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ABSTRACT Fuel poverty has a negative impact on the wellbeing of individuals within a household; 

affecting not only comfort levels but also increased levels of seasonal mortality. Wellbeing solutions within 

this sector are moving towards identifying how the needs of people in vulnerable situations can be improved 

or monitored by means of existing supply networks and public institutions. Therefore, the focus of this 

research is towards wellbeing monitoring solution, through the analysis of gas smart meter data. Gas smart 

meters replace the traditional analogue electro-mechanical and diaphragm-based meters that required regular 

reading. They have received widespread popularity over the last 10 years. This is primarily due to the fact 

that by using this technology, customers are able to adapt their consumption behaviours based on real-time 

information provided by In-Home Devices. Yet, the granular nature of the datasets generated has also meant 

that this technology is ideal for further scalable wellbeing monitoring applications. For example, the 

autonomous detection of households at risk of energy poverty is possible and of growing importance in order 

to face up to the impacts of fuel poverty, quality of life and wellbeing of low-income housing. However, 

despite their popularity (smart meters), the analysis of gas smart meter data has been neglected. In this paper, 

an ensemble model is proposed to achieve autonomous detection, supported by four key measures from gas 

usage patterns, consisting of i) a tariff detection, ii) a temporally-aware tariff detection, iii) a routine 

consumption detection and iv) an age-group detection. Using a cloud-based machine learning platform, the 

proposed approach yielded promising classification results of up to 84.1% Area Under Curve (AUC), when 

the Synthetic Minority Over-sampling Technique (SMOTE) was utilised.  

INDEX TERMS Energy and Fuel Poverty, Gas, Machine Learning, Smart Meter, Smart Cities, Wellbeing 

I. INTRODUCTION 

Fuel poverty remains a prevalent concern [1][2]; where 

consumers with long-term health conditions, or individuals 

living on a low income, can find themselves in the position 

of whether to keep their homes at a comfortable temperature 

or pay their energy bills [3]. Yet, with technology 

improvements in the energy sector, new opportunities have 

arisen [4]. Smart city technologies can now play a key role 

in improving the wellbeing of such vulnerable households 

through use of existing digital technologies [1][5].  

Particularly, this industry has witnessed important 

technological developments in the real-time data analytics 

surrounding the generation, transmission, and consumption 

of water, gas and electricity [5]. An example is the smart 

meter, a technology that provides real-time consumption 

information and automates the billing process for the 

customer and supplier. It is well-documented that the smart 

meter can play a key role in the reduction in energy poverty. 
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For example, the EU-funded SMART-UP1 project works 

with vulnerable customers, who have smart meters installed, 

to achieve energy savings through small changes to their 

habits that result in an improvement their living conditions 

and help to reduce their energy bills. However, is a ‘hands-

on’ approach, reliant on a network of staff working with 

vulnerable households across member states.  

Yet, the data generated from smart meters has shown to be 

technically reliable for the remote and autonomous profiling 

of individuals at home [6], the detection their age grouping 

[7] and their monitoring general health [8]. All of which are 

applications that offer demonstrate how smart gas meter data 

is technically reliable to measure consumer demographics 

and support vulnerable households [9]. Such insights have 

been proven to be possible using both the default 30-minute 

data samples but also through use of the high-resolution data 

gathered from the smart meters [8] [10].  

Smart meters consist of three layers of technology; i) the 

physical meter, ii) the communication layer network 

management and iii) the computer systems that manage the 

data applications and services [11]. This technology has 

revolutionised the process for monitoring end-users’ 

consumption of gas and electricity as is a core part of the 

smart city infrastructure. It is technologies such as this that 

enable researchers to identify and exploit diverse data in 

meaningful ways to assist the development of new policies 

[12] but also establish practical and scalable solutions to 

modern-day wellbeing challenges. These layers of 

technology have transformed the dynamics of the power and 

gas distribution system. Energy distribution, which was once 

so predictable, is now dynamic and has a random probability 

distribution pattern. Yet, it has increased the personalised 

element, enabling the utility provider to have a better 

understanding of their customers’ consumption behaviours. 

Typically, smart meters record the consumption at 30-

minute intervals. This information is shared mutually with 

the user, if they have an In-Home Device (IHD), and the 

operator. Up-to-date information is then provided regarding 

the consumption amounts, with high levels of accuracy. The 

readings are then used by the company for purposes such as 

load balancing, forecasting and accurate billing.  

In 2014, a report issued by the European Commission 

outlined that there was an intention for 45 million gas smart 

meters to be rolled out within the European Union by the end 

of 2020. This is the equivalent of around 40% of existing 

customers owning a gas smart meter. The ambition behind 

this project is two-fold. Firstly, to provide a more cost-

efficient system to the end user, as on average, smart meters 

provide savings of €160 for gas and €309 for electricity. 

Secondly, to reduce energy consumption, as on average the 

energy saving is around 3%2. 

Smart meters generate a gold-mine of data. Therefore, in 

addition to the aforementioned benefits of the smart metering 

                                                
1 https://www.smartup-project.eu/about/ 

infrastructure, an increasing number of projects have 

emerged offering potential beneficial applications to both the 

end-user and utility company. Particularly, within this area, 

a significant number or researchers investigate applications 

relating to forecasting customer demand [13]. This area of 

research is particularly challenging, given the high 

variability of end users’ behaviour.  

Furthermore, it is also a considerable task to process the 

data within a smart cities setting, given then volume of data 

generated. For example, each smart meter generates in the 

region of 400MB of data on a yearly basis. Consequently, 

this results in an estimated 4.8 petabytes’ worth of data 

annually. Analysing this dataset is a considerable big data 

challenge for any utility provider; and just like the work in 

this paper, a data analytics process will require the use of a 

cloud-based data processing platform. 

Other studies focus on profiling within the smart grid to 

discern user behaviours, to support demand-side 

management systems [14]. However, research within this 

area often requires direct user input provided through survey 

questions to produce sample representative load profiles. 

This type of approach may also involve the use of either sub-

second sampling to detect appliance usage around the home, 

or the use of 10-second data samples to detect appliances that 

are classed as used within the area of activities of daily living 

to produce effective results [15][16]. Low samples are 

required for i) device detection but also ii) for maintaining 

the uniqueness of consumer patterns. That said, the level of 

detail within large-scale 30-minute sample data is 

intrinsically valuable and has been reflected in numerous 

research investigations [17][18].  

In this paper, we propose a novel approach of using gas 

smart meter data to improve the wellbeing of occupants in 

residential properties. Four key measures are observed from 

gas usage patterns as part of this approach, which are: 

Tariff detection – Identifying whether a home is on the 

expected tariff based on their overall usage profile. For 

example, often consumers may not be aware that another 

tariff would be beneficial. A migration to a different tariff 

would help towards the reduction in energy poverty. 

Temporally-aware tariff detection – Identifying whether a 

home is on the expected tariff, based on the timing of their 

energy usage. Such information may be used to inform 

occupants of cheaper alternative tariffs based on their time-

of-day consumption habits. Unlike the above tariff-detection 

process, that is concerned with the full 24-hourt consumption 

pattern, this experiment factors in time of day in which the 

consumption took place. This provides a more granular 

analysis of the consumption patterns at different times of 

day. 

Routine consumption detection – Identify routine patterns 

of energy usage. This may allow for the occupants to be 

2ec.europa.eu/energy/sites/ener/files/documents/1_EN_ACT_part1_v8.pdf 
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advised on what changes to their energy usage behaviour 

could enable cost savings on a given tariff. 

Age group detection - Establish the age categories of the 

occupants, in order to identify those who are at risk of energy 

poverty. As documented by Robinson et al., energy poverty 

is of highest risk amongst the elderly community. For that 

reason, a focus is on the detection of customers aged 65 and 

over. 

To the best of our knowledge, this is the first time this has 

been attempted on the provided dataset and, thus, the first 

study of its kind. Other research projects in this area focus 

predominantly on the use of electricity data, as opposed to 

the gas usage dataset applied in this research. Many of such 

works are outlined in [19]. Additionally, an understanding of 

consumer load profiling of gas is fundamental for improving 

energy efficiency and working towards lower carbon 

emissions [20]. 

The remainder of this paper is organised as follows. 

Section II provides a background discussion on related work 

and the data used in this research. Section III outlines the 

methodology behind the research. Results are presented in 

Section IV and the paper is concluded in Section V. 

II. BACKGROUND 

The challenges vulnerable households face in the UK alone, 

results in upwards of 20,000 deaths each year due to household 

heating bills [1]. Yet, a growing amount of technology is 

available to help vulnerable households better manage their 

costs and their energy consumption at home and as an enabler 

to improve the wellbeing of vulnerable households. 

However, the technical challenge surrounding the solutions, 

means that many potential users are reluctant, unable or, in 

some circumstances, scared to make use of the technologies 

available [1]. Smart meters are part of the smart cities 

concept, are predominantly offer a more efficient ways to 

heat and light buildings [21]. To analyse smart meter data 

trends, there is an array of data classification techniques 

available.  

Smart meter data is a time-series dataset, and as such the 

majority of investigations focus on techniques that are 

appropriate for time-series data analytics. Given that time-

series data is comprised of discrete values, regression analysis 

is the preferred choice for data analysis processes. However, 

clustering techniques have also been used to generate notable 

results. In this section, related research works are presented. 

A. RELATED WORK 

Traditionally, knowledge of individual consumer behaviour 

patterns was not essential when planning load forecasting, as 

discussed by Groß et al. [22]. This is the case particularly 

within the electricity management network. However, because 

of the increase in the use of decentralised power, through the 

introduction of the smart grid, load flow is now increasingly 

multi-directional. The traditional load curve models, which are 

comprised of a graph of energy/gas usage over time, are no 

longer appropriate methods for representing the load profiles 

from the data generated by smart meters. For that reason, Groß 

et al. adopt a linear regression approach for the 

parameterisation of stochastically-generated synthetic load 

profiles constructed using Markov chains. However, their 

approach focuses on the technique’s application within the 

wider smart grid in order to compensate for deficiencies within 

the grid, rather than offering a wellbeing augmentation for the 

end-user. 

Other research projects, including the study conducted by 

Robinson et al., outline the design of a system which 

demonstrates how intelligent technologies can be used for 

unobtrusive energy consumption management to support the 

elderly in particular [1]. The aim of their research is to alter 

the behaviour of the consumer to adopt more energy conscious 

behavioural patterns around the home, and in-turn, reduce 

their bills. This type of research is having an increasingly 

positive impact on household energy bills, and has resulted in 

many technological solutions available in the market place. 

Whilst there is a significant amount of research within the 

electricity profiling and forecasting domain, there are 

relatively few projects concerning gas smart meter data. 

Focusing on gas meters specifically, Gupta et al. propose their 

own mathematical models for constructing gas load profiles 

from residential gas meters [20]. The aim of their research is 

to study average load levels for residential units, construct cost 

effective methods for monitoring systems and compare the 

electricity consumption against gas consumption. Their 

approach is based on data collected from a testbed. While the 

data is validated using a statistical method, the load profile 

data is based on estimates ascertained from the testbed 

experiments. Their approach also does not adopt a machine 

learning analysis of the data, but rather takes a statistical 

modelling approach to construct the user profiles.  

Other approaches for load profiling adopt either a direct-

clustering based or indirect-clustering approach. Within this 

area, research shows the 30-minute data sampling rate of smart 

meter data is reliable for most clustering approaches for load 

profiling [23]. Direct clustering refers to a clustering process, 

such as k-means, where the raw data is clustered without any 

prior data preparation. Whereas, indirect clustering applies 

other techniques prior to clustering, such as principal 

component analysis. For example, Benitez et al. apply a k-

means clustering algorithm to generate a dynamic 

segmentation of daily load profiles as a representative sample 

of Spanish residential customers [24]. Their approach is able 

to detect seasonal effects on consumption patterns and their 

algorithm tends to group higher energy-consuming users into 

the same cluster. The benefit of their research is that it allows 

the observer to identify trends of user groups at a glance from 

a significant dataset. The approach successfully identified a 

change in consumer behaviour, resulting from a law change 

affecting the Spanish energy market. 

The k-means clustering approach is also adopted by Khan 

et al. [13] (whose research uses the same data source as that 
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utilised in this paper 3). In their research, the authors focus on 

forecasting rather than profiling and adopt an ensemble 

classification approach, using both the k-means clustering and 

a linear regression neural network. By converting the non-

linear energy meter profiles into linear profiles, the authors are 

able to forecast consumer load. Their work differs to the 

research presented in this paper, in that the data used is 

electricity data rather than gas data. Also, the technique in this 

paper does not employ a k-means approach. 

B. GAS METER DATA: CASE STUDY 

The data used in this research is comprised of 1,033 

anonymised residential properties over an 18-month period 

between 2009 and 2011. The data is gas meter readings 

collected at a 30-minute sample rate.  

Within the dataset, the users are divided into 4 different 

tariff groups, as detailed in Table 1. 

TABLE I 

TARIFF ALLOCATION  

Allocation 

Code 
Allocation Interpretation Count 

1 Bi-monthly bill 257 

2 Monthly bill 248 

3 Bi-monthly bill + IHD 263 

4 Bi-monthly bill + IHD + variable tariff 265 

A sample of this data is presented in Figure 1, which 

displays a stacked line plot of 24-hours’ worth of gas 

consumption for 10 users randomly selected from the data set. 

Clear trends in behaviour are reflected in the three peaks of 

high consumption periods in the morning, lunch time and 

evening. Each colour represents a single user. 

 

FIGURE 1.  Stacked Line Plot of 10 Random Users. 

A sample of the raw data is presented in Table II. The date 

and timestamp (DT) is displayed in Julian’s Day format, with 

01 January 2009 as the starting point. As gas bills display 

usage in kilowatt hours (kWh), the usage is displayed as kW 

despite gas meters measuring cubic metres. One of the main 

differences between gas and electricity readings is that the gas 

data will have prolonged readings of zero values where no gas 

is used. For example, between time 33504 and 33508, the 

customer on tariff 2 has no gas consumption for a period of 2.5 

hours but may well be active within the home. In the case of 

electricity data, the consumption may peak and drop but there 

is always a level of energy usage, due to electrical appliances 

in the house being on standby for example. Additionally, the 

smart meter itself requires energy consumption to function, so 

by default an energy reading will always be produced.  

                                                
3 C. for E. R. (CER), “ER Smart Metering Project - Gas Customer Behaviour 

Trial, 2009-2010.” 

TABLE II 

DATA SAMPLE 

 Tariff 1 Tariff 2 Tariff 3 Tariff 4 

DT ID Usage ID Usage ID Usage ID Usage 

33501 1000 0.894 1015 0.485 1016 0.000 1024 7.049 

33502 1000 0.608 1015 0.453 1016 0.000. 1024 5.674 

33503 1000 0.685 1015 0.111 1016 0.000 1024 0.000 

33504 1000 0.817 1015 0.000 1016 1.801 1024 0.000 
33505 1000 0.608 1015 0.000 1016 5.511 1024 0.000 

33506 1000 0.850 1015 0.000 1016 2.397 1024 0.000 

33507 1000 0.663 1015 0.000 1016 0.000 1024 0.000 

33508 1000 0.607 1015 0.000 1016 4.185 1024 0.000 
33509 1000 0.906 1015 3.344 1016 3.170 1024 0.000 

33510 1000 0.607 1015 10.91 1016 5.721 1024 1.966 

Within the dataset, in relation to Figure 1, it is possible to 

arrange a 24-hour time block into 4 separate periods of activity 

a) Morning, b) Afternoon, c) Evening and d) Night. 
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a b 

c d 

FIGURE 2.  (a)All Customers for Morning Period over 7 Days. (b)All 
Customers for Afternoon Period over 7 Days. (c)All Customers for 
Evening Period over 7 Days. (d)All Customers for Evening Period over 7 
Days  

The visualisations shown in Figure 2 serve as a premise to 

hypothesise four periods of daily activity: morning, afternoon, 

evening and night. The graphs, which are based on 501,648 

rows of data, show the full values for all customers as a sum, 

to show the overall trend for the time of day for a seven-day 

period. 

C. DISCUSSION 

Evidence of the benefits of a smart meter are documented 

in the findings of the report published by the ISSDA CER 

Smart Metering Project [25]. Over the period of 18 months, 

the consumption of gas drops on each of the four tariffs. This 

change is reflected in Table III, which shows the difference in 

the consumption levels during the smart meter trial period4. 

Based on the statistics presented, it should be possible to detect 

a variation in the tariff types as the variation in consumption 

changes for each. None of the tariff options have the same 

change in consumption, however, tariffs 2 and 3 are the 

closest, but overall the standard deviation is 0.57373 between 

the four tariffs. 

TABLE III 

CHANGE IN CONSUMPTION OVER 18 MONTHS [26] 

Tariff 1 2 3 4 

Change over the trial -2.2 -2.8 -2.9 -3.6 

The saving produced by the tariffs displays a variability 

between the different user groups. The following section 

presents a methodology that can be applied to detect this subtle 

variation in consumption patterns between the customers on 

different tariffs. 

III. METHODOLOGY 

This research is timely due to i) an underlying switch in the 

technologies being used to monitor home gas and energy 

consumption; ii) the need for advanced data analytics to 

process, analyse and interpret the vast datasets generated by 

the smart metering infrastructure; iii) the growing need for 

                                                
4 C. for E. Regulation, “Report On Smart Metering Technology Trials for 

Commission for Energy Regulation,” 2011. 

remote profiling, for bespoke applications, such as health care 

monitoring [27], bad data detection [28], anomaly detection or 

load forecasting [29]; and iv) The growing trend for 

uncovering general information about a consumer using only 

their home energy readings [30]–[33]. Most research in this 

area makes use of electrical energy readings from smart 

meters. However, the focus of this paper is on gas meter data; 

making this research stand out from other related projects. Gas 

data analysis is often neglected from a machine learning point 

of view. 

The contribution of this research involves four key 

observations: i) tariff detection; ii) temporally-aware tariff 

detection; iii) routine consumption detection and iv) age group 

detection, which are combined to produce an ensemble 

detection model. 

A. ENSEMBLE DETECTION METHODOLOGY 

Not all citizens have the capacity to make use of smart city 

services [34]. As outlined in [3], a typical use-case example 

would be an individual is living alone with arthritis (or other 

long term health condition) and on a low income. Often the 

support provided involves an enhanced installer visiting and 

provider the user with an IHD to support their energy 

management. However, no intelligent services are provided 

with the device, and the ownness is still on the user to modify 

their home behavior and fuel consumption. Therefore, an 

autonomous detection process is advantageous to support the 

wellbeing of vulnerable groups. The ensemble detection 

model to facilitate this is presented in Figure 3.  

 
FIGURE 3. Ensemble Methodology 

The model is a multi-stage process. 1) An age group 

detection process is conducted to detect whether the individual 
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is in a 65+ age grouping. If a 70% AUC accuracy is achieved 

for a single classifier, 2) the next stage involves the detection 

of the routines of high home-activity. 3) The detection of the 

tariff band of the user is conducted both without factoring time 

of day and then also 4) with factoring time blocks (morning, 

afternoon, evening and night).  

The multi-stage process is outlined as follows (in reverse 

order). The full 18-month dataset is used in the experiments; 

however, the entire dataset is not used in one go. Rather 

samples are selected from the overall dataset to make the data 

pre-processing requirements less intensive. This is done for 

three reasons, i) our initial experiments when using the entire 

dataset showed no improvement in the classification accuracy 

when more than 1-months’ worth of data was employed; ii) 

using smaller samples of the dataset makes the experiments 

reproducible for other researchers without access to cloud 

analytics, and iii) the experiments are more realistic, that is, in 

a real-world setting there would not be access to such a large 

dataset but samples would be available in a real-time setting. 

In each experiment, different classification algorithms are 

tested to find the optimal approach. The algorithms selected 

for the experiments include a boosted decision tree, decision 

forest, decision jungle, neural network, Support Vector 

Machine (SVM) and Bayes point machine. Each are outlined 

as follows. 

1. Boosted decision tree is ideal for an accurate prediction 

as it employs an ensemble learning method. By using 

this approach, each newly formed tree corrects for the 
errors of the first tree. Decision trees are able to capture 

non-linear data. 

2. Decision forest, which is an ensemble learning approach 

with bootstrap aggregating applied, where each new tree 

is grown from a new random sample from the dataset. 

Outputs from the classification are achieved by voting, 

where outputs of the models are aggregated. 

3. Decision jungles build on the decision forest approach; 

however, they integrate an ensemble of decision 

Directed Acyclic Graphs (DAGs) which allows tree 

branches to merge. 

4. Neural networks function by employing a set of 
interconnected layers. When there is an input into the 

first layer, a connection to an output layer is facilitated 

through use of an acyclic graph. This graph is typically 

comprised of weighted edges and nodes to form a 

decision [35]. 

5. SVMs are commonly used as a benchmark in machine 

learning experiments [36] due to their flexibility, 

simplicity and tendency to perform well under simple 

classification tasks. Its prediction is based on two 

possible outcomes where it recognises patterns in a 

multi-dimensional feature space called the hyperplane.  
6. Bayes Point Machine uses a Bayesian method. 

However, it is based on a linear classification approach. 

One advantage of this technique is that it is not prone to 

overfitting to the training data. In our experiments, 

training iterations are set to 30, which is the 

recommended value for accuracy [37]. 

B. EXPERIMENT 1 –TARIFF DETECTION 

One month’s worth of gas meter readings is analysed, which 

totals to 1,302,336 rows of raw data with the class labels. This 

experiment serves as a benchmark test of the machine learning 

approach to see if the detection of variability in the dataset is, 

in-fact, possible. The data used for the experiment is taken 

from the latter part of the dataset, as the variation should be 

stronger due to the customers adapting to their tariff. The 

process employs a direct classification approach. In other 

words, only the raw data is used for the classification and no 

features or data transformation are applied to the dataset.  

Given the nature of a cloud processing platform, the 

classifiers can be run simultaneously. 

The first stage of the experiment employs a direct 

classification approach, where the raw dataset is classified 

using a one tariff vs all approach. This serves as a standard 

experiment for comparison with more advanced techniques 

later in the research. The second phase involves extracting 

features from the dataset to adopt an in-direct classification. 

Statistical features including maximum and minimum values, 

mean, median and standard deviation of the d-dimensions, 

variance, skewness and kurtosis of the d-dimensions. 

The features are calculated at two-hour time blocks. This is 

due to the selection of skewness and kurtosis as features, as 

both require minimum three values as input. This approach is 

further outlined in our previous work [38]. Variance is 

calculated using (1) where �̅� is the sample mean, and n is the 

sample size [39]. 

𝜎2 =
∑(𝑥 − �̅�)2

(𝑛 − 1)
 

(1) 

Similarly, the standard deviation calculation takes x for the 

sample mean and n is the sample size, as displayed in (2) 

[39]. 

𝜎 = √
∑(𝑥 − �̅�)2

(𝑛 − 1)
 

(2) 

The calculation for skewness (S) is outlined in (3), where 
s is the sample standard deviation and x is the mean value 

[40]. 

𝑆 =
𝑛

(𝑛 − 1)(𝑛 − 2)
∑(

𝑥𝑗 − �̅�

𝑠
)3

𝑛

𝑗=1

 

(3) 

Likewise, kurtosis, which is a measure of outliers [41], 

also uses the standard deviation (s) and is calculated in (4) 

[40]. 



 Author Name: Preparation of Papers for IEEE Access (February 2017) 

2 VOLUME XX, 2017 

{
𝑛(𝑛 + 1)

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)
∑(

𝑥𝑗 − �̅�

𝑠
)4

𝑛

𝑗=1

} −
3(𝑛 − 1)

(𝑛 − 2)(𝑛 − 3)
 

(4) 

The inclusion of the features adds a cleaning stage to the 

methodology to account for any missing values. Rows with 

missing values are removed prior to the normalisation. 

Synthetic Minority Oversampling Technique (SMOTE) is 

then used to compensate for the missing values and the 

imbalance in the dataset. SMOTE employs a statistical 

approach for ensuring a balance in a dataset, by generating 

new instances from existing minority cases [42]. The 

advantage of SMOTE is that new instances are not 
duplicated from existing minority cases. Rather, the 

algorithm is able to take samples of the feature-space for 

each target class. It also calculates the nearest neighbours in 

the feature-space and uses this information to generate new 

examples that combine features of the target case with 

features of its neighbours.  

Prior to splitting the data for classification, the values in 

the dataset are normalised using sliding Z-score, as displayed 

in Figure 4b. This is calculated using (5): 

𝑍 =  
𝑥 − �̅�

𝑆𝑡𝑑(𝑥)
 

(5) 

Z-score normalisation is appropriate in this case, as it 

ensures that the raw data conforms to a common scale for the 

classification. 

(a) 

  (b) 

FIGURE 4. Experiment 1 (a) Min-max scaling, (b) Z-score Normalisation 

Sliding Z-score is used in each of the experiments. Min-max 

scaler, displayed in Figure 5a, is also considered as a 

normalisation approach and is calculated as outlined in (6). 

However, the values generated by the min-max scaling results 

in a lower standard deviation, which supresses the effect of 

outliers [43] and produced a lower classification accuracy 

during the initial experimentation. 

𝑀𝑀(𝑥𝑖𝑗) =
𝑥𝑖𝑗 −  𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 −  𝑥𝑚𝑖𝑛

 

(6) 

C. EXPERIMENT 2 – TEMPORALLY-AWARE TARIFF 
DETECTION 

The second factor detects behavioural differences in the 

four different time blocks mentioned previously (morning, 

afternoon, evening and night), in order to detect the tariff. 

Figure 5 presents the positive and negative correlation 

between the features, within the time blocks. 
The experiments are conducted with a reduced dataset of 

501,648 rows (7 days’ worth of data) but with the division of 

the data into their corresponding time blocks. As before, 

statistical features are extracted from the dataset for the 

classification. Given the mean values in the features, the 

scatter matrix is the m-by-m positive semi-definite matrix. 

Where T denotes matrix transpose, μ is the sample mean and 

multiplication is with regards to the outer product [42], as 

expressed in (7). 

𝑆𝑚 = ∑(𝑥𝑖 − 𝜇)(𝑥𝑖 − 𝜇)𝑇 =

𝑚

𝑖=1

∑(𝑥𝑖 − 𝜇) ⊗ (𝑥𝑖 − 𝜇)𝑇

𝑚

𝑖=1

= (∑ 𝑥𝑖𝑥𝑖
𝑇

𝑚

𝑖=1

) − 𝑚𝜇𝜇𝑇  

(7) 

In this case, from the visual inspection, the features 

predominantly have a positive correlation. A positive 

correlation is denoted by a progressive incline in the data 

points; for example, when the general pattern of the data 
points within a square is from bottom left to top right. An 

example of this would be Min to Max or Min to Mean. A 

negative correlation is a slope in the data points from top left 

to bottom right; for example, Min to Variance and Min to 

Standard deviation. Further to this, Figure 6 displays a 

correlation between skewness (x-axis) and kurtosis (y-axis). 

 

FIGURE 6. Experiment 2 Skewness vs Kurtosis 
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(a) (b) 

(c) 
(d) 

FIGURE 5. Experiment 2 Scatter Matrix (a) Morning, (b) Afternoon, (c) Evening and (d) Night 

The data presented is over a 7-day period for the afternoon 

period only, for all tariffs. 

Figure 7 displays a stacked line plot of all the features over 

a 24-hour period. The difference between variance and 

skewness demonstrates why the choices of features are ideal 

for supporting the classification.  

Theoretically, based on Figure 7, for some of the time 

blocks, it should be easier for the classifiers to separate the 

tariffs from each other. For example, in the afternoon and 

evening periods where there is a high gas consumption, there 

is also high variation in the consumption patterns. 
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FIGURE 7. Experiment 2 Line Plot of All Feature Values 

 

D. EXPERIMENT 3 – ROUTINE CONSUMPTION 
DETECTION 

As Figures 1 and 2 displayed in the background section, 

there are clear trends and differences in the consumption 

patterns at certain times of day. In this measure, these four time 

periods are added in as class labels. A random sample of the 

dataset is displayed in Table IV. 

TABLE IV 

TARIFF ALLOCATION 

ID Date Usage Time Tariff 
Time 

Block 

1000 02/12/2009 0.606969 04:00:00 1 Night 

1000 02/12/2009 9.398459 06:30:00 1 Morning 

1000 02/12/2009 10.30438 14:00:00 1 Afternoon 

1000 02/12/2009 1.777624 23:00:00 1 Evening 

The aim of the experiment is to demonstrate that, it is 

possible to identify different times of day based on 

consumption patterns. In total, this section is comprised of 

multiple smaller experiments. Initially, a benchmark 

experiment is conducted using a multiclass approach. A 

multiclass decision forest and multiclass decision jungle allow 

for the classification of all four time-periods in the same 

experiment. Next, a detection of the individual time blocks is 

conducted. This process is comprised of four experiments, 1) 

Morning vs Afternoon, Evening and Night; 2) Afternoon vs 

Morning, Evening and Night; 3) Evening vs Morning, 

Afternoon and Night and 4) Night vs Morning, Afternoon and 

Evening. The results from this experiment are presented in 

Section IV-B. 

E. EXPERIMENT 4 – AGE GROUP DETECTION 

For this final observation factor, the focus is on the 

identification of the over 65’s grouping. The premise and 

benefits of this work is outlined in our previous research [38]. 

For future applications of this research, this process will 

identify social clusters for health care cluster mapping. 

In this experiment, a dimensionality reduction process, 

using Principal Component Analysis (PCA), reduces the 

features from eight to four. Again, our previous work has 

demonstrated an improved detection level when PCA is 

introduced within this classification methodology. The four 

newly generated columns contain an approximation of the 

feature space of the 8 original features. Figure 8 displays 

scatter plot visualisations of the four newly generated features. 

 
(a)  

(b) 
FIGURE 8. PCA Features 1 and 2(a), PCA Features 3 and 4(b) 
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The PCA-generated features are split into a training and a 

test set. The classification is scored using the split data as a 

validation. 

IV. EXPERIMENTS AND RESULTS 

Each of the classifiers’ performance is calculated using a 

confusion matrix to assess the success of the classification or 

Area Under the Curve (AUC) and error. The AUC measures 

the entire two-dimensional area underneath a Receiver 

Operating Characteristic (ROC) curve. The ROC curve 

displays the true positive against the false positive predictions. 

AUC has been used instead of another measure (e.g. f1 score) 

as AUC assesses the whole range of thresholds rather than a 

specific one as measured by f1 score. Therefore, this produces 

a more holistic perspective on the classifier performance is. 

AUC measures the probability that test values from a 

randomly selected pair of binary class samples are correctly 

ranked and is thus a convenient global measure for the 

quantification of classification accuracy.  

A. RESULTS OF EXPERIMENT 1 

Experiment 1 results are divided in to two parts, i) the raw 

data (direct) classification and ii) the in-direct classification.  

i. Raw data with Direct Classification 

In this section, a one tariff vs all tariffs classification is 

employed. In this case, tariff 4 is selected for the one vs all, as 

this is the tariff, which displayed the greatest variation 

compared throughout the dataset. The benchmark experiment 

serves as a comparison between direct and indirect 

classification and a justification for the choice of in-direct 

classification in the subsequent experiments. All six classifiers 

are evaluated. The results are presented in Table V. 

TABLE V 

TARIFF BENCHMARK CLASSIFICATION RESULTS 

Classifier Accuracy Precision Recall 
F1 

Score 
AUC 

Decision Tree 0.740 0.558 0.014 0.027 0.519 

Decision 

Forest 
0.732 0.364 0.040 0.072 0.516 

Decision 

Jungle 
0.740 0.599 0.011 0.021 0.519 

Neural 

Network 
0.739 1.000 0.000 0.000 0.500 

SVM 0.739 1.000 0.000 0.000 0.507 

Bayes PM 0.739 1.000 0.000 0.000 0.507 

The Boosted decision tree and the decision jungle achieved 

the highest AUC accuracy scoring 51.9%; which is a low 

scoring classification. However, all classifiers produced a 

relatively low score. Figure 9 displays the precision (y-axis) 

against the recall score (x-axis) for each of the classification 

experiments between values 0 to 1. 
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(a) (b) (c) 

(d) (e) (f) 

 
Recall 

FIGURE 9. Precision vs Recall for Benchmark Test. (a) Decision tree, (b) 
Decision forest, (c) Decision Jungle, (d) Neural network, (e) SVM, (f) 
Bayes binary machine. 

It is clear from the benchmark experiment that an indirect 

classification approach is needed to increase the accuracy of 

the prediction for all classifiers.  

ii. Indirect Classification 

In this section, the results for each classifier are presented 

individually. Initially, the two-class decision tree demonstrates 

a remarkable improvement with a 69% AUC success rate, as 

outlined in Table VI. This is calculated from the ROC curve 

displayed in Figure 10a. 

TABLE VI 

TWO-CLASS BOOSTED DECISION TREE RESULTS 

Statistics Value Classification Score 

Mean 0.572 Accuracy 0.635 

Median 0.613 Precision 0.626 

Min 0.001 Recall 0.783 

Max 1.000 F1 Score 0.696 

STD 0.249 AUC 0.690 

 

(a) 
(b) 

(c) 
(d) 

FIGURE 10. Boosted Decision Tree Plots. (a) ROC curve, (b) 
Precision/Recall, (c) Lift and (d) Scored Probabilities. 

Similarly, the decision forest achieved a higher accuracy of 

77.4%, compared to 51.6% scored using the direct 
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classification approach. The full results for the decision forest 

are outlined in Table VII. 

TABLE VII 

TWO-CLASS DECISION FOREST RESULTS 

Statistics Value Classification Score 

Mean 0.534 Accuracy 0.705 

Median 0.543 Precision 0.726 

Min 0.000 Recall 0.717 

Max 1.000 F1 Score 0.721 

STD 0.297 AUC 0.774 

The decision tree classification is the highest performing 

classifier for the second experiment. On visual inspection, 

the scored probabilities displayed in Figure 11(d) are 

superior, when compared with the other classifiers.  

(a) 
(b) 

(c) 
(d) 

FIGURE 11. Decision Forest Plots. (a) ROC curve, (b) Precision/Recall, (c) 
Lift and (d) Scored Probabilities. 

Despite the advantages offered by the decision jungle, the 

results are lower than that of both the boosted decision tree and 

the decision forest. The decision jungle is able to perform with 

66.1% accuracy, as documented in Table VIII; with the results 

visualised in the plots displayed in Figure 12. 

TABLE VIII 

TWO-CLASS DECISION JUNGLE RESULTS 

Statistics Value Classification Score 

Mean 0.534 Accuracy 0.608 

Median 0.530 Precision 0.608 

Min 0.000 Recall 0.743 

Max 1.000 F1 Score 0.669 

STD 0.124 AUC 0.661 

 

(a) (b) 

(c) (d) 

FIGURE 12. Decision Jungle Plots. (a) ROC curve, (b) Precision/Recall, (c) 
Lift and (d) Scored Probabilities. 

The two-class neural network and Bayes point machine 

classifiers again scored similar results to the benchmark test, 

with the SVM actually declining in accuracy by 9%. Each is 

considerably less effective than the decision tree approaches. 

The classification results are detailed in Table IX, which 

presents the accuracy, precision, recall F1 and AUC scores for 

each. As before, Figure 13 displays the precision against the 

recall score for each of the classification experiments and the 

scored probabilities as histograms. 

TABLE IX 

NEURAL NETWORK, SVM AND BAYES PM RESULTS 

Classifier Accuracy Precision Recall 
F1 

Score 
AUC 

Neural 

Network 
0.538 0.538 0.939 0.684 0.525 

SVM 0.533 0.533 1.000 0.695 0.498 

Bayes PM 0.532 0.535 0.926 0.678 0.516 
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FIGURE 13. Precision vs Recall for In-Direct Classification. (a) Neural 
Network, (b) SVM, (c) Bayes Point Machine. 
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B. RESULTS OF EXPERIMENT 2 

As demonstrated in Experiment 1, an in-direct classification 

process generates higher results. Therefore, in this section only 

an in-direct approach is used. As previously, a one-vs-all 

approach is adopted, this makes it a two-class classification 

process. Again, tariff 4 is selected, for the one vs all test, so 

that the results can be compared with experiment one. 

The full results for experiment two are presented in three 

tables; Tables X and XI display the classification for the 

decision tree, decision forest and decision jungle. Table XII 

displays the results for the Neural Network, SVM and Bayes 

PM classifiers. During the morning period, the decision forest 

is the highest scoring classifier and is able to separate the data 

with 78.7% accuracy and the boosted decision tree is able to 

perform with 72.8% accuracy. With an overall classification 

AUC mean of 72.57% the decision tree approaches, offer a 

higher success rate than the three other techniques, which 

score 50.83% as mean average. 

Tariff detection in the afternoon, again demonstrates the 

highest success rate when using a decision tree approach, 

which have a mean average of 75.2% classification accuracy, 

with the decision forest scoring the highest with 78.8% 

accuracy. The evening results are again comparable, scoring a 

72.56% mean accuracy. However, the evening mean accuracy 

drops to 69.16%, yet in this case the boosted decision tree 

approach is able to detect with a 79.0% accuracy to maintain 

the high accuracy rate. Throughout the afternoon, evening and 

night period, the Neural Network, SVM and Bayes PM have a 

51.58% mean classification score. However, for the afternoon 

period, the neural network is able to achieve a high 72.9% 

successful classification score. The results presented in Tables 

X to XII are visualised in Figures 14 and 15. 

TABLE X 

TWO CLASS BOOSTED DECISION TREE (DT), DECISION FOREST (DF) AND DECISION JUNGLE (DJ) STATISTICS 

 Morning Afternoon Evening Night 

Statistics DT DF DJ DT DF DJ DT DF DJ DT DF DJ 

Mean 0.4386 0.4692 0.4822 0.4669 0.4595 0.4755 0.4386 0.4692 0.4822 0.4555 0.4572 0.4550 

Median 0.4347 0.5000 0.4996 0.4419 0.6650 0.4794 0.4347 0.5000 0.5008 0.3916 0.4454 0.4392 

Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1677 

Max 0.9999 1.0000 0.8226 1.0000 1.000 0.9891 0.9999 1.0000 0.8320 1.0000 0.9076 0.6588 

STD 0.3029 0.2811 0.1055 0.335 0.3151 0.1402 0.3029 0.2811 0.1057 0.3549 0.1202 0.0506 

TABLE XI 

TWO CLASS BOOSTED DECISION TREE (DT), DECISION FOREST (DF) AND DECISION JUNGLE (DJ) CLASSIFICATION 

 Morning Afternoon Evening Night 

Classification DT DF DJ DT DF DJ DT DF DJ DT DF DJ 

Accuracy 0.670 0.714 0.612 0.690 0.732 0.641 0.670 0.714 0.610 0.708 0.641 0.571 

Precision 0.667 0.734 0.591 0.662 0.738 0.617 0.667 0.734 0.588 0.694 0.703 0.616 

Recall 0.622 0.633 0.615 0.656 0.642 0.566 0.622 0.633 0.621 0.649 0.371 0.168 

F1 Score 0.643 0.679 0.603 0.659 0.687 0.590 0.643 0.679 0.604 0.670 0.486 0.263 

AUC 0.728 0.787 0.662 0.765 0.788 0.703 0.728 0.787 0.662 0.790 0.709 0.576 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 14. Data Trends for (a) ROC Curve, (b) Precision and (c) Scored Probabilities for Decision Tree (DT, Decision Forest (DF) and Decision Jungle 
(DJ). 

TABLE XII 

CLASSIFICATION NEURAL NETWORK, SVM AND BAYES PM RESULTS 
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Statistics Morning Afternoon Evening Night 

 NN SVM BPM NN SVM BPM NN SVM BPM NN SVM BPM 

Accuracy 0.521 0.522 0.523 0.546 0.539 0.543 0.522 0.522 0.523 0.667 0.564 0.586 

Precision 0.469 1.000 0.504 0.581 0.485 0.501 0.588 1.000 0.504 0.796 0.531 0.640 

Recall 0.006 0.000 0.210 0.022 0.157 0.214 0.004 0.000 0.210 0.366 0.400 0.218 

F1 Score 0.011 0.000 0.297 0.042 0.237 0.300 0.007 0.000 0.297 0.501 0.456 0.325 

AUC 0.512 0.503 0.510 0.538 0.525 0.529 0.517 0.503 0.510 0.729 0.560 0.691 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 15. Data Trends for Neural Network, SVM and Bayes Point Machine Results Visualisation, (a) Precision and (b) Scored Probabilities. 

 

As the visualisation in Figure 14 demonstrates, there is a 

consistent trend in the classification accuracy of the decision 

tree, decision forest and decision jungle approaches. The 

scored probabilities exhibit a similar overall distribution for 

the morning, afternoon and evening time blocks. However, the 

night time block exhibits the greatest variation, particularly 

relating to the decision jungle results. In Figure 15, the three 

other classifiers are evaluated. As the trend demonstrates in 

the precision plots, the results are inconsistent and do not 

register highly over 50% for the morning, afternoon and 

evening periods. However, for the night time block, the results 

are higher, with the neural network achieving a 72.9% 

accuracy, the SVM achieving a 56% AUC success rate and the 

Bayes point machine able to classify with a 69.1% accuracy 

score. 

C. RESULTS OF EXPERIMENT 3 

The third experiment begins with a benchmark multiclass 

classification. The aim is to detect the different times of day 

based solely on the gas consumptions readings. Figure 16 

displays the scored probabilities of the multiclass experiment, 

with the trend line. Figure 17 displays the confusion matrix of 

the results. For the most part, the overall classification process 

results in low scores and the multiclass approach struggles to 

separate the different times of day from each other when the 

information is provided all at once. The results are outlined in 

Table XIII. 
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FIGURE 16. Multiclass Forest vs Multiclass Jungle Scored Probabilities. 

(a)                       (b) 

FIGURE 17. Multiclass Forest (a) vs Multiclass Jungle (b) Confusion Matrices. 

TABLE XIII 

MULTICLASS FOREST VS MULTICLASS JUNGLE RESULTS 

Statistics Multiclass Forest Score Multiclass Jungle Score 

Overall Accuracy 0.324 0.355 

Average Accuracy 0.662 0.677 

Micro-Averaged Precision 0.324 0.355 

Macro-Averaged Precision 0.289 0.292 

Micro-Averaged Recall 0.324 0.355 

Macro-Averaged Recall 0.283 0.276 

 

As demonstrated in the confusion matrix plots in Figure 17, 

the majority of the time blocks are challenging to separate. 

However, for both the multiclass forest and multiclass jungle, 

the separation of the evening time block scored the highest 

accuracy. This may be due to the fact that, as discussed in the 

background section, this time of day contains the highest use 

of gas consumption and may therefore produce the highest 

variation in consumption compared to the other times. The 

multiclass jungle is able to outperform the multiclass forest 

and is able to detect the evening time block with a 73.4% 

accuracy however, each of the others produce a low score. For 

example, the night time block achieves a 2.6% accuracy which 

is a lower probability than randomly guessing the time block 

the data value belongs to. Therefore, to improve the quality of 

the classification process, a one vs all classification is once 

again adopted for the remainder of the experiment. Individual 

time blocks are extracted and compared with all of the others 

for the detection process. By employing a two-class approach, 

the results are improved significantly. The boosted decision 

tree, decision forest and decision jungle perform with the 

highest accuracy for each of the time periods. The trends in the 

data results are presented in Figures 18, 19 and 20. 
 

TABLE XIV 

TWO CLASS BOOSTED DECISION TREE (DT), DECISION FOREST (DF) AND DECISION JUNGLE (DJ) STATISTICS 

Statistics Morning Afternoon Evening Night 

 DT DF DJ DT DF DJ DT DF DJ DT DF DJ 

Mean 0.5203 0.5250 0.5222 0.5331 0.5272 0.5330 0.7202 0.6604 0.6531 0.3032 0.2971 0.3021 

Median 0.5370 0.5000 0.5157 0.5171 0.5000 0.5277 0.8447 0.7500 0.6607 0.1446 0.2500 0.2920 

Min 0.0000 0.0000 0.1139 0.0000 0.0000 0.0615 0.0002 0.0000 0.1405 0.0000 0.0000 0.0000 

Max 1.0000 1.0000 0.9655 1.0000 1.0000 0.9362 1.0000 1.0000 1.0000 0.9997 1.0000 0.9143 

STD 0.3516 0.3078 0.1173 0.3497 0.3122 0.1522 0.2952 0.2874 0.1285 0.3370 0.2981 0.1777 
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TABLE XV 

TWO CLASS BOOSTED DECISION TREE (DT), DECISION FOREST (DF) AND DECISION JUNGLE (DJ) CLASSIFICATION 

Classification Morning Afternoon Evening Night 

 DT DF DJ DT DF DJ DT DF DJ DT DF DJ 

Accuracy 0.691 0.729 0.634 0.678 0.707 0.638 0.691 0.719 0.678 0.766 0.770 0.727 

Precision 0.704 0.759 0.640 0.706 0.748 0.649 0.714 0.763 0.679 0.606 0.640 0.571 

Recall 0.703 0.705 0.683 0.679 0.681 0.701 0.869 0.819 0.950 0.581 0.493 0.287 

F1 Score 0.704 0.731 0.661 0.692 0.713 0.674 0.784 0.790 0.792 0.593 0.557 0.382 

AUC 0.762 0.781 0.694 0.758 0.765 0.704 0.697 0.736 0.672 0.815 0.802 0.761 
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FIGURE 18. Data Trends for the Results of the Scored Probabilities for Boosted Decision tree, Decision Forest and Decision Jungle. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

FIGURE 19. Data Trends for ROC Curve (a) and Precision plot (b) for Boosted Decision tree, Decision Forest and Decision Jungle. 
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FIGURE 20. Data Trends for the Precision plots for Neural Network, SVM and Bayes Point Machine. 

 
TABLE XVI 

NEURAL NETWORK, SVM AND BAYES PM RESULTS 

Classification Morning Afternoon Evening Night 

 NN SVM BPM NN SVM BPM NN SVM BPM NN SVM BPM 

Accuracy 0.540 0.533 0.533 0.579 0.556 0.584 0.644 0.645 0.644 0.713 0.705 0.710 

Precision 0.534 0.530 0.545 0.616 0.567 0.594 0.646 0.645 0.645 0.622 0.000 0.564 

Recall 0.939 0.940 0.875 0.558 0.713 0.694 0.990 1.000 0.998 0.055 0.000 0.052 

F1 Score 0.681 0.678 0.671 0.586 0.631 0.640 0.782 0.784 0.783 0.100 0.000 0.095 

AUC 0.520 0.502 0.556 0.606 0.586 0.605 0.587 0.554 0.589 0.637 0.586 0.636 

 

The decision tree is able to detect with an overall mean 

accuracy of 75.8% across the four different blocks of time, 

scoring 81.5% at highest for the night time block 

classification. The decision forest performed higher with a 

77.1% overall mean accuracy and the decision jungle is the 

least accurate of the decision tree processes with a 70.78% 

overall mean score. 

D. RESULTS OF EXPERIMENT 4 

The final experiment offers one of the most potentially 

impactful methodologies that can have implications in the 

development of systems outside of the typical load balancing 

and data error domains. The detection of age groups has been 

briefly outlined in our previous work [38], but here the results 

are expanded on. The ability to detect age groups and their 

consumption patterns offers significant benefits to the health 

care domain. The results from Experiment 4 are presented in 

Figure 21 and detailed in Table XVII.  
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FIGURE 21. Data Trends for (a) ROC Curve, (b) Precision, (c) Lift and (d) Scored Probabilities 

TABLE XVII 
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TWO CLASS BOOSTED DECISION TREE (DT), DECISION FOREST (DF), DECISION JUNGLE (DJ), NEURAL NETWORK (NN), SUPPORT VECTOR MACHINE (SVM) 

AND BAYES POINT MACHINE (BPM) CLASSIFICATION RESULTS 

 DT DF DJ NN SVM BPM 

Accuracy 0.719 0.711 0.704 0.622 0.596 0.600 

Precision 0.689 0.709 0.694 0.821 0.575 0.580 

Recall 0.732 0.654 0.661 0.252 0.543 0.543 

F1 Score 0.710 0.680 0.677 0.386 0.559 0.561 

AUC 0.771 0.782 0.769 0.673 0.650 0.676 

 

The scores produced in the early stages of experiment are 

consistent with the results from previous experiments; yet, in 

this case the neural network, SVM and Bayes PM classifiers 

have an improved AUC score. The decision forest process 

scores the highest with a 78.2% AUC accuracy. However, on 

inspection of the dataset, during the data cleaning process an 

imbalance is created in the two-class dataset.  

Class 1 accounts for 51% of the dataset and Class 2 the 

remaining 49%.  

Whilst this might seem like an insignificant change in the 

dataset, the introduction of SMOTE to balance the data 

improves the classification accuracy significantly. 

The results of the classification after conducting the 

SMOTE stage are presented in Figure 22 and Table XVIII. 
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FIGURE 22. Data Trends for the (a) ROC Curve, (b) Precision, (c) Lift and (d) Scored Probabilities. 

Remarkably, from the SMOTE process, the AUC results are improved for the decision tree and decision jungle classification, 

which performs with 83% and 84.1% accuracy respectively. 
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TABLE XVIII 

TWO CLASS BOOSTED DECISION TREE (DT), DECISION FOREST (DF), DECISION JUNGLE (DJ), NEURAL NETWORK (NN), SUPPORT VECTOR MACHINE (SVM) 

AND BAYES POINT MACHINE (BPM) CLASSIFICATION RESULTS 

 DT DF DJ NN SVM BPM 

Accuracy 0.743 0.707 0.772 0.623 0.609 0.623 

Precision 0.719 0.706 0.752 0.882 0.585 0.597 

Recall 0.746 0.464 0.769 0.231 0.585 0.615 

F1 Score 0.732 0.675 0.760 0.366 0.585 0.606 

AUC 0.830 0.787 0.841 0.680 0.644 0.665 

 

A. DISCUSSION OF THE RESULTS 

Experiment one begins with a direct vs in-direct 

classification comparison. The focus is also on the detection 

of the tariff grouping. A comparison of the results is presented 

in Figure 23. The results display a significant improvement, as 

expected, when cleaning, normalisation and feature extraction 

have been applied to the dataset. The decision forest shows the 

highest increase from 51.6% to 77.4%, which is a 25.8% 

percent increase. 

Being able to predict the gas tariff the end user is on has 

beneficial applications. A demonstration of the change in 

behaviour that occurs when the customer is aware of their 

consumption habits in high detail. 

 
FIGURE 23 Experiment One Results. 

Being able to predict the gas tariff the end user is on has 

beneficial applications. A demonstration of the change in 

behaviour that occurs when the customer is aware of their 

consumption habits in high detail. Tariff 4 is selected for this 

experiment for this purpose, as the customer is provided with 

an IHD and bi-monthly billing service. They are the 

consumers who are most aware of their gas usage. As a result, 

this serves as an ideal example of how a change is 

consumption occurs, which is beneficial for the environment 

and economically.  

The second experiment employs the same methodology as 

experiment one, however with time blocks factored in to the 

classification. A comparison of the results achieved in both 

experiment one and two is displayed in Figure 24. The results 

are presented in order of highest mean classification score for 

the experiment to lowest. 

 
FIGURE 24. Experiment One vs Experiment Two. 

The inclusion of the different time blocks improved the 

mean classification accuracy from between 61.10% to 63.80% 

for all the classifiers combined. However, when focusing on 

the decision tree approach, the classification mean average 

improved from 70.83% to 72.38%. The most significant 

increase is evident in the decision tree which improves from 

69.0% to 76.5% mean AUC, when the data from the afternoon 

time block is assessed, as displayed in Figure 25. 

 
FIGURE 25. AUC Results for Experiment 2. 

In experiment three, the focus changes from tariff detection 

to time block comparison. Across the entire experiment, the 

six classifiers perform with a 74.56% AUC mean accuracy. 

However, during the night period the classification is highest 

and able to achieve 79.27% accuracy; with the boosted 

decision tree scoring the highest of all the classifiers with 

81.50% accuracy. A comparison of the four different time 

periods is displayed in Figure 26. 

 
FIGURE 26. Mean Classification Performance of Four Time Blocks. 
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Figure 27 displays a comparison of the AUC, F1 Score, 

Precision, Recall and Accuracy scores for each of the 

classifiers for the different blocks of time. The visualisation 

effectively shows how the classifiers compare with each other 

for each of the different evaluation metrics.  

 
FIGURE 27. Classification Performance of Four Time Blocks. 

 

In the final experiment, the mean AUC classification is 

72.02%, as displayed in Figure 28. However, once again the 

three decision tree algorithms outperformed the others and 

were able to detect with a 77.4% accuracy combined 

compared to a 66.63% accuracy. 

 
FIGURE 28. Classification Performance of Four Time Blocks. 

As previously mentioned, during the pre-processing stage, 

an imbalance is created in the dataset. As a result, SMOTE is 

used to restore the balance. As displayed in Figure 29, the 

overall mean AUC score increases from 72.02% to 74.12%.  

However, individually the highest increase is noticeable for 

the boosted decision tree and the decision forest algorithms 

which increase to 83% an 84.10% respectively. 

 
FIGURE 29. Classification Performance of Four Time Blocks. 

A comparison of the two sets of results from experiment 

four are presented in the ribbon chart in Figure 30. Each of the 

evaluation criteria are displayed on the x-axis. From the 

visualisation it is clear that the decision jungle and decision 

forest after SMOTE retain the highest classification accuracy. 
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FIGURE 30. Ribbon Plot of Classifier Performance for Experiment 4. 

 

B. RECOMMENDED ENSEMBLE DETECTION MODEL  

Overall, based on the classification AUC scores, the 

recommended ensemble detection model framework is 

defined as follows.  

Algorithm 1: Ensemble Detection Model 

1. Function ageDetection 

2. Pass In: data block 

3.  train classifier 

4.  ageResults = AUC evaluation 

5. Pass Out: ageResults 

6. Endfunction 

7. Function routineDetection 

8. Pass In: data block 

9. split data block into four time periods  

10. FOR each time period 

11.  train decision forest classifier(time period) 

12.  routineResults[time period] = AUC evaluation 

13. ENDFOR 

14. Pass Out: routineResults 

15.Endfunction 

16.Function tariffDetection 

17. Pass In: data block 

18. train boosted decision tree classifier 

19. blockTariffResults = AUC evaluation 

20. split data block into four time periods 

21. FOR each time period 

22.  train decision forest classifier 

23.  periodTariffResults[time period] = AUC 

     evaluation 

24. ENDFOR 

25. Pass Out: blockTariffResults, periodTariffResults 

26. Endfunction 

27. FOR each time period 

28. extract data block 

29. preprocess data block 

30. ageTraining = Call:ageDetection(arguments: preprocessed 

       data block)  

31. IF ageTraining result > 70 THEN 

32.  routineTraining = 

Call:routineDetection(arguments: preprocessed data block)  

33.  IF any routineTraining result > 70 THEN 

34.   tariffTraining =  

Call:tariffDetection(arguments: 

preprocessed data block) 

35.   IF any periodTariffResults or 

 blockTariffResults > 70 THEN 

36.    IF most active period != 

cheapest period THEN 

37. recommendedTariff = tariff where most active period == 

cheapest period 

38.   ELSE 

39.    goto next time period 

40.   ENDIF 

40.  ELSE 

42.   goto next time period 

43.  ENDIF 

44. ELSE 

45.  goto next time period 

46. ENDIF 

47. ENDFOR 

The model combines the highest scoring techniques 

detected in the experiments and combines them to produce 

improved results. 

For the Age Detection process, the Decision Forest Model 

is recommended. Stage 2 recommends two models, the DF 

for the morning, afternoon and evening detection and DT for 

the night detection. For the tariff detection, the DT is 

recommended for when a full 24-hour period is assessed, and 
a combination of DF and DT is recommended when time 

blocks are factored in.  
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V. CONCLUSION AND FUTURE WORK 

In order to detect and support individual households that are at 

risk during seasonal periods (due to financial challenges, and 

the rising cost of bills), it is essential to adopt more advanced 

analytics at the service provider end. Within the future smart 

cities domain, the autonomous detection of such households at 

risk is of growing importance in order to face up to the impacts 

of energy and fuel poverty on energy, economy, quality of life 

and health and environmental quality of low-income housing.  

As smart gas meters will eventually phase out the traditional 

analogue meter as society moves increasingly further towards 

a holistic smart city, the amount of information relating to 

consumer behaviour will increase significantly. However, 

with this, new opportunities for both providing more 

innovative services, and modernise exiting ones, helping 

researchers to understanding the behaviour of customers and 

gaining intelligent insight into the data patterns will grow. Yet, 

this must be conducted within the constraints of opt-in services 

to prevent data misuse and ensure that the privacy of consumer 

data is considered. The deployment of smart meters will also 

be key to the reduction in CO2 levels and will help towards 

reducing the carbon footprint [44]. 

In this paper, a method has been proposed to improve 

wellbeing monitoring using smart gas meter readings. There 

are four different observational characteristics involved in this 

process, each has proven successful in the experiments 

presented. The classifiers are able to establish the detection of 

certain patterns and trends within a population, not evident 

through visual inspection. This is particularly beneficial for 

health-based resource allocation and understanding how 

trends in health conditions are connected in a specific 

demographic. In the future, the approach could be built upon 

to help understand and visualise the health patterns that can be 

seen within an urban area. This offers an effective insight into 

the type of intervention that should be in place to help people 

with the most needs. This facilitates early intervention and the 

allocation of medical resources to key demographic areas. 

Future investigations will also include experimenting with 

other classification techniques; for example, clustering to 

identify all ages groups at the same time. 

REFERENCES 
[1] J. Robinson, K. Lee, K. Appiah, and R. Yousef, “Energy-Aware 

Systems for Improving the Well-Being of Older People by 

Reducing Their Energy Consumption,” Int. J. Life Sci., vol. 9, no. 

3, pp. 163–175, 2017. 

[2] Department of Energy and Climate Change, Fuel Poverty: a 

Framework for Future Action. 2013, Published by TSO, ISBN: 
9780101867320. 

[3] N. Hodges, D. Goaman, N. Banks, J. Thumin, and A. Lamley, 

“Supporting vulnerable consumers to benefit from their smart 

meters,” A Report to Joseph Rountree Foundation, pp. 1–60, 

2018. 

[4] Y. Wang, Q. Chen, T. Hong, and C. Kang, “Review of Smart 

Meter Data Analytics: Applications, Methodologies, and 

Challenges,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 3125–

3148, 2018. 

[5] A. Visvizi, M. D. Lytras, E. Damiani, and H. Mathkour, “Policy 

making for smart cities: innovation and social inclusive economic 

growth for sustainability,” J. Sci. Technol. Policy Manag., vol. 9, 

no. 2, pp. 126–133, 2018. 

[6] M. Mwansa, W. Hurst, and Shen, Y, “A Study into Smart Grid 

Consumer-User Profiling for Security Applications,” in pecial 

Track – FAST-CFP: Finding A Solution To – Cloud Forensic 

Problem, along with Cloud Computation 2018, The Ninth 

International Conference on Cloud Computing, GRIDs, and 

Virtualization, 2017, pp. 7–12. 

[7] W. Hurst, C. A. Curbelo Montañez, and D. Al-Jumeily, “Age 

Group Detection in Stochastic Gas Smart Meter Data using 

Decision Tree Learning,” in Intelligent Computing 

Methodologies, 15th International Conference, ICIC 2019, 

Nanchang, China, Special Session on Machine Learning and 

Deep Learning approaches in applied computing to support 

Industry for real-world problems, 2019. 

[8] C. Chalmers, W. Hurst, and M. Mackay, “Identifying behavioural 

changes for health monitoring applications using the advanced 

metering infrastructure,” Behav. Inf. Technol., vol. 38, no. 11, pp. 

1154–1166, 2019. 

[9] Z. Ma et al., “The Role of Data Analysis in the Development of 

Intelligent Energy Networks,” IEEE Netw., vol. 31, no. 5, pp. 88–

95, 2017. 

[10] M. A. Devlin and B. P. Hayes, “Load Identification and 

Classification of Activities of Daily Living using Residential 

Smart Meter Data,” in IEEE Milan Powertech, 2019, pp. 1–6. 

[11] G. R. Barai, S. Krishnan, and B. Venkates, “Smart metering and 

functionalities of smart meters in smart grid - a review,” in IEEE 

Electrical Power and Energy Conference (EPEC), 2015, pp. 138–

145. 

[12] A. Visvizi and M. D. Lytras, “Rescaling and refocusing smart 

cities research: from mega cities to smart villages,” J. Sci. 

Technol. Policy Manag., vol. 9, no. 2, pp. 134–145, 2018. 

[13] Zafar A. Khan ; Dilan Jayaweera, “Approach for forecasting 

smart customer demand with significant energy demand 

variability,” in 1st International Conference on Power, Energy 

and Smart Grid (ICPESG), 2018, pp. 1–5. 

[14] O. E. ; U. S. Selamoğullar, “A survey of a residential load profile 

for demand side management systems,” in IEEE International 

Conference on Smart Energy Grid Engineering (SEGE), 2017, pp. 

85–89. 

[15] K. Basu, A. Hably, V. Debusschere, S. Bacha, G. J. Driven, and 

A. Ovalle, “A comparative study of low sampling non intrusive 

load dis-aggregation,” in IECON - 42nd Annual Conference of the 

IEEE Industrial Electronics Society, 2016, pp. 5137–5142. 

[16] H. G. C. P. Dinesh, D. B. W. Nettasinghe, G. M. R. I. 

Godaliyadda, M. P. B. Ekanayake, J. V. Wijayakulasooriya, and 

J. B. Ekanayake, “A subspace signature based approach for 

residential appliances identification using less informative and 

low resolution smart meter data,” in 2014 9th International 

Conference on Industrial and Information Systems (ICIIS), 2014, 

pp. 1–6. 

[17] G. Dudek, A. Gawlak, M. Kornatka, and J. Szkutnik, “Analysis of 

Smart Meter Data for Electricity Consumers,” in 2018 15th 

International Conference on the European Energy Market (EEM), 

2018, pp. 1–5. 

[18] T. Sirojan, T. Phung, and E. Ambikairajah, “Intelligent edge 

analytics for load identification in smart meters,” in 2017 IEEE 

Innovative Smart Grid Technologies - Asia (ISGT-Asia), 2017, pp. 

1–5. 

[19] Y. Wang, Q. Chen, T. Hong, and C. Kan, “Review of Smart Meter 

Data Analytics: Applications, Methodologies, and Challenges,” 

IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 3125–3148, 2019. 

[20] P. G. ; T. T. T. Z. ; J. D. ; A. Ukil, “Flow Based Estimation and 

Comparative Study of Gas Demand Profile for Residential Units 

in Singapore,” IEEE Trans. Sustain. Energy, 2018. 

[21] M. D. Lytras, A. Visvizi, and A. Sarirete, “Clustering Smart City 

Services: Perceptions, Expectations, Responses,” MDPI Sustain., 

vol. 11, no. 6, p. 1669, 2019. 

[22] D. P. W. K. R. ; A. Groß, “Parametrization of stochastic load 

profile modeling approaches for smart grid simulations,” in IEEE 

PES Innovative Smart Grid Technologies Conference Europe 

(ISGT-Europe), 2017, pp. 1–6. 



 Author Name: Preparation of Papers for IEEE Access (February 2017) 

VOLUME XX, 2017 9 

[23] R. Granell; C. J. Axon; D. C.Wallom, “Impacts of raw data 

temporal resolution using selected clustering methods on 

residential electricity load profiles,” IEEE Trans. Power Syst., 

vol. 30, no. 6, pp. 3217–3224, 2015. 

[24] I. B. A. Q. J.-L. D. I. Delgado, “Dynamic clustering segmentation 

applied to load profiles of energy consumption from spanish 

customers,” Int. J. Electr. Power Energy Syst., vol. 55, pp. 437–

448, 2014. 

[25] C. for E. R. (CER), “ER Smart Metering Project - Gas Customer 

Behaviour Trial, 2009-2010.” 

[26] C. for E. Regulation, “Report On Smart Metering Technology 

Trials for Commission for Energy Regulation,” 2011. 

[27] A. Yassine, S. Singh, and A. Alamri, “Mining Human Activity 

Patterns From Smart Home Big Data for Health Care 

Applications,” IEEE Access, vol. 5, pp. 13131–13141, 2017. 

[28] J. Peppanen, X. Zhang, S. Grijalva, and M. J. Reno, “Handling 

bad or missing smart meter data through advanced data 

imputation,” in IEEE Power & Energy Society Innovative Smart 

Grid Technologies Conference (ISGT), 2016, pp. 1–5. 

[29] R. Moghaddass and J. Wang, “A Hierarchical Framework for 

Smart Grid Anomaly Detection Using Large-Scale Smart Meter 

Data,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 5820–5830, 

2018. 

[30] G. B. Samson, M.-A. Levasseur, F. Gagnon, and G. Gagnon, 

“Auto-calibration of Hall effect sensors for home energy 

consumption monitoring,” Electron. Lett., vol. 50, no. 5, pp. 403–

405, 2014. 

[31] H. Clougherty, A. Brown, M. Stonerock, and M. Trepte, “Home 

automation and personalization through individual location 

determination,” in Systems and Information Engineering Design 

Symposium (SIEDS), 2017, pp. 300–305. 

[32] V. Vadakattu and S. Suthaharan, “Feature Extraction Using 

Apparent Power and Real Power for Smart Home Data 

Classification,” in 17th IEEE International Conference on 

Machine Learning and Applications (ICMLA), 2018, pp. 1290–

1295. 

[33] Y. Zhou, X. Chen, A. Y. Zomaya, L. Wang, and S. Hu, “A 

Dynamic Programming Algorithm for Leveraging Probabilistic 

Detection of Energy Theft in Smart Home,” IEEE Trans. Emerg. 

Top. Comput., vol. 3, no. 4, pp. 502–513, 2015. 

[34] M. D. Lytras and A. Visvizi, “Who Uses Smart City Services and 

What to Make of It: Toward Interdisciplinary Smart Cities 

Research,” MPDI Sustain., vol. 10, no. 6, p. 1998, 2018. 

[35] A. Guez, V. Protopopsecu, and J. Barhen, “On the stability, 

storage capacity, and design of nonlinear continuous neural 

networks,” IEEE Trans. Syst. Man. Cybern., vol. 18, no. 1, pp. 

80–87, 1988. 

[36] J. Nalepa and M. Kawulok, “Selecting training sets for support 

vector machines: a review,” Download PDF Artif. Intell. Rev., pp. 

1–44, 2018. 

[37] R. Herbrich, T. Graepel, and C. Campbell, “Bayes Point 

Machines,” J. Mach. Learn. Res. 1, vol. 1, pp. 245–279, 2001. 

[38] W. Hurst, C. Curbelo Montañez, and D. Al-Jumeily, “Age Group 

Detection in Stochastic Gas Smart Meter Data using Decision 

Tree Learnin,” in International Conference on Intelligent 

Computing, Special Session on Machine Learning and Deep 

Learning approaches in applied computing to support Industry 

for real-world problems., 2019. 

[39] F. Wellmer, “Standard Deviation and Variance in the Mean,” Stat. 

Eval. Explor. Miner. Depos. Springer, 1998. 

[40] B. McNeese, “Are the Skewness and Kurtosis Useful Statistics?,” 

SPC Stat., 2016. 

[41] W. PH, “Kurtosis as Peakedness,” 1905 - 2014. R.I.P. Am Stat, 

pp. 191–195, 2014. 

[42] C. Croux; and G. Haesbroeck, “Influence Function and Efficiency 

of the Minimum Covariance Determinant Scatter Matrix 

Estimator,” J. Multivar, Anal, vol. 71, no. 2, pp. 161–190, 1999. 

[43] A. J. Boddy, W. Hurst, M. Mackay, and A. El Rhalibi, “Density-

Based Outlier Detection for Safeguarding Electronic Patient 

Record Systems,” IEEE Access, vol. 7, pp. 40285–40294, 2019. 

[44] P. Carroll, T. Murphy, M. Hanley, D. Dempsey, and J. Dunne, 

“Household Classification Using Smart Meter Data,” J. Off. Stat., 

vol. 34, no. 1, pp. 1–25, 2018..

 

 

 


