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Abstract

We propose a momentum strategy that operates within commodity

futures curves. The diversified curve momentum strategy generates a

significantly positive average excess return and a (annualized) Sharpe

ratio of 1.28. The profitability of the strategy has increased markedly

in the more recent years. These excess returns are difficult to reconcile

with risk based explanations, as evidenced by the significantly positive

alpha after controlling for exposure to several well-known risk factors.

The average excess return on the diversified curve momentum strategy

remains significantly positive even after accounting for transaction costs.
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1 Introduction

In a seminal study, Jegadeesh and Titman (1993) document the profitability of the mo-

mentum strategy in equity markets. Recent studies, e.g. Miffre and Rallis (2007), Fuertes

et al. (2010), Asness et al. (2013), and Gorton et al. (2013), extend this finding to commodity

futures markets by documenting the profitability of the conventional momentum strategy.

A common feature of these works is that they focus on the first nearby futures contract

of different commodity futures markets. While this approach parallels the methodology of

studies on the equity market, it does not exploit an important dimension of commodity

futures markets: the term structure.

This observation motivates us to implement the momentum strategy within individual

futures curves by trading different maturities of the same commodity. The curve momentum

strategy involves long–short fully collateralized positions in the first 2 nearby contracts of

each commodity futures curve. We measure the curve momentum signal using all excess

return observations of the previous 12 months and open a long position in the nearby contract

with the higher curve momentum signal and a short position in the other nearby. We

then hold these positions for 1 month. The curve momentum strategy diversified across

commodity sectors yields a significantly positive average excess return and a (annualized)

Sharpe ratio (SR) of 1.28. These excess returns are positively skewed, thus posing a challenge

to an explanation based on crash risk. Moreover, they survive transaction costs as evidenced

by a SR of 0.85, after accounting for transaction costs, making it difficult to argue that the

diversified curve momentum excess returns persist because of limits-to-arbitrage.

The diversified curve momentum strategy offers a better risk-return trade-off (SR =
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1.28) than the conventional commodity momentum (SR = 0.72) and carry (SR = 0.60)

strategies. Regressing its excess returns on a constant and those of well-known strategies,

including the aforementioned conventional strategies, we find that the average risk-adjusted

excess return remains significant and is very similar in magnitude to the raw average excess

return. Furthermore, the diversified curve momentum strategy excess returns do not have

a significant exposure to traditional macroeconomic variables such as the U.S. industrial

production growth rate. These findings lead us to conclude that the performance of the

diversified curve momentum strategy is difficult to reconcile with a risk based explanation.

Therefore, we turn our attention to the behavioral models of Daniel et al. (1998) and

Hong and Stein (1999). We exploit the passing of the Commodity Futures Modernization

Act (CFMA) in December 2000, which lowers the barrier to speculation (Boons et al., 2012),

to distinguish between these two theories. The model of Daniel et al. (1998) predicts a

substantially stronger curve momentum effect during the period following the CFMA. Con-

sistent with this theory, we find that the average diversified curve momentum excess return

increases significantly from the pre-CFMA period to the period following the CFMA.

We perform several additional tests to evaluate the robustness of the results. To begin

with, we increase the number of investable nearby contracts from 2 in our benchmark spec-

ification to 6 nearbys and obtain qualitatively similar results. We also consider alternative

formation and holding periods. We find that the diversified curve momentum strategy re-

mains profitable for these alternative choices. Next, we test the hypothesis that the curve

momentum strategy is merely a manifestation of the Samuelson effect (Samuelson, 1965) and

find no empirical support for this hypothesis.

Our paper contributes to the broad literature on commodity risk premia. Erb and Harvey
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(2006), Miffre and Rallis (2007), Fuertes et al. (2010), Gorton et al. (2013) and Koijen

et al. (2018), among others, document the profitability of the conventional momentum and

carry strategies in commodity futures markets. Relative to these studies, we implement the

momentum strategy within each commodity futures curve. Our research offers insights both

from the methodological and practical standpoints. From a methodological perspective, the

implementation of the momentum strategy within each commodity futures curve enables us

to rule out explanations of the momentum effect that rely on differences, across commodity

futures markets, along dimensions such as storage costs and harvesting/production cycles.

From a practical perspective, the curve momentum strategy may be of interest to asset

managers seeking to diversify away from conventional commodity trading strategies.

Our analysis relates to a growing body of research that analyses futures contracts of

different maturities. De Groot et al. (2014) explore the question of how to optimally select the

maturity of futures contracts used in the conventional momentum strategy. Boons and Prado

(2019) introduce the basis momentum strategy, with the basis momentum being defined as

the difference between momentum in the first and second nearby futures contracts. They

open long positions in the first nearby contract of the futures markets with large basis

momentum and short positions in the first nearby contract of markets with small basis

momentum. Our work is different in that we analyze each futures curve in isolation and do

not use information from the cross-section of futures curves to determine the trading signal

as they do. We show that the diversified curve momentum strategy provides a significantly

positive alpha after controlling for exposure to both the basis momentum and the hedged

basis momentum strategies.

Our study also contributes to the growing literature that tests the predictions of the
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behavioral theories of momentum of Daniel et al. (1998) and Hong and Stein (1999). Chui

et al. (2003) exploit an important shock to the real estate investment trust (REIT) market

to distinguish between the theories. Ang et al. (2013) compare the momentum strategy

implemented using the cross-section of stocks traded over-the-counter (OTC) to the mo-

mentum strategy implemented using exchange traded stocks. Goetzmann and Huang (2018)

take a historical approach and exploit the features of stock market trading in imperial Rus-

sia to distinguish between the two theories. We complement this literature by exploiting

a regulatory change in commodity futures markets to distinguish between these theories of

momentum. The performance of the diversified curve momentum strategy appears to be

mostly consistent with the behavioural model of Daniel et al. (1998).

This paper proceeds as follows. Section 2 presents the data and methodology. Section

3 discusses the main empirical results. Section 4 presents some additional results and

robustness checks. Finally, Section 5 concludes.

2 Data and Methodology

2.1 Data

We obtain the commodity futures data from the Commodity Research Bureau (CRB).

The sample period extends from January 1986 to February 2015. The data is available

at the daily frequency and covers the following 22 commodity futures markets: Brent oil,

West Texas Intermediate (WTI) oil, heating oil, natural gas, corn, oats, rice, wheat, cotton,

lumber, live cattle, lean hogs, gold, copper, silver, soy oil, soybeans, soy meal, cocoa, or-
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ange, coffee and sugar. Together, these markets span 7 commodity sectors: energy, grains,

industrials, meats, metals, oilseeds and softs.

Similar to Szymanowska et al. (2014), we roll the first nearby contract at the end of the

second month before the last trading day. By adopting this rollover practice, we aim to

avoid the erratic price behavior of futures contracts observed near expiration. It is worth

pointing out that, by specifying a rollover practice for the first nearby, we essentially rollover

the entire futures curve. To illustrate this, suppose that we rollover the first nearby contract

at the end of day t. The futures contract that is viewed as the second nearby at the end of

day t becomes the first nearby on day t + 1. Similarly, the futures contract that represents

the third nearby at the end of day t becomes the second nearby on day t+1. More generally,

the futures contract that is the nth nearby at the end of day t becomes the (n− 1)th nearby

on day t+ 1.

The preceding discussion suggests that the time-series of a specific nearby is not neces-

sarily based on the same futures contract. As a result, one needs to be cautious to avoid

mixing information from different futures contracts when computing the excess returns on

a nearby series. We therefore follow Singleton (2014) in our computation of the excess re-

turn series which ensures that each excess return is based on the same contract, and thus

realizable. For ease of exposition, it is helpful to distinguish between two cases. The first

relates to the situation where there was not a rollover at the end of the previous day, i.e.

the futures contract that is currently considered as the ith nearby was also the ith nearby at

the end of the previous day. In this case, we compute the excess return on the ith nearby

by simply using the consecutive prices of the same nearby series. The second case focuses

on the situation where there was a rollover at the end of the previous day. In this case, we
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compute the excess return on the ith nearby based on the ratio of the current price of that

specific nearby over that of the (i+1)th nearby observed at the end of the previous day. More

formally, we compute the excess return on a fully collateralized position in each commodity

futures (Koijen et al., 2018) as follows:1

R
(m,i)
t+1 =

{ F
(m,i)
t+1

F
(m,i)
t

− 1 If there is no rollover at the end of day t

F
(m,i)
t+1

F
(m,i+1)
t

− 1 Otherwise

where R(m,i)
t+1 denotes the simple excess return on the ith nearby of the commodity futures

market m realized at t + 1. F
(m,i)
t+1 refers to the price of the ith nearby at t + 1. Finally,

F
(m,i+1)
t is the price of the i+ 1th nearby of the commodity futures market m at t.

Using the framework discussed above, we compute the time-series of daily excess returns

for each nearby series of each commodity futures market. We then compound each of the daily

excess return series to obtain the corresponding price indices. Finally, we use the resulting

nearby price series to compute the excess returns at the horizon of interest (Moskowitz et al.,

2012).

Table 1 provides an overview of the dataset. It lists all the markets that make up each

commodity sector. The table also shows that the (annualized) mean and volatility of the
1While our computation of returns is consistent with the literature, e.g. Moskowitz et al. (2012), Singleton

(2014) and Szymanowska et al. (2014), it is important to highlight that, in practice, a trader entering into
a futures contract is required to pay the initial margin in the margin account. If the balance of the margin
account drops below a certain level, known as the maintenance margin, the trader must top up the account
to bring its balance back to the initial margin level. Hedegaard (2014) reports that the average maintenance
margin in commodity futures markets ranges between 2% and 9.8% of the contract value. Furthermore,
the author shows that, for most contracts analyzed, the maintenance margin represents 74.1% of the initial
margin. These estimates are consistent with the information currently available from the exchange’s website.
See for instance https://institute.cmegroup.com/courses/introduction-to-futures-html/modules/
margin-know-what-is-needed. This remark is interesting for two reasons. First, it suggests that there is an
important degree of leverage inherent to commodity futures. Second, computing the futures returns relative
to the margin, instead of assuming a fully collateralized position, would have further enhanced the average
returns we present throughout this paper (Miffre and Rallis, 2007).
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first two nearby excess returns of each commodity futures market are generally similar.

Furthermore, it highlights a strong correlation between the nearby excess returns of each

market. This conclusion is supported by correlation estimates that are greater than 93%.

2.2 Methodology

Our primary objective is to analyze the performance of the curve momentum C–MOM(12,1)

strategy implemented within the futures curve of each commodity market. This strategy uses

a measurement period of 12 month(s) and a holding period of 1 month(s).2 To fix ideas, sup-

pose we want to implement this strategy in a specific commodity futures market m. At the

end of month t, we use all the price series data observed over the most recent 12 month(s),

i.e. from the end of month t − 12 to the end of month t to measure the curve momentum

signal. The time t curve momentum trading signal related to the ith nearby of the commodity

futures market m (S(m,i)
C−MOM,t) is computed as the simple excess return on that nearby over

the measurement period. We denote by Nm
t the number of nearbys of the commodity futures

market m for which we have price data over the measurement period. Next, we rank the

Nm
t nearbys in ascending order of their curve momentum signal. We then create a portfolio

containing the top half of nearbys with a high signal and another portfolio comprising the

bottom half of nearbys with a low signal. All nearbys are equal-weighted within each of the
2Our interest in a measurement period of 12 months is mainly motivated by the fact that some commodity

markets, e.g. natural gas, are highly seasonal (Back et al., 2013; Diewald et al., 2015; Arismendi et al., 2016).
By taking a measurement window of 12 months, we aim to mitigate the potential concern that our results
may be affected by the seasonality of commodity markets. The choice of a holding period of 1 month is
consistent with the literature on commodity futures risk premia, e.g. Szymanowska et al. (2014). As a
robustness check, we consider alternative measurement and holding periods (see Section 4.2 ).
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two portfolios.3 We hold the constructed portfolio for 1 month and compute the realized

excess return on the curve momentum strategy (R(m)
C−MOM,t+1) implemented in commodity

futures market m.4 We implement the steps above for each calendar month and for each

commodity futures curve separately. Thus, we obtain the time-series of curve momentum

excess returns for each commodity futures market.

In the main analysis, we only consider investments in the first two nearbys of each com-

modity futures market, i.e. Nm
t = 2.5 This choice is motivated by the observation that

the majority of trading activity in commodity futures concentrates at the front-end of the

curve (De Groot et al., 2014). By taking this step, we address the potential concern that the

curve momentum strategy might involve thinly traded contracts. Additionally, this decision

facilitates the implementation of the strategy since, for each commodity futures curve, the

long and short legs of the strategy contain 1 contract each. Furthermore, by focusing only

on the first two nearby contracts of each market, we can rule out the possibility that the

performance of the curve momentum strategy is due to differences in inventory expectations

or storage costs along the curve. This is because inventory conditions and storage costs are

unlikely to be significantly different for the first two consecutive nearby contracts.
3The equal-weighting scheme is a popular approach in the literature on commodity futures risk premia

(Miffre and Rallis, 2007; Fuertes et al., 2010). In a robustness check, we also implement the rank-weighting
scheme of Koijen et al. (2018). This is an interesting analysis since the equal- and rank-weighted schemes
are not the same if one trades more than 2 nearby contracts of each commodity futures market.

4Notice that this approach assumes that the investor observes the signal and directly implements the
strategy. In practice, most companies face a decision delay. For instance, the decision to invest might rest
with a board that could take some time to approve the strategy. Clearly, the strategy we present here does
not account for the decision delay. Section 4.5 discusses the empirical implications of a plausible decision
delay.

5As a robustness check, we consider as many as 6 nearby contracts for each commodity futures curve.
Section 4.1 shows that extending the number of contracts does not materially affect the risk-return trade-off
of the curve momentum strategy.
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3 Main Results

3.1 Overview

Panel A of Table 2 reports the main statistics of the curve momentum strategy excess

returns. Throughout this paper, we report the (annualized) mean and volatility of the

strategy excess returns. For ease of exposition, we aggregate the results at the sector level.

For each commodity sector, we compute the equal-weighted average of the curve momentum

strategy excess returns related to each commodity futures market that belongs to that specific

sector. For instance, the figure related to the energy sector is obtained by averaging the

excess returns on the curve momentum strategy separately implemented in the Brent oil,

the WTI oil, the heating oil, and the natural gas futures curves. We do this at the end of

each month, thus obtaining the monthly time-series of the sector excess returns. We then

use this time-series to compute the summary statistics shown in the table.

Several results are worth noting. First, the curve momentum strategy yields positive

average excess returns in all sectors, revealing the profitability of the investment. Second,

the Newey–West adjusted (with 2 lags) t-statistics indicate that the averages are generally

significant. Third, both the mean and the volatility of the curve momentum strategy ex-

cess returns are lower than the comparable figures associated with conventional commodity

strategies (Fuertes et al., 2010). This result is to be expected. To understand why, recall that

there is a strong factor structure in each commodity futures curve. Indeed, the summary

statistics shown in Table 1 indicate that the average excess returns and volatilities of the first

two nearby series of each market are closely related. Because the strategy takes long and

short positions in similar assets in which excess returns are highly correlated (see Table 1),
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the excess returns on the long–short strategy are expected to be small and not very volatile.

Correlation Analysis We now investigate the question of commonalities both within and

across sectors. We follow a two-pronged approach to tackle this issue. First, we analyze the

correlations within each commodity sector. We compute the correlation between the curve

momentum strategy excess returns obtained for all pairs of commodity futures markets that

belong to the same sector. We then compute the average of these pairwise correlations,

which we view as indicative of the strength of the commonalities within each commodity

sector. The main diagonal of Table A.1 of the online appendix reports these results. It

becomes apparent that there is very little correlation within sectors. This result is evidenced

by correlation estimates that vary between −0.02 (softs) and 0.28 (oilseeds).

Second, we compute the correlation across commodity sectors. Using the time-series of

the sector excess returns, we compute the correlation between the curve momentum excess

returns of the sector [name in column] and those of the sector [name in row]. The off-diagonal

elements of Table A.1 of the online appendix document very small and often negative coef-

ficient estimates, suggesting that there are substantial diversification benefits by combining

all sectors.

Diversified Curve Momentum Strategy Motivated by the previous result, we now

analyze the performance of the diversified curve momentum strategy computed by taking

the equally-weighted average of all sector excess returns. Figure 1 shows the cumulative

excess return of the diversified curve momentum strategy. We can see that it generates

positive cumulative excess returns. Interestingly, the returns do not crash around the NBER
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recession periods, which are highlighted by the shaded bars. Furthermore, the profitability

of the strategy improves during the most recent subsample. This observation has important

implications for some of the leading theories of momentum, which we shall discuss later.

The last row of Panel A of Table 2 indicates a positive (1.76%) and highly significant

(t-stat = 6.24) average excess return on the diversified curve momentum strategy.6,7 It is

worth noticing that the volatility of the diversified curve momentum excess returns is lower

than the comparable figure for most sectors, likely reflecting the benefit of diversification.

Relatedly, the diversified curve momentum strategy boasts an annualized SR of 1.28, that

is higher than that of any sector. The skewness (0.14) and kurtosis (3.48) estimates suggest

that the performance of the diversified curve momentum strategy is difficult to reconcile with

a crash risk argument.

3.2 Dissecting the Curve Momentum Strategy

Having documented the profitability of the curve momentum strategy, we now analyze its

sources. We proceed in two steps. First, we investigate whether the performance is primarily
6Table A.2 of the online appendix reports the summary statistics of the excess returns of the C−MOM

strategy at the level of each commodity. The table shows that the strategy generally yields positive average
excess returns in nearly all commodity markets. Furthermore, the average excess return is statistically
significant in 9 of the 22 commodity markets, indicating that the profitability at the asset level contributes
to the performance of the diversified C − MOM strategy. Note that the strategy benefits also from a
diversification effect, both within and across sectors.

7One might wonder if the diversified C−MOM strategy beats a naive spread position that systematically
(i) buys the second nearby contract and (ii) shorts the front nearby contract. To shed light on this, we directly
implement this naive strategy. Each month, we systematically open a long position in the second-nearest
contract and take a short position in the front-end contract of the same commodity futures curve. We first
compute the equal-weighted average excess return of this naive strategy across all commodities that make
up each sector, thus obtaining the naive spread strategy excess return of each sector. Next, we compute the
equal-weighted average across all naive spread sector excess returns to obtain the naive spread diversified
strategy. Our untabulated results suggest that this naive diversified spread strategy yields an average excess
return of 1.49% (t−stat=4.54) and an annualized Sharpe ratio of 1.03. These numbers are lower than
those associated with the diversified C − MOM strategy that yields an average excess return of 1.76%
(t−stat=6.24) and an annualized Sharpe Ratio of 1.28. We thank a reviewer for suggesting this analysis.
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driven by the long or short sides. Second, we decompose the investment excess returns into

static and dynamic components and analyze their respective contributions.

3.2.a Long vs. Short Legs

We can express the strategy excess returns as the difference between the weighted excess

returns on the assets held (i) on the long side and (ii) on the short side of the trade. Panels

B and C of Table 2 present key statistics of the long and short sides, respectively.

The summary statistics for both legs of the trade are generally similar.8 This is not

surprising given the strong factor structure present in each curve. We note that the volatility

of the curve momentum excess returns (see Panel A of Table 2) is much lower than that of

either the long or short legs of the trade. This result is another manifestation of the strong

factor structure of futures excess returns. Notice also that the average excess returns on the

long side of the strategy are generally higher than those of the short side. Consequently, the

performance of the curve momentum strategy cannot be explained by arguments based on

short-selling constraints.

3.2.b Static vs. Dynamic Components

The average excess return
(
R̄

(m)
C−MOM

)
to the curve momentum strategy implemented in

the commodity futures market m is given by:

R̄
(m)
C−MOM =

Nm
t∑

i=1

E
(
ω
(m,i)
C−MOM,tR

(m,i)
t+1

)
(1)

8One might note that the excess returns to the long and short sides of the grains and industrials sectors
are negative. This observation is consistent with the summary statistics reported in Table 1. See also Table
1 in De Groot et al. (2014).
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where E(·) denotes the unconditional expectation operator. In particular, this expectation

is the unconditional mean computed using all sample information.

It follows that:

R̄
(m)
C−MOM =

Nm
t∑

i=1

E
(
ω
(m,i)
C−MOM,t

)
E
(
R

(m,i)
t+1

)
+

Nm
t∑

i=1

Cov
(
ω
(m,i)
C−MOM,t, R

(m,i)
t+1

)
(2)

R̄
(m)
C−MOM =

Nm
t∑

i=1

E
(
ω
(m,i)
C−MOM,t

)
E
(
R

(m,i)
t+1

)

︸ ︷︷ ︸
Static Component

+

Nm
t∑

i=1

E
((
ω
(m,i)
C−MOM,t − E(ω

(m,i)
C−MOM,t)

)(
R

(m,i)
t+1 − E(R

(m,i)
t+1 )

))

︸ ︷︷ ︸
Dynamic Component

(3)

The expression above shows that we can decompose the average excess return on the curve

momentum strategy into (i) a static and (ii) a dynamic component. The static component

is a passive strategy that simply earns the average excess return on each nearby multiplied

by the average weight related to that nearby.9 In contrast, the dynamic component can be

interpreted as a market timing strategy.10

If the strategy always involves a long position in the nearby with the higher unconditional

average excess return and a short position in the other nearby, then the static component

should capture all the average excess return of the strategy. This is because the weights

for each nearby will be constant, making the dynamic component equal to zero. Otherwise,

the dynamic component will contribute to the average excess return of the curve momentum
9The reader may think of the static component of each nearby of each commodity futures market as

corresponding to (1) the difference between the fraction of months the strategy involves a long position in
that nearby minus the fraction of months during which the strategy involves a short position in that nearby
(2) multiplied by the average excess return on that nearby.

10Note that this strategy cannot be implemented in real-time since it requires information about the full
sample.
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strategy. The decomposition presented above allows us to precisely quantify the contribution

of these two components to the overall average performance of the strategy.

Panel A of Table 3 establishes that both the static and dynamic components contribute

positively to the overall performance of the strategy, as evidenced by positive entries for

each of the two components. The dynamic component accounts for 57.75% of the average

excess return to the diversified curve momentum strategy. Panel B of Table 3 shows how

often the curve momentum strategy involves a long position in each nearby. We compute the

figures for each commodity futures market, then we average these statistics at the sector level

and ultimately across sectors.11 We observe that the diversified curve momentum strategy

takes a long position in the second nearby 66.09% of the time, indicating that there are

time-variations in the weight allocated to each nearby.

3.3 The Determinants of the Strategy

We now ask the question: what are the underlying forces behind the performance of the

diversified curve momentum strategy? To shed light on this question, we first investigate

the extent to which the diversified curve momentum strategy returns reflect a compensation

for risk. Next, we consider behavioural theories. While the theories of momentum that we

test were originally developed to rationalize the successful performance of the conventional

momentum strategy implemented in equity markets, we take the view that, in principle, a

unifying theory of momentum should work beyond the confines of a specific asset class.
11The reader would notice that, by using the entries in Panel B of Table 3 appropriately, one cannot get

the estimate of the static component presented in Panel A of Table 3. This may appear contradictory to the
intuition developed in Footnote 9. To understand this difference, it is useful to recall that the average of the
product of two variables is different from the product of the average of the two variables.
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3.3.a Rational Asset Pricing

We begin by empirically testing whether rational asset pricing theories can explain the

performance of the diversified curve momentum strategy. We consider three main categories

of explanatory variables.

The first set of variables relates to the macroeconomy. We compute the monthly growth

rate of the U.S. industrial production (IP ). This variable is motivated by the theoretical

model of Johnson (2002) and the supporting empirical evidence presented in Liu and Zhang

(2008). We also consider the default and term spreads (Asness et al., 2013). The default

spread (DSPD) is the spread between Moody’s seasoned BAA and AAA corporate bond

yields. The term spread (TSPD) is the difference between the 10-Year Treasury yield and

the 3-Month T-bill yield. We collect all the relevant data from the website of the Federal

Reserve Bank of St. Louis.

The second set of explanatory variables relates to liquidity. We construct the TED

spread as the difference between the 3-Month T-bill and the 3-Month LIBOR rates. We

interpret this measure as a proxy for funding liquidity.12 We also consider the role of market

liquidity (LIQ), which we proxy with the time-series of innovations in aggregate liquidity

(non-traded factor) of Pástor and Stambaugh (2003). We obtain this time-series from the

CRSP database.13

The final set of explanatory variables relates to the classic risk factors used in the equity
12Note that the TED spread is typically defined as the difference between the 3-Month LIBOR and T-bill

rates. We depart from this definition in order to facilitate the interpretation of the spread as a measure of
liquidity.

13When we carried out the analysis, this time-series stopped at the end of December 2014. As a result,
the analysis focuses on the common sample period that ends in December 2014, rather than February 2015.
This small difference of two monthly observations should not materially alter the results.
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literature. These are the (US) equity market (MKT ), small-minus-big (SMB), high-minus-

low (HML) and up-minus-down (UMD) factors downloaded from Ken French’s website.14

By using these variables, we are able to shed light on the extent to which the returns on

the diversified curve momentum strategy merely reflect passive exposure to standard equity

risk factors. Note that the intercept of the regression of the diversified curve momentum

strategy excess returns on a constant and the equity risk factor(s) can be validly interpreted

as the average risk-adjusted return on the diversified curve momentum strategy. As an

additional analysis, we consider the 1-month change in the option implied volatility (VIX)

as explanatory variable.15

We estimate a regression of the excess returns on the diversified curve momentum strategy

on a constant and the explanatory variable(s). All variables are contemporaneously observed.

Table 4 summarizes the results. As before, we report the Newey–West corrected t-statistics

with 2 lags in brackets. The t-statistics linked to the slope of the explanatory variables

are generally insignificant. For instance, the exposure of the diversified curve momentum

strategy to the up-minus-down equity risk factor is 0.01 and the corresponding t-statistic is

equal to 0.13. In light of this, we conclude that the excess returns on the diversified curve

momentum strategy are not significantly exposed to the typical risk variables.

One may wonder whether commodity specific risk factors, rather than equity risk factors,

might be able to explain the performance of the diversified curve momentum strategy. Szy-

manowska et al. (2014) show that two basis factors can explain the cross-section of commodity

spreading excess returns sorted by various characteristics. Bakshi et al. (2017) propose a
14The data is available at the following address (mba.tuck.dartmouth.edu/pages/faculty/ken.french/).
15We thank a reviewer for this suggestion.

17

                  



3-factor pricing model for the cross-section of commodity futures excess returns. The fac-

tors are the average commodity factor, the conventional commodity carry, and momentum

factors. Boons and Prado (2019) propose the basis momentum and hedged basis momentum

factors. Section A of the online appendix describes the computation of the aforementioned

commodity risk factors.16

We regress the excess returns on the diversified curve momentum strategy on a constant

and the commodity risk factors. The low R2s in Table 5 show that the commodity risk

factors cannot explain the variations in the excess returns on the diversified curve momen-

tum strategy satisfactorily. The average risk-adjusted return is highly significant in every

specification. Moreover, its magnitude is comparable to the raw average excess return on

the diversified curve momentum strategy reported in Panel A of Table 2. For instance, the

intercept in the multivariate regression, that includes the average, the conventional com-

modity carry, the conventional commodity momentum, the basis momentum and the hedged

basis momentum returns as explanatory variables, points to an average risk-adjusted excess

return of 1.52% (t-stat = 5.20). This is close to the 1.76% raw average excess return. These

findings lead us to conclude that the diversified curve momentum strategy cannot be simply

explained by exposure to conventional commodity risk factors.

3.3.b Behavioral Theories

We now focus on two leading behavioral explanations of momentum. Daniel et al. (1998)

propose a model where informed traders are overconfident about the precision of their private

information and exhibit a self-attribution bias. They trade based on the private signal about
16Table A.3 of the online appendix presents the summary statistics of these risk factors. They are generally

consistent with the findings of the literature, e.g. Miffre and Rallis (2007) and Koijen et al. (2018).
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the fundamental value of assets. Some investments perform in accordance with the private

signal, while others do not. Because of the self-attribution bias, the investments in which

performance is consistent with the initial signal boost the overconfidence of the traders and

the poor investments only dent their overconfidence. For instance, if the agent receives a

positive signal about an asset and its price subsequently increases, the agent becomes more

overconfident. As agents become more overconfident, their trading actions raise the price of

the assets, thus leading to short-run momentum.

Hong and Stein (1999) present a theory of momentum that features two types of agents,

the “newswatchers” and the “momentum traders”, both of whom are boundedly rational.

Fundamental news diffuses slowly across the “newswatchers”. The “newswatchers” exhibit

bounded rationality in the sense that they only use the news signal, and do not exploit

the information content of historical price trends, to estimate the future value of the asset.

The “momentum traders” are boundedly rational in that they only use the historical price

changes to estimate the future stock price. Because of the slow diffusion of information,

the actions of the “newswatchers” make prices adjust slowly, creating momentum at short

horizons. As “momentum traders” observe the trends in asset prices, they start trading in

the same direction, strengthening the momentum effect in the short run.

We exploit the passing of the CFMA in December 2000 to empirically distinguish between

these two leading theories. As discussed in Boons et al. (2012), the CFMA facilitated the

entry of less-sophisticated investors who speculate on commodity futures markets.17 This is

interesting because, as pointed by Goetzmann and Huang (2018), unsophisticated investors
17See also the article published by Bloomberg (www.bloomberg.com/news/articles/2008-06-09/oil-

traders-face-new-regulationbusinessweek-business-news-stock-market-and-financial-advice).
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likely exhibit the overconfidence and self-attribution biases that are essential to the theory of

Daniel et al. (1998). If this is true, their model predicts a significantly stronger momentum

effect in the more recent sample period. It is also likely that the CFMA substantially

increased the speed of information diffusion in commodity futures markets. This effect might

arise from the fact that news media outlets increase their coverage of commodity markets

in response to the increased demand for commodity news from speculators.18 Because the

speed of information diffusion is an important ingredient of the theory of Hong and Stein

(1999), their model predicts a significantly weaker momentum effect in the period after the

CFMA.

The preceding discussion reveals that the two theories have contrasting implications for

the performance of the curve momentum strategy during the periods preceding and following

the adoption of this important legislation. We therefore split our sample into the “pre-

CFMA” period, which runs from January 1986 to (and including) December 2000, and the

“post-CFMA”, which extends from January 2001 to February 2015.19 We then separately

analyze the results related to each subsample.

Table 6 shows that the average excess return to the diversified curve momentum strategy

increases from 0.93% in the pre-CFMA period to 2.58% in the post-CFMA period. This

pattern is qualitatively consistent with the theory of Daniel et al. (1998). We formally test

whether this increase in the average excess return of the diversified curve momentum strategy
18There are potentially other influences on the speed of information diffusion that may not be directly

linked to the CFMA. For instance, technological improvements such as newswires may lead to a faster speed
of information diffusion. Similarly, the growing popularity of blogs where investors discuss their views could
contribute to a faster diffusion of information. In the model of Hong and Stein (1999), these developments
could lead to a lower curve momentum return over time.

19See Bianchi et al. (2016) and Kim et al. (2016) for recent studies that use the CFMA to motivate their
subsample analysis.
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across the two subsamples is statistically significant. The t-statistic of 3.22 leads us to the

conclusion that the average excess return of the diversified strategy is significantly higher in

the post-CFMA period.20

Summarizing, the empirical results suggest that the performance of the diversified curve

momentum strategy is difficult to reconcile with risk-based arguments. Instead, the evidence

appears supportive of the model of Daniel et al. (1998).

4 What About...

4.1 Including More Nearbys in the Strategy?

Our main analysis focuses only on the first 2 nearbys of each market. As previously dis-

cussed, this choice was motivated by several considerations, including tradeability concerns

and the need to have an easy to implement strategy. However, one may wonder whether our

results are robust to the inclusion of more nearbys.

To shed light on this question, we increase the number of nearbys first to 4 and then to 6.

Since the number of nearbys is greater than 3, we also analyze the rank-weighting scheme,

putting more weight on contracts based on the strength of the signal.21

20For all but one sector, we observe a higher average curve momentum excess return in the more recent
subperiod (compared to the pre-CFMA subsample). This finding is qualitatively consistent with the theory
of Daniel et al. (1998). However, the increase in the average excess return of each sector is not always
significant.

21The weights associated with the rank-weighting scheme are computed as follows:

ω
(m,i)
C−MOM,t = zt

(
rank(S

(m,i)
C−MOM,t) −

Nm
t + 1

2

)
(4)

where zt is simply a scaling parameter to ensure that the weights on the long and short sides of the strategy
add up to 1 and −1, respectively. rank(·) is the rank operator. All other variables are as previously defined.
Conceptually, the rank weighting scheme has the advantage that the size of the position in each nearby
depends on the magnitude of the trading signal.

21

                  



Table 7 presents results that are consistent with our core findings. The diversified curve

momentum strategy yields a positive and statistically significant average excess return.22

Furthermore, the excess returns on the diversified curve momentum are positively skewed,

confirming our earlier result. The SRs of these strategies are broadly consistent with our

benchmark finding. This is true regardless of the weighting scheme. Thus, we conclude that

trading more nearby futures contracts does not materially change our conclusions.

4.2 Alternative Formation and Holding Periods?

Up to this point, we have focused on the performance of the diversified C−MOM(12, 1)

strategy with a formation period of 12 months and an investment horizon of 1 month. One

may wonder whether our findings hold for alternative formation and holding periods. Table

8 considers formation periods of 1, 6 and 12 months and holding periods of 1, 6, 12, 18 and

24 months.23

We observe significantly positive average excess returns for all the alternative formation

and holding periods. This suggests that the baseline results on the profitability of the

diversified curve momentum strategy are robust to the choice of the measurement and holding
22We also investigate whether the excess returns to the diversified curve momentum strategy computed

using more than 2 nearbys in each commodity futures market can be explained by the BASMOM and
BASMOM + H strategy excess returns. Based on the rank-weighting scheme, we obtain average risk-
adjusted excess returns of 1.15% (t-stat=4.76) and 1.50% (t-stat=4.03) when using 4 and 6 nearbys, re-
spectively. Similarly, when the analysis is based on the equal-weighting scheme, the average risk adjusted
excess returns are equal to 1.35% (t-stat=5.06) and 1.09% (t-stat=3.59) for the strategy considering 4 and
6 nearbys, respectively. We thank a reviewer for this suggestion.

23In order to compute long horizon excess returns, we implement the overlapping portfolio approach of
Jegadeesh and Titman (1993). Using the weights computed at the end of month t, we form a portfolio of
nearby contracts that we hold for the next K months, i.e. until the end of month t + K. Similarly, at the
end of month t+ 1, we (re)compute the trading signal (and weights) and set up a new portfolio that we hold
until t + 1 + K. More generally, at the end of each month, we “open” a new portfolio position. The excess
return on the strategy at each point in time is the equal-weighted average of the excess returns on all these
“open” positions. Intuitively, this is akin to a trading strategy that revises 1

K

th of the weights in individual
assets at the end of each calendar month (Rouwenhorst, 1998).
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periods. Focusing on the investment horizon of 1 month, the diversified C −MOM(6, 1)

strategy delivers the highest average excess return (1.83%, t-stat = 6.91). In comparison,

the diversified C−MOM(12, 1) and C−MOM(1, 1) strategies yield average excess returns

of 1.76% (t-stat = 6.24) and 0.93% (t-stat = 3.66), respectively. These figures indicate that

an investor who measures the trading signal over an intermediate window of 6 months might

obtain even better excess returns than those presented in our benchmark analysis.

4.3 The Samuelson Effect?

Samuelson (1965) notes that the returns on futures contracts of shorter maturities are

typically more volatile than those of longer maturities. If there is a positive risk-return trade-

off that is constant along the term-structure dimension and the term structure of volatility

always slopes downward, then the first nearby will display a higher average return than the

second nearby. As a result of the Samuelson effect, the curve momentum strategy will always

involve long and short positions in the first and second nearbys, respectively.

The line of reasoning above yields several testable hypotheses. First, the term-structure

of excess returns slopes downwards. This prediction is not borne out by the data. Indeed,

Table 1 and Panel B of Table 3 show that, on average, the term-structure of excess returns

slopes upwards rather than downwards. Second, the argument based on the Samuelson

(1965) hypothesis counterfactually implies that the strategy always involves a long position

in the first nearby and a short position in the second nearby. Panel B of Table 3 shows

that the curve momentum strategy often involves a short position in the first nearby and a

long position in the second nearby. Third, the average curve momentum excess return arises
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solely from the static component. The data provide no support for this prediction. Indeed,

Panel A of Table 3 establishes that the dynamic component contributes to most of the mean

excess return of the curve momentum strategy.

Overall, we conclude that the curve momentum strategy is not simply another manifes-

tation of the Samuelson effect. It is, however, interesting to modify the curve momentum

strategy to specifically account for the differences in the volatility of the nearby excess returns

(see Table 1). To achieve this goal, we first compute the curve momentum trading signal as

before (see Section 2.2 ). We then determine the direction of the position, i.e. long or short,

by using the sign of the weight of each nearby). Next, we set the size of the investment

in each nearby to be inversely proportional to the historical volatility of the daily excess

returns of that nearby. As a result, the monthly excess return on the strategy implemented

in a given commodity futures market m is given by the following expression:

R
(m)
C−MOM,t+1 =

Nm
t∑

i=1

sign
(
ω
(m,i)
C−MOM,t

) 40 % ×R
(m,i)
t+1

σ
(m,i)
t

(5)

where R(m)
C−MOM,t+1 is the curve momentum excess return at the end of month t + 1 of the

strategy implemented in the commodity futures market m. sign(·) is the sign operator. The

factor 40% simply ensures that each position has an ex-ante conditional volatility equal to

40% per annum (Moskowitz et al., 2012). σ(m,i)
t is the conditional volatility of the excess

returns on the ith nearby of commodity futures market m. We use all daily excess returns

observed during the measurement period to compute the annualized historical volatility,

which we view as a proxy for the conditional volatility. The decision to use daily (rather

than monthly) data is motivated by the work of Andersen et al. (2003), who show that,
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in general, increasing the sampling frequency helps improve the accurate measurement of

volatility. All other variables are as previously defined.

Table 9 shows that the (volatility-adjusted) diversified curve momentum strategy yields a

similar SR (1.23) to that of the baseline diversified curve momentum strategy (SR = 1.28).

Thus, we conclude that accounting for differences in volatility does not materially affect our

main conclusions.

4.4 Effects in the Cross-section?

In the main analysis, we have focused on the time-series of commodity returns. We now

also analyze whether C − MOM has explanatory power in the cross-section.24 To carry

out this empirical analysis, we use the time-series of the (i) first nearby and (ii) spreading

returns of each of the 22 commodity markets (see also Boons and Prado (2019)). We use

individual commodities rather than portfolios as test assets because individual commodity

excess returns are much more difficult to price. For each of the 44 test assets, we first estimate

the full sample beta(s) with respect to the risk factor(s). Next, we estimate a regression of

the average excess return of each test asset on a constant and the estimated beta(s). We

compute the standard errors following Kan et al. (2013).

Panel A of Table 11 of the online appendix starts with the 3-factor model of Bakshi et al.

(2017) and gradually adds the basis momentum factor of Boons and Prado (2019) and the

diversified C−MOM strategy returns. We find that the market price of risk associated with

the latter is not statistically significant. Similarly, Panel B of Table 11 of the online appendix

starts with the factor model of Szymanowska et al. (2014) and adds the basis momentum
24We thank a reviewer for suggesting this analysis.
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and the diversified C −MOM . We do not find strong evidence to suggest that exposure to

C −MOM is priced in the cross-section of our test assets.

4.5 Decision Delays?

Up to this point, our analysis assumes that the investor trades as soon as the trading

signal is computed. In practice, this may not be feasible, especially for institutional investors

where decisions likely need the approval of a committee that does not necessarily meet at

the end of each month. As a result, there might be a delay between the time when the signal

is measured and the time when the strategy is implemented.

We assess the impact of a decision delay of 1 week on the performance of the diversified

curve momentum strategy. To be more specific, we assume that the investor only uses the

historical data pertaining to the oldest 11 months and 3 weeks (rather than the full 12

months) of the measurement period to compute the curve momentum signal. At the end

of month t, the trader then implements the strategy based on the computed trading signal.

Thus, there is no overlap between the data used to construct the curve momentum signal

and the data used to assess the performance of the strategy. If the decision delay matters,

we should notice a significant change in the performance of this modified strategy (relative

to the baseline result that does not account for the decision delay).

Table 10 shows that the performance of the modified strategy is generally similar to that

of our baseline implementation (see Panel A of Table 2). Looking at the diversified curve

momentum strategy, we even notice a slight increase in the mean excess return from 1.76%

to 1.87% and a decrease in the volatility from 1.38% to 1.35%. Consequently, the SR rises
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from 1.28 in the baseline case to 1.38 after accounting for the decision delay.

Overall, these findings show that our results are robust to a 1-week decision delay. To

some extent, this finding is not surprising because the decision delay represents a small part

of the original measurement window of 12 months. It is tempting to speculate on whether a

larger decision delay might materially affect our results. We investigate this possibility, by

considering a decision delay 3 times bigger, and reach similar conclusions. These results are

not tabulated for brevity.

4.6 Transaction Costs?

One may wonder whether the profits of the curve momentum strategy are subsumed by

transaction costs.25 Transaction costs could affect the profitability of the trading strategy

through two channels. First, the cost of trading each nearby could be high, thus lowering

the net profitability of the strategy. Second, the strategy could involve a high turnover rate.

4.6.a Estimating Transaction Costs

Unfortunately, a transaction cost analysis is complicated by the fact that the CRB does

not provide information about the bid and ask prices of commodity futures. As a result,

we are forced to approximate transaction costs. In order to evaluate the robustness of our

results to the modelling assumptions, we consider three distinct specifications.
25The reader may also wonder about the opportunity cost of putting up margins for the futures contracts.

We do not think that margin-related expenses will materially affect our results for two reasons. To begin
with, commodity futures embed a certain amount of leverage. As discussed in Footnote 1, a trader typically
needs between 3% and 12% of the price of the contract as initial margin. Furthermore, because we trade
the first two nearby contracts of each commodity futures market, which are very correlated with each other,
the margin requirements for this intramarket spread is generally low due to the reduced volatility of the
portfolio. For example, the information available on the CME website suggests that, for the WTI crude
oil futures contract, the maintenance margin of the intramarket spread represents 10% of the maintenance
margin associated with an outright long position in the first nearby.
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First, we build on the work of Locke and Venkatesh (1997), who use the computerized

trade reconstruction (CTR) audit trail data from the CME to analyze the cost of commod-

ity futures trading in 1992. The authors document that (round-trip) transaction costs in

commodity futures are low, varying between 0.0004% and 0.033%.26 Accordingly, we set

the transaction cost (TC) of each nearby to be equal to 0.033% (Miffre and Rallis, 2007):

TC
(m,i)
t+1 = 0.033 % (6)

where TC(m,i)
t+1 is the round-trip transaction cost at time t+ 1 associated with the ith nearby

of the commodity futures market m.

Second, we follow the modeling framework of Szakmary et al. (2010). The authors

note that the bid-ask spread of the first nearby of commodity futures markets generally

corresponds to the minimum tick size. Furthermore, they also take into account the brokerage

fee, which they set at $10.27 Armed with this information, they propose the following

estimator of transaction costs:

TC
(m,i)
t+1 =

10 + Tick(m) × CM (m)

F
(m,i)
t+1 × CM (m)

(7)

where Tick(m) denotes the minimum tick size set by the exchange. CM (m) is the contract

multiplier associated with the commodity futures market m. The contract multiplier in-
26The estimates of Locke and Venkatesh (1997) are broadly consistent with those of Ferguson and Mann

(2001). More specifically, they report a proportional spread that ranges from 0.59 basis points in the live
cattle futures market to 5.56 basis points in the pork belly futures market. On average, the (round-trip)
transaction cost documented by the authors across all commodity futures markets is around 2.97 basis points,
which is very similar to our assumed cost of 3 basis points (see Equation (6)).

27The assumed fee of $10 probably overestimates the brokerage fees, at least for the recent sample period.
For instance, an online broker such as TradeStation, discussed in Gao et al. (2018), charges around $1.5 per
commodity futures contract.
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dicates the number of units of the underlying commodity deliverable per futures contract.

Table 1 lists the contract multiplier and tick size of each commodity futures. All other

variables are as previously defined.

The model summarized in Equation (7) allows for time-variations in the trading cost

associated with each futures market. Note, however, that the assumption of a flat term-

structure of bid-ask spreads needs not imply a static term-structure of transaction costs.

If the term-structure of commodity futures markets is in contango, i.e. the term-structure

of commodity futures prices slopes upwards, then the term-structure of transaction costs

will slope downwards. Conversely, a backwardated term-structure of futures contracts would

result in an upward sloping term-structure of rates.

Third, we propose a model of transaction cost that extends the framework of Szakmary

et al. (2010) by allowing for the impact of the tick size on the transaction cost estimate to

be higher for deferred contracts.28 To be more specific, we propose the following model:

TC
(m,i)
t+1 =

10 + i× Tick(m) × CM (m)

F
(m,i)
t+1 × CM (m)

(8)

where all variables are as previously defined.
28Analyzing a snapshot of the Bloomberg estimates of the bid-ask spread for the first two nearby contracts

in January 2016, we observe that the bid-ask spread is the same for the first two nearby contracts of virtually
all commodity futures markets. Thus, the assumption that the bid-ask spread increases linearly with i is
somewhat at odds with that piece of evidence. One way to think about this assumption is as a simple way
to capture other effects, such as the fact that the trading volume on the first nearby is generally higher than
that of the second nearby.
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4.6.b Turnover Rate

The turnover rate may be affected by two forces. To begin with, it may be due to the

fact that changes in the trading signal could lead to an adjustment of the positions linked

to each nearby. We refer to this channel as the rebalancing effect. In addition to that effect,

the turnover rate may arise from the fact that commodity futures expire and thus, positions

need to be rolled over.

We compute the turnover rate induced by rebalancing effects for each nearby contract of

each commodity futures market as follows:

TURN
(m,i)
Rebal,t+1 =

∣∣∣ω(m,i)
C−MOM,t − ω̃

(m,i)

C−MOM,(t−1)+

∣∣∣ (9)

where TURN (m,i)
Rebal,t+1 denotes the turnover rate, induced by rebalancing effects, at time t+1

associated with the ith nearby of the commodity futures market m. ω̃
(m,i)

C−MOM,(t−1)+ is the

weight in that nearby just before setting up the new position.

ω̃
(m,i)

C−MOM,(t−1)+ =
ω
(m,i)
C−MOM,t−2(1 +R

(m,i)
t−1 )

∑Nm
t

i=1 ω
(m,i)
C−MOM,t−2(1 +R

(m,i)
t−1 )

(10)

In accounting for both the rebalancing and the rollover effects, it is useful to distinguish

between two situations. First, there is no rollover effect. In this case, the turnover rate

corresponds exactly to that induced by the rebalancing channel (see Equation (9)). Second,

there is a rollover. In this case, the turnover is based on the difference between the weight
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in the new ith nearby and that of the i+ 1th nearby just before the rollover.

TURN
(m,i)
Rebal&Roll,t+1 =

{ ∣∣∣ω(m,i)
C−MOM,t − ω̃

(m,i)

C−MOM,(t−1)+

∣∣∣ If There is no Rollover
∣∣∣ω(m,i)

C−MOM,t − ω̃
(m,i+1)

C−MOM,(t−1)+

∣∣∣ Otherwise

4.6.c Transaction Costs and Turnover Estimates.

Figure 2 shows the time-series of the transaction cost estimates for the first nearby

(blue line) and the second nearby (red line). We obtain the (aggregate) transaction cost

estimate at each point in time by first averaging the estimates at the sector level and then

across all sectors. The top and bottom panels are based on the transaction cost models

in Equations (7) and (8). We can see time-variations in the transaction cost estimates.

Interestingly, transaction costs have fallen in the more recent sample. The declining pattern

is consistent with the works of Tang and Xiong (2012) and Cheng and Xiong (2014), among

others, who document an increase in commodity trading activity shortly after the CFMA. An

upshot of this visual cue is that, if the curve momentum strategy were costly to implement,

improvements in trading conditions would have lowered the magnitude of the strategy return

(Chordia et al., 2014) as more arbitrageurs pile into the trade. The visual evidence of Figure

1 paints a different picture: the diversified curve momentum strategy performs even better

during the more recent period. This pattern seems difficult to reconcile with a limits-to-

arbitrage argument.

Table 11 sheds light on the turnover rate of the curve momentum strategy. We first

average the turnover rate across all nearby contracts of each commodity futures market.

Next, we average these estimates within each sector and then across sectors, yielding the
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figures for the diversified curve momentum strategy. Intuitively, we expect the rebalancing

effect to be small because the trading signal is based on the past 12 months of data, making

it somewhat persistent. The entries under “Rebal” confirm this intuition. On average, the

diversified strategy involves a low turnover rate of 19.24% per contract. The turnover rises

from 19.24% per contract to 125.62% when we account also for the rollover effects.29 It

appears important to carefully account for rollover effects when computing the net returns

on the curve momentum strategy.

4.6.d Net Excess Returns

Table 12 analyzes the net excess returns on the curve momentum strategy. We compute

the net excess return related to a given month by subtracting the transaction cost estimate

of that month from the raw excess return obtained for that month:

R̃
(m)
C−MOM,t+1 = R

(m)
C−MOM,t+1 − 0.5 ×

Nm
t∑

i=1

TURN
(m,i)
Rebal&Roll,t+1 × TC

(m,i)
t+1 (11)

where R̃(m)
C−MOM,t+1 is the net excess return on the curve momentum strategy implemented

in commodity futures market m. All remaining variables are as previously defined. Note

that we multiply the transaction cost estimates by 0.5 because the estimates of trading costs

relate to a round-trip cost.30

29The reader may notice that the results for the energy sector are even more striking as evidenced by
the rise from 17.63% when accounting only for the rebalancing effect to 190.80% when accounting for both
rebalancing and rollover effects. This result arises because energy derivatives have a monthly expiration
cycle, inducing frequent rollovers.

30The analysis could be criticized on the ground that, for a one-way trade, the investor would pay the
full brokerage fee rather than half of it. We repeat the analysis using each of the following equations to
approximate the one-way transaction cost:

TC
(m,i)
one−way,t+1 =

10 + 0.5 × Tick(m) × CM (m)

F
(m,i)
t+1 × CM (m)

(12)
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Overall, the average net excess return on the diversified strategy is about 30% lower

than the raw average excess return. Yet, the Sharpe ratio, after accounting for transaction

costs, remains sizable, ranging from 0.85 to 0.93 (depending on the model for transaction

costs). We thus conclude that transaction costs do not subsume the excess returns of the

curve momentum strategy returns.31

5 Conclusion

This paper proposes the curve momentum strategy that operates within each futures

curve, trading different nearby contracts written on the same commodity. The average excess

return to the diversified curve momentum strategy is significantly positive. Moreover, we

find that the average excess return is significantly higher in the more recent sample period.

The curve momentum profits do not appear to compensate for risk. Indeed, neither a

multi-factor model that includes the conventional commodity carry, the conventional com-

modity momentum, the basis momentum and the hedged basis momentum strategy returns

nor other known risk factors can explain the diversified curve momentum strategy excess re-

TC
(m,i)
one−way,t+1 =

10 + 0.5i× Tick(m) × CM (m)

F
(m,i)
t+1 × CM (m)

(13)

The net excess return is then obtained as:

R̃
(m)
C−MOM,t+1 = R

(m)
C−MOM,t+1 −

Nm
t∑

i=1

TURN
(m,i)
Rebal&Roll,t+1 × TC

(m,i)
one−way,t+1 (14)

Although the average excess return is a bit lower than the estimates in Table 12, the key conclusions are
qualitatively similar. We do not tabulate these findings for brevity.

31It is, however, important to acknowledge that transaction costs have a significant impact on the results
for some sectors. Consistent with its high turnover rate, the profitability of the average curve momentum
strategy in the energy sector is subsumed by transaction costs. While Panel A of Table 2 shows that the
average excess return to the strategy is 1.10%, accounting for transaction costs reduces this return to −0.35 %
(Panel B of Table 12).
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turns satisfactorily. Furthermore, transaction costs cannot explain why the diversified curve

momentum profits persist.
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Table 2: Excess Returns on the Curve Momentum Strategy
This table presents the summary statistics of the returns on the curve momentum strategy. The trading signal
is measured over a period of 12 months. The investment horizon corresponds to 1 month. For each commodity
futures market and trading month, the investor opens a long position in the nearby contract with the higher
signal and opens a short position in the other nearby. We aggregate and report all excess returns at the sector
level. The last row presents the results for the diversified portfolio computed as the equal-weighted average
of the strategy excess returns obtained at the sector level. Panel A focuses on the Long–Short strategy. We
separately present the results for the long (Panel B) and short (Panel C) legs of the strategy. “Mean” reports
the (annualized) average excess return of the strategy. “t-stat” is the Newey–West corrected (with 2 lags) test
statistic associated with the mean excess return. “Std Dev” denotes the (annualized) standard deviation of
the excess returns. “Skew” and “Kurt” are the skewness and kurtosis, respectively. “JB” is the Jarque–Bera
p-value of the test that the excess returns are normally distributed. Finally, “SR” is the (annualized) Sharpe
ratio.

Panel A: Long–Short Strategy

Mean t-stat Std Dev Skew Kurt JB SR

Energy 1.10% (2.08) 3.03% 0.55 17.24 0.10% 0.36
Grains 2.37% (3.87) 3.03% -0.05 6.09 0.10% 0.78
Industrial Materials 2.62% (2.58) 5.12% -0.14 4.42 0.10% 0.51
Meats 5.07% (4.88) 5.11% 0.31 5.85 0.10% 0.99
Metals 0.12% (0.66) 0.93% -0.20 17.91 0.10% 0.13
Oilseeds 0.76% (2.18) 2.11% 0.27 11.66 0.10% 0.36
Softs 0.28% (0.61) 2.71% 0.33 20.01 0.10% 0.10
Diversified 1.76% (6.24) 1.38% 0.14 3.48 9.15% 1.28

Panel B: Long Leg

Mean t-stat Std Dev Skew Kurt JB SR

Energy 9.70% (1.67) 27.07% 0.44 5.53 0.10% 0.36
Grains -0.25% (-0.06) 20.59% 0.65 6.95 0.10% -0.01
Industrial Materials -0.65% (-0.17) 19.18% 0.12 4.05 0.35% -0.03
Meats 5.68% (2.02) 13.93% -0.24 3.13 15.26% 0.41
Metals 6.38% (1.90) 18.55% -0.25 5.50 0.10% 0.34
Oilseeds 6.31% (1.50) 22.28% 0.05 4.00 0.51% 0.28
Softs 1.32% (0.38) 17.70% -0.02 3.29 50.00% 0.07
Diversified 4.07% (1.72) 11.61% -0.45 6.46 0.10% 0.35

Panel C: Short Leg

Mean t-stat Std Dev Skew Kurt JB SR

Energy 8.59% (1.47) 27.66% 0.45 5.50 0.10% 0.31
Grains -2.62% (-0.64) 21.02% 0.77 8.21 0.10% -0.12
Industrial Materials -3.27% (-0.84) 19.56% 0.07 3.49 13.31% -0.17
Meats 0.61% (0.21) 14.47% -0.22 3.04 22.85% 0.04
Metals 6.25% (1.86) 18.48% -0.26 5.47 0.10% 0.34
Oilseeds 5.55% (1.32) 22.42% -0.01 4.08 0.34% 0.25
Softs 1.03% (0.30) 18.05% 0.00 3.38 33.08% 0.06
Diversified 2.31% (0.98) 11.75% -0.49 6.61 0.10% 0.20
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Table 3: Static vs. Dynamic Components

This table decomposes the excess returns on the curve momentum strategy into static and dynamic compo-
nents. The trading signal is measured over a period of 12 months. The investment horizon corresponds to
1 month. For each commodity futures market and trading month, the investor opens a long position in the
nearby contract with the higher signal and opens a short position in the other nearby. We aggregate and report
all excess returns at the sector level. The last row presents the results for the diversified portfolio computed
as the equal-weighted average of sector excess returns. We decompose the average excess return to the curve
momentum strategy into its static and dynamic components. Panel A sheds light on the contribution of each
component. “Total” reports the annualized average excess return to the curve momentum strategy. “Static”
shows the annualized average excess return linked to the static component, whereas “Dynamic” shows the an-
nualized average excess return due to the dynamic component. “% Share (Dynamic)” reports the proportion
of the total curve momentum excess return that is due to the average of the dynamic component. We compute
this as the average excess return to the dynamic component divided by the average total excess return to the
strategy. Panel B shows how often the strategy involves a long or short position in each nearby. Long(1) and
Short(1) report how often the strategy entails a long and short position in the first nearby, respectively. R̄(1)

is the average excess return on the first nearby. Long(2) and Short(2) indicate how often the investor opens
a long and short position the second nearby, respectively. R̄(2) is the average excess return on the second
nearby.

Panel A: Decomposition

Returns % Share (Dynamic)Total Static Dynamic
Energy 1.10% 0.28% 0.83% 74.85%
Grains 2.37% 1.81% 0.55% 23.42%
Industrials 2.62% 1.07% 1.55% 59.16%
Meats 5.07% 1.60% 3.46% 68.38%
Metals 0.12% 0.05% 0.07% 58.66%
Oilseeds 0.76% 0.27% 0.49% 63.91%
Softs 0.28% 0.12% 0.16% 58.12%
Diversified 1.76% 0.74% 1.02% 57.75%

Panel B: Frequency

Long(1) Short(1) R̄(1) Long(2) Short(2) R̄(2)

Energy 34.12% 65.88% 7.86% 65.88% 34.12% 8.83%
Grains 21.93% 78.07% -2.55% 78.07% 21.93% 0.28%
Industrials 34.02% 65.98% -3.62% 65.98% 34.02% -0.30%
Meats 37.61% 62.39% 0.77% 62.39% 37.61% 5.01%
Metals 37.57% 62.43% 6.22% 62.43% 37.57% 6.41%
Oilseeds 38.76% 61.24% 5.94% 61.24% 38.76% 5.93%
Softs 33.36% 66.64% 1.07% 66.64% 33.36% 1.28%
Diversified 33.91% 66.09% 2.24% 66.09% 33.91% 3.92%
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Table 5: Commodity Risk Factors and the Diversified Curve Momentum

This table analyzes the relationship between the diversified curve momentum strategy and various commodity
risk factors. RXS−MOM is the excess return on the cross-sectional momentum strategy. RXS−CRY is the
excess return of the cross-sectional carry strategy. RAVG is the excess return to the average strategy that
involves a long position in the first nearby of each commodity market. RBASMOM is the excess return on
the basis momentum strategy. RBASMOM+H is the excess return to the hedged basis momentum strategy.
R

(HML)
SPREAD is the spreading excess return on the long-short basis strategy. R

(LNG)
SPREAD and R

(SHT )
SPREAD are

the spreading excess returns on the long and short legs of the basis strategy of Szymanowska et al. (2014),
respectively. All strategies have a 1 month investment horizon. Panel A is mainly focused on the risk factors
of Bakshi et al. (2017), while Panel B focuses on those of Szymanowska et al. (2014). The figures in brackets
indicate the Newey–West corrected t-ratio computed using 2 lags.

Panel A: Bakshi et al. (2017)

α 0.016 0.017 0.018 0.016 0.016 0.015
(5.728) (5.779) (6.321) (5.316) (5.394) (5.199)

RXS−MOM 0.012 0.009
(2.329) (1.049)

RXS−CRY 0.010 0.000
(1.622) (0.039)

RAV G -0.013 -0.014
(-2.490) (-2.662)

RBASMOM 0.014 0.000
(2.262) (0.006)

RBASMOM+H 0.122 0.105
(3.996) (3.048)

R2 2.41% 1.26% 1.30% 1.87% 5.61% 8.00%

Panel B: Szymanowska et al. (2014)

α 0.017 0.017 0.018 0.016 0.016 0.016
(5.949) (6.337) (6.127) (5.416) (5.472) (5.571)

R
(HML)
SPREAD 0.110

(3.456)
R

(LNG)
SPREAD 0.201 0.158

(4.204) (3.176)
R

(SHT )
SPREAD -0.039 0.002

(-0.990) (0.057)
RBASMOM 0.014 0.001

(2.262) (0.194)
RBASMOM+H 0.122 0.085

(3.996) (2.311)
R2 4.69% 6.77% 0.34% 1.87% 5.61% 9.36%
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Table 6: Subsample Analysis

This table presents summary statistics of the excess returns on the curve momentum strategy. The trading
signal is measured over a period of 12 months. The investment horizon corresponds to 1 month. For each
commodity futures market and trading month, the investor opens a long position in the nearby contract with
the higher signal and opens a short position in the other nearby. We aggregate and report all excess returns at
the sector level. The last row presents the results for the diversified portfolio computed as the equal-weighted
average of the curve momentum strategy excess returns obtained at the sector level. We split the sample into
two periods centered around the adoption of the Commodity Futures Modernisation Act (CFMA) in December
2000. We separately present the results for the period up to (and including) December 2000 (Pre-CFMA)
and after December 2000 (Post-CFMA). “Difference” reports the difference between the average Post-CFMA
excess return and the average Pre-CFMA excess return. “Mean” reports the annualized average excess return.
“t-stat” shows the t-ratio associated with the figured reported under “Mean”. We use the Newey–West corrected
(with 2 lags) standard errors to compute these test statistics.

Sector
Pre-CFMA Post-CFMA Difference

Mean t-stat Mean t-stat Mean t-stat
Energy 0.69% (0.73) 1.52% (2.40) 0.83% (0.72)
Grains 1.60% (2.14) 3.12% (3.28) 1.52% (1.33)
Industrials 0.56% (0.41) 4.64% (3.21) 4.08% (2.13)
Meats 2.37% (1.77) 7.73% (5.13) 5.36% (2.81)
Metals 0.00% (0.01) 0.24% (2.12) 0.24% (0.67)
Oilseeds 0.63% (1.72) 0.89% (1.50) 0.27% (0.34)
Softs 0.65% (0.92) -0.08% (-0.14) -0.74% (-0.72)
Diversified 0.93% (2.59) 2.58% (6.31) 1.65% (3.22)
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Table 8: Alternative Formation and Holding Periods

This table presents summary statistics of the diversified curve momentum strategy implemented within each
commodity futures curve. The trading signal is measured over a period of J months. The investment horizon
corresponds to K months. For each commodity futures market and trading month, the investor opens a
long position in the nearby contract with the higher signal and opens a short position in the other nearby.
We report the results of the diversified curve momentum strategy computed by first aggregating all excess
returns at the sector level and then taking an equal-weighted average of sector excess returns. We present the
(annualized) average excess return of the diversified curve momentum strategy. The figures in parentheses
indicate the Newey–West t-statistics computed with K + 1 lags. The numbers in square brackets show the
(annualized) Sharpe ratio of the related strategy.

J/K 1 6 12 18 24

1
0.93% 0.99% 1.03% 0.87% 0.86%
(3.66) (5.16) (4.37) (3.15) (2.90)
[0.68] [1.49] [1.75] [1.59] [1.66]

6
1.83% 1.65% 1.49% 1.33% 1.30%
(6.91) (5.36) (3.91) (3.16) (2.90)
[1.40] [1.56] [1.56] [1.51] [1.57]

12
1.76% 1.49% 1.28% 1.23% 1.24%
(6.24) (4.17) (3.02) (2.75) (2.64)
[1.28] [1.24] [1.13] [1.18] [1.27]
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Table 9: Excess Returns on the Curve Momentum Strategy: The Samuelson
Effect

This table presents summary statistics of the modified curve momentum strategy that measures the momentum
signal over a period of 12 months. The holding period of the strategy is 1 month. The modified strategy
accounts for the difference in the volatility of the returns of the two nearbys. For each commodity futures
market and trading month, the investor opens a long position in the nearby contract with the higher signal
and opens a short position in the other nearby. The size of the investment in each nearby is inversely
proportional to the volatility of its excess returns measured over the past 12 months. We aggregate all
strategy excess returns at the sector level and also report the results for the diversified portfolio computed as
the equal-weighted average of sector excess returns. “Mean” reports the (annualized) average curve momentum
excess return. “t-stat” is the Newey–West corrected (with 2 lags) test statistic associated with the mean excess
return. “Std Dev” denotes the (annualized) standard deviation of the excess returns. “Skew” and “Kurt” are
the skewness and kurtosis, respectively. “JB” is the Jarque–Bera p-value of the test that the excess returns
are normally distributed. Finally, “SR” is the (annualized) Sharpe ratio.

Mean t-stat Std Dev Skew Kurt JB SR

Energy 1.05% (1.73) 3.25% 0.26 17.32 0.10% 0.32
Grains 3.93% (3.85) 4.94% 0.23 4.97 0.10% 0.80
Industrial Materials 2.08% (1.33) 7.78% 0.06 4.68 0.10% 0.27
Meats 12.25% (5.00) 11.42% 0.13 3.75 1.86% 1.07
Metals 0.14% (0.58) 1.25% 0.29 10.37 0.10% 0.11
Oilseeds 1.31% (2.14) 3.50% 0.18 8.01 0.10% 0.37
Softs 0.23% (0.36) 3.33% 0.02 7.77 0.10% 0.07
Diversified 3.00% (5.51) 2.43% -0.03 3.00 50.00% 1.23
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Table 10: Decision Delay

This table presents summary statistics of the excess returns on the curve momentum strategy. We assume the
investor uses the oldest 11 months and 3 weeks of data (of the past 12 months) to compute the trading signal.
The investment horizon corresponds to 1 month. For each commodity futures market and trading month, the
investor opens a long position in the nearby contract with the higher signal and opens a short position in the
other nearby. We aggregate and report all excess returns at the sector level. The last row presents the results
for the diversified portfolio computed as the equal-weighted average of the strategy excess returns obtained for
individual sectors. “Mean” reports the (annualized) average curve momentum excess return. “t-stat” is the
Newey–West corrected (with 2 lags) test statistic associated with the mean excess return. “Std Dev” denotes
the (annualized) standard deviation of the excess returns. “Skew” and “Kurt” are the skewness and kurtosis,
respectively. “JB” is the Jarque–Bera p-value of the test that the excess returns are normally distributed.
Finally, “SR” is the (annualized) Sharpe ratio.

Mean t-stat Std Dev Skew Kurt JB SR

Energy 0.99% (1.90) 3.00% 0.71 17.65 0.10% 0.33
Grains 2.71% (4.47) 3.01% -0.05 6.27 0.10% 0.90
Industrial Materials 2.64% (2.57) 5.18% -0.14 4.37 0.10% 0.51
Meats 5.29% (5.26) 5.08% 0.26 6.01 0.10% 1.04
Metals 0.11% (0.71) 0.94% 0.21 17.77 0.10% 0.12
Oilseeds 0.64% (1.79) 2.04% 0.35 12.87 0.10% 0.31
Softs 0.73% (1.23) 2.79% 2.51 23.71 0.10% 0.26
Diversified 1.87% (6.67) 1.35% 0.09 3.35 30.82% 1.38
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Table 11: Transaction Cost: Breakdown

This table sheds light on the transaction costs associated with the C − MOM(12, 1) strategy. In order
to compute the (round-trip) transaction costs (TC), we use three distinct assumptions. Panel A assumes
constant transaction costs of 0.033% in each nearby contract. Panel B models the transaction cost in each
nearby as a function of the brokerage fee, the futures price, the bid-ask spread which corresponds to 1 tick
size and the contract multiplier. Panel C presents the results when the bid-ask spread component is allowed
to be different for different nearbys. “TC(1)” and “TC(2)” report the average round-trip transaction costs in
the first and second nearby contract, respectively. “Rebal” shows the turnover rate (per nearby) induced by
the rebalancing effect. “ Rebal & Roll” shows the turnover rate (per nearby) due to (1) rebalancing and (2)
rollover effects.

Panel A: TC(m,i)
t+1 = 0.03 %

TC(1) TC(2) Rebal Rebal & Roll

Energy 0.033% 0.033% 17.63% 190.80%
Grains 0.033% 0.033% 17.68% 94.43%
Industrials 0.033% 0.033% 22.19% 97.04%
Meats 0.033% 0.033% 13.02% 116.86%
Metals 0.033% 0.033% 21.01% 158.68%
Oilseeds 0.033% 0.033% 20.81% 127.71%
Softs 0.033% 0.033% 22.34% 93.79%
Diversified 0.033% 0.033% 19.24% 125.62%

Panel B: TC(m,i)
t+1 = 10+T ick(m)×CM(m)

F
(m,i)
t+1 ×CM(m)

TC(1) TC(2) Rebal Rebal & Roll

Energy 0.063% 0.063% 17.63% 190.80%
Grains 0.031% 0.030% 17.68% 94.43%
Industrials 0.019% 0.019% 22.19% 97.04%
Meats 0.001% 0.001% 13.02% 116.86%
Metals 0.015% 0.015% 21.01% 158.68%
Oilseeds 0.032% 0.033% 20.81% 127.71%
Softs 0.035% 0.034% 22.34% 93.79%
Diversified 0.028% 0.028% 19.24% 125.62%

Panel C: TC(m,i)
t+1 = 10+i×T ick(m)×CM(m)

F
(m,i)
t+1 ×CM(m)

TC(1) TC(2) Rebal Rebal & Roll

Energy 0.063% 0.092% 17.63% 190.80%
Grains 0.031% 0.045% 17.68% 94.43%
Industrials 0.019% 0.038% 22.19% 97.04%
Meats 0.001% 0.001% 13.02% 116.86%
Metals 0.015% 0.023% 21.01% 158.68%
Oilseeds 0.032% 0.049% 20.81% 127.71%
Softs 0.035% 0.051% 22.34% 93.79%
Diversified 0.028% 0.043% 19.24% 125.62%
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Table 12: Net Excess Returns

This table presents summary statistics of the net excess returns on the C −MOM(12, 1) strategy. In order
to compute the round-trip transaction costs, we use three distinct assumptions. Panel A assumes constant
transaction costs of 0.033% in each nearby contract. Panel B models the transaction cost in each nearby as
a function of the brokerage fee, the futures price, the bid-ask spread that corresponds to 1 tick size and the
contract multiplier. Panel C presents the results when the bid-ask spread component is allowed to be different
for different nearbys. “Mean” reports the (annualized) average excess return of the strategy. “t-stat” is the
Newey–West corrected (with 2 lags) test statistic associated with the mean excess return. “Std Dev” denotes
the (annualized) standard deviation of the excess returns. “Skew” and “Kurt” are the skewness and kurtosis,
respectively. “JB” is the Jarque–Bera p-value of the test that the excess returns are normally distributed.
Finally, “SR” is the (annualized) Sharpe ratio.

Panel A: TC(m,i)
t+1 = 0.03 %

Mean t-stat Std Dev Skew Kurt JB SR

Energy 0.34% (0.64) 3.03% 0.55 17.26 0.10% 0.11
Grains 1.99% (3.25) 3.03% -0.05 6.13 0.10% 0.66
Industrial Materials 2.23% (2.20) 5.11% -0.14 4.42 0.10% 0.44
Meats 4.60% (4.42) 5.13% 0.32 5.87 0.10% 0.90
Metals -0.51% (-2.80) 0.94% -0.16 17.91 0.10% -0.55
Oilseeds 0.25% (0.71) 2.12% 0.24 11.57 0.10% 0.12
Softs -0.09% (-0.20) 2.71% 0.34 19.81 0.10% -0.03
Diversified 1.26% (4.46) 1.38% 0.13 3.48 9.89% 0.91

Panel B: TC(m,i)
t+1 = 10+T ick(m)×CM(m)

F
(m,i)
t+1 ×CM(m)

Mean t-stat Std Dev Skew Kurt JB SR

Energy -0.35% (-0.64) 3.05% 0.49 16.97 0.10% -0.11
Grains 1.98% (3.22) 3.04% -0.04 6.06 0.10% 0.65
Industrial Materials 2.38% (2.35) 5.11% -0.13 4.41 0.10% 0.46
Meats 5.06% (4.87) 5.11% 0.31 5.85 0.10% 0.99
Metals -0.14% (-0.77) 0.93% -0.21 17.85 0.10% -0.15
Oilseeds 0.24% (0.71) 2.11% 0.26 11.52 0.10% 0.12
Softs -0.10% (-0.22) 2.71% 0.32 19.67 0.10% -0.04
Diversified 1.29% (4.51) 1.39% 0.12 3.42 15.50% 0.93

Panel C: TC(m,i)
t+1 = 10+i×T ick(m)×CM(m)

F
(m,i)
t+1 ×CM(m)

Mean t-stat Std Dev Skew Kurt JB SR

Energy -0.70% (-1.27) 3.06% 0.47 16.86 0.10% -0.23
Grains 1.88% (3.06) 3.04% -0.04 6.05 0.10% 0.62
Industrial Materials 2.25% (2.22) 5.11% -0.13 4.41 0.10% 0.44
Meats 5.05% (4.87) 5.11% 0.31 5.85 0.10% 0.99
Metals -0.19% (-1.05) 0.93% -0.22 17.79 0.10% -0.21
Oilseeds 0.11% (0.32) 2.11% 0.26 11.47 0.10% 0.05
Softs -0.20% (-0.43) 2.71% 0.31 19.55 0.10% -0.07
Diversified 1.17% (4.06) 1.39% 0.12 3.41 17.64% 0.85
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