 0.03] 

N-5 -0.04 [-0.13, 0.10] -0.01 [-0.02, 0.04] 

N-6 -0.08 [0.09, 0.21] -0.02 [-0.06, 0.03] 

 

 

Serial dependence modelling predictions for experiment one. 

Our modelling analyses allowed us to make very specific predictions about the level of serial 

dependence we should observe, not only between the current (n) and immediately previous trial 

orientations also between the current and previous five trial orientations (n-1, n-2, n-3, n-4, n-5 & n-

6). Predicted and modelled Kalman gains of 0.95 for the 5% contrast condition and 0.98 for the 20% 

contrast condition make strong predictions that we should observe little if any serial dependence in 

experiment one for either contrast condition. Fitted weight analysis also provided a clear prediction 

that we should not observe any serial dependence towards any of the previous 6 trial orientations and 

that responses should be centred only on the current trial orientation in both the 5% and 20% contrast 

condition. Interestingly, model fitted weights also appear to support the idea of some form of negative 

weighting/serial dependency towards the previous trial orientations in the 5% contrast condition.  
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Individual serial dependence illustrations. 

Before moving on to reporting our main analyses of serial dependence at a group level it is worth 

noting and illustrating that our model predictions were also accurate at the individual level. All 

participants (although some data was more noisy than others) recorded regression coefficients at or 

very close to zero indicating no bias towards previous values. This result, is entirely consistent with 

Kalman gains close to 1 and model fitted weights at 1 on the current trial orientation. Our individual 

plots also provide an idea of how well participants could perform at the task which although may 

seem simple is important in interpreting results. Based on the relatively low amount of error over 

trials, which was around the five to ten degree mark (shown by the width of shaded regions), it 

appears subjects could see the stimulus in both contrast conditions and perform the task very well as 

shown in figure 7 (below). 
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Figure 7. Four individual serial dependence plots for four individual participants. Positive 

values of the X axis indicate that the current trial was more clockwise than the current trial and 

positive errors on the current trial (Y axis) indicate that reported orientation was more clockwise than 

the true stimulus orientation. Regression slopes indicate the strength of relationship between error and 

the sined change in orientation. For example a slope of one would indicate that the subjects error to 

100% captured by the change in orientation between trials and 100% serially dependent. By the same 

measure a slope of zero would indicate no relationship between error and the change in orientation 

and no serial dependence and in fact this is what we observe. Participants plotted in sub figures A, C 

and D reported regression coefficients at precisely zero while the participant plotted in in sub figure B 

may have exhibited some serial dependence (slope of 0.05) but at this low level could be simply 

attributable to statistical or response noise in an individual participant.  
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Serial dependency main analysis. 

We hypothesised that the magnitude of serial dependence is modulated by the ratio of proximal and 

distal variance in our stimulus and commensurate to the level of Kalman gain. Analysis reported no 

differences in regression slope coefficients between contrast conditions and regression slope 

coefficients at or close to zero with 5% (M=0.03, SE =0.03, CI [0.00, 0.05]) and 20% (M=0.00, SE 

0.02, CI [0.00, 0.02] ), t(9)=2.530, p=0.320, This meant that while we did not record any differences 

in Kalman gains between conditions, we did observe a pattern of results indicating the level of serial 

dependence was commensurate to the level of Kalman gain. To clarify, the Kalman gains that we 

have obtained for experiment one are all close to one. This means that full weight should be attached 

to any prediction error. When full weight is attached to prediction errors, estimates should update 

fully and no past history (serial dependence) should be visible in estimates. Results strongly indicate 

participants responses are centred on the current trial (see figure 8) entirely consistent with this idea. 

However, such a result, while consistent with our model predictions is interesting, it is impossible to 

ascertain any adaptive effects of proximal or distal variance on serial dependence in this experiment 

as quite simply we do not observe any serial dependence. Also, this is clearly a failure to replicate 

Fischer & Whitney (2014).  
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Figure 8. Group serial dependence plot. To recap, positive values of the X axis indicate that the 

current trial was more clockwise than the current trial and positive errors on the current trial (Y axis) 

indicate that reported orientation was more clockwise than the true stimulus orientation. Regression 

slopes indicate the strength of relationship between error and the sined change in orientation. Here we 

observe that subjects overall responded at the current trial orientation. While it may appear that there 

is some serial dependence between -10 & 10 we contend that the dip below zero on the anti-clockwise 

does not sufficiently rise above zero error on the clockwise (+) direction to be considered a ‘serially 

dependent’ distribution.  

 

Experiment one n back analysis. 

Results from our n back analysis were consistent with our main analysis of serial dependency and 

model predictions. Unsurprisingly, given we had recorded no serial dependence in our main analysis 

and based on Kalman gains of 1 and our model fitted weights at one for the current trial orientation 

we found no n back serial dependence for either the 5% or 20% contrast conditions (as shown below 

in figure 9 with exact figures provided in table 2). Interestingly, we also appear to observe some slight 

negative serial dependence or a repulsion effect in later n back trials. This may be attributable to 

chance due to limited trial numbers of perhaps more plausibly be related to adaptation after effects. 

While it may seem counter intuitive to associate adaptation with stimulus presentations lasting only 

500 ms sub second negative after effects have been recorded previously Fritsche et al., 2017; Kanai & 

Verstraten, 2005) which can last for several seconds Fritsche et al., 2017). Fritsche et al. (2017). 

Again, though it should be noted that while our modelling predicted our results extremely accurately 



71 
 

it not possible to ascertain whether such a result supports our adaptive versus fixed hypothesis for 

serial dependence based on this experiment alone as none was observed.  

 

 

 

 

 

 

 

 

Figure 9. Mean n back regression slopes for experiment one. Sub figures A & B illustrate mean 

regression slope coefficients from all participants in experiment one in both the 5% contrast (A) and 

the 20% contrast (B). As we had observed no serial dependence in our main serial dependence 

analysis we were highly unlikely to observe any serial dependence in our n back analysis. This was 

confirmed with all regression slope coefficients being at or around zero in both the 5% and 20% 

contrast conditions.  

 

Table 2. Serial dependence N back trial analysis for experiment one 

   5% Contrast                                                          20% Contrast  

 Regression slope  CI (LL, UL) Regression slope  CI (LL,UL) 

Trial  

N-1 0.00 [-0.01, 0.01] 0.00 [-0.01, 0.01] 

N-2 0.00 [0.01, 0.01] 0.00 [0.01, 0.01] 

N-3 -0.01 [-0.00, 0.02] 0.00 [0.01, 0.02]  

N-4  0.00 [-0.01, 0.02] 0.00 [-0.01. 0.03] 

N-5 0.02 [-0.03, 0.03] -0.02 [-0.04, 0.02] 

N-6 -0.03 [-0.04, 0.01] -0.04 [-0.06,0.02] 
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3.5.3. Main experiment two 

Testing serial dependence under reduced distal variance versus low and high 

proximal variance. 

Distal variance levels. 

To calculate the mean variance of orientations across all experiments we recorded the level of 

variability in stimulus orientations in each block and divided it by the number of blocks carried out in 

all experiments to provide an approximate figure for distal variance. This figure was 133 (deg2) which 

is much reduced from the figure of 2700 (deg2) we recorded in experiment one. 

Estimated Kalman gains 

Based on the calculations for prediction variance in a stimulus that follows a Gaussian random walk 

sequence (μ =0, σ =11.552) and our figures from our proximal variance calibration we calculated 

estimated Kalman gains of 0.62 for the 5% contrast condition and 0.83 for the 20% contrast condition. 

The interesting aspect of our estimated Kalman gains is that for both contrast conditions, Kalman gain 

is reduced away from one as we observed in experiment one. Such a result, also highlights the 

difficulty in reducing Kalman gain away from one. We have had to drastically reduce distal variance 

and make our stimulus extremely difficult to see but even here Kalman gains are still closer to one 

than they are to zero. Nonetheless, the fact that we have observed a difference between Kalman gains 

between contrast conditions is the important factor here and supports an adaptive weighting strategy. 

Mean model fitted Kalman gains. 

As in our estimated Kalman gains, in model fitted Kalman gains we recorded reduced Kalman gains 

from those recorded in experiment one but on this occasion only in one contrast condition (5%). We 

calculated a Kalman gain of 0.74 for the 5% contrast condition but a Kalman gain of 1.02 for the 20% 

contrast condition. Importantly, t tests reported significant differences in modelled Kalman gains 

between contrast conditions with 5% (M=0.74 SD=0.20, CI [0.88, 0.63]) and 20% (M=1.02 SD=0.53, 

% CI [0.99, 1.05]) t (8) =-3.629. p=.007. Note here, we have a discrepancy in model fitted Kalman 

gains and estimated Kalman gains. Model fitted Kalman gains have not reduced away from one as 

much as estimated Kalman gains. Results from model fitted Kalman gains again provide an insight 

into just how good visual perception is. Even in the 20% contrast condition, our stimulus was quite 

noisy and used noise masks, yet participants were able to respond almost entirely to the current trial 

orientation. In the 5% contrast condition, which it must be said was a tough stimulus to see, 

participants are still quite accurate given the noise level of the stimulus. Once again though, the key 

factor here is that we have a difference between Kalman gains consistent with an adaptive weighting 

strategy (see figure 10). 
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Figure 10. Estimated and model fitted Kalman gains for experiment two. Here, we observe the 

clear and indeed significant differences in model fitted Kalman gains between contrast conditions in 

experiment two. Estimated Kalman gains for the 5% were 0.62 while in the 20 % we calculated gains 

at 0.83. This was a slightly different outcome to our model fitted Kalman gains. In the 5% contrast we 

record a Kalman gain of 0.74 while in the 20% condition we recorded a Kalman gain of 1.02. This 

result provides an interesting comparison with our predicted Kalman gains for experiment two and if 

correct predicts serial dependence in only the 5% contrast condition but not in the 20% condition and 

importantly an apparent effect of the ratio between proximal and distal variance and an adaptive 

weighting process 
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Mean model fitted weights  

Analysis of model fitted weights were consistent with our differences in Kalman gains between 

contrast conditions and indicate a more distributed weighting in the 5% contrast condition than in the 

20% contrast condition (see figure 11 and table 3). Mean weighting figures and upper and lower 

bound 95% confidence intervals for the 5% percent contrast condition indicated a distributed 

weighting albeit with some inter individual variations and are illustrated below in figure 11and 

reported in detail in table 3.  

 

 

 

 

 

 

 

 

Figure 11. Mean model fitted weights for experiment two. Sub figures A & B illustrate mean 

model fitted weights in the 5% (A) & 20% (B) contrast conditions on the current and previous 6 trial 

orientations. Here again we see evidence of an adaptive weighting of information over time 

modulated by the ratio of proximal to distal variance. In the 5% contrast condition, weights are 

distributed over the current and previous two trials while in the 20 % contrast weighting is confined 

entirely to the current trial orientation .While it is correct to note that our model fitted analysis is only 

fitting a model to data it does appear that our both our models provide support for an adaptive 

weighting strategy and essentially concur with Kalman gains on the way weighting is distributed over 

conditions. 
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Table 3 Current/N back trial fitted weights and 95% confidence intervals for experiment two 

   5% Contrast                                                               20% Contrast  

 Weight on trial   CI (LL, UL) Weight on trial  CI(LL,UL) 

Trial     

Current 0.78 [0.64, 0.93]  1.03  [0.95, 1.10] 

N-1 0.09 [0.02, 0.19]  0.00  [0.00. 0.10] 

N-2 0.12 [0.06. 0.18] 0.00 [-0.05, 0.05],  

N-3 0.01 [0.03, -0.03] 0.00 [-0.03, -0.03] 

N-4 -0.02 [-0.04, 0.04] -0.01 [-0.05,0.05] 

N-5 0.04 [-0.06, 0.15] -0.01 [-0.05, 0.03] 

N-6 0.00 [-0.04, 0.07] -0.02 [-0.06, 0.03] 

 

Serial dependence predictions for experiment two 

Our Kalman gains and model fitted weights allow us to make specific predictions about the level of 

serial dependence we might observe in experiment two-albeit with some slight ambiguity between 

estimated and model fitted Kalman gains. Estimated Kalman gains of 0.62 (5% contrast) and 

0.83(20% contrast) mean that we should observe high serial dependence for both conditions. 

Translating these figures to our serial dependence regression slopes we can expect a slope of 0.38 (1-

K(0.62)) for the 5% contrast condition. This would be a huge amount of serial dependence. Model 

fitted Kalman gains make a different prediction about serial dependence. In the 5% we should observe 

a regression slope of 0.26 (1-K(0.74)) which is still a large amount of serial dependence but in the 

20% condition we would expect no serial dependence (1-K(1.02) and in fact we might even expect 

some repulsion effects as opposed to bias towards previous orientations. Fitted weights also provide a 

prediction about serial dependence on our n back analyses. With a weight of 0.78 on the current trial 

for the 5% contrast condition and some weight on the previous 2 n back trials we would expect some 

serial dependence going back over trials. In the 20% contrast condition, the weight was around one on 

the current trial. In this case, we would expect no serial dependence on the immediately previous trial 

orientation and no serial dependence to any previous n back previous trial orientation. In summary, 

predictions made by both Kalman gains and fitted weights state that we should observe different 

amounts of serial dependence between contrast conditions thus supporting the adaptive predictive 

coding account of the phenomena.  
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Individual serial dependence illustrations. 

Our individual serial dependence error plots for four participants from experiment two (see figure 12) 

provide an early indication that the adaptive account of serial dependence may be supported. Here, 

while we do not carry out statistical tests we see the clear difference in serial dependence between 

conditions, with on some occasion a very high level of serial dependence recorded in the 5% contrast 

condition. Another interesting aspect of our individual plots is the visible relationship between error 

variance (proximal variance-the width of the shaded regions) and serial dependency which is 

especially evident in the 5% contrast condition. When we have a low level of proximal variance 

participants generally respond at the current trial orientation. However, when we have a high level of 

proximal variance participant’s error generally becomes serially dependent on the previous trial 

orientation. In some participants (A) the relationship is very strong with a regression slope coefficient 

of 0.26 while in others the effect is less strong. For example in sub figure B the regression slope 

coefficient is at 0.11. Also note in sub figure (A) the subjects highly variable response errors which 

can be considered to be the effects of stimulus visibility in both the 5 & 20% contrast conditions i.e. 

proximal variance This is especially interesting as this is the only subject in which we observe serial 

dependence in both contrast conditions. A further interesting aspect of our individual data plots is that 

we again observe ‘negative’ serial dependence in sub figure C. As we observe it again it is 

increasingly unlikely that this is not down to statistical errors or chance but that perhaps a different 

perceptual mechanism or strategy is at work.  
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Figure 12. Four individual serial dependence plots. Here we can observe a possible effect of 

proximal variance on serial dependence. In participants with larger SEM (sub figures A & C) there 

appears to be larger amount of serial dependence-note in sub figure A we see this effect strongly. Also 

note the quite strong negative serial dependence in subfigure D the reason for this is unclear 

especially in light of the large individual differences in responses. Indeed, this is a recurring issue in 

our data with different participants responding in quite different ways to the trial orientations.  
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Serial dependency main analysis. 

We hypothesised that the magnitude of serial dependence is adaptively modulated by the ratio of 

proximal and distal variance in our stimulus and commensurate to the level of Kalman gains. Here we 

found this to be the case and report significant differences in regression slope coefficients between 

contrast conditions with 5% (M=0.20 SD=0.20, CI [0.63, 0.88]) and 20% (M=-0.02, SD=0.99, CI 

[0.99, 1.05]) contrast conditions t (9) =4.791. p=.001, strongly indicating an adaptive integration 

strategy (see figure 13 below). While, the amount of serial dependence we recorded in the 5% contrast 

condition is slightly below the level predicted (see figure 13 for an illustration of predicted versus 

actual values), the fact that the magnitude of serial dependence changed under different levels of 

proximal and distal variance and were generally commensurate to our levels of Kalman gain supports 

our adaptive hypothesis. The effects of proximal variance can be seen in figure 13 below. In this plot, 

the green shaded standard error region (20 % contrast) is narrower than the purple shaded region (5%) 

as this is the only aspect of the study that was manipulated it indicates that stimulus variability plays a 

prominent role in the integration of past information. Results also show just how difficult it is to 

induce the visual system to integrate past information into current perceptions. To produce a 

reasonably high level of serial dependence in experiment two, we had to dramatically reduce distal 

variance from experiment one. This results again contradicts Fischer & Whitney (2014) although it 

must be said we did not directly replicate their experiment. In the next section of our results we do 

though report a more direct replication that was also carried out. 
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Figure 13. Group error versus relative orientation plots. Here we observe the significant 

difference in regression slope coefficients between conditions. The slope coefficient in the 5% 

reported a slope of 0.20, indicating a high level of serial dependency while in the high contrast (20%), 

low proximal condition, the slope is zero indicating no serial dependency. This is a vital result in 

terms of our analysis of an adaptive versus a fixed hypotheses. A significant difference in slope values 

indicates that when the amount of distal variance is reduced and measurement uncertainty increases, 

carrying higher proximal variance, as recorded in the 5% condition in this experiment, stimulus 

history influences participant’s estimates of the current stimulus value and we observe a large amount 

of serial dependence. 
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Serial dependence n back analysis 

As with our main analysis of serial dependence in our n back analysis our modelling provided a 

relatively accurate prediction of serial dependence. Results were especially consistent with our model 

fitted weights. As predicted, findings indicated that we observed serial dependence towards the 

previous six trial orientations in the 5% contrast condition and no serial dependence recorded in the 

20% contrast condition with regression slope coefficients of , n-1 0.19, n-2, 0.12, n-3 0.09, n-4, 0.09, 

n-5, 0.07 & n-6 0.03 and 20% contrast n-1, 0.00 , n-2, 0.00, n-3, 0.00, n-4, -0.01, n-5, -0.01 & n-6, -

0.01 (See figure 14 and table 4). Note here that serial dependence appears to persist longer than model 

fitted weights suggested in the 5% contrast condition and that at least some subjects contrast appear to 

exhibit negative serial dependence from around the n-3 trial in the 20% contrast condition (see fig 14 

below). The repeated occurrence of a small amount of negative serial dependence as observed in 

experiment one again represents a somewhat anomalous as aspect of the data. As it is repeated from 

experiment 1, it suggests that it is not down to chance or statistical error. However, crucially, the 

differences in the magnitude of serial dependence between conditions support our adaptive hypothesis 

of serial dependence and are consistent with ideas of predictive coding. 

 

 

. 

 

 

 

 

Figure 14. Serial dependence magnitude towards trial presented 1-6 trial back. In the 5% 

contrast condition regression slope coefficients report a slope of 0.19 for the n-2 trial decreasing over 

n-backs to a regression slope coefficient of 0.07 in the n-6 trial. A linear decrease in regression slope 

coefficients is consistent with results from our fitted gains and weights which indicate an influence of 

trial history over a number of previous trials decreasing over time in this condition. This persistence 

of serial dependence over time is not observed in the 20% contrast condition, in which as expected, no 

serial dependency is observed and in data fact hints at a slight repulsion effect towards previous trial 

orientations. 
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Table 4 Serial dependence N back trial analysis for experiment one 

   5% Contrast                                                                20% Contrast 

 Regression slope CI (LL, UL) Regression slope CI (LL,UL) 

Trial     

N-1 0.19 [0.11, 0.27] 0.00 [-0.01, 0.01] 

N-2 0.12 [0.04, 0.20] 0.00 [0.01, 0.01] 

N-3 0.09 [0.02, 0.15] 0.00 [0.01, 0.02] 

N-4 0.09 [0.00, 0.14] 0.00 [-0.01. 0.03] 

N-5 0.07 [0.04. 0.13] -0.01 [-0.02, 0.02] 

N-6 0.03 [-0.04, 0.10] -0.04 [-0.05, 0.02] 

 

 

3.6. Supplemental experiment. 

Previous serial dependence literature has always reported at least some amount of serial dependency 

using an orientation judgment paradigm (Fischer & Whitney, 2014; Liberman et al., 2016; St. John-

Saaltink et al., 2016). However, we found none in all but one experimental condition in one 

experiment. Although this finding was well predicted by our modelling, we felt it warranted further 

investigation. This was especially true in regard to our replication of Fischer & Whitney (2014). This 

is because, while it is true we conceptually replicated Fischer & Whitney (2014) we did not attempt a 

direct replication of their design. Due to the strength of Fischer & Whitney’s (2014) methods and 

results it was important that we verify our results by performing a more direct replication as some 

aspects of the way Fischer & Whitney’s (2014) stimuli were presented differed from our stimuli 

presentation. The differences here, applied mainly to the reduction of spatial frequency of the stimulus 

in their experiment compared to ours, a larger Gabor stimulus, a stronger inter trial noise mask in the 

same position of the stimulus and the screen positions of the Gabor (centre and periphery). The 

general effects of the differences between Fischer & Whitney (2014) can be considered to have the 

effects of a) making the stimulus more blurred and b) in trials presented in the periphery moving the 

stimulus outside of the foveal representation and thus increasing uncertainty. Given both factors could 

have increased what could be considered proximal variance under the principles of the Kalman filter it 

may have explained our non replication i.e. our stimulus had lower proximal variance values meaning 

participants were more likely to respond to the current trial orientation in our experiment. We now 

provide methods and results. 
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3.6.1 Methods. 

Participants. 

The supplemental experiment had 5 participants (3 female, mean age 26, range 19-41). Participants 

had not taken part any of our previous experiments and were recruited from St Andrews SONA 

participants recruitment database.  

Supplemental experiment design and task. 

Gabor patches were presented at 0.25 contrast has a radius of 10 visual degrees, a spatial frequency 

0.33 cycles per visual degree and a 1.5 s.d Gaussian contrast envelope. Between presentations of 

Gabors a noise patch was presented at the same location as the Gabor. Noise patches comprised white 

noise smoothed with a 0.91 Gaussian kernel and windowed in a 1.5 s.d Gaussian contrast envelope. 

The experiment had two conditions. In condition one (peripheral), Gabors were presented 6.5 visual 

degrees to the right of fixation which was a 0.5 diameter dot (visual degrees) was presented in the 

centre of the screen. In condition two (central), Gabors were positioned centrally. In both conditions, 

Gabors were presented randomly between 0-360°. The orientation adjustment bar used to signal the 

participant’s perceived orientation was a 0.61° wide white bar at 4° in length. The adjustment line was 

always positioned at the same location as the Gabor trial location. The response bar changed its 

starting orientation randomly on each trial. Each participant completed four blocks. Each block had 52 

trials in each condition (peripheral and central). This meant each participant completed 208 trials with 

the Gabor positioned in the periphery and 208 with the Gabor positioned in the centre and 416 trials in 

total. 
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Figure 15. Design and task for the supplemental serial dependency experiment and comparison 

with our design and task from our previous serial dependency design and task. Sub figure A 

illustrates the design and task for our supplemental serial dependency experiment which is closer to 

Fischer & Whitney’s (2014) design. Here, we can compare the important differences between our 

previously used more conceptual replication which it must be said combined to make the 

supplemental experiment qualitatively distinct. The reduction in spatial frequency had an effect of 

making the orientation of the Gabors more blurred and the increase in thickness of the adjustment line 

made for perhaps a more noisy response.  

3.6.2. Analyses. 

All analyses methods are identical to the previous main serial dependency analyses except we only 

include model fitted Kalman gains as predictors for serial dependence and do not include an n back 

analysis. 

3.6.3 Results. 

Model fitted Kalman gains. 

No effect of screen position on Kalman gain was observed in our analysis of model fitted Kalman 

gains with periphery, 5% (M= 1.01 SD=0.07) and 20% (M=0.95 SD =0.06) t (4) =-1.04. p=0.232 with 

upper and lower bound 95% confidence intervals for the peripheral condition, CI [1.11, 0.91] and 

central condition CI [1.03, 0.88] (see figure 16). Importantly, figures for Kalman gain are at or around 

one indicating no impact of trial history.  
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Figure 16. Modelled Kalman gains supplemental experiment. Here we can observe the similarities 

in model fitted Kalman gains in our two experimental conditions. Kalman gains of 1.01 for the 

peripheral condition and 0.95 for the central condition. This result bears marked similarities with our 

main serial dependency in experiment one which also presented orientations at random orientations 

between 0&360 degrees, indicating at such a high level of distal variance little if any weighting to 

previous stimulus values in participant’s responses. 

Serial dependence modelling predictions for our supplemental experiment. 

Our model fitted Kalman gains were again close to one for both peripheral and central conditions. 

Based on this level of Kalman gain we would expect to see little if any serial dependency at the group 

level. However, given our lower bound confidence intervals indicating a slightly lower Kalman gain 

in some participants it is possible that some individual participants may exhibit a small amount of 

serial dependence. 

Individual serial dependence plots. 

Before providing group level results, in keeping with our previous results sections, we again provide 

an illustration of individual serial dependence plots. On this occasion, we again observe a similar 

result to our main experiment one, which also presented randomly oriented Gabors. Again, all 

regression slope coefficients are very close to zero and indeed there seems to be even more of the 

negative serial dependence or repulsion effect we observe in our previous experiments. Such results 

again lend weight to the effects of very high distal variance on the way participants respond to 

changes in stimuli over time. Namely, that when presented with a highly variable stimulus 

participants ignore past values and base responses on the current trial orientation. 
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Figure 17. Serial dependence plots for all five individual participants. Here we again observe a 

similar result to our main experiment one which also presented randomly oriented Gabors. All 

responses are centred on the current trial orientation indicating no effects of trial history in responses. 
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Group serial dependence analysis. 

Results from our analysis of serial dependency in our supplemental experiment are commensurate 

with our Kalman filter model predictions from this experiment and consistent with our initial findings 

in relation to serial dependency. Model fitted Kalman gains at or close to one again predicted very 

little or no serial dependency and no significant differences in regression slope coefficients between 

our peripheral and central conditions. This is exactly what was observed with peripheral (M= -0.020, 

SE=0.01) & central (M=0.01, SE=0.01), t (4) = -1.859, p=0.137. Upper and lower bound 95% 

confidence intervals were peripheral condition CI [0.01, -0.08] and central condition CI [0.04, -0.02]. 

It is worth noting two aspects of our data in this analysis. In this experiment, if anything we get even 

less serial dependence than in our previous experiments with a randomly presented stimuli and again 

we appear to observe a very slight ‘negative’ serial dependence or a repulsion effect in both peripheral 

and central conditions which can be observed in figure 18 below. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 18. Supplemental serial dependency error versus relative orientation plots. We again fail 

to replicate Fischer & Whitney (2014) with results consistent with our initial findings that report no 

serial dependency. Both the peripheral and central condition report regression slope coefficients 

actually very slightly below zero.   
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3.7. Discussion and conclusion. 

The current experimental chapter set out with very well defined goals with clear experimental 

hypotheses. We hypothesised that the magnitude of serial dependence is adaptively modulated by the 

ratio of proximal and distal variance in our stimulus and commensurate to the level of Kalman gain. 

Based on the overall findings, we found this hypothesis to be correct and our results over all are 

entirely consistent with ideas of predictive coding’s ideas of precision weighting of prediction errors 

and well modelled by the Kalman filter. Furthermore, aside from what can be considered a novel 

overall finding within a well-defined theory our methods also provide some interesting techniques that 

could be used in future studies that examine serial effects and predictive coding. However, the study 

does raise some interesting issues that require further explanation. Not least, the failure to replicate 

Fischer & Whitney (2014). We now discuss our study beginning with the validity of our methods.  

General methods 

Perhaps the most important and indeed interesting aspect of our methods was the way we provided a 

measure of proximal variance and the implications it produced. To reliably calculate Kalman gain a 

measure of this quantity is required. While distal variance was pre-set in both experiments and a 

known quantity, proximal variance is more difficult to measure as it is very much participant specific 

and difficult to quantify. Indeed, perhaps for this reason other papers that have linked the Kalman 

filter with how estimation errors are weighted have commonly ignored the part of the equation for 

Kalman gain that requires a figure for measurement variance (Burr & Cicchini, 2014; Cicchini et al., 

2016). However, although potentially problematic, significant and consistent results from our 

proximal variance calibration experiment showed that our manipulation of contrast and our analysis 

methods in this regard were successful. Crucially, in all participants, the variance of fitted cumulative 

psychometric functions was higher in the 5% contrast condition than the 20% contrast condition 

indicating a more variable internal measurement of the 5% contrast condition than the 20% contrast 

condition. 

There are a number interesting features of the data provided by our proximal variance experiment. 

One is simply just how good vision is. In the 20% contrast condition all participants recorded a low 

level of proximal variance. This indicated that they could all see the stimulus well and respond 

accurately to the orientation. Given that we used noise masks that are known to make the perception 

of a stimulus more variable (Breitmeyer & Ogmen, 2000) and overall the appearance of the stimuli 

was qualitatively not totally clear this was somewhat surprising. Even in the 5% contrast condition, in 

which it must be said was very hard to see the stimulus, some participants were still actually quite 

good at judging the orientations. Our proximal variance figures also quantified how vital raising the 

level of proximal variance over the level of distal variance is for allowing predictions to be more 

useful than the current input. Our figures showed that in experiment one, distal variance was much 
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larger than proximal variance and here Kalman gains were all close to one indicating that we would 

not expect to observe any input of past information and this is exactly what we observed. In 

experiment two, we reduced the level of distal variance drastically (from 2700 deg2 to 133 deg2). This 

meant that for most participants their proximal variance was higher than the distal variance. Only 

when this occurred, did we observe any serial dependence. Proximal variance figures also show just 

how hard it is to reduce the level of distal variance below that of proximal variance. In experiment 

two, we had to make our stimulus sequence highly correlated and our stimulus bordering on the 

invisible to reduce proximal variance below distal variance. Finally, our proximal variance figures can 

be considered to be reasonably accurate if a little high. We can ascertain this from experiment two. 

This is because the predicted Kalman gains of 0.62 (5% contrast) and 0.83 (20% contrast) predicted 

more serial dependence than we actually observed. In fact the model fitted Kalman gains which had 

higher Kalman gains 0.74 (5% contrast) & 1.02 (20% contrast) were a better predictor of serial 

dependence. Overall, it could be considered that our methods for introducing and estimating proximal 

variance, while not perfect are a useful means to quantify uncertainty and could be applied in many 

areas of visual research that study the effects of uncertainty including predictive coding and serial 

dependence.  

An additional aspect of our methods that represents an advancement on many previous predictive 

coding studies is the insertion of predictability into our stimulus sequences. Previous predictive 

coding studies have largely used cues or associative type relationships to induce predictability (Kok, 

Jehee, & de Lange, 2012a; Kok & Turk-Browne, 2018; Summerfield & Egner, 2009; Summerfield & 

Koechlin, 2008). In these studies trials are statistically independent from each other and indeed follow 

the randomly presented type of trial sequence in we used in experiment one. However, in experiment 

two we changed this to make trials statistically dependent to some extent on one another by inserting a 

Gaussian random walk into the trial sequence. A Gaussian random walk is a one dimensional markov 

process in which the value at one time point is conditionally dependent on the previous time point. 

Although the aim of inserting the random walk was mainly to reduce distal variability, in predictive 

coding theory, the nature of the internal models is such that they represent conditional relationships 

between events and stimuli over time (Clark, 2013; Friston, 2010; Thornton, 2014). The fact that we 

observed differences in behaviour indicating use of past trial history when trials were correlated 

(serial dependence) supports these ideas and the increased use of statistically dependent trials in future 

experiments. Indeed, this is an area in which the current thesis expands upon in chapter 5. 
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Modelling analyses. 

The use of trial sequential regularities is key to one of the two models we used in the current study, 

namely the Kalman filter which was able to predict well the magnitude of serial dependence we 

observed. Predicted Kalman gains, based on proximal variance calibration figures for experiment two 

were 0.62 for the 5% contrast and 0.83 for the 20% contrast. Model fitted Kalman gains were 0.74 for 

the 5% and 1 for the 20% condition. The difference in Kalman gains for the 20% between models 

fitted gains and predicted Kalman gains is an interesting aspect of our data which could mean that two 

different predictions about the magnitude of serial dependence in the 20% contrast condition were 

possible. According to the model fitted gains that produced a gain of 1 we would not expect to see any 

integration of previous stimulus values but according to on the gain level of 0.83 derived from the 

proximal variance calibration experiment we might expect to see an influence of previous stimulus 

values in participants judgments of stimulus orientations in our integration analyses. Results from our 

serial dependence analysis supported data from our model fitted Kalman gains. In the 5% contrast 

condition we observed regression slope coefficients of 0.21 while in the 20% contrast condition a 

coefficient of zero was produced. As we have mentioned, this may be due to an over estimation of 

proximal variance in our proximal variance experiment. In summary both predicted and model fitted 

Kalman gains provided reasonable predictors of serial dependence with model fitted Kalman gains 

more accurate. This result was also commensurate with results from our model fitted weights which 

predicted serial dependence to n back trials to a certain extent. 

Model fitted weights predicted the level of serial dependence to n back trials in both experiment one 

and two. In experiment one, model fitted weights of at or close to one for both the 5% and 20% 

contrast predicted no serial dependence to any of the 6 included n back trials. This is exactly what was 

observed. We found no serial dependence to any analysed trial. For experiment two, though another 

outcome was predicted. In experiment two, model fitted weights indicated that we would observe 

serial dependence in the 5% contrast condition stretching back three trials and again that we would 

observe no serial dependence in the 20% contrast condition. Again, our modelling analysis was 

broadly correct. We did not observe any serial dependence in the 20% contrast condition but did 

record it in the 5% contrast condition and in fact recorded serial dependence to the previous six trials 

degrading as a function of time. This aspect of our results was consistent with previous serial 

dependence studies (Bliss et al., 2017; Fischer & Whitney, 2014; Liberman et al., 2016) to some 

extent but as we did not observe any serial dependence in the 20% contrast condition does flag some 

important questions in regard to our general findings in regard to serial dependence literature.  
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Serial dependence, predictive coding and a failure to replicate Fischer & Whitney (2014). 

Findings from our analysis of serial dependence support a predictive coding account of temporal 

integration. Although we cannot be certain the adaptive weighting observed in the current study 

applies to prediction errors, as we do not have access to the underlying activity of the brain, results all 

point to a predictive coding account of precision weighting. When stimuli are more uncertain and 

contain at least some amount of predictability, participants responses exhibited integration of past 

stimulus history. This result is broadly consistent with more recent findings indicating that serial 

dependence is modulated by viewing conditions in the form of distance to the foveal repression 

although again we did not observe such an effect (Fritsche, Mostert, & de Lange, 2017) and 

probabilistic information in trial sequences (Bergen & Jehee, 2019) which can be considered proximal 

and distal variance related respectively. Importantly, this was not observed during experiment one 

which presented random orientations.  

Our interpretation of why we find no serial dependence to randomly changing stimuli is that quite 

simply with a randomly changing stimulus there are no relationships in the stimulus sequence for the 

brain to model. In this case, and what happens in predictive coding and the Kalman filter is that the 

current prediction error should be weighted to its full extent as the past carries no useful information. 

In this case, we would expect responses to be at the current trial orientation and observe no serial 

dependence. While we do not actually measure how error is corrected per se in this experiment our 

data fits this explanation more than that provided by the fixed weighting account of simple perceptual 

averaging. Of course, the Kalman filter does apply a type of averaging but it is also reliant on the level 

of proximal and distal variance and the input of model based information and importantly is adaptive. 

However, despite the support from both our modelling and serial dependence analyses our results flag 

a serious issue in that we failed to replicate Fischer & Whitney (2014). 

There are a number of potential reasons why we did not replicate Fischer & Whitney (2014). One 

reason may due to the individual nature of serial dependence we observed in relation to the small 

number of participants Fischer & Whitney (2014) tested. In our experiments, some participants were 

responses were almost always serially dependent while others seemed never to be serially dependent. 

While Fischer & Whitney (2014) tested 12 different participants in total, in all of their individual 

experiments they only tested 4 participants. If those four participants had been what we could 

consider high proximal variance observers, that we have shown tend to exhibit higher levels of serial 

dependence, this may explain at least some of the discrepancy between results. However, this would 

not explain their reporting of serial dependency for a random stimulus which we certainly did not 

observe. An explanation for this is that Fischer & Whitney (2014) stimuli produced a much higher 

level of proximal variance that could have produced serial dependence to a random stimulus but this 

is questioned as we did carry out a more direct replication that again failed to replicate. Finally, a 
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potential explanation is that participants used by Fischer & Whitey (2014) had a different underlying 

model of the stimulus and task demands. In some predictive coding models, there exists not only an 

model of the stimulus behaviour but also of the task structure (Friston, 2010). It is possible that the 

four participants tested by Fischer & Whiney (2014) when faced with a random stimulus did not 

followed a non optimal strategy and integrate across trials even though this would potentially lead to 

increased error.  

Negative serial dependence or repulsion effects. 

One final issue of our data to mention that lacks clear explanation is the existence of small amounts of 

negative serial dependence in some participants responses. Initially, we felt that this was an unreliable 

or random effect related to chance with a limited number of trials and the way orientations were 

presented in experiment one. To clarify, in experiment one, when presented with a random series of 

orientations, it may have been possible that participants simply responded to the current orientation 

with some error that could randomly have been towards the previous trial or away from the previous 

trial. If there were simply more responses away from the current trial orientation then this would 

appear as a repulsion effect but was in reality due to the random nature of orientation and associated 

responses with a limited number of trials. However, as we again observed such an effect in 

experiment two when orientations were heavily correlated and on n back trials this perhaps this 

explanation is perhaps not sufficient. An alternate explanation forward in the literature is that 

repulsion effects observed in serial dependence may be related to adaptation after effects. 

While adaptation effects are usually observed after longer stimulus exposure (Kohn, 2007) than in the 

current experiment some previous studies have also reported it effects following sub second exposure 

lasting for several seconds (Fritsche et al., 2017; Kanai, et al., 2007). These studies attribute the 

finding to an interaction between perceptual and higher level post perceptual memory processes in 

which a memory trace causes a negative aftereffect on perception. However, in such studies the 

negative aftereffect was only observed in situations when trials had broad confidence intervals 

indicating low confidence in the perception of the stimuli. However, we find the opposite and observe 

more negative effects in the more visible 20% contrast condition to which participants were much 

more accurate in their response. Furthermore, this account would not explain why we seem to observe 

such individual variability in the level of repulsion effects. Overall, we must say, at present we cannot 

explain the reason for the negative serial dependence we observe and is worthy of further 

investigation.  
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Conclusion. 

There are what can be considered three important results from chapter 3. First, temporal integration 

appears tuned to the variability of sensory measurements (proximal variance) and the behaviour of the 

stimuli of interest (distal variance). When proximal variance was higher relative to distal variance 

participants perceptual estimates were closer to previous stimulus values and when distal variance was 

higher relative to proximal variance estimates were closer to current stimulus values. Secondly, serial 

dependence is adaptive. In contrast to previous characterizations of the phenomena (Fischer, & 

Whitney, 2014), it is not pervasive functioning at a fixed level and instead adapts to level of 

variability in the behaviour of stimuli (distal variance) and the reliability of the observation of the 

stimulus in question (proximal variance) more consistent with ideas from Bayesian visou-motor 

literature (Denève, Duhamel, & Pouget, 2007; Knill & Pouget, 2007; Wolpert, Ghahramani, & 

Jordan, 1995;Wolpert & Flanagan, 2001). Lastly, while predictive information does play a role in our 

results we found temporal integration strongly favours the current stimulus input over previous 

information. Despite designing a stimulus that was extremely hard to see, it was very difficult to 

observe the effects of past stimulus history in participants estimates until we greatly reduced distal 

variance. Overall, results favour the predictive coding account of temporal integration with some 

caveats over the strength of the role of predictive information on perception except under very 

uncertain conditions. 
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Chapter 4. Adaptive correction of response error-The Kalman 

filter and step response functions. 

4.1 Abstract. 

Predictive coding rests upon the idea that the brain is constantly predicting the nature and origin of its 

incoming signals based on a system of internal probabilistic models. To maintain the behavioural 

validity of its internal models and the predictions generated, the brain relies on errors or prediction 

errors and between predictions and sensory information. Crucially, to understand how prediction 

errors mediate predictions it is important to consider how prediction errors should be weighted in 

relation to previous predictions and sensory inputs. If sensory information is underweighted the 

weight attached to prediction errors will be too low. This can lead to an over reliance on predictive 

information from the past making perceptions too slow to correct to change in the world. 

Alternatively, if sensory information is weighted too heavily the weight attached to prediction errors 

will be too high. In this case the weight attached to previous predictions will be too low making 

prediction errors overly sensitive to noise and other unimportant factors. Theoretically, obtaining the 

correct weighting corresponds to optimizing the Kalman gain in the Kalman filter. The general 

relationship between Kalman gain and error correction is that when Kalman gain is closer to one 

prediction errors are weighted more heavily, causing estimates to update faster. Alternatively, with a 

Kalman gain closer to zero prediction errors are weighted less heavily casing estimates to update more 

slowly. Previously, in chapter three, we provided general support for this idea by showing that serial 

dependence in perceptual estimates was adaptive to the ratio of proximal and distal variance and 

commensurate to the level of associated Kalman gain but this method concentrated on testing the 

adaptive versus fixed nature of perception as opposed to error correction per se. Here as a means to 

test further the idea of adaptive weighting of prediction error in a more direct way we manipulate 

proximal and distal variance in four conditions which use a step response type experimental design 

widely used in control theory to test the way estimating systems adapt error correction to sudden 

change (condition 1, 18.6 °step/5% contrast, condition 2, 18.6° step/ 20% contrast, condition 3, 35.7 ° 

step/5% contrast and condition four 35.7 ° step 20% contrast). We test the Kalman filter account of 

error correction against the fixed weighted average account at an individual and group level. At an 

individual level we examined the general relationship between proximal variance recorded in a 

separate proximal variance calibration experiment and Kalman gain. While results were not 

significant we did find a moderate negative correlation between proximal variance and Kalman gain 

that invites further investigation. At the group level we did observe highly significant results between 

proximal and distal variance conditions on Kalman gain thus supporting the predictive coding account 

of prediction error weighting and correction.  
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4.2 Introduction.  

Classical theories of perception paint vision as a mainly passive process in which we receive input 

from the world and process information contained within these inputs as information travels from 

lower to higher visual regions and respond accordingly (Searle, 2015; Warren, 2012). While this 

view, was and is, still very prominent it does not adequately account for findings indicating that 

perceptions is also perhaps as much influenced by our previous experience and internal states as 

sensory information directly from the world. Historical ideas, such as analysis by synthesis (for a 

review see Yuille & Kersten, 2006) and perception as hypothesis testing (Helmholtz, 1863; Gregory, 

1970) offered broad explanations of how past information influences perception but they were 

somewhat separated in both theoretical viewpoints and time. More recently, these ideas have been 

combined and formalised in modern day neuroscience by models of predictive coding (Rao & Ballard, 

1999; Friston, 2012). The main idea of predictive coding is that a series of internal models of the 

external environment work to generate predictions about the most likely cause of incoming sensory 

inputs and neural activity patterns. Any errors between predictions and sensory inputs produce 

prediction errors which signal to the brain that something in the world might have changed and it 

should update its internal model. However, the key words to highlight in that sentence though are 

‘might have changed’. Because sensory information contains varying levels of noise and external 

stimuli exhibiting fluctuating levels of change applying a blanket weight to each prediction error 

would not be an optimal behavioural strategy and a way to determine the reliability of prediction 

errors is required.  

How to weight prediction errors? 

Determining the optimal way to weight for weighting prediction error is perhaps the most important 

aspect of predictive coding. According to predictive models, such as the free energy principle 

(Friston, 2002; 2018), if the weight attached to sensory information is too low then prediction errors 

might not be weighted sufficiently potentially leading to an over reliance on predictive information. 

This can lead to an over emphasis on past information and make perceptual judgments too slow to 

correct to change in the world. Alternatively, if we attach too high a weight to potentially unreliable 

sensory input the brain might attach too high a weight to our prediction errors. This could lead to an 

over reliance on potentially unreliable sensory information making perceptual judgments too quick to 

correct errors when a real change may not have occurred. In predictive coding literature, there are a 

number of individual models (O’Shaughnessy, 1988; Rao, 1999; Friston, 2010; Spratling, 2015) 

which provide differing explanations of how prediction errors are weighted for reliability in different 

circumstances in a number of visual modalities. However, to date there is no accepted tractable 

computational account of predictive coding that explains the way prediction errors are weighted in the 

visual temporal domain.  
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Adaptive versus fixed correction of estimation error-Ideas for experimental design from control 

theory- Step response function in conjunction with the Kalman filter and fixed weighed average 

models. 

If the brain does use prediction error as means to update perceptions then in practical terms only 

accurately weighted prediction errors are relevant. Exactly how to ensure that weighting is accurate is 

by no means a problem confined to neuroscience. In Engineering and control theory, obtaining the 

correct weighting is identical to optimizing the Kalman gain in the Kalman filter as we have outlined 

in chapters 2 and 3. In the Kalman filter, when prediction variance is higher in relation to proximal 

variance a Kalman gain closer to one is produced. With a Kalman gain closer to one, prediction errors 

are weighted as more reliable and predictions update to a larger amount of the size of the prediction 

error. Alternately, when proximal variance is larger than prediction variance a lower Kalman gain 

closer to zero is produced. When Kalman gain is closer to zero prediction errors are considered less 

reliable and predictions update by a lesser amount of the prediction error. Of course, predictive 

coding’s ideas about prediction errors are not the only way that the brain could update perception and 

correct error and the Kalman filter is not the only model by which this updating might occur. 

In ideas of perceptual averaging and the related phenomena termed serial dependence (Fischer & 

Whitney, 2014), the concept of prediction error does not exist adaptive or otherwise. Serial 

dependence literature generally implies a simple stimulus averaging strategy we discussed in chapters 

2 and 3. This strategy is identical to that performed in fixed weighted average models used in signal 

processing which provides our comparative integration model to the Kalman filter. In fixed weighted 

average models estimates updating occurs each time a new stimulus value is recorded and is 

independent of proximal and distal variance and the magnitude of Kalman gain. In summary, in fixed 

weighted average models all estimates contain at least some past stimulus history and updating occurs 

independently and regardless of stimulus or viewing conditions.  

Previously, we examined the adaptive versus fixed weighting of prediction errors by behaviourally 

testing and modelling serial dependence with the Kalman filter (Kalman & Bucy, 1963) as our 

predictive coding model and the fixed weighted average model as our perceptual averaging model. 

This approach was successful in terms of providing support consistent with predictive coding’s 

general adaptive weighting strategy. However, Fischer & Whitney’s (2014) experimental paradigm 

while excellent for examining serial dependence, due to the way stimuli are usually presented and the 

way serial dependence is calculated means it is not the best medium to look at how error is reduced 

over time in a direct way. Serial dependence experiments commonly present stimuli in a way in which 

values either change randomly over time or are counter balanced between small numbers of values 

that change on every presentation (Corbett, Fischer, & Whitney, 2011; Fischer & Whitney, 2014). 

Because values change on every presentation it means that it is hard to see how estimation errors 

might reduce over time as they make multiple predictions and stimulus comparisons of repeated 
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values. Furthermore, serial dependence is considered as a bias towards previous values and calculated 

based on the error on the current response compared to previous stimulus values. This means the 

emphasis is always on the past rather than new stimulus values that are immediately relevant to 

behaviour. In predictive coding, the emphasis is not on the past but on reducing error in current and 

future predictions. With these issues in mind, perhaps a better experimental medium to observe how 

error is reduced to towards current values comes from ideas about step response functions.  

The step response function-what is it, terminology and motivation  

Step response functions are widely used in control theory for understanding the way estimating 

systems respond under different conditions. In technical terms, the step response function is the 

temporal response behaviour of the outputs of a general system such as a temporal filter or another 

estimator when the current inputs provided to it change suddenly and then stabilize (see Zumbahlen 

(2008) for an overview of the step response function and related terminology and figure 1 below for 

an illustration), (we actually used a step response function as an example of the response properties of 

both the fixed weighted average and Kalman filter models in chapter 2. In more basic terms, the step 

response function shows how a system reacts to a stimulus that remains stable for a time, jumps in 

value for an approximately equal time and then steps back to its original value. By presenting stimulus 

values that contain distinct stable and changing phases of equal length we aim to show how estimation 

error to current stimulus values reduces under different stimulus conditions in a more illustrative way 

than methods which present stimuli that change on every presentation and mainly look at the 

relationship to past values (see figure 2). 
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Figure 1 Step response function (A) & Extrapolation and application of the step response as a 

measure of the rate of error correction and time taken to reduce error to zero in humans (B). In 

sub figure A Here we see a basic step response function. Here the impulse values of the incoming 

signal in stimuli start at 0 for 15 seconds and then suddenly change to 50 and then remain at 50 for 

another 15 seconds before going back to 0 for the last fifteen seconds. Here we see the ‘step response 

function’ of a hypothetical filter model to the time behaviour of the impulses. The interesting points 

here are the time taken to reach maximum value often called ‘rise time’ and the time taken for the 

filter to reduce error to zero which is often called ‘steady state’ which provide useful terms in thinking 

about how humans might respond to change and reduce error in perceptual estimates. Sub figure B 

shows how we can translate the step response function to the way humans might correct error when 

responding to sudden steps in stimulus value. The impulse can be simply switched to being 

considered as a stimulus input, rise time can be considered the rate to which humans might respond to 

a sudden change in stimulus value and how they might weight the reliability of the stimulus on each 

input while steady state being considered as when the human estimate finally reached the true 

stimulus value.  

Previous studies have utilised ideas about step response functions to good effect in a number of areas 

of the literature. One area of visual literature that has long used step response function type paradigms 

to understand aspects how perceptual systems respond to change is smooth pursuit eye movements 

(Carl & Gellman, 1987; Robinson, 1965). Smooth pursuit is one of the two ways the eye can 

voluntarily shift gaze (the other being saccades) which only occurs during the movement of the head 

and acts as a stabilising mechanism when viewing stationary objects (Thier & Ilg, 2005). The type of 

step response paradigms used in smooth pursuit commonly involve step changes in the velocity of a 

stimulus participants are asked to track (Carl & Gellman, 1987; Ono & Mustari, 2008; Robinson, 

1965). Such step paradigms have seen wide utility and while a different type of task and stimulus then 

we intend to use in the current chapter such experiments illustrate the way sudden changes in stimulus 

value are a useful means to understand the way the visual system deals with change and error.  



98 
 

The use of a step change in velocity in smooth pursuit experiments has revealed a number of 

interesting findings about the phenomena which in some cases are similar to the aims of the current 

chapter. For example, step velocity paradigms have shown that smooth pursuit is modulated by an 

adaptive gain mechanism sensitive to measurement noise and the magnitude of the step in velocity 

(Brostek, Eggert, & Glasauer, 2017; Nuding et al., 2009; Tavassoli & Ringach, 2009). Studies using 

step velocity paradigms have also reported that after repeated exposure to steps in value smooth 

pursuit changes velocity and effectively starts to predict the step change and offering a way to 

ascertain how the brain learns to anticipate changes to reduce error in eye movements (Barnes & 

Asselman, 1991; Braun, Boman, & Hotson, 1996; Fukushima, Fukushima, Warabi, & Barnes, 2013; 

Zambrano, Falotico, Manfredi, & Laschi, 2010). Such findings, although present in a separate area of 

visual perception provide relevant findings to the current chapters experiment and importantly provide 

validity to the use of step response experimental designs in the study of visual perceptions. However, 

although interesting they are found in a completely different perceptual domain very early in visual 

processing and may not apply to more complex visual tasks involving a later perceptual estimate task. 

Perhaps a different area of the literature that makes use of step response experimental designs in a 

more similar way to our aims is visou-motor recalibration.  

Burge Ernst & Banks (2008) examined the way reaching errors are corrected under the term 

‘visuomotor recalibration’ using a step response type experimental design alongside ideas from the 

Kalman filter. Burge Ernst & Banks (2008) wanted to test how measurement noise and changes in the 

perceived position (mapping) of a stimuli affected the way participants adapted to changes in the 

value of the stimulus over a number of experiments. In experiment one, the aim was to investigate 

whether stimulus measurement reliability affected adaptation rate. Participants were asked to hold a 

stylus on a graphics tablet in which the hand and tablet were hidden from view. A target stimulus was 

presented at a random position for 500ms. The task of the participant was to try and match the point 

of the stylus to the position of the target stimulus on the tablet. Upon touching the stylus on the tablet 

the participants were given feedback (in the form of a Gaussian blob superimposed on a dashed circle) 

as to how accurate they were based on the difference between target and feedback location which was 

designed to provide a reference point as to how much participants should recalibrate the on the next 

trial. The reliability of feedback was manipulated by blurring the Gaussian blob in two conditions 

(σ=4°x4° & 24x24°). During the first sixty trials feedback stayed the same relative to the target but on 

the 61st trial the feedback ‘stepped’ 8.2° up and to the right (5.8° horizontally and 5.8° vertically) 

relative to the pre-step mapping, as indicated by the offset between the dashed circle and Gaussian 

blob while on the 121st trial feedback reverted to the original pre step position. The way participants 

corrected error following the step in feedback values in experiment one study revealed some 

interesting parallels with the Kalman filter. 
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Under the principles of the Kalman filter, when the stimulus measurement (proximal variance) is 

uncertain the adaption rate to a change in stimulus value should be slower than when it is more 

certain. This is exactly what was observed during the trials after the feedback stepped in position. In 

the 4° x 4° blur condition which provided a more concise appearing feedback measure, error reduced 

considerably quicker towards zero than the more blurred appearing 24x24° blur condition, in which 

error correction exhibited what can be considered a slower rise time and never achieved steady state 

during the 60 trials of the step phase. However, while interesting the manipulation of measurement 

variability alone can only partially test the ideas of the Kalman filter and to be sure that lagged error 

correction is not simply down to a more simple averaging type strategy than that proposed in the 

Kalman filter manipulation of distal variance is required. This was carried out in experiment two of 

the study. 

Experiment two of the study, switched from looking only at what might be thought of proximal 

variance under Kalman filter terminology to examining both proximal and what could be termed 

distal variance (which they call mapping uncertainty). To do this, Burge Ernst & Banks (2008) asked 

participants to carry out an identical task to that in experiment one but introduced random walks of 

different standard deviations into the relationship between the reach endpoint of the stylus and the 

visual feedback position in addition to step in presentation of feedback and again manipulated the blur 

of the Gaussian blobs. This meant the experiment had four conditions that each had different 

combinations of what can be thought of as proximal and distal variance levels. Condition one had low 

distal variance and high proximal variance (σ walk = 0.9° × 0.9°; σ blur = 24° × 24°), condition two 

had high distal and high proximal variance (σ walk = 2.5° × 2.5°, σ blur = 24° × 24°), condition three 

had low distal and low proximal and low distal variance (σ walk = 0.9° × 0.9°, σ blur = 4° × 4°) while 

condition four had high distal and low proximal variance (σ walk = 2.5° × 2.5°, σ blur = 4° × 4°). This 

more complete manipulation made it possible to make more specific predictions about the potential 

nature of the way errors might be corrected than in experiment one.  

If the Kalman filter approximated the response of participants then each of the four conditions should 

have in theory produced different levels of Kalman gain and therefore different rates of error 

correction. For example, condition four with high distal and low proximal variance would lead to the 

calculation of the highest level of Kalman gain and correct error fastest while condition one with low 

distal and high proximal variance should lead to the calculation of the lowest level of Kalman gain 

and correct error at the slowest rate. Condition two (high proximal and high distal) and condition three 

(low proximal and low distal) should calculate Kalman gains somewhere in the middle and correct 

error accordingly. Alternatively, if the fixed weighted average model account of error correction is 

correct then there should have been no difference in error correction strategy between conditions with 

rates being the same for all conditions. Results provided support for the Kalman filter like behaviour 

in participant’s responses over the fixed weighted average account of error updating. 
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Results from Burge Ernst & Banks (2008) were almost entirely consistent with Kalman filter theory 

and provide good validity for the application of step response experimental designs in vision. The 

slowest to correct to adapt to step in feedback mapping was the high proximal and low distal variance 

condition one while the fastest was indeed condition four which has the lowest blur and the highest 

variance in the random walk. Conditions two and three were also as predicted by the Kalman filter in 

the middle in terms of rate of adaption. Such results run counter to the fixed weighted average account 

of error correction in that the levels of measurements and perceived stimulus variability played a 

strong role in the way subjects adapted to change. If participants were attaching an equal weight to all 

of the stimulus inputs then this effect would not have been observed. Such results and the excellent 

use of a step response inspired paradigm provide good support for the application of experimental 

designs in purely visual experiments and we combine and build upon these ideas in our current 

experiments.  

4.2.1 Theoretical motivation and hypotheses  

One potential explanatory model that tells us how we should weight prediction errors is the Kalman 

filter where establishing the optimal weighting is provided by the Kalman gain. In the Kalman filter, 

Kalman gain adapts to the ratio between proximal and prediction variance largely modulated by 

change in the world (distal variance). Evidence for Kalman filter like behaviour has been observed in 

the correction of visou-motor errors (Berniker & Kording, 2011; Denève, Duhamel, & Pouget, 2007; 

Wei & Körding, 2010; Zylberberg, Pouget, Latham, & Shea-Brown, 2017) and may translate well to 

explaining error correction in visual terms. However, in perceptual averaging literature the updating 

process is based on fixed weighting of stimulus values observed over time (Fischer & Whitney, 2014; 

Liberman et al., 2014). Here, as in chapter three we perform a proximal variance calibration and then 

test the Kalman filter and fixed weighted average model by incorporating experimental ideas from 

Burge Ernst & Banks (2008) and a stimulus design from Fischer & Whitney (2014) with those behind 

the use of step response functions in control theory. We aim to build in steps of varying size into the 

presented orientations of our Gabor stimuli over trials in a similar way to Burge Ernst & Banks (2008) 

and manipulate the measurement variability of our stimulus but here we manipulate contrast instead 

of blur. Based on these theoretical ideas and motivations we can provide hypotheses at a sub group 

level where we aim to assess the relationship between proximal variance and error correction in high 

and low proximal variance observes and at a group level where we examine the level of Kalman gain 

which acts as a proxy measure for error correction under different levels of proximal and distal 

variance. 

At a sub group level, if the Kalman filter account of error correction is correct then participants with 

higher levels of proximal variance should show a larger negative relationship with Kalman gain than 

participants who have lower levels of proximal variance. This is because in the calculation for 
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Kalman gain (see chapter 2) as proximal variance increases Kalman gain goes down as sensory 

information is considered unreliable. At the group level, we can hypothesise that in conditions with 

lower distal variance relative to proximal variance we will record higher Kalman gains and observe 

faster error correction to changes in stimuli.  

4.3 Methods 

Ethics 

All calibration and experimental procedures were approved by the University of St Andrews Teaching 

and Research Ethics Committee. All participants gave informed consent. 

Stimuli design software and presentation details 

In all experimental and calibration procedures visual stimuli were created in MATLAB (The 

Mathworks Inc, Natick, MA) and presented using PsychToolbox (Brainard, 1997).  

4.3.1. Proximal variance calibration experiment. 

In order to provide an estimate of proximal variance we first undertake a proximal variance 

calibration experiment. This experiment aims to quantify proximal variance in both our proximal 

variance conditions (5% and 20% contrast) for application in calculating Kalman gain 

Participants  

A total of eleven participants undertook the proximal variance calibration experiment. (7 females, 

mean age 22, range 19-43). Participants had not taken part in any previous experiments and were 

recruited as volunteers from the St Andrews SONA database. 

Trial numbers and experimental blocks 

Over trials Gabor orientations were presented in pairs in which the second Gabor was presented at 8 

different orientations +/- (clockwise or anti clockwise) from the first Gabor in the pair. These were 1°, 

3.33°, 5.66°, 8°, 10°, 12, 15° & 60°. Each block presented 5 trials at every orientation difference in 

both contrast conditions (5% and 20%) giving 40 trials per condition and 80 trials per block. 

Participants completed 3 blocks giving 240 trials in total. All Gabor patches had a radius of 8 visual 

degrees and had a spatial frequency 0.5 cycles per visual degrees and were positioned centrally. Noise 

following Gabors is also Gaussian white noise (SD=15.5 cd/m2) and covered the whole screen with a 

spatial frequency of 0.15 cycles per visual degree. Stimuli were viewed at a distance at 57 cm. 

Fixations were also positioned centrally (see figure 3 for an illustration of our stimulus design and 

procedure). 
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Figure 2. Proximal variance calibration experimental design and procedure. Each trial began 

with the presentation of a fixation cross in the centre of the screen for 250 ms. Then a randomly 

oriented Gabor patch was presented for 500ms at 5% or 20% contrast depending on the condition then 

a noise mask for 500ms. Next, a second Gabor was presented at one of 8 different angles ranging 

from 0-15° (1°, 3.33°, 5.66°, 8°, 10°, 12° , 15° & 60°) anti clock wise or clock wise from the first 

Gabor orientation and then a second noise mask for 500ms. The task of the participant was to fixate 

on the fixation cross and then discriminate whether the orientation of the second Gabor was clock 

wise or anti clock wise of the first Gabor orientation. This was signalled by pressing j for clock wise 

and f for anti-clock wise 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



103 
 

4.3.2 Main experiment-testing the rate of error correction under different levels of proximal and 

distal variance over fours conditions. 

Our main experiment aimed to manipulate proximal and distal variance in four conditions. We based 

this experiment on Burge, Ernst and Bank’s (2008) experiments and observe the effects of each 

manipulation on the rate of error correction to steps in stimulus orientations of different sizes using 

Fischer & Whitney (2011) orientation judgment paradigm. Stimuli were Gabor patches. Gabor 

patches had a radius of 8 visual degrees and had a spatial frequency 0.5 cycles per visual degree. 

Noise following Gabors is also Gaussian white noise (SD=15.5 cd/m2) and covered the whole screen. 

The basic design and task is illustrated below (figure 4) before the experimental conditions for the 

manipulation of proximal and distal variance are provided 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Experimental stimuli in main experiments-design and procedure. Each trial began with 

the presentation of a blank screen (inter trial interval) for 250ms. Next a Gabor patch was shown in 

the centre of the screen for 500 ms, then a noise patch was presented for 500ms then an adjustment 

response bar was presented. The task of the participant was to move the adjustment response bar to try 

and match the orientation of the Gabor they had just observed. 
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Participants  

The same eleven participants who undertook our proximal variance calibration also undertook our 

main experiment. 

Experimental conditions. 

Condition one. Low distal variance and high proximal variance  

In condition one, we aimed to produce low distal variance and high proximal variance. This was 

performed by presenting stimuli orientations in a step response function which was 18.6 degrees 

presented at 5% contrast. We chose 18.6° as it was 4 times the just noticeable difference (JND) of 

4.65° observed in our proximal variance calibration experiment.  

Condition two. Low distal variance and low proximal variance 

In condition two, we aimed to produce low distal variance and low proximal variance. This was 

performed by presenting stimuli which stepped by 18.6 degrees and presented at 20% contrast 

Condition three. High distal variance and high proximal variance. 

In condition three, we aimed to produce high distal variance and high proximal variance. This was 

performed by presenting stimuli in a step response function which was 35.7 degrees presented at 5% 

contrast. 35.7 degrees was chosen as it was approximately 8 times the just noticeable difference (JND) 

of 4.65° observed in our 2AFC calibration procedure and 100% larger than the 18.6 degree step used 

in conditions one and two making for a logical comparison.  

Condition four. High distal variance and low proximal variance 

In condition four, we aimed to produce high distal variance and low proximal variance. This was 

performed by presenting stimuli in which the step size is 35.7 degrees and Gabors presented at 20% 

contrast. 

Experimental blocking, trial order and numbers. 

Conditions were presented in randomized blocks. Each block consisted of 45 trials which were broken 

down into three phases to comprise 3 steps and stabilization phases which were made up of 15 trials 

each (see figure 5 below). The first trial was a randomly presented oriented Gabor (0-360°). This 

initial trial orientation is repeated five times. On the sixth trial the orientation ‘steps’ in value by 18.6° 

or 35.7° depending on the condition and then the next four trials repeat this orientation then on the 

eleventh trial the orientation returns back to the originally presented orientation for a further 4 trials. 

At the end of this sequence of 15 trials another randomly chosen orientation and the whole step 

process begins again (see fig 5 for an example of the step response function). Participants completed 

six blocks of each condition over two one hour sessions which gave 1080 trials in total and crucially 
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allowed us to compare responses over 72 step and stabilization phases (1080/15) for each participant 

in each condition (see figure 5 below). 

 

 

 

 

 

 

 

 

Figure 4. Stimulus step and stabilization phase illustration. Here we show how our stimulus 

behaves during the experiment for the two step sizes we use. Sub figure A shows the step function the 

low distal variance conditions (1&2) of 18.6 degrees. In this figure we see how the orientation starts at 

a randomly chosen orientation. This orientation repeats five times and then steps to a new orientation 

that is 18.6 degrees (plus or minus) of the previous orientation. The orientation then stabilizes at this 

orientation for five trials before returning to the original orientation for another five trial at which 

point a new orientation is selected and the process begins again. Sub figure B illustrates the high distal 

variance conditions (3&4) which follows the same process but in this case the step is larger at 35.7 

degrees. 

4.4 Analyses, statistical tests and equations. 

Correction for potential ambiguity in responses using circular stimuli. 

To correct for potentially erroneous recording of the orientations participants meant to choose we 

followed the same  minimum angle difference correction to used previously  n experiment three (see 

methods page 59) 

Proximal variance calibration calculations. 

To calculate proximal variance from our proximal calibration procedure we performed the same 

procedures and analysis as in chapter 3. To test for differences between contrast conditions we 

performed a Wilcoxon signed rank test as the data for proximal variance violated the assumption of 

normality required for parametric testing. We also report the coefficient of determination (r2) as a 

measure of the proportion of variance shared by the two contrast conditions. This is calculated by 

dividing the Z value produced by the test by the square root of number of participants.  

Correlations between proximal variance and Kalman gains at a sub group level. 

In our analysis of Kalman gain and error correction between low proximal variance observers and 

high proximal variance observers we want to look at the correlation between proximal variance from 
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our proximal variance calibration experiment and the rate of error correction to the step in stimulus 

values. In this analysis, we utilise model fitted Kalman gains as a measure of the rate of error 

correction (1 being instant correction and 0 being never correcting) and assess the correlation between 

proximal variance and Kalman gain. As the range of variability in the 20% contrast condition was 

very narrow with all but one participant reporting variances between 10 & 17 deg2 we felt it highly 

unlikely that we could observe any worthwhile correlational information from this data set. Therefore 

we only used the variance data from the 5% contrast condition which had a much larger range and 

offers a realistic opportunity to detect differences in correlations. As the 5% contrast variance data 

contained significant outliers the requirements the assumptions of parametric, Pearson r correlations 

are violated, therefore we use Spearman’s Rho correlation as a measure of the monotonic relationship 

between proximal variance and Kalman gain. Here we also make a note in regard to the limitations of 

the statistical power of our correlations in this instant and the related p values from such tests. We 

recognise that due to the small sample size in each of the high and low proximal observer participant 

sets (n=4) steps any correlations indicating a relationship may not have sufficient power to be reliable. 

The same problem potentially applies to p values indicating whether any such correlations are 

significant. However, while recognising these limitations, we contend they still represent a useful if 

perhaps more illustrative measure of the relationship between measurement variability and error 

correction for this experiment. 

Model fitted Kalman gains. 

We computationally modelled participant responses at a range of Kalman gains using the same least 

squares model fitting procedure we had used in experiment 3 (see methods page 60).  Again, it is 

important to reiterate that here Kalman gain is used as a measure of the rate of error correction to the 

step in stimulus values (1 being instant correction and 0 being never correcting). Our modelled 

analysis of Kalman gain produces a specific level of Kalman gain in each subject for each of our four 

conditions and therefore is suitable for statistical comparison. Statistical analysis of model fitted 

Kalman gains between conditions is carried out using paired sample t tests (Bonferroni-corrected). 

We report 95% confidence intervals of the mean. 

Model fitted weight to the current and previous six trials. 

As well as fitting Kalman gains to participant’s data we also modelled participant responses with a 

fixed weighted average simulation model by ‘best’ fitting weights from the preceding 6 trial 

orientations to the current participant response.  

Equations. 

Equations for both the Kalman filter and a fixed weighted average model which we use in the current 

chapter are fully outlined in chapter 2, pages 42-46. 
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Simulated results. 

Here we now provide a number of simulated step response function patterns we might observe in 

situations in which either a fixed weighted average model or Kalman filter most accurately describes 

our data.  

Fixed weighted average step response simulations. 

Below, in figure 6, we illustrate a number of step responses produced by a hypothetical fixed 

weighted average models with a weight of 0.5 to the current and previous (n-1) trial for each of our 

four experimental conditions. Sub figure A, shows a fixed weighted step response to condition one 

which has low distal and high proximal (18.6° step/5% contrast), sub figure B, shows how distal and 

low proximal variance condition two (18.6° step/20% contrast), the high distal and high proximal 

condition three (35.7° step/5% contrast) and the high distal and low proximal variance condition four. 

The key aspects in all of the above sub plots is that the rate in which the response corrects to the step 

and stabilization phases of the stimulus orientations is the same in all conditions. The estimate is 

always lagged in time, which while responsive to a certain extent, cannot adapt to suit clearer and 

more unstable conditions in which the stimuli changes by a larger amount. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Simulated step response function for the fixed weighted average model with a weight 

of 0.7 on the current trial and 0.3 on the previous (n-1) trial. Note in all sub figures noise is 

smoothed over but estimates of changing values are lagged in time.  
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Kalman filter step response simulations 

Here we provide a number of hypothetical step responses to our experimental conditions made by a 

Kalman filter under a number of different Kalman gains (figure 8) and also clarify exactly what 

constitutes the proximal and distal stimuli and their variance in our experiments in figure 7 

(below).Our distal stimulus is the true stimulus orientation and distal variance the variance in those 

orientations over trials which we manipulate with large or smaller step sizes. The proximal stimulus is 

the participant’s measurement of the stimulus orientation and proximal variance the variability of that 

measurement which we manipulate by presenting Gabors in higher or lower contrast. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Simulation illustration of proximal and distal stimuli & variance in our experimental 

paradigm. For clarity, we illustrate exactly what constitutes proximal and distal variance in our 

simulations which also holds true for our actual experiments.  

Figure 8, (below) shows a range of simulated Kalman filter step responses under a range of Kalman 

gains. Sub figure A, shows a simulated Kalman filter step response with to condition one which has 

low distal and high proximal (18.6° step/5% contrast). Here, due to the relatively high ratio of distal 

variance a high level of Kalman gain is formed and the Kalman filter corrects to the step in stimulus 

values almost instantly. Sub figure B shows simulated a Kalman filter step response to condition two 

which has low distal and lower proximal (18.6° step/20% contrast). In such conditions we might 

expect a lower Kalman gain to be calculated and in this case the step response should be slower to 

adapt to the step in values and slightly slower to reduce error to zero than in condition one. Sub Figure 

C show the Kalman filter step response to the high distal and low proximal condition three (35.7° 

step/5% contrast). In this case we would expect Kalman gain to be smaller due to the influence of 



109 
 

higher proximal variance and the step response in this condition to adapt and reach zero error more 

slowly sub figure D shows a simulated Kalman filter step response to condition four (35.7° step/5% 

contrast). Here we have a step that carries high distal variance and low proximal variance. In this case 

a higher Kalman gain should be calculated and confer a faster rate of correction than in condition 

three.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Simulated Kalman filter step responses to our four experimental conditions under a 

range of possible Kalman gains. Here we illustrate how Kalman gain determines how fast error is 

corrected. The closer Kalman gain is to one the faster error is corrected. 
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4.5 Results. 

4.5.1 Proximal variance calibration experiment. 

A Wilcoxon signed ranks test indicated that proximal variance (deg2) in the 5% contrast condition 

(Mdn=115.23) was significantly higher than in the 20% contrast (Mdn=9.68) Z=-3.18, p=0.00, r2 = 

0.77. Results indicate a very strong effect of contrast on response error variance. Large significant 

differences between contrast conditions also indicate that our experimental manipulation of contrast 

and our measurement paradigm were successful and this result is given extra validity by a very large 

effect size (Cohen, 1988) of contrast on error variability as shown below in figure 9. 

 

 

 

 

 

 

 

 

 

 

Figure 8. Group level median error variances taken from our all our individual psychometric 

fits. All participants recorded less variability and greater accuracy in the judgment of the stimulus 

orientation relative to the previous in the low proximal variance (20% contrast) condition in 

comparison to the high proximal variance (5% contrast) condition. 
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4.5.2 Individual level results. 

In our individual analysis, we aimed to examine the general relationship between the level of 

proximal variance and the way error was corrected in participants’ responses. We did this in two 

parts. In the first part, we simply graphically illustrate responses in our main experiment in a number 

of subjects who exhibited either high or low proximal variance levels in our proximal variance 

calibration experiment. In the second part, we split participants into the high and low proximal 

variance observer sets (5 highest and 5 lowest) and examine changes in the relationship between 

proximal variance and Kalman gain. We then provide step response plots for both high and low 

proximal observer sets as a further graphical illustration of this relationship. 

Graphical illustrations of step response in individual high and low proximal variance observers. 

This more qualitative type of analysis, led to some interesting observations consistent with the 

Kalman filters idea about the influence of measurement variability on the way errors are weighted. In 

participants in which proximal variance tended to be higher, there did seem to be a more pronounced 

lag to correct to the step in stimulus values in conditions 1 and 3 which presented Gabors in the high 

proximal variance, 5% contrast (see figures 12 and 13) than in participants who had lower levels of 

proximal variance (see figures 10 and 11). Also, when there was a large difference in proximal 

variance between 5% and 20% contrast conditions within subjects there also appeared to be a lag in 

response in the 5% contrast condition which is not so evident or non-existent in the 20% contrast 

condition. This effect is especially noticeable when examining the rate of correction to the trial 

immediately after the step in values which we highlight in the individual participant error plots we 

provide below. Figures 9 and 10 illustrate how two single low proximal variance observers (5% 

=46.24 & 13.67, 20% = 9.63 & 7.22) correct to the two different step sizes used in our main 

experiment. Here the rate of correction in both contrast conditions is almost immediate with some 

amount of overshoot to the change of stimulus value also recorded. Contrast this response pattern with 

the rate of error correction in the two individual high proximal variance observers (5%=152.27 & 

341.67, 20% = 11.75 & 16.35) we illustrate in figures 11 and 12. In these participants, the rate at 

which error is corrected is slightly lagged in the 5% contrast condition and less overshot to the step in 

orientations. This difference in response, albeit rather small and inconclusive at an individual level is 

generally consistent with predictions made by the Kalman filter in which the rate of error correction, 

is in part, modulated by proximal variance. 
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Figure 9. Example of step responses in a single low proximal variance observer. In the above 

figure we observe the rate in which a low proximal variance observer based on values recorded in the 

proximal variance calibration (A) corrects to the two different step sizes used in our main experiment 

(B). Here in both contrast conditions the correction to the step in stimulus values in almost immediate 

with some overshoot observed. 

 

 

 

 

 

 

 

 

 

Figure 10. Example of step responses in a single low proximal variance observer. The above 

participant recorded very low proximal variance in both contrast conditions in the proximal variance 

calibration (subfigure A) and corrects instantly to the change in stimulus values in subfigure B.  
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Figure 11. Example of step responses in a single high proximal variance observer. The above 

figure illustrates the lag in error correction (B) in a single subject who exhibited high levels of 

proximal variance in the 5% contrast in the proximal variance calibration (A) and average amounts in 

the 20% contrast. Note the lag in the rate of error correction in comparison to low proximal variance 

observers in figures 10 and 11.  

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Example of step responses in a single high proximal variance observer. Here, we again 

observe a slight lag in error correction in a high proximal variance observer (A) in conditions 1 and 3. 

However, it is less pronounced than we might expect given the high level of proximal variance 

recorded in this participant. 
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To ensure our sets of low and high proximal observers had sufficient differences in proximal variance 

to allow a potentially detectable difference we only examined the correlation between proximal 

variance and Kalman gains in the 5% contrast condition (see figure 14).  

 

 

 

 

 

 

 

 

 

Figure 13. Median values in proximal variance between high and low proximal observers in the 

proximal variance calibration experiment in the 5% & 20% contrast conditions. Here we 

observe significant differences in median values in proximal variance between the top and bottom 

rated 5 participants in the 2AFC proximal variance calibration. Error bars are 25 and 75 percentiles. 

4.5.3. Correlations between proximal variance and Kalman gain in low and high proximal 

observers 

We analysed whether there were differences in the relationship between proximal variance and 

Kalman gain in high and low proximal observers in the 5% contrast condition by using a Spearman 

Rho correlation. In the high proximal observers in the 18.6 ° step there was a moderate but non-

significant negative correlation between proximal variance and their corresponding model fitted 

Kalman gains (rs(4)=-0.56 p=>.05. In the high proximal observers in the 35.7 ° step there was a very 

similar result. In this case we again recorded a non-significant moderate negative relationship between 

proximal variance and their corresponding model fitted Kalman gain (rs (4) =-0.53 p=>.05. 

Interestingly, while we did not observe significant results there is a different pattern in the correlations 

between Kalman gain and proximal variance in the low proximal observers and high proximal 

observers. In the low proximal observers in the 18.6 ° step there was no relationship between 

proximal variance and model fitted Kalman gains with (rs(4)=0.00 p=<.05 while in the 35.7 ° step we 

recorded a moderate negative correlation with (rs(4)=-0.30 p=<.05. In summary, we observe moderate 

negative correlations between Kalman gains and proximal variance in the high proximal variance 
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observers in both step sizes indicating to some degree that when participant proximal variance goes up 

Kalman gain goes down.  

Another aspect of the high versus low proximal observer’s analysis we conducted was to simply 

compare step response plots for our sets of low and high proximal sets of participants. On this 

occasion, we included the 20% contrast condition as this aspect of the analysis is again designed to be 

a more graphical qualitative type comparison. Here, we observe differences in the rate of correction to 

the step in stimulus values between high and low proximal observers then in our previous individual 

plots of a similar nature which we illustrate in figures 15, 16, 17 & 18 below. In figure 15, we observe 

the step responses of all 5 low proximal observers. We can see a quite fast rate of correction in 

participants. In condition one (5%, 18.6° step), we do see a slight lag to but the effect is quite slight. 

In the lower proximal variance condition 2, (20%, 18.6 ° step) responses correct instantly and in fact 

overshoot by quite a large amount in a similar way we observed in some individual participants who 

exhibited low proximal variance that we illustrated previously in individual plots 10, 11, & 12. 

Responses in condition 3 (5%, 35.7 ° step), also exhibits some lag in correction to the step but it is 

quite small, while condition 4 (20%%, 35.7 ° step) responses correct instantly and in fact overshoot 

again, consistent with condition 2 which also had 20% contrast carrying low distal variance (see 

figure 15).  

 

 

 

 

 

 

Figure 15; group step response plot for the low proximal variance participant set.  

 

 

 

Figure 14. Group step response plot for the low proximal variance observer participant set. 

Here we note slightly slower correction in conditions with higher proximal variance (1 & 3), with 

some overshoot in lower proximal variance conditions (2 & 4). 

A further graphical illustration that plots the same data displayed in figure 15 but shown in a different 

way is in figure 15 below. Here, we collapsed all step and stabilization phases into one step response 

comprising 15 trials (as they all are in the experiment). The aim of these plots is to focus on the 
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transition from step to stable phases in a number of important trials. The key trials are as follows; trial 

one, which is the first trial in the run of 15, trial 5 which is the trial just before the stimulus values 

steps before values actually step up on trial 6 and then stabilize post step on trial 7, trial 10 is the last 

trial in the post step stabilization phase, with trial 11 the first trial after the step changes back to its 

original pre step values with trial 15 the last trial in the run of 15. In sub figure A, we observe a lag in 

correction in condition one between trials 5 and 6. Sub figure B shows condition two, in which we see 

a fast correction to all presented orientation and some persistent overshoot between trials 6 and 10. 

Sub figure C illustrates responses in condition 3, which exhibit fast correction between transitions 

between step and stable phases and again some overshoot while lastly we have condition four in sub 

figure D. Interestingly in condition 4 responses also appear to show some slight lag between trials 5 

and six but it is quite small and does not persist. In general, the picture is that in low variance 

proximal observers we do observe some slight lag but it is small and short in duration and a quite 

subtle effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Bar graph showing the step response during key step to stabilization transitions trials 

in low proximal observers.  

In figures 16 & 17, we illustrate the group step response functions for the high proximal variance 

observer group. In figure 17, we note a more pronounced lag in the way error is corrected in 

comparison to the low proximal observer participants. This is especially evident in condition one (5%, 
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18.6° step) in which the rate of correction is much lagged and does not correct until the end of the step 

phase. A smaller lag is also observed in condition three (5%, 35.7 ° step) in which error is nearly 

always present during the step phase although not as large as in conditions one. In conditions in which 

stimuli are presented at 20% (2 and 4) the overall outcome is that there seems to be a noisy response 

and some over shoot in both conditions and a faster correction to the step in stimulus values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Group level step response plot for the high proximal variance observer participant 

set  

Figure 17 again focusses on the transitions between step and stabilization trials in the high proximal 

observer’s participants. Sub figure A, clearly shows the lag in error correction in condition one. The 

effect is especially clear on trial 6 and persists over time. As condition one has both the highest 

proximal variance and lowest distal variance meaning it would have the lowest Kalman gain of any 

condition this result strongly supports the Kalman filter and given we observe a much stronger result 

than in the same condition in the high proximal observers does suggest a role for proximal variance in 

error weighting. Sub figure B, shows condition two, here we have lower proximal variance than in 

condition 1 resulting in a faster correction over transitions from step to stable phases in trials 5 and 6. 

Sub figures C shows condition 3 which has 5% contrast (high proximal variance) again as in the other 

5% contrast condition we observe a lag between trials 5 and 6 but admittedly it is small and short 

lasting. Lastly, sub figure D provides transition plots for condition 4. Here, we have a very large 
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overshoot on trial 6 and no lag visible at all, consistent with what we might expect for a low 

proximal/high distal variance stimuli in the Kalman filter and our simulation for a high Kalman gain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Bar graph showing the step response during key step to stabilization transitions 

trials-high proximal observers. 

4.5.4. Main analysis. 

The main analysis of the current chapter tested the existence of differences in model fitted Kalman 

gains between our experimental conditions in all participants. This analysis comprised a repeated 

measures ANOVA and post hoc tests in the shape of pairwise comparisons corrected for multiple 

comparisons and reported some interesting results consistent with the Kalman filter model of response 

error updating. However, before reporting our main analyses we again examine the general pattern of 

responses between our experimental conditions using our step response plots and bar graph summary 

of responses on key transition trials. 

Figure 18(below) shows the group step response function for all conditions and all participants. 

Cleary visible and consistent with the Kalman filter we have a pattern of results that could be 

considered to be the levels of Kalman gain we might generally expect for each condition. While 

conditions 2 and 3 might provide quite close Kalman gains figures, as condition one has high 

proximal variance and low distal variance, we would definitely expect this condition to have the 

lowest Kalman gain and condition four with low proximal and high distal to have the highest Kalman 

gain. This means that condition one should be slowest to correct and condition four to be fastest to 
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correct. This is exactly what we see and supports the adaptive error weighting strategy outlined in 

predictive coding and the Kalman filter a result again well illustrated in our key transitions plots (see 

figures 19 and 20 below). 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Group step response plot for all participants in all conditions. Note the lag in 

correction and absence of overshoot in the high proximal variance conditions 1 and 3 in comparison 

to the low proximal variance conditions 2 and 4. 

Figure 19, plots participant’s responses on key transitions and complements the pattern of results we 

see in figure 19 above. Condition one, exhibits the slowest correction to the step in values on trials 5 

and 6, and interestingly shows a small amount of overshot on trial 10. The step response in condition 

2, corrects instantly to the change in values on trial 6 and actually remains slightly above the true 

stimulus values consistent with previous individual results reporting overshoot in conditions with high 

distal variance (20% contrast condition). Condition 3, representing the second high proximal variance 

condition (5% contrast) with condition 1, also exhibits a slight lag between trials 5 and 6 but is 

smaller than that in condition 1, while condition 4 with low proximal but high distal variance shows 

an instant correction to steps in orientations with quite a large and persistent overshoot.  
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Figure 19. Bar graph showing the step response to selected orientations for all participants. In 

this figure we observe pre step responses on trials 1 and 5 at around 0 in all conditions. Conditions 2, 

& 4 are relatively fast to correct to the step in values at trial 6 and with condition 4 displaying some 

initial overshoot. However, the above plot show the lag in correction to the step in values at trial 6 in 

condition one and the small lag in condition 3 in condition one and a slight lag in condition 3. 

Main effects. 

A repeated measures ANOVA tested the effects of our four proximal/distal variance conditions on 

model fitted Kalman gains. Analysis reported a significant effect of condition on model fitted Kalman 

gain F(1, 10) = 5.969, p=0.002. Pairwise comparisons (Bonferroni adjusted) were conducted to see 

where differences in mean model fitted Kalman gains existed between conditions. Results reported 

that mean model fitted Kalman gains in condition 1 (M=0.78, SD=0.63) were significantly different 

from condition 2 (M=1.04, SD=0.34), p=0.010 and condition 4 (M=1.01, SD=0.27), p=0.012 but not 

condition 3 (M=0.85, SD=0.56). Comparisons also reported that mean model fitted Kalman gains in 

condition 2 were significantly different from condition 1, p=0.010 and condition 3, p=0.016 but not 

condition 4. They also reported that mean model fitted Kalman gains in condition 3 were significantly 

different from condition 2, p=0.016 and condition 4, p=0.015 but not condition 1. Finally, our last 

pairwise comparison also reported that mean model fitted Kalman gains in condition 4 were 

significantly different from condition 1, p=0.012 and condition 3, p=0.015 but not 2. Overall, results  
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Figure 20 Bar graph showing the pattern of significant differences in Kalman between 

conditions. Here we summarise the pattern of significant differences in model fitted Kalman gains 

between our four conditions. Here, we show that the level of Kalman gain in condition one was 

significantly different from conditions two and three. The level of Kalman gain in condition two was 

significantly different to that in condition one and there. The level of Kalman gain in condition three 

was significantly different from conditions one and four and finally the level of Kalman gain in 

condition four was significantly different from conditions one and three 

 

4.6 Discussion  

The current chapter aimed to build on and extend findings from chapter 3 in regard to testing the 

adaptive weighting of prediction errors outlined in predictive coding against the fixed weighting of 

stimulus values implied in perceptual averaging. While results from chapter 3 supported predictive 

coding our use of serial dependence, while effective for the aims of the experiment was not an ideal 

behavioural measure of how error on current trials is reduced directly. This was because serial 

dependence is more of measure of the effects of past values on perception as opposed concentrating 

on current values. Furthermore, serial dependence experiments usually present stimuli that changes on 

every trial making it hard to ascertain the time frames over which error is reduced to zero or which 

factors might affect such reduction. To provide a means for us to better assess such issues we used a 

stimulus design inspired by the use of step response functions in control theory. By presenting 

stimulus orientations that remained stable for a fixed time period and then stepping in values for the 

same amount of time under different experimental condition based on Kalman filter theory we were 

able to formulate clear experimental hypotheses to test the predictive coding account of error 

correction against the perceptual averaging account of perceptual updating. Results showed that the 

way participants adapted to the step in stimulus orientations were consistent with the predictive 

coding account of error weighting and as in chapter 3 again well predicted by Kalman filter theory. 
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Furthermore, aside from what can be considered a novel overall finding our methods also provide 

techniques that could be used in future studies that examine predictive coding. However, the study 

does raise some interesting issues that require further explanation. Not least, the consistent overshoot 

we observed especially in conditions in which stimuli were clearly visible. We now discuss our study 

beginning with the validity of the two keys aspects of our methods-the proximal variance calibration 

and the step response stimulus design.  

General validity of experimental methods.  

An important aspect of our analyses at both an individual and group level was the influence of 

proximal variance on the way participants corrected to steps in stimulus values. For us to quantify this 

relationship we needed an accurate measure of this source of variance. The level of distal variance 

was a known quantity as we knew our step sizes but the level of proximal variance is very much 

participant specific. To provide such a measure, we used the same proximal variance calibration 

experiment we utilised in chapter 3. Results recorded large and highly significant differences in 

median values between 5% and 20% contrast conditions, indicating that contrast had a substantial 

effect on the perception of our stimuli further supported by a large effect size. Such a result is in line 

with previous findings indicating factors such as blur (Kayargadde & Martens, 1996), luminance 

(Waugh & Levi, 1993) and most importantly contrast (Waugh & Levi, 1993) affect perceptual 

measurement variability. Our results also provide a direct replication of our findings from chapter 3 in 

a totally new participant set and indicate our proximal variance calibration paradigm is a reliable 

means to ascertain levels of proximal variance both within and crucially across participants. There are 

though, however, questions of our interpretation of these results in terms of purely visual proximal 

variability. 

One potential problem in the interpretation of findings from our proximal variance calibration 

experiment as purely visual variability stems from the way we presented our stimuli. Our 

experimental design used a 2 alternative forced choice paradigm. We presented an initial Gabor at a 

certain orientation and then presented a noise screen for 500ms, then a fixation cross for 250ms, then 

a second noise screen and following that the second Gabor orientation about which participant’s had 

to make a judgment about. This meant that there was a time gap between from the first Gabor 

orientation and the second orientation and subsequent judgment of approximately 3 seconds. This 

delay raises an issue because there is inevitably some level of working memory required by 

participants to make the judgment of orientation as the task involves a judgment involving a past 

stimuli orientation no longer on the screen. As with all neural computations, working memory is 

subject to some level of variability both within (Fougnie, Suchow, & Alvarez, 2012) and across 

participants (Fougnie et al., 2012) which may be at quite different levels for the same participant’s 

perceptual variability levels. Due to the use of working memory and the input of variability from this 
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cognitive system it is open to question whether it is entirely accurate to consider our data for proximal 

variance as only arising from perceptual systems. Of course, one could argue that there is not really a 

distinction between perceptual and visual working systems and if there is where does perception end 

and working memory begin. This is perhaps something to consider, not only here, but perhaps in all 2 

alternative forced choice type experiments. However, while recognising this limitation we contend 

that as our proximal variance calibration experiment involved the same time delays in stimulus 

presentation as our main experiment we could still make a valid comparison for ‘total’ proximal 

variability and its effect on adaptation rate to our changes in stimuli in our main experiment at an 

individual level and group regardless of its source. 

The second key aspect of methods for discussion here is the novel use of a step response type 

experimental design in conjunction with Fischer & Whitney’s (2014) basic design in purely visual 

terms. On the whole we found this to be a successful experimental paradigm. While the step design 

has been effectively applied in visou motor research to examine how errors reduce over time 

(Baddeley et al., 2003; Burge et al., 2008) it had not been widely used in vision outside of the smooth 

pursuit literature (Brostek et al., 2017), representing much different types of experiment using smaller 

time scales. Given that visuomotor studies deal with two sources of variance (motor and visual 

system) meaning that more uncertainty is present in estimates it may have been possible that as 

orientations repeated a number of times it would have been too easy a stimulus to look at the way 

error corrects over time in a meaningful way and participants would simply have responded at the 

current orientation in all conditions. This was not the case and our experimental design was able to 

show how proximal and distal variance modulated error correction extremely well. However, there are 

some minor critiques in its use in the current chapter specifically and in more general use. In the 

current chapter we use the Kalman filter to model and explain participant step responses. Technically, 

the optimal use of the Kalman filter requires stimulus values to have a normal distribution which the 

step response does not have. This though it could be contended is not really an important in the 

current chapter as we were really only using the Kalman gain to model general response patterns and 

not to estimate actual values. Also, a common critique of the use of step response functions in control 

systems applicable to human experimentation is that they are an artificial stimuli. In the real world 

stimuli or the signals they emit do not behave in such a manner but nonetheless they are excellent for 

comparing the outputs of different systems on an equal footing. Overall, the step experimental design 

worked well and provided some excellent results in our main experiment.  

The key manipulation in the current chapter was the way we altered proximal and distal variance 

across our conditions (condition 1, 18.6 °step/5% contrast, condition 2 18.6° step/ 20% contrast, 

condition 3, and 35.7 ° step/5% contrast and condition four 35.7 ° step 20%) While we could be 

certain that we had increased the level of distal variance in conditions 3 and 4 which had a 35.7° step 

which will inevitably carry more variability than the smaller 18.6 degree step we had to be certain that 
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we had significantly different levels of proximal variance between the 5 and 20% contrast conditions 

to validate our manipulations. While we had achieved such results using identical methods in chapter 

3, in this chapter we had a totally new participant set and as we had observed quite large inter 

individual differences in proximal variance in chapter 3 we could not be certain about what we might 

observe on this occasion. Furthermore, as we intended to look in greater depth at the role of individual 

differences in proximal variance and the way error was corrected over time.  

Our individual comparisons of proximal variance psychometric fits from our calibration procedure 

and the way participants responded to changes in stimulus orientations had two purposes. The first 

was of course to compare the way distal and proximal variance affected how participants’ integrated 

information and corrected error but the second was to build on findings from experiment three which 

indicated that when participant’s exhibited a more noisy response they appeared to become more 

‘serially dependent’ with responses closer to previous values. While chapter 3’s main experiment 

tested different participants to its proximal variance experiment, here we tested the same participants. 

This method allowed a clearer individual level comparison. 

Individual comparisons of proximal variance psychometric fits from our proximal variance calibration 

experiment and the way participants corrected to steps in stimulus orientations in our main experiment 

provided some interesting if inconclusive results. In participants who recorded low levels of proximal 

variance there appeared to be an almost instant correction to the step in stimulus orientations across 

all four experimental conditions (a result consistent with a Kalman filter like responses (Harris & 

Wolpert, 1998; Todorov, 2004) as opposed to a fixed weighted average response (Choo & Franconeri, 

2010; Corbett, Wurnitsch, Schwartz, & Whitney, 2012; Fischer & Whitney, 2014). However, without 

a comparison to low proximal observers such a response pattern may simply be attributed to inter-

individual noise in responses as we did observe a large range of response variability across 

participants. Comparison with a limited number of high proximal observers, did though, again give 

credence to an adaptive, Kalman filter explanation of participant’s correction to the step in stimulus 

orientations again consistent with findings from visou motor adaptation research (Burge, Girshick, & 

Banks, 2010; Wolpert, 2007; Wolpert & Flanagan, 2001). In high proximal observers, there did 

appear to be more of a lag in correction to the step in stimulus orientations in all conditions. However, 

the lag seemed to be also present in conditions which presented Gabors at 20% contrast which we 

might not have expected to find. Furthermore, the level of difference in correction between conditions 

in individual participants was small and while this aspect of our analysis was only intended as a 

qualitative comparison and while still worthwhile lacked statistical comparisons making interpretation 

difficult.  
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Comparison of high and low proximal observer sets 

The next analysis in our study provided a more statistically based analysis of the effects of proximal 

variance and the rate of error correction. In this analysis, we split participants into two groups (high 

and low proximal variance observer sets), quantified model fitted Kalman gain as a measure of the 

rate of error correction and formulated experimental hypotheses to test the strength of the relationship 

between proximal variance and Kalman gain. Here, hypotheses were based on a theoretical inverse 

correlational relationship between proximal variance and Kalman gain. In the Kalman filter, if distal 

variance is relatively constant, when proximal variance goes up Kalman gain should come down and 

when proximal variance goes down, Kalman should go up. This means that if a set of participants 

have high proximal variance we could have expected to record lower model fitted Kalman gains than 

in participant sets with low proximal variance. Importantly, due to the small range of proximal 

variance across the board in participant’s in the 20% contrast condition, we only analysed the data in 

conditions which presented Gabors at 5% contrast as with such a small range observing any 

differences in correlation between our two participant’s sets in conditions using 20% contrast (3&4) 

was highly unlikely (see results figure 14). We hypothesized that we would find a higher negative 

correlation between Kalman gain and proximal variance in high proximal observers than in low 

proximal observers which is somewhat open to debate.  

The first aspect of our results in our correlational analysis to note is that all of our correlations 

between proximal variance and Kalman gain were non-significant. However, we contend that results 

still provided support for the existence of an inverse relationship between proximal variance and the 

way errors are corrected in line with previous literature in the field (Burge et al., 2008; Denève et al., 

2007; Friston, 2010; Harris & Wolpert, 1998; Knill & Pouget, 2004). In our high proximal observers 

in condition 1 we recorded a moderate negative correlation of -0.56 between proximal variance and 

Kalman gain, while in condition 3 we recorded a similar negative correlation of -0.53. Contrast this 

with our correlations from our low proximal variance observer set who recorded a correlation of 

exactly 0 in condition one and in fact a positive correlation of 0.30 in condition 3 suggesting that at 

least to some degree proximal variance did exert an effect on the way participant’s adapted to the step 

change in stimulus orientations. This interpretation is given extra validity if we further consider our 

response plots and bar graphs (see results figures 15, 16, 17 & 18) and the relationship between 

correlation coefficients and p values and the way Kalman gain is calculated.  

In our analyses we only tested a small number of participants in each of our low and high proximal 

observer sets. If we focus on the correlation coefficients (which is not affected by the sample size) 

between Kalman gain and proximal variance as opposed to p values (which are affected) and consider 

the way Kalman gain is calculated (see chapter 2 ) then we did record perhaps recorded the upper end 

of any correlation we might have observed. This is because Kalman gain is not only calculated based 
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on proximal variance but also includes prediction variance mainly created by distal variance (Zarchan 

& Musoff, 2000). By only looking at proximal variance, we only analysed one part of the causes of 

any changes in Kalman gain meaning that the correlation between Kalman gain and proximal variance 

can never reach one. Indeed, in the calculation for Kalman gain, prediction variance is the dominant 

factor, as this is in fact what the model is trying to ‘keep’ while proximal variance is considered noise 

and to be discarded. If we consider these factors, a correlation of around 0.5 in our high proximal 

observer set between proximal variance and Kalman gain, may in fact, given our small sample size 

been a very good result and give solid support to the Kalman filter model of error correction. 

However, to really test the Kalman filter versus the fixed weighted average account of error correction 

we need to take into account both distal and proximal variance and their relationship to Kalman gain 

analysis which formed the basis of our main experiment. However, we do note that correlations are a 

noisy statistical measure and perhaps providing more detailed and dedicated experiments that look at 

the role of proximal variance would in which proximal variance is manipulated in a number of ways 

and with more participants would provide a fuller picture due to the limitations in our experiment. 

Main experimental findings 

The aim of our main experiment and analyses was to fully test the adaptive account of error correction 

posited in the Kalman filter against the fixed model of error correction outlined in the fixed weighted 

average models. In contrast to our previously discussed analyses here, we included all participants and 

tested Kalman gain directly as a proxy measure of error correction against all four of our experimental 

conditions. As our experimental conditions manipulated both proximal and distal variance in a 

number of permutations we were not limited to looking just at the effects of proximal variance on 

error correction. Our experimental manipulations built on our manipulations of proximal and distal 

variance in chapter 3 and also ideas from Burge, Ernst and Banks (2008) who also tested four 

combinations of what can be considered proximal and distal variance. Again, our theoretical 

framework provided clear and testable experimental hypotheses. Specially, according to the Kalman 

filter that there would be differences in error correction caused by our manipulation between 

experimental conditions and according to the fixed weighted average model responses should not 

adapt. Our analysis reported results strongly in line with the Kalman filter with significant differences 

in the Kalman gain, indicating that error was adaptively corrected between conditions commensurate 

the level of Kalman gain.  

Inspection of our step response plot for all participants (results, figure 19) gives an indication of the 

differences in the pattern of responses and error correction between conditions. In condition one (5% 

contrast) we observed a lag in response to the step in stimulus orientations and the time taken to 

correct error while in condition two while in the condition 2 (20% contrast) which also had an 18.6 

degree step the lag is not present. In condition 2, responses to the step correct instantly and indeed 
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include some overshoot which persists until the end of the stabilization phase. In conditions which 

had a 35.7 degree step (3&4) we observed a similar pattern of error correction. Responses in the 5% 

contrast condition 3 also appear to lag behind the step in stimulus while in the 20% contrast condition 

4 again we see an instant correction and again some persistent over shoot. Results from all four 

conditions are consistent with Kalman gain figures for the commensurate conditions and give general 

support for the Kalman filter model of error correction as opposed to the fixed weighted average 

account. However, before discussing our statistical analysis of Kalman gain we discuss a prevalent 

factor in many of our response plots namely the overshoot in responses seen to some extent in all 

conditions in our response plots and bar graphs at the group level (see figures 19 & 20) 

Overshoot is often observed in many signal processing applications which test the response properties 

of a system using a step response function. One common reason for overshoot, especially in filters 

which employ a model of the stimulus behaviour, such as the Kalman filter, is that the model of the 

stimulus given to the system is incorrect. One function of the stimulus model is to constrain the next 

estimate within a set of known parameters. If these parameters are too ‘wide’ then estimates can 

increase over the true value of the stimulus. This could be the same cause of the overshoot observed in 

our participant responses, as unlike a signal processing system, we cannot simply programme in the 

model of the distal stimulus and it must be learnt. While it may be considered that the step in stimulus 

orientations is a simple model of behaviour to learn, in nature stimuli do not generally occur in steps 

and tend to change in a more correlated way over time which may make learning more difficult. This 

explanation is given validity by results from chapter 3’s main experiment two, in which participant’s 

did appear to learn the random walk (Pearson, 1905) of stimuli in some instances, possibly due to the 

fact that a random walk is a model closer to how stimuli generally behave in the world (Einstein & 

Cowper, 1926).  

Analysis of Kalman gain differences between conditions recorded significant differences between a 

number of conditions (see results figure 21) in a manner almost entirely captured by our Kalman filter 

model predictions and simulations with responses modulated by the level of proximal and distal 

variance. Results reported significant differences in Kalman gain between condition 1 (0.78) and 

conditions 2 (1.03) and 4 (1.01), conditions 2 and conditions 1 and 3 (0.85), condition 3 and 

conditions 2 and 4 and finally between condition 4 and conditions 1 and 3. Furthermore not only did 

we record significant differences between conditions as predicted we also recorded the general 

ordering of Kalman gain level predicted by Kalman filter theory. Specifically, we predicted that 

condition one would have the lowest Kalman gain, with condition 3 next and 2 and 4 having the 

highest levels. This results provided very strong support for the Kalman filter model of correction 

over the fixed weighted average account and are also consistent with results from Burge, Ernst and 

Banks (2008) and a host of visou motor literature that posits an adaptive account of error correction 

(Denève et al., 2007; Harris & Wolpert, 1998; Knill, 2007). However, while we consider our 
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experimental paradigm to be very successful we also note that the study has its limitations especially 

the interpretation our findings in purely visual terms. 

Previously we discussed the limitations of our interpretation of our proximal variance experimental 

data purely in visual terms due to the possible input of variability from working memory. A similar 

critique may also apply to our experimental design in our main experiment and our interpretations of 

our findings which may also have been affected by variability from other sources. One source of 

additional variability in responses in our main experiment could have arisen from the motor system. 

Unlike our proximal variance calibration experiment which used a key press to signal a judgment of 

orientation, in the main experiment participants signalled their judgment of the orientation using a 

mouse which is obviously controlled by the hand. It is well accepted that the motor system is highly 

variable (Faisal, Selen, & Wolpert, 2008). Furthermore, as we have discussed in depth it is also well 

reported that the motor responses exhibit Kalman filter like response properties in its responses to 

reconcile noise (Denève et al., 2008; Kwon, Tadin, & Knill, 2015; Wolpert & Flanagan, 2001) which 

may have exaggerated the level of bias to previous stimulus values we observed. Indeed, due to the 

level of noise in the motor system it is likely no coincidence that visou motor literature has pioneered 

the use of filter models to explain how sensory systems resolve variability. When we factor in 

variability from the motor system and from working memory we can logically ascertain that some of 

the bias we observed may have been the result if integration processes designed to remove variability 

in non visual systems. However, while the effects of filtering non visual variability may be a potential 

confound perhaps a more important issue comes from recent work that has indicated that the observed 

bias found in a number of types of stimuli (Corbett, Fischer, & Whitney, 2011; Fischer & Whitney, 

2014; Kiyonaga, Scimeca, Bliss, & Whitney, 2017; Kramer et al., 2013; Liberman, Fischer, & 

Whitney, 2014; Taubert et al., 2016) may not be perceptual at all and arise from a post perceptual 

decision making process. 

Conclusion 

In conclusion, there are number of key findings from the current chapter that provide further 

understanding of how visual systems deal with uncertain information. One is that the correction of 

perceptual error is adaptive and adaptive and modulated by the variability of sensory measurements 

(proximal variance) and the behaviour of the stimuli of interest (distal variance). When proximal 

variance was higher relative to distal variance participants estimates corrected faster when stimulus 

values changed and when distal variance was higher relative to proximal variance estimates corrected 

slower to changes in stimulus values. This result is consistent with findings from chapter 3 and with 

findings from Bayesian visou-motor literature (Berniker & Kording, 2011; Burge et al., 2008; Denève 

et al., 2007; Wei & Koerding, 2010) and shows the Kalman filter can also be applied well in vision. 

The way participants integrate information over time exhibits high individual variability. Some of this 
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variability can be explained by the different levels of proximal variability in participant’s observations 

but not all. Interestingly, again we found that temporal integration strongly favours the current 

stimulus input over previous information. Although, we observed significant differences in Kalman 

gain which acted as our proxy measure for error correction, Kalman gains did not drop below the 0.7 

level in any condition indicating a much higher effect of the current stimulus value on estimates. To 

conclude results provide support for the predictive coding account of temporal integration and the use 

of ideas such as the Kalman filter and stimulus step designs to study how the visual system deals with 

uncertainty.  
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Chapter 5. Predictive coding as a dynamic process: the role of conditional 

relationships and sequential information in predictions and behaviour. 

5.1 Abstract.  

Predictive coding suggests that the brain extracts the temporal regularities present in the environment 

over multiple timescales and levels of complexity to optimize the level of prediction error in its 

predictions. One issue with this idea is that in the world there are many different types of temporal 

regularities of differing complexities and it is unclear whether the brain applies more complex 

probabilistic sequential regularities when making predictions. Previous predictive coding studies have 

commonly used cue type relationships to induce predictions or have biased predictions by presenting 

one stimuli much more often reminiscent of priming studies. Furthermore, studies that have used 

conditional sequences of stimuli have often shown that either they do not improve behaviours or that 

people have represented sequences in a non optimal way. Here, to provide further analysis of these 

issues we used an experimental design that presented a sequence of stimulus positions and omission 

trials in which stimulus changed in such a way that made certain changes more or less predictable 

based on two direction switching Markov chain transition probability matrices that manipulated 

predictability between screen positions and omission trials. Participants were asked to respond as 

quickly as possible to the stimulus screen position and that in some cases the stimulus would be very 

hard to see (omission trials) but they should press where they think it should be and recorded reaction 

times on visible and percentages pressed relative to previous trials on omission trials. We formulated 

two theories about what we might find. The first, motivated by predictive coding states that 

participants should always advantage the most probable screen position. If this was the case then 

reaction times would always be faster on predictable trials and when faced with an omissions trials 

they would press to signal the most predictable screen position relative to the previous trial. Our 

second theory was based on findings from priming studies that have indicated that repetition of 

consecutive trials is a more reliable determining factor in behaviours than sequential probabilities. In 

this case reactions times and presses signalling screen position on omission trials would be 

independent of predictability. Results reported a significant effect of predictability on reaction times 

and a significant interaction between reaction time and the directions of our markov chain in support 

of predictive coding. However, analysis of omission trials led to a somewhat confusing picture. 

Analysis suggested that participants had learnt the stimulus sequences but did not apply them in the 

manner suggested by either priming or predictive coding. Results suggest that participant’s responses 

were based on a combination of a non optimal strategy termed probability matching and not 

necessarily applying any explicit prediction on omission trails. Overall, the main conclusion is that we 

can use sequential transition information that is more complex than simple cues or frequencies to 

improve behaviour but the relationship between reaction times, prediction error and decision making 

is unclear and warrants further investigation.  
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5.2 Introduction. 

Visual information received at the cortex contains not only variability from signals emitting from 

stimuli in the world that are important for behaviour but also unwanted variability often termed noise 

(Faisal et al., 2008). External factors such as poor viewing conditions and anatomical factors such as 

saccades (Melcher, 2011) disrupt information bearing light signals coming from stimuli in the world 

with neuronal noise adding further variability making interpretation potentially problematic 

(Kayargadde & Martens, 1996b; Tuzlukov, 2002; Wolpert & Flanagan, 2001). Exactly how the visual 

system counters the effects of unwanted variability is a matter of keen theoretical debate. Two 

strategies implicated in helping to interpret uncertain signals are to average past and current 

information over time (Bauer, 2017; Burge et al., 2008; Corbett & Melcher, 2014; Corbett et al., 

2011; St. John-Saaltink et al., 2016) and adaptively apply prior knowledge to help distinguish 

stimulus variability from unwanted variability or noise (Denève, Duhamel, & Pouget, 2007; Friston, 

2010; Knill & Pouget, 2007). Previously we have shown evidence supporting the idea that visual 

systems do adaptively average information over time consistent with a body of visou-motor work and 

the general principles of predictive coding (Burge et al., 2008 Harris & Wolpert, 1998; Knill & 

Pouget, 2004; Friston, 2010). Here we turn our attention to questions relating to the nature and use of 

past information used in predictive coding more directly. 

Predictive coding as a dynamic process. 

An interesting feature of predictive coding is its portrayal of the visual system as a dynamic engine of 

optimal predictions (Clark, 2013; Friston, 2010). In predictive coding, the visual system contains a 

series of hierarchical models that contain representations of the statistical regularities of the external 

world (Jun & Chong, 2016). To keep internal representations optimal, sensory systems actively 

extract information from the world over multiple timescales and levels of complexity constantly 

trying to maximise extraction of task relevant information from the world (Aitchison & Lengyel, 

2017; Clark, 2013; de-Wit, Machilsen, & Putzeys, 2010). However, while there is little doubt that 

predictive coding considers the visual system capable of making predictions based on a number of 

different levels of temporal regularities there are a number of outstanding questions and issues related 

to such ideas. One important issue relates to establishing the ability of the visual system to use 

complex conditional and sequential relationships that evolve over time to make predictions. 

The use of sequentially based conditional relationships in making predictions in daily life. 

Sequential and conditional relationships occurring within the world are potentially a rich source of 

information that if applied would offer substantial benefits when making predictions under 

uncertainty (de Lange et al., 2018). Examples of such relationships and how they might be applied are 

very common. If you observe a bird flying across the sky at dusk the visibility of the bird is variable 
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due to decreased light and the way birds behaviour exhibits stochastic elements. Making a prediction 

about where the bird might be in the next few seconds, might therefore be problematic, as potentially 

there are a number of possible outcomes. Fortunately, events in the world do not generally occur 

completely randomly meaning we can apply previous knowledge to solving the problem.  

One way to predict the future position of the bird is by using our previous experience that the position 

of flying birds do not suddenly change from one area of the sky to another. They generally follow a 

trajectory in which its transition from time point n to n+1 is conditional on its previous positions at 

time points n-1, n-2, n-3, n-4… as it flies meaning that we can use this transitional information to 

predict where it will be at a future position. The same principle applies to predicting how events might 

occur over time on our way into work. If you walk through a busy subway station you need to 

negotiate walking through lots of people all going in different directions heading to different exits and 

entrances to subway lines to get onto your required train. Here, there are potentially many different 

paths people could take making predicting where people might be heading uncertain. One way to 

predict the position of other people here though is by combining sequential information about how 

people will transition from the current to a future position based on the transitions between previous 

n-1, n-2, n-3, n-4… time points combined with knowledge of the exits and entrances of the station. By 

using this information we can potentially more reliably predict where people are heading. However, 

while it appears that we have the ability to make predictions about events based on sequential and 

conditional relationships it is also possible that people do not use such relationships and predict based 

on more simple relationships between events and stimuli the world. 

The use of associative or cued relationships in making predictions in daily life. 

Another type of information that can be used to predict the behaviour of stimuli can be considered to 

be simple associative or cued relationships between events and stimuli in our surroundings (Chun, 

2000; Knill, 2007; Kok & Turk-Browne, 2018). For example, if we are sitting watching television and 

the doorbell rings we can make a prediction that someone is at the door. Importantly, this type of 

prediction, while still a good way to make a prediction does not require the integration of sequential 

information and is more of an associative relationship based simply on the cue provided by the 

doorbell. Similar types of associative relationships exist in many other instances such as on our 

commute into work. If you are traveling by train into work and the train begins to slow we can take 

this as a cue that the train is coming into a station and if it is the station we need to get off at can 

prepare to alight thus saving us time in getting off the train. Again, though the prediction that the train 

is coming into a station is in this instance is based on the cue provided by the slowing train and while 

still a good way to make a prediction does not require any knowledge of sequential information of 

how events unfold over time.  
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Using the frequency of events to make predictions. 

A further type of temporal regularity that can be applied when making a prediction is the frequency of 

events (de Lange et al., 2018). If we again think of our commute into work we can picture how we can 

use frequencies of events to make a prediction. If we wish to alight a train we need to know which 

side the door will be relative to the platform. In many situations, the door will be on the same side on 

each stop. Say for instance, that the door facing the platform is on the left on 80% on stops then we 

might use the frequency of times the exit is on the left as a basis for predicting the side of the door on 

the next stop. Also, if we think about how we perform simple day to day tasks such as opening a door 

which we have done many time we know that in the vast majority of occasions a door handle opens 

downwards. This means that the prediction will be that the door handle will indeed open the door if 

we press the door handle down. However, while the frequency of past events to make a prediction can 

be a good way to make a prediction as with the use of cues it does not require any use of conditional 

relationships or sequential information.  

Do we use complex sequential conditional relationships to make predictions or do we simply use 

associative cues or frequencies of events to make predictions. 

We have outlined three sources of predictive information that can potentially be used by the visual 

system to make predictions. However, in many cases current predictive coding experimental designs 

can be considered somewhat limited in testing whether people can use sequential and conditional 

information to make a prediction. In many cases, predictive coding experimental designs test more 

simple cue based predictions or present a stimulus more often in a way that that can be thought of as 

biasing a particular outcome. Furthermore, there is support from a number of studies from outside 

predictive coding literature that has shown when presented with sequences of stimuli that contain 

conditional relationships, participants do not apply them behaviourally when making a decision which 

clouds the understanding of exactly how predictive information is used in perceptual decisions. 

Examples of limited experimental design in predictive coding literature. 

One common experimental paradigm used in predictive coding neuroimaging studies that relies on 

cues to induce predictions is illustrated by Kok, Jehee & de Lange (2012). In this study, the aim was 

to test how predictions about an upcoming stimuli modulated neural activity and the internal sensory 

representation of expected and non expected stimulus. Stimuli consisted of gratings presented at two 

approximate orientations ~45° and ~135° in orientation blocks and at two contrast levels (high and 

low) in contrast blocks of which types were shown in pairs separated by a blank screen for 500 ms. To 

induce expectations, the first of the stimulus pair was preceded by ascending or descending auditory 

tone, which cued the orientation or contrast level of the grating stimulus or the contrast on trials with 

75% accuracy. On presentation of the second grating stimulus, participants judged whether the current 

grating was clock wise or anti clockwise of the first grating stimulus or whether the previous grating 
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stimulus had a higher or lower contrast than the previous. Analysis focussed on neural activity on the 

first trial stimulus pair during validly cued trials and none validly cued trials. Consistent with some 

ideas of predictive coding, imaging analysis showed that neural activity as a whole was reduced 

(repetition suppression, (Summerfield, et al 2008) during validly cued trials but multivariate pattern 

analysis also revealed that the internal stimulus representation itself was actually enhanced. This 

result was interpreted as higher level expectations decreasing neural activity as a whole but also acting 

to improve perceptions by sharpening or boosting the bottom up stimulus representation in early 

visual cortex. While this was an interesting result and theoretical interpretation there are a number of 

issues with the use of cues as in Kok, Jehee & de Lange (2012). Experimental designs, such as in Kok, 

Jehee & de Lange (2012) while ideal for their purpose, do not test the constant changing and updating 

of predictions based on sequential information as they might occur in the environment. Furthermore, 

the use of cues can be also considered to set up more of an associative relationship as opposed to a 

predictive relationship. One could think of this as hearing a doorbell ring. When a doorbell rings we 

do not necessarily need to make a prediction about an event and we may just associate the sound of 

the doorbell with someone being at the door and respond accordingly. The type of cue/prediction 

paradigm in Kok, Jehee & de Lange (2012) is a common type of experiment also used in Kok & Turk 

Browne (2018). 

Kok & Turk Browne (2018), examined the role of the hippocampus in making cross modal (auditory 

and visual) predictions and its potential role with providing predictive information to visual cortex. 

Stimuli consisted of two shape pairs separated by a blank screen for 500 ms. To induce expectations, 

the first of the stimulus shape pair was preceded by ascending or descending auditory tone which cued 

a particular shape with 75% accuracy over trials. Analysis focussed on neural activity and stimulus 

representation in the hippocampus and visual cortex on the first trial pair during validly cued trial and 

none validly cued trials. Results found that the stimulus representation in visual cortex was dominated 

by the current shape regardless of valid or invalid cues but in the hippocampus shape representation 

reflected the validly cued shape. The cued shape representation in the hippocampus should be said is a 

very interesting result indicating support for the predictive coding notion of a hierarchical system of 

learnt regularities with the hippocampus at the top of the hierarchy. However, again this type of 

paradigm, could be considered to set up associative relationship between tone and shape as opposed to 

truly predictive relationship. Furthermore, by making one stimulus much more common by presenting 

it on 75% of trials it leaves open the repetition priming interpretation in which responses are 

modulated by the frequency of a presentation as opposed to any learnt sequential or conditional 

information.  
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Figure 1. Kok, Jehee & de Lange (2012) stimuli. On each trial participants were presented with two 

grating stimuli presented consecutively. The second grating differed in termed of either orientation or 

contrast. In separate blocks, subjects performed either an orientation task (“Was the second grating 

rotated clockwise or anticlockwise with respect to the first?”) or a contrast task (“Was the second 

grating of higher or lower contrast than the first?”). The grating stimuli were preceded by an auditory 

cue, which predicted (with 75% validity) the overall orientation of the gratings (∼45° or ∼135°) 

(taken from Kok & Jehee, 2012 permission from Dr Peter Kok) 

Questions about whether people apply sequential information in perceptual decision making 

A further problem for predictive coding’s ideas about the use of conditional relationships in sequences 

of stimuli, is that in some cases evidence that people apply them in perceptual decision making in a 

way that is contradictory with predictive coding. At the heart of predictive coding is the idea that 

internal models contain a representation of the conditional relationships between stimuli and events in 

the world observed over time to predict future events (Clark, 2013; Friston, 2010; Jun & Chong, 

2016). The use of the most likely stimulus is proposed to reduce prediction error by representing and 

applying what the brain has learnt about the environment to what will happen next which should have 

distinct benefits in terms of reaction times. This is because, according to predictive coding when 

predictions match sensory signals no further processing is required as the previous prediction remains 

valid (Rao & Ballard, 1999; Summerfield & Koechlin, 2008). Under the principles of psychophysical 

theory, when the brain is using less resources reaction times are decreased (Henry, 1980; Klapp, 2010; 

Maslovat, Klapp, Jagacinski, & Franks, 2014). Alternatively, when predictions do not match sensory 

inputs a prediction error is produced using more resources making reaction times slower. Indeed, this 

relationship is central to predictive coding and has led some to state that prediction error and reaction 

time are intimately related (Summerfield & Koechlin, 2008). However, there are nonetheless studies 

that have reported that this relationship is not so clear cut in terms of actual predictions in the 

forwards sense.  

Maljkovic & Nakayama (1994) classic priming study, assessed the factors influencing pop out in 

visual search tasks. In the paper, they compare number of top down and bottom up factors that could 

influence pop out in a simple visual judgment tasks. Crucially, in terms of predictive coding these 

factors included the conditional probability of the colour of presented stimuli against priming or a 

simple short term visual memory trace tuned to consecutive or more frequency of trials. The task of 
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participants was to detect as fast as possible the odd coloured diamond shape (see figure 2 below). 

Three participants carried out a number of blocks in which the transition probabilities of whether the 

colour of the odd coloured shape would repeat or switch was manipulated. These probabilities were 0, 

0.1 0.5, 0.7, 0.9 and 1. Crucially, these probabilities set up two totally predictable sequences and one 

totally unpredictable sequence.  

The two predictable sequences were found in 0 probability blocks that never switched and probability 

of 1 blocks that always switched while the unpredictable sequence was found in blocks that that had a 

0.5 probability which switched at chance levels. This experiment was subject to two competing 

theoretical predictions. One theory was termed ‘stimulus expectancy’ in which observers perform 

better in proportion to the level of certainty in the sequence and a ‘short term memory’ or priming 

hypothesis in which the number of consecutive trial determines performance as the memory trace 

strengthens over repeated trials. If the stimulus expectancy hypothesis was correct, then reaction times 

should have been faster and roughly equal for 0 and 1 probability stay/switch blocks as both of these 

blocks change in a totally predictable way thus have equal levels of uncertainty (zero) with reaction 

times slowest for the 0.5 probability blocks which had the highest levels of uncertainty as colours 

changed at chance levels. On the other hand, if the priming hypothesis was correct then predictability 

of stay/switch would still have an effect but it would only lead to faster reaction times in the 0 

probability stay/switch blocks. This is because as colours in these blocks always repeated, as opposed 

to always switching as in the probability of one blocks, in which trials always switched.  

Results supported the priming hypothesis. In 0 probability stay/switch blocks reaction times were 

fastest and slowest for one probability stay/switch blocks with 0.5 in the middle. This result supports 

the idea that the brain can use sequential information but is inconsistent with predictive coding. This 

is because while it appears that the conditional probabilities did play a role in responses they only 

improved responses when the conditional probability predicted events staying the same and not for 

when things changed. In predictive coding, the emphasis is on predicting the next event with reaction 

times taken as a measure of prediction error. However, this result supports the idea that sequences 

were not reducing prediction error on the next trial and asks questions about predictive coding’s 

relationships with behaviour.  
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Figure 2. Maljkovic & Nakayama (1994) stimuli. The task of the participant was to judge whether 

the odd coloured diamond was cropped to the left of right with the colour of the stimulus the 

manipulated quantity with the other two shapes fulfilling the role of distractor shapes 

One possible reason relates to the factor the study manipulated. In the study, they manipulate whether 

the colour of the shape will stay the same or switch but not what the next colour would be. While 

there were only two colours, meaning that it might have been quite easy to predict what the next 

colour might have been, this was not what the study tested. It might be that sequential transition 

probabilities are applied more readily when there is an actual prediction of what the next specific 

quantity might be as opposed to whether something will stay the same of switch. Another explanatory 

factor might be due to the way predictive information interacts with decision making. While, it is 

supported that predictive information does influences perception (Bergen & Jehee, 2019; Chopin & 

Mamassian, 2012; den Ouden, Kok, & de Lange, 2012; Jun & Chong, 2016) and neural activity (de 

Lange et al., 2018; Kok & Turk-Browne, 2018; Summerfield, Trittschuh, Monti, Mesulam, & Egner, 

2008) it is unclear how prior knowledge effects the decision process. It may be that the brain learns 

the sequential probabilities of events but does not apply them in an optimal way all the time (Feher da 

Silva, Victorino, Caticha, & Baldo, 2017; Newell, et al 2013; Unturbe & Corominas, 2007). 

Furthermore, is may also be possible that non rational cognitive biases influences the decision making 

the outcome non optimal (Kahneman, Slovic, & Tversky, 1982). One study that perhaps inserted a 

sequence into their stimulus presentation that favoured prediction of what would happen next in 

perhaps a clearer way than the stay/switch paradigm used in Maljkovic & Nakayama (1994 is Jones & 

Pashler (2007). 

Jones & Pashler (2007), set out to test the idea that the mind is tuned for detecting forward 

relationships. In regard to predictive coding this can be considered theoretically important. Predictive 

coding very much paints the brain as a predictive machine constantly trying to anticipate what will 
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happen next (Clark, 2013; Friston, 2010, 2018b) and if this is not the case then would invite questions 

about both predictive coding and more general ideas about the idea of predictive brain. To test this 

theory, Jones & Pashler (2007) inserted a specific type of conditional stimulus sequence that favoured 

the detection of forward stimulus relationships called a Markov chain (see figure 3). A Markov chain 

(see Rønn-Nielsen & Hansen, 2014 for an explanation of Markov chain theory) is a stochastic process 

in which the conditional probability of a switch from the current value, often termed state, to another 

state is dependent upon only the present state. In the experiment, Jones & Pashler (2007) first trained 

participants on 600 images to participants comprised of 8 shapes (see figure 3). Participants were 

asked to attend to the shapes but not told the purpose of the study or what task would follow.  

 

 

 

 

 

 

 

 

Figure 3. Jones & Pashler’s (2007) 8 shapes (Top left is shape 1, bottom right is shape 8) 

Following this training phase, subjects were informed they would be tested on the order the shapes 

were presented and asked two questions-a ‘prediction question’ in which they were asked which 

shape was most often presented immediately after a specific shape and a retrodiction question which 

was which shape was most often presented immediately after a given shape. To clarify, in predictive 

questions participants were asked what the next shape after the current shape would be while 

retrodictive questions asked they were asked what the shape before the current shape was. The study 

hypothesized, that if prediction is a fundamental principle of brain function, then we might expect 

prediction questions to see better performance as forward temporal relationships are preferentially 

detected. Alternately, if backward temporal relationships are preferentially detected then they would 

expect to see greater accuracy in retrodictive questions. Results reported some interesting findings. 

Overall, accuracy (36%) was well above chance (12.5%) meaning participants appeared to be able to 

learn the stimulus sequence. However, there was no significant advantage for prediction over 

retrodiction. Accuracy was 39% for prediction, and 33% for retrodiction. Given that participants were 

not told anything about the nature of the task during training Jones & Pashler (2007) conceded that 
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there was no real task relevance for detection of forward temporal relationships during the training 

phase as participant had not been informed about the nature of the task and may not occur in purely 

incidental learning tasks. To test this possibility they conducted a second experiment in which 

subjects were told to expect either the retrodiction or prediction question. However, again results 

reported no improvement in accuracy and in summary results can be considered at odds with 

predictive brain theories. 

There are a number of possible explanations for the result indicating that forward temporal 

relationships were not favoured. One could be that manifestation of favouring forward directed 

relationships is a more implicit process and lower order phenomena than used during explicit 

judgments as in Jones & Pashler (2007). Evidence suggests that the expression of favouring forward 

relationships becomes more prevalent when people repeat sequences of motor responses as shown in 

studies of implicit sequence learning (Nissen & Bullemer, 1987). This might be considered logical as 

motor actions are always forward in time. In this study, the task required an explicit reporting of the 

next and previous stimulus. Another potential explanatory factor is that in tasks that require explicit 

decisions, people often exhibit differing uses of probabilities in sequences of stimulus that are at odds 

with what might considered optimal. For example, one type of suboptimal use of conditional 

probability is where people even if they know the probabilities believe that one event is more likely to 

occur because it has not occurred for a time often termed the gamblers fallacy (Urteaga & Wiggins, 

2018). For example, in roulette if the ball has not landed on red for 5 spins people think it is more 

likely to happen even though the odds of red are always 50%. Another type of non optimal use of 

sequential information is probability matching. Probability matching refers to the phenomena that 

when presented with a stimuli that changes with a higher probability, say 0.7 to one state (A) than 

another state (B) at 0.3 and asked to judge what the next state should be instead of always choosing 

the most probable state, responses match the overall probabilities of the sequence meaning they 

respond with state A, 0.7 of the time and state B, 0.3 of the time (Gaissmaier & Schooler, 2008; 

Koehler & James, 2010; Newell et al., 2013). Finally, aside from non optimal use of conditional 

information it is perhaps possible that sequences of stimuli work to provide a more simple associative 

relationship, as opposed to a truly predictive relationships in which the direction of events is less 

important than the link between stimuli as seen in association learning studies (Rudin, et al, 2008; 

Schultz, 1998; Wolfensteller & Ruge, 2011) 
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Figure 4. Markov chain and associated transition matrix- Markov chains, named after the Russian 

mathematician Andrey Markov, are a stochastic process that operate by sequentially transitioning 

from one state (some value or situation) to the next. For example, if you made a Markov chain about 

the weather you could include, rain, sun, fog and cloud which would form a ‘state space’ or a list of 

all possible states . A markov chain would tell you the probability of transitioning from one state to 

any other state in the state space e.g. given that the current state is rain the chances of transitioning to 

sun, cloud, fog or remaining in rain. Above we have a Markov chain with two states, A and B where 

there are four possible transitions A-A, A-B, B-A and B-B. Next to the illustration we have a table 

which shows how Markov transitions are normally detailed termed a transition matrix. Both show that 

if we are in state A the probability of transitioning to state B is 0.8 and 0.2 for staying in A, if the 

current state is state B the probability of transitioning to state A is 0.3 with a 0.7 chance of remaining 

is state B. Transition probabilities between states must sum to one. Importantly although the chances 

of transitioning to any state within a state space are totally conditional on the current state they 

represent the outcome of a sequence of events that have provided these probabilities. Here, say the 

Markov chain changed state every two seconds and we observed transitions for an hour. We could 

then think of the Markov chain as a model of these transitions in which all that needs to be known to 

predict the next transition is the value of the current state. This aspect of Markov chains provides a 

‘memoryless’ quality as the state of the system at a future time is decided entirely by the state at the 

current time only. This efficiency has made Markov chains an especially attractive model in a number 

of computational predictive coding models and empirically relates Markov chains to the Kalman filter 

which also makes predictions based only on the current state assuming an underlying Markov process 

in continuous time. 
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5.2.1 The current chapter: theoretical motivations, aims and hypotheses. 

The current chapter aims to assess a number of questions relating to predictive coding’s portrayal of 

the brain as a dynamic system able to produce predictions based on conditional relationships in 

sequences of stimuli. Previous predictive coding work has not fully tested this idea and often used 

simple cue type association paradigms or provided results that can be interpreted as being more 

influenced by frequencies of presentation. Furthermore, other studies that have inserted sequential 

probabilistic relationships found that either they did not improve behaviour or apply them in a strictly 

forward manner. However, the outlined studies we discussed to illustrate some of these points from 

Maljkovic & Nakayama (1994) and Jones & Pashler (2007) while not designed for testing these 

aspects of predictive coding (or predictive coding at all) still provide some useful ideas that can be 

used for testing the ability of visual systems to make predictions based on conditional relationships in 

sequences of stimuli. Here we incorporate ideas from Maljkovic & Nakayama (1994) and Jones & 

Pashler (2007) and extend their designs. We introduce an experimental design that like Maljkovic & 

Nakayama (1994) manipulates the conditional probabilities of stimulus sequences but inserts a more 

forwards looking relationship by inserting a Markov chain into our stimulus sequence as in Jones & 

Pashler (2007), also applying a reversal of the transition probabilities. To assess whether information 

contained in sequences of information favour forward looking relationships we inserted omission 

trials into our sequence of stimuli and ask participants what the stimulus should be. We measure 

reaction times and also record the percentages of presses made on omission trials relative to previous 

trials to see how people use sequential transition probabilities in these instances. 

To provide theoretically driven analysis, we make experimental hypotheses based on predictive 

coding theory and compare these ideas against those of short term memory or priming/repetition 

effects. In terms of reactions time if people do use the sequential transition probabilities in our 

stimulus sequence in a way consistent with predictive coding then we would expect faster reaction 

times for more predictable stimuli. This is because according to predictive coding theory, when 

predictions are valid to the internally modelled sequence probabilities there should be less prediction 

error leading to a faster response (Summerfield & Koechlin, 2008). Alternatively, if the number of 

repetitions is the more important factor, as in Maljkovic & Nakayama (1994), as we held the total 

number of screen positions constant, there should be no preference for predictable transitions and no 

difference in reaction times. In terms of responses on omission trials, we can also make two 

competing predictions. In predictive coding, predictions make optimal use of transition probabilities. 

This means that the response should always be to select the most probable stimulus. If this is the case, 

we would expect that, on omission trials, participants will always select the most probable transition 

given the previous stimuli. On the other hand, if repetition is the more important factor as in priming 

then no preference should be given to the most probable stimulus.  
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5.3 Methods. 

Ethics 

All calibration and experimental procedures were approved by the University of St Andrews Teaching 

and Research Ethics Committee. All participants gave informed consent. 

Participants. 

A total of 10 participants took part in our main experiment (6 female) mean age 33 (range 19-42). All 

participants were recruited as volunteers from St Andrews SONA recruitment database. Participants 

had not taken part in any previous experiments detailed in the current thesis.  

 Stimuli design software and presentation details 

In all experimental and calibration procedures visual stimuli were created in MATLAB (The 

Mathworks Inc, Natick, MA) and presented using PsychToolbox (Brainard, 1997).  

Main experiment-inserting and testing the use of conditional transition probabilities  

Our main experiment aimed to manipulate the conditional probabilities of the way our stimulus 

changed position over trials in a more dynamic and sequential way than previous predictive coding 

studies. The aim of this manipulation was twofold with each aim forming the basis of specific 

analyses. The first aim was to analyse whether participants were able to learn the Markov transition 

probabilities and to test whether applying such information would improve behaviour in the shape of 

decreased reaction times. The second aim was to assess whether participants would use the transition 

probabilities in a forward direction by analysing the presses made by the participant on omission trials 

relative to the previous presented state.  
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Experimental stimuli  

Our experimental stimuli were Gabor patches. In most trials Gabors would appear in one of three 

screen positions over trials; centre centrally and slightly towards the top of the screen (X=0 °, Y=5°) 

right slightly above centre (X= -3.53 °, Y=3.53°) and left and slightly above centre (X= 3.53 °, 

Y=3.53°). Gabor stimuli had a radius of 8 visual degrees and had a spatial frequency 0.5 cycles per 

visual degree and were presented at 25% contrast (Michelson (see figure 5 below) but on some 

‘omission’ trials no stimuli would be presented and participants instead viewed a blank screen.  

 

 

 

 

Figure 5. Basic details of experimental stimuli. Trials either presented Gabor stimuli in one of three 

screen positions or did not present a stimulus at all. 

 

Manipulation of transition probabilities-Markov chains 

Our experimental blocks contained two Markov chains sequences. One Markov chain we term 

‘forward matrix’ (see table 1) and one we call ‘backwards matrix’ which was the exact mirror of the 

forward matrix (see table 2). Blocks consisted of 100 trials. Importantly in all blocks, during the first 

80 trials Gabors changed between screen positions and omissions transitioned between trials in a way 

determined by the forward matrix transition probabilities with switches between screen positions now 

defined as states A, B, C and D. State A relates to the left sided Gabor, state B the centrally positioned 

Gabor, state C the right sided Gabor and state D which were omission trials. In the other 20 trials 

within a block, Gabors changed between screen position based on the backward matrix transition 

probabilities to states we term E, F, G and H (state E relates to the left sided Gabor, state F, the 

centrally positioned Gabor, state G the right sided Gabor and state H which was a blank screen) (see 

figure 7 below). Importantly, within blocks transition probabilities between states were structured in 

such a way that all screen positions were presented an equal number of times (see table 3 below). This 

was to make each screen position equally likely which was crucial to testing the priming explanation 

of reaction time. Here we emphasize that on both forward and reverse matrix phases within blocks the 

same screen positions were always used. To clarify this means that states A and E both correspond to 

Gabors presented at the left of the screen, states B and F to Gabors presented centrally, states C and G 

to Gabors presented at the left of the screen and states D and H presented blank screens (see figure 6 

below). The reason why we give the same screen positions different ‘states’ is because we need to 

differentiate trial states for analysis purposes.  
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Figure 6. States relative to screen position in the forward and backward matrix phases of 

blocks. In the forward matrix phase (top) we assigned the following screen positions to the following 

states. State A left and slightly above centre, state B slightly above the centre of the screen, state C to 

the right and slightly above centre and D no stimuli presented. In the backward matrix phase of clock 

(bottom) we assigned the following screen positions to the following states. State E left and slightly 

above centre, state F slightly above the centre of the screen and state G to the right and slightly above 

centre and state H no stimuli presented.  

 

 

 

 

 

Figure 7. Trial structure in each block-here we illustrates the trial structure of our block. For 80 

trials, states switched in a way determined by our forwards matrix and then on trial 80 trials switched 

in a way determined by our backward matrix.  
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State Transition matrices. 

The transition probabilities between states were determined by our forward and backward matrices 

which are what are known as Markov chains. Markov chains are defined as a stochastic process in 

which the transition to the next state is determined entirely on or is conditioned by only the current 

state. Within Markov chains, each state is associated with a set of probabilities for switching to any of 

the other possible states. By building in and altering transition probabilities which are which are 

presented below in tables 1 and 2, we made certain transitions between states more probable than 

others over trials and therefore define these transitions as predictable. 

Table 1 State transition probabilities ‘forward’ matrix 

 

State transitioning to (next trial) 

State transitioning 

from (current trial) 

 A B C D 

A 1/9 6/9* 1/9 1/9 

B 1/9 1/9 6/9* 1/9 

C 6/9* 1/9 1/9 1/9 

D 1/3 1/3 1/3 0 

*denotes predictable transition pairing 

  

Our forward and reverse matrix tables (table 1 above) show exactly where the predictable state pairs 

exist (denoted by a star). In forwards matrices, if the current state is state A the predictable transition 

on the next trial is to state B which occurs 6/9’s of the time as opposed to remaining in state A or 

changing to states C or D (omissions) which all occur with equal probability (1/9). If the current state 

is B, then the predictable transition on the next trial is to state C, which again occurs 6/9’s of the time 

with an equal probability of 1/9 to states A, staying in B or switching to D. Lastly when the current 

state is D (blank) there is a zero probability of staying in state D (so blanks are never repeated) and a 

1/3 chance of transitioning to any other state. In the backward matrix phase of blocks the state 

transition probabilities are the reverse from the forward matrix as shown below in table 2.  
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Table 2 State transition probabilities ‘backward’ matrix 

State transitioning to 

State transitioning 

from 

 E F G H 

E 1/9 1/9 6/9* 1/9 

F 6/9* 1/9 1/9 1/9 

G 1/9 6/9* 1/9 1/9 

H 1/3 1/3 1/3 0 

*denotes predictable transition pairing 

 

In the backward matrix phase of blocks if the current state is state E the predictable transition on the 

next trial is to state G which occurs 6/9’s of the time as opposed to remaining in state E or changing to 

states F or H which all occur with equal probability (1/9). If the current state is F then the predictable 

transition on the next trial is to state E which again occurs 6/9’s of the time with an equal probability 

of 1/9 states, staying in F or switching to G or H. When the current state is G the predictable transition 

is to state F which happens on 6/9’s of the time and a 1/9 chance of switching to states E, F or H. 

Finally, if the current state is H (blank) there is a zero probability of staying in state H and a 1/3 

chance of transitioning to any other state. Crucially, although some state transitions occurred more 

often than others, transition probabilities were designed in such a way that they controlled for 

frequency of presentations. In all blocks, the frequency of screen positions presented over the 100 

trials was always the same. This meant that stimuli were presented approximately 30 times in each 

screen location with 10 blanks or omission trials also always being presented (see table 3 blow).  

Table 3 approximate number of screen positions presented per block 

 

 

 

 

 

 

 

 

Stimulus presented Total number of 

presentations 

Right 30 

Centre 30 

Left 30 

Blank 10 
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Procedure. 

Participants were seated 57cm from a computer monitor. Participants were told that they would be 

presented with a round grating stimuli that would appear in three screen locations, left, middle and 

right and that during trials they should try to focus on the fixation cross in the middle of the screen. 

We asked participants to press a button on a button box that pertained to the one of each of the screen 

positions as fast as possible when they saw the stimulus i.e. press the left button if the stimulus was on 

the left and the centre button if the stimulus was in the centre. Importantly, we also informed them 

that although most of the time stimuli would be clearly visible, on occasion this would not be the case 

and on some trials the stimulus would be very difficult to see and during these trials they should press 

the button they think applies to where the stimulus should be as fast as possible. For clarity, on these 

trials stimuli were not presented, forming our omission trials. Each stimulus that was presented 

appeared for 200ms seconds with the gap between trials drawn from an exponential distribution of 

between 100-500ms to prevent participants from learning the time gap between trials which could 

potentially have confounded our reaction time data. In the forward matrix phase of blocks 80 trials 

were presented. On the 80th trial the Markov chain was then reversed and trials followed the backward 

matrix transition probabilities. Initial states were randomly selected. Prior to the start of experiments 

participants practiced the task until they felt comfortable and the researcher felt they understood the 

task. 
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Figure 8. Stimulus design and event sequence. On each trial either a stimulus at one of three 

orientations or a blank screen termed ‘omission trial’ was presented for 500ms.Stimuli were presented 

immediately after one another with a small inter trial interval drawn from an exponential distribution 

of between 0.1 and 0.5 seconds. The task of participants was to signal a judgment as quickly as 

possible about the perceived position of the Gabor stimulus. To allow for a response on omission 

trials we told participants that on some occasions stimuli would be very difficult to see and they 

should simply press where they think the stimuli should be.  

Trial numbers and blocking. 

Each block contained 100 trials. Within each block 80 trials were in the forward matrix phase and 20 

in the backward matrix phase. Each subject completed 9 blocks over two one hour sessions. This gave 

2700 trials in total. Blocks always began with forward matrix phases 

Reaction time analysis: influence of transition probabilities 

We analysed reaction times for all visible state transition pairings (all non omission trials) in both 

forward and backward matrix phases of blocks. Here we isolated three key independent variables that 

could have potentially have an effect on reaction time which represented the dependent variable. 

These independent variables were ‘predictability’ as defined by probability of transition between 

states, stimulus screen position/state and forward and reverse transitions phases (except for transitions 

to omission trials which form the basis of analysis two). We analysed the effects of these independent 

variables on reaction times in the following way. Analysis of the effects of our dependent variables on 

reaction times is performed using a three way repeated measures ANOVA to test for both main effects 

of predictability on reaction times and interaction effects between predictability and both current state 

and forward and reverse transitions phases. For post hoc analysis of any significant differences in 

reaction times between transition pairings we use paired samples t tests (Bonferroni corrected) and 

report 95% confidence intervals.  
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Omission trial analysis-influence of previous trial on omission trial response. 

Here we analysed if omission trials were influenced by our transition probabilities. This is performed 

by analysing responses on an omission trials in relation to the previous trial state. For example, during 

forwards matrix phases of blocks if an omission trial was preceded by state A would participants more 

often press to signal based on most probable transition from A which would have been B more often 

than other states. Alternatively, in the reverse matrix phase if state E preceded an omission trial would 

participants signal the most probable which would have been state G. The same principle was applied 

for all omission trials. Here our dependent variable is the percentage of times a screen position was 

selected with the independent variable the preceding state. We analysed percentages pressed on 

omission trials relative to the previously presented state using a repeated measures ANOVA. For post 

hoc tests on any significant results we use paired samples t tests (Bonferroni corrected) and report 

95% confidence intervals. Here we do also report reaction times but this is for general comparison 

with reaction times with non omission trials.  
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State transitioning to (next trial) 

State transitioning 

from (current trial) 

 A B C D 

B 1/9 1/9 6/9* 1/9 

 

Figure 9. Clarification of omission trial analysis-Here we provide a hypothetical trial sequence 

during a forward matrix phase of a block. In this sequence the states presented begin with state A, 

then state C and then state B. On the fourth trial an omission trial (state D) is presented. If participants 

use the transition probabilities to make a judgment on the omission trial then because the previous 

trial was state B then they should signal the current state as being the most probable position which 

would be state C (6/9) and signal this by pressing the button that corresponds with that state. Over 

trials this would be represented in the overall percentages for omission trials preceded by state B 

which would be higher than the percentages for the other possible states. However, if participants’ do 

not integrate the transition probabilities when judging on omission trials then percentages for all 

possible states would be the approximately equal  
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5.4 Results. 

5.4.1. Influence of predictability, transition matrix direction and screen position on reaction 

time. 

A repeated measures ANOVA tested the effects of predictability, current screen position and the 

direction of our transition matrices on reaction time. Analysis reported a main effect of predictability 

between transition pairs on reaction time F (1, 9) = 6.171, p=0.035 and a significant interaction effect 

of transition matrix direction F (1, 9) = 5.48, p=0.039 (see figure 10 below) No significant effects of 

current screen position on reaction times were recorded. Mean reaction time for predictable transition 

pairings were 469.3 ms (SD=639.1, CI [440.7, 498.1]) and non predictable transition pairings 501.7 

ms (SD=0.089.1, [475.5, 527.9]). Mean reaction times for forwards matrix transition pairings were 

496.3 ms (SD=8331, CI [476.4, 516.1] and for forwards matrix transition pairings 4896 ms (SD= 

819.4, CI [470.0, 509.1].  
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Figure 10. Interaction effects of predictability in transitions pairings and direction of transition 

matrix on reaction times and 95% CI’s. Crossed lines in our interaction effect plot indicates that 

changes in reaction times depended upon the both the level of predictability and the direction of the 

transition matrices One of the most interesting aspects of our reaction time data is the significant 

interaction effect between predictability and the direction of the transition matrix on reaction times. 

The crossed lines in our interaction effect plot indicates that changes in reaction times depended upon 

the both the level of predictability and the direction of the transition matrices. This interaction can be 

interpreted as behaviour having changed due to the switch in the most likely transitions pairings. 

Conceivably this change in behaviour perhaps indicates dynamic updating of the transition 

probabilities had occurred even over a small number of trials consistent with predictive coding 
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Figure 11. Bar graph showing mean reaction times and 95% CI’s for predictable and non 

predictable transition pairings. Here we observe faster reaction times for predictable transition 

pairings with a slower and more variable response for non predictable pairings 
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Figure 12. Bar graph showing mean reaction times and 95% CI’s for forwards and backward 

transition pairings. Here we observe that there is no difference between forwards and backwards 

matrix transition paring indicating that predictability is the most important factor on reaction times. 

 

Post hoc tests on forwards Matrix transition pairings. 

We conducted t tests after our ANOVA on reaction times between predictable state transitions (star 

denotes predictable transition pairings) and non predictable state transition pairings. Results reported 

there were no significant A-B* (M=0.46, SD=0.06) and A-A (M=0.50, SD=0.10) reported no 

significant differences in reaction times=0.61 however, paired samples t tests between state transitions 

A-B* (M=0.46, SD=0.06) and A-C (M=0.50, SD=0.08) did report significant differences with t(9)= -

3.513, p=0.12. Here we also note that the p values for the A-B* and A-A was very close to 

significance at p=0.055. Results for state B transitions were consistent with those from state A 

transitions. Here we recorded very strong significant differences in reaction times between state 

transitions B-C* (M=0.46, SD=0.08) and B-B (M=0.50, SD=0.85) with t(9)=-6.813, p<0.00, non-

significant results were recorded between B-C* (M=0.46, SD=0.08) and B-A (M=0.48, SD=0.07) but 

again were close to significance for this pair with a p value of 0.059. Results from C state transitions 

were again consistent with those of A and B with significant differences recorded in reaction times. 

Paired samples t tests of reaction times between state transitions between C-A*(M=0.47, SD=0.08 and 

C-C (M= recorded significant differences with t (9) =-2.87, p=0.18 again though we only recorded 

significant differences in one of our comparison as the t test of reaction time differences between C-A 

and C-B reported non significant differences (see table 6 for means reaction times and 95% 

confidence intervals for all transition pairings). 
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Post hoc tests provide added interpretation of our significant ANOVAs results and are consistent with 

the idea the extraction and use of conditional probabilities can enhance behaviour in a measurable 

way. Our data also provides support that participants were using the transition probabilities rather than 

being influenced frequencies of transitions as might be the case with priming effects. If we look at 

where our significant differences between states lie, although we did not record significant differences 

for every possible comparison there are significant comparison for all of the possible switches 

between actual screen positions. For example we recorded significant differences between states A-B. 

Translating this transition to screen positions this means that participants were faster pressing when 

the switch was from left to centre. However, we did not record significant differences when the switch 

was from right to centre (C-B) instead on C transitions the fastest reaction times were from right to 

left (C-A). Also, on the B transitions (centre to right/left) the fastest reaction times were found when 

the stimuli transitioned from the centre of the screen to the left of the screen (B-C). This means that 

we recorded a faster reaction time involving transitions to all possible screen positions and all possible 

button positions. 

Table 4-Mean reaction times(ms) and 95% confidence intervals-forward matrix transition pairings 

Transition pairing  Mean reaction time 95% Confidence interval 

(lower and upper bound) 

 A-A  500.1  421.2, 571.5 

 A-B*   465.2  418.1, 515.5 

 A-C  500.1  446.2, 567.4 

 B-A   481.2  431.2, 546.1 

 B-B 

 B-C*  

 502.1  443.1, 569.8 

 C-A*  471.2  417.7, 532.1 

 C-B  498.3  448.1, 552.1 

 C-C  510.9  441.2, 582.1 

   

*Denotes predictable transition paring  

In contrast to forward matrix transition pairings, backwards matrix transition pairings reported no 

effects of predictability between transition pairings on reaction times. While in hindsight this might 

have been expected due to the smaller number of trials presented during the backwards matrix phases 

this is not to say that reversing our transition matrix had no effect on behaviour. Indeed the fact the we 

did not record significant effects despite the fact that the same screen positions were presented and 

task buttons remained the same indicated that something related to the switch in transition 

probabilities did modulate participants reaction times. For example, in the forward matrix transition 

pairings we recorded significant differences between left to right stimulus transitions (A-B) which we 

468.1  401.2, 521.2 
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did not observe in the equivalent screen stimulus positions in the backwards matrix transitions (E-F). 

This change in patterns of reaction times is supported by our significant interaction effect between 

predictability in transition pairs and the direction of our transition matrices.  

 

Table 5 Mean reaction times (ms) and 95% (CI’s)-backwards matrix transition pairings 

Transition pairing  Mean reaction time 95% Confidence interval 

(lower and upper bound 

 E-E  501.1  442.3, 576.5 

 E-F   482.4  436.6, 531.2 

 E-G*  483.4  432.3, 534.4 

 F-E*   472.3  413.6, 546.3 

 F-F 

 F-G  

 496.7  432.6, 552.3 

 G-E  489.8  421.2, 535.5 

 G-F*  492.3  446.3, 538.3 

 G-G  513.4  442.3, 582.1 

   

*Denotes predictable transition paring  

5.4.2 Omission trials: influence of previous trial on omission trial responses. 

A repeated measures ANOVA tested the effects of the previously presented trial state on the 

percentages of states signalled on all omission trials and reported a significant effect of previous trial 

state on percentage of screen positions signalled on omission trials F (1, 17) = 0.30 p=0.034 (see table 

8 for results summary). Interestingly though, while we recorded a significant effect of the previous 

trial on participants responses on omission trials indicating which taken in conjunction with reaction 

time data indicates that patterns were detected in sequences of stimuli they did not appear to use the 

transition probabilities in the way that predictive coding would predict. Instead of signalling the most 

likely state on each omission trial (optimal use), what participants actually seem to do could be 

explained by some combination of probability matching or pressing to signal the same screen position 

on each trial which could mean they might not have had an explicit prediction of the stimulus on 

omission trials. If we examine table 5, we can see evidence that supports this interpretation.  

 

 

 

 

491.2 421.1, 571.2 
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Table 6. Mean percentages of states signalled on omission trials relative to the previous state and 

95% confidence intervals (lower and upper bound)-forwards and backwards transition matrices  

 

State prior to 

omission trial 

(states D&H)  

% Pressed 

‘A/E’ 

% Pressed 

‘B/F’ 

% Pressed 

‘C/G’ 

CI ‘A/E’ CI ‘B/F’ CI ‘C/G’ 

A 22 48* 26 9, 34 38, 59 17, 35 

B 19 35 41* 9, 29 21, 47 24, 58 

C 33* 37 26 18, 46 27, 46 15, 36 

E   27 29 32* 11, 42 11, 48 20, 47 

F 30* 40 28  27, 49 19,61 24, 54 

G 37 39* 21  17, 45 11, 41 10, 32 

*Denotes predictable transition pairing  

Table 5 above shows the percentage of presses for each screen position/state on omission trials. While 

we do see some evidence that participants are picking up the transition sequence probabilities they do 

not signal the most likely all the time. What appears to be occurring is that they either match the 

overall sequence of probabilities to some extent or some other perhaps some other strategy. If we look 

at A-omission trials the probabilities of state A staying in A was 11%, switching to B was 66% and to 

C also 11%, on B-omission trials the probabilities of staying in B are 11%, switching to A, 11% and 

to C 66% while in C-omission trials the probabilities of staying in C are 11%, switching to A, 66% 

and staying into C 11%. The same percentages exists in reverse matrix trials with the star indicating 

the transitions which have a 66% chance of occurring. Given these overall probabilities we can see 

that it appears that participants appear to be matching probabilities but it must be said not entirely. In 

forwards matrix omission trials participants generally press to signal the most likely state with presses 

distributed around the overall transition probabilities. For example in A-omission trials they press to 

signal the predictable B transition 48% of the time but also press to signal the other two possible 

states 22%(A) and 26% (B) of the time. This might be considered a closer result to probability 

matching than the optimal prescribed in predictive coding but still it is not entirely a match. Similar 

patterns exist in B-omission trials and C-omission trials with a noisier picture in backwards omission 

trails. In order to look at the where any significant differences lay in percentages pressed relative to 

previous trials in trial pairings we performed pairwise comparisons (Bonferroni corrected) on all 

transition pairings 
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Post hoc tests Forwards matrix transitions. 

A-D (omission trials) 

Analysis of percentages on A-omission trials reported significant differences between the predictable 

state B (M=48%, SD=15) and state A (M=22%, SD=18) with t (10) =-2.85, p=0.17. Significant 

differences were also recorded in percentages signalled between the predictable state B and state C 

(M=26, SD=13) with t (10) =3.26, p=0.08. No significant differences were recorded between states C 

and A with t (10) =4.90, p=6.34. This pattern of differences between states is not consistent with 

predictive coding in which percentages would have been nearly at 100% for the predictable pairing. 

Here we perhaps observe a somewhat noisy account of probability matching in which participants 

match the overall probabilities of transitions. 

 

 

 

 

Figure 13. Percentage of states signalled during A-D (omission trials). Here participants did signal 

a significantly higher number of presses for the predictable state B transition in comparison to states 

A and C.  
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B-D (omission trials) 

Paired samples t tests of percentages of states signalled on B-omission trials between state transitions 

reported no differences between the predictable state C (M=41%, SD=25) and state A (M=19%, 

SD=14) with t (10) =-1.97, p=0.76. No differences were recorded in percentages signalled between 

the predictable state C and state B (M=34, SD=19) with t (10) =0.51, p=0.621. No differences were 

recorded between states B and A with t (10) =2.16, p=0.55. Interestingly while post hoc tests did not 

detect significant differences between the percentages for the predicted state C and states A and B, 

state C had a higher mean percentage of presses than the other two states. Again, perhaps the best 

explanation is perhaps observe a somewhat noisy account of probability matching in which the most 

probable transition is selected more often but also that less predictable transitions also selected in a 

way quite close to the overall transition probabilities.  

 

 

 

 

 

 

 

 

 

Figure 14. Percentage of states signalled during B-D (omission trials). Here participants again 

signalled a higher number of presses for the predictable state B transition although the difference was 

not significant.  
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C-D (omission trials). 

Paired samples t tests of percentages of states signalled on C-omission trials between state transitions 

reported non significant differences between the predictable state A (M=32%, SD=21) and state B 

(M=0.36, SD=0.14) t(10)-0.43, p=0.67, state A and state C (M=26, SD .15), t(10)=0.61, p=0.552 and 

states B and C, t(10)=-1.54, p=0.154. This result is at odds with A and B to omission trials and there 

does not appear to be any explicit prediction on omission trials on this occasion. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 15 Percentage of states signalled during C-D (omission trials). On C-omission trials the 

overall picture was unclear and data noisy. Participants did not appear influenced by transition 

probabilities or the previous state.  
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Post hoc tests-Backwards matrix. 

E-H (omission trials) 

Paired samples t tests of percentages of states signalled on E-omission trials between state transitions 

reported non significant differences between the predictable state G (M=33, SD=20) and state E 

(M=27%, SD=23) with t(10)=-0.70, p=0.499, states G and F (M=29%, SD=27%), t(10)=0.68, 

p=0.509 and states E and F with t(10)=-0.24, p=0.814. One again, the data appears noisy. Participants 

did press to signal the predicted state more often but not by enough to draw any real conclusions and 

the result is not consistent with the optimal use of transition probabilities.  

 

Figure 16 Percentage of states signalled during E-H (omission trials).  

On E-omission trials the overall picture was again unclear and data noisy. Participants did press to 

signal the predicted G state more often but not by a significant amount.  
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F-H omissions 

Paired samples t tests of percentages of states signalled on F-omission trials between state transitions 

reported non significant differences between the predictable state E (M=38%, SD=16) and state F 

(M=30%, SD=27) with t(10)=-1.35, p=0.207, states E and G (M=28%, SD=27%), t(10)=0.68, 

p=0.509 and states E and F (M=40%, SD-0.30) with t(10)=-0.38, p=0.707. The pattern of result here 

is again noisy and participants do not appear to be following the transition probabilities and respond 

approximately the same number of times to each screen position indicating no clear prediction,  

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Percentage of states signalled during F-H (omission trials). On F-omission trials 

participants signalled roughly the same amount of times to each potential state. 
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G-H omissions 

Paired samples t tests of percentages of states signalled on G-omission trials between state transitions 

reported non significant differences between the predictable state F (M=37%, SD=21) and state E 

(M=38%, SD=14) with t(10)=-0.13, p=0.897, states F and G (M=23%, SD=12%), t(10)=1.91, 

p=0.085 and interestedly we recorded significant differences between the non predictable states E and 

G with t(10)=-2.34, p=0.041. However, again here participants do not appear to be influenced by 

transition probabilities and it is unclear why they signal the unpredictable stimulus F state more often 

and may be somewhat of a random effect.  

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Percentage of states signalled during G-H (omission trials). On F-omission trials results 

indicated a significant differences between a non predictable  

 

 

 

 

 

 

 

 



164 
 

Reaction times-omission trials versus visible trials. 

Reaction times were recorded in omission trials mainly to make a comparison with non omission, 

visible trials. Results reported a mean reaction time of 0.8651 (SD=0.19, CI [0.7851, 0.9242] contrast 

this with results from visible trials which over all reported mean reaction times of 0.4867 (SD=0.03, 

CI [0.4612, 0.5012]. This means that reaction times are approximately 50% faster in visible trials 

while this might have been expected it may provide some insight into the different strategies applied 

in omission trials as the longer reaction times may hint at the involvement of higher level decision 

making processes than used in visible transitions.  

 

 

 

 

 

 

 

 

 

Figure 19 Reaction times-omission trials versus visible trials-Here as expected we observe faster 

reaction times in visible trials to our omission trials  
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5.12 Discussion and conclusion. 

Visual information is variable and uncertain presenting a complex problem for perceptual systems. In 

order to deal with uncertainty it is proposed the brain attempts to model and predict its incoming 

inputs (Garrido, Kilner, Stephan, & Friston, 2009; Kirchhoff, Parr, Palacios, Friston, & Kiverstein, 

2018; Summerfield & de Lange, 2014). In predictive coding, this ability rests on the existence of a 

series of hierarchical models containing representations of the statistical regularities of the external 

world that the brain constantly refines and updates (Friston, 2010; Parr et al., 2018; Rao & Ballard, 

1999). Perhaps the richest source of temporal regularity available to the brain are the conditionally 

probabilistic relationships that exist in sequences of information created by the interactions and 

behaviours of stimuli in the world. By extracting and applying this sequential information, it can in 

theory provide a rich source of predictive information that can be used to improve the effectiveness of 

behaviours. However, while sequential regularities are replete with predictive information, on 

occasion they are quite subtle in comparison to other types of temporal regularities and it is unclear 

what type of temporal regularities and relationships the brain actually uses to make predictions.  

It is possible that the brain uses more simple and explicit types of temporal regularities to make 

predictions. These type of regularities include cues or repetitions of events offering a simpler if less 

rich source of predictive information. Furthermore, it is also unclear as to how any potential top down 

input predictive information based on sequences effects how people actually respond or make 

decisions in a way that makes behaviour more effective. Previous predictive coding literature has 

seldom insert complex sequences into their stimulus sequences and are not able to test such ideas 

(Kok, Jehee, & de Lange, 2012b; Kok & Turk-Browne, 2018; Summerfield et al., 2008) and a number 

of studies that have used conditional sequences of stimuli have shown that they do not manifest in the 

decision making process in a way that optimises behaviour (Jones & Pashler, 2007; Maljkovic & 

Nakayama, 1994) counter to predictive coding and that repetition or other sources of temporal 

information may be applied.  

In the current chapter, we set out with a clear theoretical motivation that aimed to compare two 

competing accounts of how the brain uses temporal regularities. One was the predictive coding 

account (Friston, 2010) and one based on findings from Maljkovic & Nakayama (1994) was the short 

term memory or priming account. Predictive coding states that the brain is constantly making and 

changing its predictions as event and sequences unfold in the world, On the other hand, in priming, 

the only thing that matters is that events occur more often (Goolsby & Suzuki, 2001; Henson, 2003; 

Kristjánsson, 2006; Maljkovic & Nakayama, 1994; Olivers & Meeter, 2008; Wiggs & Martin, 1998). 

The key manipulation in the current chapter was inserting a sequence of stimuli in our experiment that 

manipulated conditional predictability but key to the priming account held constant the total number 

of screen positions. This can be thought of as a similar type of experiment to Maljkovic & Nakayama 



166 
 

(1994) in which they also manipulated the probability or expectancy of stimulus change but held the 

actual number of switches between colours constant but here instead of just manipulating change or 

switch we inserted a sequence that made specific stimuli positions more or less predictable. This was 

achieved by using two Markov chains into our stimulus blocks we called forwards and backwards 

matrix. Here, we found a different outcome to Maljkovic & Nakayama (1994) who had reported 

slower reaction times to more predictable stimuli. Reaction times strongly supported the idea that 

sequences of information can be used by the brain to improve behaviour with a significant effect of 

predictability on reaction times.  

 Reaction times support predictive coding  

Faster reaction time for predictable screen positions can be interpreted as the brain using the most 

likely stimulus transitions to reduce overall prediction error thus leading to faster response times as in 

predictive coding (Summerfield & Koechlin, 2008). Further validity to the predictive coding account 

of the brains ability to apply complex sequential information when making predictions comes from 

the significant interaction effect we found between transitions matrix direction and reaction times. 

This result can also be interpreted within the predictive coding account of integration as that the brain 

had learned the transition probabilities during the forwards matrix trials and had begun to relearn them 

during the backwards matrix trials. However, while the results from reaction time data are consistent 

with the predictive coding account integration and show that conditional relationships can improve 

behaviour one must question why our results were so different from Maljkovic & Nakayama (1994) 

which it must be said was a very well controlled and rigorous study . 

One explanation might be the idea that when there is a specific predictable outcome people do use 

sequential information to predict and that in such occasions the frequency of transitions is less 

informative. Another potential explanation is that Maljkovic & Nakayama (1994) task could be 

thought of as more of a slightly higher level explicit decision making task as opposed to an implicit 

faster visual task judgment. If we look at stimulus timings our stimulus was presented for 200 ms 

while Maljkovic & Nakayama (1994) stimulus remained on the screen for 2.5 seconds. It may have 

been possible that under situations that require an explicit decision the brain cannot access the 

transition probabilities so readily as a faster view-respond experiment which may be learned on a 

more implicit basis. This idea would be worthy of future experimentation that presents our stimulus at 

different time lengths to see if stimulus exposure time is a factor. Another, possibility is that 

Maljkovic & Nakayama (1994) stimulus expectancy versus priming experiment part of the paper only 

tested three participants (two of those were Maljkovic & Nakayama). As we have found previously 

how people use past information exhibits high inter-individual variability potentially subject to 

individual task goals (Kirchhoff et al., 2018; Parr et al., 2018) and variances in learning the behaviour 
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of the distal stimulus that makes them non optimal in predictive coding terms. It would therefore, be 

interesting to replicate Maljkovic & Nakayama (1994) with a larger and more naïve participant set 

and change stimulus presentation timings. However, it is possible that participants displayed a non 

optimal decision making strategy linked to exploring changes in stimulus sequences that may have 

been more evident in our omission trial data.  

Potential non predictive coding decision strategies employed on omission trials. 

While reaction time data supported the predictive coding account our omission trial data somewhat 

muddies the waters in terms of how the use of conditional relationships and sequences of stimuli 

translate into making a decision. Furthermore, omission trial data also asks questions about the 

optimal use of information in sequences of stimuli or more specifically what is optimal. Here, there is 

little doubt that participants were able to learn the transition probabilities but as in Jones & Pashler 

(2007) it asks question as to how people use them in terms of decisions. As we have seen reaction 

time data shows that participants had learnt the transition probabilities and had even been able to re 

learn the transitions when we changed the direction of the transition matrices. Furthermore, not only 

were participants able to learn the transitions they could actively use them to increase the 

effectiveness of behaviours in faster reaction times. This made our result on omission trials all the 

more intriguing. Here, although it looks as though there is a response pattern supporting that 

participants were using the transition probabilities to some extent on omission trials but not in a way 

consistent with reaction time data or predictive coding theory. What actually seems to have happened 

is that we observed some evidence for probability matching and other signs suggesting that people did 

not apply them as an explicit prediction. 

Looking at percentages signalled on omission trial relative to previous trials it can be considered that 

on some occasions participants exhibited probability matching in their responses. Probability 

matching is when instead of choosing the optimal response in a stochastic context in terms of 

error/reward on the current response which should always be the most probable choice, instead match 

the overall probabilities of the observed sequence (Newell et al., 2013). Interestingly, this strategy is 

also found in non-humans species (Li & Dudman, 2013; Niv, Joel, Meilijson, & Ruppin, 2002; 

Robbins & Warner, 1973) and is actually found in nature more commonly than what might be 

considered optimal strategies (Koehler & James, 2010). We found that, to some degree, participants 

when faced with stimulus transitions that had percentages of switching to another state of 66%, 11% 

and 11% (with omission trials making up the other 11%) responses did match these probabilities in 

their decisions albeit less than perfectly. Such a phenomena is well recorded in decision making 

literature (Koehler & James, 2010) and raises questions about the overall goals of the use of 
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sequential information and in fact what is optimal in terms of reducing error which may still tie in 

with predictive coding but in a more complex way than simply optimizing error on current trials. 

If we think about the probabilities of how events occur in the world it is true to say that while some 

events are more probable given a previous event but also that these probabilities can change. Now, if 

we think how we might learn about changes in probabilistic relationships a possible reason for 

probability matching becomes apparent. If we always make the same most probable decision we 

would not explore how events in world might be changing and potentially miss some important new 

predictive relationship. It may be that in order to maximise rewards in the long term people apply 

some focus to learning about how events might be changing to maximize reward in the longer term by 

experimenting with different choices to see if things are changing. This idea might be given credence 

given that in our experimental blocks probabilities were changing during blocks as the matrices 

reversed meaning that the brain might have detected an unstable series of sequence probabilities and 

investigated this change further by matching probabilities. Considering that predictive coding states 

that the brain is actively seeking out information from the world this may in fact be an extension of 

that process and lead to reduced prediction error in decision making over longer time scales. 

However, it must also be said that this does not appear to be the only influencing factor and it may be 

that internalising sequential information does not favour forward relationships as seen in Jones & 

Pashler (2007)  

In Jones & Pashler (2007), they found that even though their stimulus sequence technically favoured 

relationships this did not manifest in participants explicit decisions. This can in some ways be 

considered similar to our results. We also found that participants could learn the transition 

probabilities and could apply them in a reaction time task but this did not seem to carry over how 

when participants were faced with a situation in which they had to make a more explicit prediction 

about the next trial. This may be explained by the idea that temporal regularities simply form 

associations like in cue or priming experiments that need not necessarily be forwards in direction and 

that prediction, is not as Jones & Pashler (2007) state, the overriding goal of the brain and it simply 

associates temporally adjacent events.  

Study limitations. 

There are also a number of explanations for our somewhat inconsistent results that may be explained 

by the limitations in our study. One is that task had no real value to correctly predicting the stimulus 

on omission trials. It has been previously suggested that dopamine and reward pathways may 

modulate how we form judgments and make decisions (Montague, Hyman, & Cohen, 2004). It may 

have been possible that by providing some monetary or other reward for ‘correct choices’ we may 

have encouraged participants to apply the transition probabilities on omission trials in a more 
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traditionally optimal way. Another potential factor that may have been caused by limitations in our 

analysis techniques is that we did not analyse how responses altered over the course of trials. This 

critique while still applying to reaction time data is more strongly directed to omission trial analysis. It 

is possible that decision strategies changed over the course of trials. By only analysing the overall 

strategy we may have missed switches in how the brain applied the transition probabilities by only 

looking at overall responses. It may have been that participants had no explicit prediction at the start 

of blocks but did form predictions over the course of trials or matched probabilities and then changed 

strategy. Predictive coding states that the brain constantly updates its internal models as new 

information becomes available but we did not assess this aspect of the theory aside from assessing 

that behaviour had changed during backwards matrix trials as opposed to the time course of 

responses. In future experiments this analysis might provide further explanations of our data.  

Conclusion. 

There are a number of key aspects presents in results from chapter 5 that provide insight into the 

predictive strategies used by the brain. One is that the brain can learn and apply conditional 

relationships present in sequences of stimuli behaviourally and is not restricted to learning cues or 

frequencies when making predictions. We found that reaction times for predictable stimuli were faster 

than those for non predictable stimuli. This is consistent with the ideas of predictive coding, in which 

favouring predictable stimuli decreases prediction error making behavioural responses more effective 

and inconsistent with ideas of priming or memory effects. However, our omission trial analysis raised 

questions about the simple interpretation of reaction times from predictive coding experiments. In this 

analysis we found that the relationship between improved reaction times and more explicit decisions 

was not straightforward. According to predictive coding, sequence based predictions arising from top 

down inputs should always advantage the predictable stimulus in an attempt to reduce prediction 

error. We did not find this outcome. Instead we found a mixed picture that reflected a combination of 

non optimal decision making strategies in which participants appeared to either match the overall 

transition probabilities or did not have an explicit prediction. It may be possible that the matching 

probabilities is still consistent with the overall aim of predictive coding but aims to optimise 

prediction error on a longer term by exploring how new decisions match with incoming information 

that could have changed. However, it is also possible that sequential relationships do not form 

explicitly forward temporal predictions and may simply link together temporally adjacent events. In 

summary we have support for predictive coding in terms of reaction times but like other studies we 

cannot draw a firm conclusion of how decreased reaction times based on learnt sequential information 

translate into the decision making process. 
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Chapter 6. General discussion, contribution and concluding remarks 

The aim of this PhD was to assess the validity of the application of predictive coding in time and 

provide new theoretical and experimental ideas to guide research in this area. To deal with variable 

inputs in isolation from the world a number of current predictive coding models assume that the brain 

contains models of the environment and adapts the representation of the world within its models based 

on precision weighted prediction errors (Friston, 2010; Spratling, 2015). These ideas include,  the 

learning of conditional probabilities present in the relationships in events and the behaviour of stimuli 

in the environment and weighting prediction errors based on the reliability of sensory information and 

previous predictions (Friston, 2017; Thornton, 2014). In particular, we aimed to examine the factors 

which examine the precision weighting of prediction errors and the ability of the visual system to 

extract and the ability of the brain to use complex conditional relationships present in sequences of 

stimuli. Using a number of computational and mathematical frameworks to provide clear and testable 

hypotheses, we conducted a number of experiments detailed in chapters 3, 4 & 5 and obtained the 

following key experimental results, methodological and theoretical advances.  

6.1 Key experimental findings. 

Chapter three 

 To minimize the effects of uncertainty, the visual system integrates past and current sensory 

information adaptively. Integration is tuned to the variability of sensory measurements 

(proximal variance) and the behaviour of the stimuli of interest (distal variance). When 

proximal variance was higher relative to distal variance participants perceptual estimates were 

closer to previous stimulus values and when distal variance was higher relative to proximal 

variance estimates were closer to current stimulus values.  

 The related integrative visual phenomena termed serial dependence is adaptive. In contrast to 

previous characterizations of the phenomena (Jennifer E Corbett et al., 2011; Kiyonaga et al., 

2017; Liberman et al., 2014, 2016), it is not pervasive functioning at a fixed level and instead 

adapts to level of variability in the behaviour of stimuli (distal variance) and the reliability of 

the observation of the stimulus in question (proximal variance) more consistent with ideas 

from Bayesian visou-motor literature (Denève, Duhamel, & Pouget, 2007; Knill & Pouget, 

2007; Wolpert, Ghahramani, & Jordan, 1995; D. M. Wolpert & Flanagan, 2001)  

 Temporal integration strongly favours the current stimulus input over previous information. 

Despite designing a stimulus that was extremely hard to see it was very difficult to observe 

the effects of past stimulus history in participants estimates until we greatly reduced distal  

variance.  
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Chapter 4. 

 Correction of perceptual error is adaptively modulated by the variability of sensory 

measurements (proximal variance) and the behaviour of the stimuli of interest (distal 

variance). When proximal variance was higher relative to distal variance, participants 

estimates corrected faster when stimulus values changed and when distal variance was higher 

relative to proximal variance estimates corrected slower to changes in stimulus values. Again, 

a result consistent with from Bayesian visou-motor literature (Burge et al., 2008, 2010) 

 The way participants integrate information over time exhibits high individual variability. 

Some of this variability can be explained by the different levels of proximal variability in 

participant’s observations but not all. 

 Again, we found that temporal integration strongly favours the current stimulus input over 

previous information. Although, we observed significant differences in Kalman gain which 

acted as our proxy measure for error correction, Kalman gains did not drop below the 0.7 

level in any condition indicating a much higher effect of the current stimulus value on 

estimates than past stimulus values. 

 

Chapter 5. 

 The visual system can extract and use conditional probabilities in the way stimuli 

sequentially change over time to improve behaviour consistent with current predictive coding 

theory  (Friston, 2010; Spratling, 2015). We found that most probable or predictable 

transitions, elicited faster reaction times than less probable transitions.  

 When the sequence of stimuli is broken by omitted stimulus values, participants appear not to 

use the probabilities in the optimal way prescribed by predictive coding. 

 Our experiment showed that participant’s responses on current trials were the result of a 

combination of a non optimal decision making strategy, termed probability matching, or not 

applying a clear prediction to the omitted trial. This finding raises questions about the 

translation of predictive coding to decision making.  
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6.2 Important methodological advancements.  

Chapter 3. 

 Our proximal variance calibration experiment generally provides a reliable means to quantify 

visual variability. While data from this experiment may include variability from other neural 

systems, overall this method provided an accurate means to assess individual levels of visual 

variability and figures to provide a group level. Given that sensory uncertainty is a prominent 

area of vision science (Aitchison & Lengyel, 2017; Albright, 2012; Clark, 2013; Friston, 

2010; Kok, De Lange, Kok, & De Lange, 2014; Kwisthout & Van Rooij, 2017) this technique 

provides a simple but effective way to ascertain the levels of uncertainty in visual perception 

for computational purposes. 

 The Kalman filter is an excellent theoretical framework for guiding future temporal predictive 

coding experimental designs. Its concepts of proximal and distal variance, touch on 

something often missed in predictive coding studies and are simple to manipulate with 

existing experimental designs. 

 Kalman gain is an excellent predictor of the relative influences of past and current 

information of current estimates. In both experiments in chapter 3, Kalman gain predicted the 

level of serial dependency we would observe almost perfectly. 

Chapter 4 

 Here, we draw attention to the replication of results from the proximal variance calibration 

experiment performed in chapter 3. Results in chapter 4 showed that the method is robust 

and reliable in a totally new participant set.  

 The step response function provides an effective means to assess how perceptual error is 

reduced over time. Most experimental designs that examine temporal integration change 

stimulus values at random over trials. Changing values on every trial makes it hard to assess 

how error reduces over time to zero. As this is a key aspect of predictive coding (i.e. the 

actual aim of predictive coding) this step based design, which steps then stabilizes, is ideal 

for analysing this aspect of predictive coding. 

 Kalman gain is a reliable and easy to conceptualize proxy measure of perceptual error 

correction. Kalman filter theory states that higher Kalman gains lead to faster correction of 

estimation and lower Kalman gains lead to slower correction. We found this model to be 

very accurate and as Kalman gain is represented in one single number is straightforward to 

understand 
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Chapter 5 

 Markov chains are an effective means to introduce predictability into sequences of stimuli 

that change over time in predictive coding experiments.  Previous studies in the field have 

often not contained any real level of predictability but this is something that the insertion of 

Markov transition probabilities into trial sequences can rectify. 

6.4 General comment on the use of ideas from control theory  

 We also mention the general success in incorporating ideas from control theory and signal 

processing into predictive coding studies. These areas are increasingly turned to by 

Neuroscientists (Burge et al., 2010; Cicchini, Anobile, & Burr,2008; Faisal, Selen, & 

Wolpert, 2008; Todorov, 2004; Wolpert, Ghahramani, & Jordan, 1995) as they provide huge 

expertise in many problems which are in essence the same as in vision science and motor 

control. This is especially true if one wants to understand issues that have been studied for 

many years in signal processing such as error weighting and correction as shown in the 

current thesis. 

6.5 Theoretical implications. 

At the heart of predictive coding lies the notion of a predictive system of models in probabilistic form 

that updates predictions based on precision weighed prediction errors (Clark, 2013;Friston, 2010). 

While there have long existed models which explain how this system might actually work in other 

areas of visual processing (Huang & Rao, 2008; Rao & Ballard, 1999), previously no model dedicated 

to predictive coding in time existed. However, based on our findings the Kalman filter is a at some 

levels, a suitable candidate with support for the models account of the weighting precision weighting 

of prediction errors and indirectly the internal modelling of conditional probabilities albeit with a 

number of limitations. 

6.6 Precision weighting of prediction errors. 

Our results show strong behavioural correlates of the Kalman filter account of precision weighting 

consistent with an existing body of existing Bayesian visou-motor work (Burge, Ernst, & Banks, 

2008; Burge et al., 2010; Knill, 2007; Kwon, Tadin, & Knill, 2015; Todorov, 2004) and predictive 

coding (Friston, 2010). In our view, this is an important step on the path to establishing the ability of 

the visual system to interpret information taking into account the estimated reliability of sensory 

information and uniting findings from distinct if related research areas. Importantly, while we could 

not study the neural signatures of prediction error we were limited to examining behavioural 

signatures. However, all of our results were consistent with the predictive coding account of precision 

weighting. Our results support the idea that less weight is attached to less reliable information and 

more weight to more reliable information. In computational terms this weighting strategy represents a 
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method for the brain to optimally balance past and current information to account for variability in its 

inputs (Denève et al., 2007b). Our experiments in establishing support for this balance shows the need 

for more experimental designs that test the way the reliability of sensory information affects the way 

errors are weighted. This would be especially interesting in terms of Neuroimaging studies that have 

studied prediction errors which generally present clearly visible stimuli with the aim of eliciting the 

strongest possible imaging signal to observe any changes to such signals. Basing experiments of the 

principles of the Kalman filter and manipulating proximal and distal variance and observing neural 

activity could be a productive means of advancement for such studies. 

6.7 The extraction and use of sequential information in making predictions.  

Results from chapter 5 provide a mixed picture about the use of conditional probabilities present in 

the sequences of stimuli in making predictions. On one hand we show that such information can be 

integrated to improve behaviours in terms of reaction times but exactly the relationship between 

predictive coding and decision making is unclear it appears that in our experiment participants did not 

use the transition probabilities in decision in the way predictive coding would predict and warrants 

further investigation. In terms of methods though our study was very successful.  

The use of Markov chains is also a key aspect of our study that we take from other areas of the 

literature and apply to predictive coding. Markov chains and related concepts that we have previously 

not discussed such as Markov blankets are used in a number of computational predictive models (see 

Kirchhoff, Parr, Palacios, Friston, & Kiverstein, 2018 for an introduction ). However, such models are 

extremely complex and difficult to test in simple terms. Here, we show that Markov chains can be a 

productive model for providing behavioural support for such ideas. The most obvious area of support 

was by explicitly inserting Markov transition probabilities in chapter 5 and the second was more 

indirect which provided more support the idea that the Kalman filter is a useful predictive coding 

model in the temporal domain.  

In chapter 3’s experiment two we inserted a one dimensional random walk into the stimulus sequence 

with the primary aim of reducing distal variance. A one dimensional Gaussian random walk will 

inevitably reduce variability in comparison to a random stimuli but importantly they are considered a 

special category of a Markov processes which the Kalman filter requires the underlying stimulus 

behaviour in question to follow. Because in this experiment participants only integrated past 

information under conditions of uncertainty when we inserted the Gaussian random walk this result 

also provided additional indirect support for both the idea that the brain relies on conditional 

probabilities in conditions of uncertainty and the use of the Kalman filter as a predictive coding model 

in the temporal domain.  
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6.8 Limitations of the thesis. 

Overall the theory and experimental designs contained with the current thesis were successful but of 

course this does not mean that they are not without their limitations. One potential limitation relates to 

exactly how much of our measured quantities, be they proximal variance or serial dependence, came 

from the activity of the visual system alone. For example, in our proximal variance calibration the 

task involved judging the change in two stimulus orientations separated in time. While the delay in 

presentation was short this still involved some working memory component. Like any neural function 

working memory will collect variability from factors such as neural noise meaning that our proximal 

variance data may be inflated.  

The same critique can also be applied to our serial dependence data and the way we have interpreted 

our findings. Serial dependence has in the main been considered to be a visual phenomenon (Fischer 

& Whitney, 2014; Kiyonaga et al., 2017; Liberman et al., 2014). However, recently this view has been 

challenged. Some very recent studies have stated that at the early stages of visual processing serial 

dependence is not present and in fact that results from post perceptual memory processes This 

standpoint is based on findings that behavioural responses made immediately observing a stimulus in 

fact exhibit a repulsion effect as opposed to an attractive bias as in serial dependence (Bliss, Sun, & D' 

Esposito, 2017; Fritsche, Mostert, & de Lange, 2017). Only when the time delay between stimulus 

and response were lengthened was any serial dependence observed. The interpretation applied to these 

findings is that the first function of visual processing is to differentiate stimuli which would provide 

more accurate perceptions and only later is it beneficial to apply serial dependence because working 

memory is vulnerable to distraction and more noisy making smoothing information a good strategy 

(Fritsche, Mostert, & de Lange, 2017. It is fair to say that our stimuli and judgment responses were 

separate in time by 3-4 seconds meaning that we may also have recorded post perceptual serial 

dependence. Furthermore, we also observed a repulsion effect in our serial dependence experiment 

and an overshoot in our step design experiments in some instance that may be consistent with this 

idea. We surmised this was down to an incorrect model of the behaviour of stimuli but timing 

between stimulus and judgment may have played some role. Indeed further experiments involving a 

number of time spans between stimulus and judgment this would be an interesting follow up 

experiment given the debate between the two serial dependence camps. 

A further limitation of the current thesis was highlighted by the individual differences in integration 

strategy we observed in our experiments. In some cases, participants appeared to nearly always 

integrate past information in current estimates while in other cases the opposite was found. One 

reason was the level of proximal variance in individual participants. We did find a moderate negative 

correlation between proximal variance and Kalman gain indicating that proximal variance could 

explain some individual variability. However, it appears that proximal variance could not account for 
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individual differences entirely. One possible explanatory factor is the task prior that participants 

applied. In some predictive coding model there exists within the internal models not only a 

probabilistic model of the behaviour of the external stimulus but also a model of task structure (K. 

Friston, 2010). In more simple terms what the brain considers the goal of the task to be. If individual 

participants had different models of task structure then this could explain some of the individual 

variability we observed. For example, for some the task structure might have been to reduced noise by 

temporally smoothing over values. These participants would therefore be more serially dependent and 

slower to correct to change. Alternatively, some participant’s task structure might have been to 

differentiate between stimulus values. If this was the case, then this might explain the repulsion 

effects we observed. Importantly, this highlights a large flaw in the Kalman filter. The Kalman filter is 

a model from signal processing that frankly does not care about task demands. All it does is optimize 

mean squared error under certain assumptions. In humans, the aims could be much different in certain 

people and the Kalman filter is not capable of testing this idea. Future experiments could further 

investigate the role of task demands by manipulating the instructions to participants and attempt to 

model outcomes under models such as free energy (Friston, 2002) which does include task priors in 

its calculations. However, by doing you would remove the one of the main attractions of using the 

Kalman filter as a temporal predictive coding model-its simplicity and ease of testing. 

Our last limitation, although relating to our study directly also provides a thought provoking limitation 

of predictive coding in general. Predictive coding, in whatever its guise places a very strong emphasis 

on perception as a prediction based on previous experience. If one was to read the literature, you 

could be forgiven for thinking that what we observe at any moment is nearly entirely the ‘prediction’ 

generated by the brains internal models. However, generally we found this was not strictly the case. In 

our experiments that modelled responses with the Kalman filter, we found the dominant factor to be 

the current stimulus. In reality, we found that it was very hard to induce the visual system to integrate 

past information. Only in very uncertain circumstances was the influence of past information 

observable. Of course, you could interpret this as the success and speed of the predictive coding 

system in which internal models are nearly almost entirely accurate to the world at all times. 

Alternatively, you could interpret this as the visual perception being a more bottom up process only 

requiring predictive information in times of great uncertainty. Furthermore, in experiment 5, we found 

that the participants did not apply the use of probabilistic information in the optimal, predictive 

coding way and instead applied other strategies. Both sets of findings ask questions about the way the 

brain uses past information and the way we make predictions.  
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6.9 Concluding remarks. 

To conclude, this thesis aimed at establishing the validity of the predictive coding account of temporal 

integration. To do this, we used a variety of behavioural measures including serial dependence and 

analysing participants step responses and reaction times in conjunction with the computational and 

mathematical frameworks provided the Kalman filter and Markov chains. Our findings relating to 

serial dependence and the way participants corrected error, both largely support the predictive coding 

account of temporal integration. Also, the Kalman filter framework provided a useful model of 

predictive coding in time and provided solid explanations of predictive coding’s ideas about the 

precision weighting of prediction errors. In terms of testing how people use probabilistic sequential 

information, our use of Markov chains proved suitable for testing how people integrate sequential 

information to make predictions over time. Overall, we support the predictive coding account but 

raise questions about the application of predictive information in such an all explaining manner as in 

some accounts of predictive coding and also question how predictive coding translates into decision 

making processes.  
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8.2 Work related to this thesis  

Title: Adaptive serial dependencies in visual perception. Venue/date: European conference of 

visual perception. Frei Universitat, Berlin, German, Aug 2017  

 

Title: Quantifying sensory noise in serial dependence experiments, Venue: Vision sciences 

society conference. Trade winds resort, Florida, USA , May 2018 

The following paper is currently under way. 

Title-Adaptive serial dependence in visual perception.  

 

8.3 Analysis and stimulus code can be found at  

https://github.com/aleslab/analysis 
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