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On Destination Prediction Based on Markov
Bridging Distributions

Jiaming Liang, Bashar I. Ahmad, Runze Gan, Pat Langdon, Robert Hardy, and Simon Godsill

Abstract—This letter presents an alternative, more consistent,
construction for bridging distributions, which enables inferring
the destination of a tracked object from the available partial
sensory observations. Two algorithms are then introduced to
sequentially estimate the probability of all possible endpoints
within a generic Bayesian framework. They capture the influence
of intended destination on the object’s motion via suitably
adapted stochastic models. Whilst the bridging approach has
low training requirements, the proposed formulation can lead to
more efficient predictors, e.g. around 65% less computations for
certain models. Synthetic and real data is used to illustrate the
effectiveness of the introduced algorithms.

Index Terms—intent inference, tracking, Kalman filter.

I. INTRODUCTION

Knowing the destination of a tracked object can not only
offer vital information on intent, enabling smart predictive
functionalities and automation, but also facilitate more accu-
rate state estimations, i.e. destination-aware tracking [1], [2].
It has various application areas such as smart navigation and
trajectory planning for robots in the presence of other agents
[3], [4], [5], intelligent interactive displays [6], revealing
potential conflicts, patterns or anomalies in surveillance [7],
[8], [9], driver assistance systems [10], [11], to name a few.

A. Problem Statement and Overall System Model

This letter addresses the problem of destination inference
within a Bayesian framework and proposes two novel algo-
rithms. It is emphasised that estimating the hidden state xt ∈
Rs, such as the object’s position, velocity and higher order
kinematics, is not sought here. Let D = {Di : i = 1, 2, ..., N}
be the set of N nominal endpoints (e.g. harbours where a
vessel can dock or selectable on-display icons) of a tracked
object (e.g. vessel or pointing apparatus); each can be an
extended region. The objective is to sequentially calculate the
probability of each of Di ∈ D being the intended destination,
thus p(D = Di | y1:k), i = 1, ..., N . The noisy sensory
measurements at the time instant tk are y1:k = {y1, y2, ..., yk}
pertaining to the consecutive instants {t1, t2, ..., tk}.

A Gaussian Linear Time Invariant (LTI) formulation is
adopted below since an approximate motion model that en-
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ables inferring the object’s destination, rather than exact mo-
tion modelling, suffices. The state xk at tk is given by

xk = F (h)xk−1 +M(h) + εk, (1)

with εk ∼ N (0, Q(h)) a Gaussian dynamical noise. Matrices
F and Q as well as vector M , which define the system model,
are functions of the time step h = tk − tk−1.

Equation (1) encompasses any Gaussian LTI model, in-
cluding those widely used in object tracking, e.g. the (near)
Constant Velocity (CV), as well as mean reverting ones
based on an Ornstein-Uhlenbeck (OU) process. The latter is
described by: dxt = Λ (µi − xt) dt+σdwt; its integration over
interval [tk−1, tk] produces (1) where vector M is a function
of the process mean µi. Reversion strength is set by Λ and wt

is a Brownian motion. Observation yk ∈ Rm is modelled by

yk = Gxk + νk, (2)

where G is a matrix mapping from the hidden state to the
observed measurement and noise component νk ∼ N (0, Vk).
A Gaussian distribution Di v N (ai,Σi) is assumed here to
model an endpoint. The mean ai and covariance Σi represent
the centre and orientation-extent of Di, respectively. This is to
maintain the linear Gaussian structure of the overall system.

B. Related Work and Contributions

Whilst the bridging distributions (BD) approach was intro-
duced in [12], [13], a concise overview of its key results,
including schemes for estimating future state and arrival time,
was presented in [14]. BD in [12], [13], [14] captures the
influence of endpoint Di on the object motion by prescribing
that the motion model in (1) has a terminal state xK at arrival
time tK = T equal to that of Di, i.e. xK ∼ N (ai,Σi).
Thereby, it constructs N bridged models. This implicitly
assumes that xK and the initial state x1 at t1 are independent.
Although this can be approximately true in many scenarios,
especially for t1 � T , it is inconsistent with the Markov
nature of (1) which dictates the transition density p(xK |x1)
and p(xK) =

∫
p(x1)p(xK |x1)dx1.

In this paper, we introduce a different approach to [12],
[13], [14] in which the destination point is considered to
be a ‘pseudo-observation’ rather than a terminal state xK of
the system. Consequently, the mathematics of the dynamical
model and observation process are made consistent with the
Markov state process, in contrast with [12], [13], [14]. This
new interpretation leads to two new destination prediction
algorithms that can substantially reduce the computational
complexity of the inference routine for all Gaussian LTI
motion models in (1), e.g. by over 65% with Algorithm 1
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in some cases (see Section II-C). Results from synthetic and
real data demonstrate the effectiveness of these algorithms.

Several studies in the object tracking area consider incor-
porating, often known, destination information to improve the
state estimation accuracy [1], [2]. Additionally, OU processes,
with a priori learnt means, are shown to reliably model and
estimate vessels motion in maritime surveillance [7], [8], [9].
Discretised state-space models based on reciprocal processes
or other models from natural language processing are proposed
in [15], [16] to recognise the object intent. They stipulate that
the target should pass through a finite number of predefined
spatial grid cells to reach its endpoint. The proposed approach
in this letter aims to predict the unknown destination D, not
estimate xn, and has notably lower complexity compared with
those in [15], [16]. It utilises continuous-time state space
models to treat asynchronous measurements and capture, via
a Markov bridge, the long term underlying dependencies in
the object trajectory as dictated by the intended endpoint.

Finally, various data driven prediction-classification meth-
ods rely on a dynamical model and/or pattern of life learnt
from previously recorded data, e.g. [4], [5], [10], [11]. Whilst
such techniques typically require substantial parameters train-
ing from extensive data sets (not always available), a proba-
bilistic model-based framework is adopted here. It uses known
dynamical and measurements models, with a few unknown
parameters [17], [18]. Subsequently, an efficient inference
approach, which requires minimal training, is introduced.

II. BAYESIAN DESTINATION INFERENCE

Within a Bayesian framework, for each Di ∈ D, we have

p(D = Di|y1:k) ∝ p(D = Di)p(y1:k|D = Di), (3)

where p(D = Di) is the prior on the ith destination. This
prior can be attained from relevant contextual information or
learnt pattern-of-life. The objective of the inference module at
tk is hence to estimate the likelihoods p(y1:k|D = Di), i =
1, 2, ..., N . The key challenge here is to capture the influence
of endpoint Di on the object behaviour whilst utilising (1)
and (2). Next, we describe a novel bridging formulation that
facilitates introducing the conditioning on Di in (3).

A. Pseudo-observation Formulation

The trajectory of the tracked object must end at the intended
destination at arrival time T , albeit the exact path being
random as per (1). A Markov bridge from tk to T for Di ∈ D
can be built to capture the influence of intent on the object
motion by defining the pseudo-observation ỹiK at tK = T ,

p(ỹiK = ai|xK ,D = Di) = N (ỹiK = ai | G̃xK ,Σi). (4)

Pseudo-observation matrix G̃ depends on the information
available on the ith endpoint Di v N (ai,Σi). For instance,
ỹiK may contain both position and velocity information.

For brevity of notation D = Di is replaced by Di

henceforth. Based on (4), we can express the arrival-time-
conditioned likelihood at time instant tk by

p(y1:k|Di, T ) = p(y1|Di, T )

k∏
l=2

p(yl|y1:l−1,Di, T ), (5)

such that ỹiK introduces the conditioning on the endpoint
Di since p(y1:k|Di, T ) = p(y1:k|ỹiK = ai, T ). Whilst the
arrival-time-conditioned likelihood p(y1:k−1|Di, T ) pertaining
to the previous time instant tk−1 is available at tk, estimating
the arrival-time-conditioned Prediction Error Decompositions
(PEDs), i.e. p(yk | y1:k−1,Di, T ), suffices to sequentially
calculate the likelihood in (5).

Since T is unknown, a prior distribution on T can be
assumed in practice based on context, e.g. uniform where
p(T | Di) = U(ta, tb) within the time window T = [ta, tb].
The arrival time can then be marginalised out via

p(y1:k | Di) =

∫
T∈T

p(y1:k | Di, T )p(T | Di)dT, (6)

to obtain the likelihood in (3). Since it is a one dimensional
integral, a numerical approximation can be efficiently applied
[19], e.g. Simpson’s rule. This requires q evaluations of the
arrival-time-conditioned PEDs p(y1:k|Di, Tn), for all Tn ∈
{T1, T2, ..., Tq} which are drawn from the prior p(T |Di).

Next, we we present two algorithms for estimating arrival-
time-conditioned PEDs where the conditioning on T will be
made implicity to simplify the notation. We show that they
lead to a Kalman-filtering-type routine to predict DI .

B. Proposed Predictors (Algorithms 1 and 2)

The PED conditioned on the ith endpoint and a given arrival
time T can be written as

p(yk|y1:k−1,Di) =

∫
p(yk|xk)p(xk|y1:k−1, ỹ

i
K = ai)dxk,

=

∫
p(yk|xk)

p(xk|y1:k−1)p(ỹiK = ai|xk)

p(ỹiK = ai|y1:k−1)
dxk (7)

which can be computed by parts and is dubbed Algo-
rithm 1. Given the Gaussian linear nature of (1) and (2),
the state posterior at the previous time instant tk−1 is
given by: p(xk−1|y1:k−1) = N (xk−1|µk−1|k−1,Σk−1|k−1)
where conveniently µk−1|k−1 and Σk−1|k−1 are the out-
puts of a Kalman Filter (KF), optimal estimate in the
mean squared error sense [18]. Since p(xk|y1:k−1) =∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1, we have

p(xk|y1:k−1) = N (xk|µk|k−1,Σk|k−1), (8)

with µk|k−1 = F (h)µk−1|k−1 + M(h) and Σk|k−1 =
F (h)Σk−1|k−1F (h)T + Q(h). The pseudo-observation con-
ditioned on the state at time instant tk is

p(ỹiK = ai|xk) =

∫
p(ỹiK = ai|xK)p(xK |xk)dxK

= N (ỹiK = ai|µỹ,Σỹ) (9)

where we have µỹ = G̃ [F (T − tk)xk +M(T − tk)] and
Σỹ = G̃Q(T − tk)G̃T + Σi. This is based on transitional den-
sity p(xK |xk) = N

(
xK |F (T−tk)xk+M(T−tk), Q(T−tk)

)
and also p(ỹiK = ai|xK) = N (ỹiK = ai|G̃xK ,Σi). By
utilising the following Gaussian identity

N (x;µ1,Σ1)N (µ2;Lx,Σ2) ∝ N (x;µ3,Σ3),
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with Σ−1
3 = Σ−1

1 +LT Σ−1
2 L, µ3 = Σ3(Σ−1

1 µ1 +LT Σ−1
2 µ2)

and the matrix inversion lemma (Woodbury formula), the
second component in the integral in (7) is given by

p(xk|y1:k−1, ỹ
i
K = ai) ∝ p(xk|y1:k−1)p(ỹiK = ai|xk)

= N (xk|µ∗,Σ∗), (10)

µ∗ = µk|k−1 + L∗
[
ai −B∗µk|k−1 − G̃M(T − tk)

]
,

L∗ = Σk|k−1B
T
∗
[
B∗Σk|k−1B

T
∗ + G̃Q(T − tk)G̃T + Σi

]−1
,

Σ∗ =
(
I − L∗B∗

)
Σk|k−1, and B∗ = G̃F (T − tk).

From (7), the desired PED can then be obtained via

p(yk|y1:k−1,Di) =

∫
N (yk|Gxk, Vk)

×N (xk|µ∗,Σ∗)dxk = N (yk|µy,Σy), (11)

with µy = Gµ∗ and Σy = GΣ∗G
T + Vk. At tk the standard

Kalman correction step is run to calculate the new posterior
p(xk|y1:k) ready for the PED estimation at the next step tk+1.

An alternative interpretation of endpoint inference us-
ing pseudo-observations can be achieved by re-writing the
Bayesian smoothing (fixed-interval) equation, termed Rauch-
Tung-Striebel smoother in linear Gaussian cases [20],

p(xk−1|y1:k−1, ỹ
i
K = ai)

=

∫
p(xk−1|y1:k−1)p(xK |xk−1)

p(xK |y1:k−1)
p(xK |y1:k−1, ỹ

i
K = ai)dxK

∝ p(xk−1|y1:k−1)

∫
p(ỹiK = ai|xK)p(xK |xk−1)dxK

∝ N (xk−1|µk−1|k−1,Σk−1|k−1)N (ỹiK = ai|µỹ,Σỹ)

= N (xk−1|µ̃, Σ̃), (12)

with {µỹ,Σỹ} and {µ̃, Σ̃} obtained similarly to those in (9)
and (10). The PED can then be easily shown to reduce to

p(yk|y1:k−1,Di) =

∫ [ ∫
p(xk−1|y1:k−1, ỹ

i
K = ai)

× p(xk|xk−1, ỹ
i
K = ai)dxk−1

]
p(yk|xk)dxk

= N (yk|µy,Σy), (13)

µy = G

[
F (h)µ̃+M(h) + Ly

[
ai − G̃

(
F (T − tk)

(
F (h)µ̃

−M(h)
)

+M(T − tk)
)]]

,

Σy = G
[
AyΣ̃AT

y + (I − LyBy)Q(h)
]
GT + Vk,

Ly = Q(h)BT
y

[
ByQ(h)BT

y + G̃Q(T − tk)G̃T + Σi

]−1
,

Ay =
(
I − LyBy

)
F (h) and By = G̃F (T − tk).

The pseudo-code for Algorithms 1 and 2, which use (10)-
(11) and (12)-(13), respectively, is shown below. The arrival-
time-conditioned likelihoods are computed recursively as in
(5) and T marginalisation in (6) is numerically approximated.

C. Computational Complexity Analysis

The computational complexity is analysed here by counting
each floating-point multiplication followed by one addition,
i.e. a “flop” as in [21]. Let l be the dimensions of the pseudo-
observation vector, whilst s and m are the dimensions of

Algorithm 1 and 2 Inference with Pseudo-observations

Input: Obs.: {y1:k}; Psedu-obs.: {ỹi,K ,Σi}1≤i≤N ;
Initialisation: Mean µ1|1 and covariance Σ1|1
for k = 2 : K do . For each timestamp

KF predict and correct: µk|k−1, Σk|k−1, µk|k and Σk|k
for i = 1 : N do . For each destination

for quadrature point q = 1 : M do
Compute: µ and Σ∗ in (10); µ̃ and Σ̃ in (12)
Compute: li,qk = p(yk|y1:k−1,Di) in (11); (13)
Update Tq likelihood: Li,q

k = Li,q
k−1 × l

i,q
k

end for
Compute likelihood P i

k ≈ p(y1:k|Di) numerically.
end for
Obtain at tk: p(D = Di|y1:k) ≈ P i

k×p(D=Di)∑
j∈N P j

k×p(D=Di)

end for

the state and measurement vectors, respectively. The compu-
tational cost of a Kalman filter at tk is [22]: CKF(m, s) =
3
2 (s3 + s2) + ms

[
3
2 (s + m) + 3

]
+ 2

3 (m3 − m). Since the
original BD in [13] runs one KF per endpoint with an extended
state of dimensions 2× s and q points to approximate (6), its
computational cost at a one time step assuming l = s is

CBD(m, s) = qNΓBD, (14)

where ΓBD = 41
2 s

3+ 19
2 s

2−2s+3ms(2s+m+2)+ 2
3 (m3−m).

The complexities of the proposed Algorithms 1 and 2 are

C1(m, s) = qN
[
Γ1(m, s) + CKF(m, s)

]
, (15)

C2(m, s) = qN
[
Γ2(m, s) + CKF(m, s)

]
, (16)

respectively, such that

Γ1(m, s) =
43

6
s3 +

9

2
s2 − 2

3
s+ms(s+

1

2
m+

3

2
),

Γ2(m, s) =
52

3
s3 + 12s2 − 4

3
s+ms(s+

1

2
m+

3

2
).

This is for all models in (1), including those dependent on
Di such as OU-type models in [13]. For models independent
of Di, e.g. CV, the introduced algorithms run one KF for
all nominal destinations unlike the original BD. Their costs
thereby reduce to: C1(m, s) = qNΓ1(m, s) + CKF(m, s) and
C2(m, s) = qNΓ2(m, s) + CKF(m, s).

Table I depicts the complexity order of all methods as a
function of the state dimension s; complexity order for m
or any other parameter can be similarly attained from (15)
and (16). As well as (14)-(16), the table clearly illustrates
that the proposed formulation is significantly more efficient
compared with the original BD. Algorithm 1 can reduce the
computational complexity of the destination inference routine
by approximately 57.5%; 65% for motion models independent
of Di. As for l < s, i.e. only partial knowledge of the
destination state is available, the computational complexity
is reduced. In [23], a bridging-based method was proposed
to reduce the inference complexity. It: a) uses the same for-
mulation as in [13] which leads to inconsistencies, b) utilises
crude approximations with unknown impact on the predictions
quality, and c) only applies to models that are independent of



4 IEEE SIGNAL PROCESSING LETTERS, VOL. XX, NO. X, XX XXXX

TABLE I: Complexity of BD methods as function of s; c = 1.5s3.
Model (1) Algorithm 1 Algorithm 2 Orig. BD
With Di O(8.7qNs3) O(18.8qNs3) O(20.5qNs3)
No Di O(7.2qNs3 + c) O(17.3qNs3 + c) O(20.5qNs3)

Di. Conversely, the methods presented here offer a consistent
and efficient solution to the prediction problem without any
approximations and it is applicable to any model in (1).

III. NUMERICAL EXAMPLES

First, the destination probabilities p(D = Di|y1:k) estimated
by the proposed algorithms is compared with that of the
original BD in [13]. A maritime surveillance example is
considered. The aim is to predict a vessel endpoint, out of
N = 6 possible harbours in a bay, from noisy observations
of its 2-D position, e.g. AIS-based. Synthetically generated
trajectories from a CV model are utilised; all start from a
rendezvousing area off the coast. We employ a CV model
with dynamic noise parameter σ = 0.1, where σ2 is the
scaling factor of the standard CV covariance matrix [18],
Simpson’s quadrature scheme with q = 15 from a uniform
prior p(T |Di) = U(80mins, 150mins) and p(D = Di) = 1/6
for Di ∈ D. For each Di ∈ D, ai is the location of the centre of
the ith harbour and Σi = diag[5I2, 0.1I2] describes its region.

Fig. 1 shows six synthetic tracks with the prediction results
for the true destination. Whilst Fig. 1a demonstrates the effec-
tiveness of the BD approach in predicting D (e.g. uncertainty
diminishes as the target moves towards its endpoint and vice
versa), Fig. 1b shows that the proposed algorithms give very
similar results to that of the original BD. To confirm this, we
generated 100 tracks and measured the Bhattacharyya distance
DB = 1

8 (µ1 − µ2)T Σ−1(µ1 − µ2) + 1
2 log

(
det(Σ)

det(Σ1) det(Σ2)

)
between PEDs p(yk|y1:k−1,D = Di) and thereby p(D =
Di|y1:k) for each Di. The means µm and covariances Σm, for
m = 1, 2, pertain to the two compared Gaussian distributions
and Σ = (Σ1 + Σ2)/2. The distances are averaged over the
results of all Di ∈ D per track. It is displayed in Fig. 2, which
illustrates that the difference between the outcomes of the
proposed formulation and original BD is negligibly small; the
results of the two introduced algorithms are nearly identical.

The run-times of MATLAB implementations of the three
predictors are recorded for the above 100 tracks (System:
Intel(R) Core(TM) i7-4790 CPU@3.60GHz, 8GB RAM). Al-
gorithm 1 (mean run-time is 2.62ms at each tk) shows a
reduction of around 65% compared to the original BD (mean
7.42ms); Algorithm 2 has mean run-time of 5.36ms. This
confirms the complexity analysis in (14)-(16) with parameters
{m, s, q,N} = {2, 4, 15, 6} and demonstrates the potential of
the proposed efficient methods for real-time implementations.

Finally, we apply the three examined predictors to real data,
namely 95 freehand pointing trajectories in 3-D. They were
collected in an instrumented car with vision-based gesture
tracker during driver/passenger interactions with the in-car
touchscreen, at an average rate of 1/h = 50 Hz. The objective
is to predict, early in the pointing task, the intended on-display
icon. A CV model with BD is used with uniform prior for
all N = 21 selectable on-screen items. The performance
across the three methods is assessed by the percentage of
pointing time during which the true destination had the highest

(a)

(b)
Fig. 1: Six synthetic vessel trajectories showing the calculated
probability of the true destination. (a) Shows y1:K coloured by the
prediction probability from Algorithm 1. (b) p(D = Di|y1:k) for
original and proposed BD; DX indicates the corresponding track.

Fig. 2: Bhattacharyya distance in dB between p(yk|y1:k−1,D = Di)
from different methods, averaged across all tracks and N endpoints.

estimated probability of being DTrue, i.e. with maximum a
posteriori decision criterion from the estimated p(D = Di |
y1:k), i = 1, ..., N . The results show that the two proposed
algorithms and the original BD all have approximately 63%
success rates, with σ = 1. This again demonstrates their
similar performance. Reasonable changes to the CV dynamic
noise, e.g. σ ∈ [0.3 1.5], maintains a prediction success
rates of 60− 65% for all BD approaches; values outside this
range degrade the prediction accuracy since they represent
more extreme deviations in pointing velocities. Whilst this
confirms the BD insensitivity to reasonable changes to the
model parameters as in [13], a detailed study of its robustness
against model mismatches is outside the scope of this letter.

IV. CONCLUSIONS AND FINAL REMARKS

The proposed approach not only resolves the consistency
issue with the previous bridging distributions construct, but
also it can substantially reduce the computational complexity
of predicting the target destination. Similar to BD in [12], [13],
[14], it however requires prior knowledge of the location of
all nominal endpoints, considers Gaussian linear set-ups and
treats targets singly, even if they are a group. These can be
addressed by extending the BD framework in future work.
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