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Abstract: Five satellite top-of-atmosphere (TOA) albedo products over land were evaluated in this
study including global products from the Advanced Very High Resolution Radiometer (AVHRR)
(TAL-AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS) (TAL-MODIS), and Clouds
and the Earth’s Radiant Energy System (CERES); one regional product from the Climate Monitoring
Satellite Application Facility (CM SAF); and one harmonized product termed Diagnosing Earth’s
Energy Pathways in the Climate system (DEEP-C). Results showed that overall, there is good
consistency among these five products, particularly after the year 2000. The differences among
these products in the high-latitude regions were relatively larger. The percentage differences among
TAL-AVHRR, TAL-MODIS, and CERES were generally less than 20%, while the differences between
TAL-AVHRR and DEEP-C before 2000 were much larger. Except for the obvious decrease in the
differences after 2000, the differences did not show significant changes over time, but varied among
different regions. The differences between TAL-AVHRR and the other products were relatively
large in the high-latitude regions of North America, Asia, and the Maritime Continent, while the
differences between DEEP-C and CM SAF in Europe and Africa were smaller. Interannual variability
was consistent between products after 2000, before which the differences among the three products
were much larger.

Keywords: TOA albedo; evaluation; TAL-AVHRR; TAL-MODIS; CERES; CM SAF; DEEP-C

1. Introduction

Top-of-atmosphere (TOA) albedo is a crucial component of the energy budget of the Earth [1,2].
Estimation of TOA albedo from remote sensing data is a unique means to generate TOA albedo
products at regional or global scales. Different algorithms have been proposed to estimate TOA albedo
from satellite data, and multiple TOA albedo products from both broadband and narrowband sensors
have been developed [3–17], some of which have a relatively high spatial resolution that is helpful in
studying the energy budget at regional scales [15–17].

Currently, different researchers have used these products to analyze the Earth’s energy budget.
For instance, numerous studies have attempted to calculate the Arctic energy budget based on the
energy equation integrated over the atmospheric column using different reanalysis datasets [18–23].
TOA products based on satellite data were used to calculate the downward net radiative flux at the
TOA because of their better accuracy than reanalysis datasets. In addition, several studies have used
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the Diagnosing Earth’s Energy Pathways in the Climate system (DEEP-C) products to calculate the
surface energy budget [24–26]. Smith et al. [24] built upon the DEEP-C datasets by including estimates
of the ocean heat content trends and developing a combined simulated/observation-based record of
net downward TOA radiation extending back to 1960. Trenberth and Fasullo [25] stated that the net
flux of energy into the surface can be estimated when the net downward radiation at the TOA (which
can be obtained from DEEP-C) is combined with atmospheric energy transport and its divergence. By
employing net radiation at the TOA from DEEP-C, Mayer et al. [26] further refined estimates of the net
surface energy flux based on this method.

To ensure these products are more effectively used, it is necessary to evaluate them. Unlike
ground-based parameters, the TOA albedo products cannot be validated by direct comparison to in
situ measurements. The quality of different data records can only be evaluated by intercomparison to
other products [27]. In addition to the widely used Clouds and the Earth’s Radiant Energy System
(CERES) product, there are multiple TOA albedo satellite products available from different satellite
observations using different estimation algorithms. For instance, Wang and Liang [15] have developed
TOA albedo products over land based on Moderate Resolution Imaging Spectroradiometer (MODIS)
data (TAL-MODIS) and compared them to CERES data. Urbain et al. [16] released the Climate
Monitoring Satellite Application Facility (CM SAF) TOA radiation MVIRI/SEVIRI data record and
made intercomparisons to the CERES data. Song et al. [17] developed a long-term record of TOA
albedo over land from Advanced Very High Resolution Radiometer (AVHRR) data (TAL-AVHRR) and
compared it to both CM SAF and CERES data. However, no study has systematically compared all
five products. In this study, the five TOA albedo products were comprehensively intercompared to
demonstrate their differences.

The organization of this paper is as follows. Section 2 introduces the CERES, TAL-AVHRR,
TAL-MODIS, CM SAF, and DEEP-C TOA albedo products. Data processing methods are also described
in this section. The results of the differences between the five products and the corresponding analysis
are presented in Section 3. Discussion is given in Section 4. Conclusions are drawn in the final section.

2. Data and Methods

Figure 1 shows the time span of the five TOA albedo products assessed in this study. Each dataset
is briefly described in the following section.
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2.1. Clouds and the Earth’s Radiant Energy System (CERES)

CERES, a broadband instrument on board Terra, Aqua, and Suomi NPP, measures shortwave
reflected radiation (0.3–5 µm), longwave thermal radiation (8–12 µm), and all wavelengths of radiation
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(0.3–200 µm) [28]. The spatial resolution of CERES on Terra and Aqua is nearly 20 km at the nadir.
Based on the observed shortwave radiance, the CERES shortwave fluxes have been developed using
an angular distribution model (ADM) [10]. Moreover, the Level-2 Single Scanner Footprint (SSF)
that provides instantaneous TOA albedo at a resolution of 20 km and the Level-3 Synoptic products
(SYN1deg) that provide hourly, 3-hourly, daily, and monthly mean TOA radiative fluxes have also
been developed [29]. In this study, the SYN1deg data, which began in March 2000 at a resolution of
1 degree, were used in the intercomparison.

2.2. TOA Albedo from AVHRR Data (TAL-AVHRR)

Recently, Song et al. [17] released a long-term record of TOA albedo over land generated from
AVHRR data, which provides the longest continuous record of global satellite observations since 1981.
Direct estimation models were built to derive instantaneous TOA broadband albedo. Cloudy-sky,
clear-sky, and snow-cover conditions were separately considered, and the training data for building
the model were from real AVHRR observations and high-resolution TOA albedo datasets retrieved
from MODIS data [15]. The instantaneous albedo values were converted to daily and monthly mean
values based on the diurnal curves from the CERES 3-hourly flux dataset. The dataset has covered
global land at a spatial resolution of 0.05 degree since 1981. Notably, the product has some gaps in
1994 and 2000 because of the unavailability of the source AVHRR data. It is the first long-term high
spatial resolution TOA albedo product with global coverage over land.

2.3. TOA Albedo from MODIS Data (TAL-MODIS)

Wang and Liang [15] retrieved TOA albedo over land from multispectral data collected by
MODIS using a hybrid method that is based on extensive atmospheric radiative transfer simulations
considering various surface and atmospheric conditions. Different algorithms have been developed
for clear-sky and cloudy-sky conditions, respectively. For the clear-sky condition, the Polarization and
Directionality of the Earth’s Reflectances/Polarization and Anisotropy of Reflectances for Atmospheric
Sciences coupled with observations from a Lidar (POLDER-3/PARASOL) bidirectional reflectance
distribution function database has been used to consider surface reflectance anisotropy, thus generating
TOA spectral and then broadband albedo. For the cloudy-sky condition, the surface is assumed to
be Lambertian and the TOA broadband albedo is directly obtained. Similar to TAL-AVHRR, after
generating the instantaneous TAL-MODIS, the daily/monthly mean TOA albedo is needed for further
application. Instead of using the CERES 3-hourly flux dataset when generating daily TAL-AVHRR, the
diurnal curves from the CERES hourly dataset were used to generate daily TAL-MODIS to improve the
accuracy. The dataset has covered global land at a spatial resolution of 1 km since 2000. In this study,
we aggregated it into a resolution of 0.05◦ for better intercomparison to other TOA albedo products.

2.4. Climate Monitoring Satellite Application Facility (CM SAF)

The CM SAF TOA Radiation Meteosat Visible and InfraRed Imager/Spinning Enhanced Visible
and InfraRed Imager (MVIRI/SEVIRI) Data Record provides the TOA reflected solar and emitted
thermal radiation under all sky conditions. The dataset covers a 32-year-time period from 1 February
1983 to 30 April 2015. The long data record is helpful in analyzing the changes in the Earth’s energy
budget during the past several decades. Narrowband to broadband regressions have been derived
based on the overlap between the MVIRI and Geostationary Earth Radiation Budget instruments from
2004 to 2006, and the CERES Tropical Rainfall Measurement Mission (TRMM) ADMs have been used
to compute the TOA reflected solar radiation from the broadband radiances [16]. The products include
daily means, monthly means, and monthly averages of the hourly integrated values. The data covers
the region 70◦N–70◦S and 70◦W–70◦E at a spatial resolution of 0.05◦. It has the same resolution as that
of TAL-AVHRR and its long-term series coverage also contributes to the intercomparison.
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2.5. Diagnosing Earth’s Energy Pathways in the Climate System (DEEP-C)

The DEEP-C project reconstructed TOA radiative energy fluxes (outgoing longwave radiation
(OLR), absorbed shortwave radiation (ASR), and net radiation) combining satellite data, atmospheric
reanalysis (ERA-Interim), and climatic model (AMIP5) simulations [30]. The TOA datasets cover the
globe at a spatial resolution of approximately 0.7◦ from 1985 to 2015. CERES EBAF v2.8 data were
used from March 2000 to May 2015. Therefore, a comparison with CERES over this period will only
highlight differences in the EBAF version and spatial interpolation. From January 1985 to February
2000, the monthly mean radiative fluxes were reconstructed using monthly seasonal cycles from
2001–2005 CERES data, spatial distribution of radiative fluxes represented by ERAI data constrained by
hemispheric mean changes in radiative fluxes from the Earth Radiation Budget Satellite (ERBS) wide
field of view (WFOV) measurements. Note that DEEP-C only provides the ASR, which is calculated as
the difference between incoming solar radiation from the Solar Radiation and Climate Experiment and
CERES outgoing shortwave radiative flux, instead of the TOA albedo. Therefore, we calculated the
TOA albedo with the TOA incoming solar flux from the CERES data.

2.6. Data Processing

As the five TOA albedo products were of different spatial resolutions, we compared them at
three different spatial resolutions. TAL-AVHRR, TAL-MODIS, and CM SAF TOA albedo products at a
0.05◦ resolution were first compared, and then aggregated to 0.7◦ for comparison with DEEP-C, and
finally were all aggregated to 1◦ to compare to the CERES TOA albedo product. The aggregation was
weighted by the grid areas, which varied with latitude.

For CM SAF, the calculation is straightforward as it includes both the shortwave upward fluxes
and the shortwave downward fluxes. For DEEP-C, however, as it only contains the TOA ASR, we
needed to use the shortwave downward fluxes from other datasets. Considering that the CERES data
are of relatively high accuracy and the TOA incoming solar flux is relatively constant, we calculated the
mean value of the CERES TOA incoming solar flux for each month from 2001 to 2016. By subtracting
the ASR from DEEP-C, the shortwave upward fluxes at TOA were obtained. Finally, the TOA albedo
of the DEEP-C dataset was calculated.

The intercomparison was performed at different spatial extents including global, latitudinal,
and regional scales. The latitudinal average was calculated for each 30◦ latitudinal band, and the
regional average was calculated based on different regions. The comparison was also performed during
different seasons: December–January–February (DJF), March–April–May (MAM), June–July–August
(JJA), and September–October–November (SON), where the December value is from the previous year.
Notably, TAL-AVHRR and TAL-MODIS include only land, while the other three products include both
land and ocean. Therefore, before the intercomparison, we extracted the land from the other three
products using a global land mask.

3. Results Analysis

Figure 2 shows the average TOA albedo of CERES from 2001 to 2017 in January and July,
respectively. From Figure 2, one can see that Greenland and Antarctica stand out because of the
high TOA albedo value due to the ice/snow cover, and the values in the northern hemisphere winter
were also relatively larger. Next, five TOA albedo products were intercompared at three different
spatial resolutions (0.05◦, 0.7◦, and 1◦), respectively. Considering that percentage differences, which
are obtained from dividing the difference of two products by their average, are more meaningful
than absolute differences, all the difference maps shown in this study (Figures 3–6) are presented and
discussed in percentage differences.
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3.1. Intercomparisons at 0.05◦ Spatial Resolution

To determine the exact differences in distribution between CM SAF and TAL-AVHRR, we calculated
the differences in the mean value of the TOA albedo from 1984 to 2014 using CM_SAF minus
TAL-AVHRR with 1994 and 2000 excluded because TAL-AVHRR had some gaps due to the unavailability
of the source AVHRR data in these two years. Figure 3a shows that the percentage differences were
mostly less than 20%, but much larger around 50◦N, 50◦E in January. As for July, most of the differences
were positive, indicating that overall CM SAF was larger than TAL-AVHRR in July. Figure 4 shows
the differences in the mean value of the TOA albedo from 2001 to 2014 using TAL-MODIS minus
TAL-AVHRR. From this figure, one can see that in January, the TOA albedo was lower in AVHRR
than MODIS in most regions in the northern hemisphere while in July, the differences were quite large
around 70◦N.
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3.2. Intercomparisons at a 0.7◦ Spatial Resolution

Four TOA albedo products (TAL-AVHRR, TAL-MODIS, DEEP-C, and CM SAF) were
intercompared at a 0.7◦ spatial resolution. Considering that DEEP-C products are generated using
different source data before and after 2000, we chose the year 1986 and 2006 for intercomparison.
Additionally, as the spatial resolution of 0.7◦ and 1◦ are quite close, here we chose the area of 70◦N–70◦S
and 70◦W–70◦E to show more detailed information. The results are shown in Figure 5. Overall,
the percentage differences between the four products were less than 20%. The differences between
TAL-AVHRR and DEEP-C were relatively smaller than the differences between CM SAF and DEEP-C.
In addition, the differences between these products become smaller after 2000.
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Figure 5. Percentage differences between (a) CM SAF and DEEP-C in January, 1986; (b) TAL-AVHRR
and DEEP-C in January, 1986; (c) CM SAF and DEEP-C in January, 2006; (d) TAL-AVHRR and DEEP-C
in January, 2006; (i) TAL-MODIS and DEEP-C in January, 2006; (e–h,j) are the same but for July.

3.3. Intercomparisons at a 1◦ Spatial Resolution

All five TOA albedo products, aggregated into a 1◦ × 1◦ spatial resolution, were intercompared,
and the global and regional differences between these products are presented here.

3.3.1. Global Differences

Figure 6a,b show differences in the mean value of the TOA albedo in January 2006 between CERES
and TAL-AVHRR, and the differences between TAL-MODIS and TAL-AVHRR, respectively. Overall,
the differences between CERES and TAL-AVHRR in January were the smallest out of the four. The
distribution of the differences between TAL-MODIS and TAL-AVHRR in January was quite irregular.
In July, the pattern of Figure 6c,d was similar, and there were obvious differences in the high-latitude
area, except for Greenland. However, most of the percentage differences were less than 20%.

It is not sufficient to conduct intercomparisons only at a global scale over land because these
products may perform differently among different regions. To comprehensively compare these
products, the regional differences need to be calculated and analyzed.
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Figure 6. Percentage differences between (a) CERES and TAL-AVHRR; (b) TAL-MODIS and
TAL-AVHRR in January 2006, (c,d) are the same but for July.

3.3.2. Regional Differences

As Figure 7 shows, the black, green, blue, and red lines stand for the TAL-AVHRR, TAL-MODIS,
DEEP-C, and CERES monthly mean TOA albedo anomalies of different latitudinal bands, respectively.
CM SAF was excluded in this part due to the limited spatial coverage. Before 2000, the differences
between TAL-AVHRR and DEEP-C were much larger, and DEEP-C showed a more stable trend
than that of TAL-AVHRR. Notably, there was an obvious peak value during 1992 in the Northern
Hemisphere caused by the eruption of Mount Pinatubo in the Philippines in 1991. After 2000, when the
CERES data and TAL-MODIS were included in the intercomparison, one can see that overall, DEEP-C
matched very well with the CERES data. This is not surprising because CERES data were used after
2000 to develop the DEEP-C datasets. In addition, overall, TAL-MODIS matched well with the DEEP-C
and CERES data. As AVHRR becomes much more stable after 2000, TAL-AVHRR matched much better
with DEEP-C during this period. The largest difference between TAL-AVHRR and DEEP-C decreased
from 0.05 before 2000 to 0.007 after.

To fully understand how different TOA albedo products perform in different regions, we divided
the world area into ten parts, as shown in Figure S1 [31,32]. The division overall matched that of
Rao’s work [31], except for some small changes in the boundary of Europe and Asia. Specifically, the
boundary of Europe was set as 70◦N instead of 80◦N because of the limit of the coverage of CM SAF.
The boundary of Asia1 was set as 60◦E instead of 45◦E to avoid overlap with the coverage of Europe.
We made comprehensive intercomparisons among the five products by analyzing their performance in
these ten regions, respectively.
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Figure 7. TAL-AVHRR, TAL-MODIS, DEEP-C, and CERES monthly mean TOA albedo anomalies
of different latitudinal bands with a common base period 2006–2009. (a) 60◦–90◦N; (b) 30◦–60◦N;
(c) 0–30◦N; (d) 0–30◦S; (e) 30◦–60◦S; (f) 60◦–90◦S.

The monthly mean TOA albedo anomalies of Africa and Europe are shown in Figure 8. The results
were deseasonalized by subtracting the average values of each season when calculating the anomalies.
Five products were compared in this region, and Figure S2 shows the results of other regions. From
these figures, one can see that the differences among TAL-AVHRR, DEEP-C, and CM SAF were much
larger before 2000, particularly the differences between TAL-AVHRR and the other two products.
Specifically, the differences between the anomalies of TAL-AVHRR and DEEP-C could be close to 0.08
during some years before 2000. The differences between DEEP-C and CM SAF in Europe and Africa,
however, were much smaller.
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As some overestimations and underestimations in these datasets are seasonally dependent and
can be removed following the deseasonalizing process [17], some differences may not be shown in this
figure. Therefore, we also calculated the absolute value of the DEEP-C, TAL-AVHRR, TAL-MODIS,
CERES, and CM SAF monthly mean TOA albedo for different regions. Figure 9 indicates the results of
the Maritime Continent (MCT). The results of the other regions are shown in Figure S3.
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Figure 9. Absolute value of DEEP-C, TAL-AVHRR, TAL-MODIS, and CERES monthly mean TOA
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After calculating the corresponding absolute values, we found that there were obvious
overestimations in TAL-AVHRR, and that they were larger during the years before 2000, as shown
in Figure 9. This figure corresponds to the region of MCT, corresponding to the area of Indonesia, a
country consisting of more than 17,000 islands. Considering that TAL-AVHRR only generates TOA
albedo over land, islands may easily lead to overestimations as mixed pixels always occur in islands,
particularly those that are small.

The root mean square differences (RMSD) and mean differences (MD) between different products
during different periods are summarized in Tables 1 and 2. The maximum RMSD and MD were 0.031
and 0.011, respectively, corresponding to the difference between TAL-AVHRR and DEEP-C during
autumn in the region 90◦N–90◦S and 70◦E–180◦E. The RMSDs were smaller when comparing the
difference between TAL-AVHRR and CERES with the difference between TAL-AVHRR and DEEP-C.
By comparing Table 1 to Table 2, one can see that the RMSDs of CM SAF did not change much, while
the RMSDs of TAL-AVHRR during all seasons became much smaller after 2000 and TAL-MODIS
performed relatively well. In addition, as most of the MDs of TAL-AVHRR were positive values, one
can conclude that there were more overestimations of TAL-AVHRR than underestimations among
the different regions. In the regions 70◦N–70◦S and 70◦W–70◦E, the MD of TAL-AVHRR decreased
because this region does not contain high-latitude areas, also indicating that TAL-AVHRR does not
perform well in high-latitude regions.

Table 1. The RMSDs and MDs between CM SAF and DEEP-C, and TAL-AVHRR and DEEP-C during
different seasons among different regions from 1985 to 2000.

Area Season
CM SAF TAL-AVHRR

RMSD MD RMSD MD

90N–90S,
180W–70W

MAM 0.026 0

JJA 0.029 −0.001

SON 0.027 0.007

DJF 0.024 0
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Table 1. Cont.

Area Season
CM SAF TAL-AVHRR

RMSD MD RMSD MD

70N–70S,
70W–70E

MAM 0.029 −0.004 0.019 0.001

JJA 0.016 −0.002 0.022 −0.003

SON 0.016 0.002 0.023 0.003

DJF 0.016 0.002 0.024 0

90N–90S,
70E–180E

MAM 0.027 0.006

JJA 0.029 0

SON 0.031 0.011

DJF 0.028 0.008

Table 2. RMSDs and MDs between CM SAF and CERES, TAL-AVHRR and CERES, and TAL-MODIS
and CERES during different seasons among different regions from 2001 to 2015.

Area Season
CM SAF TAL-AVHRR TAL-MODIS

RMSD MD RMSD MD RMSD MD

90N–90S,
180W–70W

MAM 0.016 0.016 0.015 0.004

JJA 0.017 0.017 0.016 0

SON 0.015 0.015 0.013 0

DJF 0.015 0.015 0.014 0.005

70N–70S,
70W–70E

MAM 0.026 −0.002 0.008 0 0.007 −0.001

JJA 0.018 0.005 0.011 0 0.007 −0.002

SON 0.016 0.006 0.012 0.001 0.012 −0.002

DJF 0.015 0.003 0.014 0 0.013 0

90N–90S,
70E–180E

MAM 0.020 0.020 0.018 0.004

JJA 0.023 0.023 0.020 0

SON 0.021 0.021 0.019 0.006

DJF 0.022 0.022 0.018 0.008

4. Discussion

In this study, there was good consistency among the five TOA albedo products after 2000. This is
partly because DEEP-C uses CERES data after 2000, which was mentioned in Section 2.5. In addition,
CERES data were also used when converting the instantaneous TAL-AVHRR and TAL-MODIS to the
daily ones. However, considering that for these two datasets CERES data were only used to determine
the conversion ratios, which are dependent on the observation time, the location, and the day of the
year, it can be concluded that the good consistency between CERES, TAL-MODIS, and TAL-AVHRR
shown in this study was not due to the usage of CERES data when generating the monthly TAL-MODIS
and TAL-AVHRR, whose accuracy mostly depends on the accuracy of the retrieved instantaneous TOA
albedo values.

These three products were used to calculate the trends of the TOA albedo in a 1◦ × 1◦ grid based
on the period 2001–2014 to show their differences in quantifying the variations at a global scale. The
three products showed a similar pattern both in January and July, with an increase in the north of
America, west of Europe, most parts of South America and Australia in January, and northeast of Asia
in July, and a decrease in the east of Europe in January, and south of South America in July (Figure 10).
TAL-AVHRR demonstrated a smaller trend magnitude than CERES and TAL-MODIS in the north
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of America and Australia in January, while in July, the three products showed quite similar patterns.
The trends of the TOA albedo in the Antarctica were quite different in January, especially between
TAL-MODIS and the other two, while in July, the trends of CERES in a small part of Greenland were
the opposite to the other two. Specifically, CERES showed a decreasing trend (−0.001 year−1) in the
west part of Greenland, while the other two showed an increasing trend (0.001 year−1). However,
the trend was quite close in the east part of Greenland (0.001 year−1). Therefore, users should be
careful when calculating the trend of the TOA albedo to prevent inconsistent conclusions, especially
for high-latitude regions.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 16 
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5. Conclusions

We examined the differences in five TOA albedo datasets (i.e., TAL-AVHRR, TAL-MODIS, CERES,
DEEP-C, and CM SAF) over land at different spatial scales in this study.

By comparing four products (i.e., TAL-AVHRR, TAL-MODIS, CERES, and DEEP-C) at global
scale, of which DEEP-C uses CERES data from the year 2000 onwards, we found that the four products
matched well with each other overall in mid-low latitude regions, where the percentage differences
were less than 20%. However, in some regions, particularly high-latitude regions, the differences
were much larger. In addition to the problem of TAL-AVHRR during 1993 and 1994 caused by the
unavailability of the source AVHRR data, TAL-AVHRR performed differently before and after 2000.
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Regarding the trend of the TOA albedo, CERES, TAL-MODIS, and TAL-AVHRR performed similarly,
but significant differences were found in the high-latitude regions, especially for Antarctica in January.

To demonstrate how these five TOA albedo products performed regionally, we divided the world
area into ten parts, and calculated the corresponding deseasonalized anomalies and the absolute values
of the TOA albedo. The results showed that the deseasonalized anomalies of the five products matched
relatively well with each other. Before 2000, the differences among the three products (i.e., TAL-AVHRR,
DEEP-C, and CM SAF) were much larger, particularly the differences between TAL-AVHRR and the
other two products. The differences between the TAL-AVHRR and DEEP-C anomalies could approach
0.1 during some years before 2000, while the differences between DEEP-C and CM SAF in Europe and
Africa were much smaller.

TOA albedo products were widely used in climate dynamic studies as TOA albedo is the key
component of the Earth’s energy budget. If the quality of the TOA albedo datasets is poor, inaccurate
conclusions regarding the climatic system may be drawn, as a small underestimation or overestimation
of the TOA albedo can lead to large errors when calculating the TOA shortwave upward flux. For the
years before 2000, CM SAF is recommended for use in the mid-low latitude region of Africa and
Europe, while DEEP-C is recommended in other regions. For the years after 2000, CERES and DEEP-C
are recommended for use in the mid-low latitude regions while all five products are recommended for
use in other regions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/24/2919/s1.
Figure S1: Ten regions of the world; Figure S2: Monthly mean TOA albedo deseasonalized anomalies of different
regions; Figure S3: Absolute value of monthly mean TOA albedo of different regions.
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