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Abstract Many factors influence relativistic outer radiation belt electron fluxes, such as waves in the
ultralow frequency (ULF) Pc5, very low frequency (VLF), and electromagnetic ion cyclotron (EMIC)
frequency bands, seed electron flux, Dst disturbance levels, substorm occurrence, and solar wind inputs. In
this work we compared relativistic electron flux poststorm versus prestorm using three methods of analysis:
(1) multiple regression to predict flux values following storms, (2) multiple regression to predict the size
and direction of the change in electron flux, and (3) multiple logistic regression to predict only the
probability of the flux rising or falling. We determined which is the most predictive model and which factors
are most influential. We found that a linear regression predicting the difference in prestorm and poststorm
flux (Model 2) results in the highest validation correlations. The logistic regression used in Model 3 had
slightly weaker predictive abilities than the other two models but had the most value in providing a
prediction of the probability of the electron flux increasing after a storm. Of the variables used (ULF Pc5 and
VLF, seed electrons, substorm activity, and EMIC waves), the most influential in the final model were ULF
Pc5 waves and the seed electrons. IMF Bz, Dst, and solar wind number density, velocity, and pressure did not
improve any of the models, and were deemed unnecessary for effective predictions.

1. Introduction

Relativistic electron flux (>1.8–3.5 MeV) at geosynchronous orbit is influenced by a variety of factors.
Ultralow frequency (ULF) Pc5 and very low frequency (VLF) waves have been postulated to accelerate seed
electrons (270 keV) to relativistic energies (Jaynes et al., 2015; Rodger et al., 2015). Electromagnetic ion
cyclotron (EMIC) waves are thought to precipitate these electrons (Rodger et al., 2008). The ring current
index Dst, substorms, and variations in solar inputs such as solar wind velocity, number density, pressure,
and interplanetary magnetic field (IMF) Bz have all also been postulated as influences on flux (Simms,
Engebretson, Clilverd, Rodger, Lessard, et al., 2018, and references therein). Geomagnetic disturbances,
during which many of these driving factors increase, can result in flux enhancements during the recovery
phase, but only about half of storms result in a dramatic rise in electron flux. Levels can remain unchanged
or fall following other storms (Kim et al., 2015; Reeves et al., 2003; Turner et al., 2013; Zhao & Li, 2013), and
the intensity of Dst during a storm is not sufficient to predict whether electron flux will increase or
decrease (Reeves, 1998). Thus, identifying the further storm characteristics that lead to electron enhance-
ment or depletion has been of interest (e.g., O'Brien et al., 2001; Pinto et al., 2018; Simms et al., 2014;
Xiong et al., 2015).

Simple correlation or superposed epoch analysis has often been used to study these relationships.
However, these approaches can only determine the association between pairs of factors (e.g., between flux
and storm Dst). A correlation between a hypothesized predictor and flux may only mean that possible
predictor is itself highly correlated with the actual physical driver of flux enhancement or depletion. It
may have no actual physical influence on its own. To avoid false conclusions, analysis methods that con-
trol for concomitant changes in all possible predictors are needed. Partial or canonical correlation
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techniques (e.g., Borovsky & Denton, 2014) can be used to avoid this problem, but multiple regression is
better able to compare the relative effects of various interrelated possible predictors and to provide an
empirical and tractable prediction equation in the form of a linear combination. However, because treat-
ments (e.g., higher or lower wave activity) cannot be randomly assigned in observational studies such as
this, statistically significant effects only prove an association between predictor and response, not a defi-
nite causal relationship.

Logistic regression does not predict values but rather the probability of an event. By classifying the
response as a binary variable, and with the use of an appropriate transformation (the logistic transforma-
tion), regression can be used to produce a model that predicts the probability of occurrence of an event
(Neter et al., 1985). We use logistic regression to model the probability of an outer belt electron flux enhance-
ment (over prestorm levels) following a geomagnetic storm. By adding predictor variables to this model,
we can determine which processes are the strongest predictors of an increased probability of flux
enhancements occurring.

Previously, multiple regression analysis was used to predict relativistic electron flux levels following storms
using solar wind and IMF parameters as well as ground‐observed ULF and VLF waves (Simms et al., 2014).
However, the models in this study did not incorporate either the occurrence of substorms or the presence of
EMIC waves. In addition, the available VLF wave data from ground‐based sensors was only weakly asso-
ciated with VLF waves occurring at geosynchronous orbit. Recently, a substorm occurrence measure,
satellite‐observed VLF wave intensity, and EMIC wave activity were all included in a model predicting daily
averaged flux (Simms, Engebretson, Clilverd, Rodger, Lessard, et al., 2018). Our aim in this present study is
to explore which set of the many possible factors best predicts whether the electron flux levels rise or fall fol-
lowing geomagnetic storms.

We compare relativistic electron flux poststorm versus prestorm using three methods of analysis: (1) multi-
ple regression to predict flux values following storms, (2) multiple regression to predict the size and direction
of the change in electron flux, and (3) multiple logistic regression to predict only the probability of the flux
rising or falling. Using daily averages from the first and second 24 hr of the recovery period (from minimum
Dst until Dst reaches −30 nT), we trained all three model types on a set of predictors thought to have the
most direct physical effect on flux: ULF Pc5, VLF lower band chorus (0.1–0.5 of the electron gyrofrequency),
and EMIC waves, seed electron flux (270 keV), and Dark Ionosphere SME (SMEd) from the SuperMAG col-
laboration as a measure of substorms. It was previously found that these parameters may be more influential
on days following a geomagnetic storm than on the same day (Simms, Engebretson, Clilverd, Rodger,
Lessard, et al., 2018). For this reason, we explore whether predictors are more influential during the first
or second 24 hr of recovery following storms. We also use averages of these predictors from storm main
phase. Because relativistic electron flux may show a nonlinear response to ULF Pc5 waves (Simms,
Engebretson, Clilverd, Rodger, & Reeves, 2018), we introduced a quadratic term (ULF Pc5)2 to the model.
In addition, we trained a model that included the added parameters of solar wind velocity (V), number den-
sity (N) and pressure (P), IMF Bz, and minimum storm Dst. This was intended, if possible, to produce a
model with more predictive power due to the added explanatory variables.

2. Data

For the years 2005–2009, 126 geomagnetic storms were observed, determined from the Dst values obtained
from the Omniweb database. A geomagnetic storm was defined as having a Dst minimum of −30 nT
or lower.

As previously described in Simms, Engebretson, Clilverd, Rodger, Lessard, et al., 2018, we use the 1.8‐ to 3.5‐
MeV energy channel of relativistic electrons measured by the Energetic Spectrometer for Particles instru-
ment (log10 [electrons/cm2·s·sr·keV]) and the seed electron flux (270 keV in the same units as above) mea-
sured by the Synchronous Orbit Particle Analyzer (SOPA) instrument from the LANL satellites in
geosynchronous orbit (Reeves et al., 2011). In one set of regressions, the maximum log10flux in the 7 days
following the minimum Dst of storms was predicted. In a second set of regressions, the difference in the
log10flux was predicted. This difference was calculated as poststorm maximum log10flux (in the 7 days fol-
lowing the minimum Dst) − prestorm log10flux (maximum flux on the day preceding the storm).
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ULF Pc5 wave power was obtained from a ground‐based ULF Pc5 index covering local times 0500–1500 in
the Pc5 range (2–7mHz) obtained frommagnetometers stationed at 60–70°N corrected geomagnetic latitude
(Kozyreva et al., 2007). In training the models described below, it was found that the ULF Pc5 did not have a
completely linear relationship with the 1.8‐ to 3.5‐MeV electron flux. Therefore, we also included (ULF Pc5)2

in our variable set.

We obtained VLF lower band chorus (log10 [μV2·m2·Hz]) power spectral density (0.1–0.5 fce; L= 4, 4.0–4.99;
dayside satellite passes, LT 10:30) from the Instrument Champ Electrique (ICE) on the DEMETER satellite
(Berthelier et al., 2006).

EMIC wave activity data were obtained from the induction coil magnetometer located at the Halley,
Antarctica, British Antarctic Survey (BAS) ground station at L‐shell 4.6. We used the number of hours per
day during which there was increased EMIC activity (>10−3 nT2 Hz) in the <1‐Hz band.

The SMEd, a measure of only the dark ionosphere (nightside) SuperMAG Auroral Electroject Indices (SME)
was obtained from SuperMAG (Gjerloev, 2012; Gjerloev et al., 2010).

From the Omniweb database, we obtained solar wind velocity (V), number density (N), IMF Bz component,
Dst, and pressure (P). Each of these was averaged over the main and recovery phases as described above,
with the exception of Bz, for which we used the fraction of southward Bz hours out of total hours in each
time period.

For the years 2005–2009, we averaged all variables (except when noted) over storm main phase and the first
and second 24 hr of recovery. This daily averaging was done to smooth out diurnal fluctuations that occur
due to satellite position. Of the 126 geomagnetic storms observed during this time period, only 85 were com-
plete observations (i.e., containing measured values for all parameters per observation) that could be used in
the analyses.

3. Methods
3.1. Statistical Analyses Were Performed Using R and MATLAB
3.1.1. Three model types were tested
1. Multiple regression predicting the value of the 1.8–3.5 MeV electronmaximum flux at geostationary orbit

in the 7 days following the minimum Dst of geomagnetic storms;
2. multiple regression predicting the log flux difference (prestorm vs. poststorm as defined in the previous

section); and
3. logistic regression predicting the probability of a flux increase (poststorm higher than prestorm).

We consider Model Type 1 to be a baseline model (a standard regression model predicting values) and
explore the other model types with the hope that they will improve on this model. All three models are
expected to show the same general relationship between the explanatory and dependent variables.

The data were randomly split into a 60%:40% ratio of training and test sets (~51:34 storms). For Model Type
1, a linear multiple regression model was created using observations from the training set. Predictions from
the test set were calculated using the unstandardized model coefficients for each explanatory variable. A
validation correlation coefficient r calculated between these predictions and the real value of the electron
flux from the test set was used to determine the best model. A larger value of r means the corresponding
model predicts the test set electron flux better.

The algorithms for Model Type 2 (multiple regression) and 3 (logistic regression) were similar, however
rather than predicting the value of the maximum electron flux, these models used the flux difference as a
response variable (as described above). Model Type 2 simply predicted the difference between prestorm
and poststorm flux log values. However, for Model Type 3, due to the use of logistic regression, we require
a binary‐dependent variable. To produce this, we set all increases in log flux (poststorm higher than pre-
storm) to 1 and all nonincreases to 0. However, this binary response variable will not have a linear relation-
ship with the predictors as the response can only be at the bottom (0) or top (1) of its range. In order to fulfill
the linearity requirements of regression, the binary variable must be transformed. This is accomplished in
several steps. First, a probability prediction function is assumed, where the probabilities of “success” (p,
response = 1) and “failure” (1 − p, response = 0) sum to 1 for any single trial (the discrete Bernoulli
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distribution). This probability function is not, itself, linear. Although probability responses can now span the
range between 0 and 1, the range is still restricted, responses asymptote curvilinearly to 0 and 1, and none of
the usual transformations of the data (logs, etc.) will fix this problem. A further transformation is needed to
linearize the response and transform the range from negative to positive infinity. This can be accomplished
by using the odds instead of the probability. (While probability is the ratio of successes to all trials, the odds
are the ratio of successes to failure.) Taking the log of the odds (called the logits) is then a simple transforma-
tion to produce a linear function (Neter et al., 1985). Mathematically, this transformation to logits is accom-
plished via the logistic transformation of the probability π:

logit ¼ loge
π

1−π

� �
: (1)

The coefficients of the prediction equation are calculated from these observed logits using a nonlinear, itera-
tive process that finds the maximum likelihood estimates for these parameters. The resulting logistic regres-
sion equation then predicts logits (log odds) using the fitted model coefficients:

logit ¼ b0 þ b1x1 þ …þ bixi (2)

which can then be converted to predicted probabilities (probability of log flux increase) with the following
back transformation:

Pr eventð Þ ¼ eb0þb1x1þ…þbixi

1þ eb0þb1x1þ…þbixi
; (3)

where Pr(event) is the predicted probability that an event will occur (in this case a flux increase), xi refers to
the ith predictor, and bi refers to the corresponding coefficient. The predicted probabilities will differ
depending on the particular values of the predictors (xi).

The typical logistic regression algorithm performed on this data set had difficulty converging on model coef-
ficients. It is possible that the data set was too small. Instead, we used a Firth logistic regression, which uses a
penalized likelihood method and often produces a more successful result (Firth, 1993).

Probability predictions from Model Type 3 (logistic regression) ranged from 0 to 1, where 0 was a zero prob-
ability of the electron flux going up after a storm, and 1 was a 100% probability of it going up. These were also
converted to binary, with probabilities greater than 0.5 being classified as 1 and probabilities less than 0.5 as
0. This allowed a cross tabulation between the predicted and real binary values to be made.

The cross tabulation produces four numbers: true positive (TP), true negative (TN), false positive (FP), and
false negative (FN). A true positive refers to an observation that is correctly predicted as an increase in elec-
tron flux. A false positive refers to an observation that is incorrectly predicted as an increase in electron flux,
when in fact the real data reflected a decrease. The true negative and false negative follow similarly. These
values are used to calculate true positive rate (TPR), true negative rate (TNR), and accuracy (ACC), as fol-
lows (Fawcett, 2005):

TPR ¼ TP
TP þ FN

(4)

TNR ¼ TN
TN þ FP

(5)

ACC ¼ TP þ TN
TP þ TN þ FP þ FN

(6)

Model Type 2 used amultiple regression (as inModel Type 1) but now predicting the flux difference. To com-
pare the results with Model Type 3 (logistic), the flux difference from the training set and the predicted flux
difference values were converted to binary as in the Model Type 3 algorithm, and a cross tabulation made. A
validation correlation coefficient r was also calculated for Model Type 2 as with Model Type 1.

For all 3 model types, 1,000 models were trained on 1,000 unique, randomly sampled training and test sets,
and the measurements obtained were averaged over all 1,000 runs. This method, sometimes called bootstrap
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aggregating or “bagging,” can improve the accuracy of a prediction method by providing stability to the
training sets (Breiman, 1996). Training single models and comparing the results showed an apparent
inhomogeneity in the training sets. Given this, and the small number of data points (85 usable storms),
bagging was used to provide averaged metrics over many different subsamples.

Finally, inspired by Table A1 of O'Brien and McPherron (2003), a table of significance frequencies was also
made for each explanatory variable. In each run, a p‐value < 0.05 was marked as statistically significant. The
p‐value is the probability that a particular predictor would show an apparent influence in the regression
model when it, in fact, had no association with the response variable at all. In other words, it is the probabil-
ity of mistakenly believing there is an association when there is not. Using this definition, the frequency of
significance is reported for each predictor over the 1,000 runs. Obviously, with this number of runs, the
actual overall p‐value is no longer 5% (i.e., it is not the probability of rejecting the null hypothesis of no asso-
ciation over all the runs), but we use it as a convenient cut off of association versus no association within
each run for the purposes of compiling statistics.

3.2. Variable Sets and Effect of Variable Time Periods

With the electron flux as the dependent variable, a backward elimination stepwise regression procedure was
used to select predictor variables, at each step removing the predictor with the least significant p‐value and
recalculating the regression. This resulted in a more parsimonious but still effective model containing only
significant predictors with p‐values < 0.05 (Neter et al., 1985). The stepwise regression procedure was given
only the direct drivers of the electron flux to select from. The resulting variable set included ULF Pc5, ULF
Pc52, VLF, seed electron flux (270 keV channel), SMEd, prestorm electron flux (1.8–3.5 MeV channel), and
EMIC waves.

Once this variable set was selected, we explored the effect of the two different time periods, the first and the
second 24 hr of recovery after a storm, for each of the variables that were measured following storms. This
included six of the seven variables (prestorm electron flux obviously being measured only before storms),
resulting in 26 = 64 total combinations of first and second 24 hr of recovery (2 for the number of time period
options, 6 for the number of variables with those options). Each of these combinations also included pre-
storm electron flux as a predictor. All 64 time period combinations were tested using Model Type 1 (other
investigations shown in Figure 1 demonstrated that these time combinations were very similar for Model
Type 2). The best of these were determined by finding the top 10 highest validation correlation coefficients,
which were all above 0.75.

We also determined whether certain variables were more influential on either the first or second 24 hr of
recovery. We gathered all models where the first 24 hr of recovery for the first variable was used, all

Figure 1. Validation correlation coefficient r across Model Types 1 and 2 (linear regressions) for the top 10 and bottom 5
Model Type 1 time period combinations. Each bar's label shows a sequence of 1's and 2's for the first or second 24 hr
of recovery for variables in the following order: ULF Pc5, ULF Pc52, VLF, seed electrons, SMEd, and EMIC. Prestorm
electron flux is also included in these models.
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models where the second 24‐hr period for the first variable was used, all
models where the first 24‐hr period of recovery for the second variable
was used, and so forth, giving us 12 groups of models. We then counted
the number of the top ten best models previously determined that were
in each group (Table 1).

Finally, using the top five time period combinations determined from
Model Type 1, we ran all three model types using a larger predictor set.
This set included all the same variables as before, as well as V, N, Bz ratio,
Dst, and pressure. The different time period combinations produced very
similar results in Model Type 2; therefore, the top time period combina-
tions from Model Type 1 were used for the other models. This is demon-

strated in Figure 1, where the top 10 and bottom 5 time period combinations found with Model Type 1
follow the same trend in Model Type 2.

4. Results

The goal of these analyses was to determine an effective predictive model to forecast the relativistic electron
flux and also to explore some general trends in building such models, such as the time period combinations
for each variable, model type, and variable sets. Once the best model was selected, we examined the standar-
dized coefficients of each variable in the regression to see which variables are the most influential.

4.1. Determining the Best Model
4.1.1. Time Periods and Model Type
We sorted the validation correlation coefficients from the Model Type 1 runs from largest to smallest and
sampled a smaller number of combinations to run with the other two model types. Because we did not find
that the overall trends differed greatly, we did not run all 64 for Model Types 2 and 3. Figure 1 shows r values
for the top ten and bottom five combinations across Model Types 1 and 2.

All three model types were run using the time period combination with the highest validation
correlation coefficient found in Figure 1a. This combination used most variables measured in the first 24
hr of recovery, with the exception of the VLF. We find that Model Type 2 (linear regression predicting flux
difference) produces the best prediction, as seen by the r, TPR, TNR, and ACC values across model types in
Figure 2b. This is also evident in Figure 1, as Model Type 2 consistently has a higher r relative to Model Type
1. In Figure 2a, the prestorm flux is seen to be significant (p‐value < 0.05) in every run of Model Type 2. This

Table 1
Number of Times the First or Second 24 hr of Recovery Time Periods
Were Used for Each Variable in the Top 10 Best Time Period
Combinations (Using Model Type 1)

Variable First 24 hr of recovery Second 24 hr of recovery

ULF Pc5 7 3
ULF Pc52 5 5
VLF 2 8
Seed electrons 10 0
SMEd 6 4
EMIC 8 2

Figure 2. Significance frequencies, r, and crosstab values for Model Types 1, 2, and 3 for the best time period model by r
(all variables are measured in the first 24 hr of recovery except the VLF).
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is unsurprising, as prestorm flux is used in calculating the flux difference, but its addition as a covariate
improves the model. Otherwise, the significance frequencies between Model Type 1 and 2 are very similar,
indicating that similar variables are influencing the two model types equally. We are unable to compare
Model Types 1 and 2 by the crosstab metrics; however, the validation correlation coefficient r is larger in
Model Type 2 (0.9 vs. 0.8).

While the significance frequencies for Model 3 are very low for nearly all variables compared to those for
Models 1 and 2 (Figure 2a), this is not necessarily an indication that Model 3 is an ineffective analysis
method. The important tests of the models’ effectiveness are the crosstab metrics. If the model can predict
flux changes well (indicated by good crosstab metrics), poor significance frequencies do not necessarily mat-
ter. The crosstab metrics for Model 3 are slightly weaker than for Model 2 (Figure 2b), indicating that Model
2 is a somewhat more effective model.

We conclude thatModel Type 2 is amore effective predictivemodel for these data and this variable set.However,
Model Type 1 offers the advantage of predicting the actual values of the electronflux,whereasModel Type 2 pre-
dicts the magnitude of the flux increase or decrease. Depending on the application of these models, one or the
other type may be more useful despite the difference in validation correlation coefficients.

In the process of determining the best time period combinations for a predictive model, we observed trends
in the ideal time periods for each variable. We found that several, though not all, of the variables were sig-
nificant mostly in either the first or the second 24 hr of recovery. For example, 7 of the top 10 combinations
hadULF Pc5 in the first 24‐hr time period, suggesting that is the best time period to use for that variable. This
information is shown in Table 1.

We found that VLF is significant more in the second day of recovery (8 of the 10 best models of Table 1).
ULF Pc5, seed electrons, and EMIC waves are all mostly significant in the first 24 hr of recovery. The seed
electrons were especially clear, as all 10 of the best models used data measured in the first 24 hr of recovery.
The SMEd and the squared ULF Pc5 were most influential in the first 24 hr about half the time.
4.1.2. Variable Sets
More variablesmaymake for a bettermodel as they providemore information for the algorithm toworkwith.
We ran all three model types again, this time including five more variables: V, N, Bz ratio, Dst, and pressure,
all measured in the first 24 hr of recovery. All other variables are based on observations during the first 24 hr
of recovery, except for the VLF waves, which uses the second 24‐hr period. The significance frequencies are
shown in Figure 3a, and r values, and cross‐tabulation measurements are shown in Figure 3b. Comparing to
Figure 2 in section 4.1.1, we do not see a significant improvement in the models from adding more variables.
Both the r values and the cross‐tabulation measurements are virtually the same for both variable sets in each
model type. Evidently, these additional variables are unnecessary for an effective predictive model.
4.1.3. Low Success With Logistic Regression
We see in Figures 2a and 3a that the significance frequencies for Model Type 3 (logistic regression) are quite
low—some variables have values of 0, and all others are ≤0.16 in the smaller variable set (Figure 2), and
≤0.21 in the larger variable set (Figure 3) (prestorm flux is considered a covariate, and as such its significance
frequency value of 1 in both figures is not noteworthy). As previously stated, these low significance frequen-
cies do not necessarily indicate that this model is less effective; however, we do see slightly lower crosstab
measures in Model 3 as compared to Model 2.

Whereas we have defined an increase or decrease in the electron flux to be any change between prestorm or
poststorm flux, Reeves et al. (2003) required a relative change of a factor of at least 2. This corresponds to a
cutoff of 0.3 with our log flux values. With this definition, storms during which the electron flux increased or
decreased only very slightly are classified as having had no change in flux. Using this 0.3 cutoff rather than
our original cutoff of 0 for Model Types 2 and 3, we find a slight improvement in the validation correlation
coefficient r and crosstab measures, as shown in Table 2.

This new 0.3 cutoff does improve the logistic regression, but the improvement is slight, and additionally, the
new cutoff decreased the predictive effectiveness of Model Type 2 in all measurements but the TNR.

4.2. Standardized Coefficients of the Best Model

Having determined the best model to be Model Type 2 (linear regression predicting flux difference, all vari-
ables measured in the first 24 hr of recovery except for VLF waves, which uses observations in the second 24
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hr, and no solar wind parameters), we next calculated the standardized model coefficients (Figure 4). These
allow a direct comparison of predictor influences, regardless of differing scales. When including the ULF
Pc52, the ULF Pc5 shows the strongest influence on electron flux. If the squared term is dropped, ULF
Pc5 still has a stronger influence than VLF, SMEd, and EMIC, and similar influence as the seed electrons.

5. Discussion

Geomagnetic disturbances have been associated with relativistic electron flux enhancements during the
recovery phase, due in part to the resulting increases in the parameters that are thought to drive electron flux
increases. However, not all storms result in appreciable increases in electron flux (Kim et al., 2015; Reeves
et al., 2003; Turner et al., 2013; Zhao & Li, 2013). Furthermore, we cannot predict the behavior of the elec-
tron flux using merely the intensity of the Dst index during a storm (Reeves, 1998). Further parameters are
necessary to effectively predict relativistic electron flux. We find that ULF Pc5 waves and seed electrons are
the most influential variables in predicting electron flux at geosynchronous orbit, with lower but still obser-
vable effects of VLF and EMIC waves (Flux enhancements have also been observed at altitudes lower than
geosynchronous orbit, where they may be driven by different mechanisms than suggested by our present
study; Katsavrias et al., 2019). In our study, we explore prediction from three analysis types: prediction of
flux values using regression, prediction of the change in flux using regression, and predicting the likelihood
of a flux increase using logistic regression. Logistic regression is a simple classifier model, as it predicts prob-
abilities of observations belonging to a class (in this case, an increase in flux following a storm). Neural net-

works are more complex examples of classifier models, and several
previous studies have utilized neural networks to predict levels of these
electrons (O'Brien & McPherron, 2003; Perry et al., 2010). Neural net-
works can model nonlinear, often very complex data, and then predict
outcomes from new data using those models. However, given the “black
box” nature of these methods, it is difficult to infer physical meaning from
the results. If the goal is to learn which physical processes influence elec-
tron levels, it is better to use methods such as regression or logistic regres-
sion, which provide valuable information on the relative strength of
influence of each variable.

As in this paper, Simms et al. (2014) looked at only storm times (removing
the quiet periods from the data set). Their analyses showed that ULF Pc5
and seed electrons were influential, similar to what we have found here.

Figure 3. Significance frequencies, r, and crosstab values for Model Types 1, 2, and 3 for the best time period model by r
(all variables are measured in the first 24 hr of recovery except VLF).

Table 2
Model Types 2 and 3 (Linear Predicting Flux Difference, and Logistic)
Results Using an Electron Flux Cutoff of 0 and a Cutoff of a Relative
Change of a Factor of at Least 2

Cutoff
(log values):

Model Type 2 Model Type 3

r TPR TNR ACC r TPR TNR ACC

0 0.91 0.94 0.86 0.92 0.70 0.90 0.82 0.88
0.3 0.90 0.89 0.88 0.89 0.77 0.93 0.84 0.90

Note. The variables used were ULF Pc5, ULF Pc52, VLF, seed electrons,
SMEd, prestorm flux, and EMIC waves, all measured in the first 24 hr
of recovery but the VLF.
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However, the VLF data in their work was from ground stations, and they
did not find it had good predictive ability. VLF data from ground stations
is subject to transionospheric attenuation during periods of solar illumi-
nation. Therefore, ground‐based VLF measurements are not necessarily
representative of what is happening at the altitude of the satellite
(Simms et al., 2015; Smith et al., 2010). In this paper, we have a space‐
based VLF measure from the DEMETER satellite, and this does show
good predictive ability (Simms et al., 2019).

Previous work used the AE index as a measure of substorm activity. It was
not effective at predicting relativistic electron flux and may not have been
a good measure of substorm activity (Simms et al., 2014). In this paper, we
used the SMEd index. This is also measured at ground‐based magnet-
ometers, but the data comes only from the dark ionosphere (nightside)
which would be better able to measure substorm activity from the tail of
the magnetosphere. The SMEd also incorporates observations from a
wider range of magnetic latitudes and from amuch larger number of mag-
netometer stations than does the AE (Newell & Gjerloev, 2011). Despite
this change, waves, particularly ULF Pc5 and VLF, were more effective
predictors of relativistic electron flux than substorm activity.

Model Type 2 (linear regression predicting flux difference) was the most
effective at predicting the size of electron flux increases. The validation

correlation coefficient r was larger for this model type than for Model Type 1 (linear regression predicting
flux value). The crosstab measures (TPR, TNR, and ACC) were also higher for this model type than for
Model Type 3 (logistic regression). The logistic regression used in Model Type 3 had weaker predictive abil-
ities than the other twomodel types. However, in some circumstances wemay want a prediction of the prob-
ability of the electron flux increasing after a storm rather than a prediction of the actual value. In this case,
Model Type 3 may be the most useful model. These considerations should be taken into account, along with
the validation correlation coefficients and crosstab values, when selecting a model type.

The most effective models used waves, seed electrons, and substorm activity. In this predictor set, all but the
VLF were measured in the first 24 hr of recovery. The VLF was measured in the second 24 hr of recovery.
This time period combination produced the highest validation correlation coefficient and crosstab measures.
While ULF Pc5, seed electrons, and EMIC waves were more effective predictor variables when measured
during the first 24 hr of recovery, and VLF when measured during the second 24 hr of recovery, the period
of measurement was not important for SMEd.

The inclusion of additional parameters (V, N, Bz ratio, Dst, and pressure) did not produce significant
improvement, and we did not include them in our final model. The strong correlations of these variables
with flux enhancements seen in previous work, together with their apparent redundancy in our models,
likely indicates that solar wind and IMF influences are mediated through the driving of waves and seed elec-
trons which then directly influence flux levels.

Significance frequencies and the standardized coefficients for each variable in the final model show which
variables are more frequently statistically significant and have higher influence, respectively. ULF wave
power and the seed electrons are the most frequently significant of the possible predictor variables. ULF
Pc5 waves and seed electrons are also the strongest influences on flux changes as measured by the standar-
dized regression coefficients. Pre‐storm flux also shows a high significance frequency and influence, but this
is only because it was used to calculate the flux difference (the response variable).

As in Simms, Engebretson, Clilverd, Rodger, Lessard, et al. (2018), which looked at daily averages of para-
meters over the entire year, we again found that the effect of ULF Pc5 as determined by the standardized
coefficients was stronger than that of the VLF. However, both the ULF Pc5 and the VLF are important pre-
dictors, presumably because they are accelerating seed electrons, which were also associated with increased
flux. This supports the argument made in Simms, Engebretson, Clilverd, Rodger, Lessard, et al. (2018) that
both act independently to increase electron flux levels, rather than only the ULF Pc5 (suggested by Ozeke
et al., 2017), or only the VLF (suggested by Jaynes et al., 2015). The ULF Pc5 influence, however, is

Figure 4. Standardized model coefficients for Model Type 2 (linear predict-
ing flux difference) over the entire data set and best time period (all variables
measured in the first 24 hr of recovery, except VLF). Dark gray shows
standardized coefficients for the model with ULF Pc52, and light gray shows
standardized coefficients for themodel without ULF Pc52. All variables were
statistically significant (p < 0.05), with the exception of SMEd.
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nonlinear, showing the strongest effect at midrange values. The positive linear and negative squared ULF
Pc5 terms together describe this peak as a quadratic response of flux (Simms, Engebretson, Clilverd,
Rodger, & Reeves, 2018). When the ULF Pc52 term is not included, the standardized coefficient and influ-
ence of the ULF Pc5 is more similar to that of the VLF (Figure 4). The decreased influence of ULF Pc5 at
higher values may be related to the hypothesized electron loss during shock events due to outward radial
diffusion (Brautigam & Albert, 2000; Degeling et al., 2008; Hudson et al., 2014; Loto'aniu et al., 2010;
Shprits et al., 2006; Ukhorskiy et al., 2009; Zong et al., 2012).

A high prestorm flux has little room to grow substantially; thus, a large change in flux will not occur if flux is
already high. However, if flux before a storm is low, there could be a substantial increase. This appears as a
negative correlation between prestorm and poststorm flux.

There was a negative effect of the EMIC waves due to presumed precipitation (Figure 4). The substormmea-
sure did not show a significant direct effect on the electron flux, although we did not test whether it had an
indirect effect through the production of VLF waves.

Because this is not a controlled experiment with randomly assigned treatments, we cannot necessarily inter-
pret the significant p‐values as implying causation. However, these correlations support the idea that there is
a possible causal relationship between variables we have identified as predictors and the rise or fall of rela-
tivistic electron flux.

6. Conclusions

1. Following storms, increases in relativistic electron flux at geosynchronous orbit were well predicted by
three regression models: (1) multiple regression to predict flux values following storms, (2) multiple
regression to predict the size and direction of the change in electron flux, and (3) multiple logistic regres-
sion to predict only the probability of the flux rising or falling.

2. The ULF Pc5 waves and seed electrons were the most influential predictors. Additionally, the VLF and
EMIC waves were also influential. Including the IMF Bz, Dst, and solar wind number density, velocity,
and pressure in the data set did not improve any of the models.

3. The three model types had similar validation success, but Model 2 (linear predicting flux difference) was
determined to be the most effective.
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