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Abstract:
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twin pairs harboring mutations in the same driver genes, serial blood samples taken 4-5 years apart showed substantial twin-to-twin variability in
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41 Key Points 

42 

43 - Limited concordance and differing trajectories of clonal hematopoiesis in identical 

44 twins emphasize the importance of non-heritable factors 

45 

46 - Identification of elderly monozygotic twins with identical driver mutations suggests a 

47 common cellular origin in utero 

48 
 

49 Abstract 

50 

51 While acquisition of leukemia-associated somatic mutations by one or more hematopoietic 

52 stem cells (HSCs) is inevitable with advancing age, its consequences are highly variable, 

53 ranging from clinically silent clonal hematopoiesis (CH) to leukemic progression. To 

54 investigate the influence of heritable factors on CH, we performed deep targeted sequencing 

55 of blood DNA from 52 monozygotic (MZ) and 27 dizygotic (DZ) twin pairs (aged 70-99 years). 

56 Using this highly sensitive approach, we identified CH (Variant Allele Fraction (VAF) ≥0.5%) 

57 in 62% of individuals. We did not observe higher concordance for CH within MZ twin pairs as 

58 compared to that within DZ twin pairs, or to that expected by chance. However, we did identify 

59 two MZ pairs in which both twins harbored identical rare somatic mutations, suggesting a 

60 shared cell of origin. Finally, in three MZ twin pairs harboring mutations in the same driver 

61 genes, serial blood samples taken 4-5 years apart showed substantial twin-to-twin variability 

62 in clonal trajectories. Our findings propose that the inherited genome does not exert a 

63 dominant influence on the behavior of adult CH and provide evidence that CH mutations may 

64 be acquired in utero. 

65 

66 

67 Introduction 

68 

69 Clonal hematopoiesis (CH), the disproportionate expansion of blood cell clones harboring 

70 leukemia-associated somatic mutations, becomes more prevalent with advancing age and is 

71 the precursor of many hematological malignancies1-5. Acquisition of such mutations in one or 

72 more hematopoietic stem cells (HSCs) is inevitable by the age of 50-60 years6, yet the 

73 consequences of mutation acquisition are highly variable between individuals. A number of 

74 small studies tracking clonal size longitudinally suggest that clones in different individuals with 

75 similar or even identical mutations behave differently over time5-7. Indeed, this could also be 

76 inferred by the fact that clinically silent CH is common, whilst hematological cancers are rare5. 

77 Importantly, acquisition of additional driver mutations is not always necessary for malignant 

78 progression; for example, the JAK2-V617F mutation8 is the sole identifiable driver in many 

79 cases of myeloproliferative neoplasms (MPN), and SF3B1 mutations9,10 are often the only 

80 driver in Myelodysplastic Syndromes (MDS). The factors that allow mutant clones to expand 

81 in some individuals, and those restraining them in others, are not understood. 
 

82 There is some evidence that the inherited genome might play a role in this process. For 

83 example, recent studies reported (i) heritable genetic variants associated with increased risk 

84 of developing MPNs11,12, (ii) familial clustering of CH driven by TET2 mutations13, and (iii) 

85 increased prevalence of CH among relatives of individuals with myeloid, but not lymphoid, 

86 malignancies14. Moreover, a number of germline variants have emerged as important 
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87 determinants of hematological phenotypes in the general population and it is plausible that 

88 these exert epistatic effects on CH evolution15. In order to investigate whether the inherited 

89 genome influences CH development, we performed deep targeted sequencing on blood DNA 

90 from 52 monozygotic (MZ) and 27 dizygotic (DZ) twin pairs, and analyzed patterns of twin-to- 

91 twin concordance for CH. 

92 

93 

94 Methods 

95 

96 We studied blood DNA from 158 individuals from the TwinsUK cohort, comprising 52 MZ and 

97 27 DZ twin pairs with no history of hematological malignancy, aged 70-99 years (150 females, 

98 8 males)16. Samples were obtained with informed consent and appropriate ethics committee 

99 approval (REC reference EC04/015). Target enrichment for 41 genes implicated in CH and 

100 myeloid malignancies (Agilent SureSelect, ELID 0735431, Supplemental Table 1) was 

101 performed successfully for 154 samples. Libraries were sequenced on Illumina HiSeq 2000 

102 and variant-calling was performed as we described previously5. Briefly, somatic single 

103 nucleotide variants (SNV) and small indels were called using Shearwater (v.1.21.5), an 

104 algorithm designed to detect subclonal mutations in deep sequencing experiments17. Two 

105 additional variant-calling algorithms were applied to complement this approach: CaVEMan 

106 (v.1.11.2) for SNVs, and Pindel (v.2.2) for indels. Finally, allele counts at recurrent mutation 

107 hotspots were verified using an in-house script (https://github.com/cancerit/alleleCount). 

108 Driver mutations were defined according to evidence for functional relevance in CH and 

109 hematological malignancy (Supplemental Table 2). Methodological validation of our approach 

110 is outlined in Supplemental Figure 1, and Supplemental Tables 3 and 4. 
 

111 Statistical analyses were performed in R (version 3.4.0). Fisher’s Exact Test was used to 

112 assess twin concordance for CH. Null distributions of CH within the MZ and DZ groups were 

113 generated using random sample permutation (1000 iterations). The openMX R package was 

114 used for maximum likelihood modeling of genetic and environmental contributions to CH18. 

115 

116 

117 Results and Discussion 

118 

119 Mutational landscape in the cohort 

120 Using deep sequencing (mean 1650X) and sensitive variant-calling, we identified CH (VAF 

121 ≥0.5%) in 62% of individuals (95/154; Figure 1A), with larger clones (VAF ≥2%) present in 41 

122 individuals (Figure 1B). Somatic driver mutations were identified in 16 of the 41 genes 

123 sequenced, with mutations in the epigenetic regulators DNMT3A and TET2 predominant 

124 (Figure 1C-E; Supplemental Table 5). Almost one third of individuals (48/154) harbored 

125 multiple distinct mutations (Figure 1F), often in the same gene and at different VAFs 

126 (Supplemental Figure 2), suggesting the presence of multiple clones or subclones. 
 

127 CH in twin pairs 

128 Comparing age-matched samples from MZ and DZ groups (age range 70-80 years; n=33 MZ 

129 pairs and 24 DZ pairs), the overall prevalence of CH was very similar (59% and 54% 

130 respectively; p=0.70). We did not observe significantly higher concordance for CH within MZ 

131 twin pairs as compared to DZ pairs (p=0.59, Figure 2A). Furthermore, using random 
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132 permutation to model the null distribution, we found no difference in the observed distributions 

133 of CH among either MZ or DZ twins as compared to those expected by chance (p=1 for MZ; 

134 p=0.86 for DZ; Figure 2A). Excess twin concordance was also not observed when CH positivity 

135 was defined by (i) mutation in DNMT3A, (ii) mutation in TET2, and (iii) mutation in any gene 

136 with VAF > 2% (Supplemental Figure 3). 
 

137 In 8 individuals (4 MZ twin pairs), serial blood samples were taken 4-5 years apart. CH clones 

138 were identified in both twins in 3/4 of these pairs, and inter-twin variability in clonal size and 

139 trajectory was seen in all three (Figure 2B). This was the case even for clones harboring 

140 mutations in the same gene. 
 

141 In summary, we find no evidence of high concordance for CH in elderly MZ twins. In addition, 

142 we observe disparity in clonal size and trajectory over time, even between MZ twins harboring 

143 mutations in the same driver genes. Whilst our cohort size is too small to precisely quantify 

144 genetic versus environmental contributions, maximum likelihood modeling provides support 

145 for a substantial influence of non-inherited factors upon CH emergence and behavior 

146 (Supplemental Table 6). Overwhelming evidence shows that mutation acquisition is 

147 widespread and inevitable in the aging hematopoietic system6, as is the case in other normal 

148 tissues studied to date19,20, indicating that this is not the rate-limiting step in CH development. 

149 By suggesting that the inherited genome does not play a dominant role, our study frames non- 

150 genetic events as important factors in CH emergence. Altered interactions of the HSC with its 

151 environment, associated with processes such as aging, senescence, inflammation and 

152 infection are plausible operators, some of which are supported by evidence from experimental 

153 models21. 
 

154 Despite the overall lack of concordance for CH, we did identify two MZ pairs in which both 

155 twins harbored identical nonsense mutations, namely KDM6A Q692X in one pair and 

156 DNMT3A R598X in the other (Figure 2C-D; Supplemental Table 5). KDM6A (=UTX) is a 

157 histone H3 lysine 27 demethylase which acts as a tumor suppressor in a number of different 

158 cancers, including 2-3% of myeloid malignancies22. There are no somatic mutation hotspots 

159 in KDM6A and the substitution identified here is not reported in either the COSMIC database 

160 (https://cancer.sanger.ac.uk/cosmic) or in several large, albeit less sensitive, CH studies (total 

161 number of participants >30,000)1,2,4. Although mutations in DNMT3A are generally more 

162 prevalent, the particular mutation detected here is not common. In this light, the likelihood that 

163 each member of these two twin pairs acquired the same mutation independently and by 

164 chance is extremely small. A more plausible explanation is that the somatic mutation occurred 

165 just once during embryogenesis, either prior to twinning or in an HSC whose progeny reached 

166 both twins through shared circulation in utero. While monozygotic twin sharing of somatic 

167 mutations has been demonstrated in other settings, including pediatric leukemia, this is the 

168 first description of possible acquisition of adult-type CH driver mutations in utero23-25. 
 

169 In conclusion, the lack of strong concordance for CH and the variable clonal trajectories 

170 between MZ twins, indicate that the inherited genome does not exert a profound influence on 

171 the emergence and behavior of CH in older adults. In addition, sharing of rare somatic 

172 mutations by MZ twins raises the possibility that mutations driving adult CH may sometimes 

173 be acquired in utero. 

174 

175 
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272 Figure Legends 

273 

274 Figure 1. CH in individuals. (A) Grey bars depict the proportions of individuals with CH (dark 

275 grey = MZs, light grey = DZs), and white bars represent the proportions without CH, as 

276 identified in respective age groups. Absolute numbers of individuals in each proportion are 

277 shown within each bar. There were no DZ individuals above the age of 80 years. (B) 

278 Distribution of the maximum Variant Allele Frequency (VAF) per individual among those with 

279 CH. VAFs are divided into 0.5% bins. (C) In the main grid, each column represents one 

280 individual, and each row one gene. If a grid square is colored, a mutation was detected, and 

281 the specific color indicates the mutation type (see key). The right-hand plot shows the 

282 proportion of the cohort harboring a mutation in each gene. (D) and (E) Somatic variants 

283 identified in DNMT3A (D) and TET2 (E). Conserved / functional protein domains are colored 

284 red, and intervening domains grey. Each circle connected to the protein cartoon represents a 

285 mutation. Missense mutations are represented above and truncating mutations below the 

286 protein, with the color of the circle indicating specific mutation type (as per the key in (C)). (F) 

287 Distribution of the total number of mutations per individual. 

288 

289 Figure 2. CH in twin pairs. (A) Concordance for CH status in age-matched MZ (n=33) and 

290 DZ (n=24) twin pairs. Red bars represent the proportion of twin pairs in which neither has CH, 

291 blue bars show the proportion in which only one twin has CH, and green bars show the 

292 proportion in which both twins have CH. Observed (obs) proportions are those identified in the 

293 cohort, and expected (exp) are those generated by random sample permutation. There was 

294 no significant difference when comparing (i) the observed distributions between MZ and DZ 

295 twins (p=0.59), (ii) the observed vs expected distributions within in the MZ (p=1) or DZ (p=0.86) 

296 twin groups (Fisher’s exact test). (B) Change in VAF over time in the 3 twin pairs in which both 

297 individuals had CH and serial samples were available. Each box surrounded by a solid line 

298 represents a twin pair. The fourth box surrounded by a dashed line is data from the third twin 

299 pair with the y-scale zoomed in to lower VAFs. In each box, change in VAF over time is 

300 represented by a solid line for one twin, and a dotted line for the other, with line color indicating 

301 which gene was mutated. Figures (C) and (D) focus on the variants identified in two MZ twin 

302 pairs in which both twins harbored identical nonsense mutations: KDM6A 

303 (NM_021140:c.C2074T:p.Q692X) (C), and DNMT3A (NM_175629:c.C1792T:p.R598X) (D). 

304 Each ‘triplet’ represents the three non-reference bases at each genomic position, centered on 

305 the identified variant position (denoted as 0). For each alternate allele, the VAF of each of the 

306 154 individuals in the cohort is plotted. The horizontal dashed line represents the lower limit 

307 of sensitivity of variant-calling, with calls below this VAF considered error. MZ twins with 

308 identical mutations are plotted in red, all other individuals in black. 
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