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Investigating the role of ZEB2 in the establishment of neuroepithelial 

architecture and axon tract formation 
 

Stefano Luca Giandomenico 

 

Abstract 
 

A bioinformatic screen of comparative genomic and transcriptomic datasets identified the transcription 

factor ZEB2 as a putative regulator of brain size. In this work we show that in both human brain 

organoids and mouse embryos ZEB2 is expressed in telencephalic neuroepithelial cells (NECs) before 

the switch to radial glia (RGCs). By establishing a human embryonic stem cell (hESC) model of ZEB2 

heterozygous loss-of-function we show that this gene modulates the changes in cell-cell contacts at the 

transition from NECs to RGCs. Upon partial loss of ZEB2, changes in cell adhesion are mirrored by 

changes in tissue architecture, including thin elongated neuroepithelial buds with densely packed cells. 

We demonstrate that the secreted growth factor FGF2 is a positive regulator of ZEB2, which in turn 

suppresses FGF2 expression, thus establishing a link between ZEB2 and a known regulator of NEC 

proliferation. Preliminary gain-of-function (GOF) experiments confirm ZEB2 as a neurogenic driver 

and pharmacological rescue by dual SMAD inhibition suggests that ZEB2 may be acting by inhibiting 

BMP and TGFβ at the transition from NECs to RGCs. In an attempt to model also later aspects of the 

ZEB2 mutant phenotype we adapt air-liquid interface culture to cerebral organoids. Air-liquid 

interface cerebral organoids (ALI-COs) develop thick axon tracts with distinct morphologies and 

hodologies; including long-range projection within and away from the organoid, growth cone turning, 

decussation and dynamics typical of pioneer and follower axons. Single-cell RNA sequencing on ALI-

COs reveals a wide array of cortical cell types and retrograde tracing demonstrates that the tracts 

established have distinct and accurate molecular identities. ALI-COs develop active neuronal 

networks and escaping tracts can innervate mouse spinal cord explants and evoke paraspinal muscle 

contractions. Overall, we establish a novel culture paradigm that allows in vitro modeling of axon 

guidance and network establishment. Lastly, we demonstrate that ALI-COs can be used to study the 

ultrastructure of navigating axons by cryo-electron tomography.  
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Preface 

 

My dissertation on “Investigating the role of ZEB2 in the establishment of neuroepithelial 

architecture and axon tract formation” is divided into five chapters. The first chapter introduces the 

early stages of human embryonic development, it then focuses on the development of the cerebral 

cortex and details the molecular and cell biological mechanisms involved in areal patterning, 

progenitor proliferation, neurogenesis and axon guidance. The chapter ends by presenting the 

transcription factor ZEB2, its known roles in brain development across different model systems and its 

implication in human disease, and a statement of the research goals of the project. Chapter two 

describes in details the materials and methods used in the study. Chapter three examines the role of 

ZEB2 in human cerebral cortex development using cerebral organoids as a model system. ZEB2 was 

identified through a bioinformatics screen of comparative genomic and transcriptomic datasets as a 

putative regulator of brain size. In humans ZEB2 heterozygous loss-of-function (LOF) causes Mowat-

Wilson syndrome (MWS), a severe condition characterized by a number of central nervous system 

(CNS) defects. By contrast, heterozygous LOF mice do not show any observable phenotype. These 

observations underscore the importance of ZEB2 in human brain development and suggest that 

humans may have evolved sensitivity to ZEB2 gene dosage compared to mice. The goal of this chapter 

was to test gene dosage sensitivity in human brain development and model Mowat-Wilson syndrome 

in hESC-derived organoids. Chapter four presents an improved culture system implemented to model 

later neurodevelopmental stages in vitro. To model later developmental aspects of MWS we 

established an air-liquid interface culture paradigm able to recapitulate axon guidance and network 

establishment. Chapter five discusses the data presented in chapter three and four, highlighting their 

strengths and limitations, and outlining future experimental directions. 

 

My PhD work started with the establishment of ZEB2+/- hESC lines and characterization of the 

effects of partial loss of ZEB2 on neuroepithelial architecture. Towards the end of my second year, the 

research focus shifted to establishing a culture method that would enable us to expand the repertoire of 

neurodevelopmental events accessible in vitro. In fact, a long-standing limitation of in vitro 3D neural 

cultures had been the absence of vascularization, leading to necrosis in the center of organoids and 

spheroids. Improved culture survival had been achieved by transplanting organoids into the brain of a 

rodent host, but due to costs and labour this is not a viable solution for routine studies. Thus, we 

successfully implemented a simple air-liquid interface culture model that improves neural tissue 

maturation and long-term survival in vitro. 

 

Some of the concepts and schematics introduced in chapter one are published in ‘Giandomenico, 

S.L. & Lancaster, M.A., 2017. Probing human brain evolution and development in organoids. Current 

opinion in cell biology, 44, pp.36–43’ and the majority of the data presented in chapter four are 

published in ‘Giandomenico, S.L. et al., 2019. Cerebral organoids at the air-liquid interface generate 
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diverse nerve tracts with functional output. Nature neuroscience, 22(4), pp.669–679’, with parts of the 

publication adapted in the Materials & Methods and figure legends. 

 

It should be noted that the work on Air-Liquid Interface Cerebral Organoids (ALI-COs) was a joint 

effort and individual contributions are detailed here with specific reference to the data presented. Max 

Kellner analyzed the scRNA-seq data on embryonic mouse brain and produced figures 16a-d. 

Madeline A. Lancaster acquired the images shown in Fig. 24, Fig. 34a, b, Fig. 39a, b and performed 

the analyses shown in Fig. 27, 32 and 33. The MEA recordings shown in Fig. 31a, b, d-f and Fig. 40 

were performed by Susanna Mierau and me and analysed by Timothy Sit. The whole-cell patch-clamp 

recordings shown in Fig. 31g, h and Appendix 2 were performed and analyzed by Laura Masullo 

under the supervision of Marco Tripodi. The single cell RNA-seq experiment presented in Fig. 36, 37 

and 38 was performed and analyzed by George Gibbons, Lea M.D. Wenger and András Lakatos on 

ALI-COs generated by me. Elizabeth Apsley performed the luciferase reporter experiments presented 

in Fig. 23a under my supervision. The CTB quantifications shown in Fig. 39c were performed by 

Magdalena Sutcliffe. Microelectrode stimulation experiments shown in Fig 42 & 43 were performed 

by Susanna Mierau and me on samples I prepared. The latency shown in Fig. 43e was computed by 

Jerome Boulanger with help from Emmanuel Derivery. Jerome Boulanger also wrote the ImageJ 

macro used to analyze muscle contraction of organoid-mouse spinal cord explants. The cryo-CLEM 

data presented in Figure 44 were acquired and analyzed by Patrick Hoffmann from samples I 

prepared. 
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Abstract 

 

A bioinformatic screen of comparative genomic and transcriptomic datasets identified the 

transcription factor ZEB2 as a putative regulator of brain size. In this work we show that in both 

human brain organoids and mouse embryos ZEB2 is expressed in telencephalic neuroepithelial cells 

(NECs) before the switch to radial glia (RGCs). By establishing a human embryonic stem cell (hESC) 

model of ZEB2 heterozygous loss-of-function we show that this gene modulates the changes in cell-

cell contacts at the transition from NECs to RGCs. Upon partial loss of ZEB2, changes in cell adhesion 

are mirrored by changes in tissue architecture, including thin elongated neuroepithelial buds with 

densely packed cells. We demonstrate that the secreted growth factor FGF2 is a positive regulator of 

ZEB2, which in turn suppresses FGF2 expression, thus establishing a link between ZEB2 and a 

known regulator of NEC proliferation. Preliminary gain-of-function (GOF) experiments confirm 

ZEB2 as a neurogenic driver and pharmacological rescue by dual SMAD inhibition suggests that 

ZEB2 may be acting by inhibiting BMP and TGFβ at the transition from NECs to RGCs. In an attempt 

to model also later aspects of the ZEB2 mutant phenotype we adapt air-liquid interface culture to 

cerebral organoids. Air-liquid interface cerebral organoids (ALI-COs) develop thick axon tracts with 

distinct morphologies and hodologies; including long-range projection within and away from the 

organoid, growth cone turning, decussation and dynamics typical of pioneer and follower axons. 

Single-cell RNA sequencing on ALI-COs reveals a wide array of cortical cell types and retrograde 

tracing demonstrates that the tracts established have distinct and accurate molecular identities. ALI-

COs develop active neuronal networks and escaping tracts can innervate mouse spinal cord explants 

and evoke paraspinal muscle contractions. Overall, we establish a novel culture paradigm that allows 

in vitro modeling of axon guidance and network establishment. Lastly, we demonstrate that ALI-COs 

can be used to study the ultrastructure of navigating axons by cryo-electron tomography.  
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Chapter 1: Introduction 

Opening statement 

 

The neocortex or isocortex is the part of the brain responsible for voluntary motor control, 

processing of sensory stimuli and higher-order cognitive functions in mammals (Finlay & Darlington 

1995). The emergence of this structure is believed to underlie the associative cognitive abilities that 

led to the evolutionary success of our clade. Its rapid expansion and diversification down the hominin 

lineage has produced brains capable of the complex abstract reasoning necessary for tasks such as 

musical composition and poetry (Molnár & Pollen 2014; Krubitzer & Kaas 2005; Montiel et al. 2016). 

 

The six-layered neocortex is the more philogenetically recent part of the mammalian cortex, which 

also includes the more ancient and structurally simpler three-layered olfactory (piriform) cortex and 

the archicortex (Braak 2012). These more primitive structures can give us insight into the evolutionary 

origin of the neocortex. In fact, a three-layered allocortex reminiscent of the mammalian olfactory 

cortex is found in the dorsal telencephalon of reptiles and bears homology to layers I, V and VI of the 

neocortex (Charvet et al. 2009; Molnár & Cheung 2006). In contrast, layers II/III appear to be a more 

novel structural implementation and, whilst in mice they are not typically distinguished as separate, in 

primates they are greatly expanded and are regarded as two separate neuronal compartments (Molnár 

& Cheung 2006; Smart et al. 2002).  

 

This dramatic expansion of layers II//III in primates is an example of how, even within the context 

of a shared six-layer architecture, brains of different mammalian orders display a high degree of 

diversity (Giandomenico & Lancaster 2017). Moreover, neuronal scaling rules derived from isotropic 

fractionation studies have shown that, with the exception of primates where neocortex size and neuron 

numbers are in a linear relationship, for all other mammals measured to date neocortex size increases 

exponentially with number of neurons (Herculano-Houzel 2012; Herculano-Houzel et al. 2014). Thus, 

primates appear to have evolved the ability to build brains with higher neuronal numbers for their size 

than any other mammalian order, and this likely contributed to their increased cognitive abilities 

(Herculano-Houzel 2012). 

 

In addition to neuronal scaling, historically, another parameter introduced to describe what may be 

the biological basis of intelligence is the encephalisation quotient (EQ). The EQ for a given species is 

calculated as the ratio of its observed brain size to its expected brain size (Jerison 1973). This 

parameter indicates how much larger or smaller a given species’ brain is than what would be expected 

for its body size. The average EQ for humans is approximately three-fold higher than that of our 

closest living relative, the chimpanzee and it is estimated that the human neocortex contains roughly 

16×109 neurons compared to the 6×109 of the chimpanzee cortex (Herculano-Houzel 2009; Roth & 
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Dicke 2005). These figures underscore how, within a relativey short evolutionary time window (~5-6 

MYA), the hominin neocortex has undergone dramatic expansion, and spark scientific interest into the 

molecular determinants of these changes (White et al. 2009). 

 

Whilst most functional studies in vertebrate brain development have been done in chick, mouse, rat 

and only more recently ferret, most of the work on other amniotes and mammals consists of 

neuroanatomical studies on post-mortem samples (Long et al. 2016; Florio et al. 2015; Boyd et al. 

2015; Wong et al. 2015; Johnson et al. 2018). This has been largely due to obvious ethical issues 

associated with working with large mammals, the lack of genetic tools, high costs and very limited 

tissue availability. The result is that at present, despite the wealth of data coming from next generation 

sequencing studies, our understanding of the molecular mechanisms that shaped the human brain are 

extremely limited (Pollen et al. 2014; Nowakowski et al. 2017; Fietz et al. 2010). In this context, the 

recent development of neural organoids has provided the scientific community with a highly tractable 

in vitro system that could open a window on embryonic brain development across mammals (Mora-

Bermúdez et al. 2016; Otani et al. 2016). Spurred by the recent advances in organoid technologies the 

work in this thesis attempts to describe some of the molecular mechanisms at play during early human 

embryonic brain development. Furthermore, we introduce a novel 3D tissue culture system that 

captures later stages of cortical development, thus extending the developmental window accessible to 

us in vitro. 
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The embryonic origin of the human central nervous system (CNS) 

Fertilisation, cleavage divisions and implantation in humans 

 

Following fertilisation the single-cell zygote undergoes a series of near-synchronous cleavage 

divisions that produce seemingly identical blastomeres (Fig. 1a & b). After 3-4 divisions the 

blastomeres undergo a process termed ‘compaction’ whereby they start to form tight junctions with 

one another forming a solid cluster of ~20-30 cells, the embryo at this stage is referred to as morula 

(Bavister 2012). As development progresses the outer cells of the morula begin to express Na+ pumps, 

Na+/K+ ATPases and Na+/H+ exchangers, leading to osmotic accumulation of fluid inside of the 

embryo (Eckert & Fleming 2008; Moriwaki et al. 2007). After formation of this fluid-filled cavity 

(blastocoel or blastocyst cavity) the developing embryo is called blastocyst and comprises of a hollow 

shell of trophoblast cells containing the inner cell mass (ICM) (Fig. 1c). Cells of the ICM contribute to 

the three germ layers of the embryo, while trophoblast cells give rise to the foetal membrane system 

(Fig. 1c).  

 

Through a series of osmotically driven expansion-contraction cycles and enzymatic digestion of the 

glycoprotein matrix the blastocyst hatches out of the pellucid zone and can interact with the 

endometrium (Leonavicius et al. 2018) (Fig. 1d). The trophoblast cells in contact with the endometrial 

epithelial cells form a syncytium (i.e. a single cell comprising several nuclei), known as 

syncytiotrophoblast, that starts to secrete pro-apoptotic factors and lytic enzymes that erode the basal 

lamina and expose the underlying stroma for implantation (Fig. 1e). Through this process the 

blastocyst embeds itself in the endometrium and rapidly becomes surrounded by cells of the 

proliferating syncytiotrophoblast. At the end of implantation the embryonic bud consists of two 

juxtaposed hemispheric cavities; the amniotic cavity positioned dorsally and surrounded by epiblast 

cells (i.e. primitive ectoderm), and the umbilical vesicle positioned ventrally and surrounded by 

hypoblast cells (i.e. primitive endoderm) (Fig. 1f). These two cell layers lying on one another form the 

human bilaminar embryonic disk, that through the process of gastrulation will go on to form an 

embryo comprising three germ layers (Schoenwolf et al. 2014).  
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Figure 1 From a fertilized egg to the bilaminar stage embryo.  

a, Schematic representation of a zygote 16-20 hrs after insemination. b, Schematic representation of an 

eight-cell stage embryo, after three rounds of cleavage divisions, approximately 72 hrs after 

insemination. c, Schematic representation of a blastocyst, after cleavage divisions the embryo 

undergoes compaction and through accumulation of intercellular fluid the blastocyst cavity becomes 

established. The blastocyst comprises an embryoblast of ~12 cells that will give rise to the embryonic 

tissue, the surrounding throphoblast, a single cell layer that contributes the extraembryonic supportive 

tissue, and the pellucid zone, a glycoprotein layer enveloping the embryo. d, Schematic representation 

of the embryo emerging from the pellucid zone and the trophoblast cells become able to mediate 

implantation. e, After hatching out of the pellucid zone the blastocyst starts interacting with the 

epithelial lining of the endometrium. The syncytiotrophoblast invades the uterine epithelium and 

secrete pro-apoptotic factors and proteolytic enzymes that erode the basal lamina and expose the 

underlying stroma for implantation. e, Cross-section of the bilaminar stage embryo after implantation, 

comprising the embryonic disk, composed of primitive ectoderm overlying the primitive endoderm. 

Adapted from: http://www.embryology.ch/anglais/hdisqueembry/triderm01.html  
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Formation of the primitive groove, gastrulation and genesis of the notochord 

 

Through proliferation and coordinated movement of epiblast cells the dorsal face of the embryonic 

disk starts to thicken along the midline. This structure is termed primitive streak and defines the 

rostro-caudal (anteroposterior) axis of the developing embryo (Fig. 2a). As the primitive streak 

elongates by addition of epiblast cells at the caudal end of the embryo, an invagination of the epiblast 

layer forms anteriorly (primitive groove), and progressively spreads in an anterior fashion, forming the 

primitive pit with the primitive node (Hensen’s node in birds) (Fig. 2a & b). The node and the 

primitive groove act as entry points for migrating epiblast cells in the space between the primitive 

ectoderm and the primitive endoderm (Fig. 2a & b) (Schoenwolf et al. 2014).  

 

Depending on the time and position of immigration the epiblast cells acquire different fates; the 

first cells to occupy this space form the definitive endoderm along with the more anterior notochordal 

process. As the notochordal process grows anteriorly up to the prechordal plate and fuses with the 

underlying endoderm, the primitive streak recedes back toward the caudal region (Fig. 2b). Part of the 

fused tissue degenerates, creating an opening in the embryonic disk (i.e. neuroenteric canal), through 

which the amniotic cavity and the yolk sack communicate for a short time (Fig. 2b). The notochordal 

process is initially in the form of a flat plate surrounded by endoderm, it then undergoes a process of 

invagination and delamination that leads to the establishment of an internal rod-like structure running 

along the antero-posterior (AP) axis, the notochord (Fig. 2b & c) (Ben Pansky 1982; Schoenwolf et al. 

2014). Collectively, the series of events leading to the trilaminar stage, when the embryo comprises 

three germ layers, is commonly referred to as gastrulation and is highly conserved across vertebrates 

(Solnica-Krezel 2005). 
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Figure 2 The process of gastrulation.  

a, Dorsal magnified schematic of the embryonic disk and slice showing ectoderm, mesoderm and 

endoderm. The embryo is undergoing gastrulation and epiblast cells of the embryonic disk migrate 

through the primitive groove to form the mesoderm. The sagittal and coronal planes are annotated. b, 

Schematic diagrams of embryo sagittal sections showing: I) formation of the chordal process from 

immigrating epiblast cells through the primitive node, II) genesis of the axial canal through 

progressive extension of the chordal process, III) establishment of the notochord by separation from 

the endoderm, leading to the formation of the neuroenteric canal at the posterior end of the notochord. 

The amniotic cavity and the umbilical cavity are in communication. IV) Sagittal section of an embryo 

after neural tube closure, the cordal plate has separated from the ectoderm, forming the notochord, 

which comes to lie in the middle of the mesoderm between the overlying ectoderm and the underlying 

endoderm. The neural groove has partly fused and the neural tube is progressively closing along the 

AP axis. The dashed line indicates the coronal plane. c, Schematic coronal sections of the embryo 

before and after neural tube closure, the top schematic shows the process of neural tube closure, in 

which the neural plate progressively invaginates forming the neural groove. The neural folds come 



 24 

progressively closer until touching each other and cells at the boundary between ectoderm and 

neuroectoderm delaminate, forming the neural crest. Bottom schematic shows the internalised neural 

tube with overlying ectoderm and underlying notochord and endoderm. The neural tube is surrounded 

by mesoderm. The schematics shown were adapted from: 

http://www.embryology.ch/anglais/hdisqueembry/triderm01.html  

 

Neural induction, neural tube closure and formation of brain vesicles 

 

At the same time as the epiblast cells ingress into the interlaminar space, the embryonic ectoderm 

overlying the notochordal process thickens and forms the neural plate. The neural plate is first induced 

in the medio-sagittal region of ectoderm rostral to the primitive streak and, as the notochordal process 

elongates, it widens and extends rostrally (Fig. 2b, c & 3a) (Schoenwolf et al. 2014). Approximately 

50% of the ectoderm is instructed to become neuroectoderm, which gives rise to the central nervous 

system (CNS) of the embryo, the other half of the ectoderm forms the epidermis (Squire et al. 2012). 

The process of neural induction is driven by instructive cues secreted by the primitive node, the 

developing notochord and the paraxial mesoderm (Fig. 2c). As development progresses, the cells at 

the edges of the neural plate relax their cell-cell junctions and start to elevate, forming the neural folds 

and a central depression of the ectoderm, termed neural groove (Schoenwolf et al. 2014) (Fig. 2c & 

3a). Through the process of bidirectional fusion, the neural folds draw progressively closer and 

eventually adhere to one another to form the neural tube with the overlying surface ectoderm (Fig. 2c 

& 3a). Neural tube closure begins in the cervical region of the embryo, it then extends towards both 

ends of the embryo and is completed first at the cranial neuropore (anterior) and shortly after at the 

caudal neuropore (posterior) (Fig. 3a) (Squire et al. 2012). 

 

Other important cell populations specified in the process of neural induction and neural tube 

closure are the ectodermal placodes and the neural crest. The ectodermal placodes are thickenings of 

the cranial ectoderm that generate sensory neurons of the nose and inner ear, nasal pituitary 

components and the lens of the eye in the adult (Streit 2007). The neural crest is a transient population 

of highly migratory multipotent cells specified at the neural folds by the interaction of neural and non-

neural ectoderm (Sauka-Spengler & Bronner-Fraser 2008). Upon induction, neural crest cells undergo 

a process of epithelial-mesenchymal transition (EMT), delaminate and migrate across the embryo to 

generate neurons and glia of the peripheral nervous system (PNS), head mesenchyme, cardiac crest 

and melanocytes (Fig. 2c) (Kalcheim 2015).  

 

The neural tube comprises of a pseudostratified columnar neuroepithelium surrounding a central 

cerebrospinal fluid (CSF) -filled cavity. The neural plate is wide rostrally, tapered caudally and upon 

neural tube closure at the anterior end of the embryo, the three primary cerebral vesicles form (Fig. 

3b). These three structures correspond to the prosencephalon (forebrain), mesencephalon (midbrain) 
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and rhombencephalon (hindbrain), and represent the fundamental building blocks of the adult brain 

(Fig. 3b) (Squire et al. 2012). During the 5th gestational week in humans and at ~E9.5 in mouse the 

secondary brain vesicles become established; rostral to caudal, the forebrain becomes subdivided into 

telencephalon and diencephalon, and the hindbrain into metencephalon and myencephalon (Fig. 3b). 

The telencephalon can be further subdivided into dorsal telencephalon or pallium, giving rise to the 

cortex and hippocampus, and the ventral telencephalon or subpallium, forming the basal ganglia (Fig. 

3b) (Squire et al. 2012).  

 

So far, we have described the series of developmental events going from zygote formation to the 

establishment of the pallium, the early embryonic precursor of the cerebral cortex. Before focusing on 

the cell biology of neurogenesis and the histogenesis of the cortex, we turn back to neurulation and 

discuss the molecular signalling pathways that drive neural induction and patterning of the 

telencephalon. 
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Figure 3 Development of the central nervous system.  

a, Dorsal view schematics of the developing embryonic disk represented left to right and top to bottom 

in order of developmental stage. Initially, the primitive streak elongates anteriorly and the chordal 

process is induced in close proximity to the primitive node. As gastrulation advances and the embryo 

elongates, the primitive streak recedes and shifts posteriorly. The chordal process and neural plate 

expand anteriorly and the primitive streak eventually disappears. The neural plate develops together 

with the notochord and is first identifiable as a medio-sagittal thickening of the epithelium lying 

anterior to the primitive node. At the anterior end the neural plate is wider and will give rise to the 

brain vesicles, at the posterior end is tapered and will form the spinal cord. The neural plate is induced 

by factors released by the underlying axial mesoderm (AME) and notochord. During the third 

gestational week the edges of the neural plate rise and the medial neuroectoderm invaginates, forming 

the neural folds with the central neural groove.  The neural folds draw progressively closer to each 

other and fuse to form the neural tube, which becomes internalised and covered by the ectoderm. 

Neural tube closure starts in the cervical region and extends both anteriorly and posteriorly. Neural 

tube closure is completed first at the anterior neuropore and subsequently at the posterior neuropore. 

In parallel to the development of the neural tube, the epiblast cells that ingressed into the primitive 

node to form the paraxial mesoderm form a pair of cylinder-shaped epithelial structures lying lateral to 

the neural groove. Through the process of metamerization these epithelial cylinders become 

segmented and form the somites, embryonic transition organs that contain precursor cells to the 

sclerotome (i.e. axial skeleton), myotome (i.e. musculature of neck and trunk) and dermatome (i.e. 

subcutaneous tissue and skin).  b, Left is a diagram of the secondary brain vesicles with the 

corresponding adult structures annotated on the right. Top right is a schematic representation of a ~39 

day old embryo with overlying diagram of the secondary brain vesicles colour-coded as on the left 

diagram. Bottom right is a schematic representation of a ~56 day old embryo with overlying diagram 

of the secondary brain vesicles colour-coded as on the left diagram. The scalebars correspond to 1 mm 

and give a sense for the notable increase in size of the telencephalon. The schematics reported were 

adapted and modified from: http://www.embryology.ch/anglais/iperiodembry/carnegie07.html  
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The molecular drivers of neural induction and telencephalic patterning 

The default model of neural induction and axial patterning in the embryo 

 

Important steps in the identification of the molecular players of neural induction were, in the 1920s, 

the demonstration that in Xenopus the dorsal blastopore lip (DBL) acts as an organising centre that 

specifies the CNS and, in the 1980s, the finding that members of the fibroblast growth factor (FGF) 

family and transforming growth factor beta (TGFβ) superfamily can induce mesodermal identity in 

animal cap explants (Spemann 1938; Grunz 2013) (Slack et al. 1987; Kimelman & Kirschner 1987). 

Later, through screens of cDNA libraries, several molecules (i.e. noggin, chordin, follistatin) were 

identified as the factors secreted by the DBL responsible for its neural inductive properties and, among 

them, chordin was recognised as the homolog of the known Drosophila BMP-antagonist Sog (Smith 

& Harland 1992; Lamb et al. 1993; Sasai et al. 1995; Piccolo et al. 1996; Ferguson & Anderson 1992; 

Wharton et al. 1993). This observation raised the possibility that neural fate induction involved an 

ancient mechanism of TGFβ signalling inhibition, conserved from arthropods all the way to 

vertebrates. Strong evidence in support of this hypothesis came from the expression of a dominant 

negative TGFβ receptor in Xenopus, which was shown to readily convert animal cap explants from 

epithelial to neural (Hemmati-Brivanlou & Melton 1992). All these lines of evidence formed the basis 

for the default model of neural induction, which postulates that inhibition of bone morphogenic factor 

(BMP) signalling, a subtype of the TGFβ family, is sufficient to specify neural fate in the ectoderm 

and that in the absence of any signal the ectodermal cells will spontaneously take up neural fate 

(Grunz & Tacke 1989; Hemmati-Brivanlou & Melton 1992; Hemmati-Brivanlou et al. 1994; 

Hemmati-Brivanlou & Melton 1994).  

 

Although a role for BMP signalling inhibition in neural induction has been unambiguously 

demonstrated, other factors such FGFs and Wnts have been reported to have neural inductive 

properties and this has led to the formulation of an alternative instructive model of neural induction 

(Delaune et al. 2005; Linker & Stern 2004; Streit et al. 2000). Some of the key points of contention 

include the extent to which these other signalling pathways promote neural induction across different 

species, if they do so in a BMP-independent manner or they converge on downstream effectors of this 

pathway. These questions have begun to be addressed in mammals with the use of in vitro culture of 

embryonic stem cell (ESC). However, addressing the sufficiency of BMP signalling in mammalian 

neural induction has been complicated by the fact that culture of both mouse and human ESCs 

(mESCs and hESCs) requires addition of extrinsic factors such as serum, leukemia inhibitory factor 

(LIF), FGFs and Wnts. Through a combination of different culture approaches, including limiting 

dilution, coculture with neuralizing feeders and addition of different cocktails of factors, a requirement 

for BMP signalling inhibition for efficient neural induction in both mESCs and hESCs was confirmed 

(Kawasaki et al. 2000; Tropepe et al. 2001). However, due to a number of conflicting reports, to this 

day, the specific contribution of FGF signalling in neural induction remains ill-defined (Chambers et 
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al. 2009; Vallier et al. 2004; Greber et al. 2010; Cohen et al. 2010; Smukler et al. 2006; Delaune et al. 

2005).  

 

The difficulty in dissecting the precise role and order of signalling events driving neurulation likely 

stems from the fact that this process in vivo is tightly linked to gastrulation and neural tube patterning 

(Fig. 4a). Therefore, it is not surprising that we are still missing a clear picture of the spatiotemporal 

series of signalling events at play. The neural plate may appear as a homogenous population of 

neuroepithelial cells, but already before neural tube closure it starts being subdivided into different 

domains by differential gene expression along the antero-posterior (AP) and medio-lateral, later DV, 

axes (Tsuda et al. 2002; Niehrs 2004). A first indication of this came from experiments showing that 

grafting of the Xenopus DBL caused ectopic induction of different CNS regions depending on the age 

of the donor embryo (Zoltewicz & Gerhart 1997). In the 1950s, Niewkoop’s recombination 

experiments led to the formulation of a model whereby a morphogen gradient induces posterior 

identity in a dose dependent fashion (Fig. 4b) (Vonica & Gumbiner 2007). Later work characterised 

the chemical nature of this AP patterning signal; Wnts posteriorize the neural plate through an 

anterior-low posterior-high gradient established by the expression of secreted Wnt inhibitors  (ie. 

Cerberus, Dickkopf1 and Frzb1) by the notochord (Fig. 4a & b) (Kiecker & Niehrs 2001; Niehrs 

2004). At later stages, FGFs and retinoic acid also play a role in AP patterning of the neural tube 

(Maden 2007; Mason 2007). In a similar fashion, a hierarchy of morphogen gradients was shown to 

promote patterning along the DV axis. BMPs secreted by the epidermal ectoderm flanking the edges 

of the neural plate and BMP inhibitors secreted by the axial mesoderm (AME) pattern the neural plate 

with a lateral-high low-medial gradient of BMP activation (Fig. 4b). It is thought that the main role of 

BMP signalling is to stimulate secretion of Wnt ligands so that, following neural tube closure, the 

dorsalizing action of Wnts from the roof plate (RP) antagonises the ventralizing influence of sonic 

hedgehog (SHH) secreted by the notochord (Chiang et al. 1996; Martí et al. 1995; Le Dréau & Martí 

2012; Li et al. 2009; Chesnutt et al. 2004). Thus, a system of quasi-orthogonal BMP and Wnt 

gradients sets up the basic Cartesian coordinates of the developing embryo and initiates the signalling 

events that lead to fine-level patterning of the neural tube (Fig. 4b) (Squire et al. 2012).  
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Figure 4 The molecular players of neural induction and embryonic axial plan establishment.  

The transformation of ectodermal cells into neural cells is thought to be the default state. However, 

neural differentiation is antagonised by the tonic release of BMPs by the ectoderm. During 

gastrulation, BMP- and TGFβ-inhibitors such as follistatin, chordin and noggin are secreted by the 

notochord and inhibit the activation of these signalling cascades in the overlying ectoderm, which is 

thus induced to become neuroectoderm. This leads to the establishment of the neural plate. 

Furthermore, FGFs secreted by the anterior neural ridge (ANR) and other sources act by inhibiting 

BMP transcription. b, Schematic representation of an amphibian embryo at the neurula stage as basic 

model of the bilaterian axial plan and reported is the double-gradient model of axes formation 

(Kiecker & Niehrs 2001). The schematic shows orthogonal gradients of Wnts and BMPs high-to-low 

in the posterior (P)-to-anterior (A) and lateral (L)-to-medial (M) planes, respectively. The schematic 

shown were adapted from: http://www.embryology.ch/francais/vcns/tubecrete02.html and Kiecker & 

Niehrs 2001. 

 

Telencephalic induction and dorsoventral regionalization 

 

We now focus on the interplay of signalling events that mediate establishment and regionalisation 

of the telencephalon. The organising centre responsible for specification and patterning of the 

telencephalon lies at the boundary between the anterior neuroectoderm and the underlying ectoderm, 

and is commonly referred to as anterior neural ridge (ANR) (Houart et al. 1998; Houart et al. 2002; 

Shimamura & Rubenstein 1997). In mouse and zebrafish Wnt antagonists (i.e. Tlc  and Six3) secreted 

by the ANR were shown to be necessary for induction of the telencephalon and drive expression of 

Fgf8 (Houart et al. 2002; Lagutin et al. 2003). FGFs (i.e. Fgf3, 8, 15, 17 and 18) are additional factors 

secreted by the ANR important for telencephalic induction (McWhirter et al. 1997; Maruoka et al. 

1998). Application of beads soaked in FGF8 to anterior neural plate explants promotes expression of 



 31 

the telencephalic precursor cell marker Foxg1, and Fgf8 deletion in mice leads to a decrease in 

telencephalic size and abnormal patterning (Shimamura & Rubenstein 1997; Storm et al. 2006). These 

results points to an important role of Fgf8 in telencephalic development, while at the same time 

suggesting that there may be a certain level of redundancy among FGF family members in this 

process. In fact, when FGF signalling is abolished in the anterior neural plate by deletion of three FGF 

receptor genes the entire telencephalon fails to form (Paek et al. 2009). Importantly, Fgfs and Foxg1 

appear to form a positive feedback loop and Foxg1 has been shown to be essential for the 

establishment of both dorsal and ventral telencephalic domains (Xuan et al. 1995). 

 

The region of the neural plate instructed by the ANR to adopt a telencephalic fate starts to express 

Foxg1 along with genes that drive regionalisation of the telencephalon. In fact, even before neural tube 

closure has occurred the telencephalon becomes subdivived into two molecularly distinct domains, 

precursors of the pallium and subpallium. Albeit poorly understood, the mechanism responsible for the 

initial regionalization of the telencephalic neuroepithelium involves a balance between the dorsalizing 

action of the transcription factor Gli3 in its activator form and the antagonistic, ventralizing activity of 

Shh secreted by the neural plate midline (Rallu et al. 2002; Tole et al. 2000; Rash & Grove 2007). 

Overexpression of Shh in zebrafish and mouse embryos induces ventral telencephalic markers (i.e. 

Dlx2, Gsx2, Nkx2.1) in the presumptive dorsal telencephalon and conversely, Shh knockout leads to 

loss of these markers (Kohtz et al. 1998; Barth & Wilson 1995; Chiang et al. 1996). Interestingly, 

whilst ablation of Gli3 and Shh largely restores early ventral patterning, Foxg1-/- mice lack ventral 

telencephalic progenitors and the phenotype is not rescued by Gli3 knockout (Rallu et al. 2002; Aoto 

et al. 2002). This, along with the fact that Gli3-/-;Foxg1-/- mice completely lack telencephalic identity, 

suggests that these two factors represent the core transcriptional unit responsible for telencephalic 

induction (Hanashima et al. 2007). 

 

Telencephalic organizing centres and patterning 

 

Immediately after neural tube closure, in a coronal section of the telencephalon, the pallium can be 

subdivided into four regions; the medial pallium (MP), containing the hem and the hippocampal 

primordium, the dorsal pallium (DP), which gives rise to the neocortex, the lateral pallium (LP), the 

precursor of the olfactory cortex, and the ventral pallium (VP), which goes on to form the 

claustroamygdaloid complex (Fig. 5a). Similarly, the subpallium is compartmentalised into medial, 

lateral and dorsolateral ganglionic eminence (i.e. MGE, LGE and dLGE) (Fig. 5a). The dLGE, also 

referred to as antihem, and the hem are important signalling centres that organise the telencephalic 

neuroepithelium (Tole et al. 2000). Along the AP axis, the antihem and the septum are most prominent 

rostrally and grow progressively smaller towards the posterior end of the telencephalon, conversely 

the hem and the thalamic eminence (TE) are predominant posteriorly. Both hem and antihem fates are 

suppressed by expression of Lhx2, which marks the presumptive neocortical neurepithelium (Fig. 5b) 
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(Bulchand et al. 2001; Monuki et al. 2001; Godbole et al. 2018). Expression of Bmps and Ngn was 

reported to be important for specification of hem fate, while Gsh2 and Pax6 for antihem (Fig. 5a) 

(Fernandes et al. 2007; Imayoshi et al. 2008; Carney et al. 2009). 

 

The hem is marked by the expression of several members of the Wnt and Bmp family, while the 

antihem expresses members of the epidermal growth factor (EGF) family along with Wnt signalling 

antagonists (Fig. 5a). The hem was shown to be necessary and sufficient for induction of hippocampal 

fate in the adjacent neuroepithelium and this function appears mediated by secretion of WNTs 

(Mangale et al. 2008; Godbole et al. 2018; Montiel & Aboitiz 2015). WNTs emanating from the hem, 

in particular WNT3A, promote proliferation of early dorsal cortex progenitors and together with 

BMPs contribute to cortical patterning (Caronia-Brown et al. 2014; Munji et al. 2011; Shimogori et al. 

2004). The hem region also gives rise to the choroid plexus, a structure comprising capillaries and 

ependymal cells that produces the CSF in the adult (Montiel & Aboitiz 2015). Although a clear 

molecular understanding of the function of the antihem is still missing, secretion of Frizzled-related 

WNT antagonists by this structure is required for specification and maintenance of the ventral pallium 

(Assimacopoulos et al. 2003; Kim et al. 2001). Furthermore, several studies have implicated the 

antihem in the regulation of interneuron migration from the MGE and LGE to the cortex and axon 

guidance (Chapouton et al. 1999; Hirata et al. 2002; Stoykova et al. 1997).   

 

Other important signalling centres for telencephalic patterning include the septum and TE (Abellán 

et al. 2010; Bielle et al. 2005; Meyer et al. 2002). The septum is found at the anterior end of the 

telencephalon and is a source of FGFs (Montiel & Aboitiz 2015). Fgf8, in particular, is highly 

expressed in the septum and establishes a concentration gradient along the telencephalon that induces 

ventral/anterior fates and promotes proliferation (Toyoda et al. 2010; Borello et al. 2008). The TE, 

found between the telencephalon and the diencephalon, has been recently proposed as an additional 

organising centre for telencephalic development, after the recognition that it is a source of Cajal-

Retzius cells (CRCs) (Cabrera-Socorro et al. 2007; Meyer 2010). These are among the first neurons 

being produced in the telencephalon, they originate from the hem, antihem, septum and TE and 

migrate across the outermost layer of the cortex and secrete the glycoprotein Reelin, required for 

correct cortical lamination. 
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Figure 5 Telencephalic organisers and areal patterning.  

a, Schematic representation of the mouse telencephalon (left) and coronal section of a telencephalic 

hemisphere (right) with annotated domains. Arealization of the cortex occurs through expression of 

transcription factors according to specific spatial gradients in response to morphogen gradients 

originating from telencephalic organising centres. FGF8 and FGF17 are secreted from the anterior 

neural ridge (ANR) (red), Wnts and BMPs are secreted from the cortical hem (blue). The antihem 

(yellow) is identified based on the expression of secreted signalling molecules including TgFα, Sfrp2, 

FGF7 and Neuregulin 1 and 3. The expression domain of of Shh in the ventral telencephalon defines a 

fourth patterning centre that has no well defined function in telencephalic patterning, although it is 

important for establishment of dorso-ventral polarisation. The expression of these secreted factors 

leads to arealization of the telencephalon into: medial pallium (MP), dorsal pallium (DP), lateral 

pallium (LP), ventral pallium (VP), lateral ganglionic eminence (LGE) and medial ganglionic 

eminence (MGE). b, Schematic representation of a telencephalic hemisphere coronal section reporting 

the transcription factor cross-regulation network involved in specifying pallium and subpallium. 

Expression of Emx1,2, Pax6 and Lhx2 mark the pallium and are responsible for counteracting the 

ventralizing effect of Gsh2 and Mash1, which drive expression of the ventral telencephalic markers 

Dlx1 and Dlx2. Adapted and modified from: O'Leary & Nakagawa 2002; Schuurmans & Guillemot 

2002; Tole & Hébert 2013; O'Leary et al. 2013. 
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Histogenesis of the neocortex 

Patterning leads to distinct neuroepithelial domains with diverse neurogenic behaviours   

   

The entire CNS develops from the neural plate, which comprises a simple pseudostratified 

columnar neuroepithelium. To begin with, this structure is fairly homogenous in terms of cell type 

composition and morphology. However, as discussed in the previous section, through the 

establishment of organising centres and morphogen gradients, the embryonic axial plan becomes 

established and local signalling cascades pattern the neuroepithelium, subdividing it into distinct 

molecular domains. The transcriptional networks that define these domains are such that even though 

the fundamental progenitor unit (i.e. the neuroepithelial cell) is common to all regions of the 

developing CNS, neurogenesis proceeds differently depending on what structure we consider. For 

example, while in the mouse spinal cord neurogenesis begins around E8 and is largely over by E13, in 

the telencephalon it starts around E11 and continues until about E17.5 (Kawakami et al. 2009). 

Interestingly, also the properties of the neurogenic progenitor cells are different in these different 

domains. In fact, spinal cord progenitors retain epithelial features for the whole duration of the 

neurogenic period; in contrast, telencephalic progenitors lose epithelial character before starting to 

make neurons (Götz & Huttner 2005; Aaku-Saraste et al. 1996). Therefore, in this section we will 

discuss the cell biological processes and progenitor types at play during neurogenesis, with a particular 

emphasis on the cortex. 

 

Cell biology of neuroepithelial cells (NECs) 

 

The first account of neuroepithelial cells (NECs) in the developing human neural tube dates back to 

the end of the 19th century (His 1889). In the neural tube NECs are interbound in a single layer of 

pseudostratified epithelium with apicobasal polarity - the apical cell surface contacts the inner lumenal 

lining and the basal process attaches to the basal lamina. Work in the developing chicken neural tube 

has shown that NECs are strongly epithelial in character and express markers of adherens (e.g. N-

cadherin) and tight junctions (e.g. Occludin and ZO1) (Aaku-Saraste et al. 1996; Hatta et al. 1987; 

Sakane & Miyamoto 2013). The neuroepithelium is described as pseudostratified because, despite 

comprising a single cell layer, the nuclei of individual NECs are staggered along the thickness of the 

neuroepithelium in what appears to be a stratified structure (Sauer 1935). Pseudostratification is a 

consequence of the behaviour of NECs known as interkinetic nuclear migration (INM), whereby, 

depending on the cell cycle phase, the cell nucleus will move to a different position of the 

neuroepithelial wall. At mitosis the cells retract their basal processes and round up at the apical 

surface, as they enter and progress through G1 their basal processes become re-established and the 

nuclei translocate to the basal surface of the neuroepithelium where the cells undergo S phase. During 

G2 the nuclei revert back to the apical surface and the cycle continues (Subramanian et al. 2017). INM 
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was shown to depend on changes in the actin and microtubule cytoskeleton (Xie et al. 2007; Zhang et 

al. 2009; Schenk et al. 2009). One hypothesis as to the function of this process is that, the ventricle 

size being equal, INM and pseudostratification allow more space to accommodate mitotic cells and 

overall number of progenitors. Another hypothesis is that INM might be a way for the cells to sample 

their surrounding environment and receive signals that influence their proliferative behaviour (Taverna 

& Huttner 2010). Recently, timelapse imaging of the human telencephalic neuroepithelium (GW8-10) 

has shown that NECs predominantly undergo symmetric proliferative divisions that increase the size 

of the founder progenitor population, thus promoting tangential expansion of the cortex (Fig. 6a & b) 

(Subramanian et al. 2017).  

 

FGF signalling regulates NECs expansion and the timing of neurogenesis 

 

The FGF family of ligands counts 22 members in mouse and human and many of them play a role 

in neurodevelopment (Beenken & Mohammadi 2009; Mason 2007). There are four FGF receptors 

(FGFR1-4) belonging to the tyrosine kinase family. FGF binding to its receptor triggers receptor 

dimerization, transphosphorylation and activation of two main downstream signalling cascades; the 

mitogen activated protein kinase (MAPK) pathway and the phosphatidylinositol 3-kinase (PI3K)/AKT 

pathway. These pathways affect a vast array of cellular processes ranging from cytoskeletal dynamics 

to proliferation and differentiation (Beenken & Mohammadi 2009; Mason 2007). As previously 

mentioned, a number of FGF ligands are secreted from multiple sources and organizers along the 

neural tube, and the extent to which they are redundant or indispensable is difficult to determine. A 

large body of studies has focused on the function of FGF2 in NECs proliferation. Fgf2 mRNA is 

detected as early as E9 in the murine neuroepithelium, and between E14 and E18 both mRNA and 

protein levels increase dramatically in the progenitors to then tail off postnatally (Nurcombe et al. 

1993; Raballo et al. 2000; Vaccarino et al. 1999). Fgf2 homozygous loss-of-function mutation in mice 

results in decreased progenitor proliferation and reduced cortical surface, while gain-of-function 

experiments show the opposite effect (Ortega et al. 1998; Vaccarino et al. 1999; Raballo et al. 2000; 

Dono et al. 1998). Thus, FGF2 is an important regulator of NECs, promoting proliferation and cortical 

expansion and delaying neurogenesis. The ability of FGF2 to inhibit neurogenesis seems to occur 

through induction of the Notch pathway and FGF1 has been reported to mediate similar effects (Faux 

et al. 2001). Another important NEC regulator is FGF10, which is expressed at the apical surface of 

the mouse neuroepithelium transiently between E10 and E11.5. In Fgf10 -/- mice the expression of glial 

markers, typical of neurogenic progenitors, starts later than in control animals and the onset of 

neurogenesis is delayed (Sahara & O'Leary 2009). Conversely, gain-of-function experiments by in 

utero electroporation in the cortex of E11.5 mice have shown that FGF10 is sufficient to promote 

expression of glial markers (Sahara & O'Leary 2009). Therefore, FGF10 seems to regulate the timing 

of telencephalic neurogenesis.  
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Apical radial glia cells (aRGCs) and the onset of neurogenesis 

 

Between E10-11 in mouse and GW8-10 in human telencephalic NECs start to turn into a more 

differentiated neural progenitor type know as aRGCs and neurogenesis begins (Fig. 6a & b). In terms 

of their molecular profile and morphology NECs and aRGCs are very similar and both express nestin, 

adherens junctions components and multipotency markers (e.g. SOX2 and PAX6) (Aaku-Saraste et al. 

1996; Götz & Huttner 2005). Like NECs, aRGCs display apicobasal polarity but are more elongated 

and their basal processes stretch significantly as the cortex develops. Also aRGCs undergo INM; 

however, whilst at mitosis NECs retract their basal processes and round up at the apical surface, 

aRGCs retain their basal fibres during division (Subramanian et al. 2017; Nakai & Fujita 1994). 

Retention of the basal fibre is thought to provide a scaffold for the newly born neurons to glide along 

and occupy more superficial layers of the cortex (Fig. 6a & b) (Rakic 1972; Rakic 1978). The 

transition from NECs to aRGCs is accompanied by downregulation of tight junctions components and 

upregulation of astroglial markers including the glutamate transporter GLAST, the intermediate 

filament protein GFAP and the lipid binding protein BLBP (Campbell & Götz 2002; Kriegstein & 

Götz 2003; Götz & Huttner 2005).  The appearance of cytoplasmic glycogen granules typically found 

in astrocytes is also a hallmark of aRGCs (Gadisseux & Evrard 1985).  

 

aRGCs extend a long basal process with several endfeet contacting the basal membrane 

extracellular matrix from which they receive growth factors and extracellular signals that modulate 

their proliferative behaviour. Blockade of laminin/integrin signalling to perturb the interaction 

between the basal aRGC fibre and the basal membrane leads to abnormal INM, neuronal migration 

defects and altered cortical layering (Radakovits et al. 2009; Förster et al. 2002; Haubst et al. 2006). 

This underscores the importance of the radial glia scaffold for correct cortical histogenesis. 

 

As the mammalian cortex grows in the radial dimension by the addition of layers of more fate-

restricted cells, different cellular compartments become established across the cortical wall. Overlying 

the ventricle is the ventricular zone (VZ), where aRGCs reside, and immediately basal is the 

subventricular zone (SVZ), populated by more differentiated progenitor types collectively referred to 

as basal progenitors cells (bPCs) (Fig. 6a & b). Above the SVZ are the intermediate zone (IZ) and the 

preplate (PP), which contains Cajal-Retzius cells originating from the MGE, LGE, TE and the septum 

(Fig. 6a & b) (Rakic 1972; Noctor et al. 2004; Marín-Padilla 1992). As previously mentioned, Cajal-

Retzius cells secrete the glycoprotein Reelin - guided by this chemotrofic cue, newly born 

telencephalic neurons migrate and position themselves radially into the PP, forming an organised 

structure termed cortical plate (CP) (Fig. 6a & b). The CP splits the PP into an inner and outer layer of 

pioneer neurons, the subplate (SP) and and the marginal zone (MZ), respectively (Fig. 6a & b) (Olson 

2014). Upon loss of Reelin the PP fails to split and neurons accumulate underneath it (Sheppard & 

Pearlman 1997; Jossin et al. 2004; Caviness & Sidman 1973). The inside-out organization of the 
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neocortex arises because, as development progresses, neurons generated in the VZ and SVZ migrate 

into the CP and occupy progressively more superficial positions (Fig. 6a-c) (Marín-Padilla 1992).  

 

 
 

 

 

 

Figure 6 The histogenesis of the cerebral cortex and the inside-out gradient of neurogenesis.  

a, Left is a schematic representation of a coronal section of a telencephalic hemisphere, the dashed 

lines demarcate different histological compartments corresponding to apical progenitors, basal 

progenitors and neurons. The dashed box highlights the region shown in b as development progresses. 

Right is a panel with the key cell types that populate the murine cortex throughout development; 

neuroepithelial cells (NECs), apical radial glia cells (aRGCs), intermediate progenitor cells (IPCs), 
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preplate neurons, deep layer neurons and superficial layer neurons. b, Schematic representation of the 

developing mouse cortical wall at different developmental stages. At E10.5, the cells that populate the 

cortex are NECs, the predominant mode of division is symmetric proliferative and more differentiated 

cell types such as IPCs and neurons are found in very low numbers. By E11.5 the apical progenitors 

have switched to an aRGC fate, neurogenesis commences and IPCs and neurons start to accumulate 

abventricularly. By E14.5 deep layer neurons have invaded and split the preplate into the marginal 

zone (MZ) and the subplate (SP) and have formed the cortical plate (CP). The accumulation of 

abventricular progenitors, termed basal progenitor cells (bPCs), leads to the establishment of a 

proliferative compartment distinct from the VZ, known as subventricular zone (SVZ). The SVZ is 

separated from the SP by a layer with high density of axonal processes, termed intermediate zone (IZ).  

At E16.5 there is a switch in production from deep- to superificial-layer neurons. In the adult brain, 

roughly six layers can be distinguished histologically and markers can be used to identify specific 

single layers or sets of layers. In the developing brain the separation of neurons into different layers is 

not well defined. c, Schematic representation of the inside-out-gradient of neurogenesis illustrating 

how, as development progresses, neurons corresponding to more superficial layers are produced and 

position themselves accordingly in the developing cortical wall. 

 

Different modes of cell division – direct versus indirect neurogenesis 

 

Similarly to NECs, aRGCs can undergo symmetric proliferative divisions to increase the progenitor 

numbers, but can also undergo asymmetric divisions that maintain the progenitor pool and produce a 

more fate-restricted daughter cell, either a neuron or an intermediate progenitor. Alternatively, they 

can undergo symmetric differentiative divisions in which two neurons are produced at the expense of 

the progenitor pool (Huttner & Kosodo 2005). Asymmetric cell divisions leading to the production of 

bPCs with limited self-renewal potential underlie the process of indirect neurogenesis. In contrast, in 

the process of direct neurogenesis aRGCs undergo division and neurons are produced without a bPC 

intermediate. Tracer-histology and timelapse imaging studies in mouse and human have shown that 

symmetric divisions are characteristic of the neuropeithelial stage and are often seen in young aRGCs 

– E10-12 in mouse and GW8-10 in human (Subramanian et al. 2017; Smart 1972). As neurogenesis 

progresses, aRGCs shift from a predominantly symmetric to a predominantly asymmetric mode of 

division (E15-17), and symmetric neurogenic divisions characterise the last stages of neurogenesis 

(E18) (Matsuzaki & Shitamukai 2015). Despite differences in the size and complexity of the SVZ, the 

establishment of an abventricular proliferative compartment seems to be shared across mammalian 

species (Haubensak et al. 2004; Noctor et al. 2004; Miyata et al. 2004; Vasistha et al. 2015). In 

contrast, reptiles and birds do not form a SVZ and neuronal production largely relies on direct 

neurogenesis (Cheung et al. 2007; Dugas-Ford & Ragsdale 2015; Cárdenas et al. 2018).  
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The SVZ – basal radial glia cells (bRGCs) and intermediate progenitor cells (IPCs) 

 

The developing rodent cortex comprises a relatively small SVZ populated predominantly by IPCs 

(Vasistha et al. 2015). By contrast, in primates and other large-brained mammals the abventricular 

progenitor pool is greatly expanded, to a point where two distinct proliferative domains can be 

distinguished; an inner SVZ (ISVZ) and an outer SVZ (OSVZ) separated by an inner fibre layer (IFL) 

rich in axonal projections (Hansen et al. 2010; Smart et al. 2002; Giandomenico & Lancaster 2017). 

The OSVZ is characterized by the presence of basal or outer radial glia cells (bRGCs or oRGCs) that 

similarly to aRGCs express the markers vimentin (VIM), nestin (NES), PAX6 and SOX2, but also 

express the lineage specific markers HOPX, TNC and ITGB5 (Pollen et al. 2015). As previously 

mentioned, depending on the phase of neurogenesis, aRGCs will shift from an initial symmetric 

proliferative mode of division, to asymmetric conservative and lastly to symmetric differentiative 

divisions (Vasistha et al. 2015; Noctor et al. 2004). In contrast, bRGCs predominantly self-renew and 

only after a large number of amplification cycles they differentiate to IPCs and neurons (Hansen et al. 

2010; Ostrem et al. 2017). Prior to undergoing division, bRGCs undergo mitotic somal translocation 

(MST), a process in which the soma rapidly ascends towards the cortical plate (Hansen et al. 2010). It 

has been suggested that, in a manner similar to INM, MST might serve to reduce crowding and allow 

to accommodate more cells in the OSVZ (Lui et al. 2011). 

 

Morphologically, the distinguishing features of bRGCs are a basal process that extends to the basal 

lamina, the absence of an apical process and lack of apical polarity markers (i.e. PROM1, ZO1 or 

PARD3) expression (Hansen et al. 2010). Nevertheless, recent live imaging work in macaque slice 

culture preparations has showed that OSVZ progenitors can also display a basal process, both basal 

and apical processes or neither, and they can alternate between morphotypes (Betizeau et al. 2013). 

Similar reports have also come from analysis of the developing sheep and ferret brains (Pilz et al. 

2013). However, because approximately a third of bRGCs in the macaque cortex express the IPC 

marker TBR2, it is argued that bRGCs with unconventional morphotypes may represent a class of 

IPCs rather than bRGCs (Ostrem et al. 2017). In this regard, it is unlikely that traditional histological 

and live imaging approaches will fully address the heterogeneity of morphotypes in the SVZ and 

OSVZ, and novel single-cell RNA sequencing (scRNA-seq) technologies along with spatial 

transcriptomics methods have started to provide more comprehensive insight into bPC diversity (Fan 

et al. 2018; Nowakowski et al. 2017). 

 

In terms of their origin, bRGCs can result either from direct delamination of aRGCs or from 

asymmetric divisions of aRGCs in which the cleavage plane is parallel to the ventricular surface 

(LaMonica et al. 2013; Gertz et al. 2014). In contrast, aRGC divisions with cleavage plane 

perpendicular to the ventricle predominantly produce a self-renewed bRGC and an IPC (LaMonica et 

al. 2013). This second type of division seems to be predominant in mouse where the BPs are almost 
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exclusively IPCs, while human aRGCs display equal proportions of vertical and horizontal divisions 

when the OSVZ is becoming established (Howard et al. 2006; Smart 1973; Ostrem et al. 2017). Thus, 

changes in cleavage plane preference throughout evolution may have contributed to the establishment 

of more complex and diverse bPC compartments (Ostrem et al. 2017).  

 

As already mentioned, in the mouse SVZ the most common bPCs are IPCs, unlike bRGCs they do 

not express the multipotency markers Pax6 and Sox2 and are instead characterised by the expression 

of Tbr2 and Ppp1r17 (Pollen et al. 2015). IPCs arise from asymmetric divisions of aRGCs, they lack 

adherens junctions, have multipolar morphology and are often found in close contact with blood 

vessels. It is estimated that 90% of IPC divisions are neurogenic and only 10% are symmetric 

expanding divisions (Noctor et al. 2004; Haubensak et al. 2004; Miyata et al. 2004). Thus, the 

transient amplifying potential of IPCs is very limited compared to that of bRGCs. Nevertheless, in 

mouse most cortical neurons are produced through a process of indirect neurogenesis relying on IPCs 

(Cárdenas et al. 2018). Although an SVZ as such is not found in reptiles, mitotic TBR2+ cells can be 

found scattered across the reptilian dorsal ventricular ridge and the avian pallium (Martínez-Cerdeño 

et al. 2012; Martínez-Cerdeño et al. 2016; Nomura et al. 2016). Therefore, from an evolutionary 

standpoint, TBR2+ intermediate progenitors may represent one of the first and most ancient 

mechanisms to shift from a direct to an indirect mode of neurogenesis (Cárdenas et al. 2018). Through 

the evolution of a diverse repertoire of progenitor cells with a diverse array of behaviours and mitotic 

profiles the cortex underwent a dramatic process of complexification that sees one of its highest 

achievements in the human neocortex (Fig. 7) (Giandomenico & Lancaster 2017). 
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Figure 7 Changes in pallial tissue architecture across evolutionary and developmental timescales 

across amniotes.  

a, Early on, at the neuroepithelial stage, the differences in size of the cortical primordia of reptiles, 

birds and mammals are comparatively small. However, as development progresses differences in cell-

cycle dynamics and lineage plasticity of bPCs produce a dramatic divergence in cortical size, 

architecture and complexity. Birds and reptiles rely predominantly on direct neurogenesis, they 

display limited numbers of bPCs, most of which are neurogenic. Lineage-specific developmental 

differences are also seen across different mammalian species, leading to a diverse repertoire of 

neocortical configurations. Compared to the murine SVZ, that of primates is dramatically expanded, to 

include an ISVZ and an OSVZ. Work in Macaque has shown that in terms of cell type composition the 

SVZ of primates is more complex than that of mouse, displaying a variety of cellular morphotypes 

(red dashed box) able to interconvert between one another. The reptilian pallium produces a three-

layered cortex similar to the mammalian paleocortex and comprising and internal plexiform layer 

(IPL), a cell dense layer (CDL) and an external plexiform layer (EPL). The avian hyperpallium, does 

not display layering and is instead organised into columnar-like regions. The mammalian neocortex 

comprises at least six layers, with primates showing further diversification into sublayers depending 

on the cortical area considered (e.g. 5-6 additional sublayers in visual cortex area VI are shown as an 

example). The adult brain structures are reported to scale, highlighting the dramatic increase in brain 

size over evolutionary time. Rounded arrows next to bPCs in the dashed box indicate self-renewal 

potential. Solid line—high capacity, dashed line—limited capacity. Reverse arrows indicate the ability 

to interconvert between morphotypes. The shaded panels delineate the three amniote classes; 

mammals—red, birds—blue, reptiles—green. The figure was taken from: Giandomenico & Lancaster 

2017. 

 

From the radial unit hypothesis to the discontinuous scaffold model 

 

Historically, one theory to describe cortical development has been the radial unit hypothesis, 

whereby the neurons that populate the cerebral cortex are produced during embryogenesis by aRGCs 

and migrate along the basal fibre of their mother cell or that of a close neighbour to form a cortical 

column (Rakic 1988). Symmetric divisions of aRGCs will produce more cortical columns and lead to 

cortical expansion in the tangential dimension. Within a cortical column the temporal information on 

the genesis of neurons is encoded in the order of the layers (Rakic 1974). Thus, through development, 

the two-dimensional positional information encoded in the VZ is converted into a three-dimensional 

structure where the x and y coordinates correspond to the position of the aRGC progenitor in the 

telencephalon, while the position along z is determined by the birth date of the cell (Rakic 1988). 

Evidence in support of this theory has come from several lineage tracing experiments showing that in 

the cortex of mammals, including macaque and human, neurons form clusters with clonal origin 
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(Kornack & Rakic 1995; Luskin et al. 1988; Letinic et al. 2002). Furthermore, this theory is consistent 

with the dramatic increase in surface area and the relatively small increase in cortical thickness seen 

across primates (Fig. 7) (Rakic 2009). Nevertheless, this theory was recently revisited and expanded to 

include a more prominent role of the OSVZ compartment in neurogenesis and cortical expansion (Fig. 

7) (Nowakowski et al. 2016). 

 

According to the radial unit hypothesis, the aRGC scaffold is responsible for guiding newly born 

neurons to their final basal position. In humans this seems to be the case until approximately GW16, 

but from GW18-19 the endfeet of aRGCs appear to no longer contact the basal lamina and their basal 

processes retract to the ISVZ and OSVZ (Sidman & Rakic 1973; DeAzevedo et al. 2003). Crystals of 

the lypophilic tracer DiI placed at the apical surface of organotypic slice preparations of human cortex 

mark aRGC processes spanning the entire cortical wall until GW15.5. The same experiment done at 

later stages of neurogenesis (GW17-24) reveals that the aRGC basal processes do not stretch further 

than the OSVZ, and DiI crystals placed at the pia only label the basal fibres of bRGCs (Nowakowski 

et al. 2016). Therefore, it appears that in humans the cortical radial glial scaffold undergoes 

reorganisation between GW15 and 17, switching from continuous to discontinuous. Following 

retraction of the basal process, aRGCs are termed truncated radial glia cells (tRGCs), they acquire a 

distinct transcriptional profile and their endfeet contact capillaries in the ISVZ and OSVZ. These 

structural changes appear to be paralleled by changes in the relative neurogenic contribution of the VZ 

and OSVZ, with bRGCs being the major contributors of supergranular layer neurons (Fig. 7) 

(Betizeau et al. 2013). According to this model, the switch to a discontinuous radial glia scaffold may 

have contributed to the expansion of supergranular layer neurons in primates (Nowakowski et al. 

2016). Importantly, these results should be interpreted with caution as they have not been 

independently validated, and the discontinuity of the scaffold may be a technical artefact due to 

differences in DiI diffusion rate at different developmental time-points. Furthermore, this process may 

not be unique to primates, and comprehensive characterisation of the truncated radial glia scaffold 

across different mammalian species is required to evaluate its relevance for cortical expansion and 

complexification. 
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Specification of cortical projection neurons 

The inside-out gradient of neurogenesis 

 

In the previous section we discussed the different progenitor types that populate the developing 

pallium, their properties, how they are found in different abundance across mammalian species, and 

how they can be organised in proliferative compartments of varying complexity. We will now 

consider how cortical glutamatergic excitatory neurons extend their axons over long distances to 

intracortical, subcortical and subcerebral targets to establish functional connections.  

 

The cerebral cortex comprises two main types of neurons; excitatory glutamatergic neurons and 

inhibitory GABAergic interneurons. It is estimated that in the adult mouse neocortex the ratio of 

pyramidal neurons to interneurons is approximately 5:1 and the correct balance between these two cell 

types is tightly controlled to ensure the correct establishment of cortical circuits (Sahara et al. 2012). 

GABAergic inhibitory interneurons represent an extrinsic contribution to the cortex, during 

development they originate from the MGE and LGE in the ventral pallium and invade the cortex 

initially by tangential migration along two highly stereotyped paths, the SVZ and the MZ, and then by 

radial migration into the CP (Tanaka & Nakajima 2012; Anderson et al. 1997; Lavdas et al. 1999; 

Tanaka et al. 2006; Ang et al. 2003). In contrast, the full complement of cortical pyramidal cells is 

generated in the VZ and SVZ of the pallium in sequential temporal waves and they migrate radially 

along the RGC scaffold towards the pia. In their migration, they position themselves basal to earlier-

born neurons in a process where layers are added in an inside-out fashion, layers VI and V first, 

followed by layers IV, III and II. At maturity, the different layers harbour distinct populations of 

projection neurons with specific morphology, transcriptional profile and projection pattern (i.e. 

hodology) (Kriegstein & Noctor 2004; Rakic 1972). The adult neocortex is organized into areas 

corresponding to functional subdivisions with distinct cytoarchitecture, chemoarchitecture, 

input/output connectivity and transcriptional profile (Molyneaux et al. 2007).  

 

Cortical axons navigation – molecular guidance cues in the CNS 

 

After migrating to and settling in the correct cortical layer, pyramidal cells start to send out axons 

to establish connections with appropriate targets in a process of circuit formation (Dickson 2002). The 

growing ends of axons, termed growth cones, consist of a central frame of microtubule bundles with a 

flat and expanded peripheral region of highly dynamic actin cytoskeleton that drives formation of 

filopodia and lamellipodia (Huber et al. 2003). Growth cones assume different morphologies, travel at 

different speeds and diplay different behaviours in response to their surrounding environment. Growth 

cones of pioneer axons typically have several active filopodia to sense the surrounding environment, 

few lamellipodia and display saltatory and exploratory behaviour. In contrast, growth cones of 
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follower axons are less branched and travel at higher speeds along the pioneers (Bak & Fraser 2003). 

Growth cones express cell surface receptors that interact with attractive and repulsive cues found on 

the surface of adjacent cells, in the extracellular matrix (ECM) or as soluble gradients (Kalil et al. 

2011). Changes in the complement of receptors expressed at the growth cone and integration between 

different sets of guidance cues, ECM and cell-surface proteins control cytoskeletal reorganization and 

axonal navigation (Kalil et al. 2011; Stoeckli 2018).  

 

The four major families of guidance cues include netrins, semaphorins, slits and ephrins (Judas et 

al. 2003). Netrins are a small family of secreted laminin-related proteins expressed along the ventral 

midline. In the CNS they establish diffusible gradients that generally attract commissural axons 

towards the midline (Kennedy et al. 1994; Serafini et al. 1994). The receptors for netrins are DCC and 

neogenin, and upon ligand binding they trigger attraction and repulsion, respectively (Chisholm & 

Tessier-Lavigne 1999). The semaphorins are a large family of transmembrane and secreted guidance 

molecules, they are divided into eight classes and mainly act as chemorepellents, but they can also 

attract certain classes of axons. Classes 3-7 are the vertebrate semaphorins; class 3 semaphorins are 

secreted, classes 4-6 are transmembrane proteins and class 7 are GPI-anchored proteins (Chisholm & 

Tessier-Lavigne 1999; Nakamura et al. 2000). Semaphorins guide axons by binding to receptor 

complexes composed of neuropilins and plexins (Tamagnone & Comoglio 2000). The most studied 

member of this family of guidance molecules is Semaphorin 3A, its main receptor is Neuropilin-1 and 

in complex they mediate sensory and motor axon repulsion, inhibition of cortical collateral branching 

and pruning of hippocampal axons (Shadrach & Pierchala 2018). Notably, in the telencephalon 

Neuropilin-1-Semaphorin 3C signalling has been shown to mediate attraction of pre-crossing axons of 

the corpus callosum (CC) to the midline (Niquille et al. 2009; Piper et al. 2009). Another important 

family of secreted chemorepellents are the slits, which in mammals include three genes (i.e. slit1-3). 

The Robo family of transmembrane receptors transduce slit signalling (Kidd et al. 1998a; Kidd et al. 

1998b). In vertebrates slits are secreted from the floor plate of the spinal cord and from the midline of 

the forebrain and midbrain. In the spinal cord, post-crossing axons upregulate expression of Robo so 

that repulsion from slits secreted from the floorplate ensures that midline crossing occurs only once 

(Zou et al. 2000). Eph-ephrin signalling is also key to the correct wiring of the CNS. Ephrins are 

surface-associated ligands for the Eph family of receptor tyrosine kinases and vertebrates have two 

classes of ligands and receptors; EphA and EphB ligands and ephrin-A and ephrin-B receptors 

(Flanagan & Vanderhaeghen 1998). Differently to the other signalling systems discussed so far, Eph-

ephrin signalling is bidirectional and involves activation of signalling pathways in both cells of the 

interacting pair. Ephs and ephrins have been implicated in several processes including cortical 

progenitors division, neuronal migration, axon pathfinding and circuit formation (Klein 2001). With 

regards to axon pathfinding in the cortex, loss-of-function of EphA4 and ephrin-A5 causes incorrect 

dual targeting of thalamocortical projections to the somatosensory and limbic cortical areas, and mis-

expression of EphA7 causes abnormal mapping of corticothalamic projections (Dufour et al. 2003; 
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Uziel et al. 2002; Torii & Levitt 2005). While early deletion of EphA8 leads to complete agenesis of 

the CC, expression of a dominant negative form of EphA5 causes defective callosal projection from 

deep-layer neurons (Park et al. 1997; Hu et al. 2003). Furthermore, ephrin-B1 was shown to interact 

with Neuropilin-1 to stop the attractive influence of Semaphorin3C on postcrossing callosal axons 

(Mire et al. 2018).  All these findings suggest a role for Eph-Ephrin signalling in afferent, efferent and 

intracortical axon pathfinding.  

 

Historically, these families of signalling molecules were among the first to be recognised as 

important factors in axon guidance; however, in recent years new guidance cues have been identified. 

The morphogen Wnt5A was shown to interact with the receptor tyrosine kinase Ryk expressed by 

post-crossing callosal axons, acting as a chemorepulsive cue to efficiently drive axons to the 

contralateral side of the cortex (Keeble et al. 2006). Furthermore, BMPs secreted from the roof plate 

and Shh from the floor plate together with Netrin-1 were shown to guide commissural spinal cord 

axons to the ventral midline (Zou & Lyuksyutova 2007). Therefore, it has become increasingly 

appreciated how morphogens involved in AP and DV patterning can also play an important role in 

axon guidance.   

 

Cell adhesion molecules in axon pathfinding 

 

Extending axons are covered in a vast array of cell adhesion molecules (CAMs) belonging to the 

Ca2+-dependent cadherins and the Ca2+-independent immunoglobulin superfamily CAMs (IgSF-

CAMs). Several IgSF-CAMs (e.g. NCAM1, NCAM2, L1CAM, ALCAM) are expressed on growing 

axons and were found to be important for correct axonal navigation and wiring (Pollerberg et al. 

2013). As an example, L1CAM-/- mice display aberrant thalamocortical and corticospinal projections, 

failure of callosal axons to decussate and hyperfasciculation (Cohen et al. 1998; Demyanenko et al. 

1999). Conversely, in mice lacking NrCAM the anterior commissure shows defasciculation and 

incorrect targeting (Falk et al. 2005). Homophilic and heterophilic trans-interactions between CAMs 

on different axons are essential for the process of fasciculation, in which follower axons track their 

growth cones along pioneers. Fasciculation leads to the establishment of bundles containing axons that 

project to the same target area. Thus IgSF-CAMs play a dual role, firstly, they act as a sensory 

molecule, guiding axons to their correct target, secondly, they act as tracks for follower axons and 

limit their stray (Pollerberg et al. 2013). In addition, experiments in which NCAM1 and ALCAM were 

provided as the only substrates to axons have shown that IgSF-CAMs are sufficient to promote axonal 

growth (Sadoul et al. 1983; Thelen et al. 2012). This is likely mediated by interaction with 

intracellular signalling pathways components such as the MAP kinase Erk, members of the integrin 

family, FGF receptors and components of the cytoskeleton (Schmid et al. 2000). Therefore, cell 

adhesion plays an important role at several stages of axon pathfinding; including fasciculation, 

guidance, target innervation and neurite growth. 
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Projection neuron types and molecular identity 

 

Neocortical pyramidal cells can be divided into three broad categories based on their projection 

modality and target area: corticofugal (subcortical and subcerebral), callosal and ipsilateral projection 

neurons (Fig. 8a & b) (Molyneaux et al. 2007).  Corticofugal projection neurons are located almost 

exclusively in deep layers of the cortex and include subplate neurons, which project to the thalamus 

during embryonic development and postnatally are either integrated with deep-layer neurons or die 

(Ozair et al. 2018), corticothalamic neurons located in layer VI and subcerebral projection neurons, 

located in layer V and projecting to midbrain, hindbrain and spinal cord (Fig. 8b) (McConnell et al. 

1989; Molyneaux et al. 2007). In contrast, callosal projection neurons (CPNs) are distributed across 

layers II/III (~80% in rodents), layer V (~20% in rodents) and are also found in small numbers in 

layers Va and VI (Fig. 8a) (Greig et al. 2013). The CC is the largest commissure in the brain of 

placental mammals and it integrates information from the two cerebral hemispheres. Ipsilateral 

projection neurons are distributed in superficial (II/III) and deep layers (V/VI), are present in larger 

proportion than contralateral projecting neurons and relay information between different neocortical 

areas of the same hemisphere (Molyneaux et al. 2007; Molyneaux et al. 2009; Suárez et al. 2018). 

 

To this day we lack a complete understanding of the cell intrinsic and extrinsic factors that regulate 

the progressive commitment of VZ and SVZ progenitors to produce distinct neuronal subtypes. 

Classical transplantation experiments have shown that, as development progresses, progenitor cells 

become less plastic and, while early progenitors in a more mature niche can switch to producing upper 

layer neurons, the converse is not possible (McConnell & Kaznowski 1991; Frantz & McConnell 

1996). Recently, this dogma was called into question, and cortical progenitors were shown to retain 

multipotency throughout cortical neurogenesis (Oberst et al. 2018). Nevertheless, several studies have 

shown that loss of progenitor plasticity is mediated by intrinsic mechanisms, such as cell cycle 

lengthening, as well as secreted factors, for instance BDNF and NTF3 (Seuntjens et al. 2009; 

Fukumitsu et al. 2006). During neurogenesis several genes that mark specific neuronal subtypes are 

turned on in subpopulations of VZ and SVZ progenitors. For example, Fezf2 is expressed by aRGCs at 

the time when deep layer neurons are produced and also by postmitotic subcerebral projection 

neurons. Notably, in Fezf2-/- mutant mice subcerebral projection neurons display a projection 

modality, electrophysiological properties and marker expression consistent with CPN identity (Guo et 

al. 2013). Furthermore, expression of Fezf2 in striatal neuron progenitors is sufficient to generate 

corticofugal neurons (Rouaux & Arlotta 2010). Therefore Fezf2 and its downstream effector Ctip2 are 

examples of genes that, in addition to labelling a specific subset of progenitors, are directly involved 

in commitment to a specific laminar fate (Chen et al. 2008). As a counterexample, Cux2 and Cux1 

mark layer II/III postmitotic neurons and are expressed by SVZ progenitors during neurogenesis of 

upper layer neurons; however, Cux1-/-;Cux2-/-  double knockout mice do not display any obvious 

neuronal migration or lamination defects (Cubelos et al. 2008; Cubelos et al. 2010; Nieto et al. 2004). 
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This suggests that Cux genes may not be directly involved in progenitor specification, but they may 

regulate maturation of upper layer neurons (Cubelos et al. 2010). Importantly, it is not possible to infer 

the function of a gene in layer specification based on its expression pattern and mechanistic studies are 

required. 

 

Molecular determinants of subcerebral projection neurons specification 

 

Subcerebral projection neurons are particularly amenable to studies aimed at understanding 

neuronal subtype specification because they are specifically located in layer V and their projections 

can be easily identified. In fact, they all send primary axons through the internal capsule, into the 

cerebral peduncle and down the pyramidal tract (Greig et al. 2013; Arlotta et al. 2005). Due to their 

disease relevance, the most studied subset of subcerebral projection neurons are corticospinal 

motorneurons (CSMNs). They express unique markers, such as Diap3, Igfbp4 and Crim1, along with 

genes that are expressed by all subcerebral projection neurons; Ctip2, Fezf2 and Pcp4 among others 

(Arlotta et al. 2005). Important factors in the specification of subcerebral projection neurons include 

Fezf2 and Ctip2, with their loss leading to defects in neuronal specification, axonal outgrowth, 

pathfinding and abnormal fasciculation (Chen et al. 2008; Chen et al. 2005). The homeobox 

transcription factor OTX1 is expressed in putative deep layer neurons VZ progenitors and its 

expression rapidly declines during upper layer neurogenesis. Suggesting a role for OTX1 in deep layer 

neuron maturation, it translocates from the cytoplasm into the nucleus upon cell cycle exit and is 

expressed primarily in subcerebral projection neurons of the visual cortex (Weimann et al. 1999; 

Frantz et al. 1994). Sox5 controls sequential and ordered generation of deep layer neurons with distinct 

identity and hodology (i.e. subplate, corticospinal and corticothalamic). Sox5-/- mice show accelerated 

differentiation of subcerebral projection neurons, defects in subplate neuron connectivity and incorrect 

differentiation of corticothalamic neurons. Furthermore, supporting retention of a certain degree of 

progenitor plasticity, re-expression of Sox5 during genesis of upper layer neurons leads to the 

reappearance of neurons with corticofugal character (Lai et al. 2008; Kwan et al. 2008). At present 

Fezf2, Ctip2, Sox5 and Otx1 are the few functionally characterised drivers of subcerebral projection 

neuron specification.    
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Figure 8 Major classes of projection neurons within the neocortex.  

a, Callosal projection neurons are a type of commissural neurons primarily found in layers II/III 

(~80%), V(~20%) and in small numbers in VI, and project into the corpus callosum (CC). Based on 

their targets they can be further subdivided into: neurons with a single projection to the contralateral 
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cortex, neurons with dual projection, to the contralateral and ipsilateral frontal cortex, with dual 

projection, to the contralateral and ipsilateral caudal cortex, with dual projection, to the contralateral 

cortex and striatum. Callosal neurons do not project outside the telencephalon. b, The schematic shows 

the different types of neurons that project away from the cerebral cortex, termed corticofugal. These 

include corticothalamic projection neurons, primarily located in layer VI and, in fewer numbers, V of 

the cortex, which project to different thalamic nuclei. Neurons that project outside of the cerebrum, to 

the brainstem and spinal cord, are termed subcerebral projection neurons. They are located 

predominantly in layer V and include; corticospinal motor neurons, located primarily in the 

sensorimotor area of the cortex and sending their main projection to the spinal cord, with secondary 

collaterals to striatum, pons and medulla. Corticopontine projection neurons have as main projection 

target the pons, and corticotectal projection neurons are found in the visual area of the cortex and 

project to the superior collicolus and send collaterals to rostral pons. Reported here are the main 

classes of subcerebral projection neurons - there are many more that project to different areas of the 

brainstem but are not reported for simplicity. The figure was adapted from: MacDonald et al. 2013.  

 

Molecular determinants of CPN specification 

 

CPNs neurons connect homotopic regions of the cerebral hemispheres through the CC and surgical 

or pathological disruption of this pathway is associated with impaired abstract reasoning, intellectual 

disability and reduced problem solving skills.  The broad distribution of CPNs across both superficial 

and deep layers of the neocortex reflects their heterogeneity in terms of birth date and projection 

modality (Greig et al. 2013; Fame et al. 2011). In mouse in fact, while CPNs located in layer II/III 

have predominantly a single axon projecting to the contralateral homotopic region, approximately 

40% of CPNs found in layer V have an additional ipsilateral projection to a different cortical area of 

the same hemisphere (Mitchell & Macklis 2005). Whilst much is known about the molecular 

determinants of CPN midline crossing, the mechanisms underlying their specification remain elusive. 

So far the only well documented regulator of CPN specification is the transcription factor Satb2. It 

acts by antagonising the corticofugal projection regulator Ctip2, and Satb2-/- mutant mice display 

complete agenesis of the CC, with callosal neurons projecting subcortically rather than to the 

contralateral hemisphere (Britanova et al. 2008; Alcamo et al. 2008). Recently, adding to our 

understanding of the molecular-genetic control of CPNs specification, Cux1 and Cux2 were shown to 

regulate spine development, branching and synapse formation in layer II/III CPNs (Cubelos et al. 

2008). Furthermore, a combination of in situ hybridization, immunohistochemistry and tract-tracing 

recently identified a subset of genes specific to CPNs of superficial (e.g. Inhba, Cpne4 and Btg1) and 

deep layers (e.g. Plexin-D1, TcrB and Dkk3) (Molyneaux et al. 2009). Therefore, we have started to 

glean insight into the genetic diversity of this population of pyramidal neurons.  
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Evolutionary relevance of layer II/III 

 

Layers II/III of the neocortex are often referred to as the supergranular compartment (Betizeau et 

al. 2013). Supergranular layer neurons are not found in the sauropsid cortex, which comprises only 

three layers, evolutionarily related to layers I, V and VI of the neocortex (Molnár et al. 2006). All 

mammals have supergranular layer neurons but in primates this population has undergone a dramatic 

expansion attributed to the complexification and diversification of the SVZ compartment (Fig. 7). The 

CC represents the major commissural connection in eutherian mammals and is composed to a large 

extent by projections from supergranular layer neurons (~80% of CPNs in mice). In contrast, in 

monotremes and marsupials the major interemispheric connection is the anterior commissure and the 

CC is entirely missing (Suárez et al. 2018). This suggests that the evolution of the mammalian brain 

required the implementation of molecular genetic programs to specify layer II/III neurons, expand 

their pool size and modify their connectivity (Fig. 7).  Thus, understanding the molecular mechanisms 

driving layer II/III neuron specification and targeting will certainly be of clinical relevance and may 

also be informative of the evolutionary history of the mammalian brain. 
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In vitro 3D models of cortical development 

An evo-devo approach to neurodevelopmental studies 

 

Understanding the function and the physiology of as complex an organ as the brain requires 

knowledge of the developmental events leading to its establishment. By framing ontogenetic changes 

in the context of evolution one can glean a complete picture of the purpose and role of a cell, set of 

cells or whole organs in a living system (Giandomenico & Lancaster 2017). This is particularly 

relevant when considering the mammalian brain, since in recent evolutionary time it has undergone 

rapid and profound diversification. Nonetheless, taking an evo-devo approach involves 

complementing comparative analyses on phylogenetically related species with functional studies 

where specific genes or pathways are modulated (Giandomenico & Lancaster 2017). Due to obvious 

ethical and technical issues, so far, the study of the hominin brain has been limited to comparative 

neuroanatomical analyses.  

 

Due to a lack of genetic tools, high maintenance costs, long generation time and ethical concerns, 

only a handful of functional studies were done in ferret and marmoset (Johnson et al. 2018; Florio et 

al. 2015; Cárdenas et al. 2018; Park et al. 2016). The majority of studies probing gene function in 

neocortex development have typically relied on mouse, but this approach suffers from limitations 

(Stahl et al. 2013; Florio et al. 2015). The proliferative compartments of the mouse neocortex are 

considerably smaller and simpler compared to those of larger mammals. Mouse bPCs are almost 

exclusively IPCs that preferentially undergo symmetric neurogenic divisions, while mammals with 

larger cortices and primates in particular display enlarged, diverse and more complex abventricular 

proliferative zones (Miyata et al. 2004; Haubensak et al. 2004). In addition, in the case where the gene 

of interest is not found in mouse because it arose later in mammalian evolution, functional gene testing 

is limited to overexpression, which is less powerful than loss-of-function approaches. 

 

In vitro 2D and 3D neural differentiation 

 

The derivation of human embryonic stem cell lines (hESCs) followed by the discovery of 

reprogramming factors and induced pluripotent stem cells (iPSCs) opened the possibility of modelling 

aspects of embryonic brain development in vitro. Adherent cultures of neural progenitor cells, termed 

neural rosettes, were the first step in the development of ever more complex in vitro 

neurodevelopmental models. Neural rosettes were derived by plating iPSC aggregates, termed 

embryoid bodies (EBs), on coated dishes and differentiated to clusters of NECs (Zhang et al. 2001). 

Next, derivation of neural rosettes from EBs under serum free conditions with the addition of specific 

inductive cues led to the establishment of the SFEB method (serum free culture of embryoid bodies) 

(Watanabe et al. 2005). Nevertheless, 2D culture approaches suffer from a number of limitations; 
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firstly, the cell-cell and cell-extracellular matrix (ECM) interactions are offset by the artificial 

interaction between cells and plastic surfaces. Secondly, the mechanical properties of culture vessel 

plastics are very different to those of the in vivo niche, meaning that the apico-basal polarity, 

migration and proliferative behaviour of cells are altered. Lastly, development crucially relies on the 

establishment of signalling centres providing a source of morphogens and growth factors, and in 2D 

methods, this level of regulation is completely absent (Paşca 2018). 

 

Representing a first step towards a fully 3D culture paradigm, in the SFEBq method, an 

improvement of SFEB, EBs are kept in suspension for a longer period of time before 2D plating, 

thereby allowing for the generation of larger rosettes with elongated apical lumens that do not 

completely flatten out (Eiraku et al. 2008; Kelava & Lancaster 2016). A key advancement in the 

development of 3D culture methods was the discovery that stem cells embedded in a gelatinous 

mixture of ECM proteins, called Matrigel, allowed for the development of well organised epithelia 

with apico-basal polarity (Sato et al. 2009).  Building on the SFEBq method and using dissolved 

Matrigel for culture, the first 3D fully in suspension paradigm to generate optic cup structures was 

developed (Eiraku et al. 2011). Importantly, this study demonstrated that PSCs could differentiate and 

organise into complex and accurate neural tissue architecture reminiscent of in vivo development.  

 

Cerebral organoids – a 3D intrinsic neural differentiation model 

 

The SFEBq and optic cup differentiation protocols rely on directed differentiation, where 

instructive cues are used to induce neuroectodermal tissue and pattern it to different regional identities. 

In contrast, cerebral organoids represent an intrinsic differentiation method in which no instructive 

cues are provided and cells are allowed to spontaneously self-organize to form a variety of brain 

identities (Lancaster at al. 2013). Whilst the use of growth factors and patterning cues limits the 

expansion of the neuroepithelium, cerebral organoids generate long continuous neuroepithelial sheets 

surrounding inner fluid-filled cavities interconnected to form a ventricular system similar to that of the 

brain. In cerebral organoids a variety of forebrain identities coexist, including ventral, dorsal pallium 

and choroid plexus (Lancaster & Knoblich 2014; Eiraku et al. 2008). Between these different 

structures forebrain organising centres secreting growth factors and patterning cues develop. 

Importantly, the relative positioning of signalling centres and brain regions does not appear to be 

random but loosely mirrors the in vivo pattern. Furthermore, the timed inside-out gradient of 

neurogenesis followed by production of astrocytes and oligodendrocytes are all features of the 

organoid model (Renner et al. 2017). Recently, the addition of microscaffolds for EB formation and 

supplementation of dissolved Matrigel during late culture stages were shown to allow for more 

reliable generation of forebrain tissue and establishment of the CP (Lancaster et al. 2017). 
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Cerebral organoids: a tractable system for evo-devo and disease studies 

 

Cerebral organoids achieve a degree of elaboration and complexity superior to 2D approaches. In a 

cross-section cerebral organoids have macroscopic buds displaying complex tissue architecture with 

distinct proliferative zones homologous to the VZ and SVZ compartments (Lancaster et al. 2013). 

Several transcriptomic analyses on cerebral organoids have shown that they produce cell diversity and 

transcriptional programs close to the early human foetal brain (Camp et al. 2015; Luo et al. 2016; 

Yoon et al. 2019). A first clue as to the applicability of cerebral organoids as a model for evo-devo 

studies was the observation that human and mouse cerebral organoids show a different organisation of 

the abventricular progenitor compartments. Whilst human brain organoids have a sizable bRGC 

population with some separation into a zone resembling the OSVZ, mouse cerebral organoids have 

sparse bRGCs, no SVZ compartmentalisation and the majority of bPCs are IPCs (Fig. 9a) (Lancaster 

et al. 2013). Furthermore, organoid development seems to follow the timing of in vivo development; 

mouse brain organoids, in line with their 20-day gestational period, progress through neurogenesis 

more rapidly than human organoids (Eiraku et al. 2008).  

 

In recent years several studies were published where iPSC from different species were used for 

evo-devo studies. Neural rosettes and 3D forebrain organoids derived from human, chimpanzee and 

macaque iPSCs were used in combination to perform progenitor clonal analyses. This seminal study 

demonstrated that macaque progenitors stop expanding and switch from deep- to upper-layer 

neurogenesis earlier than human or chimp progenitors (Fig. 9a) (Otani et al. 2016). In another study, 

by comparison of human cerebral organoids and mouse embryonic brains it was shown that human 

bRGCs and IPCs exhibit increased SHH signalling, consistent with increased progenitor proliferation 

(Wang et al. 2016). Furthermore, a recent publication reported that in human neural organoids aRGC 

metaphase is ~40-60% longer than in chimpanzee. The same was seen in orangutan aRGCs and, 

importantly, it appeared to be a feature of this specific cell type, as the iPSCs of origin did not display 

this behaviour. Interestingly, lengthening of metaphase correlates with symmetric proliferative 

divisions of aRGCs, and the authors argue that it may have contributed to increasing the neurogenic 

output of human apical progenitors (Mora-Bermúdez et al. 2016). 

 

Advances in genome editing and reprogramming technologies 

 

Concurrently with the establishment of complex 3D in vitro culture systems, important advances 

were made in the field of somatic cell reprogramming, genome editing and optogenetics (Kogut et al. 

2018; Chen et al. 2013; Boyden 2011; Ran et al. 2013). These new technology platforms in 

combination with the diverse array of organoids that can now be produced (e.g. brain, kidney, liver, 

gut) hold great potential for disease modelling, the study of development, evolution and functional 

neuroscience (Qian et al. 2016; Li et al. 2016; Schwank et al. 2013; Quadrato et al. 2017). The high 
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efficiency of current reprogramming protocols has made it possible to derive iPSCs not only from 

primary fibroblasts derived from skin biopsies, but also from blood, hair follicle keratinocytes and 

renal epithelial cells present in urine (Raab et al. 2014). The procedures to derive these cell types are 

minimally invasive and this has dramatically expanded the cohort of potential donors. Recently, there 

were reports of iPSCs derived from a diverse array of mammalian species and even birds, fish and 

insects; suggesting that, perhaps soon, in vitro broad species comparison will be possible (Fig. 9b) 

(Ben-Nun et al. 2011; Rosselló et al. 2013; Wunderlich et al. 2014). Thanks to the development of 

CRISPR-Cas9 genome editing it is now possible to readily generate knockouts and, albeit with lower 

efficiency, single-base substitutions, endogenous tagging, silencing and activation can be achieved 

(Fig. 9b) (Ran et al. 2013; Zheng et al. 2018; Konermann et al. 2015). Importantly, CRISPR-Cas9 

allows generation of isogenic lines, thus limiting confounding effects due to different genetic 

backgrounds. An intriguing avenue to pursue is to use CRISPR-Cas9 to study the effect loss-of-

function mutations in human specific genes with a role in brain development (e.g. ARHGAP11B and 

NOTCH2NLB) or introducing and correcting disease-related mutations (Fig. 9b) (Florio et al. 2015; 

Suzuki et al. 2018; Schwank et al. 2013). Furthermore, the new Cas13 system can be used for RNA 

knockdown and editing, modulation of splicing pattern and RNA localisation studies, thus allowing 

for fine-detail analysis of the role of miRNAs and lncRNAs in a variety of contexts (Konermann et al. 

2018; Cox et al. 2017). With particular relevance to cerebral organoids, the development of halo- and 

channelrhodopsins together with genetically encoded calcium indicators (GECIs) opens the possibility 

of manipulating and monitoring neural circuits with light (Fenno et al. 2011). The fortuitous 

convergence of these recent technological advances enables the scientific community to tackle 

questions in cancer biology, development, disease biology and neuroscience from completely novel 

angles (Fig. 9a & b). 
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Figure 9 Application of cerebral organoids to evo-devo studies.  

a, Cerebral organoids also allow cross-species comparison studies of early brain development on 

species that would not be accessible by any other means. The figure depicts schematics from two 

studies that to date have taken this approach. Human iPSC-derived cerebral organoids were shown to 

harbour a population of abventricular SOX2+ bRGCs separated from the VZ and ISVZ by TUBB3+ 

neuronal processes. This is somewhat similar to in vivo where the OSVZ is separated from the ISVZ 

by the inner fibre layer (IFL) (Lancaster et al. 2013). By contrast, mouse ESC-derived organoids were 

generally smaller, showed faster development compared to human organoids and lacked Sox2+ bRGCs 

(Lancaster et al. 2013). In another example study, the timing of neuronal lamination was studied by a 

combination of 2D and 3D in vitro cultures and revealed that the switch from deep- to superficial-

layer neurons in macaque occurs earlier than in humans (Otani et al. 2016). Diagrams of mouse and 

human organoids are to scale relative to each other (scale bar = 400 µm). b, CRISPR-Cas9 gene 

editing in hPSCs can be used to knock-in/out genes to probe their function in brain development. 
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Endogenous tagging allows for improved biochemical and live cell imaging over traditional 

overexpression strategies. Editing and replacement of a gene or its regulatory elements to introduce an 

ancestral variant can give insight into specific changes highly relevant for evolution of certain traits. In 

the example depicted, control and edited cells produce cerebral organoids of different sizes, revealing 

a loss of bPCs in the mutants. A combination of state-of-the-art genome editing techniques and 

organoids opens new avenues for studying gene function in the context of evolution. Panel a of the 

figure was modified from: Giandomenico & Lancaster 2017. 

 

Present limitations of brain organoids as a model system 

 

Despite their strengths, at present, cerebral organoids have a number of weaknesses that in the 

future will need to be addressed for careful functional and comparative analyses. Firstly, neither in 

directed nor in intrinsic differentiation approaches is it possible to control how patterning cues are 

spatially encoded. Thus, the production of different brain structures and their relative positioning are 

stochastic and the overall stereotypic architecture of the brain cannot be reproduced (Giandomenico & 

Lancaster 2017). In this respect, the recent development of assembloids derived by fusing spheroids 

pre-patterned with different identities represents a first important step towards achieving the 

stereotypical organisation of structures seen in the brain (Bagley et al. 2017; Birey et al. 2017). Whilst 

the original organoid protocol allowed for the identification and modelling of relatively strong 

phenotypes, new ameliorated methods have improved consistency and reproducibility and have the 

potential to capture more subtle phenotypes (Lancaster et al. 2013; Lancaster et al. 2017; Qian et al. 

2016). 

 

Secondly, starting from E10-11 in mouse and 18-20 PCW in humans the telencephalic vascular 

network starts to develop and it has been shown to be important for maintenance of the stem cell niche 

and neuronal differentiation (Siegenthaler et al. 2009). Supension culture of cerebral organoids with 

agitation vastly improves tissue perfusion by oxygen and nutrients. However, after approximately two 

months in culture the size of the organoid exceeds the perfusion limit and a necrotic core develops, 

resulting in the progressive loss of neurons and appearance of reactive astrocytes (Lancaster et al. 

2013; Renner et al. 2017). This severely restricts the number of questions that can be asked using this 

model, and aspects of neuronal maturation such as axon pathfinding and synapse formation have 

remained elusive. Recent efforts to address this problem include addition of growth factors (e.g. 

BDNF) and organoid transplantation into the brain of rodents to achieve vascularization (Quadrato et 

al. 2017; Mansour et al. 2018). Nevertheless, at present we are still missing a practical and scalable 

approach to expand the developmental time window accessible with organoids.  

 

Lastly, it is important to mention that culture and genome editing of both hESCs and hiPSCs have 

proven historically challenging. hPSCs are epithelial in character, grow as compact colonies and show 
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low survival rates upon single cell suspension (Ohnuki & Takahashi 2015). Novel, more robust media 

formulations with an improved thermostable version of FGF2 together with the development of more 

specific Rho-kinase inhibitors have greatly simplified these tasks (Daniszewski et al. 2018; Chen & 

Pruett-Miller 2018). Another important aspect to consider in the context of evo-devo studies is that, 

whilst reprogramming of human and primate cells can be achieved with high efficiency, 

reprogramming and maintenance of other species’ PSCs often has low efficiency and the cells may not 

be fully pluripotent (Ben-Nun et al. 2015). Pluripotency is an important aspect to consider when 

carrying out comparative studies using patient-derived lines or iPSCs from different species. Different 

PSCs may retain epigenetic marks that make them more prone to generating a certain germ layer over 

another (Tsankov et al. 2015). Therefore, robust comparative studies with brain organoids require 

phenotypic characterisation of several clones from multiple individuals. 
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An in silico screen identifies ZEB2 as a putative regulator of neocortical expansion 

A list of brain evolution candidate genes 

 

In an effort to identify genes potentially responsible for human neocortical expansion we 

performed a metadata analysis of 40 independent publicly available genomic and transcriptomic 

datasets. The rationale for the analysis was that a good candidate for a role in human brain evolution 

would exhibit features of human evolutionary selection at the genomic level and would have an 

expression profile specific to the human brain. A set of 27 independent comparative genomic datasets 

were used to identify loci with features of human specific evolutionary selection. Cross-comparison of 

the datasets yielded a list of shared intervals that were then mapped to the reference genome (hg38) to 

identify genes near or within the intervals. Candidate genes were identified by a Poisson test with 

occurrence set above or equal to 3 (p<0.01). A second set of 13 independent comparative 

transcriptomic analyses were used to identify genes with human specific brain expression. One of the 

13 datasets was produced through in-house analysis of microarray and RNA-seq data available from 

the Allen Brain Atlas and the NIH Blueprint Non-Human Primate (NHP) Atlas. First, we identified 

human genes highly expressed in the pallium by filtering RNA-seq data available from the Brainspan 

atlas for genes with expression coordinates that correlated with the pallial marker EMX1. All genes 

with significant occurrence (RPKM≥3) between 8 and 37 PCW in any cortex or hippocampal region 

were converted to genomic intervals. A similar approach was taken to compile a list of genes with 

high expression in the macaque pallium. A dataset of genes with expression pattern specific to humans 

was obtained by excluding genes common to both the human and macaque lists. This dataset was 

combined with 12 other independent comparative transcriptomic datasets and candidate genes were 

identified by Poisson’s statistics on occurrence equal to or above three as being significantly 

overrepresented (p<0.01). The overlap of the comparative genomic and transcriptomic lists revealed a 

total of 139 genes. These were filtered for genes expressed in organoids (RPKM≥3) at day 20, 40 and 

60 of the differentiation protocol, reducing the list of human brain evolution genes to 60 hits with the 

top candidate being ZEB2. 

 

The transcription factor ZEB2 

 

ZEB2 (zinc finger E-box binding homeobox 2), also known as Zfhx1b or SIP1 (Smad interacting 

protein 1), together with ZEB1 constitute the ZEB family of two-handed zinc-finger/ homeodomain 

transcription factors. ZEB2 was originally identified through a yeast 2-hybrid screen as an interactor of 

the Xenopus protein Xsmad1 (Verschueren et al. 1999). ZEB proteins, and in particular ZEB2, have a 

well-established role in cancer biology as master regulators of EMT and tumour metastasis (Stemmler 

et al. 2019; Pei et al. 2019). ZEB proteins have a complex structure comprising a central 

homeodomain, two widely spaced C2H2 zinc finger clusters and multiple protein interaction domains. 
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They modulate transcription by binding to tandem E-box-like sequences (5’-CACCT(G) or 5’-

CACANNT(G)) in the regulatory regions of target genes through an N- and C- terminal zinc finger 

cluster (Fig. 10). The N-terminal cluster is composed of four zinc fingers (three CCHH and one 

CCHC) and the C-terminal cluster of three zinc fingers (all CCHH) (Fig. 10) (Remacle et al. 1999; 

Verschueren et al. 1999). Their amino acid sequences are highly conserved between ZEB1 and ZEB2, 

with the N- and C-terminal clusters displaying 95% and 89% sequence identity, respectively 

(Stemmler et al. 2019). The four PLXL(S/T) (CID) motifs found within ZEB2 mediate interaction 

with CtBP (C-terminal binding protein), which binds to histone modifying enzymes, DNA binding 

proteins, CoREST and chromodomain proteins to form transcriptional repressor complexes (Fig. 10) 

(Postigo & Dean 1999; van Grunsven et al. 2007). ZEB2 SUMOylation at residues K391 and K866 

regulates its transcriptional activity by disrupting interaction with CtBP (Long et al. 2005). ZEB2 is 

also able to interact with the chromatin remodelling histone deacetylase (HDAC) complex NuRD via 

an N-terminal NuRD interaction motif (NIM) and with the transcriptional activator histone 

acetyltransferase complexes (HAT) p300/PCAF (Fig. 10) (Verstappen et al. 2008; van Grunsven et al. 

2006). Thus, by virtue of its complex structure ZEB2 can act as both a transcriptional repressor and 

activator depending on the specific cellular context. 

 

 

 

 

Figure 10 The functional domains of Zeb2.  

Schematic representation of the functional domains and post-translational modification (PTM) sites 

found in the mouse main Zeb2 isoform (1215 aa). The Nt-ZnF cluster (aa 211-334) and the Ct-ZnF 

cluster (aa 999-1076) comprise C2H2-type zinc-fingers which bind to tandem E-box sequences. The 

homeodomain (HD) is centrally located (aa 644-703) and has lost DNA-binding capacity. 

Corresponding to aa 14-22 is a NuRD complex interaction motif (NIM) and also N-terminal, albeit not 

mapped, is the p300/PCAF interaction domain. Zeb2 interacts with p-SMADs via a SMAD-binding 

domain (SBD) (437-487), downstream of the Nt-ZnF cluster. The CTB interaction domain (CID) is 

located between aa 747-863 and comprises four PLXL(S/T) motifs. Zeb2 undergoes SUMOylation at 

positions: 390-393 and 865-868. The figure was adapted from: Hegarty et al. 2015. 
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ZEB2 protein levels are controlled by a complex array of transcriptional and post-transcriptional 

mechanisms. The human ZEB2 gene is located at 2q22.3 (genomic coordinates chr2:144,364,364-

144,524,583 in the assembly GRCh38/hg38), spans approximately 160 kbp and contains several large 

introns harbouring enhancers, silencers and  human accelerated regions (HARs) (Pollard et al. 2006; 

Lindblad-Toh et al. 2011.; Bar Yaacov et al. 2018; Erwin et al. 2014). HARs are genomic sequences 

that were conserved across vertebrate evolution but rapidly mutated during human evolution. ZEB2 

transcription is regulated by a number of distal enhancers responsible for tissue and sex specific 

expression (El-Kasti et al. 2012). In humans ZEB2 transcription can be initiated from two alternative 

promoters (i.e. 1a and 1b) located ~2.2 kb apart. TNFα signalling activates the transcription factor 

AP1, which in turn binds to promoter 1b but regulates transcription from both promoters via long-

range chromatin looping (Qiao et al. 2015). The 5’-UTR of ZEB2 comprises an intron with an internal 

ribosomal entry site (IRES). Upstream of the ZEB2 locus is a natural antisense transcript that can bind 

to the 5’- splice site of intron 1, causing its retention in the mature transcript. IRES retention in the 5’-

UTR leads to increased ZEB2 expression (Beltran et al. 2008). Adding another layer of complexity, 

ZEB2 transcripts have a complex 3’-UTR that is targeted by a number of micro RNAs (miRNAs) 

including the miR200 family (Hegarty et al. 2015).  

 

Regulation of TGFβ signalling by ZEB2 

 

In an earlier section we touched upon TGFβ and BMP protein family members and their relevance 

to the process of neural induction. Binding of these proteins to type I and type II homodimeric single-

pass transmembrane S/T kinase receptors triggers transphosphorylation and formation of an active 

tetrameric complex that phosphorylates R-SMAD transcriptional regulators. Active TGFβ/activin 

receptors activate SMAD2 and 3, while BMP receptors activate SMAD1, 5 and 8. Phosphorylated R-

SMADs form a complex with the co-SMAD, SMAD4, and translocate to the nucleus where they 

associate with chromatin modifiers and other cofactors to regulate transcription of target genes 

(Schmierer & Hill 2007). The SMAD protein family also includes the inhibitory SMADs (I-SMADs) 

6 and 7, which bind to R-SMADs and suppress their transcriptional activity. ZEB2 can interact 

directly with both TGFβ and BMP SMADs via a ~14 aa interaction domain located downstream of the 

N-terminal zinc finger cluster (Conidi et al. 2013). ZEB2 binding to the transcriptional activator 

complex R-SMAD-SMAD4-p300 was shown to trigger transcriptional repression of SMAD target 

genes (Weng et al. 2012). Furthermore, ZEB2 can indirectly repress BMP signalling by 

downregulating BMP4 expression and inducing expression of the I-SMAD, SMAD7 (Weng et al. 

2012). Conversely, TGFβ and BMP signalling antagonise ZEB2 both directly, through SMAD2 

binding to its promoter region, and indirectly, by regulating expression of miRNAs that target ZEB2 

(Gregory et al. 2011; Davis et al. 2008; Chng et al. 2010). Nevertheless, regulation of this signalling 

axis is complex and is strictly dependent on the specific cellular and developmental context. 
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ZEB2 induces neuroectoderm and neural crest fates 

 

ZEB2 has been shown to play multiple roles during CNS and PNS development and this is not 

surprising considering it is a regulator of TGFβ/BMP signalling. ZEB2 mRNA is detected in the 

prospective neuroectoderm of the early Xenopus, chicken and mouse gastrula and its expression is 

retained in the neural tube, retina and neural crest (Yasumi et al. 2016; Miyoshi et al. 2006; Eisaki et 

al. 2000; van Grunsven et al. 2007). An obstacle to the study of ZEB2 function in mammals has been 

that, whilst heterozygous loss-of-function mutant mice do not show any obvious phenotype, Zeb2-/- 

mice die around E9.5 with neural tube closure and NCC migration defects (Maruhashi et al. 2005). 

Underscoring the specific importance of ZEB2 for early nervous system development, Zeb1-/- mice die 

around birth and do not display obvious nervous system anomalies (Takagi et al. 1998). 

 

XZeb2 loss- and gain-of-function experiments in Xenopus suggest necessity and sufficiency of 

Zeb2 for neural induction. In Xenopus XZeb2 directly represses BMP4 transcription and 

downregulates epidermal genes in a Smad-independent fashion (Nitta et al. 2007; Nitta et al. 2004). 

The neural inductive properties of XZeb2 appear to depend on interaction with CtBP and NuRD co-

repressor complexes (van Grunsven et al. 2007; Verstappen et al. 2008). Work in mouse has shown 

that starting from E7.5 Zeb2 is rapidly upregulated in the prospective neuroectoderm and expression is 

maintained until E9.5 across the neural tube. While injection of FGF8 into the pro-amniotic cavity 

leads to increased levels of Zeb2 expression, Wnt3a injection has the opposite effect. Additionally, 

ectopic Zeb2 expression promotes neural stem cell fate even in the absence of FGF signalling (Dang & 

Tropepe 2010). Thus Zeb2 induction appears to be downstream of FGF activation and Wnt inhibition 

and is important for promoting neural stem cell identity in the anterior neural plate. Recently, in an in 

vitro 3D differentiation system of mESCs it was shown that Zeb2 drives exit from the epiblast state by 

orchestrating EMT and genome-wide methylation events necessary for downregulation of 

pluripotency genes and lineage commitment (Stryjewska et al. 2016). In a human 2D neural 

differentiation model it was shown that ZEB2 overexpression enhances neuroectoderm induction but 

its role is to promote maturation of the neuroectoderm. In fact, upon ZEB2 knockdown the 

neuroectoderm becomes specified but cannot develop to maturity. In addition, ZEB2 antagonises 

mesendoderm induction mediated by the Activin/Nodal pathway (Chng et al. 2010). 

 

Zeb2 has also been implicated in neural crest cell (NCC) specification by limiting BMP signalling 

at the ectoderm-neuroectoderm boundary. E8.5 Zeb2-/- mouse embryos lack this boundary and the 

vagal neural crest is completely missing (Van De Putte et al. 2003). In addition to being important for 

neural crest specification, Zeb2 has been also implicated in the EMT events that drive delamination of 

NCCs from the ectoderm-neuroectoderm boundary (Rogers et al. 2013). In fact, Zeb2 has a well-

established role as an EMT driver in various types of cancer, particularly in the expression switch 

from E-cadherin to N-cadherin (Pastushenko & Blanpain 2018). It has been proposed that, similarly to 
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what occurs in cancer, Zeb2 may be driving E-cadherin to N-cadherin switch during NCC 

delamination and migration. Downregulation of E-cadherin in favour of N-cadherin upregulation is 

also seen during neuroectodermal induction (Rogers et al. 2013). 

 

Zeb2 regulates multiple aspects of cerebral development 

 

In a Zeb2flox/flox;Emx1IRESCre mouse strain, loss of Zeb2 expression in the dorsal telencephalon leads 

to agenesis of the hippocampus and CC in neonatal mice. In the pallium Zeb2 expression at E12.5 and 

later developmental stages seems to be confined to post-mitotic neurons of the CP (Miquelajauregui et 

al. 2007). In addition, Zeb2 is expressed in the developing basal ganglia and thalamus. In the 

hippocampus Zeb2 promotes the proliferative and anti-apoptotic effects of Wnt-JNK signalling by 

repressing expression of the Wnt inhibitor Sfrp1 (Miquelajauregui et al. 2007). Zeb2 deletion in young 

post-mitotic neurons in Zeb2flox/flox;Nex-Cre mice causes early production of upper layer neurons at the 

expense of deep layer neurons through premature upregulation of Ntf3 (Seuntjens et al. 2009). Ntf3 

was shown to mediate a non-cell autonomous feedback between neurons and VZ progenitors to 

regulate the balance of deep and superficial layer neurons (Seuntjens et al. 2009; Parthasarathy et al. 

2014). More recently, using a Zeb2KO/flox;Nex-Cre+/- line it was shown that loss of Zeb2 leads to 

agenesis of the CC and defects in corticospinal tract and anterior commissure formation (Srivatsa et al. 

2015). Furthermore, Zeb2-deficient neurons fail to form ipsilateral intracortical collaterals and have 

axonal growth defects. It was shown that these effects were mediated by downregulation of the Zeb2 

transcriptional target Ninein, a microtubule associated protein required for axonal growth and 

branching (Srivatsa et al. 2015). Zeb2 also regulates several aspects of subpallial development; 

conditional deletion of Zeb2 in the mouse subpallium using Nkx2.1-Cre leads to a loss of cortical 

interneurons in favour of an increase in striatal interneurons. In the MGE Zeb2 binds directly upstream 

of Nkx2.1 and represses its expression, inducing cortical interneuron identity (McKinsey et al. 2013). 

In addition, by regulating the levels of Unc5b, which mediates repulsion in response to Netrin, Zeb2 

controls interneuron migration from the MGE to the cortex (van den Berghe et al. 2013).  

 

Zeb2 in glial cell development and myelination 

 

Zeb2 mediates a non-cell autonomous feedback loop from postmitotic neurons to VZ progenitors 

that regulates the balance between neurogenesis and gliogenesis. Nex-Cre driven Zeb2 deletion in 

post-mitotic neurons of the mouse cortex causes premature end of neurogenesis and enhanced 

astrogenesis (Seuntjens et al. 2009). In addition to controlling progenitor lineage commitment Zeb2 

plays an important role in myelination of the CNS and PNS. Zeb2 is in fact induced by Olig1 and 

Olig2 and promotes oligodendrocyte maturation by blocking TGFβ/BMP signalling. While 

Zeb2flox/flox;Olig1Cre+/- mice do not display any significant difference in the number of oligodendrocyte 
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progenitors, their maturation is compromised (Weng et al. 2012). Recently, Zeb2 was also shown to 

control Schwann cell maturation and peripheral nerve myelination. This function of Zeb2 was shown 

to depend on interaction with the HDAC corepressor complex NuRD to inhibit Notch-Hey2 signalling 

(Wu et al. 2016; Quintes et al. 2016).  

 

In human Zeb2 mutations cause Mowat-Wilson syndrome 

 

In humans de novo heterozygous ZEB2 mutations in the germline cause Mowat-Wilson syndrome 

(MWS), a rare condition estimated to occur in only 1 every 50,000-100,000 individuals. MWS is a 

complex disorder that manifests itself in a number of defects with variable penetrance, including 

intellectual disability, delayed development, facial dysmorphia and Hirschsprung disease (Mowat et 

al. 1998). Structural brain abnormalities associated with MWS are dysgenesis and agenesis of CC, 

hippocampal abnormalities, myelination defects and cortical malformations, in particular 

microcephaly (Garavelli et al. 2017). The number and diversity of MWS phenotypes reflect the 

multifarious roles of ZEB2 during nervous system development and the large array of mutations 

causing MWS. To date more than 100 different mutations have been identified, the majority of which 

causes C-terminal truncation of the protein product and heterozygous loss-of-function (Hegarty et al. 

2015). Interestingly, Zeb2+/- mice do not display any obvious neurodevelopmental phenotype. Because 

Zeb2-/- mice suffer from embryonic lethality, the vast majority of Zeb2 studies in mouse have relied on 

conditional tissue-specific ablation of Zeb2 (Maruhashi et al. 2005). However, one could argue that 

these models are quite distant from the human system, which shows increased sensitivity to ZEB2 

gene dosage.  

 

Neurogenesis as a gradual process of EMT 

 

Several developmental processes discussed so far rely on EMT; gastrulation, delamination of 

NCCs from the edges of the neuroectoderm, neuronal migration from the VZ to the correct cortical 

layer and interneuron migration from the subpallium to the pallium are all examples of EMT. More 

broadly, the neurogenic process can be seen in its entirety as a gradual and progressive EMT (Aaku-

Saraste et al. 1996). An initially tight and compact epithelium marked by expression of E-cadherin and 

occludin, first transitions to a neuroepithelial state characterised by the expression of N-cadherin and 

lower levels of tight junction components. Next, neuroepithelial progenitors switch to a radial glia 

fate, where they retain epithelial character, exemplified by the contacts formed with the apical and 

basal lamina, but at the same time they start producing mesenchymal cells (i.e. neurons and IPCs). The 

end result at maturity is a diverse array of cells (i.e. neurons, interneurons, astrocytes and 

oligodendrocytes) that have completely lost contact with a basal lamina and are fully mesenchymal in 

character. Historically, EMT has been viewed as a binary process with two cell populations, one 
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epithelial expressing E-cadherin, and one mesenchymal, expressing vimentin. However, it has now 

become apparent that EMT is a reversible process, it can occur transiently and to different degrees 

along a continuum between a fully epithelial and fully mesenchymal endpoint state (Pastushenko & 

Blanpain 2018; Stemmler et al. 2019). 

 

The EMT transcriptional program is executed by a core set of transcription factors comprising 

Snail, Slug, TWIST1, ZEB1 and ZEB2. A complex network of enhancer elements, miRNAs and 

lncRNAs controls their specific spatiotemporal expression patterns. During development they are 

often expressed in a mutually exclusive fashion (Lamouille et al. 2014; Peinado et al. 2007; Lamouille 

et al. 2013).  For example, at E14.5 Zeb1 expression is restricted to the VZ and SVZ of the mouse 

telencephalon, while Zeb2 is expressed in postmitotic neurons. These transcription factors have non-

redundant functions in cancer progression and normal development. Albeit incomplete at the moment, 

available data suggest that different EMT transcription factors regulate common as well as specific 

target genes, hence their non-overlapping roles (Stemmler et al. 2019). For instance, while Snail and 

Slug are dispensable for murine neural crest delamination, TWIST and ZEB2 are essential (Murray & 

Gridley 2006; Soo et al. 2002; Van De Putte et al. 2003).  

 

Studies on cancer and metastasis have shown that partial EMT is more common than complete 

execution of the full EMT programme. EMT involves intermediate hybrid states in which cells can 

retain expression of both epithelial (i.e. Krt5, Krt14, E-cadherin, Grhl1-3, EPCAM) and mesenchymal 

markers (i.e. Zeb1,2, Vimentin, N-cadherin, Twist1,2 and Snai1) (Pastushenko & Blanpain 2018). 

Interestingly, in pancreatic tumors driven by KrasG12D/p53cKO, cells in a hybrid state defined by co-

expression of E-cadherin and vimentin were more proliferative than fully mesenchymal cells (Krebs et 

al. 2017). At the moment our understanding of the mechanisms that stabilize certain hybrid states is 

limited. EMT transcription factors are known to form complex cross-regulatory networks and 

mutually inhibitory loops. For instance, the miRNA34/snai1 and the miR200/Zeb loops have been 

proposed to form metastable switches that can induce EMT hybrid states (Pastushenko & Blanpain 

2018; Lamouille et al. 2013). In conclusion, EMT is a very complex phenomenon involving a 

continuum of cell-states characterised by distinct migratory and proliferative properties. Hybrid EMT 

states likely have direct relevance for development in general and in particular that of the nervous 

system. It is thus tantalizing to speculate that by modulating the proliferative and cell-cell contact 

properties of neural progenitors different tissue architectures may be achieved.  
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Thesis objectives 

 

The aim of my thesis was to investigate the role of ZEB2 in human neocortex development using 

cerebral organoids as a model. Humans display increased sensitivity to ZEB2 gene dosage compared 

to mice and heterozygous loss-of-function mutations cause MWS, a complex pathology affecting 

multiple aspects of nervous system development. So far, the majority studies investigating the role of 

Zeb2 in mammalian neural development have relied on mouse strains with tissue specific Cre-

mediated deletion. However, such approaches may have missed important physiological and 

mechanistic aspects of Zeb2 function and of how the human system is more susceptible. More 

recently, it was reported that through conditional germ-line ablation of exon 7 in an inbred strain of 

C57BL/6 some of the symptoms of MWS could be recapitulated (Takagi et al. 2015). Nevertheless, 

the characterisation of the model was very limited, the phenotypes observed were heavily dependent 

on the genetic background and therefore we are still missing a model of this disorder. In addition to 

having clinical importance, understanding how ZEB2 functions in the human system could yield 

important insights into the mechanisms that have led to neocortex expansion.  

 

Specific aims of the thesis: 

 

• Establishing ZEB2+/- hESCs to test gene dosage sensitivity in human brain development and 

model Mowat-Wilson syndrome 

• Characterising and validating early phenotypes associated with heterozygous ZEB2 loss-of-

function mutation 

• Implementing an in vitro culture system to capture later phenotypes associated with MWS 
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Chapter 2: Materials & Methods 
 

Plasmid constructs 

 

All primers used for cloning are listed in the table included in Appendix 1. To generate the 

construct for stable inducible ZEB2 expression the coding sequence of the human ZEB2 transcript 

variant 1 (NM_014795.3) was purchased as an ultimate ORF clone in the pENTRY221 (Thermo 

Scientific, #IOH53645). The ZEB2 ORF was amplified with primers ZEB2_CuO_cloning_F & R, cut 

with the restriction enzymes NheI (NEB, #R3131) and NotI (NEB, #R3189) and ligated into the PB-

Cuo-MCS-IRES-GFP-EF1α-CymR-Puro inducible expression vector (System Biosciences, 

PBQM812A-1) using T4 DNA ligase (NEB, M0202). The reaction was transformed into TOP10 E. 

coli (Thermo Scientific, #C404010) and the colonies that grew on selection plates were sequence 

validated using primers CuO_seq and CuO_ZEB2_seq_1-7. The construct pCAG-nV5-ZEB2_iso-1 

was generated by Gateway recombination between the pENTRY221-ZEB2 and pCAG-nV5-DEST 

(Lancaster et al. 2013) using the LR Clonase enzyme mix (Thermo Scientific, #11791019). The 

construct pCAG-nV5-ZEB2_iso-2, encoding isoform 2 of ZEB2 (NM_001171653.1), was generated 

linearizing pCAG-nV5-ZEB2_iso-1 by PCR, using Q5 polymerase (NEB, M049L) with primers 

ZEB2_iso-2_F & R, and religating it using T4 DNA ligase. The plasmid product was verified by 

sequencing using CAG_F and CuO_ZEB2_seq_1-7. The RNA guides used for CRISPR-Cas9n 

knockout of ZEB2 were designed using the online tool at http://tools.genome-engineering.org and the 

sequences are listed in the table in Appendix 1. Cloning of the guides was performed as outlined by 

Ran et al. 2013; briefly, the sense and antisense strand oligos for ZEB2_sgRNA_1 & 2 were annealed 

and phosphorylated, and the duplexes were cloned into pSpCas9n(BB) (Addgene, #PX460) by BbsI  

(Thermo Scientific, #FD1014) digestion and ligation with T4 ligase. Colonies were sequence validated 

using the U6_F primer. For sequence validation of mutant hESC pools, a region of ~100 bp 

overlapping the edit sites was amplified using primers ZEB2_Cas9n_sequencing_F & R and blunt-end 

cloned into the pJET1.2 plasmid (Thermo Scientific, #K1232). The ligation reaction was transformed 

into DH5α E. coli and for each sample 20 colonies were miniprepped and sequenceed using the 

pJET1.2 forward sequencing primer. The integrating farnesylated-GFP construct pT2-CAG-fGFP 

(Addgene, #34879) and the sleeping beauty transposase plasmid pCAGEN-SB100X as modified from 

pCMV-SB100 (Addgene, #34879) were generated as previously described (Lancaster et al. 2017). The 

integrating farnesylated FusionRed construct pT2-CAG-fFusionRed was generated by replacing the 

EGFP in pT2-CAG-fGFP with FusionRed. The EGFP cassette was removed by digestion with MluI-

HF (NEB, R3198) and EcoRI-HF (NEB, #R3101). The FusionRed cassette was PCR amplified from 

pCi-C-FusionRed-DEST (a gift from Harvey McMahon’s laboratory) using primers fFusionRed_F & 

R and was inserted into the linearized pT2-CAG-farnesyl backbone by Gibson assembly as described 

in the technical bulletin (NEB, #2611).  
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Cell culture, transfection and nucleofection 

 
H9 (female) and H1 (male) hESCs (obtained from WiCell and approved for use in this project by 

the U.K. Stem Cell Bank Steering Committee) were cultured on Matrigel (Corning, #354230) coated 

plates initially in mTesRTM1 (STEMCELL Technologies, #85850) and then StemFlex (Termo 

Scientific, #A3349401). Cells were passaged twice a week as clumps by EDTA treatment. 293T 

(Clontech, #632617), U87MG (a gift from Harvey McMahon’s laboratory) and HeLa cells maintained 

in DMEM-Glutamax (Gibco, #10566016) supplemented with 1X (v/v) NEAA (Sigma-Aldrich, # 

M7145-100ML) and 10% FBS (Gibco, #10270106). Cells were typically passaged every 4 days at a 

1:8 split ratio by trypisinisation. All lines were grown under standard conditions; 37 °C and 5% CO2. 

For establishment of ZEB2+/- lines, plasmids pSpCas9n(BB)-ZEB2-Guide-A &-B (1 µg/ml) were 

elecroporated into H9 hESC using the Human Stem Cell Nucleofector Kit 1 (Lonza, VPH-5012). 

Following electroporation, cells were grown in one well of a 24-well plate, reduced to single-cell 

suspension and seeded into a 96-well plate at a density ranging between 1000 – 20 c/w in mTesRTM1 

supplemented with 1 nM ROCK inhibitor (BD Biosciences, 562822). Alternatively cells were seeded 

at a density of 0.5 c/w in StemFlex supplemented with RevitaCell supplement (ThermoFisher, 

A2644501). Once the cells reached ~80% confluence the 96-well plate was split to two replica plates, 

one used for screening by ddPCR and the other used for further expansion. Mutant screening relied on 

a droplet digital PCR (ddPCR) drop-off assay (Findlay et al. 2016). Screening was performed as 

described in the ‘Droplet digital PCR (ddPCR) and RT-ddPCR’ section of the methods. For 

establishment of the fFusionRed line pCAGEN-SB100X (0.125 µg/ml) and the transposon donor 

plasmid pT2-CAG-fFusionRed (0.375 µg/ml) were transfected into H9 hESCs with Lipofectamine 

Stem (ThermoFisher, STEM00001). After ~10 days from transfection fFusionRed+ cells were 

harvested as a pool by fluorescence activated cell sorting on a MoFlo XDP cell sorter (Beckman 

Coulter). For establishment of the inducible overexpression lines equimolar amounts of transposon 

donor plasmids were used; 1 µg of ZEB2 CuO and 0.6 µg of EV CuO were transfected together with 

Super PiggyBac transposase vector (System Biosciences, # PB200A-1) in a 1.25:1 ratio (m/m; 

transposon/transposase). A week after transfection, Puromycin selection (0.6 µg/ml) was applied until 

single colonies could be seen and picked under a stereo-microscope fitted in a horizontal laminar flow 

hood. For transgene induction the water-soluble cumate (CuO) solution (System Biosciences, 

#QM150A-1) was used at 1X and 2X concentration for 6 days. 

 

Karyotyping 

 
Karyotype analyses of the ZEB2+/- cell lines were outsourced to Cell Guidance Systems 

and for each cell culture sample 20 G-banded metaphase spreads were examined. Both 

samples revealed normal karyotype (46, xx) in all metaphase plates examined. 
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Organoid culture 

 
For the study on ZEB2 all organoids were generated according to the enCOR method (Lancaster et 

al. 2017) – refer to this publication for the media composition details. Briefly, EBs were maintained in 

EB medium until day 6, they were then switched to neural induction (NI) medium until day 11 when 

they were embedded in Matrigel (Corning, #354234). Between day 14-17 of the protocol the medium 

was changed to improved differentiation medium w/o vitamin A (IDM-A) supplemented with 3 µM 

GSK3 inhibitor/Wnt activator CHIR99021 (Tocris, cat. #4423). A short 3-day treatment with 

CHIR99021 was used to promote expansion of the neuroepithelium. On day 17 CHIR99021 was 

removed and organoids were fed with IDM-A every other day until day 21. On day 21 the Matrigel 

surrounding the organoids was microdissected away, the medium was changed to improved 

differentiation medium with vitamin A (IDM+A) and organoids were moved to an orbital shaker.  

Organoids were cultured in IDM+A with media changes every 3-4 days. On day 40 IDM+A was 

supplemented with 2% (v/v) dissolved Matrigel (Corning, #354234) to promote the establishment of 

the cortical plate. For air-liquid interface cerebral organoid (ALI-CO) culture the enCOR protocol or 

alternatively the STEMdiff Cerebral Organoid Kit (STEMCELL Technologies, #08570) were used. 

Organoids were grown according to the instructions given in the STEMdiff Cerebral Organoid Kit 

manual, with the only exception that on day 35 dissolved Matrigel was added to promote 

establishment of the cortical plate.  

 

Electroporation of cerebral organoids 

 

Between day 40-60 of the protocol, plasmids were delivered to the organoids by injection and 

electroporation into the ventricles. A P2000 micropipette puller (Suttern Instruments) was used to pull 

glass microcapillaries (Drummond Scientific, #1-000-0500) with the following settings: heat – 550, 

filament – 5, velocity – 25, delay – 150, pull – 150. The microcapillaries were opened using dissecting 

scissors to give a tip taper of ~8-9 mm. For expression of farnesylGFP a total of 5 µl of a 320 ng/µl 

plasmid solution (80 ng/µl pT2-CAG-fGFP and 240 ng/µl pCAGEN-SB100) was used for injection 

and electroporation. The electroporation settings used were as previously described.  

 

Cholera toxin subunit B (CTB) and emGFP labelling 

 

ALI-COs were visualised on an EVOS FL inverted microscope (Thermo Scientific) and <0.2 µl of 

1 mg/ml AlexaFluor 647-conjugate CTB (Thermo Scientific, #C34778) were delivered to the target 

region of the ALI-CO using a microinjection capillary. To achieve sparse neuronal labelling, ALI-COs 

were injected with <0.2 µl of CytoTune emGFP Sendai fluorescent reporter (Thermo Scientific, 
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A16519). Four days after CTB labelling and 5 days after viral infection ALI-COs were fixed for 

analysis. 

 

Air-Liquid Interface Cerebral Organoid (ALI-CO) culture 

 

ALI-COs were prepared using a modified version of a published organotypic slice culture protocol 

(Daza et al. 2007). Mature organoids (~55-60 days old, in some cases up to 90 days) were harvested 

using a cut P1000 pipette tip, rinsed in HBSS w/o Ca2+ and Mg2+ (Thermo Scientific, #14175095) and 

then washed and embedded in  3% low melt (LM) agarose (Sigma-Aldrich, # A9414) at ~40 °C in 

peel-a-way embedding molds (Sigma-Aldrich, #E6032). The embedded organoids were incubated on 

ice for 10-15 min until the agarose solidified releasing part of its water content. The blocks were 

processed on a Leica VT1000S vibrating microtome in cold HBSS w/o Ca2+ and Mg2+ as 300 µm thick 

sections. The sections were collected onto Millicell-CM cell culture inserts (Millipore, #PICM0RG50) 

in 6-well plates and left to equilibrate at 37 °C 5% CO2 for ~1-2 hrs in serum-supplemented slice 

culture medium (SSSCM): DMEM, 10% FBS, 0.5% (w/v) glucose, supplemented with penicillin-

streptomycin and Fungizone. After incubation in SSSCM the slices were cultured in  serum-free slice 

culture medium (SFSCM): Neurobasal (Gibco, #21103049), 1:50 (v/v) B27+A (Gibco, #17504044), 

0.5% (w/v) glucose, 1X (v/v) Glutamax supplemented with Antibiotic-Antimycotic (AA) (Gibco, 

#15240062). ALI-COs were fed SFSCM daily and maintained at 37 °C and 5% CO2. During feedings 

care was taken dispensing the medium to the side of the cell culture vessel to avoid that the slices be 

submerged.   

 

ALI-CO live imaging and image analysis 

 

Organoids were imaged only after ~1-2 days at the liquid interface, as during the initial phases of 

culture the tissue flattens out and easily comes out of focus. Imaging was performed on Zeiss LSM 

780 and 710 confocal microscopes with incubation set at 37 °C and 7% CO2. Time-lapse movies were 

acquired as Z-stacks at 10 minute intervals over several hours or days. Temporal projection images 

were generated in FiJi applying the Temporal-Color Code tool on time-lapse stacks. Axon growth 

cone tracing was performed using MTrackJ (Meijering et al. 2012) with manual tracking. The data 

was then plotted as the distance from the start track as a function of time. Linear regression was 

performed on all tracks and the average best-fit line was calculated for early and late growth stages. 

The MultiKymograph FiJi plugin was used to generate growth cones kymographs. The Gaussian 

gradient in the OrientationJ (Rezakhaniha et al. 2012) analysis plugin was used for directionality 

analysis on GFP+ tracts – hue was determined by the orientation of the tracts, brightness by the 

coherency and saturation was kept constant. For quantification of axon bundling in ALI-COs 

compared to whole organoids, mean grey levels of SMI312 staining were calculated on the entire 
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tissue area. OrientationJ with Riesz filter settings was used for axon tract morphology measurements 

on SMI312 stainings. Mean grey values were calculated for both the coherency and energy image 

outputs on the whole area of tissue. These two values were multiplied to obtain coherency x energy 

values reflecting the extent of bundling present in a given sample. For quantification of superficial and 

deep layer neuron abundance in ALI-COs compare to whole organoids, 6 samples for each condition 

were cryosectioned, stained for CUX2 and CTIP2 and imaged. To control for bias and differences in 

the distribution of neuronal types across ALI-COs and whole organoids, two images were acquired for 

each sample, one in the centre and one on the edge of the tissue. The same approach was taken for 

TUNEL stain image acquisition. Automated NIS Elements Advanced Research macros were 

optimised for the different stains and were used for cell counts.  TUNEL+, CUX2+ and CTIP2+ cells 

were defined by the co-expression of their respective marker and DAPI. Optimisation of macro 

parameters was done on an image randomly selected and all images were processed by a batch 

processing function.  Twelve 20-23 day old organoids were fixed, cryosectioned, stained for TBR2 

and DAPI and images were acquired on a Zeiss LSM 780 system. Quantification of TBR2+ IPCs 

numbers were performed on 52 (WT) and 68 (ZEB2+/- #2) regions of interest (ROIs) from 12 20-23 

day old organoids from two independent batches. Similarly, measurements of ventricle length were 

performed on 37 (WT) and 23 (ZEB2+/- #2) regions of interest (ROIs) from 6 20-23 day old organoids 

from two independent batches. Images of ZEB2+/- #2 and control organoids not used for 

quantifications were acquired on a 3DHISTEC – Pannoramic confocal. 

 

Histological and immunohistochemical analysis 

 

Organoids and ALI-COs were fixed in 4% PFA either overnight at 4 °C or at room temperature for 

20 min, and washed in PBS (3x10 min). Samples for cryostat processing were incubated in 30% 

sucrose in 0.2 M PB (21.8 g/l Na2HPO4, 6.4 g/l NaH2PO4 in dH2O) overnight, embedded in gelatin 

(7.5% gelatin, 10% sucrose in 0.2 M PB), plunge frozen in 2-methylbutane (Sigma-Aldrich, 

#M32631) at ~-40 °C, sectioned and stained as previously described (Lancaster et al. 2013). Because 

of their thickness (>300 µm) ALI-CO whole-mounts were stained using a modified protocol where all 

steps were performed in permeabilisation buffer (0.25% Triton-X, 4% normal donkey serum in PBS) 

at 4 °C. The individual steps were extended as follows; permeabilisation – overnight, primary and 

secondary antibody incubation – 2 days, wash steps – 3 x 8 hrs. The In Situ Cell Death Detection Kit 

TMR red (Sigma-Aldrich, #12156792910) was used for TdT-mediated dUTP-X nick end labelling 

(TUNEL) and was performed as outlined in the product’s manual.  Hematoxylin and Eosin stains were 

performed as described in the technical bulletin of the H&E stain kit (Atom Scientific, #RRSK26). For 

SDS antigen retrieval cryostat sections were rehydrated, incubated for 5 minutes in 1% SDS in PBS at 

room temperature and washed in PBS (3x5 min) before normal staining. 
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Immunoblotting 

 

Immunoblotting was performed essentially as described previously (Whitmarsh & Davis 2001). 

Cell and organoid samples were washed twice in ice-cold PBS, pelleted by centrifugation (500g, 3 

min) and lysed with modified-RIPA (mRIPA: 1% Triton-X, 0.1% SDS, 150 mM NaCl, 50 mM Tris 

pH 7.4, 2 mM EDTA, 12 mM sodium deoxycholate) supplemented immediately prior to lysis 

preparation with protease (Thermo Scientific, #78430) and phosphatase (Sigma-Aldrich, 

#4906845001) inhibitors. Samples were resolved by SDS-PAGE (4-20% gels) and transferred to 

Amersham Hybond P 0.45 PVDF blotting membranes (GE Healthcare, #10600023). Membranes were 

blocked overnight at 4 °C in 5% milk or 5% BSA in TBST. Specific blocking conditions were 

optimised for each antibody during the initial validation stages. Primary antibodies were incubated 

overnight at 4 °C. HRP-linked goat anti-rabbit (Dako #P0448, 1:3000) and rabbit anti-mouse (Dako 

#P0161, 1:3000) secondary antibodies were incubated for ~1 hr at room temperature. The blots were 

developed using ECL Prime enhanced chemoluminescent detection reagent (GE Healthcare, 

#RPN2232) and X-ray films (Photon Imaging Systems Ltd, #FM024). 

 

Antibodies 

 

Primary antibodies used for protein detection, with their corresponding dilutions for 

immunofluorescence (IF), western blotting (WB) and WB blocking conditions were as follows: mouse 

anti-β-actin (Abcam, 8226, WB 1:2000 in BSA), mouse anti-ZEB2 N-t (Origene, TA802113, IF 

1:150, WB 1:2000 in milk), rabbit anti-ZEB2 C-t (Origene, TA319793, IF 1:150), rabbit anti-ZEB2 

(Atlas Antibodies, HPA003456, IF 1:200), sheep anti-Tbr2 (R&D Systems, AF6166, IF 1:200), rabbit 

anti-GSH2 (Millipore, ABN162, IF 1:200), mouse anti-N-cadherin (BD Biosciences, 610920, IF 

1:500, WB 1:1000 in milk), mouse anti-E-cadherin (BD Biosciences, 610181, IF 1:500, 1:1000 in 

milk), rabbit anti-Occludin (Abcam, ab31721, IF 1:200, 1:1000 in milk), rabbit anti-EMX1 (Origene, 

TA325087, IF 1:200, WB 1:1000 in BSA), mouse anti-FGF2 (G-2) (Santa Cruz, sc-365106, WB 

1:1000 in BSA), mouse anti-FGF2 (C-2) (Santa Cruz, sc-74412, WB 1:1000 in BSA), mouse anti-

ERK1/2 (C-9) (Santa Cruz, sc-514302, WB 1:1000 in BSA), mouse anti-pERK (E-4) (Santa Cruz, sc-

7383, WB 1:1000 in BSA), rabbit anti-BLBP (Abcam, ab32423, IF 1:200), anti-GLAST (Abcam, 

ab416, IF 1:200), goat anti-DCX (N-19) (Santa Cruz, sc-8067, IF 1:300), mouse anti-ZO1 (BD 

Biosciences, 610966, IF 1:500), mouse anti-FEZF2/FEZ1 (IBL America, 18997, IF 1:200), chicken 

anti-MAP2 (Abcam, ab5392, IF 1:500), mouse anti-MAP2 (Chemicon, MAB3418, IF 1:300), rat anti-

CTIP2 (Abcam, IF ab18465, IF 1:300), mouse anti-SATB2 (Abcam, ab51502, IF 1:200), rabbit anti-

CUX2 (Abcam ab130395, IF 1:200), mouse anti-SMI312 (BioLegend, 837904, IF 1:500), mouse anti-

c-Fos (EnCor, MCA-2H2, IF 1:100), mouse anti-Piccolo (PCLO) (Origene, TA326497, IF 1:100), 

mouse anti-STEM121 (Takara, Y40410, IF 1:500), sheep anti-human-Neuropilin-1 (NRP1) (R&D 

Systems, AF3870, IF 1:200), rabbit anti-Homer 1 (Synaptic Systems, 160003, IF 1:100), rabbit anti-
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Psd95 (Abcam, ab18258, IF 1:500), mouse anti-human-Synaptophysin (EP10) (Thermo Scientific, 14-

6525-80, IF 1:200), goat anti-human-Synaptophysin (R&D Systems, AF5555, IF 1:100), chicken anti-

GFP (Thermo Scientific, A10262, IF 1:500), mouse anti-Bassoon (Enzo, SAP7F407, IF 1:200), rabbit 

anti-VGAT (Synaptic Systems, 131013, IF 1:1000), mouse anti-Calretinin (Swant, 63B, IF 1:500), rat 

anti-Somatostatin (Millipore, MAB354, IF 1:100), mouse anti-GAD67 (Millipore, MAB5406, IF 

1:100), mouse anti-Ephrin-B1 (C-6) (Santa Cruz, sc-515264, IF 1:50), mouse anti-WNT5A (A-5) 

(Santa Cruz, sc-365370, IF 1:50), goat anti-BRN2 (C-20) (Santa Cruz, sc-6029, IF 1:50), mouse anti-

TUBB3 (BioLegend, 801202, IF 1:500), rabbit anti-RYK (Abcam, ab5518, IF 1:100), rabbit anti-

Netrin 1 [EPR5428] (Abcam, ab126729, IF 1:50), mouse anti-CUX1 [2A10] (Abcam, ab54583, IF 

1:100), rabbit anti-GFAP (Abcam, ab7260, IF 1:500), rabbit anti-SOX5 (Abcam, ab94396, IF 1:200). 

All primary antibodies used had been previously described and validated in the literature and were 

tested for reactivity on human tissue. No new antibodies were produced for this study. Alexafluor 405, 

488, 568 and 647 secondary antibodies were used for detection of primary antibodies.  

 

Whole-cell patch-clamp recordings 

 

ALI-COs were placed in a submerged chamber continuously perfused with room-temperature 

artificial cerebrospinal fluid (aCSF) (119 mM NaCl, 2.5 mM KCl, 11 mM glucose, 26 mM NaHCO3, 

1.25 mM NaH2PO4, 2.5 mM CaCl2 and 1.3 mM MgCl2) saturated with 5% CO2/95% O2 pH 7.4. 

Patch-clamp pipettes were pulled from borosilicate glass capillaries (1.5 mm OD x 0.86 mm ID; 

Harvard Apparatus, Holliston, MA) and typical pipette resistance was between 12-15 MΩ. Pipettes 

were filled with artificial intracellular solution (145 mM K-gluconate, 5 mM MgCl2, 0.5 mM EGTA, 2 

mM Na2ATP, 0.2 mM Na2GTP, 10 mM HEPES) buffered to pH 7.2 with KOH (280-290 mOsm). 

Recordings were performed in current-clamp configuration using an Axon Multiclamp 700B amplifier 

(Molecular Devices, San Jose, CA) under a Slicescope (Scientifica, Uckfield, UK) fitted with a 40x 

objective lens (Olympus, Tokyo, Japan) and a WAT-902H analogue camera (Watec, Newburgh, NY). 

Resting membrane potential (RMP) was measured in current clamp mode after establishing a seal in 

whole-cell configuration. Cells with RMP ≤-50mV were used for analysis (Appendix 2). A frequency-

current (FI) curve was determined by applying current steps (800 ms) of increasing amplitude (5 pA 

steps). 

 

ChIP-seq data visualization and SUMOylation/ubiquitylation analysis 

 

ZEB2 ChIP-seq datasets were accessed via ENCODE with the following accession numbers: 

ENCSR004GKA, ENCSR322CFO and ENCSR417VWF. The datasets were visualized on the 

University of California Santa Cruz (UCSC) Genome Browser using the GRCh38/hg38 assembly. 

ChIP-seq data were displayed by default as fold change values over control with the signal P-value 
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and optimal IDR thresholded peaks. Interactions between putative regulatory elements were displayed 

in the GeneHancer Regulatory Elements and Gene Interactions track and the data were visualized 

using the default settings in the browser. The H3K27Ac mark track was visualized using the default 

setting in the browser and data for all 7 cell lines available on ENCODE were displayed (GM12878, 

H1 hESC, HSMM, HUVEC, K562, NHEK and NHLF). For ZEB2 SUMOylation analyses, the protein 

sequence of the main isoform (O60315-1) and the shorter isoform missing exon IV (O60315-2) were 

retrieved from UniProt (https://www.uniprot.org) and analyzed using the online SUMOplot analysis 

program (https://www.abgent.com/sumoplot). The putative SUMOylation site at K114 was predicted 

with a confidence score of 0.8. The same sequence analyzed using the prediction software for protein 

ubiquitylation sites UbPred (http://www.ubpred.org/) was predicted to contain a putative 

ubiquitylation site on K114 with a confidence score of 0.89. 

 

Bioinformatic analysis of scRNA-seq datasets 

 

Third-party gene-expression matrices were downloaded from NCBI GEO. Data corresponding to 

E9.5 and E10.5 mouse forebrain were obtained from (Dong et al. 2018) [GEO:GSE87038], while for 

E11.5, E13.5, E15.5, and E17.5 dissected mouse cortices were derived from (Yuzwa et al. 2017) 

[GEO: GSE107122]. The datasets were analysed using the Seurat R-package. Cells expressing <500 

genes and more than %5 mitochondrial genes were filtered out prior to analysis. For each 

developmental time-point, gene expression for each cell was normalized first by scaling gene 

expression by total expression, then scaling by e^4 and log-transforming values. Next, variable genes 

for dimensionality reduction were determined using a dispersion index (log variance over mean) 

approach (FindVariableGenes function). Gene expression was then scaled while regressing out factors 

contributing to variation (i.e. High UMI-counts, % of mitochondrial genes). Canonical correlation 

analysis (CCA) (Butler et al. 2018) was used to identify common cell-types and conserved marker 

genes across all developmental time points. This also allowed for removal of technical artefacts. First, 

highly variable genes were selected by intersecting the top 2000 variable genes for time-point and 

selecting those genes found at two time-points at least. Using those variable genes, CCA was 

performed (RunMultiCCA function), computing 40 CCAs. The number of CCAs for clustering was 

chosen based on the shared correlation strength for each CCA (MetageneBicorPlot). Rare non-

overlapping filtering (CalcVarExpRatio), CCA subspace alignment (AlignSubspace), followed by t-

SNE clustering (resolution '1.2', reduction type 'cca.aligned') were performed using the first 20 CCAs. 

Marker analysis for each cluster was performed using the function FindAllMarkers and requirements 

for a gene to be considered were: average log-fold change >0.5, expression in a least 25% of cells of 

the cluster and significant differential expression between clusters (P-value <0.001). Cluster 

annotation was curated manually considering the top marker genes for each cluster and performing 

literature-based research and publications cross-referencing. The markers used to identify each cluster 

were: dorsal forebrain progenitor glia (Nes, Vim, Sox2, Pax6, Slc1a3, Dbi, Ptprz1), ventral forebrain 
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progenitors (Dlx1, Dlx2, Sox2, Mki67, Top2a, Gadd45g), intermediate progenitor cells (Eomes, 

Gadd45g), interneurons (Stmn2, Gap43, Dlx1, Dlx2, Dlx5, Meis2, Gad1, Gad2, Ebf1, Isl1), pyramidal 

neurons (Stmn2, Gap43, Dcx, Neurod2, Neurod6, Tbr1, Cux1/2, Satb2, Fezf2, Sox5, Pou3f2), 

microglia (Csf1r, C1qa/b/c), blood cells (Car2, Hbb-bh1, Gypa, Blbrb, Hemgn), mesenchymal cells 

(Col3a1, Col1a2, Ig2, Apod, Anxa2, Ctn, Co1a1), U1 - Unclassified (mt-Cytbm, Meg3, Luc7l3, mt-

Nd1, Ptprs, Gria2). 

 

Organoid dissosciation for single-cell RNA sequencing (scRNA-seq) 

 

Residual LM agarose was removed from two H9 (53+22 days) and two H1 (53+16 days) ALI-COs. 

The ALI-COs from the same hESC line were pooled and harvested in Hibernate Medium (Thermo 

Scientific, A1247601) plus B-27 Supplement (Thermo Scientific, 17504044), washed twice in PBS 

and transferred into gentleMACS C tubes (Miltenyi, 130-093-237) containing 2 ml of Accumax 

(Sigma, A7089) solution. Dissociation was done on the gentleMACS Octo Dissociator (Miltenyi) 

using the recommended settings. Any residual cell clumps and debris were removed by passing the 

cell suspension through a 70 µm strainer. A small volume of the cell suspension was used for cell 

counting and the remaining diluted 4-fold in PBS and centrifuged (200g, 5 min). Cells were 

resuspendedn in PBS supplemented with 0.04% BSA (Sigma Aldrich, A9418) to give a final 

concentration of 206 cells/µl. The suspension was incubated on ice until processed. 

 

scRNA-seq library preparation and sequencing 

 

Single cell RNA-seq libraries were prepared using the 10X Genomics Chromium Single Cell 3’ 

Library & Gel Bead Kit (10X Genomics, 120237) workflow following the manufacturer’s guidelines. 

The 10X Genomics Chromium Single Cell 3’ Chip was loaded with 34 µl of cell suspension (7000 

cells) and with the appropriate amount of Mastermix. Cell capture rate for barcoding ranged between 

50-75%, giving ~3500-4400 barcoded cells per sample. According to the protocol, the Chromium 

Controller was run to produce single cell gel beads in emulsion. Reverse transcription and 

amplification were performed on a C1000 Touch Termal Cycler (Bio-Rad) – the cDNA was subject to 

12 cycles of amplification. Prior to sequencing, the quality of the libraries was assessed using the 2100 

Bioanalyzer Instrument (Agilent) and their concentration measure by qPCR. Samples were pooled 

together and sequenced on an Illumina HiSeq 4000 platform. 
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scRNA-seq data analysis 

 

CellRanger, Seurat and Monocle software packages were used to build the scRNA-seq data 

analysis pipeline. CellRanger 2.1.1 was used to align the reads to the GRCh38 reference genome. This 

gave a gene expression matrix of 13,333 cells with a median of 2,320 genes and 29,086 mean reads 

per cell post-normalisation. Quality of both intronic and exonic reads was assessed by FastQC and 

showed 87.2% fraction reads in cells. Only reads that mapped uniquely to the transcriptome were used 

for unique molecular identifier (UMI) counting in CellRanger. Read depth was normalized in ‘Aggr’ 

function between the libraries of the samples. UMI (transcript) counts for each cell were normalized to 

the total counts, multiplied by 10,000 and transformed into log-space. Cells expressing between 200 

and 5,000 genes with a maximum of 15% mitochondrial genes and genes expressed in a minimum of 

three cells were kept during filtering. Further processing with the Seurat 2.3.0 R package yielded a 

final object of 13,280 cells for the combined libraries, which was then scaled and normalised. 

Unbiased clustering was obtained by principal component analysis (PCA) of highly variable genes 

defined by setting the standard deviation as dispersion function in the ‘FindVariableGenes’ option (bin 

= 20). The maximum number of dimensions for cluster separation was determined using PCElbowPlot 

and clustering was driven by the recommended solution (i.e. 0.16). Clusters were visualized in 2D and 

3D space based on t-distributed stochastic neighbour embedding (tSNE) separation in R. Clustering 

robustness was determined by comparing the top differentially expressed genes for each cluster with 

cut-off at 25% expression frequency within a population. Six well-defined clusters were identified. 

The cell identity of the clusters was assigned by gene enrichment analysis using cell type, layer, 

region, DV position and lobe specific gene sets from databases (Allen Brain Atlas at 

http://human.brain-map.org) and published work (Lancaster et al. 2013; Renner et al. 2017; Quadrato 

et al. 2017; Zhong et al. 2018; Watanabe et al. 2005; Pollen et al. 2015; Preissl et al. 2018; Lake et al. 

2016). Based on the relative proportion of cells expressing the particular reference genes the final 

cluster identities were assigned. The Gene Ontology Consortium online software 

(http://www.geneontology.org) was used for GO term analysis. Gene enrichment was defined by 

Fisher’s exact test with false discovery rate (FDR) multiple test correction and the top 3 biological 

process annotations for the enriched genes were presented on the basis of the highest fold-enrichment 

among the most significant terms (p<0.001). In order to compare the developmental profile of ALI-

COs and fetal brain, the R-package Monocle was used to derive a gene expression pseudotime 

trajectory based on the scRNA-seq data. The raw gene expression matrices of 12 and 13 PCW human 

fetal brains were processed through the same QC test and filtering in Seurat, this dataset was then used 

as input in Monocle. Expression levels along the established pseudotime trajectories were visualized 

as heatmaps comparing ALI-COs and human fetal brains. In order to compare the representation of 

distinct developmental cell states in ALI-COs (69-75 days) with those from other studies, Pearson 

correlation was applied to expression profiles of layer-specific genes. Raw count matrices were 

uploaded onto Seurat and the same filtering parameters were applied across all datasets. Cells with 
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less than 400 expressed genes were excluded from the analysis, the upper threshold on number of 

expressed genes was determined as for the ALI-COs. The Jupyter notebook and Python Seaborn were 

used for analysis and data visualization. 

 

Multielectrode array (MEA) recordings 

 

Between ~12-24 hrs prior to recording, ALI-COs were moved to BrainPhys (STEMCELL 

Technologies, #0590) supplemented with Neurocult SM1 neuronal supplement (STEMCELL 

Technologies, #05793). Extracellular recordings of spontaneous activity in ALI-COs (n=10) were 

acquired on an MEA system (MEA1600, Multi Channel Systems). Immediately prior to recording, 

ALI-COs were transferred to a 3D grid MEA(60-3DMEA200/12iR-Ti-gr, 60 electrodes, 12 µm 

diameter, 200 µm spacing, with an internal reference electrode). Enough media was removed to allow 

the tissue to settle on the array – ~100-200 µl of medium were left in the chamber to bathe the tissue – 

and the temperature was maintained at 37 °C throughout the recordings (TC01 controller and TCX-

Control software, Multi Channel Systems). Application of 1-2 µM tetrodotoxin (TTX) was sufficient 

to block activity in ALI-COs (n=3). Sampling was performed at 25 kHz on the 64-channel data 

acquisition board (MC Card) and MC Rack software (Multi Channel Systems). Electrodes with noise 

fluctuations greater than 50 µV were grounded prior to recording. The data was exported as a binary 

file in Matlab (MathWorks), the raw signal was bandpass filtered (third-order Butterworth, 600-8000 

Hz) and a threshold of 6 times the standard deviation above background noise was applied to detect 

extracellular spike waveforms in each channel with a 2 ms refractory period imposed after each spike. 

The spike time tiling coefficient was used to compare correlated spontaneous activity between 

electrodes with a synchronicity window (Δt) of 40 ms. In order to do this, the publicly available script 

in C (https://github.com/CCutts/Detecting_pairwise_correlations_in_spike_trains) was translated into 

Matlab. Custom code used for MEA analysis is publicly available at: 

 https://github.com/Timothysit/organoids. 

 

Mouse embryos harvesting and mouse spinal cord-ALI-CO co-culture 

 

C57BL/6 pregnant female mice were euthanized and the uterine horns were harvested by a trained 

animal technician of the MRC-LMB animal facility within the MRC Centre, covered by the 

‘Certificate of Designation’ and in accordance with Schedule 1 – Humane Methods of Euthanasia of 

Animals for tissue removal and as controlled under the ‘Animal (Scientific Procedures) Act 1986’. All 

the following steps were carried out in ice-cold PBS w/o Ca2+ and Mg2+. Embryos were separated by 

cutting the uterine horns between implantation sites. Individual embryos were exposed by removing 

the muscle layer, the decidua and any remaining extra-embryonic tissue using precision tweezers 

(IDEAL-TEK, 5SA). For histological analyses embryos at different developmental stages (E10.5 – 
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E16.5) were fixed in PFA overnight at 4 °C and prepared as described in the ‘Histological and 

immunohistochemical analysis’ section of the methods. Embryos at E12.5 were used for establishment 

of mouse spinal cord-ALI-CO co-cultures. In order to isolate the spinal cords with dorsal root ganglia 

(DRGs) and overlying paraspinal muscles, 0.15 mm ∅ dissecting pins (Fine Science Tools, 2600215) 

were inserted in the head and pelvic-regions to stabilise the embryos. First, the embryo was positioned 

face-down with straddled limbs and the skin overlying the spinal cord was peeled off. Next, the limbs 

were removed by cutting the embryo along its length in a posterior-to-anterior fasion, at a distance of 

approximately 1 mm from the midline, on either side of the spinal cord, using 3 mm cutting edge 

spring scissors (CohanVannas, 15000-01). The embryo was then placed sideways and the internal 

organs were excised. Lastly, the embryo was placed with its ventral side up and any remaining 

undesired tissue was removed, including the head and tail. 

 

The muscle-spinal cord explants were incubated in ice-cold PBS prior to embedding. For 

embedding, one organoid (age: 45-60 days) and two mouse spinal cord-muscles were washed once in 

ice-cold HBSS w/o Ca2+ and Mg2+, they were then washed and embedded in 3% LM agarose at ~40°C. 

Immediately after embedding, before agarose polymerization, the organoid was positioned centrally at 

the bottom of the mold on a layer of solidified agarose. The mouse spinal cord explants were then 

placed flat on either side of the organoid with the roof plates pointing inwards and leaving a ~1-3 mm 

gap between the organoid and mouse tissues. For vibratome sectioning the block was oriented so as to 

cut the spinal cords along their axial plane. Sectioning was performed as outlined in the methods 

section ‘Air-Liquid Interface Cerebral Organoid (ALI-CO) culture’. Mouse co-culture slices were 

maintained in SFSC medium supplemented with 1x AA with daily media changes. After ~2-3 weeks 

human tracts could be seen innervating mouse spinal cords. 

 

ALI-CO stimulation and axotomy 

 

Spontaneous contractions of mouse spinal muscles in organoid-mouse innervated co-cultures were 

typically seen after ~20-30 days at the ALI. Contractions were imaged and recorded on a Nikon 

TE2000 equipped with an Andor Neo sCMOs camera using the NIS Elements software for image 

acquisition. Data was acquired as either an .avi or .nd2 file depending on downstream analysis and a 

custom macro in ImageJ (NIH) was used to calculate the tissue displacement upon muscle contraction 

as a function of time. Contractions evoked by extracellular stimulation of the organoid axonal tract 

were elicited using stainless steel electrodes (A-M Systems, 57100) connected to a constant isolated 

stimulator (0.2-30 mA, 120-180 µs manually- or TTL-triggered pulses, model DS3, Digitimer). When 

operating the stimulator in TTL-triggered mode, TTL pulses at set frequency (5 ms duration) were 

generated using an Arduino running on its internal clock. 
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For latency analysis, the stimulator TTL trigger (which triggered the stimulator) and the camera 

‘expose-out’ TTL (indicating the exposure time of each frame) were recorded using an oscilloscope 

with sampling rate of 200 kHz (Picosope, 2406B). This allowed for precise estimation (±5µs) of the 

delay between the first frame of the movie and the previous TTL pulse. It was therefore possible to 

compute the time delay between each frame and the previous stimulation based on the hardware 

timestamps of each frame and the frequency of the TTL pulses. 

 

For axotomy, the filters were retrieved from the imaging vessels, placed on a plastic support, 

visualized on an inverted tissue culture microscope at 10x magnification and a microknife (FST, 

10316-14) was used to perform the incision. In order to detect the muscle contractions from acquired 

image sequences, the average of the difference between two consecutive frames for the region of 

interest (ROI) was computed. The resulting temporal signal was then decomposed into the sum of a 

baseline, stimulation and residual motion. The baseline was estimated as a 1D rolling ball and the 

stimulation peaks were detected as outliers (12 x SD) from the mean. Processing was implemented as 

an ImageJ macro that was applied to a selected ROI. The camera fire TTL signal was used to 

synchronize the acquired images and the electrical stimulation signal, latencies were computed using a 

Matlab script as the delay between each recorded stimulation TTL pulse and the time when the nearest 

residual motion went above 2 x s.d.. The code used for latency analysis and instructions on how to use 

it are available at: https://github.com/jboulanger/stimulation-motion. 

PCR analysis 

 

For ZEB2 splice variant detection, primers binding upstream and downstream of exon 4 were 

designed and the sequences are reported in the primer table in Appendix 1. For splice variant 

discrimination and any other application aimed at amplicon size comparison GoTaq Green Master Mix 

(Promega, #9PIM712) was used according to the manufacturer’s guidelines. For molecular cloning or 

any other application requiring sequence fidelity Q5 High Fidelity 2X Master Mix (NEB,# M0492S) 

was used. PCR analysis of pluripotency markers was done using the Human Pluripotent Stem Cell 

Assessment Primer Pair Panel (R&D Systems, SC012) and amplification was done using GoTaq 

Green. Novex TBE 10% gels (Thermo Scientific, # EC6275BOX) were used for DNA-PAGE analysis 

of ZEB2+/- mutant gDNA. The primers used were ZEB2_DNA_PAGE_F & R, GoTaq green was used 

for amplification and 1X SYBR Gold Nuclei Acid Stain was used for detection (Thermo Scientific, 

S11494). Samples were prepared as outlined in the PAGE gels technical sheet. 

 

Droplet digital PCR (ddPCR) and RT-ddPCR 

 

In order to detect CRISPR-mutants and perform enrichment by sib-selection a TaqMan-based 

ddPCR drop-off assay was designed (Findlay et al. 2016). An amplicon of 198 bp overlapping the 
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edited genomic region (GRCh38/hg38 chr2:144,517,275-144,517,351) was produced using primers 

ZEB2_Cas9n_screening_F & R. The assay was designed so as to have a 5’-HEX-labelled 3’-BHQ1 

probe binding to the edited site (i.e. ZEB2_drop-off_probe) and a 5’-FAM-labelled 3’-BHQ1 probe 

binding to both edited and WT amplicons (i.e. ZEB2_reference_probe). The specific sequence of 

primers and probes used in the assay are listed in the table included at the end of the methods section. 

The assay was performed using the ddPCR Supermix for Probes (BioRad, 1863024) as described in 

the product’s technical bulletin. Briefly, reaction mixes (20 µl/reaction) were prepared as follows: 100 

nM primers, 200 nM probes, 10 U MseI (NEB, R0525S), 1x ddPCR supermix for probes and 50-300 

ng of genomic DNA (gDNA). The reactions were loaded into DG8 cartridges (Bio-Rad, #1864008) 

with droplet generation oil for probes (Bio-Rad, 1863005), the cartridge was then fitted with the DG8 

gaskets (Bio-Rad, 1863009) and run on the QX200 droplet generator (Bio-Rad, 10031907). The 

droplet-oil emulsion was transferred to a ddPCR 96-well plate that was sealed with the PX1 PCR Plate 

Sealer (Bio-Rad) and the PCR reaction was run on a C1000 touch thermal cycler following the PCR 

protocol detailed in the technical bulletin. After thermal cycling, data were acquired on the QX200 

Droplet Reader (Bio-Rad) using the QuantaSoft Software (Bio-Rad). RT-ddPCR was used in order to 

quantify target gene expression levels. Briefly, RNA was isolated from organoid tissue or cells using 

the RNeasy mini kit (Qiagen, 74104). Samples were treated with DNAseI to remove any 

contaminating gDNA (Qiagen, 79254).  Complementary DNA (cDNA) was synthesized from 240 ng-

1 µg total RNA using the SuperScript™ III first-strand synthesis supermix (Thermo Scientific, 

18080400) following the product’s manual. Primers used for RT-ddPCR are detailed in the table in 

Appendix 1. With the exception of the ZEB2 and EIF2B2, which were manually designed to bind 

across different species (i.e. mouse, gorilla and human), all other primer sequences were downloaded 

from PrimerBank (https://pga.mgh.harvard.edu/primerbank/). Amplicons were validated and 

thermocycling conditions were optimized for individual targets. After reverse transcription, cDNA 

concentration was not measured - for samples synthesized starting from 240 ng of RNA 0.33 µl of 

cDNA were used per reaction, while samples synthesized starting from 1 µg of RNA were first diluted 

1:5 and 0.33 µl were used per reaction. Detection relied on EvaGreen chemistry (Bio-Rad, 1864034) 

and because the loading control (i.e. EIF2B2) was run separately and not as an internal control, all 

reactions were run in triplicates. As negative control, for each condition tested and each target 

analysed a reaction with the RNA as template was run. Reaction mixes (20 µl/reaction) were prepared 

as follows:  0.33 µl sample, 100 nM primers, 1x QX200 ddPCR EvaGreen supermix (Bio-Rad, 

1864034). The ddPCR reactions were set up as described for the TaqMan probe-based assay above, 

with the only difference being that the QX200 Droplet Generation Oil for EvaGreen (Bio-

Rad,1864005) was used for emulsion. For analysis, the concentration values for the different targets 

were normalized to the loading control EIF2B2 and mean and standard deviation (s.d.) values for the 

three technical replicates were calculated and reported as target mRNA normalized fold change. 
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Luciferase reporter assay 

 

The reporter constructs used for the luciferase reporter assay for TGFβ (SBE4-Luc, #16495) and 

BMP (pGL3-BRE Luciferase, #45126) signalling cascades were purchased from Addgene. The 

Renilla luciferase control vector pRL-TK (Promega, #E2241) was used as internal control. 

Recombinant human TGFβ-1 (R&D Systems, # 240B002) and recombinant human BMP4 (R&D 

Systems, #314BP010) were reconstituted to 20 µg/ml and 50 µg/ml, respectively, in PBS 

supplemented with 4mM HCl and 0.1% BSA.  For the reporter assay, 293T cells were seeded into 12-

well plates and the next day they were transfected. The reactions comprised the Renilla luciferase 

control vector pRL-TK (10 ng), pCAG-nV5-ZEB2-isoform1 (1 µg) or alternatively pCAG-nV5 (i.e. 

EV) (1 µg), and the TGFβ reporter construct (200 ng) or the BMP reporter construct (200 

ng).Polyethylenimine (PEI) was used for transfection in a 1:2 (DNA:PEI) (µg/µl) concentration, 2.42 

µl of PEI/reaction and the reaction mix was made in 100 µl Opti-MEM reduced serum medium 

(Thermo Scientific, # 31985062). On day four, the medium was changed and the cells were induced 

with either TGFβ-1 (1 ng/ml), BMP4 (40 ng/ml) or mock (PBS, HCl 4 mM, 0.1% BSA). On day 5 the 

cells were lysed with modified-RIPA (mRIPA: 1% Triton-X, 0.1% SDS, 150 mM NaCl, 50 mM Tris 

pH 7.4, 2 mM EDTA, 12 mM sodium deoxycholate) supplemented with protease (Thermo Scientific, 

#78430) and phosphatase (Sigma-Aldrich, #4906845001) inhibitors. The Dual-Luciferase Reporter 

Assay System (Promega, E1910) kit was used for detection of firefly and Renilla luciferase in the 

same sample and chemiluminescence was measured on a standard luminometer. For analysis, each 

treated transfection condition was normalized by its corresponding mock treated control to obtain a 

relative fold luminescence change. 

 

Cryo-CLEM on ALI-CO tracts 

 

Organoids were electroporated and sectioned for ALI-CO culture as previously described. During 

vibratome sectioning due care taken to remove all Matrigel surrounding the organoids and tissue slices 

were manipulated with scalpel blades (Swann-Morton, SM0501) and collected on cell culture insets. 

Carbon- (Quantifoil R2/2 Cu 200 mesh) and gold-coated grids (UltrAuFoil R2/2 Au 200 mesh) were 

incubated at room temperature overnight with 0.01% polyornithine (Sigma-Aldrich, #P4957-50ML), 

the next day they were washed in PBS, coated with 10 µg/ml laminin (Sigma-Aldrich, #L2020) and 

0.001% fibronectin (Sigma-Aldrich, # F0895) and incubated at 37 °C for four hours. ALI-COs were 

visualised on an EVOS FL inverted microscope (Thermo Scientific) and grids were placed adjacent to 

GFP+ foci. The ALI-CO media was changed daily and care was taken not to disturb the grids. After 

approximately 2-3 weeks GFP+ tracts could be seen spreading across the surface of the grids as far as 

their centre. Biopsy punches were used to retrieve the grids with overlying axons, and they were 

immediately plunge frozen in liquid ethane using a foot operated plunger. Grids were screened for 

GFP+ axons on a cryo-fluorescence microscope (Leica EM Cryo CLEM, Leica Microsystems), 
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equipped with an Orca Flash 4.0 V2 sCMOS camera (Hamamatsu Photonics) and a HCX PL APO 

50X cryo-objective with NA = 0.9, a Sola Light Engine (Lumencor) and a L5 filter, excitation 480/40, 

dichroic 505, emission 527/30 for detection of GFP, in a humidity-controlled room (humidity below 

25%). The stage was kept at -195 °C for cryo-FM imaging. Tile scan overviews around the center of 

the grid were acquired both in the GFP and brightfield channel using the Leica LAS X software. 

Subsequently, focal stacks with 1µm step size were taken around areas of interest on the grid. The 

imaging settings were kept at: 17% - intensity and 500 ms - exposure, 30 % - intensity and 50 ms - 

exposure for the GFP and brightfield channel, respectively.  

 

ECT data acquisition at pre-identified GFP+ axons were collected on a Titan Krios (FEI) operated 

at 300 kV using a Quantum energy filter (20 eV slit width) and a K2 direct electron detector (Gatan) 

using SerialEM (Mastronarde 2005). Low magnification montages were taken around the center of the 

grid with 170 nm pixel size. Grid squares with GFP+ tracts were identified and overview montages of 

these squares were acquired at a pixel size 5.1 nm. From these overview maps individual GFP+ tracts 

were targeted for ECT. Tilt series were acquired in counting mode at 3.7 Å pixel size between ±60° 

starting from 0° with 1° increment using SerialEM following a grouped dose-symmetric acquisition 

with a group size of four (Bharat et al. 2018; Hagen et al. 2017), and at 5 µm defocus. A dose of 

approximately 0.9 e^(-Å^2 ) was applied per image of the tilt-series and images were acquired as 

frames. Frame alignment and tomogram reconstructions were performed using IMOD (Kremer et al. 

1996). For better visualisation in figures the tomograms were reconstructed at a pixel size of 7.4 Å by 

simultaneous iterative reconstruction technique (SIRT) with 10 iterations. Cryo-FM and EM overlays 

were generated using landmark features in both images with the eC-CLEM correlation plugin for Icy 

(Paul-Gilloteaux et al. 2017).  
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Chapter 3: The zinc-finger transcription factor ZEB2 regulates cell-cell 

contacts and architecture in the developing neuroepithelium 

Introduction 

 

The neuropithelium represents the CNS primordium and along the AP axis it generates a variety of 

structures of different sizes, diverse architectures and functions. Nevertheless, despite this ability to 

generate considerable structural and functional diversity, at the cellular level the neuropithelium 

appears highly homogenous. Histological examination of NECs of the trunk neural tube and of those 

of the pallium does not reveal any obvious morphological difference. As development progresses and 

NECs transition to aRGCs, through regional differences in cell cycle dynamics, cell adhesion and 

proliferation the neural tube starts to diversify. An example of this structural divergence is the OSVZ, 

a proliferative compartment unique to the developing cerebral cortex that is thought to have allowed 

for increased cortical neurogenesis.  

 

Nevertheless, already at the neuroepithelial stage regional differences in progenitor proliferation 

lead to divergent growth of the secondary brain vesicles. In fact, if we consider the proliferation 

dynamics of human pallial and midbrain/hindbrain NECs, we observe that although initially the 

cortical neuroepithelium is of smaller size compared to the midbrain/hindbrain neuroepithelium, over 

time it grows considerably larger (Altman et al. 1995). Intriguingly, comparison of the human and rat 

neocortical neuroepithelium reveals evolutionary differences in the pattern of regional NECs 

expansion. Whilst in humans NECs proliferate for approximately 8-9 weeks, rat neocortical NECs 

expand for only ~6 days before switching to neurogenic divisions (Altman & Bayer 2007; Altman et 

al. 1995). These early differences in NECs expansion in human and rat produce protomaps with 

profoundly different neurogenic output potential (Fernández et al. 2016; Nowakowski et al. 2016; 

Geschwind & Rakic 2013).  

 

Thus, the neuroepithelial stage is undoubtedly an interesting developmental window for 

examination of evo-devo changes that led to differences in neocortex size. Looking at the literature, it 

is surprising how little is currently known on this subject compared to later aspects of neocortical 

development. This has been largely due to the fact that in the mouse the neuroepithelial stage lasts 

only a couple of days, from the moment of anterior neuropore closure (~E8.5) to the onset of 

neurogenesis (~E11). At this stage the embryo is not easily accessible, the boundary between pallium 

and subpallium is ill-defined both anatomically and molecularly, and, in addition, we are missing a –

Cre driver gene to efficiently manipulate gene levels so early and over such a short time window. In 

this regard, cerebral organoids represent a precious tool to examine early neurodevelopmental stages. 

In this chapter we will discuss how cerebral organoids were used to investigate the role of ZEB2 in the 

establishment of human neuroepithelial architecture. 
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ZEB2 is highly expressed in early neural progenitor cells 

 

After identification of ZEB2 as a putative regulator of human neocortex size through an in silico 

screen detailed in the Introduction section, we decided to characterise the expression dynamics of this 

gene throughout the developmental time-line of the cerebral organoid protocol (Lancaster et al. 2017). 

The protocol used relies on the intrinsic ability of PSCs to differentiate to neural ectoderm without the 

need for inductive cues that could potentially lead to skipping of important developmental 

intermediates. Fig. 11a reports a schematic diagram of the protocol with the key steps highlighted, a 

detailed description of the protocol can be found in the Materials & Methods section. 

 

We first examined ZEB2 expression at key transition steps of the protocol by immunofluorescence. 

Our analyses showed that ZEB2 started to be expressed on day 14 of the protocol in early 

neuroepithelial progenitors, when only few DCX+ neurons could be seen (Fig. 11b). ZEB2 expression 

in NECs was maintained until day 21, when neurogenesis started, as show by the increased numbers 

of DCX+ cells accumulating on the basal surface of the organoid buds (Fig. 11b). By day 25, several 

layers of DCX+ cells could be seen overlying the intermediate zone and the ventricular zone. At this 

time point, the progenitor cells of the VZ showed reduced levels of ZEB2, with a salt-and-pepper 

pattern of expression (Fig. 11b). By day 31, ZEB2 expression in the VZ was completely lost and some 

DCX+ neurons could be seen expressing ZEB2 (Fig. 11b). Analysis of day 60 organoids revealed 

strong ZEB2 expression in neurons of the cortical plate and the IZ with some overlap with the deep-

layer neuron marker CTIP2 (Fig. 11b).   

 

Our immunofluorescence data showing ZEB2 expression in neurons was in agreement with 

previous reports of ZEB2 expression in postmitotic neurons of the cortical plate in the mouse cortex at 

E16.5 (Seuntjens et al. 2009).  Detection of ZEB2 protein in early neural progenitor cells was not 

entirely unexpected as previous RNA in situ hybridization experiments had shown expression in the 

telencephalon of E9.5 and E10.5 mouse embryos (Miyoshi et al. 2006). However, our data showed 

that, whilst being initially expressed in early neural progenitor cells, ZEB2 was rapidly downregulated 

in progenitors and upregulated in neurons at the onset of neurogenesis. Having identified ZEB2 

through a bioinformatic screen for genes with a putative role in brain size determination, we reasoned 

that its expression in early neural progenitors might indicate an important function of this gene in the 

establishment of a cortical protomap and decided to pursue this further. 
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Figure 11 ZEB2 is expressed early in NECs and late in postmitotic neurons.  

a, Schematic representation of the enCOR protocol, pluripotent stem cells (PSCs) are reduced to a 

single cell suspension and seeded into low-adhesion U-bottom microwells along with fibrous 

microscaffolds. The embryoid bodies (EBs) are cultured for the initial 6 days in EB medium and are 

then moved to neural induction (NI) medium until day 11, when they are embedded in Matrigel. On 

day 14, EBs are moved to improved differentiation medium without vitamin A (IDM-A) 

supplemented with the Wnt agonist CHIR99021 which is removed three days later. EBs are fed every 

other day with IDM-A until day 21, when they are switched to improved differentiation medium with 

vitamin A (IDM+A) and moved to an orbital shaker to promote oxygen and nutrient exchange. From 

day 40 on, addition of dissolved matrigel to the growth medium promotes establishment of the cortical 

plate. b, Immunofluorescence staining of H9 hESC-derived cerebral organoid cryosections at day 6, 

11, 14, 17, 21, 25, 31 of the protocol for ZEB2 (TA802113), DAPI and the immature migrating neuron 

marker doublecortin (DCX). Day 60 organoids were stained for ZEB2 (TA802113), DAPI and the 

deep-layer neuronal marker (CTIP2). Images are representative of two independent experiments. Scale 

bars, 100 µm (b). 

 

 

Next, we performed western blots to estimate the relative ZEB2 protein levels at the time points 

examined by immunofluorescence. Along with ZEB2 we also probed for the dorsal telencephalic 

marker EMX1 to control for any differences in organoid tissue identity within the batch. By western 

blot ZEB2 was not detectable in hESCs, it was highest at day 6 and 11 of the protocol, then steadily 

declined between day 14 and 21 and was undetectable between day 25 and 30 (Fig. 12a). ZEB2 was 

detectable at very low levels at day 40 but not at day 50, while at day 60 and 70 ZEB2 expression was 

restored (Fig. 12a). The western blot results showing that, beginning at day 14, ZEB2 was gradually 

downregulated and then upregulated at later stages was in agreement with immunofluorescence data. 

However, while ZEB2 was not detectable by immunofluorescence at day 6 and 11, western blot 

showed that at these two time points its expression was highest (Fig. 11b & Fig. 12a). The same 

antibody was used for both immunofluorescence and western blot and its application for western blot 

was validated by knockdown. In order to verify the western blot results we performed RT-ddPCR and 

quantified ZEB2 transcript levels from stem cells up to day 21 organoids. By RT-ddPCR ZEB2 was 

undetectable in hESCs, its expression peaked at 6 and then steadily declined over the remaining time 

points (Fig. 12b), thus supporting the western blot results. 
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Figure 12 Western blot and RT-ddPCR analyses reveal high ZEB2 expression in day 6 and 11 

EBs.  

a, Immunoblot analysis of protein extracts from H9 hESC-derived cerebral organoids at stages: 

hESCs, day 6, 11, 14, 17, 21, 25, 30, 40, 50, 60 and 70 of the protocol. Shown are blots for ZEB2 

(TA802113), the dorsal telencephalic marker EMX1 and the loading control β-Actin. The blots show 

that ZEB2 protein levels peak at day 6 and 11 and gradually decrease, between day 25 and 30 ZEB2 is 

undetectable and starting from day 40 on becomes upregulated. b, RT-ddPCR analysis of ZEB2 

transcript levels in H9 hESCs and day 6, 11, 14, 17 and 21 EBs reveal that ZEB2 mRNA levels peak at 

day 6 and progressively decrease throughout the time course. Shown are mean ± s.e.m. values of 

normalised ZEB2 mRNA fold change relative to the internal control amplicon EIF2B2 on three 

technical repeats of the experiment. Experiments shown in a and b were performed on organoids from 

two independent batches, each experiment performed had two technical repeats and the findings 

presented in the figure were consistent with data from multiple independent experiments on different 

batches of organoids. 
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At day 6 of the protocol ZEB2 protein is present but not detectable by 

immunofluorescence 

 

After confirming by RT-ddPCR that ZEB2 was expressed at day 6 and 11, despite not being 

detectable by immunofluorescence, we hypothesised that at these early stages the protein might be 

localised to the cytoplasm. We reasoned that because in early EBs cells are very tightly packed what 

might appear as antibody background could in fact be real cytoplasmic signal. We thus performed 

nuclear-cytoplasmic fractionation of day 6 and day 21 organoids to test whether differences in 

intracellular protein localisation could be seen. The experiment revealed that at both stages ZEB2 

localised to the nucleus and corroborated earlier observations that at day 6 ZEB2 protein levels were 

higher than at day 21 (Fig. 13a). All biochemical experiments up to this point appeared to contradict 

histological data showing an absence of ZEB2 before the step of Matrigel embedding. The antibody 

was shown to be suitable for both western blot and immunofluorescence analysis, and therefore we 

sought to reconcile these apparently conflicting results.  

 

Whilst for SDS-PAGE the sample is fully denatured and linearized, for immunofluorescence 

analyses the tissue is fixed and proteins retain conformations and interactions that resemble more 

closely the normal cellular state. Because in samples from day 14 to 25 ZEB2 was detectable in neural 

progenitors by immunofluorescence, we ruled out possible fixation artefacts as a possible explanation 

for these conflicting results. We thus hypothesised that the observed differences in ZEB2 detectability 

may be caused by differences in antigen presentation and we tested this by performing 

immunofluorescence on cryosections treated with 1% SDS to denature and linearize the proteins on 

the slide. While normal immunofluorescence staining without SDS treatment did not show signal, 

incubation in 1% SDS revealed strong nuclear immunostaining in an adjacent section (Fig. 13b). This 

result suggested that between day 6 and 11 of the protocol the protein might be in complex with other 

factors or in a different conformational state that would mask the epitope. 

 

Next we examined the antigen against which the antibody was raised and found that it 

corresponded to amino acids 1-350 of ZEB2 (Fig. 13c). To validate our findings up to this point we 

repeated staining on day 6 organoids with a rabbit polyclonal antibody raised against the last 50 amino 

acids of ZEB2. Immunofluorescence analysis using this antibody revealed strong nuclear staining and 

confirmed biochemical and immunofluorescence data on SDS treated samples (Fig. 13c). 

Interestingly, while the last 50 amino acids of the protein do not map to any known functional domain 

of the protein, amino acids 1-350 of ZEB2 overlap the NuRD complex interaction motif (NIM), the N-

terminal Zn2+-finger cluster and the p300/PCAF interaction domain (Hegarty et al. 2015) (Fig. 13c). 

Thus developmental stage-specific interaction with any of these partners could explain these findings. 
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Figure 13 ZEB2 protein is expressed in day 6 organoids but is not detected by an antibody 

against its N-terminus in immunofluorescence. 

a, On the left are western blots of nuclear and cytoplasmic extracts from day 6 and day 21 H9 hESC-

derived EBs against ZEB2 (TA802113), the nuclear envelope protein LaminB1 and the cytoplasmic 

marker GAPDH. On the right are western blots of whole-cell extracts (WCE) used as input for 

fractionation, probing for the dorsal telencephalic marker EMX1 and β-Actin as loading control. The 

blot shows that both at 6 and day 21 ZEB2 localises to the nucleus and confirms the previous 

observation that at day 6 ZEB2 protein levels are higher than at day 21. b, Immunofluorescence 

images of adjacent cryosections of day 6 H9 hESC-derived organoids with and without incubation in 

1% SDS prior to primary antibody staining. Treatment with 1% SDS (denaturing) reveals intense 

ZEB2 nuclear staining, which is completely absent in the untreated (non-denaturing) sample. c, Top is 

a schematic representation of the ZEB2 protein primary sequence annotated with known functional 

domains, interaction domains, post-translational modification (PTM) sites and the sequences 

recognised by the two antibodies used for analyses are reported above. Below are 

immunofluorescence images of day 6 H9 hESC-derived organoid cryosections stained for DAPI and 

ZEB2 using antibodies against the N- (TA802113) and a C-terminus (TA319793). While staining 

using the N-terminal antibody fails to detect ZEB2, staining using the C-terminal antibody reveals 

intense nuclear staining. Scale bar, 100 µm (b, c). 
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Exon IV of ZEB2 contains a putative SUMOylation/ubiquitylation site that controls 

protein stability 

 

Since this change in ZEB2 detectability could be caused by a different conformational state or 

cellular interaction relevant for the function of this gene in neurodevelopment we decided to 

investigate this further. We reasoned that the best way to test whether this behaviour was caused by 

ZEB2 binding to specific cellular interactors would be to take an unbiased approach such as BioID or 

immunoprecipitation followed by mass spectrometry. However, a number of technical limitations 

made these approaches difficult to pursue. In fact, this behaviour of ZEB2 was specific to a well-

defined developmental window, and it was not possible to move to a simpler 2D culture system, as it 

may not recapitulate this particular process. A BioID experiment, albeit very sensitive compared to 

traditional mass spectrometry approaches, relies on the fusion of biotin ligase to the protein of interest, 

which can be done by overexpression of the fusion construct or by taking an endogenous tagging 

approach. Endogenous tagging would be the best strategy as transgene overexpression is likely to 

generate false positive. Nevertheless, we decided against this as CRISPR-mediated homology directed 

repair (HDR) has very low efficiency in stem cells. On the other hand, a more traditional antibody 

pull-down approach suffered from the limitation that there are no reported ChIP-grade ZEB2 

antibodies available and antibodies against the N-terminus of the protein would likely be unsuitable 

for the experiment. We thus started optimisation of immunoprecipitation (IP) conditions using the 

antibody recognising the C-terminal portion of ZEB2 (data not shown).  

 

In parallel, we examined the annotated ZEB2 splice variants and found that alternative transcript II 

of the gene differs from the main isoform only for the absence of a 72 bp exon. This caught our 

attention as the difference in size between the two protein isoforms would not be detectable by SDS 

PAGE, but could still affect its conformational state and interaction ability, leading potentially to the 

observed changes in detectability. We therefore designed, validated and optimised primers to detect 

changes in the relative abundance of isoform I and II, these would bind upstream and downstream of 

exon IV, generating two bands corresponding to the two alternative transcripts that could be resolved 

on a gel (Fig. 14a). While collecting samples for a time-course of splice variants usage from hESC to 

day 21 of the protocol, we cloned ZEB2 isoform II with an N-terminal V5 tag to start preliminary 

biochemical characterisation. First, we expressed the two isoforms in HeLa cells and performed a 

cychloheximide (CHX) chase experiment to assess their stability. Interestingly, isoform I displayed 

longer half-life than isoform II (Fig. 14b). In addition, expression of ZEB2 isoform I produced two 

bands, one of the expected molecular weight (MW) along with a ~10 kDa heavier form (Fig. 14b and 

c). This additional band was not observed upon expression of isoform II (Fig. 14b and c).  

 

These data suggested that exon IV of the gene contained a motif responsible for covalent 

modification of isoform I. We analysed the amino acid sequences of the two isoforms through a 
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variety of online analysis tools, looking for a post-translational modification (PTM) consistent with a 

~10 kDa MW higher size shift. Within exon IV, corresponding to amino acids 113-116 we identified a 

putative SUMOylation/ubiquitylation recognition motif predicted with very high probability (Fig. 

14d). Around the same time, collection of RNA samples for the time-course was completed and a 

time-course of splice variants usage was performed by PCR. This, however, did not show any changes 

in the relative abundance of the two transcripts and transcript I appeared predominant across all time 

points. After this we stopped characterisation of isoform II as it could not explain the change in 

detectability observed.  

 

 

 

Figure 14 Transcript variant II of ZEB2 contains a putative SUMOylation/ubiquitylation site 

that leads to longer protein half-life.  

a, Schematic representation of ZEB2 transcript variant I and II, dashed box and inset show exon IV 

and the upstream and downstream exons with primers designed to detect the two isoforms by PCR, 

producing a 72 bp shift on an agarose gel. b, Cycloheximide (CHX) chase experiment in HeLa cells 

expressing the two different ZEB2 isoforms bearing an N-terminal V5 tag. Immunoblotting for V5 and 

the ER resident protein Calnexin as loading control reveals that the longer ZEB2 isoform has 

increased stability compared to the shorter isoform missing exon IV. c, Enlarged single images of 

lanes 3 and 10 of the blot shown in b reveal the presence of two bands, with ~10 kDa size difference, 

in the sample expressing isoform 1. This second higher molecular weight band is not observed in the 

sample expressing transcript variant II of ZEB2. d, Sequence analysis using the online resource 

SUMOplot identifies a putative SUMOylation site corresponding to amino acids 113-116 encoded by 

exon IV of ZEB2 and prediction was deemed to have high probability. The ubiquitylation motif 

prediction software identified at the same site a putative ubiquitylation site. The shorter ZEB2 protein 

isoform does not contain this putative SUMOylation/ubiquitylation site as exon IV, containing this 
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sequence, is spliced out of the transcript. The legend reports the colour-coded SUMOplot prediction 

confidence. UbPred results are not shown. e, PCR analysis of ZEB2 transcript usage in H9 hESC and 

day 6, 11, 14, 17 and 21 H9 hESC-derived EBs showing that there is no evident switch in isoform 

usage across any of the time-points. In H9 hESCs, which express ZEB2 at very low levels, only the 

major isoform is detectable by PCR. Data shown in b and c are representative of two independent 

experiments, while data shown in e are representative of one experiment.  
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ZEB2 is expressed transiently in dorsal telencephalic progenitors and is repressed after 

the switch from NECs to aRGCs 

 

Interested in the dynamic expression profile of ZEB2 we proceeded to examine the specific identity 

of the tissue it was expressed in. In fact, engineered cerebral organoids (enCORs) generate forebrain 

tissue and we wanted to verify that ZEB2 was expressed in dorsal telencephalic progenitors (Lancaster 

et al. 2017). While early EMX1+ dorsal telencephalic progenitors express ZEB2, expression is lost at 

later stages (Fig. 15a). This is in contrast to GSH2+ ventral telencephalic progenitors, which retain 

ZEB2 expression even at later stages of the protocol (Fig. 15b). We had previously observed that 

ZEB2 downregulation in organoids was accompanied by a sizable increase in neurons, suggesting it 

may coincide with the switch to neurogenesis (Fig. 11b). The shift from symmetric expansive to 

asymmetric differentiative divisions corresponds to the transition from NECs to aRGCs and its 

defining feature is upregulation of glial genes. We thus stained day 31 organoids for the glial markers 

GLAST and BLBP and observed that, whilst regions retaining ZEB2 expression were negative for 

these glial marker genes, regions of the tissue positive for these markers did not express ZEB2 (Fig. 

15c and d). The mutually exclusive staining pattern of ZEB2 and glial genes suggests that ZEB2 

expression is suppressed in dorsal telencephalic progenitors after they have transitioned to a radial glia 

neurogenic state; however, in agreement with previous reports the same was not observed for ventral 

telencephalic progenitors (Miquelajauregui et al. 2007). 
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Figure 15 ZEB2 is expressed transiently in the neuroepithelium prior to the NEC to aRGC 

switch. 

 a, Immunofluorescence images of cryosections of H9 hESC-derived organoids at day 17 (left) and 30 

(right) of the protocol for ZEB2 (TA802113) and the dorsal telencephalic marker EMX1, revealing 

even ZEB2 protein expression across the neuroepithelium at day 17 and only sparse clusters of ZEB2+ 

cells at day 30 (white arrowhead). b, Immunofluorescence images of cryosections of H9 hESC-derived 

organoids at day 17 (left) and 30 (right) of the protocol for ZEB2 (TA802113) and the ventral 

telencephalic marker GSH2, revealing even ZEB2 protein expression across the neuroepithelium at 

day 17 and sustained ZEB2 protein expression in day 30 ventricles with ventral identity (GSH2+, 

yellow arrow). By contrast, GSH2- ventricles display only sparse clusters of high ZEB2 expression 

(white arrowheads). c, Immunofluorescence image of day 30 H9 hESC-derived organoids stained for 

ZEB2 (TA802113), the glial marker GLAST and the intermediate progenitor and dorsal telencephalic 

marker TBR2, revealing that neural progenitor cells expressing GLAST appear negative for ZEB2, 

whereas clusters  of ZEB2+ cells coincide with regions where GLAST is not expressed (white 

arrowhead). The data suggest that with the switch from NEC to aRGC, upregulation of GLAST is 

accompanied by downregulation of ZEB2. d, Immunofluorescence image of day 30 H9 hESC-derived 

organoids stained for ZEB2 (TA802113) and the glial marker BLBP reveals that neural progenitor 

cells expressing BLBP appear negative for ZEB2 (white arrowheads), whereas cells retaining ZEB2 

expression do not yet express BLBP. The data suggest that with the switch from NECs to aRGCs, 

upregulation of BLBP is accompanied by downregulation of ZEB2. Data shown in a and b are 

representative of three independent experiments and data shown in c and d are representative of 2 

independent experiments. Scale bars, 50 µm (a-d). 
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ZEB2 has a similar expression pattern in the developing mouse dorsal telencephalon 

 

Having observed a switch in ZEB2 expression from progenitors to neurons in human cerebral 

organoids, we next asked whether this change in expression was physiologically relevant and not an in 

vitro artefact of the protocol. By in situ hybridization Zeb2 mRNA expression had been previously 

reported in the dorsal telencephalon of mice at E9.5-E10.5 but the observed switch in expression from 

progenitors to neurons had not been reported (Miyoshi et al. 2006). We thus analysed publicly 

available scRNA-seq datasets of microdissected mouse telencephalon at E9.5 and E10.5 (Dong et al. 

2018) along with datasets of mouse cortices specifically at E11.5, E13.5, E15.5 and E17.5 (Yuzwa et 

al. 2017).The datasets were analysed as detailed in the Materials & Methods, and following unbiased 

clustering 9 clusters were identified corresponding to: radial glia cells, interneuron precursor cells, 

intermediate progenitor cells, interneurons, pyramidal neurons, microglia, blood and mesenchymal 

cells and an unidentified cluster (U) to which identity could not be assigned (Fig. 16a).  

 

We then visualised the contribution from each sample to the different cell clusters. Although 

different total numbers of cells were sequenced at the different time-points, a temporal developmental 

trajectory could be seen going from progenitors, more prevalent at early stages, to neurons, 

predominant at later stages  (Fig. 16b). In fact, despite the low total number of cells, the majority of 

cells at E9.5 and E10.5 populated the progenitor cluster and similarly at E11.5 (Fig. 16b). At later 

stages such as E15.5 and E17.5 the majority of cells mapped to the neuron and interneuron clusters, 

and only few progenitors could be seen (Fig. 16b). Supporting these observations, a feature plot of the 

distribution of Vimentin and NeuroD2 expressing cells clearly revealed two distinct clusters 

overalapping the radial glia progenitor cluster and the pyramidal neuron cluster, respectively (Fig. 

16c). The clear separation between these two populations of cells confirmed that cluster separation 

was robust and that Zeb2 expression could be analysed at the different time-points (Fig. 16c). 

 

We next produced violin plots for expression of the progenitor markers Nestin and Sox2, the 

neuronal marker NeuroD2 and Zeb2 (Fig. 16d). These revealed a sharp drop in Zeb2 expression at 

E11.5 (Fig. 16d), which was particularly striking, considering that the majority of cells at E11.5 were 

radial glia progenitors (Fig. 16b). Expression of NeuroD2 confirmed that E11.5 corresponds to the 

onset of neurogenesis, and as more neurons are being produced the expression of radial glia markers 

Nestin and Sox2 declines. By contrast, following a sharp drop between E10.5 and E11.5, Zeb2 

expression resumes (Fig. 16d). Therefore, analysis of publicly available scRNA-seq datasets 

confirmed our findings in cerebral organoids of a drop in Zeb2 expression after NEC-aRGC transition, 

when neurons start to be made, with later expression in neurons. To verify that Zeb2 protein showed 

similar dynamics, we performed immunofluorescence analysis of mouse dorsal telencephalon from 

E10.5 to E16.5. In agreement with data from human cerebral organoids and scRNA-seq, at E10.5 

Zeb2 was detected in dorsal telencephalic progenitors (Fig. 16e). By contrast, from E12.5 to E16.5 
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Zeb2 was absent from progenitors in the VZ and was instead found in neurons of the cortical plate 

(Fig. 16e). 

 

 

 

Figure 16 scRNA-seq and immunofluorescence analyses confirm a switch in Zeb2 expression 

from NECs to postmitotic neurons in the mouse dorsal telencephalon.  

a, t-SNE plot of integrated cell clusters identified in mouse telencephalon and cortex samples by the 

Seurat computational pipeline at E9.5, E10.5, E11.5, E13.5, E15.5 and E17.5. Shown here are the cell 

clusters identified, corresponding to: radial glia cells, interneuron precursor cells, intermediate 

progenitor cells, pyramidal neurons, interneurons, microglia, blood cells, mesenchymal cells and a 

cluster U of unidentified identity. b, t-SNE feature plot of cell distribution across cell clusters colour-

coded by developmental time-point as: E9.5 telencephalon, E10.5 telencephalon, E11.5, E13.5, E15.5 

and E17.5 cortices, revealing a developmental trajectory from progenitors to neurons from ealier to 

later samples. c, t-SNE feature plot of overlaid Vimentin and NeuroD2 mRNA expression colour 

coded according to normalised expression value per cell, grey (no expression) purple (high Vim), 
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black (high NeuroD2), or gold (high Vim and NeuroD2 coexpression). d, Violin plots showing the 

expression probability distributions for Nestin (NPC), Sox2 (NPC), NeuroD2 (Pyramidal neurons) and 

Zeb2 normalised mRNA expression across developmental time points colour-coded as in b. e, 

Immunofluorescence analysis of C57BL/6 mouse E10.5,12.5, 14.5 and 16.5 dorsal telencephalon 

cryosections stained for Zeb2 C-t (TA319793, green) and the immature migrating neuron marker 

doublecortin (Dcx, magenta) reveals that after the NEC-aRGC switch, which in mouse occurs between 

E10.5-11.5, ZEB2 is no longer expressed in progenitor cells but in postmitotic neurons of the cortical 

plate primarily, and to a lesser extent in neurons of the subplate.  Scale bars, 20 µm (c). Max Kellner 

analyzed the scRNA-seq data on embryonic mouse brain and produced figures a-d. 
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Generation of ZEB2 mutant hESCs for interrogation of ZEB2 function and modelling 

Mowat-Wilson syndrome in cerebral organoids 

 

Having characterised the expression dynamics of ZEB2 in organoids and having confirmed that 

they resembled those of the developing mouse cortex we set out to study ZEB2 function in human 

cerebral organoids. Interestingly, whilst Zeb2+/- mice do not show any obvious phenotypic 

abnormality, heterozygous loss-of-function mutation in humans causes a number of 

neurodevelopmental defects, including agenesis of the corpus callosum, intellectual disability, 

interneuron migration defects and microcephaly. Due to the hard-to-transfect nature of neural 

progenitor cells, the complex 3D organisation of organoids and the extended duration of the protocol, 

transient RNAi methodologies are not suited for the study of gene function in this model. Therefore, 

we decided to establish stable H9 hESC-knockout lines by CRISPR-Cas9 genome editing.  

 

In order to reduce the risk of off-target effects we took a double-nickase strategy, where Cas9 

D10A was targeted to the first coding exon of ZEB2 (i.e. exon II) by two guide RNAs (gRNAs) (Fig. 

17a). Quantification of genome editing events relied on a TaqMan probe-based drop-off assay, in 

which the edited genomic region was PCR amplified to give a ~200 bp amplicon. The assay 

comprised two probes; one HEX-labelled drop-off probe designed to bind to the site targeted by Cas9 

and a FAM-reference probe designed to bind indiscriminately to all amplicons, thus acting as a 

counter (Fig. 17a). In an unedited negative control sample, both the drop-off probe and the reference 

probe would bind to all amplicons and the ddPCR 2D-plot displayed only two populations of droplets, 

empty droplets and double positives (Fig. 17b). By contrast, in a positive control sample, a third FAM-

only positive population in the top-left quadrant of the plot could be seen (Fig. 17b). Through iterative 

rounds of pooled-selection, termed sib-selection (Miyaoka et al. 2014), and single-cell cloning we 

were able to isolate multiple samples showing single positive ddPCR droplets (Fig. 17b). We then 

performed PCR analysis to detect shifts in the size of the amplicons and sequencing by CloneJET 

cloning (Fig.17c and d). Although we could not obtain ZEB2-/- cells, we were successful in retrieving 

two ZEB2+/- lines harbouring a 13 bp and a 23 bp deletion, respectively. Interestingly, only very few 

samples showed biallelic ZEB2 mutations and all of them invariably harboured an out-of-frame 

deletion and an in-frame deletion, resulting in the loss of only a few amino acids (Fig. 17e). This 

might suggest a requirement for ZEB2 function for hESC viability, and in fact, albeit very low ZEB2 

protein was detectable in hESC samples.  
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Figure 17 CRISPR-Cas9n targeting of ZEB2 generates two heterozygous loss-of-function 

mutants and compound heterozygotes with one in-frame deletion.  

a, Schematic representation of the CRISPR-Cas9n editing strategy, where the first coding exon of the 

ZEB2 gene was targeted by two nickases (dashed lines) and screening was done by assaying the drop-

off frequency of a HEX-labelled probe, binding to one of the nick sites, relative to a FAM-labelled 

reference probe binding away from the disrupted region. b, Example ddPCR 2D scatter-plots of a 

negative control sample (WT 293T cells), showing only a FAM-HEX double positive (red) and an 

empty droplet cluster (black) (top-left plot) and a positive control sample (293T cells expressing WT 

Cas9 and ZEB2 guides), showing a FAM-only cluster (blue) in the upper-left quadrant of the 2D plot 

corresponding to edited alles (top-right plot). Middle left is a 2D plot of H9 hESC cells 48h after 

electroporation with Cas9n and ZEB2 guides, the frequency of genome editing events was estimated to 

be approximately 1%. Following two rounds of sib selection at 1000 and 20 c/w density three pools 

were recovered; B3-G5 (middle-right), B9-C1 (bottom-left) and C10-C1 (bottom-right) with mutant 
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frequencies of ~51%, ~21% and ~50%, respectively. c, Example analyses showing how a region of 

113 bp spanning the genome-edited region was amplified from the C10-C1 pool and 8 different 

subpools obtained from a third round of sib selection, and resolved on a high-percentage agarose gel. 

All samples show the WT allele and a 13 bp deletion, indicating the presence of a heterozygous loss-

of-function line. d, A region of 198 bp spanning the genome edited sites was amplified from gDNA 

extracted from the three wells, the PCR product was then cloned into the pJET1.2 vector and for each 

sample, DNA extracted from 20 colonies was sent for sequencing. Sequencing confirmed the presence 

of alleles harboring 5, 9, 13 and 23 bp deletions. e, Following a third round of selection several pools 

derived from B3-G5 showed 100% mutant frequency on a ddPCR 2D plot but mixed chromatogram 

traces. Sequence trace deconvolution by TIDE confirmed that the isolated lines were compound 

heterozygotes carrying a 9 and 5 bp deletion allele (p<0.001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 103 

ZEB2+/- mutants display a ~50% reduction in ZEB2 protein, retain pluripotency, are 

karyotypically normal but show a structural phenotype upon differentiation 

 

We isolated two ZEB2+/- mutant cell lines carrying a 13 bp and a 23 bp deletion as indicated by 

sequencing. DNA-PAGE analysis of a small amplicon overlapping the edit sites in WT H9 hESCs and 

the two mutants showed a shift consistent with a 13 bp deletion in ZEB2+/- #1 and 23 bp ZEB2+/- #2, 

thus confirming sequencing results (Fig. 18a). We then performed RT-PCR for key pluripotency 

markers on the edited lines and while a decrease in ZEB2 RNA levels was evident in the mutants, 

expression of SOX2, NANOG, OCT3/4 and DPPA5 was unaffected (Fig. 18b). Western blot analysis 

confirmed a ~50% decrease in ZEB2 protein in the two mutant hESC lines compared to WT (Fig. 

18c). Cytological analysis of ZEB2+/- mutant karyotypes did not reveal any gross genetic abnormality 

(Fig. 18d). These data suggested that the ZEB2 mutant lines were healthy and suitable for the study of 

ZEB2 function in neural organoids. We thus generated organoids from WT and mutant hESCs and 

already at day 17, it was possible to see differences in the translucence of the neuroepithelial buds by 

brightfield microscopy. While WT buds had fuzzy edges caused by abventricular accumulation of 

neurons, mutant buds appeared more translucent and smoother (Fig. 18e). Hematoxylin and eosin 

(H&E) stain of WT and mutant tissue revealed that, while WT buds were thick with clear cell 

pseudostratification, mutant buds had the tendency to be thinner with densely packed nuclei, giving 

the tissue an overall darker appearance (Fig. 18e). 
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Figure 18 ZEB2+/- H9 hESCs show an approximately 50% reduction in ZEB2 mRNA and 

protein, retain pluripotency and normal karyotype but present a structural phenotype upon 

cerebral organoid differentiation.  

a, DNA-PAGE analysis of a 123 bp amplicon overlapping the nick sites from WT H9 hESCs and the 

mutant cell lines ZEB2+/- #1 & #2, carrying a 13 and 23 bp deletion, respectively, as shown by 

sequencing analysis following pJET1.2 cloning. By DNA-PAGE the two mutants show a band 

consistent with the WT allele and lower molecular weight bands corresponding to a 13 and 23 bp 

deletion. b, RT-PCR analysis for expression of ZEB2,  the key pluripotency markers SOX2, NANOG, 

OCT3/4 and DPPA5 and the loading control GAPDH, revealing that upon a ~50% reduction in ZEB2 

mRNA levels the mutant stem cells retain expression of pluripotency markers at comparable levels to 

WT H9 hESCs. c,  Western blot for expression of ZEB2 and the loading control β-Actin reveals a 

~50% reduction in ZEB2 protein levels in ZEB2+/- #1 & #2 cells compared WT H9 hESCs control. d, 

Representative images of karyotype analysis on 20 G-banded metaphase spreads from the ZEB2+/- #1 

(top) & #2 (bottom) culture samples used to generate the stock, revealing normal karyotypes in ZEB2  

heterozygous  loss-of-function cells. e, Top-panel shows brightfield images of day 17 organoids 
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derived from WT H9 hESCs and mutant lines ZEB2+/- #1 & #2. Whilst WT organoids appear dark 

with fuzzy edges, as a consequence of the production of neurons, IPCs and other cells with 

mesenchymal character, ZEB2+/- organoids present more elongated and translucent buds. Middle-panel 

are overview H&E images of day 22 WT H9-derived organoids and day 23 ZEB2+/- #1 & #2 

organoids showing that mutants have increased abundance of elongated buds with tightly packed 

nuclei, as indicated by the intense hematoxylin staining. Yellow boxes are regions shown at higher 

magnification in the bottom panel illustrating how the typical pseudostratified architecture of the WT 

is different in the mutants, which present thinner and more elongated buds. The higher magnification 

inset for ZEB2+/- #1 is rotated by 90° relative to the overview image. Scale bars, 500 µm (e top panel), 

200 µm (e middle panel). Data shown in e for ZEB2+/- #1 are representative of one experiment while 

data for WT and ZEB2+/- #2 are representative of three independent experiments. 
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ZEB2 heterozygous loss-of-function mutation leads to increased cell adhesion in the 

neuroepithelium 

 

Since ZEB2 is a well-established regulator of cell-cell contacts and EMT in various cellular 

models, we decided to test if the observed differences in neuroepithelial architecture of ZEB2+/- mutant 

organoids were accompanied by changes in the cell adhesion properties of the tissue. Having observed 

that the two mutants produced comparable phenotypes, in depth analyses were done on ZEB2+/- #2. 

Western blot at day 21 showed that mutant organoids display increased levels of E-cadherin and 

Occludin and reduced levels of N-cadherin compared to WT (Fig. 19a). Blotting for EMX1 confirmed 

that the observed changes in cell adhesion properties involved cortical tissue and were not the result of 

differentiation along a different lineage (Fig. 19a). In support of this, immunofluorescence stain of day 

21 WT and mutant organoids showed that while in WT buds N-cadherin was predominant and E-

cadherin was virtually undetectable, in mutant buds N- and E-cadherin could be seen coexpressed 

(Fig. 19b). Similarly, mutant buds displayed higher levels of Occludin that spread further along the 

cell-cell junctions (Fig. 19c). Preliminary RT-ddPCR expression analysis of key cell adhesion and 

neural genes revealed that during normal organoid development a sharp surge in ZEB2 mRNA levels 

at day 6 correlates with increased expression of neural genes such as N-cadherin and HES1 (Fig. 19d). 

By contrast, E-cadherin mRNA levels showed the opposite trend and progressively declined from the 

hESC stage to day 21 organoids (Fig. 19d). Interestingly, Occludin levels did not decrease as steeply 

as E-cadherin, and after the surge in ZEB2 levels, Occludin transcripts were steadily downregulated 

(Fig. 19d). 
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Figure 19 ZEB2 heterozygous loss-of-function mutation leads to changes in the cell adhesion 

properties of the neuroepithelium.  

a, Western blot analysis of H9 WT and ZEB2+/- #2 hESC-derived organoids at day 21 for ZEB2, the 

tight-junction protein Occludin, the adherens junction components E- and N-caderin, the dorsal 

telencephalic marker EMX1 and the loading control β-Actin. The blots show a sizeable increase in E-



 108 

cadherin and Occludin and a decrease in N-cadherin whilst EMX1 levels, and thus dorsal 

telencephalic identity appears to be largely unaffected. b, Representative immunofluorescence image 

of H9 WT and ZEB2+/- #2 hESC-derived organoids at day 21 stained for neural cadherin (N-cadherin) 

and epithelial cadherin (E-cadherin) showing that ZEB2+/- #2 mutant neuroepithelial buds co-express 

E-cadherin and N-cadherin and thus display increased epithelial character compared to WT buds. c, 

Representative immunofluorescence image of H9 WT and ZEB2+/- #2 hESC-derived organoids at day 

21 stained for the IPC marker TBR2 and the tight-junction components Occludin and ZO1 showing 

that in ZEB2+/- #2 mutant neuroepithelial buds Occludin extends further along the edges of the neural 

progenitors compared to WT and fewer TBR2+ IPCs are observed than in the control. d, RT-ddPCR 

expression analyses of key cell adhesion (E-cadherin, Occludin, N-cadherin), neural (HES1) and glial 

(GLAST) genes in WT hESCs and day 6, 11, 14, 17 and 21 EBs in relation to ZEB2 mRNA levels. 

Analyses reveal that mirroring the initial surge in ZEB2 expression N-cadherin and HES1 mRNA 

levels rise, while Occludin and E-cadherin mRNA levels steadily decline. GLAST transcript levels do 

not show any notable change.  Shown are mean ± s.e.m. values of normalised mRNA fold change for 

each gene relative to the internal control amplicon EIF2B2 on three technical repeats of the 

experiment. Data shown in a, b and c are representative of three independent experiments, the 

experiment shown in d was performed once. Scale bars, 50 µm (b and c). 
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ZEB2+/- organoids display elongated EMX1+/TBR2+ neuroepithelial buds and reduced 

numbers of TBR2+ intermediate progenitors 

 

Next, we quantified the degree of ventricular expansion seen in ZEB2+/- organoids. To ensure that 

quantifications were performed on neuroepithelial buds with pallial identity, images for analysis were 

acquired on EMX1+ buds containing some TBR2+ cells. This was important as we noticed that, 

although the vast majority of the ZEB2+/- mutant tissue was positive for EMX1, many buds did not 

resemble cortical tissue histologically, but more medial identities such as hem and choroid plexus 

primordium (data not shown). Quantifications revealed a slight but significant increase in ventricle 

length in ZEB2+/- organoids compared to WT (Fig. 20a & b). We then decided to test whether this 

increase in lateral expansion was accompanied by a decrease in neurogenesis. Because mammalian 

neurogenesis is by and large indirect and TBR2+ intermediate progenitors are the first cell type 

produced after the switch from NECs to aRGCs (Cárdenas et al. 2018), we quantified the numbers of 

TBR2+ IPCs in WT and mutant organoids (Fig. 20a & c). Our data showed a significant decrease in 

the number of TBR2+ IPCs in ZEB2+/- organoids compared to WT (Fig. 20a & c).  

 

 

 
 

Figure 20 ZEB2+/- organoids display elongated buds and reduced numbers of TBR2+ IPCs.  

a, Representative immunofluorescence images of day 20 WT and ZEB2+/- organoids stained for the 

dorsal telencephalic marker EMX1 (geen) and the IPC marker TBR2 (grey). Left are single channel 

images for EMX1 and TBR2, right are composite images of DAPI (blue), EMX1 (green) and TBR2 

(grey). The images reveal a decrease in TBR2+ IPCs with a concomitant increase in ventricle length in 

ZEB2+/- organoids compared to WT. b, Quantifications of ventricle lengths on WT (n=37) and ZEB2+/- 
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#2 (n=23) neuroepithelial buds positive for both EMX1 and TBR2. The organoids used for analyses 

were from two independent batches. *P=0.0217, Mann-Whitney test. Reported are mean ± s.d. values. 

c, Quantifications of TBR2+ IPC numbers in WT (n=52) and ZEB2+/- #2 (n=68) neuroepithelial buds. 

The organoids used for analyses were from two independent batches. ***P<0.0001, Mann-Whitney 

test. Reported are mean ± s.d. values. Scale bars, 50 µm (a). 
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Evidence suggests that FGF2 and ZEB2 may form a negative feedback loop 

 

Having observed an increase in ventricle length in ZEB2+/- organoids we performed a literature 

search for ZEB2 transcriptional targets with a potential role in progenitor proliferation. Previous work 

had shown that ZEB2 regulates transcription of FGF9 in postmitotic neurons and mediates a non cell-

autonomous feeback loop from neurons to progenitors, which controls the balance between 

superficial- and deep-layer neurons (Seuntjens et al. 2009). We therefore reasoned that the FGF family 

of secreted growth factors would be an obvious set of potential targets to start to analyse, and we 

proceeded to examine three ZEB2 ChIP-seq datasets available on ENCODE. Two of the datasets were 

technical repeats of ChIP for endogenous ZEB2 in the immortalised myelogenous leukemia cell line 

K562, and the third dataset was ChIP for GFP in HEK293 cells where the endogenous ZEB2 locus 

was GFP-tagged by site-specific recombination.  

 

Analysis revealed the presence of distinct and highly enriched ChIP-seq peaks in the near vicinity 

of the FGF2 locus (Fig. 21a). Many of the peaks overlapped or were in the immediate vicinity of 

H3K27Ac marks, often found near transcriptional regulatory elements (Fig. 21a).   Although the two 

different cell lines showed ChIP peaks at different sites around the FGF2 locus, the GeneHancer 

Regulatory Elements and Gene Interaction track revealed that all putative regulatory elements had 

interactions converging on the FGF2 promoter (Fig. 21a). FGF2 is a well-established regulator of 

neural progenitor proliferation (Vaccarino et al. 1999; Raballo et al. 2000) and so we decided to test 

whether ZEB2+/- organoids displayed altered levels of FGF2 compared to WT. Immunoblot for FGF2 

revealed that mutant organoids have higher FGF2 levels compared to control (Fig. 21b). 

 

 Recently it was reported that FGF2 regulates transcription of EMT genes in human ex vivo corneal 

endothelium, and ZEB2 was among its targets (Lee et al. 2018). This raised the possibility that FGF2 

and ZEB2 might establish a negative feedback loop where FGF2 positively regulates ZEB2, which in 

turn suppresses FGF2 expression. We thus tested whether treatment with FGF2 was sufficient to 

induce ZEB2. The experiment was performed in the glioblastoma line U87MG as it models neural 

progenitor cells with higher fidelity than other immortalised cell lines. Cells were treated with 

increasing concentrations of FGF2, which led to a concentration-dependent increase in ERK 

phosphorylation, demonstrating that the FGF cascade was activated (Fig. 21c). Concomitantly, an 

FGF2 concentration dependent increase in ZEB2 levels was observed (Fig 21c). To test whether this 

was accompanied by a decrease in endogenous FGF2 transcription we performed RT-ddPCR on 

samples treated in the same way. However, treatment failed to show any noticeable effect on FGF2 

transcript levels (Fig. 21c). A possible explanation for this is that the cells were not treated for long 

enough to detect a transcriptional effect on FGF2. 
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Figure 21 FGF2 and ZEB2 show reciprocal regulation.  

a, University of California, Santa Cruz (UCSC) Genome Browser tracks showing the FGF2 

(NM_001361665 ) locus (Chr 4: 122,826,708-122,898,236 in GRCh38) and neighbouring genes 

according to RefSeq gene predictions from NCBI. The GENCODE v29 Comprehensive Transcript Set 

track reports the transcript variants with corresponding PDB entries. Displayed are two ZEB2 ChIP-

seq experiments in K562 cells and one GFP-ZEB2 ChIP-seq experiment in HEK293 cells, the tracks 

show fold change over control. The ENCODE accession codes of the ChIP-seq datasets are listed in 

the methods. The GeneHancer Regulatory Elements and Gene Interactions track displays human 

regulatory elements (enhancers and promoters) and their target genes inferred from integrating 

regulatory elements from multiple genome-wide databases. Red indicates promoters, grey enhancers 

and increasing colour brightness indicates higher element confidence score. The Layered H3K27Ac 

track reports the levels of enrichment of the H3K27Ac histone mark across the genome of seven cell 

lines available on ENCODE as determined by a ChIP-seq assay. ZEB2 ChIP-seq data reveal a number 

of putative DNA binding sites overlapping active regions of chromatin in the vicinity of the FGF2 

locus, suggesting that ZEB2 might transcriptionally target FGF2. b, Western blot of H9 WT and 
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ZEB2 #2 hESC-derived day 21 organoids reveal that partial loss of ZEB2 leads to an increase in FGF2 

protein levels. c, On the left is a western blot of U87MG glioblastoma cells treated for four days with 

different concentrations of FGF2, probing against the MAP-kinase ERK and its phosphorylated active 

form p-ERK, ZEB2 and β-Actin. The western blot shows that upon activation of the FGF signalling 

cascade, indicated by increased levels of p-ERK, ZEB2 protein levels increase in an FGF2 

concentration-dependent fashion. On the right, RT-ddPCR analysis of FGF2 mRNA levels in U87MG 

cells treated in the same way fail to show a noticeable change in FGF2 transcripts. Shown are mean ± 

s.e.m. values of normalised FGF2 mRNA fold change relative to the internal control amplicon 

EIF2B2 on three technical repeats of the experiment. Data shown in a is a preliminary finding from 

analysis of one experiment, the western blot results shown in c are consistent with two independent 

experiments on two different cell lines, while RT-ddPCR was performed only once. 
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Preliminary gain-of-function experiments support a neurogenic role of ZEB2 

 

Our loss-of-function data up to this point suggested that ZEB2 is involved in neuroectodermal 

induction and in driving the changes in progenitor cell adhesion that occur before the switch from 

expanding NECs to neurogenic aRGCs. To validate these findings we decided to perform the converse 

experiment and overexpress ZEB2 specifically in NECs. Technically this experiment presented a 

number of challenges. Whilst at late stages of the protocols constructs can be delivered to organoids 

by injection and electroporation into ventricles, at the EB stage this is not possible due to the small 

size of ventricles and the fragility of the neuroepithelial buds. An additional challenge was posed by 

the MG embedding step at day 11 of the protocol, which formed a virtually impenetrable shell around 

the organoid. We thus decided to establish an inducible ZEB2 overexpression line that would allow for 

transgene induction by simple addition of a compound to the culture media. We decided to use a 

Cumate (CuO)-inducible PiggyBac transposon system as the construct was readily available and all 

steps to generate the line could be performed in a standard CL1 tissue culture lab. The ZEB2 open 

reading frame (ORF) was cloned downstream of a CuO responsive element, which in its basal state is 

kept inactive by the expression of a repressor driven by the EIF1α promoter (Fig. 22a). CuO binding 

to the repressor element triggers a conformational change that makes it inactive, driving expression of 

the transgene (Fig. 22a). An additional advantage of an inducible overexpression system is that it 

allows us to test the effect of changes in ZEB2 expression timing and levels on the switch from NECs 

to aRGCs. 

 

Following transfection of H9 hESCs with the ZEB2 CuO inducible and empty vector (EV) 

constructs we applied Puromycin selection and recovered single clonal lines by colony picking. 

Colonies were screened for construct integration by duplex PCR on gDNA for the Puromycin cassette 

(i.e. Puro) and the RPP30 gene (Fig. 22b). RPP30 is a gene commonly used for copy number variation 

analyses (Mazaika & Homsy 2014) and was used as an internal control to examine the relative 

abundance of integration events across the different clones. The Puromycin and RPP30 cassettes were 

specific, as shown by PCR on H9 WT cells and on the plasmid (Fig. 22b). All colonies that survived 

selection harboured the transposon but, whilst colonies ZEB2 CuO #1 and EV CuO #1 showed high 

levels of integration, all other colonies had lower integration levels (Fig. 22b). This was particularly 

favourable as having several colonies with different numbers of integration events would give us more 

control over the ZEB2 induction potential and would offer alternatives in case the construct became 

silenced in one particular line. 

 

The next step we took was to test the ZEB2 induction potential in one of the lines.  Beginning from 

day 11 of the protocol organoids were induced with two concentrations of Cumate and a week later 

samples were collected for western blot and histological analysis. Western blot showed that addition 

of increasing concentrations of Cumate led to higher ZEB2 induction  (Fig. 22c). This increase in 
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ZEB2 levels was paralleled by a decrease in E-cadherin and a robust increase in N-cadherin (Fig. 22c). 

Immunofluorescence stainings revealed that with increasing levels of ZEB2, the size of the 

neuroepithelial buds shrunk and large clusters of TUBB3+ neurons accumulated at the periphery of the 

tissue, away from the main mass of the organoid (Fig. 22d). These changes in neuroepithelial 

architecture were accompanied by changes in Occludin distribution. In untreated (UT) organoids 

Occludin was seen distributed along sides of the neural progenitor cell bodies, spanning almost the 

entire width of the developing neuroepithelium (Fig. 22d). By contrast, increased ZEB2 levels led to a 

loss of Occludin staining from the apical lumens of the buds (Fig. 22d).  

 

 

 

Figure 22 Inducible overexpression of ZEB2 in early stage organoids appears to drive premature 

neurogenesis and shrinkage of neuroepithelial buds.  

a, Cumate (CuO) inducible cassette maps of the ZEB2 CuO and EV CuO inducible constructs 

containing core insulator sequences on either side, to reduce the degree of silencing by spread of 

nearby heterochromatin, the EIF1α promoter driving constitutive expression of the CuO-inactivated 

repressor and linked to the Puromycin resistance gene by a T2A sequence. The ZEB2 ORF is under 

the control of a CuO-responsive element that becomes active upon CuO binding to the repressor 

element, and is followed by an IRES-copGFP cassette. The EV construct differs from the ZEB2 CuO 

construct only for the absence of the transgene ORF. b, Duplex PCR screening of Puromycin-resistant 

hESC colonies transfected with ZEB CuO and EV plasmids showing single bands in the H9 WT 

gDNA and CuO plasmid controls and two bands, corresponding to the genome-integrated puromycin 

resistance cassette and the RPP30 gene in the colonies recovered after selection. Screening reveals 
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ZEB2 CuO and EV CuO clones carrying different levels of transgene integration events. c, Western 

blot of a 6-day ZEB2 transgene test induction in ZEB2 CuO colony #2-derived organoids at day 17. 

Probing for ZEB2, N- and E-cadherin and β-Actin in untreated (UT), 1X and 2X CuO induced 

organoids confirms inducibility of the transgene, as shown by the increase in ZEB2 protein levels 

upon treatment with increasing concentration of CuO. Increased transgene expression leads to a 

decrease in E-cadherin and an increase in N-cadherin. d, Immunofluorescence analyses of 6-day UT, 

1X and 2X CuO-induced ZEB2 CuO colony #2 derived organoids at day 17, from the same 

experiment as shown in c, revealing that transgene overexpression leads to progressively smaller 

neuroepithelial buds, with decreasing Occludin staining across the depth of the neuroepithelium and 

increased TBR2+ intermediate progenitor and TUBB3+ neuron numbers. The samples were stained 

with four colours despite the presence of GFP because expression from the IRES2 is so weak that GFP 

is not detectable unless an antibody is used to augment the signal. Data shown in c and d are 

preliminary results from an initial test experiment of transgene inducibility. Scale bar, 100 µm (d). 
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Dual SMAD inhibition partially rescues the ZEB2+/- phenotype 

 

ZEB2 was originally identified in a yeast two-hybrid screen as an interactor of the SMADs. Later 

work showed that ZEB2 inhibits TGFβ and BMP signalling both by interacting directly with activated 

SMADs and through their transcriptional repression (Hegarty et al. 2015). We thus reasoned that 

ZEB2 might be involved in TGFβ and BMP signalling inhibition in the developing neuroectoderm. 

First we performed reporter assays for these two signalling cascades to verify the antagonistic effect of 

the major ZEB2 isoform on these pathways. The reporter assay was established in 293T cells and 

optimisation experiments were performed to determine the optimal concentrations of reporter 

constructs and growth factors to achieve maximal pathway induction (data not shown). ZEB2 

overexpression in 293T cells produced a significant reduction in BMP reporter activity (Fig. 23a). By 

contrast, ZEB2 expression did not have any significant effect on TGFβ reporter activity (Fig. 23a).  

 

After verifying that ZEB2 negatively regulated BMP signalling we decided to test whether 

suppression of TGFβ and BMP signalling by dual SMAD inhibition would be sufficient to rescue 

some of the features of the ZEB2 heterozygous loss-of-function phenotype. We reasoned in fact that 

partial loss of ZEB2 function would lead to hyperactivation of TGFβ and BMP signalling, and thus 

inhibition of the SMADs might restore physiological levels of signalling. Although the luciferase 

reporter assay had failed to show an effect of ZEB2 on the TGFβ branch of the pathway, as a 

preliminary experiment starting from day 11we treated organoids for 10 days with both the TGFβ 

inhibitor SB-431542 and the BMP inhibitor Noggin.  

 

As previously mentioned, by brightfield ZEB2+/- neuroepithelial buds appeared thin, elongated and 

highly translucent. By contrast, WT neuropepithelial buds were typically thicker and less translucent 

(Fig. 23b). By brightfield, treated WT organoids appeared darker than control and with a fuzzy 

outline, suggesting an accumulation of neurons at the periphery of the neuroepithelium (Fig. 23b). 

Strikingly, dual SMAD inhibition on ZEB2+/- organoids produced more rounded and thicker 

neuroepithelial buds that closely resembled WT structures (Fig. 23b). H&E staining revealed that dual 

SMAD inhibition on WT organoids accelerated their development, leading to the establishment of a 

VZ with overlying neurons and IPCs (Fig. 23b). In contrast, control WT organoids were still at the 

neuroepithelial stage and the tissue comprised of a single layer of pseudostratified neuroepithelium. 

ZEB2+/- organoids displayed elongated neuroepithelial buds with tightly packed nuclei, as illustrated 

by the prominent eosin stain (Fig. 23b). However, dual SMAD inhibition appeared to restore correct 

neuroepithelial architecture, normal pseudostratification and cell packing (Fig. 23b).  

 

We then tested if these structural changes were accompanied by changes in the levels of key 

adhesion molecules E-cadherin and N-cadherin. Western blot showed that while untreated ZEB2+/- 

organoids displayed increased E-cadherin and reduced N-cadherin levels compared to WT, dual 



 118 

SMAD inhibition was sufficient to restore WT levels of E-cadherin in the mutant background (Fig. 

23c). The effect on E-cadherin was particularly striking; howevever, albeit subtle, dual SMAD 

treatment might have also produced an increase in N-cadherin in ZEB2+/- organoids (Fig. 23c). 

Preliminary immunofluorescence analyses supported a partial rescue of the ZEB2+/- phenotype. While 

dual SMAD inhibition on WT organoids had a strongly neurogenic effect with production of large 

numbers of TUBB3+ neurons, treatment of ZEB2+/- organoids produced smaller neuroepithelial buds 

with high numbers of TBR2+ IPCs (Fig. 23c). These results seem to suggest that during the phase of 

neuroepithelial expansion, which in human cerebral organoids ranges between day 11 and day 21 of 

the protocol, one of the roles of ZEB2 is to antagonise TGFβ and BMP signalling to drive 

neurogenesis.   
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Figure 23 Dual SMAD inhibition appears to restore normal neuroepithelial architecture and 

neurogenesis in ZEB2+/- organoids.  

a, Luciferase reporter assay experiment in 293T cells transfected with a Renilla control plasmid, a 

firefly luciferase reporter plasmid for the TGFβ or the BMP pathway and either a V5 empty vector 

construct (EV) or a construct expressing V5 N-terminally tagged ZEB2. The scatter plots report 

normalised fold change of firefly luminescence relative to Renilla luminescence (FL/RL), individual 

data points are independent experiments and reported are mean ± s.e.m., *p=0.0114, unpaired t-test 

with Welch’s correction. The experiments reveal that ZEB2 expression leads to a significant decrease 

in BMP pathway activation, whilst the same in not seen in the case of the TGFβ cascade. b, Brightfield 

images of day 21 WT and ZEB2+/- organoids following 10-day treatment with the BMP pathway 

inhibitor Noggin and the TGFβ pathway inhibitor SB-431542 or mock – juxtaposed are H&E 

histological stainings on cryosections of neuroepithelial buds from corresponding samples. Dual 

SMAD inhibitor treatment on WT organoids appears to have a strongly neurogenic effect, whilst on 

ZEB2+/- organoids it appears to restore normal neuroepithelial morphology. c, Immunoblot on day 21 

WT and ZEB2+/- organoids treated with Noggin and SB-431542 for 10 days – staining for the adherens 

junction components E- and N-cadherin, ZEB2 and the loading control β-Actin. The western blots 

reveal that treatment restores WT E-cadherin levels in organoids. d, Immunofluorescence stainings for 

the pluripotency marker SOX2, the neuronal marker TUBB3 and the intermediate progenitor marker 

TBR2 on day 21 WT and ZEB2+/- organoids following 10-day treatment with Noggin and SB-431542 

confirms a strongly neurogenic effect of dual-SMAD inhibition on H9 WT hESC-derived organoids 

and reveals that treatment partially re-established normal neuroepithelial architecture and neurogenesis 

in the ZEB2+/- background. Data presented in b-d are preliminary results, experiments were performed 

twice but only one repeat was fully analysed; however, upon preliminary analysis the two experiments 

gave consistent results. Scale bar, 500 µm (b brightfield), 50 µm (b H&E, d). Elizabeth Apsley 

performed the luciferase reporter experiments presented in a under my supervision. 
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Chapter 4: Air-Liquid Interface Cerebral Organoids (ALI-COs) display 

diverse nerve tracts with functional output 

Introduction 

 

Cerebral organoids have been shown to capture numerous of aspects of early cerebral cortex 

development, including histological organization, diverse progenitor types and timed production of 

neurons with distinct layer identity. More recently, by fusing organoids prepatterned with dorsal and 

ventral identities, it has been possible to recapitulate interneuron migration from the subpallium (i.e. 

MGE and LGE) to the pallium and, strikingly, organoids harbouring rod-like photosensitive cells were 

shown to respond to light and establish networks that can support self-organised activity patterns 

(Birey et al. 2017; Bagley et al. 2017; Quadrato et al. 2017). Nevertheless, due to shortage of nutrients 

and oxygen supply, later neuronal maturation is severely compromised, leaving the possibility that 

work done so far may have underestimated the level of complexity that can be achieved in vitro. In an 

attempt to address the inherent limitations of organoid cultures, transplantation of cerebral organoids 

into the brain of a rodent host was shown to promote the establishment of a vascular network able to 

support neuronal maturation and integration of the organoid within the host’s neural network 

(Mansour et al. 2018).  

 

This suggests that by implementing culture conditions able to efficiently sustain all cell types 

within an organoid it is in principle possible to expand the array of neurodevelopmental processes 

accessible in vitro. This is particularly appealing as transplantation is tedious, requires specialist skills, 

drastically limits scalability and introduces additional confounding variables to the analyses. 

Therefore, a modification of the current protocol to improve nutrient supply without reducing 

throughput would be ideal for more extensive in vitro studies.  In the context of our work, the 

establishment of more mature cultures would allow characterisation of ZEB2 function in axon 

guidance and CC establishment. We thus set out to establish a novel system to culture late-stage 

organoids and model aspects of axon pathfinding, bundling and network establishment.  
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Culture of cerebral organoids at the air-liquid interface (ALI) leads to improved tissue 

morphology 

 

In an effort to improve neuronal survival and maturation several different media compositions were 

tested as an alternative to IDM+A (Lancaster et al. 2017) (data not shown); however, alternative media 

formulations were not sufficient in limiting the expansion of the necrotic core characteristic of mature 

organoids (i.e. after 80 days in culture). We thus reasoned to improve nutrient and oxygen perfusion 

by reducing the thickness of the tissue. Organoids between day 45-60 of the protocol were sectioned 

on a vibratome and grown as slices on interface-culture inserts. In this culture paradigm, the tissue 

slice rests on an inert and anti-adhesive polytetrafluoroethylene (PTFE) mesh with high 

transmembrane oxygen diffusion properties, and the bathing medium is delivered from below through 

capillary action (Fig. 24a).  

 

After optimisation of sectioning settings and media composition we found that ALI conditions 

allowed for long-term culture of organoid tissue and, overall, air-liquid interface cerebral organoids 

(ALI-COs) appeared healthier than similarly staged organoids. Whilst whole organoids from ~70-80 

days on displayed an expanded central region lacking neuronal processes, the entire surface of ALI-

COs stained positive for MAP2+ dendrites and SMI312+ axons (Fig. 24b). Moreover, correct tissue 

morphology was retained and ALI-COs typically displayed several lobules with radially aligned 

neuronal cell bodies in the cortical plate. While in ALI-COs axon- and dendrite-rich regions delimited 

individual DAPI+ lobules (Fig. 24b, white arrows), in whole organoids neuronal processes appeared 

disorganised and lacking any pattern.  
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Figure 24 Air-liquid interface culture cerebral organoids (ALI-COs) display improved 

morphology. 

 a, Schematic of the air-liquid interface (ALI) culture set-up as detailed in the methods section. b, 

Immunofluorescence staining for the axon-specific marker SMI312 (red) and the dendritic 

microtubule marker MAP2 (green), shown are representative images of  a 90 day cerebral organoid 

section and an 82 day old ALI-CO (vibratome sectioned at day 61 and cultured at the ALI for 21 

days). Dashed line in the whole organoid image marks the border between healthy tissue and necrotic 

core. Inset shows a higher magnification image of an ALI-CO lobule with neurons radially aligned in 

the cortical plate (bracket) and arrows point to SMI312+ axon bundles projecting within the organoid 

slice. Scale bars, 500 µm (b). Madeline A. Lancaster acquired images in b. 
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ALI-COs display improved neuronal survival compared to whole organoids 

 

We next tested whether ALI culture improved survival over conventional suspension culture of 

whole organoids. To this end, we performed TUNEL stain on cryostat sections of whole organoids and 

ALI-COs and quantified the number of TUNEL+/DAPI+ cells. TUNEL was selected over cleaved 

Caspase-3 staining as it more accurately captured the levels of total cell death in the tissue. In fact, 

cleaved Caspase-3 immunostaining only marks the early stages of apoptosis and does not detect 

hypoxia-induced necrosis, accidental cell death, late stages of apoptosis or other types of regulated cell 

death that do not rely on the caspase cascade. Analyses were done on similarly staged organoids and 

ALI-COs (i.e. 98-105 days) from three and two independent batches, respectively. Slices were 

selected randomly and in order to eliminate bias quantifications were performed on both internal and 

external regions of tissue. Overall, whole organoids displayed approximately two-fold higher numbers 

of TUNEL+ cells compared to ALI-COs (n=6, **p=0.0022) (Fig. 25a & b).  

 

 

 
 

Figure 25 ALI-COs display reduced numbers of TUNEL+ cells compared to whole organoids.  

a, Representative TUNEL stain (red) of whole organoid and ALI-CO cryosections used for 

quantifications shown in b revealing more abundant cell death in whole organoids compared to ALI-

COs. Inset is a higher magnification image of the boxed regions and shows single TUNEL+ cell nuclei. 

b, Quantification of TUNEL+/DAPI+ cells in six whole organoids from three independent batches and 

six ALI-COs from two independent batches aged 98-105 days  total in culture. Culture at the ALI 

results in a significant decrease in cell death compared to standard whole organoid culture . 
**P=0.0022, two-tailed Mann-Whitney test, n=6, shown are mean ± s.d.. Scale bars, 500 µm (a). 
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ALI-COs display higher numbers of both deep- and superficial-layer neurons 

 

TUNEL stain results showed that ALI culture improved neuronal survival; however, this effect 

could be specific to only a certain population of neurons and might not reflect overall survival across 

different neuronal cell types. Thus, we decided to compare the number of deep- and upper-layer 

neurons in whole organoids versus ALI-COs. Analyses were performed at the same timepoints as for 

TUNEL quantifications (i.e. 98-105) days. CTIP2 was used as a marker of deep-layer neurons while 

CUX2 as a marker of superficial layer neurons. Our results showed that ALI-COs display significantly 

higher numbers of both deep- (n=6, *p=0.0411) and superficial-layer neurons (n=6, **p=0.0022) 

compared to organoids (Fig. 26a & b).  

 

 
 

Figure 26 Culture at the ALI promotes survival of deep- and superficial-layer neurons.  

a, Representative immunofluoresce staining for deep-layer (CTIP2+, green) and superficial-layer 

(CUX2+, red) neurons  reveals increased  numbers of both neuronal types in ALI-COs compared to 

whole organoids. The effect on survival is particularly marked in the case of deep-layer neurons, with 

ALI-COs showing abundant CTIP2+ nuclei, whereas the CTIP2 signal in whole organoids is largely 

unspecific background stain. Age of the whole organoid is 116 days and age of the ALI-CO is 120 

days total, of which 36 days under ALI conditions. b, ALI-COs display significantly higher numbers 

of both CTIP2+ and CUX2+ cells compared with whole organoids. Statistical analysis was performed 

on a total of six whole organoids from three independent batches and six ALI-COs from two 

independent batches with ages ranging between 98-105 total days in culture. *P=0.0411, **P=0.0022, 

two-tailed Mann-Whitney test, n=6, whiskers are minimum and maximum values, centre line is the 

median and limits are upper and lower quartiles. Scale bars, 100 µm (a). 
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ALI-COs develop highly directional and coherent tracts  

 

Newborn neurons migrate from the VZ and SVZ to settle in the cortical plate, where they start to 

send out axons and establish connections. The observation that ALI-COs display distinct lobules 

delimited by bundles of neuronal processes (Fig 1.b) prompted us to examine the degree of axon 

bundling under these new culture conditions and in standard whole organoids. ALI-COs and whole 

organoids were stained for the pan-axonal marker SMI312, which labels all major types of 

neurofilaments (i.e. NF-L, NF-M and NF-H). Quantifications of overall SMI312 pixel intensity 

showed that ALI-COs have significantly higher numbers of axonal processes compared to whole 

organoids (n=6, **p=0.0022) (Fig. 27a & b). However, we were also interested in assessing and 

comparing the level of organisation, directionality and bundling of axons under these two different 

culture conditions. We thus performed orientation analyses using the OrientationJ plugin to produce a 

coherency value, indicative of the alignment of SMI312+ processes, and an energy value, which 

reflects how anisotropic and thus directional staining is. The product of these two parameters was used 

to compare the degree of alignment as a proxy for axonal bundling. Orientation analyses showed that 

axons in ALI-COs have significantly higher directionality and organisation compared with whole 

organoids (n=6, **p=0.0022) (Fig. 27c & d). 
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Figure 27 ALI-COs develop directional and coherent axon bundles.  

a, Representative images of SMI312 (red) staining of a whole organoids compared with an ALI-CO 

used for  OrientationJ quantifications shown in b. b, Quantifications of overall SMI312 levels reveals 

significantly higher axonal staining in ALI-COs compared to age-matched organoids. **P=0.0022, 

two-tailed Mann-Whitney test, n=6 whole organoids from two independent batches (ages: 90-105 

days) and n=6 ALI-COs from two independent batches (ages: 85-92 days), reported are mean ± s.d. c, 

OrientationJ analysis (as detailed in the methods section) indicates that ALI-CO axons are 

significantly more aligned and directional than axons in whole organoids. SMI312 pixel brightness 

corresponds to the coherency of the aligned structures and hue corresponds to energy, where a higher 

energy value corresponds to higher anisotropy and increased orientation. Images are representative of 

six whole organoids and six ALI-COs from two independent batches each with ages ranging between 

85-92 days. d, The OrientationJ energy and coherecy output were multiplied to obtain a composite 

value that reflected the extent of bundling and directionality in ALI-COs and whole organoids, with 

ALI-COs  displaying a significantly higher degree of directional bundling compared to whole 

organoids. Reported are mean ± s.d., **P=0.0022, Mann-Whitney test, n=6. Scale bars, 500 µm (a and 

c). Madeline A. Lancaster analysed the data presented in a-d. 
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Culture at the ALI promotes long-term neuronal survival and astrogenesis 

 

At this point we asked the question of how long organoid slices could be kept at the ALI and retain 

improved morphology, neuronal survival and astrogenesis. We thus compared the health state of axons 

(SMI312+), dendrites (MAP2+), whole neurons (TUBB3+) and astrocytes (GFAP+) at 24, 30 weeks and 

one year in culture. At 24 weeks, ALI-COs showed a thick TUBB3+ neuropil populated by GFAP+ 

astrocytes displaying healthy morphology with numerous fine processes (Fig. 28a). By contrast, in 24 

week old whole organoids sparse TUBB3 + staining was confined to the outermost layers of the tissue 

and accumulation of reactive astrocytes was observed. Similarly, while staining of 24-week old ALI-

COs for SMI312 and MAP2 revealed large axon bundles and alongated dendrites, typical of maturing 

neurons, in 24-week old organoids bundling was seen to a very limited degree and dendrites appeared 

sparse and less developed (Fig. 28a). At week 30 the difference between whole organoids and ALI-

COs was even more marked, with organoids displaying virtually no axons and very few dendrites, and 

ALI-COs showing abundant axonal stain and numerous dendrites (Fig. 28b). In 30-week old whole 

organoids TUBB3 staining was restricted to a very thin and superficial layer of the organoid and only 

astrocytes could be seen in the expanded necrotic core (Fig. 28c). In contrast, ALI-COs retained a 

dense TUBB3+ neuropil along with astrocytes displaying healthy morphology (Fig. 28c). Culture of 

whole organoids was not continued past week 30 and only ALI-COs were examined at one year. Even 

after one year in culture ALI-COs displayed abundant healthy astrocytes and neurons with well-

developed axons and dendrites (Fig. 28d). 
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Figure 28 ALI culture allows for extended survival and maturation of neural tissue in vitro.  

a, Representative high magnification images of 169 day-old ALI-COs (69+100 days at the ALI) show 

a dense TUBB3+ (green) neuropil with GFAP+ (red) astrocytes displaying smooth elongated 

processes; by contrast age matched whole organoids display disrupted tissue with few TUBB3+ 

neurons and high densities of GFAP+ astrocytes with reactive morphology. SMI312 (axons, red) and 

MAP2 (dendrites, cyan) staining reveals large axon bundles and high densities of dendrites in ALI-

COs, while organoids show sparse bundling and limited dendritic stain b, ALI-COs at 210 days 

(68+142 days at the ALI) stained for axons (SMI312+, red) and dendrites (MAP2+, cyan) show 

continued neuronal survival and improved health compared with age-matched organoids. c, Higher-

magnification images of 210 day ALI-COs (68+142 days at the ALI)  and age-matched organoids 

stained for astrocytes (GFAP+, red) and neurons (TUBB3+, green) show increased neurons and 

healthier astrocytes in ALI-COs compared to whole organoids. d, Immunofluorescence stains of one-

year old ALI-COs (90+275 days at the ALI) stained for the axonal marker SMI312 (magenta), the 

dendritic marker MAP2 (green), the pan-neuronal marker TUBB3 (magenta) and the astrocytic marker 

GFAP (green) reveal abundant healthy neurons and astrocytes. Three ALI-COs from one organoid 

were stained with similar results. Scale bars, 500 µm (b and d), 100 µm (a and c). 
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ALI-CO neurons acquire complex morphology and display mature synapses 

 

Having observed that these improved culture conditions better sustained long-term tissue survival 

and maturation we decided to examine neuronal morphology in more detail. We thus performed sparse 

labelling with GFP either by injection and electroporation of a transposon donor plasmid encoding 

farnesylated-GFP (fGFP) or by injection of Sendai virus carrying emerald-GFP (emGFP). Via this 

approach we were able to observe, as previously reported, aligned neurons in the cortical plate (Fig. 

29a & c). By performing the experiment on ALI-COs of increasing age we were able to observe 

progressively more mature morphologies. In 80-day old ALI-COs (43+37 day at the ALI) we could 

see typical pyramidal morphology with primary and basal dendrites (Fig. 29b). At this stage extensive 

synaptic staining was already present throughout the tissue (Fig. 29b). Neurons of older ALI-COs 

(92+51 days at ALI) started displaying complex dendritic architecture with numerous spines 

developing on the primary dendrite (Fig. 29c). After one year in culture we observed a high degree of 

maturity with very complex dendritic branches and spines (Fig. 29d). Furthermore, staining for the 

pre-synaptic markers SYT1, SYP and Bassoon and the post-synaptic markers PSD95 and Homer1 

demonstrated the presence of mature synapses with juxtaposed pre and post-synaptic termini (Fig. 

29e).  
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Figure 29 Neurons in ALI-COs display complex dendritic architectures and mature synapses.  

a, Sparse labelling of an ALI-CO (53+37 days at the ALI) by Sendai emGFP (white) reveals radially 

aligned neurons (NEUROD2+, magenta) of the cortical plate (bracket) with complex neuronal 

architectures and pyramidal morphologies (arrowheads). The organoid was derived from a H9 line 

constitutively expressing mFusionRed to capture overall tissue morphology. b, High magnification 

maximum-intensity projection image of a single emGFP (green) labelled pyramidal neuron 

(NEUROD2+, magenta) displaying a primary dendrite (arrow) and basal dendrites (arrowheads). 

Immunofluorescence staining for synaptophysin (white) reveals the presence of synapses throughout 

the tissue. c, ALI-CO (92+51 days at the ALI) electroporation with a membrane-targeted farnesylated 

GFP (fGFP, green) shows radially aligned pyramidal neurons with complex dendritic architecture 
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(arrows). The primary dendrites have evident spines (arrowheads, inset). The high magnification 

image shown is a maximum-intensity projection. d, After one year in culture, sparse labelling of an 

ALI-CO (90+275 days at the ALI) by Sendai emGFP (green) reveals individual neurons (arrows) with 

highly complex dendritic architectures and dense dendritic spines (arrowheads). e, Cryosections of 

ALI-COs derived from organoids electroporated with fGFP display mature synapses with juxtaposed 

pre- (SYT1, Bassoon, SYP) and post- (Homer1, PSD95) synaptic termini (arrowheads). ALI-CO age: 

55 + 40 days at the ALI (95 total) and 89 + 23 at the ALI (112 total). Sparse labelling with emGFP and 

fGFP (a-e) was performed on three ALI-COs from distinct batches with similar results. Scale bars, 50 

µm (a and c), 20 µm (b), 5 µm (c inset), 100 µm (d), 10 µm (e) and 1 µm (e inset). 
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Interneurons are present within ALI-COs 

 

Interneurons are essential for the correct establishment of cortical networks. As previously 

mentioned, interneurons arise predominantly in the MGE and LGE, migrate tangentially into the 

cortex and modulate circuit activity through release of the neurotransmitter GABA. Engineered 

cerebral organoids (enCORs) were shown to produce predominantly forebrain tissue, including dorsal 

and ventral telencephalon (Lancaster et al. 2017). Therefore, we decided to examine if ALI-COs 

harboured interneurons originating from tissue regions with ventral identity. Immunostaining revealed 

GABA+/VGAT+ interneurons and numerous VGAT punctae in ALI-COs, suggesting the presence of 

GABAergic synapses (Fig. 30a). Additionally, staining for somatostatin and GAD67 revealed the 

presence of other interneuron subtypes (Fig. 30b). In samples electroporated with fGFP we were able 

to observe punctae co-positive for the GABA transporter VGAT and the pre-synaptic structural 

protein PCLO decorating the dendritic spines of neurons with pyramidal morphology, suggesting 

GABAergic input on pyramidal cells in ALI-COs (Fig. 30c). 
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Figure 30 Interneurons and GABAergic synapses are found within ALI-COs.  

a, Immunofluorescence staining of an fGFP electroporated ALI-CO (57+49 days at the ALI) 

cryosection for the interneuron markers VGAT (green) and Calretinin (red) reveal numerous 

interneurons and VGAT+ punctae throughout the tissue, suggesting GABAergic synapses. Maximum-

intensity projection image shown. Inset image shows an individual cell body with cytoplasmic VGAT+ 

staining. b, Immunofluorescence staining of an ALI-CO (57+49 days at the ALI) cryosection 

demonstrates the presence of additional Somatostatin+ (magenta) and GAD67+ (green) interneuron 

subtypes. Insets are higher magnification images of these two interneuron populations. c,  

Immunofluorescence staining of an fGFP electroporated ALI-CO (55+50 days at the ALI)  cryosection 

showing a fGFP+ (cyan) pyramidal neuron with dendritic spines decorated by double positive punctae 

(yellow arrowhead) of VGAT (green) and PCLO (red), a pre-synaptic structural protein (inset, 

arrowheads), suggesting the presence of GABAergic synapses onto the pyramidal neuron. White 

arrowheads point to VGAT+ punctae. Overview image in c is a maximum-intensity projection. Sparse 

labelling with fGFP was performed on three ALI-COs from three organoids with similar results. 

Scalebars, 20 µm (a and b), 10 µm (c), 5 µm (a and b insets) and 1 µm (c inset). 
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ALI-COs are electrophysiologically active 

 

The presence of mature synapses with juxtaposed pre- and post-synaptic termini suggested that 

ALI-COs might display electrophysiological activity. We thus performed multielectrode array (MEA) 

recordings of unstimulated cerebral organoid slices and were able to observe spontaneous activity 

(Fig. 31a). Low density electrode arrays can be in fact used to detect individual extracellular action 

potentials (EAPs) as well as changes in extracellular field potential (Bridges et al. 2018).  Over the 

course of a representative two-minute recording from a single MEA electrode we observed numerous 

negative deflections corresponding to EAPs and overlay of the single spikes demonstrated the trace 

profile typical of EAPs (Gold et al. 2007) (Fig. 31b). Immunofluorescence staining for the marker of 

neuronal activity c-Fos revealed numerous positive nuclei in ALI-COs (Fig. 31c) and treatment with 

the Na+-channel blocker TTX was sufficient to eliminate all spontaneous activity (Fig. 31d, e & f). 

Furthermore, whole-cell patch-clamp recordings demonstrated that, upon positive current injection, 

ALI-CO neurons are able to respond with trains of action potential with frequency dependent on 

current intensity (Fig. 31g, h and appendix). 

 

 

 

Figure 31 ALI-COs display electrophysiological activity.  

a, Two minutes of spontaneous activity recorded from a single electrode of an MEA from an ALI-CO 

after 54 days at the ALI (117 days total), detected action potentials are marked by dots underneath the 

peaks . Inset is a 5 second window from the recording expanded from the grey box. b, Overlay of all 
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spikes detected in a (gray, marked with dots) with the average waveform in black. c, 

Immunofluorescence image of a 114 day ALICO (54+60 at the ALI) stained for MAP2 (dendrites, 

grey), DAPI (blue) and the transcription factor c-Fos (green), which marks the nuclei of active 

neurons. Shown is a representative image of independent three experiments. d, Rasterplot of spike 

frequency (averaged in 5-ms time bins for each electrode) in an ALI-CO 75 seconds before (left) and 

after (right) TTX application, demonstrating loss of activity upon Na+-channel blockade. e, 

Quantification of number of active electrodes before and after TTX application in one of three ALI-

CO recordings where TTX was applied. f, Quantification of average spike frequency (error bars are 

s.e.m) in the eight active electrodes of e before and after TTX application. g.  Representative whole-

cell patch-clamp recordings of action potentials evoked by injection of 55 pA current. h, Frequency-

current (F-I) curve showing increasing action potential firing rates upon injection of higher intensity 

currents. Error bars are s.e.m., n=13 out of 20 cells from seven ALI-COs from three independent 

organoid batches. Appendix 2 reports the full dataset. Scale bar, 50 µm (c). Data shown in a, b, c, d, e 

and f are representative of three independent experiments. Data presented in a, b, d-f were acquired by 

Susanna Mierau and me and analysed by Timothy Sit. Data presented in g and h were acquired and 

analyzed by Laura Masullo under the supervision of Marco Tripodi. 
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Early-stage ALI-COs display highly dynamic growth cones 

 

As previously pointed out, in contrast to whole organoids, which display disorganised axons, ALI-

COs develop thick directional axon tracts (Fig.  27a-d). In order to characterise how axons bundle and 

form tracts we performed live imaging on ALI-COs. This culture preparation, in fact, lends itself well 

to live imaging analyses over extended time periods. To achieve stable GFP expression in neurons, 

between day 45 and 60 of the protocol, cerebral organoids were injected and electroporated with the 

pCAG-fGFP transposon donor plasmid and the Sleeping Beauty transposase plasmid pCAGEN-

SB100 (Lancaster et al. 2017) (Fig. 32a). Approximately one- to two-weeks after electroporation, 

organoids were prepped for air-liquid interface culture, and GFP-positive buds retained the original 

morphology after sectioning (Fig. 32b). Live imaging on early stage ALI-COs showed large fGFP+ 

foci that included both dividing progenitors and neurons. Tracking of individual growthcones over 

time revealed highly dynamic behaviours of isolated axons, displaying saltatory extensions and 

retractions (Fig. 32c).    

  

        
 

Figure 32 Organoid electroporation and live imaging reveal axon guidance dynamics in ALI-

COs.  

a, Schematic of electroporation and preparation of ALI-COs for live imaging. Inset shows an organoid 

after plasmid injection with the blue dye (FastGreen) marking the injected ventricle (arrow). b, 

Widefield image of a fGFP-electroporated ventricle before (top) and after (bottom) sectioning and 

ALI-CO establishment. c, Temporal projection image of an early-stage fGFP+ ALI-CO (64+2 days at 

the ALI) pseudocoloured by time shows highly disorganised, saltatory axon dynamics with multiple 

cycles of growthcone extension and retraction. b and c are representative images out of 5 similarly 

staged and live imaged ALI-COs. Scale bars, 1 mm (a inset), 500 µm (b) and 100 µm (c). Madeline A. 

Lancaster analysed the data presented in b and c. 
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More mature axons form robust and directional tracts 

 

While growth cones of individual early axons typically underwent cycles of extension and 

retraction (Fig. 32c & 33a), at later stages growth cones within axon bundles moved in a more 

directional and linear fashion with greater velocity (Fig. 33b & c). In ALI-COs axons formed thick 

and robust bundles that became reinforced over time, stayed coherent and did not splay or randomly 

fill the entire tissue (Fig. 33c & d). Within bundles, growth cones of follower axons projected at fast 

pace along pioneers but as a whole, the bundle front progressed at a much slower rate (Fig. 33f). GFP+ 

tracts showed diverse projection modalities; while some tracts were seen to project locally, some 

extended over long distances within the organoid and even out of the main mass of cell bodies (Fig. 

33g & h). Some tracts crossed each other and yet maintained distinct trajectories, in a similar fashion 

to in vivo decussation of tracts across the midline, and some tracts displayed turning behaviour (Fig. 

33i). 
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Figure 33 Neurons of ALI-COs exhibit dynamic axon guidance behaviours and form robust 

bundles.  

a, Temporal projection image of an early-stage fGFP+ ALI-CO (64+5 days at the ALI) pseudocoloured 

by time shows highly dynamic axon outgrowth with growth-cone retraction indicated by blue arrow 

(early position) and red arrow (late position). The image is representative of five similarly staged and 

imaged ALI-COs. b, Temporal projection image of a more mature ALI-CO (64+9 days at the ALI) 

shows more directed progression of axon growth-cones with progressive extensions indicated by the 

blue (early position) to red (late position) arrows. The image is representative of three similarly staged 

and imaged ALI-CO samples. c, Tracing of individual growth cones over time shows convoluted 

trajectories with little directionality in early ALI-COs (2-5 days  at the ALI, top left), while in more 

mature ALI-COs (14-24 days at the ALI, top right) growth cones advance with high directionality 

along linear trajectories. Below is a plot of the growth cone positions over an 18-hour live imaging 

time-course relative to their starting position. In mature cultures growth cones (14-24 days at the ALI, 

purple lines) display higher velocities (illustrated by the steepness of the average linear regression 

lines for the dataset) than growth cones in early cultures (2-5 days at the ALI, green lines), which 

instead exhibit dynamic retractions (illustrated by the highlighted example trace in green compared to 

purple). Tracing was done on 12 late growthcones and 9 early growth cones from four organoids of 

two independent batches. d, Axon tracts of a representative 18 day ALI culture (70+18 days at the 

ALI) shows several dense and long bundles (arrows) with directional projection pattern. Insets show 

that over the course of four days the bundles maintain their overall appearance but become reinforced 

by incoming follower axons. The image shown is representative of seven similarly staged and imaged 

ALI-COs. e, Source image of an fGFP+ ALI-CO (left) and pseudocoloured ALI-CO (left) according to 

the orientation (hue) and coherency (brightness) of axon tracts. The data shown are representative of 

five such analyses. f, Still image (top) and kymograph (bottom) of an extending tract (dashed box). 

From the kymograph it can be seen that individual axons progress at higher velocities (shallow slope, 

dotted trend line) than the front of the tract as a whole (steep slope, dashed line). The data shown are 

representative of three independent experiments. g, Example image of an fGFP-electroporated ALI-

CO (70+20 days at the ALI)  showing both internal (yellow arrows) and escaping (white arrows) tract 

hodologies. h, Example image of fGFP+ axon tracts projecting out of the main ALI-CO (64+24 days at 

the ALI) mass of cell somas (DAPI+). White arrow points to a tract with escaping behaviour. i, 

Example images of fGFP+ axon tracts crossing each other (left, 83+17 day ALICO), a behaviour 

resembling decussation, and turning (right, 70+14 day ALI-CO). Scale bars, 100 µm (a-d, g and i), 

500 µm (f and h). Madeline A. Lancaster analysed the data presented in a-i. 
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Organising centres secreting guidance cues are found within ALI-COs 

 

The complex trajectories and guidance behaviours observed by live imaging pointed to the 

possibility that signalling centres might become established within these cultures. However, tract 

labelling by fGFP could only capture a small subset of axons present within ALI-COs. To visualise the 

full diversity of axon tracts, mature ALI-COs were stained for the pan-neurofilament marker SMI312, 

which specifically labels axons. We were thus able to observe dense tracts originating within discrete 

lobules and merging to form thick tracts (Fig. 34a) resembling in vivo intracortical axon budles. For 

characterisation and analysis we chose to focus on the CC as its molecular markers and guidance 

effectors have been extensively characterised in the literature. To test for the presence of callosal tracts 

in ALI-COs we stained for the membrane bound Semaphorin co-receptor NRP1. Within ALI-COs we 

found a subset of SMI312+/NRP1+ tracts that often appeared thicker and more fibrous than 

SMI312+/NRP1- tracts and had curved appearance, suggesting turning beahaviour (Fig. 34b & c).   

 

 
 

Figure 34 ALI-COs develop robust internal tracts with callosal identitiy.  

a, Pan-axonal (SMI312, red) and dendritic (MAP2, green) stain on an 85 day old ALI-CO (49+36 days 

at the ALI) shows thick tracts (arroweahds) projecting across the organoid between DAPI+ (blue) 

lobules and coalescing into large bundles (inset image, arrowhead). The image is representative of 

seven ALI-COs stained with similar results. b, Immunofluorescence staining of a 120 day ALI-CO 

(71+49 days at the ALI) for the dendritic marker MAP2 (cyan) and the membrane receptor NRP1 

(red) which marks callosal tracts in vivo. The image is representative of four ALI-COs with similar 

results and shows several NRP1+/MAP2- thick axon bundles that appear to be turning (inset, 
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arrowhead). c, Immunofluorescence stain for SMI312 (axons, green) and NRP1 (magenta) reveals that 

only a subset of axons in a 147 day old ALI-CO (92+55 days at the ALI) display callosal identity. The 

image is representative of four ALI-COs stained with similar results. Scale bars, 500 µm (a), 1 mm 

(b), 200 µm (c). Madeline A. Lancaster acquired images in a and b. 

 

We next stained for secreted molecules and receptors known to guide callosal axons across the 

midline. Staining for the chemoattractant Netrin-1 revealed large foci in the central regions of ALI-

COs with numerous SMI312+ axon tracts projecting inwardly towards the Netrin-1 source (Fig. 35a). 

Work in mouse has shown that gradients of Wnt5a secreted from the glial wedge at the site of 

decussation are responsible to drive callosal axons across the midline by Wnt5a-mediated repulsion 

via the Ryk receptors (Keeble et al. 2006). We thus stained ALI-COs for WNT5A and NRP1 and 

observed WNT5A foci in the near vicinity of tracts with callosal identity (Fig. 35b).  Furthermore, 

staining for NRP1 and RYK revealed callosal axons expressing this tyrosine kinase-related receptor 

(Fig. 35c). Another important factor controlling in vivo navigation of post-crossing callosal axons is 

Ephrin-B1 (Mire et al. 2018) and we were able to observe internal axon tracts specifically positive for 

Ephrin-B1 (Fig. 35d) 

 

 
  

Figure 35 ALI-COs display foci of secreted guidance cues and axon tracts display specific cell-

surface receptors.  

a, Immunofluorescence staining for SMI312 (axons, red) and the secreted chemoattractant Netrin1 

(white) in a 81 day old ALI-CO (49+32 days at the ALI). Inset image (right) shows a large internal 

Netrin1+ region with axon tracts (yellow arrows) projecting towards it. Image is representative of three 

ALI-COs showing comparable results. b, Immunofuorescence stain for NRP1 (CC, white) and the 
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secreted chemorepellent of callosal axons WNT5A (red) in a 117 day old ALI-CO (63+54 days at the 

ALI) reveals discrete WNT5A+ regions. Inset image (right) shows a higher magnification of WNT5A+ 

foci surrounding a NRP1+ tracts with callosal identity. The image is representative of two ALI-COs 

stained. c, Immunofluorescence staining for the callosal marker NRP1 and the tyrosine kinase receptor 

RYK in a 84 day old ALI-CO (65+19 days at the ALI) revealing callosal axons expressing this 

receptor. Inset is higher magnification image of the NRP1+/RYK+ tracts. d, Immunofluorescence 

staining of a fGFP+ 84 day old ALI-CO (65+19 days at the ALI) for the cell surface receptor Ephrin-

B1 reveals a subset of internally projecting tracts that express this guidance molecule (inset, yellow 

arrow). The image shown is representative of two independent experiments. Scale bars, 500 µm (a-c), 

100 µm (b inset, c and d inset), 200 µm (a inset), 50 µm (c inset). 
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scRNA-seq reveals a large array of cortical neuron types in ALI-COs 
 

Our data suggested that the different projection behaviours and tract identities seen might 

correspond to specific neuronal identities. To test this possibility and examine the full repertoire of 

neuronal types present within ALI-COs we performed scRNA-seq. Six slices taken from three ALI-

CO preparations of H1 and H9 hESC-derived organoids were analysed through the 10X single-cell 

genomics platform. Unbiased clustering by principal component analysis (PCA) of highly variable 

genes identified 6 cell populations (C1-C6) (Fig. 36a) that were visualised by dimensionality reduction 

using t-distributed stochastic neighbour embedding (tSNE) (Fig. 36b). Gene Ontology (GO-) term 

analysis (false discovery rate (FDR)>0.1% with highest fold-enrichment) of the 50 most differentially 

expressed genes suggested that developmental cell states may be defining the 6 cell populations 

identified (Fig. 36c).  

 
 

Figure 36 scRNA-seq of ALI-COs reveals a wide array of cortical cell types.  

a, Heat map displaying the expression levels of the top 50 differentially expressed genes in clusters 

C1-6 of the scRNA-seq experiment with key marker genes for each cluster indicated on the right. The 

colour bar reflects the expression levels, purple being lowest and yellow highest. b, Unbiased tSNE 

clustering of scRNA-seq data derived from 13,280 cells from six ALI-COs – two sections from each 
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of three organoids, two H1 and one H9 – identifies six main cellular clusters visualised in 3D space. c, 

Histograms of the top three gene ontology (GO) biological-process annotations defined on the basis of 

the highest-fold enrichment of most significant terms (Fisher’s exact test with FDR multiple test 

correction above 0.1% by http://geneontology.org P<0.001, n=50 top differentially expressed genes 

per cluster). The data presented were acquired and analysed by analyzed by George Gibbons, Lea 

M.D. Wenger and András Lakatos on ALI-COs generated by me. 

 

Pseudotime and correlation analyses of 75 day ALI-COs and published fetal brain datasets 

supported clustering according to cell state. The expression trajectories of key marker genes of the VZ, 

SVZ and neuronal layers over pseudotime demonstrated that ALI-COs show temporal transcriptional 

programs comparable to those of age-matched fetal brain samples (Fig. 37a). Furthermore, whilst 

expression of these key marker genes showed strong correlation in ALI-COs, other datasets showed 

weaker correlation (Fig. 37b, c & d). Therefore, while in ALI-COs expression of layer specific genes 

is very consistent and separates neuronal cell-types according to cell- and layer-identity, the same was 

not seen in other publicly available dataset (Quadrato et al. 2017; Camp et al. 2015). 
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Figure 37 Pseudotime and correlation analyses reveal similar gene-expression profiles in ALI-

COs and human fetal brain.  

a, Heatmaps showing normalised layer-specific gene expression ordered by pseudotime in 75 day old 

ALI-COs (left) and 12-13 week old human fetal brain cells (right). Colour bars reflect gene expression 

levels. b, Pearson correlation matrices of gene expression for developmental layer-specific markers in 

ALI-COs side by side with analyses on human cerebral oraganoids from Camp et al. (2015) (c) and  

Quadrato et al. (2017) (d) . Colour bars represent correlation values with blue indicating negative 

correlation and yellow indicating positive correlation. The study by Camp et al. (2015) comprised 508 

cells from 9 organoids and the study by Quadrato et al. (2017) comprised 66,889 cells from 19 

organoids. ). The data presented were acquired and analysed by analyzed by George Gibbons, Lea 

M.D. Wenger and András Lakatos on ALI-COs generated by me. 

 

Next we compared the average expression of genes belonging to three categories; cell type-, cell 

state- and region-specific genes, and found that the identities of the clusters identified by PCA were 

better defined by cell types and cell states rather than regional identity (Fig. 38a & b). This was in line 

with previous findings that enCOR organoids, used to establish the ALI cultures used for scRNA-seq, 

predominantly generate forebrain identity over other brain regions (Lancaster et al. 2017). Based on 

cell-type and cell-state markers we annotated six cluster identities: corticofugal projection neurons (C1 

- CTIP2+, FEZF2+), intracortical and predominantly callosal superficial-layer neurons and post-mitotic 

intermediate progenitors (C2 – SATB2+, EOMES+), aRGCs and oRGCs (C3 – GFAP+, FAM107+), a 

cluster of more mature neurons including both deep- and superficial-layer identities (C4 – FOXP2+, 

CUX2+), interneurons (C5 – DLX2+) and actively dividing cells expressing both intermediate 

progenitor and RGC markers (C6 – CENPE+, EOMES+, GLAST+) (Fig. 38a & b). The fact that in C2 

we observed expression of both SATB2 and EOMES suggested that at the time scRNA-seq was 

performed (i.e. 69-75 days total) upper layer neurons were still being actively produced and is 

consistent with the inside-out gradient of neurogenesis (Fig. 38b).  

 

We then examined if the cell identities assigned to the different clusters were associated with 

transcriptional programs that defined their cellular function. A large number of these genes were 

among those identified as differentially expressed. Genes involved in axon guidance and tract 

formation (e.g. L1CAM and NRN1) were enriched in the neuronal clusters C1, C2 and present to a 

lesser extent in C4 (Fig. 38c & d). This was likely due to the advanced maturity of C4, marked by high 

expression of genes involved in later developmental processes such as synapse formation (e.g. 

VGLUT, CNTNAP2, SYT4) (Fig. 38c & d). High expression of DLX2, DLX4, ERBB4 and VGAT in 

C5 (Fig. 38c & d) indicated the presence of a very distinct interneuron population and supported 

earlier histological staining data (Fig. 30a,b & c). Only few RGC progenitors in C3 expressed markers 

of astroglial maturity (e.g. AQP4, GJA1) and oligodendrocyte lineage (e.g. OLIG1, PDGFRA) and the 

C6 progenitor cluster displayed high expression of cell cycle genes (e.g. CENPF, TOP2A) (Fig. 38c & 



 146 

d). Overall, these analyses revealed a clear correspondence between cell types and the transcriptional 

program underlying their function.  

 

 
 

Figure 38 scRNA-seq clustering is driven by cell type identity and developmental cell state.  

a, Schematic of the cell types that populate the developing human fetal neocortex : ventricular zone 

(VZ) containing aRGCs and , subventricular zone containing bRGCs and IPCs, deep (DL) and upper 

cortical layers (UL) of neurons, interneurons (IN) and layer VI neurons. b, Heat map showing scaled 

mean expression levels of layer- and cell type-specific genes within the six clusters identified by PCA. 

Cell layers, cell types (bottom) and marker genes (right) are colour-coded according to cluster identity 

(C1-6, bottom).  Colour bar reflects the gene expression levels, purple being low expression and 

yellow being high expression. c, On the left are scatterplots of normalised gene expression levels per 

cell within each cluster for genes relevant for progenitor, glial and neuronal function. On the right are 

two-dimensional tSNE feature plots showing example genes confined to a particular cluster or 

multiple cell populations. Colour coding represents functional gene association. d, On the left is a 2D 

tSNE plot of colour-coded clusters and on the top right are 2D tSNE feature plots showing the 

distribution of cells expressing the DL marker CTIP2, the UL marker SATB2, the  bRGC marker 

FAM107, the ventral telencephalic marker DLX2 and the IPC marker EOMES (i.e. TBR2) across the 

six main clusters identified by PCA (C1-6). At the bottom right are scatter plots showing normalized 

expression values per cell within each cluster for the 5 selected genes, violin plots are shown where 

the proportion of cells expressing a given gene is the highest. Tails of the plot were trimmed to 

represent expression levels maxima and minima. The central hinge represents the median value for 

each cluster. The distribution in each cluster is based on the filtered and merged datasets derived from 

the six organoid slice samples (n = 4191 cells for C1, 3565 cells for C2, 2068 cells for C3, 1658 cells 
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for C4, 952 cells for C5, 846 cells for C6). ). The data presented were acquired and analysed by 

analyzed by George Gibbons, Lea M.D. Wenger and András Lakatos on ALI-COs generated by me. 
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ALI-COs present distinct populations of deep- and superficial-layer neurons with 

specific projection patterns 

 

To validate the scRNA-seq analyses findings that ALI-COs harbour distinct populations of deep- 

and superficial-layer neurons we performed immunostainings for well-characterised neuronal layer 

markers on samples from different batches. Although early in development the cortical wall does not 

display well-defined layers with sharp borders, broad clustering of superficial- and deep-layer neurons 

can already be observed. Staining for the callosal neuron marker SATB2 and the corticofugal 

projection neuron marker CTIP2 revealed SATB2+ neurons distributed more superficially than CTIP2+ 

neurons, found predominantly in more central regions of the tissue (Fig. 39a). Similarly, FEZF2+ and 

SOX5+ corticofugal projection neurons were found in more central regions of the tissue, while CUX1+ 

upper layer neurons sat in more external regions of ALI-COs (Fig. 39b & c). BRN2, which in the adult 

brain is expressed in layer I-III and Vb neurons showed a much broader distribution across the ALI-

CO (Fig. 39b).  

 

Broadly, in ALI-COs we observed two axon tract types, inwardly projecting (Fig. 39d) and 

escaping (Fig. 39e), reminiscent of in vivo intracortical and corticofugal projections, respectively. To 

test weather in ALI-COs, like in vivo, deep- and superificial-layer neurons project as coherent tracts 

with distinct hodology, we performed retrograde labelling with cholera-toxin subunit B (CTB) on 

internal and escaping tracts marked by fGFP expression. Samples were stained for the callosal identity 

marker CUX2 and the corticofugal projection neuron marker CTIP2, and the following three neuronal 

populations were quantified: CTB+/CUX2+, CTB+/CTIP2+, CTB+/CUX2+/CTIP2+ (Fig. 39f &g). While 

91.1 ± 11.0% (mean ± s.d.) of neurons projecting into internal tracts were positive for CUX2, only 

35.7 ± 19.9% of escaping tracts stained CUX2+ (Fig. 39h). By contrast, 65.4 ± 24.3% of escaping tract 

projection neurons were CTIP2+ with 20.6 ± 6.4% being positive for only this marker, compared with 

1.1 ± 1.5% of internally projecting neurons (Fig. 39h). These data suggest that tract hodology and 

morphology largely match correct molecular identity. 
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Figure 39 Deep- and superficial layer neurons in ALI-COs show immature layering and project 

into bundles with discrete non-random identities.  

a, Immunofluorescence staining for the superficial-layer neuronal marker SATB2 (green) and the 

deep-layer neuronal marker CTIP2 (red) in a 90 day old ALI-CO (70+20 days at the ALI) reveals 

SATB2+ neurons distributed more superficially than CTIP2+ neurons. b, Immunofluorescence staining 
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for the superficial-layer neuronal marker BRN2 (green) and the deep-layer neuronal marker FEZF2 

(red) in a 90 day old ALI-CO (70+20 days at the ALI) shows broad distribution of BRN2+ neurons and 

FEZF2+ stain more confined to internal regions of the cortical plate. c, Immunofluorescence staining 

for the superficial-layer neuronal marker CUX1 (green) and the deep-layer neuronal marker SOX5 

(red) in an 84 day old ALI-CO (64+20 days at the ALI) shows segregation of CUX1+ cells in the 

external layers of the ALI-CO and SOX5+ neurons more internally. Images a-c are representative 

regions from a single stained ALI-CO each. d, Immunofluorescence staining for the axonal marker 

SMI312 (red) in a 107 day old ALI-CO (59+48 days at the ALI) shows a large SMI312+axon tract 

projecting internally into the main DAPI+ mass of cell bodies. Inset is a rotated high magnification 

image of the tract (white arrow). e, Immunofluorescence staining for the axonal marker SMI312 (red) 

and the dendritic marker MAP2 (green) in a 89 day old ALI-CO (55+34 days at the ALI) reveals 

escaping tracts projecting away from the main mass of ALI-CO cell bodies in a manner reminiscent of 

corticofugal projections. Images in d and e are representative images of three independent samples 

each. f, On the left is a representative image of an ALI-CO with internally projecting fGFP+ tracts 

(green) injected with the retrograde tracer CTB (white), on the right are three individual channel 

images (i.e. CTB, CUX2 and CTIP2) and merge with CTIP2- green, CUX2-red and CTB-white. g, On 

the left is a representative image of an ALI-CO with escaping fGFP+ tracts (green) injected with the 

retrograde tracer CTB (white), on the right are three individual channel images (i.e. CTB, CUX2 and 

CTIP2) and merge with CTIP2- green, CUX2-red and CTB-white. Yellow arrows indicate 

CTIP2+/CUX2+ double-positive cells and white arrow indicate CUX2+ cells in f and CTIP2+ cells in g. 

Images shown in f and g are representative of six CTB injected ALI-COs each. h, Quantifications of 

CTB+ cells indicate that tracts with internal projection hodology (f) traced back primarily to CUX2+ 

callosal identity cells while escaping corticofugal morphology tracts traced back primarily to CTIP2+ 

corticofugal projection neurons as well as CTIP2+/CUX2+ double-positive cells. For each condition 

(i.e. escaping and internal tracts) six ALI-COs derived from four organoids were labelled and all CTB+ 

cells across the entire depth of antibody penetration in whole ALI-COs were counted for CUX2+, 

CTIP2+ and CTIP2+/CUX2+ nuclei. **P=0.0022, Mann-Whitney test, n=6, reported are mean ± s.e.m. 

values. ALI-COs were fixed 4 days after CTB injection and cultured for a total of 33 days at the ALI 

(97 days total age). Scale bars, 100 µm (a-c), 500 µm (d and e), 200 µm (d and e insets), 300 µm (f 

and g) and 20 µm (f and g insets). Madeline A. Lancaster acquired images in a and b, and the 

quantifications shown in c were done by Magdalena Suttcliffe. 

 

 

 

 

 

 



 151 

ALI-COs establish neural networks with functional output 

 

Having characterised the cellular composition and projection modalities of organoids grown at the 

ALI, we sought to test the functionality of both internal and escaping tracts. In order to infer and 

describe features of functional connectivity we employed three-dimentional (3D) MEA chips to 

perform extracellular recordings on ALI-COs and analyse correlated spontaneous activity (Fig. 40a). 

We observed network bursts during which neurons near multiple electrodes across the array fired 

synchronously, as seen in mature neural networks (Fig. 40b-d). Comparison of correlated activity 

revealed densely connected local networks where individual nodes would make connections with 

many others (Fig. 40e). Both long- and short-range connections between nodes showed highly 

correlated activity and although the strongest connections were found over short distances, activity 

was most highly correlated at distances greater than the 200 µm inter-electrode distance (Fig. 40e & f). 

This suggests that ALI-COs show specific network patterns that are not simply nearest-neighbour 

connections. Correlation analyses of ALI-COs point to specific connectivity patterns becoming 

established in these cultures. 

 

 
 

Figure 40 ALI-COs display specific spatial patterns of connectivity.  

a, Representative image of a 130 day old ALI-CO (91+39 days at the ALI) upon transfer to a 3D 

MEA. b, Traces of spontaneous activity (3.2 ms duration) in the 59 electrodes at the time of a network 

burst. Black arrowheads in a and b indicate the reference electrode. c, Rasterplot of spike frequency (5 

ms timebins shown for each electrode) during a twelve minute recording with the red arrow pointing 

to a network burst shown in d. High resolution 50 ms traces from12 electrodes at the time of a network 
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burst showing some of the ms time differences (i.e. jitters) in the initiation of the action potential at 

different electrodes. e, Network plot displaying functional connectivity patterns between specific 

electrodes of the ALI-CO shown in a. Line thickness represents the strength of correlation between 

two nodes of the network and node size denotes the number of connections made by each node. The 

spike-time tiling coefficient was used to determine correlated activity as described in the Materials & 

Methods section. f, Distance distribution between functionally connected nodes in e colour-coded 

according to correlation strength classes; high-blue, medium-green, low-light blue. The plot shows 

highest correlated activity at 400 µm, 600 µm for medium correlated activity and 800 µm for low 

correlated activity. Scale bar, 1 mm (a). The data shown were acquired by Susanna Mierau and me and 

analysed by Timothy Sit. 

 

In order to examine the functionality of escaping tracts we established a chimeric co-culture system 

of ALI-COs and mouse spinal cord explants. Prior to vibratome sectioning mouse spinal cords with 

dorsal root ganglia and overlying paraspinal muscles were dissected from E12.5 mouse embryos and 

embedded with organoids in LM agarose (Fig. 41a). Coronal sections of mouse spinal cord explants 

were thus cultured adjacent to ALI-COs (Fig. 41a). After approximately 2-3 weeks in culture dense 

axon tracts positive for the human specific marker STEM121 could be seen projecting from the ALI-

CO (STEM121+/MAP2+) to the mouse spinal cord explants (STEM121-/MAP2+) (Fig. 41b). High 

magnification imaging of the mouse spinal cords in co-culture revealed the presence of mature 

synapses, comprising human-specific pre-synaptic synaptophysin and post-synaptic Psd95, juxtaposed 

between human processes (STEM121+) and mouse spinal cord neurons (STEM121-/MAP2+).  

 

Live imaging of the mouse paraspinal muscle tissue revealed high amplitude concerted 

contractions with irregular frequency (Fig. 41d). These high amplitude contractions were coordinated 

and of higher amplitude than those of non-innervated spinal cord explants (Fig. 41e). In order to test 

whether contractions of innervated spinal cords depended upon connection with the ALI-CO we 

performed lesion of the ALI-CO axonal tract. Following axotomy, high amplitude contractions were 

replaced by low-amplitude uncoordinated single-muscle fibre fibrillations (Fig. 41d). To verify that 

loss of high amplitude contractions was not caused by simple perturbation of the mouse spinal cord 

explant we performed an incision in the agarose near the spinal cord of an un-innervated explant (Fig. 

41e). Disturbance of the mouse spinal cord did not have any apparent effect on the ability of the 

explant muscles to contract, thus suggesting that concerted high amplitude contractions depended on 

the connection to the ALI-CO (Fig. 41e).   
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Figure 41 ALI-COs establish functional connections with mouse spinal cord explants.  

a, Schematic depicting the ALI-CO-mouse spinal cord explant co-culture procedure, mouse spinal 

cords with intact paraspinal muscles were dissected from E12.5 mouse embryos, co-embedded in LM 

agarose adjacent to ALI-COs, vibratome sectioned and cultured at the ALI as detailed in the methods 

section. Image shows a co-culture 24 hrs after establishment with arrows pointing to the mouse spinal 

cord explant, intact muscles and the ALI-CO. b, Immunofluorescence image of a 123 day old co-

culture (55+68 days at the ALI) for the human specific cytoplasmic marker STEM121 (magenta) and 

the dendritic marker MAP2 (green) shows a MAP2+/STEM121+ ALI-CO projecting via a 

STEM121+/MAP2- axon tract (white arrow) into the mouse spinal cord explant (MAP2+/STEM121-). 

c, On the left is a maximum-projection immunofluorescence staining of a cryosection of mouse spinal 

cord explant connected to an 84 day old ALI-CO (52+32 days at the ALI) showing MAP2+/STEM121- 

mouse spinal cord neurons in close contact to STEM121+ human axons. The higher magnification 

inset on the right shows the point of contact between a mouse spinal neuron soma and a human axon 

with foci of human-specific Synaptophysin and Psd95, suggesting the presence of mature synapses 

between ALI-CO neurons and mouse spinal cord neurons. d, Widefield image showing a human ALI-

CO (bottom) connected to a mouse spinal cord explant (top right) after 36 days at the ALI (100 day 

old ALI-CO). Left image is before (blue box) axotomy, right image is after (red box) axotomy, and the 

site of incision is indicated by the red dashed line. On the right are corresponding traces, before (blue) 

and after (red) axotomy. Following axotomy high amplitude contractions are lost and replaced by low 

amplitude fibrillations of individual muscle fibres. e, Widefield image showing an ALI-CO (bottom) 

mouse spinal cord explant (top) coculture after 40 days at the ALI (104 day old ALI-CO) where no 

connection was yet established. Left image is before (blue box) axotomy, right image is after (red box) 
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incision of the agarose surrounding the mouse spinal cord explant (red dashed line). On the right are 

corresponding traces, before (blue) and after (red) axotomy. Disturbance of the mouse spinal cord 

does not cause a decrease in the size or frequency of contractions. Scale bars, 500 µm (a, d and e), 200 

µm (b), 5 µm (g), 1 µm (g inset). 

 

To further test whether ALI-CO corticofugal tracts could control mouse paraspinal tissue we 

performed extracellular stimulation of the ALI-CO tracts. Stimulation with single current steps of 

increasing intensity was sufficient to elicit contractions of increasing amplitude (Fig. 42a – c). 

Contractions were intensity dependent but above a certain voltage we observed saturation, and the 

muscles could not generate higher amplitude contractions (Fig. 42c). Stimulations given at a time 

interval of 30s and 15s were seen to reliably give on-demand contractions (Fig. 42d) and repeated 

stimulation over a 30s time interval by a TTL-pulse generator could reliably drive trains of muscle 

contractions up to a frequency of 1 Hz (Fig. 42e). Application of the same stimulation protocols 

following severing of the connection between ALI-CO and spinal cord did not result in any 

contraction response, suggesting that the effect seen was dependent on the axonal connection and not 

caused by spread of the electrical current (Fig. 42a, d & e). In support of this, sample immunostaining 

after axotomy revealed robust STEM121+ human tracts innervating the mouse spinal cord (Fig. 42f). 
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Figure 42 Stimulation of the tract connecting the ALI-CO to the mouse spinal cord explant 

elicits contractions that are abolished by axotomy.  

a, Widefield images of the ALI-CO-mouse spinal cord explant co-culture (52+32 days at the ALI) 

used for recordings b-e and immunofluorescence analysis in f. Blue boxed image was taken before 

axotomy and red boxed image after axotomy, boxed yellow is the region of interest used for motion 

analyses, red dashed line indicates the site of axotomy, white dashed box is the region shown in f and 

dashed yellow is the outline of the stimulation electrode b, 30 second traces of spontaneous 

contraction of the mouse paraspinal muscle measured as displacement. c, Application of single steps 

of increasing current (2, 10, 15 and 20 mA, 120 µs long, black arrows) at 30, 40, 50 and 60 s of the 

recording triggers contractions (i.e. displacement) of increasing amplitude (blue trace). d, Application 

of single current steps (15 mA, 120 µs long, black arrows) at 30, 60, 75, 90, 105 and 120 s of the 

recording reliably evokes muscle contractions (blue trace). e, Evoked muscle contractions (i.e. 

displacement) in reponse to 30 s of 1 Hz TTL stimulation with 15 mA current pulses (period of 

stimulation marked by black hash marks, 120 µs pulses) (blue trace). Axotomy of the tract between 

the mouse spinal cord tissue and the ALI-CO leads to a complete loss of evoked contractions upon 

administration of the same stimulation paradigms (red traces) in d and e. Note in d some small residual 

spontaneous concentractions after axotomy. f, Maximum intensity projection immunofluorescence 

staining for the human specific cytoplasmic marker STEM121 (magenta) and the dendrite marker 

MAP2 (green) reveals human axon tracts innervating the mouse spinal cord and shows that, whilst the 

human tissue was severed in the axotomy, the mouse spinal cord was preserved intact. The data shown 

are representative of six independent experiments of which two included axotomy. Scale bars, 500 µm 

(a) and 100 µm (f). Microelectrode stimulation was performed by me and Susanna Mierau, and 

analyses were done by me using an ImageJ macro written by Jerome Boulanger. 

 

To further validate that muscle contraction was dependent on the connection established between 

ALI-CO neurons and mouse spinal cord neurons we repeated the same stimulation paradigms on a 

different ALI-CO-mouse spinal cord co-culture (Fig. 43a). We then repositioned the stimulation 

electrode at a comparable distance from the mouse spinal cord as previously but, rather than in a tract, 

placement was in an internal region of the organoid, that lacked any obvious direct connection with 

the mouse spinal cord (Fig. 43b). While application of 1Hz frequency current steps with increasing 

amplitude over 10s time windows elicited contraction responses of increasing amplitudes when the 

electrode was placed in the tract, this was not observed following electrode displacement or axotomy 

(Fig. 43b & c). Post-axotomy immunofluorescence analyses confirmed the presence of thick human 

axon tracts innervating the mouse spinal cord (Fig. 43d). Lastly, the median latency of response from 

stimulation to beginning of muscle contraction was measured to be approximately 37 ms (with a 

measurement uncertainty of 17 ms, the time interval between two consecutive frames) (n=35). The 

latency measurement supports the fact that muscle contraction was mediated by synaptic transmission. 
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Figure 43 Displacement of the stimulation electrode and axotomy abolish evoked contractions 

and contractions display latency.  

a, Widefield image of the ALI-CO-mouse spinal cord explant co-culture (48+31 days at the ALI) used 

for recordings a and c. The top trace (blue) shows muscle contractions (i.e. displacement) evoked by 

single current stimulation (black arrows, 3.2 mA, 120 µs) at 30, 60, 75, 90, 105 and 120 s. The bottom 

trace (blue) shows trains of contractions in response to 30 s of 1 Hz TTL pulses (period of stimulation 

indicated by black hash marks, 3.2 mA, 120 µs). b, Widefield image of the ALI-CO shown in a after 

stimulation electrode displacement (left, light-blue box) and axotomy right (right, red box). In a,b and 

c blue indicates pre-axotomy, red indicates  post-axotomy, and light-blue indicates  electrode 

displacement, yellow box marks the ROI used for displacement quantifications, dashed yellow outline 

marks the positioning of the stimulation electrode and red dashed line marks the incision site. c, 

Precise electrode placement determines the ability to evoke muscle contractions by stimulation and 

upon electrode displacement (shown in b left) the response to stimulation is lost (middle, light-blue 

trace). Placement of the stimulation electrode on the axon tract connecting the ALI-CO to the mouse 

spinal cord explant leads to evoked responses upon stimulation (top blue trace), while axotomy of the 

tract leads to a complete loss of high-amplitude evoked contractions leaving only spontaneous low-

amplitude fibrillations (bottom, red trace). The stimulation protocol applied to all three sample 

configurations in c was 1 Hz TTL-triggered pulses (120 µs, increasing current intensity every 10 

seconds for 0.2, 0.8, 1.6 and 3.2 mA) with the final 1Hz TTL-stimulation window lasting 14 s for the 

control trace (top, blue trace). The data shown are representative of six independent experiments of 

which two included axotomy. d, Maximum intensity projection immunofluorescence staining for the 

human specific cytoplasmic marker STEM121 (magenta) and the dendrite marker MAP2 (green) 
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reveals human axon tracts innervating the mouse spinal cord and shows that, whilst the human tissue 

was severed in the axotomy, the mouse spinal cord was preserved intact. e, Overlay of evoked muscle 

contraction waveforms elicited by repeated current pulses (15 mA, 160 µs, 0.6 Hz) and waveform 

average (black), showing the first peak at ~37 ms after stimulation. Reported aboved is a box and 

whiskers plot capturing the spread of the individual contraction events (n=35), center line is the 

median, limits are quartiles, whiskers are minimum and maximum. Red cross is an outlier, with 

another outlier recorded at 1 s (not shown), recording was done at 104 days (42 days at the ALI). Scale 

bars, 500 µm (a and b) and 200 µm (d). Microelectrode stimulation was performed by me and Susanna 

Mierau, and analyses were done by me using an ImageJ macro written by Jerome Boulanger. The 

latency shown in e was computed by Jerome Boulanger with help from Emmanuel Derivery 
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Electron cryotomography (ECT) of ALI-CO escaping tracts uncovers elements of 

ultrastructural organisation of developing axons 

 

Not only do ALI-CO culture conditions extend the range of developmental processes that can be 

studied in vitro, but they can also help to expand the array of techniques applicable to the study of 

such processes. A particularly intriguing avenue of research is the study of the axon ultrastructure 

during development. Historically, electron microscopy (EM) has revealed a wealth of information on 

the intracellular organisation of neurons. However, because in an electron microscope specimens are 

exposed to vacuum, traditionally samples for transmitted electron micoscopy (TEM) were fixed, 

dehydrated, embedded in plastic and sectioned (Oikonomou et al. 2016). These procedures cause 

sample denaturation and introduce artefacts in the analyses.  

 

These limitations were overcome by the development of cryofixation techniques in which 

specimens are cooled so rapidly that the water molecules, rather than forming ice crystals, produce a 

think layer of vitreous ice, which preserves intact native cellular structures (Oikonomou et al. 2016). 

Plunge freezing is one of the main techniques used for cryofixation and involves plunging the sample 

into liquid ethane by means of a guillotine. One of the major hurdles in achieving vitrification is 

sample thickness, which should be less than 500 nm for high-resolution ECT studies. For this reason, 

while prokaryotes and viruses are particularly amenable to ECT, mammalian cells are challenging 

samples and work on tissues is virtually out of reach (Mahamid et al. 2016; Ader et al. 2019). 

Therefore, ECT studies on neuronal in situ cellular architecture are typically performed on dissociated 

primary neuronal cultures and rely on focused ion beam (FIB) milling to achieve the required 

thickness (Bäuerlein et al. 2017).  

 

Albeit powerful, this approach suffers from limitations, FIB milling is technically involved and 

reduces throughput, already very low in these studies and it might not be strictly necessary when 

analyses focus on neuronal processes. If the research question is aimed particularly at axons, using 

dissociated cultures does not allow easy distinction between axons and dendrites on ECT grids. 

Moreover, we previously discussed how neurons in vitro do not form bundles, rather they send out 

processes in a random fashion. This precludes the study of ultrastructural aspects of axon pathfinding 

and fascicle formation.  With this in mind, we reasoned that ALI-CO cultures and in particular their 

escaping bundles could be leveraged to glean cellular insight into axonal architecture by ECT.  

 

In order to test the feasibility of such an approach we prepared samples for a cryo-correlative light 

and electron microscopy (cryo-CLEM) experiment. By this technique, specific or dynamic 

information from fluorescent microscopy (FM) can be integrated with high-resolution structural 

information from EM to study the effect of genetic perturbation of the system (Ader et al. 2019). ALI-

COs were electroporated with fGFP and prepared following the standard protocol, with the only 
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difference that care was taken to remove any LM agarose surrounding the tissue before collection on 

PTFE inserts (Fig. 44a & b). After a week in culture, carbon and gold EM grids coated with laminin 

and fibronectin were placed adjacent to the organoid slices (Fig. 44a & c). After 2-3 additional weeks 

at the ALI axons could be seen extending to the centre of the EM grids in regions suitable for 

acquisition (Fig. 44d). Grids were retrieved from ALI inserts by stamping with biopsy punches and 

immediately plunge frozen into liquid ethane by means of a foot-operated guillotine. Grids were 

screened by cryo FM and single GFP+ axons could be seen within bundles over the grid (Fig. 44e). 

Suitable axon target regions for ECT were chosen for tomogram acquisition (Fig. 44f). Reconstructed 

tomograms revealed the crowded molecular environment of the axon with an intricate meshwork of 

microtubule bundles and closely intermingled sheets of endoplasmic reticulum (ER) (Fig. 44g, false 

coloured golden). The experiment demonstrates the feasibility of cryo-CLEM on ALI-CO-derived 

axons to acquire high-resolution structural information. 
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Figure 44 Workflow for cryo-CLEM on ALI-CO-derived axons.  

a, Schematic of the steps for cryo-CLEM on ALI-CO-derived axons, where organoids were 

electroporated, sectioned and cultured at the ALI for a week before placement of EM grids. Detailed 

procedure is described in Materials and Methods. b, Widefield fluorescence image of a fGFP+ 

organoid prior to ALI-CO preparation. c, Overview image of a PTFE cell culture insert with ALI-COs 

and adjacent EM grids immediately after placement. d, Cryofluorescence tiled overview image of 

ALI-CO axons grown on EM grids after approximately 3 weeks at the ALI. The image shows how 
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GFP+ axons have extended away from the main mass of the organoid and grown on the grids reaching 

regions suitable for tomogram acquisition. e, High-magnification image overlay of brightfield and 

fluorescence of escaping ALI-CO bundles on grids with single GFP+ axons. Red dashed boxes 

indicate the regions where the EM micrograph shown in f was acquired. f, Cryo-EM overview image 

of the area outlined by the red dashed square in g. The tilt-series was acquired at the site indicated by 

the red dashed boxes. g, Example virtual slice through an electron cryo-tomogram acquired on the 

GFP+ ALI-CO shown in e and f.  False-coloured golden structures are ER sheets intermingling with 

microtubules and closely juxtaposed to the plasma membrane. The virtual slice shown is rotated by -

90° relative to e and f. Scale bars, 500 µm (b), 1 cm (c), 100 µm (d) 5 µm (e), 2 µm (f) and 100 nm 

(g). The data presented in d-g were acquired and analyzed by Patrick Hoffmann from samples I 

prepared. 
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Chapter 5: Discussion 

ZEB2 is dynamically expressed in the developing neuroepithelium 

 

We have shown that ZEB2 protein is detectable in human cerebral organoid progenitors from day 6 

to approximately day 21. Immunofluorescence has revealed that ZEB2 and glial markers exhibit a 

mutually exclusive expression pattern in projenitor cells, suggesting that ZEB2 is no longer needed in 

progenitors after the transition to aRGCs. From this point on, ZEB2 expression shifts from neural 

progenitors to postmitotic neurons. Bioinformatic analyses on published datasets as well as 

immunofluorescence data from E10.5 to E16.5 mouse cortices have confirmed this switch in 

expression from progenitors to neurons. Furthermore, our expression data are in agreement with 

previous reports (Miyoshi et al. 2006; Seuntjens et al. 2009), suggesting that organoids are a valid 

model to study the function of ZEB2 at such early developmental stages. This was an essential 

validation step as organoid studies to date have only focused on later neurodevelopmental aspects, 

such as production of deep and superficial layer neurons.  

 

ZEB2 has a well-established role in EMT induction in a variety of cellular models and we found 

intriguing its expression in the early neuroepithelium. ZEB2 has been shown to limit the 

mesendoderm-inducing effects of Activin-Nodal signalling and promote neuroectodermal induction in 

hESCs (Chng et al. 2010). In mouse, Zeb2 is critical for exit from the epiblast state and links the 

pluripotency and methylation networks with differentiation (Stryjewska et al. 2016). Although we are 

missing quantitative expression data for ZEB2, in the mouse neuroectoderm its expression sharply 

drops between E10.5 and E11.5. By contrast, in human organoid NECs, after the initial 

neuroectodermal induction phase, between day 6 and 11, ZEB2 protein and mRNA levels appear to 

steadily decline over the course of 10 days. These different expression trajectories in mouse versus 

human may have an effect on the behaviour of NECs, influencing their initial expansion. 

 

Interestingly, the sudden change in detectability of ZEB2 protein before and after day 11 may 

indicate different functions of this factor at these two stages. Our data seem to suggest that before day 

11 the N-terminus of ZEB2, which overlaps several known functional domains of the protein, is either 

engaged in cofactor interactions or in a different conformational state than after day 11. We examined 

the possibility that this change could be due to differences in splice isoform usage but we were not 

able to observe any stage-specific isoform switch. Splice variant PCR analyses revealed that transcript 

I and II of ZEB2 maintain the same stoichiometric ratio throughout the time points assayed. This 

leaves the possibility that the difference in detectability may be due to binding to a different 

interaction partner, which might underpin a different ZEB2 function. It is in fact known that 

depending on its interaction partners ZEB2 can act either as a transcriptional repressor or activator and 
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work in Xenopus has shown that the N-terminal zinc-finger cluster is strictly required for neural 

induction (Nitta et al. 2007).   

 

Studying the interactome of ZEB2 in organoids is extremely challenging. First of all, this type of 

analysis requires very large amounts of starting material, which are difficult to obtain due the minute 

size of early EBs and several labour intensive steps in the protocol. Secondly, we are currently missing 

a ZEB2 antibody suitable for pull-down experiments (Stryjewska et al. 2016) and the majority of 

commercially available ZEB2 antibodies are raised against the N-terminus of the protein, which 

according to our analysis should be inaccessible before day 14 of organoid protocol. Introducing a C-

terminally tagged exogenous version of ZEB2 is a possible strategy but our work suggests that 

overexpression of this gene leads to a premature switch to neurogenesis, thus constitutive expression 

in stem cells may have adverse effects. CRISPR-Cas9 mediated tagging of the endogenous locus by 

HDR would be in principle the best approach but suffers from low success rate and long editing time. 

A more feasible strategy might be to introduce in the ZEB2+/- background an exogenous copy of ZEB2 

carrying a C-terminal epitope tag. In fact, possible detrimental effects of the introduction of the 

transgene may be offset by the absence of a functional copy of the gene, leading potentially to a 

functional rescue of the phenotype. In addition, the C-terminal epitope would provide us with a direct 

handle on the protein, and the high specificity and affinity of available antibodies against these tags 

might reduce the amount of starting material required for analysis.   

 

ZEB2 regulates the cell adhesion propeties and architecture of the neuroepithelium 

 

To study ZEB2 function in cerebral organoids we established heterozygous loss-of-function hESCs. 

We demonstrated that after genome editing the cells maintain normal karyotype and are not affected in 

their pluripotency. However, upon differentiation they display a remarkable phenotype, characterised 

by thin and elongated buds. In depth characterisation of one of the mutants revealed that these 

structural changes are accompanied by an overall increase in cell-cell adhesion within the tissue (Fig. 

45). As mentioned in the introduction, under many aspects, neurogenesis resembles a progressive and 

extended EMT process where the epithelial cells of the neuroectoderm eventually produce fully 

mesenchymal type cells such as neurons and astrocytes (Aaku-Saraste et al. 1996). Notably, many 

genes upregulated during the initial ectoderm-neuroectoderm transition, including N-cadherin and 

Vimentin, are typically associated with increased cell-motility and are widely regarded as markers of 

EMT (Pastushenko & Blanpain 2018; Stemmler et al. 2019). ZEB2 was previously shown to be 

involved in cell fate decisions between neuroectodermal and mesendodermal fates, exit from the 

epiblast state in mouse and ZEB2 mRNA is expressed in the prospective neuroectoderm of the 

Xenopus, chicken and mouse gastrula (Chng et al. 2010; Stryjewska et al. 2016; Miyoshi et al. 2006; 

Eisaki et al. 2000; Yasumi et al. 2016). Altogether, these data suggest a proneurogenic role of ZEB2.  
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Interestingly, our data show that loss of one functional copy of ZEB2 does not lead to a large 

decrease in EMX1 protein levels, suggesting that differentiation down the neural lineage is not 

impaired. Nevertheless, we observed a sharp decrease in TBR2+ cells and a significant increase in 

ventricle length. For the latter analysis, a conservative approach was taken and EMX1+ buds that did 

not display any TBR2+ cells were excluded. This was done because, although the majority of the 

ZEB2+/- organoid tissue stained positive for EMX1, many elongated buds histologically did not 

resemble cortical tissue, but more medial identities such as hem and the choroid plexus primordium. 

This is intriguing as it may indicate that through regulation of ZEB2 levels different architectonic and 

neurogenic outcomes can be achieved. ZEB2 is known to antagonise BMP signalling and BMP4 was 

identified as the key trigger for choroid plexus induction in vitro (Eiraku et al. 2008; M. Watanabe et 

al. 2012). Therefore, upregulation of BMP signalling following partial loss of ZEB2 may contribute to 

induction of more medial hem and choroid plexus identities.  

 

On cortical tissue, decreased ZEB2 levels appear to delay neurogenesis and promote lateral 

expansion. Conversely, preliminary gain-of-function experiments show that increased ZEB2 levels 

reduce cell adhesion, promote neurogenesis and lead to a reduction in ventricle length. Initial 

experiments in which ZEB2+/- organoids were treated with BMP and TGFβ inhibitors showed a partial 

rescue of the phenotype, with a noticeable increase in TBR2+ cells and restoration of thicker, less 

elongated neuroepithelial buds. Given that overexpression and rescue data are based on a limited 

number of experiments, findings from such analyses should be treated with a note of caution. 

However, the fact that results from a variety of approaches support each other and are in good 

agreement with previous reports substantiates our observations.  

 

Although we did not examine how partial loss of ZEB2 affects long-term neurogenic output, our 

work can explain some of the features associated with Mowat-Wilson syndrome. The neuroepithelial 

buds of ZEB2+/- organoids display abnormally high levels of epithelial-character proteins E-cadherin 

and Occludin. Despite an overall increase in ventricle length the aberrant delay of mutant NECs in 

switching to neurogenesis might ultimately lead to a reduction in neurogenic output and microcephaly. 

Other aspects of this pathology, such as seizures, likely linked to interneuron specification and 

migration, agenesis of the CC and neural crest defects would require examination at later stages of the 

protocol and for this ALI-COs represent a valuable tool. Importantly, our data on the effects of partial 

loss of ZEB2 function in NECs concur with findings by Rogers et al. (2013) on the role of Zeb2 in E- 

to N-cadherin switch during chicken cranial neural crest EMT. The authors showed that Morpholino-

mediated knockdown of Zeb2 in the chicken neural tube leads to an accumulation of E-cadherin and 

loss of N-cadherin, with resulting failure of NCCs to delaminate (Rogers et al. 2013). Notably, their 

Zeb2 knockdown was near complete and the E- and N-cadherin phenotype observed was comparable 

to our data from ZEB2+/- human brain organoids. This, along with the fact that Zeb2+/- mice do not 

display evident neural defects (Maruhashi et al. 2005), might indicate that during human evolution 
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lower levels of Zeb2 expression may have been selected for in the developing neural tube. This, in 

turn, might have promoted a longer phase of NEC proliferation with lateral expansion, leading to an 

overall increase in cortex size. 

 

Furthermore, our data show that the secreted growth factor FGF2 is a positive regulator of ZEB2 in 

a glioblastoma model, and preliminary results from human brain organoids indicate that ZEB2 in turn 

suppresses FGF2 expression (Fig. 45). We thus establish a link between ZEB2 and a known regulator 

of neuroepithelial proliferation (Raballo et al. 2000; Vaccarino et al. 1999). Whilst FGF2 was already 

known to induce expression of several EMT transcription factors, including ZEB2 (Lee et al. 2018), to 

the best of our knowledge, ZEB2-mediated repression of FGF2 has not been previously reported. 

Although this finding should be interpreted with caution and more work is necessary to prove its 

validity across cellular models and establish the precise hierarchy of cellular events, it provides a link 

between ZEB2 and a known regulator of NEC proliferation. Furthermore, it explains how an increase 

in ZEB2 levels, in addition to changing the cell adhesion properties of NECs, could potentially alter 

their proliferative behaviour. Therefore, our work provides evidence for ZEB2 being an important 

player in neuroepithelial architecture and we go as far as speculating that an evolutionary reduction in 

Zeb2 levels in the developing cortical neuroepithelium might have shaped the neocortical primordium 

across different mammalian species (Fig. 45). 
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Figure 45 ZEB2 is a central regulator of neuroepithelial architecture.  

Schematic model of ZEB2 function. Our experiments have shown that partial loss of ZEB2 leads to 

increased epithelial contacts and reduced mesenchymal character, reflected by delayed or impaired 

neurogenesis. Conversely, increased ZEB2 levels lead to a loss of epithelial contacts, an increase in 

mesenchymal character and higher numbers of neurons and intermediate progenitor cells. Dual SMAD 

inhibition on ZEB2+/- organoids appears to partially rescue the mutant phenotype, with a net reduction 

in E-cadherin back to WT levels and restoration of IPC and neuron production. Furthermore, our data 

suggest that whilst FGF2 is a positive regulator of ZEB2, in the developing neuroepithelium ZEB2 

acts by reducing FGF2 levels. Thus, we put forward a model where ZEB2 is a central regulator of cell-

cell contacts and proliferation in the developing neuroepithelium. By virtue of this key role in NECs 

we hypothesize that evolutionary changes affecting ZEB2 expression in the cortical primordium likely 

had an impact of cortex size determination. 
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ZEB2: future directions and experimental considerations 

 

Our work on ZEB2 in human cerebral organoids has opened up several interesting research 

avenues. We suspect that the apparent masking of the N-terminus prior to day 14 of the protocol likely 

concerns the early role of ZEB2 in neural induction, while differences in absolute expression levels 

after neuroectodermal fate establishment might be driving interspecies differences in NEC expansion. 

We are currently characterising in more detail the ZEB2 gain-of-function phenotype; so far we have 

shown good inducibility of the transgene but potential leakiness remains to be tested. Once the exact 

experimental conditions for inducible overexpression have been determined, we will carefully 

quantify the changes in TBR2+ IPCs numbers, mitotic figures and ventricle length.   

 

With regard to the rescue experiment by dual-SMAD inhibition, the experiment will be repeated to 

include treatment with either inhibitor in isolation. This will allow us to determine which cascade 

ZEB2 is specifically modulating in the developing neuroepithelium. Importantly, we have validated 

antibodies against SMAD1,5,8, SMAD2,3 and their phosphorylated forms and this will allow us to 

biochemically dissect the rescue phenotype. In parallel to biochemical analyses we will quantify the 

degree of phenotypic rescue through quantification of TBR2+ IPC numbers, mitotic figures and 

ventricle length. We also aim to analyse in more detail the apparent increase in FGF2 levels in ZEB2+/- 

cells. FGF2 treatment on WT organoids should give us insight into what may be the effects of higher 

FGF2 levels in the ZEB2+/- background and ChIP-qPCR experiments will be performed to validate the 

ChIP-seq data presented. Furthermore, our next experiments will focus on quantifying proliferation in 

WT and ZEB2+/- organoids as well as prolonging FGF2 treatment on immortalised cells to hopefully 

capture a reduction in endogenous FGF2 transcription. 

 

In order to frame our findings in the context of evo-devo gene expression changes across different 

mammalian species, over the last few months we have optimised conditions to grow cerebral 

organoids from mouse, chimpanzee and gorilla, and we have designed cross-species specific PCR 

primers to perform RT-qPCR profiling of ZEB2 and its key transcriptional targets. We thus hope to 

test our model, whereby a decrease in ZEB2 levels in primates, or more specifically in hominins, may 

have led to a prolonged NEC proliferation phase and expansion of the starting progenitor pool. One 

important technical aspect to consider is that in order to draw meaningful conclusions from cross-

species comparisons in organoids, modifications of the protocol to match the developmental 

requirements of different species should be kept to a minimum. Previous work by Otani et al. (2016) 

has shown that in vitro differentiation faithfully captures in vivo heterochrony, it follows that the 

timing of the organoid differentiation protocol has to be adapted to each species specifically using 

morphological and histological benchmarks for optimisation. If unavoidable, addition of patterning 

cues or growth factors should be kept to a minimum, and ultimately any observations made through 
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comparative analyses should be used to generate genetically testable predictions. Therefore, should we 

see the expected differences in ZEB2 expression across the different species examined, it will be of the 

essence to test either by gain- or loss-of-function experiments whether alterations of ZEB2 levels yield 

results consistent with our model.  

 

ALI-COs: a novel culture system able to model axon pathfinding and tract formation 

 

In an attempt to model later phenotypic aspects of the ZEB2 heterozygous loss-of-function 

phenotype, in particular agenesis of the CC, we developed a protocol for air-liquid interface cerebral 

organoid (ALI-CO) culture. We have shown that by culturing cerebral organoids on cell culture insets 

at the air-liquid interface it is possible to improve and maintain tissue survival and maturation over 

extended periods of time (one year was the maximum tested). Importantly, we show that in addition to 

reducing cell death and improving survival of both deep- and superficial-layer neurons, radial 

alignment of neurons in the cortical plate is retained. Vibratome sectioning for ALI culture is 

performed after establishment of the CP in organoids, so as to preserve correct tissue morphology. In 

this respect, the protocol is very similar to slice culture preparation of foetal cortices at mid-

neurogenesis. We presume that it is because neurons radially align within the CP that ALI-COs 

display remarkable axon projection and bundling behaviours. 

 

Live-image analysis of fGFP-labelled axons revealed striking dynamics, including the early 

exploratory and saltatory progression of pioneer axons as well as the highly directional and high-

velocity movement of follower axons within bundles (Fig. 46). The projection and bundling patterns 

that ensue indicate a high degree of intrinsic organisation and lead to the establishment of robust 

tracts. This is remarkable since in vitro 2D neural cultures typically display indiscriminate 

fasciculation between clusters of neighbouring neurons and in organoids random projections are 

usually seen. Previously, some level of bundling has been achieved in vitro either by encasing 

organoids in agarose cylinders (Cullen et al. 2018), by placing them in micro-chambers (Kawada et al. 

2017), and more recently cortico-thalamic assembloids were shown to develop reciprocal projections 

with a considerable level of bundling (Xiang et al. 2019). Pan-axonal labelling by SMI312 revealed 

that within ALI-COs axons generate numerous distinct and thick tracts that appear to project between 

lobules rich in cell bodies. These tracts express different cell-surface receptor molecules, as revealed 

by the NRP1, RYK and EphrinB1 stains, which mark a distinct subset of callosal bundles within ALI-

COs (Mire et al. 2018; Piper et al. 2009). Furthermore, staining for the secreted guidance molecules 

WNT5A and Netrin-1 showed the presence of discrete organising centres reminiscent of the glial 

wedge in ALI-COs (Keeble et al. 2006).  
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It is important to note that these results indicate a remarkable degree of spontaneous organisation of 

signalling centres and sorting of axons into bundles with coherent identity. Underscoring this, CTB 

retrograde tracing experiments demonstrated that bundles with internal and escaping hodology, 

resembling intracortical and corticofugal projections, respectively, map back to neuronal populations 

with significantly different proportions of upper- and deep-layer neurons. Whilst retrograde tracing on 

internal tracts revealed an overwhelming majority of CTB+/CUX2+ cells, escaping tracts had a 

significantly higher abundance of CTIP2+ neurons but also showed considerable numbers of 

CTIP2+/CUX2+ cells. It must be noted that in addition to upper-layer neurons, during neurogenesis 

CUX2 also labels a subset of bRGCs that generate multiple subtypes of cortical projection neurons 

located across layers II-VI (Eckler et al. 2015; Guo et al. 2013). It is thus plausible that 

CTIP2+/CUX2+ cells may represent a population of basal radial glia committed to a deep-layer 

neuronal fate. Because it is technically challenging to go above four-colour multiplexing, the palette of 

antigens available for cell type classification by standard fluorescence microscopy is limited. 

Therefore, our analysis can capture large differences in relative neuronal abundance but it does not 

have the power to identify small and diverse cell populations in different developmental cell states.  

 

In an effort to overcome this limitation, we employed scRNA-seq to probe the full spectrum of cell 

types generated in ALI-COs (Fig. 46). These analyses identified five clusters with well-defined 

molecular signatures corresponding to deep-layer neurons (C1), aRGCs and oRGCs (C3), mature 

deep- and superficial-layer neurons (C4), interneurons (C5) and actively diving cells (C6). 

Interestingly, C3 identified a population of neurons co-expressing the IPC marker TBR2 (i.e. EOMES) 

and the superficial-layer neuronal marker SATB2 and likely represent non-mitotic IPCs that are 

differentiating to neurons. Thus, scRNA-seq allows for a more comprehensive analysis of cell identity 

and cell states. A powerful approach would be to combine retrograde tracing experiments on fGFP+-

tracts and scRNA-seq. Instead of relying on CTB as retrograde tracer, this approach could employ 

viruses encoding different fluorescent proteins with distinct oligonucleotide barcodes preceding the 

poly-A (Rosenberg et al. 2018). Following tract labelling with the virus, it would be possible to 

visualise the different clusters of neurons expressing GFP and a specific virally-encoded fluorescent 

protein. Next, scRNA-seq would allow for precise and extensive transcriptional profiling of the 

neurons giving rise to the specific projection behaviour observed (Fig. 46).  

 

ALI-CO neurons mature and establish functional networks 

 

By means of GFP single-cell viral labelling we have shown that neurons in ALI-COs achieve a 

remarkable degree of maturity. Neurons display complex dendritic arborifications with numerous 

spines and abundant mature synapses with juxtaposed pre- and post-synaptic termini. 

Immunofluorescence and scRNA-seq analyses have revealed the presence of several different 

interneuron types in ALI-COs, suggesting that functional connectivity may become established in this 
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system. Previous work has in fact shown that neurons in organoids are active and give rise to networks 

that can support self-organised activity patterns (Lancaster et al. 2013; Birey et al. 2017; Quadrato et 

al. 2017). By whole-cell patch-clamp and MEA recordings we have shown that neurons in ALI-COs 

display spontaneous firing and are able to respond with trains of action potentials upon stimulation 

(Fig. 46). Furthermore, analysis of correlated activity across the MEA showed that the highest 

correlated activity was seen at distances greater than the 200 µm inter-electrode distance, underscoring 

a degree of spatial specificity in the connections made. 

 

Establishment of chimeric co-cultures of mouse spinal cord and organoid slices further 

demonstrated the ability of ALI-COs to establish functional connections. Whilst lesion of the tracts 

connecting the ALI-CO to the mouse spinal cord explants produced a loss of spontaneous 

contractions, stimulation of the ALI-CO tracts evoked muscle contractions. Displacement of the 

stimulation electrode or lesion of the tract led to a loss of evoked contractions in response to 

stimulation. Immunofluorescence analysis of the innervated spinal cords revealed human axons 

projecting onto mouse spinal motor neurons with mature synapses formed, and latency measurements 

are consistent with a circuit comprising multiple synapses. We thus establish a minimal in vitro motor 

circuit comprising an ALI-CO and a mouse spinal cord explant. This experiment was based on 

previous co-culture experiments (Pini 1993; Peterson & Crain 1981; Streit et al. 1991) where in vitro 

reconstitution of a minimal circuit allowed access to the cellular and molecular mechanisms 

underlying target innervation and circuit formation. 

 

Recently, taking a comparable approach, fusion of cortical and thalamic organoids allowed 

modelling of thalamocortical and corticothalamic connections (Xiang et al. 2019). Importantly, the 

authors showed that fusion of thalamic and cortical organoids leads to reciprocal synaptic 

transmission, which is necessary for maturation of thalamic neurons (Xiang et al. 2019). In vitro 

assembly of a minimal circuit represents a powerful approach to dissect and study the function of 

individual component parts at the cellular and molecular level. In particular, by using organoids to 

generate the circuit building blocks we can readily introduce mutations in the stem cells of origin to 

probe the specific function of a given gene in axon guidance, target innervation and synapse 

formation. In this regard, one obvious advantage of ALI-COs over standard suspension culture of 

organoids is that it allows ready access to the culture for confocal live imaging over extended periods 

of time. We thus hope that this model will prove helpful in furthering our understanding of the cues 

that guide axons during development and of the minimal circuits that become established intrinsically 

within cerebral organoids (Fig. 46). 
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Cryo-CLEM on ALI-CO escaping axons 

 

With a preliminary cryo-CLEM experiment on ALI-CO escaping tracts we have demonstrated that 

it is possible to acquire high-resolution tomograms of axons without the need for FIB milling 

(Mahamid et al. 2016; Bäuerlein et al. 2017). The experiment was done on fGFP electroporated axons 

that projected away from the organoid onto the adjacent grids. Samples were screened in a cryo-

fluorescence microscope and tomograms of both GFP+ and GFP- axons were acquired (Ader et al. 

2019). We thus demonstrate that it is possible to acquire ultrastructural information on axons labelled 

with a membrane-targeted fluorescent protein. Therefore, in principle, by this method it should be 

possible to introduce fluorescently labelled transgenes and study their effect on axonal ultrastructure 

(Fig. 46).  

 

One important aspect to consider is that excessive tissue growth on the grid will slow down the 

freezing process, leading to formation of ice crystals (Oikonomou et al. 2016). Because ultra-rapid 

cooling is essential for formation of vitreous ice and preservation of intact cellular structures the 

amount of biomaterial on the grid should be kept to a minimum. This may pose problems if the gene 

studied has a strong growth phenotype. In fact, during the time needed for modified axons to reach the 

central region of the grid, WT axons will likely overgrow the entire grid, making vitrification 

impossible. However, simply from this preliminary proof of concept experiment we were able to 

observe a striking pattern of ER packing within the axonal varicosities. ER sheets were seen closely 

intermingled with the microtubule frame of the axon, making contacts with the axonal plasma 

membrane.   

 

Because growing axons are dependent on lipids synthesized at the ER for growth, the observed 

pattern of ER organisation is particularly interesting. This has drawn our attention to the extended 

synaptotagmin (E-SYT) family of proteins, which includes proteins E-SYT1, 2 and 3, involved in ER-

plasma membrane tethering and lipid exchange (Sclip et al. 2016; Tremblay & Moss 2016). These 

proteins show a high degree of evolutionary conservation in eukaryotes, which suggests an important 

cellular function. However, interestingly, yeast and mammalian cells lacking all three members of this 

protein family are viable (Sclip et al. 2016; Kikuma et al. 2017). Even more surprisingly, E-Syt triple-

knockout mice develop normally and do not display obvious developmental phenotypes, are viable 

and fertile. More recently, it was shown that overexpression of the only E-syt ortholog in Drosophila 

motor axons enhances synaptic growth (Kikuma et al. 2017). We thus plan to investigate by Cryo-

CLEM the effect of E-SYTs overexpression on the cellular organisation of developing cortical axons in 

ALI-COs. 
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Figure 46 Future applications of ALI-COs.  

ALI-COs display improved maturation and long-term survival, thus allowing the study of later 

neurodevelopmental events. A combination of ALI-COs and novel techniques has the potential to 

improve our understanding of processes such as axon pathfinding, target selection, synapse formation 

and network establishment. By live cell imaging we have started characterising the dynamics of 

growth cones and scRNA-seq analysis has revealed a complex and diverse array of cortical types in 

these cultures. By combining electrophysiological recordings, viral tracing and optogenetics we can 

begin to understand what is the intrinsic potential of neurons to spontaneously organise into networks 

and the degree of complexity of these. Furthermore, ALI-COs open the possibility to specifically 

study the ultrastructural organisation of axons by cryo-CLEM. This gives us the possibility to visualise 

with an unprecedented level of detail, not only the intracellular organisation of axons, but also how 

axons interact with one another to form bundles. Overall, this new culture paradigm will be valuable 

in complementing and integrating findings from whole organoids and in vivo studies.  
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ALI-COs: future directions and experimental considerations 

 

We have shown that ALI culture conditions improve survival of late-stage neural organoids, 

thereby extending the range of developmental processes that can be modelled with this system in vitro. 

This culture preparation is easily accessible by microscopy and allows the study of axon pathfinding 

and bundling by live imaging. The presence of endogenous chemotactic cues together with the turning 

behaviour seen by live imaging point to similarities between in vitro and in vivo development. 

Therefore, future work will focus on later aspects of the ZEB2+/- phenotype as well as modulation of 

axon trajectories through the administration of exogenous cues by electroporation. CTB tracing 

experiments have shown that, similarly to normal development, superficial-layer neurons have the 

tendency to project within the boundaries of cortical tissue, while deep-layer neurons preferentially 

project outside the organoid tissue as escaping bundles. As previously mentioned, further tracing 

experiments with a more comprehensive readout, such as scRNA-seq, are needed to identify the 

specific neuronal identities present within the different tracts.  

 

Focusing on the activity patterns observed in organoids, we believe our work has only touched 

upon this new area of research (Fig. 46). Further experiments are already underway, and optimisation 

of recording conditions along with the use of a newer MEA system that allows stimulation at specific 

sites of the array have already given promising results. One of the main limitations we are facing at the 

moment is that commercially available 3D MEAs can only cover a restricted portion of the entire ALI-

CO slice, so that at the moment long-range connections across the entire sample surface cannot be 

studied. To overcome these technical limitations and dissect the activity patterns in ALI-COs we are 

currently establishing channelrhodopsin and genetically-encoded calcium reporter constructs. In the 

long term, we hope to employ the chimeric co-culture system presented to study whether the motor 

circuits established can be entrained. 

 

Lastly, we have already cloned GFP-tagged ORFs for all three E-SYTs in a sleeping beauty 

transposon donor construct that allows stable integration of the transgene. Our goal is to study the 

effects of overexpression of these ER-PM tethers on the structure of axons and on the in situ cellular 

architecture. This work will serve as proof of concept of how ALI-COs can be used to study the 

cellular architecture of axons specifically. ALI-COs are a developmental model and we believe that 

the relevance of this work lies in the fact that it can give new insight into aspects of cellular 

ultrastructure in the context of development.  
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Conclusions 

 

In summary, we have uncovered a role for ZEB2 in modulating cell-cell contacts in the developing 

human neuroepithelium. ZEB2 heterozygous loss-of-function leads to tighter cell-cell contacts that 

hinder the transition of NECs to neurogenic aRGCs, with a net decrease in TBR2+ IPCs and a 

significant increase in ventricle length. Conversely, preliminary gain-of-function experiments lead to 

higher N-cadherin and reduced E-cadherin levels, with a concomitant increase in TUBB3+ neurons 

and a decrease in ventricle size. Dual SMAD inhibition appears to partially rescue the ZEB2+/- 

phenotype, suggesting that in the neuroepithelium ZEB2 may act by antagonising the BMP and TGFβ 

signalling cascades. Furthermore, we have shown that FGF2 is a positive regulator of ZEB2, which in 

turn downregulates FGF2. These findings are consistent with previous reports in other model systems 

and point to a potential role for differences in Zeb2 expression as a means to regulate the size of the 

cortical primordium. 

 

 Furthermore, in an attempt to model later aspects of the ZEB2+/- phenotype, we have developed a 

slice-culture protocol that promotes long-term neuronal survival and axon outgrowth in organoids. The 

thick axon tracts that develop display a variety of projection modalities including long-range 

projections within and away from the organoid, growth-cone turning and decussation. Analysis by 

scRNA-seq revealed a wide array of cortical cell types and CTB retrograde tracing demonstrated that 

there is appropriate correspondence between neuronal identity and hodology. ALI-COs display 

functional neural networks and escaping tracts can innervate mouse spinal cord explants and modulate 

contraction of mouse paraspinal muscles. Overall, this culture system reveals a remarkable degree of 

self-organization of corticofugal and callosal tracts with functional output. Lastly, by combining ALI-

COs and cryo-CLEM we have shown that this system provides new opportunities to study relevant 

aspects of CNS development across a variety of scales. 
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Appendix 1 

Table of oligos used in the study 
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Appendix 2 

Whole-cell patch-clamp recording data 

 

 


