IEEE Access

Multidisciplinary * Rapid Review * Open Access Joumal

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier

A Methodology for Prognostics Under
the Conditions of Limited Failure Data

Availability

GISHAN D. RANASINGHE', TONY LINDGREN?, MARK GIROLAMI3, AJITH K. PARLIKAD'

''University of Cambridge, Department of Engineering, Institute for Manufacturing, 17 Charles Babbage Road, Cambridge, CB3 OFS, UK.
2Stockholm University, Department of Computer and System Sciences, Forum 100, 164 40 Kista, Sweden and Scania Commercial Vehicles, Service Support

Solutions, Sodertilje, Sweden.

3University of Cambridge, Department of Engineering, Civil Engineering Building, 7A JJ Thomson Avenue, Cambridge, CB3 OFA, UK and The Alan Turing

Institute, British Library, 96 Euston Road, London, NW1 2DB, UK.
Corresponding author: Gishan D. Ranasinghe (e-mail: gd416@cam.ac.uk).

The first author’s PhD research is funded by the EPSRC through a Doctoral Training Partnership grant (EP/M508007/1). This research was
partly supported by the Next Generation Digital Infrastructure project (EP/R004935/1) funded by the EPSRC and BT.

ABSTRACT When failure data are limited, data-driven prognostics solutions underperform since the
number of failure data samples is insufficient for training prognostics models effectively. In order to address
this problem, we present a novel methodology for generating failure data which allows training datasets
to be augmented so that the number of failure data samples is increased. In contrast to existing data
generation techniques which duplicate or randomly generate data, the proposed methodology is capable
of generating new and realistic failure data samples. The methodology utilises the conditional generative
adversarial network and auxiliary information pertaining to failure modes to control and direct the failure
data generation process. The theoretical foundation of the methodology in a non-parametric setting is
presented and we show that it holds in practice using empirical results. The methodology is evaluated in
a real-world case study involving the prediction of air purge valve failures in heavy-trucks. Two prognostics
models are developed using the gradient boosting machine and random forest classifiers. When these models
are trained on the augmented training dataset, they outperformed the best solution previously proposed in
the literature for the case study by a large margin. More specifically, costs due to breakdowns and false
alarms are reduced by 44%.

INDEX TERMS Equipment prognostics, Expert knowledge, Generative modelling, Limited failure data,

Physics of failure.

I. INTRODUCTION

ROGNOSTICS involve predicting the time to failure of
Pequipment or predicting the probability that a piece of
equipment operates without failure up to some future time
(e.g. until the next inspection time or the end of current
mission window) [1]. Prognostics is usually performed using
expert knowledge, condition monitoring data and/or event
data relating to past failures. Despite their popularity, the
long-lasting problem with data-driven prognostics is that they
rely on large amounts of historical failure data (i.e. run-to-
failure data indicating past degradation patterns) to estimate
prognostics model parameters [2]. Nevertheless, historical
failure data are limited in real-world industrial scenarios due
to three major reasons: (i) rare (yet adverse) failures; (ii) over-
protective maintenance and replacement regimes; (iii) highly
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reliable equipment [3], [4]. This causes training datasets
to be imbalanced, which makes it difficult for data-driven
algorithms to estimate model parameters from degradation
patterns and characterise system performance for prognostics
modelling [4]. Hence, predictions produced by these models
are associated with high uncertainty and therefore introduce
additional costs due to under maintenance and over mainte-
nance of equipment and false alarms.

The objective of this paper is to present a methodology
for generating real-valued failure data so that the training
datasets used for prognostics modelling can be augmented to
include an increased number of realistic failure data samples.
In the context of this work, “real-valued” data means data
that realistically reflect the behaviour of the equipment of
interest. Using theoretical and empirical results, we show that
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the proposed methodology has the potential to address the
long-lasting problem of limited failure data availability for
prognostics, and hence allow predictions produced by data-
driven prognostics models to be associated with minimal
uncertainty when real failure data are limited. To this end,
we expanded the research presented in our conference paper
which was presented at the 2019 IEEE International Confer-
ence on Prognostics and Health Management, San Francisco,
USA [5].

When failure data are limited for data-driven prognostics,
the use of physical model-based and knowledge-based prog-
nostics solutions have been unsuccessful due to the follow-
ing: physical model-based prognostics require the empirical
estimation of physics parameters which is difficult and ex-
pensive [2]. Moreover, large amounts of historical failure data
are still required for validating physical model-based prog-
nostics solutions [2]. Knowledge-based prognostics involve
obtaining domain knowledge and converting it into rules
which is also difficult in most industrial scenarios [2]. More
importantly, when the number of rules increases, knowledge-
based prognostics solutions suffer from the combinatorial
explosion problem and once built, they do not generalise
into new situations that are not covered explicitly in their
knowledge bases [2].

Existing techniques used to address the problem of limited
failure data availability for data-driven prognostics include
undersampling and oversampling techniques. Unfortunately,
these techniques also have major shortcomings. Undersam-
pling discards potentially useful non-failure data samples,
hence, for instance, can degrade the discriminating power
of a classifier [6]. Since random oversampling and advanced
techniques such as the synthetic minority oversampling tech-
nique and adaptive synthesis involve duplicating existing
failure data or randomly generating data, they do not in-
troduce real-valued failure data samples [7], [8]. Recently,
there has been an emergence of a few generative adversarial
networks (GAN)-based oversampling techniques for failure
prediction. The common shortcoming of these techniques is
that they do not condition the noise being added to newly
generated data samples which leads to different modes of
data being generated (i.e. the failure data generation process
is not controlled and directed) [8]. Hence, the fundamental
problem of limited failure data availability for prognostics is
not addressed sufficiently.

We aim to address this problem by developing a method-
ology that is capable of generating real-valued failure data.
The methodology utilises auxiliary information available in
the prognostics domain to condition the noise being added to
newly generated data samples, thus the failure data genera-
tion process is controlled and directed [1]. In the context of
this work, “auxiliary information” means the additional in-
formation that can be obtained from industrial scenarios and
adds value to the understanding of failure dynamics of the
equipment of interest (e.g. expert knowledge, physics of fail-
ure and information contains within maintenance records).
The methodology estimates a generative model that captures
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the semantic features of the failure mode that needs pre-
dicting using real failure data, noise and more importantly,
using auxiliary information pertaining to the failure mode.
Then it uses the estimated generative model to generate
new failure data by sampling from a joint distribution of
noise and auxiliary information. The tool used for estimating
the generative model is a conditional generative adversarial
network (CGAN) [8].

Despite its success in the image recognition domain (see
[8] and [9]), generating real-valued data for prognostics
presents the following domain-specific research challenges:
(i) systematically identifying auxiliary information pertain-
ing to failure modes that is useful for controlling and di-
recting the failure data generation process; (ii) systematically
converting different kinds of auxiliary information that can
be in complex and different forms (e.g. aural, visual, formu-
las and text entries) into a form that can be integrated into the
failure data generation process to condition the noise. The
research presented in this paper takes the first step towards
overcoming these challenges, and thus developing a method-
ology for generating real-valued failure data for prognostics
under the conditions of limited failure data availability.

Following the problem formulation and method for mea-
suring the extent of limited failure data availability presented
in our conference paper (see Sec. III in [5]), this paper
commences by providing the theoretical foundation of the
proposed methodology (Sec. II). The theoretical foundation
is divided into three parts: the prerequisite and assumption
required for the methodology are presented in Sec II-A; a de-
tailed description of the methodology and suitable evaluation
methods are provided in Sec II-B; the theoretical results of
integral parts of the methodology are presented in Sec II-C.
The methodology is evaluated in the Scania air purge valve
prognostics problem and empirical results are discussed in
Sec. III. The paper is concluded in Sec. IV.

Il. THEORETICAL FOUNDATION

In this section, we use the value function V(G, D) of the
minimax game used to estimate a generative model using the
CGAN (see Eq. 1). G and D are the generator and discrim-
inator artificial neural networks of the CGAN architecture
respectively. X is real failure data samples, Y is auxiliary
information and Z is noise. A detailed description of the
CGAN and its value function are provided in our conference
paper (see Sec. Il in [5]).

min max V(G, D) = B,y log D( | )

(D
FEzmproe[l0g(1 = D(G(2 | y)))]

A. PREREQUISITE AND ASSUMPTION

The prerequisite of the methodology is that auxiliary infor-
mation pertaining to the failure mode (see Table 1) needs
to be available in the industrial scenario in addition to con-
dition monitoring and event data which are limited. This
is reasonable in practice due to the following: (i) expert
knowledge is available in most industrial scenarios since
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it is a popular information source used for maintenance
decision making and risk analysis of industrial systems [1];
(ii) physical laws and equations that are developed using
the physics of failure technique are well-documented in the
literature (e.g. Paris’ Law for fatigue crack propagation and
Power Law for analysis of reliability of complex systems)
[10]; (iii) inspection, replacement and maintenance activities
are documented, stored and accessible in most industrial sce-
narios due to the advances in information and communication
technology and cloud data storage model [11].

TABLE 1. Different Kinds of Auxiliary Information Available in the Prognostics
Domain

Expert knowledge
o Equipment similarity information

o Knowledge on failure causes and
failure modes

o Empirically validated rules

o Known failure thresholds

Physics of failure
o Physical laws

o Differential equations
o Stochastic differential equations

Maintenance records
e Information contains within in-

spection records
e Information contains within re-
pair and replacement records

The following assumption is made in the current version
of the methodology: the failure mode that needs predicting
causes equipment to fail due to gradual degradation and
is not a sudden failure. This is a reasonable assumption
in practice since the dominant failure modes of industrial
equipment cause the hazard rate to be increased with the
equipment age [12]. By making this assumption we imply
the following: (i) data-driven prognostics using condition
monitoring and/or event data is feasible since the evolution
of fault into failure causes monotonic trends in equipment
condition and performance, and hence data-driven predictive
algorithms can use these trends to estimate prognostics model
parameters; (ii) since the failure is not random, predicting
equipment failure is useful as maintenance before failure
affects the probability that the equipment will fail in the next
instance, hence downtime can be prevented [12].

B. DESCRIPTION OF THE METHODOLOGY

The proposed methodology for generating real-valued failure
data consists of three phases (see Fig. 1). In the remainder of
this section, these three phases are discussed in detail.

1) Identifying auxiliary information pertaining to the failure
mode and converting into a form for integrating into the
failure data generation process

Previously in Table 1, we outlined different kinds of auxiliary
information that might be typically available in the prognos-
tics domain. The challenge is to identify pieces of auxiliary
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Phase 1: Identifying auxiliary information pertaining to the
failure mode and converting into a form for integrating into
the failure data generation process.

'

Phase 2: Estimating a generative model that captures the
semantic features of the failure mode and evaluating the
convergence during training.

'

Phase 3: Generating real-valued failure data using the
estimated generative model and assessing overfitting and
evaluating prognostics performance.

FIGURE 1. Diagram outlining the three phases of the proposed methodology
for generating real-valued failure data.

information that are useful for generating real-valued failure
data for the failure mode that needs predicting. Here, expert
knowledge provided in the literature and obtained from on-
site maintenance engineers is used to identify auxiliary in-
formation that may potentially be useful for generating real-
valued failure data. Then Phases two and three are iteratively
performed in order to identify the ideal set of auxiliary infor-
mation that leads to the satisfactory prognostics performance.

Auxiliary information pertaining to failure modes can be
in complex and different forms. For example, aural, visual
or text entries of expert knowledge and maintenance records,
and mathematical equations of physics of failure. Thus, the
challenge is to convert this information into a form that can
be integrated into the failure data generation process for
conditioning the noise.

In this methodology, auxiliary information is converted
into vector representations. This can be further explained
using the following example involving auxiliary informa-
tion obtained from expert knowledge on failure causes and
failure modes. Imagine that there is a set of outdoor elec-
tronic equipment (e.g. electronic circuits and joints inside
distribution point boxes of broadband lines) that has failed.
Over time maintenance engineers have gained knowledge
that the failure rate of this set of equipment increases during
the rainy season. This information can be further validated
using maintenance records which reveal that water ingress
(i.e. failure cause) caused corrosion and electrical shorts (i.e.
failure modes) and led to the failure of the set of electronic
equipment. This information can be used to generate real-
valued failure data by informing the CGAN that a newly
generated failure data sample may contain the patterns in
historical rainfall data in the locations the equipment is
placed at. Thus, the noise being added to newly generated
data samples is conditioned on auxiliary information related
to the past failures of the equipment.

In order to integrate auxiliary information into the failure
data generation process, we first convert it into an abstract
form. This allows equipment-specific information to be gen-
eralised to all the equipment that has failed under the failure
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mode that needs predicting. For instance, if the rainfall in
a particular location where the target equipment placed at
during their degradation period is recorded as the rainfall
at the location where the equipment A, B and C placed at
increased from 43 mm to 65 mm, once converted into the
abstract form this information becomes some variable X in-
creases. Thus, specific terms such as equipment A, B and C,
rainfall and numerical thresholds are ignored. Then the ab-
stracted information is converted into the statistical form
by representing it as some continuous variable C. The
continuous variable C' can be converted into a distribution
between some values yo and y;. Finally, this distribution
can be represented as a vector Y containing some values
{y €Y | yo <y < y1,and y increases}.

2) Estimating a generative model that captures the semantic
features of the failure mode and evaluating the convergence
during training

We first structure the historical condition monitoring and/or
event data that will be used for prognostics modelling as
shown in Fig. 2. The historical data are divided into three
datasets: (i) training dataset (referred to as the original train-
ing dataset) which includes data for training prognostics
models; (ii) validation dataset which is used for hyperpa-
rameter tuning; (iii) testing dataset which is used to evaluate
prognostics models on previously unseen data.

‘ Historical data

I

‘Original training dalasel‘ ‘ Validation dataset ‘ ‘ Testing dataset

Generate real-valued failure data

Training
failure
data subset

Training
non-failure
data subset

Auxiliary
information
vector

Noise
vector

Generated
failure
dataset

‘ Augmented training dataset ‘ ‘ Validation dataset ‘ ‘ Testing dataset

FIGURE 2. Diagram depicting how historical condition monitoring and/or event
data are structured in the proposed methodology. The original training dataset
is augmented by combining generated real-valued failure data samples. The
validation and testing datasets are left unchanged for hyperparameter tuning
and comparative evaluation of prognostics models respectively.

The objective of generating real-valued failure data is to
augment the original training dataset so that the number of
failure samples available for training prognostics models is
increased. To this end, as shown in Fig. 2 we first divide the
original training dataset into two subsets containing failure
data (referred to as the training failure data subset) and
non-failure data (referred to as the training non-failure data
subset). The training failure data subset is used to estimate
a generative model that captures the semantic features of the
failure mode using noise and auxiliary information vectors.

4

After the new dataset containing real-valued failure data
samples is generated, it is combined with the two subsets
to obtain the augmented training dataset. The validation and
testing datasets are left unchanged for hyperparameter tuning
and comparative evaluation of prognostics models.

In order to estimate the generative model, the CGAN
architecture presented in Fig. 3 is implemented using theo-
retical aspects and the value function V' (G, D) of CGAN. In
the proposed methodology, the generator and discriminator
are two deep neural networks (DNNs). The first step is to
combine the noise vector Z with the auxiliary information
vector Y into the joint distribution Pr(Z,Y"). This is used
as the input to the generator DNN. Then data samples in the
training failure data subset X are combined with the auxiliary
information vector Y into the joint distribution Pr(X,Y).
This is used as the input to the discriminator DNN.

Auxiliary information
pertaining to the failure mode.
Y

) Training failure
Noise data subset.
z . Probability indicating whether the . X
[;D {1 given data sample x' is real. (2% [:[?:]
Van Do D
N N
Generator . .-._| Discriminator v
[:[:Ej—m.y)-» DNN  [{3) a3 DN
Pr(Z.Y) ©) - B (D) Pr(X.,Y)
Joint distribution of * Joint distribution
poisc anq auxiliary X of real failure data
information. G L pr(xy and auxiliary

Real failure data  information.
sample with auxiliary
information.

Generated failure data
sample - using G, noise
and auxiliary information.

FIGURE 3. Diagram depicting the architecture of the conditional generative
adversarial network implemented for the proposed methodology. The
generator and discriminator are deep neural networks (DNNs).

The objective of the generator G is to learn to fool the dis-
criminator D into believing that a generated failure data sam-
ple is real (i.e. the generated failure data sample is sampled
from the real failure data distribution) during each training
step. Thus, the generator produces a fake failure data sample
G(z | y) by conditioning the noise z on auxiliary information
y. More specifically, the generator aims to minimise its loss
function log (1 — D(G(z | y))) (i.e. learn to fool the discrim-
inator the most). The objective of the discriminator D is to
detect whether a given failure data sample is real. Finally,
the discriminator produces a probability D(z’ | y) indicating
how much it believes the given failure data sample x’ is real.
More specifically, the discriminator tries to minimise its loss
function log(D(2’ | y)) (i.e. learn to discriminate between
real and fake failure data samples better). Hence, during
the training period the generator is allowed to converge the
generated failure data distribution to the real failure data
distribution. At the end of the training, that is, when the
generated failure data distribution is converged to the real
failure data distribution (also known as the Nash equilibrium
of the minimax game), the generator is capable of generating
new and realistic failure data samples that the discriminator
cannot discriminate as real or fake. Thus, the generator DNN
has now captured the semantic features of the failure mode,
and hence it can be used for generating real-valued failure
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data in the next phase.

In order to evaluate the convergence of generated failure
data distribution to the real failure data distribution, we use
the Kolmogorov-Smirnov test (K-S test) and measure the
similarity between the two distributions as the number of
training steps increases. The K-S test provides a statistical
test framework for identifying whether two samples are
drawn from the same distribution. The null hypothesis of this
test is, the two distributions are statistically similar. Thus, the
objective of this evaluation is to statistically identify whether
the following null hypothesis can be rejected: the generated
failure data distribution and real failure data distribution are
statistically similar.

To this end, we perform the K-S test and observe how
the p-value (probability value) changes as the number of
training steps increases. In principle, we expect the p-value
to monotonically increase and then converge to 1 which indi-
cates there is no evidence against the null hypothesis, hence
the hypothesis cannot be rejected. This means the generative
model is capable of perfectly replicating the real failure
data distribution. However, in practice, it is possible for the
p-value to monotonically increase, but only converge to a
value greater than 0.05 due to the uncertainty associated with
model hyperparameter tuning and data noise. Nevertheless,
a p-value greater than 0.05 indicates weak evidence against
the null hypothesis, hence the hypothesis cannot be rejected
still. This means the following statement holds: the generated
failure data distribution and real failure data distribution are
statistically similar. If this is the case, the generative model
is converging the generated failure data distribution to the
real failure data distribution as the number of training steps
increases. Hence, it is capable of replicating the real failure
data distribution.

The result of the aforementioned convergence evaluation
can be biased if the generative model is overfitting to training
failure data. To address this issue, in the next phase, we
propose another evaluation method that identifies whether the
result of the convergence evaluation is biased.

3) Generating real-valued failure data using the estimated
generative model and assessing overfitting and evaluating
prognostics performance
A new noise vector and the previously used auxiliary infor-
mation vector are used as inputs to the estimated generative
model to generate real-valued failure data. More specifically,
given the joint distribution of noise and auxiliary information
as the input, the generator DNN estimates a set of real-
valued failure data samples. Once the real-valued failure data
samples are generated, they are combined with the original
training dataset to obtain the augmented training dataset as
shown in Fig. 2. Finally, the generated failure data samples
are evaluated using the following overfitting assessment and
prognostics performance evaluation.

In order to identify whether the generative model is overfit-
ting to training failure data, we use maximum mean discrep-
ancy (MMD) to quantify the mean discrepancy between real
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failure data and generated failure data. MMD measures the
distance between distributions to identify whether two data
samples are generated from different distributions [13]. If the
generative model is overfitting to training failure data, the
MMD between generated failure data samples and training
failure data samples is proven to be significantly lower than
generated failure data samples and test failure data samples
[14]. Thus, the objective of this evaluation is to statistically
identify whether the following null hypothesis can be re-
jected: the generative model is not overfitting to training
failure data. If this null hypothesis can be retained (i.e. p-
value is greater than 0.05), the MMD between generated
failure data samples and test failure data samples is at most
as large as the MMD between generated failure data samples
and training failure data samples. In other words, we intend
to identify whether the following statement holds: generated
failure data samples do not look more similar to the training
failure data samples than they do to the test failure data
samples, hence the generative model is not overfitting to
training failure data.

In order to identify whether the generated failure data
are real-valued and hence improve the predictive power, we
compare the prognostics performance obtained when prog-
nostics models are trained on the augmented training dataset
to the benchmark prognostics performance obtained when
they are trained on the original training dataset. The standard
evaluation metrics such as correlation coefficient, accuracy
and error rate are not suitable for evaluating prognostics
models when failure data are limited since they will be biased
to the majority class (i.e. non-failure data class) regardless
of the minority class (i.e. failure data class) leads to the
poor performance [15]. Precision and recall, however, are not
affected by the majority class hence suitable for measuring
predictive performance when the data are limited [15]. The
precision is the fraction of correctly predicted failures among
all the predicted instances that include actual failures and
false alarms. The recall is the fraction of correctly predicted
failures among all the actual failures. This means higher the
precision lower the number of false alarms and higher the
recall lower the number of undetected failures. Formally, the
precision and recall are given by Eq. 2 and Eq. 3 respectively.

Precisi Predicted failures @)
recision =
Predicted failures + False alarms

Predicted failures

Recall =
ecd Predicted failures + Undetected failures

C. THEORETICAL RESULTS

As discussed in Sec. II-B, Phase two of the methodology
involves estimating a generative model that has captured the
semantic features of the failure mode that needs predicting.
More specifically, conditioning generator and discriminator
on auxiliary information pertaining to the failure mode allows
the CGAN to estimate a generative model that is perfectly
replicating the real failure data distribution (in principle).
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Since this is integral to the proposed methodology, in the
following, we provide the theoretical grounding for this
claim.

We adopt the mathematical proof of GAN provided in
[16] and extend it to include the joint probability distribution
which allows the conditioning of noise on auxiliary informa-
tion pertaining to the failure mode.

Using Lemma 1, we first theorise that the CGAN imple-
mented for the methodology (see Fig. 3) allows estimating
the optimal discriminator which can perfectly discriminate
between real and generated failure data samples for the fixed
generator.

Lemma 1: Given the joint probability distribution of real
failure data pgy,(x,y) and generated failure data pg(x,y),
where {x € X} consists of real and generated input failure
data samples and {y € Y} is the auxiliary information vector,
the optimal discriminator D¢, for the fixed generator is,

Pdata (T, )

Di(x =
@ ly) = ) T raley)

“4)

Intuitively, Eq. 4 states that when the real failure data
distribution and generated failure data distribution are given,
the optimal discriminator should be able to identify the real
failure data fraction. The proof of Lemma 1 is provided in the
appendix.

Then using Lemma 1 and below Theorem 1, we theorise
that the CGAN implemented for the methodology can be
trained to estimate the optimal generator which can perfectly
replicate the real failure data distribution, hence captures the
semantic features of the failure mode that needs predicting.

Theorem I: The training criterion C'(G) = rrgn max V(G, D)
achieves a unique global minimum if and only if the gener-
ated failure data distribution pg is equal to the real failure
data distribution pgaq,.

The proof of Theorem 1 is provided in the appendix. As
shown in the proof, the training criterion C(G) achieves
a unique global minimum of —2log2 when the optimal
discriminator D¢ (z | y) = 1/2. And this unique global
minimum is achieved only when pg = Pgaa- This means at
the unique global minimum, we have the optimal generator
which is perfectly replicating the real failure data distribu-
tion, and hence it has captured the semantic features of the
failure mode that needs predicting.

Finally, we show how a training algorithm can be used to
achieve the unique global minimum of the training criterion
C(G). The generative model in the methodology is estimated
by training the CGAN using minibatch stochastic gradient
descent algorithm. The loss functions of discriminator and
generator DNNs are obtained by decomposing the value
function of the minimax game in CGAN. More specifically,
decomposing the value function V' (G, D) into the loss func-
tions of discriminator D generator G gives Eq. 5 and 6
respectively.

6

Recognise real failure data samples better

max V(D) = Eqnpy,llog D(z | y)]

®)
+Ezpe [log(1 = D(G(z | y)))]
Recognise generated failure data samples better
min V(G) = Eznppe[log(l = D(G(z [ 9)))] ©)

Optimise G to fool the discriminator the most

The loss function of the discriminator is the total loss when
recognising real failure data samples and generated fail-
ure data samples. Hence, for a minibatch of m examples
{xy™, ..., 2y(™} from the joint distribution of real fail-
ure data and auxiliary information pertaining to the fail-
ure mode Pr(X,Y), and for a minibatch of m exam-
ples {zy™M), ..., zy(™} from the joint distribution of noise
and auxiliary information pertaining to the failure mode
Pr(Z,Y), the total loss of discriminator D is,

m

3 llog Dy ™) + log(1 — DGy )

Similarly, using the loss function of the generator G given
in Eq. 6, the total loss of G for a minibatch of m exam-
ples {zy™M, ..., 2zy("™} from the joint distribution of noise
and auxiliary information pertaining to the failure mode
Pr(Z,Y)is,

=3 log(1 - DG(y))

The loss functions are used as the objective functions
of the minibatch stochastic gradient descent algorithm (see
Algorithm 1). The discriminator DNN is executed twice per
training step before it calculates the total loss: once for real
failure data and once for generated failure data. The generator
DNN is executed only once per training step. When the dis-
criminator and generator losses are known, the gradients with
regard to their parameters are calculated and backpropagated
through the discriminator and generator DNNs to optimise
model parameters.

In order to show that the training algorithm converges
the generated failure data distribution pg to the real-failure
data distribution pga, and hence reaches the unique global
minimum provided in Theorem 1, we consider the equi-
librium point of the minimax game. During the two-player
minimax game, the discriminator D tries to maximise the
value function V' (G, D) for a given generator G whilst G
tries to minimise it for the optimal D. Thus, the objective is to
reach a saddle point as illustrated in Fig. 4. This saddle point
is the equilibrium point of the minimax game. Moreover,
according to Theorem 1, we know that at the equilibrium
point the training criterion C'(G) achieves the unique global
minimum and at that point, we have the optimal discrimi-
nator D}, = 1/2, and a generative model that is perfectly
replicating the real failure data distribution. Hence, if we are
able to show that the value function V' (G, D) can reach the
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Algorithm 1: Minibatch stochastic gradient descent
training of the conditional generative adversarial network
implemented for the proposed methodology.

for number of training steps do
for number of steps to apply to the discriminator do
» Sample a minibatch of m examples

{zyM, .., zy("™} from the joint distribution of
noise and auxiliary information pertaining to
the failure mode pg(z,y).

» Sample a minibatch of m examples
{xy™, .., 2™} from the joint distribution of
real failure data and auxiliary information
pertaining to the failure mode pya (2, y).

* Update the discriminator model parameters by
ascending its stochastic gradient:

1y @) _ (@)

Va— > _llog D(zy'?)+log(1-D(G(zy")))]

=1

end

» Sample a minibatch of m examples
{2y, .., zy(™)} from the joint distribution of
noise and auxiliary information pertaining to the
failure mode pg(z,y).

 Update the generator model parameters by
descending its stochastic gradient:

Vhy- > log(1 = D(G(zy")

end

saddle point through gradient descent, we have shown that
Algorithm 1 converges the generated failure data distribution
to the real-failure data distribution (i.e. pg = Pdata)-

Saddle point

V(G, D)

Gz ly)

FIGURE 4. Plot depicting the saddle point of the value function V (G, D) of
minimax game. The objective of training the proposed CGAN architecture is to
reach the saddle point and hence achieve the unique global minimum of the
training criterion C(G) = mGin max V(G, D).

In order to reach the saddle point, we apply gradient de-
scent to discriminator D for each fixed point of pg and get the
optimum D for pg as shown in the inner loop of Algorithm 1.
Then keeping D fixed, we apply gradient descent to generator
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G and get closer to the saddle point (see the outer loop of
Algorithm 1). Since partial derivatives of pg at optimum D
points include the saddle point, given enough capacity (i.e.
computation power and training time) to discriminator and
generator DNNs, we will eventually reach the saddle point
using the training algorithm. Thus, Algorithm 1 converges
the generated failure data distribution pg to the real failure
data distribution pg,,, and hence reaches the unique global
minimum provided in Theorem 1.

It must be noted that reaching the saddle point and hence
achieving the optimal result for Theorem 1 can be impossible
in practice due to the uncertainty associated with hyperpa-
rameter tuning and data noise. Nevertheless, the excellent
performance of DNNs and empirical results presented in the
next section show that this theoretical result holds to a highly
satisfactory extent in practice [16].

lll. CASE STUDY

The proposed methodology is used to address the problem of
Scania air purge valve (APV) prognostics under the condi-
tions of limited failure data availability. A detailed descrip-
tion of this prognostics problem and how the normalised
Shannon entropy is used to measure the extent of limited
failure data availability is provided in our conference paper
(see Sec. V in [5]). Briefly, the prognostics problem is mod-
elled as a binary classification task in which the challenge is
to predict whether a truck faces an APV failure in the near
future. The anonymised cost of an undetected APV failure
is €500 (Cry) and the anonymised cost of a false alarm is
€10 (Cpp) [17]. The objective is to reduce the total cost
of breakdowns and false alarms. Let m be the number of
undetected APV failures and n be the number of false alarms,
then the total cost of breakdowns and false alarms 7o 1S
given by the following:

Teost = mCrpn +nCrp @)

The positive class (i.e. data samples pertaining to APV
failures) only covers 1.6% of the entire Scania training
dataset, whereas the negative class (i.e. data samples not
pertaining to APV failures) covers 98.4%. Thus, the Scania
dataset is considered as a highly imbalanced dataset in the lit-
erature [18]. The normalised Shannon entropy of the dataset
is 0.08 which also indicates a highly imbalanced dataset [5].

There are a few solutions already proposed in the literature
for addressing the problem of Scania APV prognostics. The
top three solutions and their performances are summarised in
our conference paper (see Table Il in [5]). In the remainder of
this section, we show that using the proposed methodology
for generating real-valued failure data one can obtain a far
better result than all the existing solutions.

First a discussion on how the methodology is applied to
address the problem of Scania APV prognostics under the
conditions of limited failure data availability is provided.
Then results obtained from convergence evaluation, over-

7
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fitting assessment and prognostics performance evaluation
introduced in Sec. II-B are discussed.

A. GENERATING REAL-VALUED FAILURE DATA FOR
APV PROGNOSTICS

Before applying the methodology to generate real-valued
failure data, we show that the Scania APV prognostics prob-
lem satisfies the prerequisite and assumption required for the
methodology. The problem satisfies the prerequisite due to
the following: similarity between trucks can be used as aux-
iliary information since the types of trucks and their purpose
have an effect on degradation patterns of APV failures [17].
The problem satisfies the assumption due to the following:
the failure mode that needs predicting is crack and it causes
equipment to fail under degradation, hence the failure is not
random [2].

In the remainder of this section, a discussion on how the
three phases of the methodology are applied to address the
problem of Scania APV prognostics under the conditions of
limited failure data availability is provided.

1) Identifying auxiliary information pertaining to the failure
mode and converting into a form for integrating into the
failure data generation process

We employ similarity analysis to group similar trucks with
APV failures in the training dataset and use these groups as
auxiliary information to control and direct the failure data
generation process. Since no information that can be used to
group trucks (e.g. mileage, purpose, etc.) is provided with
the dataset, clustering is used to identify natural groupings of
trucks with APV failures. First, a subset D’ that only contains
failure data samples in the training dataset (i.e. the training
failure data subset shown in Fig. 2) is created. Then k-means
and hierarchical clustering algorithms are used to identify the
natural groupings in D’.

Since prior knowledge about the number of clusters is not
available, the average silhouette score is used to evaluate the
quality of clustering. The best value of the average silhouette
score is 1 and the worst value is -1. The negative values
indicate that the samples are assigned to a wrong cluster and
positive values indicate the samples are properly clustered.
For both clustering algorithms, we obtained the best average
silhouette scores when the number of clusters is two (also
see [5]). The average silhouette scores obtained by k-means
and hierarchical clustering algorithms are 0.55 and 0.53
respectively. Given the high diversity of Scania trucks in the
dataset [17], it is reasonable to not expect the values obtained
for the average silhouette score to be closer to 1 or the number
of estimated clusters to match the ground truth.

In order to convert abstracted auxiliary information into a
vector representation, we choose the class labels generated
by the k-means algorithm since it has obtained the best
average silhouette score. The class labels that represent the
two groups with natural numbers 1 and 2 is a vector of natural
numbers Y = {y € N|]1 <y < 2}
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2) Estimating a generative model that captures the semantic
features of the failure mode and evaluating the convergence
during training

In order to estimate a generative model that has captured
the semantic features of APV failures in Scania trucks, we
use the CGAN previously presented in Fig. 3. The generator
G and discriminator D are DNNs. The Adaptive Moment
Estimation (Adam) optimiser which is an extension to the
stochastic gradient descent is used as the optimisation al-
gorithm. The auxiliary information vector Y is the vector
representation of class labels obtained in the previous phase.
The training failure data subset X is the subset D’ that was
also obtained in the previous phase. The noise vector Z
is Gaussian noise. Using these parameters as inputs to the
CGAN, we train it to estimate the generative model using the
Adam optimiser.

As previously discussed in the Theoretical Results section,
the ability of the methodology to estimate a generative model
which can replicate the real failure data distribution, and
hence capture the semantic features of the failure mode is
critical. In order to evaluate whether this theoretical result
holds in practice, we evaluate the convergence during training
using the K-S test introduced in Sec II-B. To reiterate, the
objective of this test is to statistically identify whether the
following null hypothesis can be rejected: the generated
failure data distribution and real failure data distribution are
statistically similar.

Since Scania dataset contains 170 features, principal com-
ponent analysis (PCA) is used to reduce dimensionality.
As shown in Table 2, PC-1 and PC-2 have a cumulative
explained variance percentage of 74%. This means PC-1
and PC-2 alone capture 74% of information contains in the
dataset. Hence, the generated failure data distribution and real
failure data distribution are compared using these two prin-
cipal components. The p-values observed for PC-1 and PC-
2 K-S tests are 0.161 and 0.078 respectively. This indicates
weak evidence against the null hypothesis. This means the
null hypothesis cannot be rejected, thus the generative model
converges the generated failure data distribution to the real
failure data distribution.

TABLE 2. Comparison of Real and Generated Failure Data Distributions
Using the Kolmogorov-Smirnov (K-S) Statistical Test

Principal Explained variance | K-S test p-value
component percentage

1 53% 0.161 (> 0.05)
2 21% 0.078 (> 0.05)

3) Generating real-valued failure data using the estimated
generative model and assessing overfitting and evaluating
prognostics performance

A new noise vector and the previously used auxiliary infor-
mation vector are used as inputs to the estimated genera-
tive model to generate real-valued APV failure data. More
specifically, given the joint distribution of noise and auxiliary
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information as the input, the generative model estimates a set
of real-valued APV failure data samples. The lowest value for
costs due to breakdowns and false alarms (7o) is obtained
when the number of generated failure data samples is 2000.
The original training dataset is then augmented to include
the newly generated failure data samples. The positive and
negative sample ratio in the augmented training dataset is
3000:59000 compared to the 1000:59000 in the original
training dataset. Moreover, the normalised Shannon entropy
is now increased from 0.08 to 0.2, hence the extent of the
limited failure data availability problem is reduced.

In order to evaluate the generated failure data samples, we
use the overfitting assessment and prognostics performance
evaluation introduced in Sec. II-B. First, we evaluate whether
the generative model is overfitting to training failure data
by identifying whether the following null hypothesis can be
rejected: the generative model is not overfitting to training
failure data. If this null hypothesis can be retained, the MMD
between generated failure data samples and test failure data
samples is at most as large as the MMD between generated
failure data samples and training failure data samples. The
p-value observed for this statistical test is 0.38 (> 0.05)
which indicates weak evidence against the null hypothesis.
This means the null hypothesis cannot be rejected, thus the
generative model is not overfitting to training failure data.

The prognostics performance is evaluated using the ran-
dom forest (RF) and gradient boosting machine (GBM) clas-
sifiers. RF-based prognostics solutions have been previously
successful in predicting Scania APV failures using the same
dataset (e.g. [17] and [18]). GBM is another popular ensem-
ble method for developing classification-based prognostics
solutions, especially when datasets are imbalanced [19]. We
implemented two prognostics models using the GBM and RF
classifiers. When trained on the original training dataset and
evaluated on the testing dataset, these models obtained total
costs (Tost) of €10750 and €11090 respectively.

The models are then trained on the augmented training
dataset and evaluated on the testing dataset. Fig. 5 shows
reliability-based confusion matrixes obtained for GBM and
RF classifier-based prognostics models when trained on the
augmented training dataset and evaluated on the testing
dataset. The Tcoy achieved by the GBM and RF-based
prognostics solutions are €5550 and €6050 respectively.
Compared to the performance obtained when trained on the
original training dataset, this is a 48% (GBM) and 46% (RF)
reduction of T,y . More importantly, compared to the perfor-
mance obtained by the best prognostics solution previously
proposed in the literature (i.e. the benchmark), this is a 44%
(GBM) and 39% (RF) reduction of T .

The reason for this cost reduction can be observed using
Fig. 6. It can be observed that when the prognostics models
are trained on the augmented training dataset, they achieve
higher precisions and recalls compared to the benchmark.
Note that precision and recall are normalised between 0 and
1, hence a slight increase in these metrics will lead to a high
number of accurate predictions and a low number of false
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Non-failures
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Random Forest Gradient Boosting Machine
FIGURE 5. Reliability-based confusion matrixes summarising the
performance of gradient boosting machine (GBM) and random forest (RF)
classifiers-based prognostics models. Compared to the benchmark, GBM and
RF-based prognostics models produced 44% and 39% costs savings when
trained on the augmented training dataset and evaluated on the testing
dataset.

alarms.
Benchmark Random Forest M Gradient Boosting Machine
1.1
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FIGURE 6. Plot summarising prognostics performance achieved by the
gradient boosting machine (GBM) and random forest (RF) classifiers-based
prognostics models when trained on the augmented training dataset and
evaluated on the testing dataset. It can be observed that both prognostics
models outperform the benchmark by achieving higher precisions and recalls.

IV. CONCLUSION

The problem of limited failure data availability for prognos-
tics is long-lasting and challenging. Existing techniques used
to address this problem have been unsuccessful since they
either duplicate existing failure data or randomly generate
data (i.e. the failure data generation process is not controlled
and directed, hence leads to different modes of data being
generated). The research presented in this paper starts to
address this problem from a novel perspective by developing
a methodology that is capable of generating new and realistic
failure data samples.

The methodology estimates a generative model in a min-
imax game which captures the semantic features of failure
modes using real failure data, noise and more importantly,
using auxiliary information pertaining to the failure modes
(e.g. expert knowledge, physics of failure and information
contains within maintenance records). The utilisation of aux-
iliary information allows the methodology to condition the
noise being added to newly generated data samples, thus the
failure data generation process is controlled and directed.
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Whilst theoretical results presented in the paper provide
the formal grounding to the methodology, empirical results
obtained using the real-world case study show that the the-
oretical results hold in practice. The methodology outper-
formed the best solution previously proposed in the literature
for the real-world case study by producing 44% cost savings.

We introduced following methods for evaluating key as-
pects of the methodology: (i) convergence evaluation which
statistically tests whether the generative model converges the
generated failure data distribution to the real failure data
distribution during the minimax game; (ii) overfitting as-
sessment which statistically identifies whether the generative
model is overfitting to training failure data during the min-
imax game; (iii) prognostics performance evaluation which
uses precision and recall to identify the increase in predictive
power of prognostics models when they are trained on the
augmented training dataset which includes real and generated
failure data.

The key components that are unique to the proposed
methodology and enhance prognostics performance include
the following: (i) integration of auxiliary information per-
taining to failure modes to control and direct the failure data
generation process; (ii) utilisation of a conditional generative
adversarial network which provides the platform to estimate
a generative model in a minimax game; (iii) estimation of a
generative model that captures the semantic features of the
failure mode that needs predicting using real failure data,
noise and auxiliary information.

As per the future work, we intend to further develop and
generalise the methodology using a diverse set of real-world
case studies.

APPENDIX A PROOF OF LEMMA 1

Lemma: Given the joint probability distribution of real failure
data pyun(z,y) and generated failure data pg(z,y), where
{z € X} consists of real and generated input failure data
samples and {y € Y} is the auxiliary information vector, the
optimal discriminator D¢, for the fixed generator is,

Pdata (LU, y)

Di(x =
@) = ) + pale,9)

Proof: Consider the value function V(G, D) of the
minimax game in CGAN,

V(G, D) = Ezrpy,[log D(z | y)]

FEzpp [108(1 = D(G(z | y)))]
Using the law of unconscious statistician (LOTUS) theorem,
E.pui l0g(1 — D(G(z | y)))]

= Eynpe[log(l — D(z | y))]

Therefore V (G, D) can be written as,

V(G, D) = Eznpllog D(z | y)]

+E;p [log(1 — D(z | y))]

For a pair of continuous random variables X and Y with
a joint probability distribution Pr(z = X,y = Y), the
expected value E can be found using an arbitrary function
of the continuous variables g(X,Y") such that,

Blo(X.Y)) = [ [ po.w) g(a.p) da dy
zJy
Therefore, V (G, D) can be written as,

V(G D) = / / Paaa(29) log Dz | y) de dy
T JYy

4 / / pe (@, y)log(1 — D(z | y)) da dy

Using the sum rule of integration,

V(G D) = / / Paaa(, ) 10g D( | )

+pa(z,y)log(l — D(z | y)) de dy

For clarity, we label the above equation as follows:

h=D(z|y), a=paa(z,y), b=pc(z,y)

Since the sample x given y is sampled over all the possible
values, the integrals can be safely ignored for the remainder
of the proof. Therefore V (G, D) becomes,

f(h) =alogh + blog(1 — h)

The objective is to find the best value for D(x | y) to
maximise the value function V(G, D). The maximum of
V(G, D) can be found as follows: (i) differentiate V (G, D)
w.r.t D(z | y) and equate to zero to find the critical points;
(ii) perform the second derivative test for local extrema (i.e.
h is maximum if f”(h) < 0) to find the maximum. Hence,
we first differentiate f(h) w.r.t to h,

b
&b
fh)=y-1—%
Equating f’(h) to zero to find the critical points,
a b
- —— =0
h 1-h
Using calculus, a
T a+b

if a + b # 0. Finding f”(h) to identify whether h is the
maximum using second derivative test,
a a b

) = @i U= (aja i D)

Since f”(h) < 0, h is the maximum. Hence, for the fixed
generator G the optimal discriminator D} (z | y) = h.
After substituting « and b labels in h with their corresponding
values, D, (x | y) can be written as,

pdata(xa y)
pdata(xv y) + pG(xv y)
, concluding the proof. O

Dg(z|y) =
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APPENDIX B PROOF OF THEOREM 1
Theorem: The training criterion C'(G) = ngn max V(G, D)
achieves a unique global minimum if and only if the gener-
ated failure data distribution pg is equal to the real failure
data distribution pgaa.

Proof: Assuming pg = pPgaa and using Lemma 1, the
optimal discriminator D, (x | y) is,

* pdata(-ra y) 1
D X = — —
G( | y) pdata(xa y) + pdala(x; y) 2

Consider the integral form of the value function V (G, D)
introduced in Lemma 1,

V(G,D) = [/pdata(x7y) log D(x | y)
+pc(z,y)log(l — D(z | y)) dz dy
When D(z | y) = D& (2 | y) = 1/2, C(G) is,

1
c(©) = [ [ paasto.)1og
zJy
1
+p6(z,y) log(1 — 5) dz dy

As per the assumption made in the beginning of the proof,
PG = Ddaan When D (x| y) = 1/2. Hence,

1
¢(© = [ [ palw)ton;
vy
+pa(z,y)log(1 — %) dr dy = —2log?2

This means —2log 2 is a candidate for the global minimum
of the training criterion C'(G). However, we still need to
prove that this is the only global minimum of C'(G) and it
is achieved only when the generated failure data distribution
pe is equal to the real failure data distribution pg,,. Hence,
we first drop the assumption pg = pgaa- Again consider the
integral form of the value function V' (G, D) introduced in
Lemma 1,

V(G.D) = [ [ pusalaiu)log Dia | )
+pa(z,y)log(1 — D(z | y)) dz dy
When D(x | y) = Dg(z | v), V(G, D) is,

V(G,Dg) = / / Paaa(2,y) log DG (7 | y)
T JY
+pa(z,y)log(l — D¢ (x| y)) do dy

For the training criterion C(G) = V(G, D{) and since
D% (x | y) is as per the equation proved in Lemma 1, C(G)
is,

(@) = / / Paa( ) log —Peaa(@:9)
xzJy pdata(

z,y) + pa(z,y)
Pdata (T, Y)
pdata(l‘a y) + %el (J?, y)

+pa(z,y)log(l — ) dx dy
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After using calculus to rearrange the second part of the
integral,

pdata(xvy)
oG :// aa(z,7) 10
@ z ypdt( ) gpdata(xay)“rpg(.%‘,y)

pa(z,y)

x dy
Paua(, ) + pa (2, y)
Since we know —2log 2 is a candidate for the global min-
imum, we integrate this value into C(G) by adding and
subtracting log 2 and multiplying by the joint probability
densities. This do not change the equality of the equation
since ultimately we are adding O to the equation. Therefore,

C(@G) ://(log2 —10g 2)pgata(x, y)

Pdata (T, Y)
pdata(l'a y) + jZel (xv y)
+(log2 — log 2)p; (7, y)
pc(z,y)
Paata(T, y) + P, y)

Using calculus C(G) can be rearranged as,

c(G) = —10g2//pc(x,y) + Paaa(, y) d dy
zJy

+pa(z,y)log

+pdata(x7 y) IOg

+pa(z,y) log x dy

pdata(x7y)
+ ata (T, log2 +lo
A/Z}pdata( y)(log 9 (@, y) +p(;(ar7y))
+pc(z,y)(log 2 + log p ) dr dy

pdata(xa Z/) + ba (.13, y)

The definition of probability densities states that integrating
two probability distributions over their domain is equal to 1.
Hence,

—10g2//pc;(9:,y) + paaa(, y) dx dy
zJy
=—log2(1+1) = —2log2

Moreover, using the definition of the logarithm,

pdata(xv y)
log 2 + log
pdata(mv y) + pa (ZL’, y)
—1 pdata(mv y)
(Paata (2, y) + P (,y)) /2
Similarly,
pc(z,y)
log2 +lo
& gpdata(xvy) +p(;(1‘,y)
g pc(z,y)

(Paaa(,y) + pa (2, y))/2
Substituting above equalities into C'(G),

C(@)

pdata(x7 y)
= —2log2 // ata\ lo
g )y pdata( y) g (pdata(x’ y) + pg(x, y))/Q

pc(z,y)
dr d
pdata(xay) +pG(-’E,y))/2 v

+pa(x,y)log (
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Using the sum rule of integration C'(G) can be written as,

C(G)

= —2log2 / / Pdata (T, y)log(
T JYy

pdala(x y) ) dz dy

(Paata(2, y) + pa(z,y))

//pcffylog(

pc(r,y)
(Paaa (2, y) + v (2, y))/2
Using the Kullback-Leibler divergence (KL),
C(G) = —2log2
|w )
2

) dz dy

Ddata + ba )

+KL(pdata| + KL(pG

Using the Jenson-Shannon divergence (JSD),
C(G) = —2log2 + 2.J SD(paaal lpc)
Rearranging C(G) using calculus,
C(G) — (—2log2) = 2.J5D(paual|Pc)
JSD between two distributions is non-negative. Hence,

C(G) — (—2log2) >0

Therefore, we have a unique global minimum for the training
criterion C(G) when JSD is equal to 0,

C(G)min = —2log2

This means the training criterion C'(G) can achieve a unique
global minimum of —2 log 2 when the optimal discriminator
D(x | y) = 1/2. Since DE(x | y) = 1/2 only when
DG = Ddata, the global minimum is achieved only when the
generated failure data distribution pg is equal to the real
failure data distribution pga,, concluding the proof. O
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