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Abstract

Background: Glucose tolerance testing is a tool used to estimate glucose effectiveness and insulin sensitivity in
diabetic patients. The importance of such tests has prompted the development and utilisation of mathematical
models that describe glucose kinetics as a function of insulin activity. The hormone glucagon, also plays a
fundamental role in systemic plasma glucose regulation and is secreted reciprocally to insulin, stimulating catabolic
glucose utilisation. However, regulation of glucagon secretion by α-cells is impaired in type-1 and type-2 diabetes
through pancreatic islet dysfunction. Despite this, inclusion of glucagon activity when modelling the glucose kinetics
during glucose tolerance testing is often overlooked. This study presents two mathematical models of a glucose
tolerance test that incorporate glucose-insulin-glucagon dynamics. The first model describes a non-linear relationship
between glucagon and glucose, whereas the second model assumes a linear relationship.

Results: Both models are validated against insulin-modified and glucose infusion intravenous glucose tolerance test
(IVGTT) data, as well as insulin infusion data, and are capable of estimating patient glucose effectiveness (sG) and
insulin sensitivity (sI). Inclusion of glucagon dynamics proves to provide a more detailed representation of the
metabolic portrait, enabling estimation of two new diagnostic parameters: glucagon effectiveness (sE) and glucagon
sensitivity (δ).

Conclusions: The models are used to investigate how different degrees of pax‘tient glucagon sensitivity and
effectiveness affect the concentration of blood glucose and plasma glucagon during IVGTT and insulin infusion tests,
providing a platform from which the role of glucagon dynamics during a glucose tolerance test may be investigated
and predicted.

Keywords: Glucagon sensitivity, Glucagon effectiveness, Intravenous glucose tolerance test, Non-linear glucagon
minimal model, Linear glucagon minimal model, Glucose-insulin-glucagon dynamics, Minimal model

Background
Glucose is the fundamental source of cellular energy,
maintained in a precise range in the blood (70 - 110
mg/dl, 4-7 mM) to facilitate general body function
[1, 2]. Systemic glucose concentration is tightly regulated
by the pancreatic islets, which secrete several hormones
that directly influence the metabolic pathways respon-
sible for its utilisation and production [3]. Insulin and
glucagon are the two most prominent hormones respon-
sible for normoglycaemia, secreted by β-cells and α-cells
respectively, in response to deviations in plasma glucose
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levels [4]. Insufficient secretion or hypoactivity of insulin
can lead to diabetes mellitus; a metabolic disorder charac-
terised by persistent hyperglycaemia. While diabetes has
long been linked to impaired insulin secretion, recently,
glucagon has received much attention with respect to
its role in diabetes. Evidence suggests that hypersecre-
tion of glucagon can dysregulate glucose homeostasis
by initiating and maintaining hyperglycaemic conditions
[5]. Unger and Cherrington have subsequently suggested
that “glucagon excess rather than insulin deficiency, is
the sine qua non of diabetes” [6]. While the mecha-
nisms of glucagon regulation by glucose are still debated
[7], pharmacological manipulation of glucagon release
could potentially improve diabetic glucose regulation [3].
According to the world health organisation (WHO), high
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blood glucose will contribute to almost half of all deaths
before the age of 70, with diabetes projected to be the
seventh leading cause of death by 2030 [8]. Such trends
undoubtedly imply an increase in strain on health services
tomeet patient demands [9] and as such, anymethods that
facilitate mechanistic understanding or aid earlier detec-
tion of people at risk of diabetes will significantly decrease
the financial and healthcare burden.
The glucose tolerance test (GTT) is a common diag-

nostic tool used to assess pre-diabetic and diabetic condi-
tions, by measuring changes in blood glucose and insulin
after exposure to a large bolus of glucose. Such tests are
available in different forms, for example, the intravenous
glucose tolerance test (IVGTT) is used to estimate insulin
sensitivity (sI ), glucose effectiveness (sG), insulin secretion
and beta cell function in diabetic patients [10]. Mathe-
matical IVGTT models widely accompany the analysis of
IVGTT results and are used to improve the understanding
of blood glucose regulation, offering insights into the rela-
tionships between key components and to speculate the
effects of population considerations [11].
Bolie et al. (1961) was the first to develop a mathemat-

ical model of the IVGTT, proposing a coupled system
of two linear, ordinary differential equations (ODEs) that
describe the behaviour of glucose and insulin in response
to administered glucose [12]. This model is simple and
may be solved analytically, but assumes glucose disap-
pearance is a linear function of plasma insulin concentra-
tion and that both secretion and disappearance rates are
proportional to blood glucose and insulin levels. These
assumptions are highly idealised and are not sufficient
to fully describe the complicated relationship that exists
in glucose-insulin dynamics. Ackerman et al. (1965) also
made an impact on early studies of glucose modelling by
proposing a simple linear model to describe the interac-
tion between insulin and glucose [13].
More sophisticated models were introduced in later

studies, including the well-known Minimal Model, which
was derived to analyse the behaviour of blood glucose
during an IVGTT [14]. This model concentrates solely
on glucose-insulin dynamics but considers separately the
concentration of insulin in plasma and the amount of
insulin dependent glucose uptake in tissue (termed inter-
stitial). While this model is simple and cannot be solved
analytically, its ability to return estimates for glucose effec-
tiveness and insulin sensitivity, which are key parameters
for diabetes diagnosis, is advantageous. Indeed, this model
has been praised for its contribution to diabetology [15]
and has been widely used since its inception [16].
Modern iterations of the minimal model have been

adapted to better represent free fatty acid kinetics, as
well as glucose dynamics, during insulin-modified intra-
venous glucose tolerance testing (IMIVGTT) [17]. Indeed,
Thomaseth et al. evaluate how well mathematical models

of glucose and free fatty acid kinetics perform in the
presence of a counterregulatory response (CRR). Such
a response is triggered during an IMIVGTT as a result
of administration of insulin, which can induce hypogly-
caemia in healthy insulin-sensitive patients. This results
in the accuracy of such mathematical models that do not
account for a CRR to be undermined [17]. Thomaseth et
al. modified the minimal model to improve its predictions
for both glucose dynamics and free fatty acid kinetics, by
introducing a glucose concentration threshold as a signal
for a CRR. Indeed, their results suggest that glucagon fits
well as a CRR hormonewithin their modelling framework,
while also reporting that inclusion of other CRR hor-
mones (epinephrine, norepinephrine, growth hormone
and cortisol) did not improve model predictions.
Despite the simplicity and widespread use of the Min-

imal Model, it does have some significant limitations. A
major criticism of the model is that it delivers mathemat-
ically unrealistic results [18], predicting that interstitial
insulin activity becomes infinite over long time-periods
[19]. These authors subsequently developed a non-linear
model of the IVGTT which again, considers glucose-
insulin dynamics only, but possesses a steady state solu-
tion that all model solutions converge. Another drawback
of the Minimal Model is that it does not consider the
effects of glucagon, preventing it from completely rep-
resenting the full metabolic portrait of an individual.
However, this is understandable as the role of glucagon
with respect to diabetes became prevalent long after the
inception of the minimal model. Comprehensive models
of glucose metabolism that include regulation via insulin,
glucagon and epinephrine do exist [20, 21], however, such
models are considerably more complex and are often
deployed to probe bioenergetic mechanisms, rather than
glucose dynamics during glucose tolerance testing. The
role of glucagon becomes crucial when blood glucose lev-
els are low as it ensures that a sufficient amount of glucose
is produced in order to avoid unconsciousness, brain dam-
age and the other risks posed by hypoglycaemia. The risk
of hypoglycaemia is increased for diabetics, due to either
an impaired response of the alpha cells in the pancreas
[22], or as a side effect of insulin therapy [23] and can
require an additional supply of exogenous glucagon to be
administered.
This study aims to investigate the interaction between

glucose, insulin and glucagon during a clinical test by
developing two new mathematical models that focus
exclusively on glucose-insulin-glucagon dynamics. Both
models are designed to simulate the perturbations in the
blood-glucose regulatory system, caused by a rapid infu-
sion/injection of either glucose, insulin or glucagon. As
a result, both models are able to accurately represent
behaviour during an IVGTT and during tests that involve
the intravenous infusion of insulin. Consequently, IVGTT
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and insulin-infusion data is used to validate the accuracy
of both models.
Two new parameters, termed glucagon effectiveness

and glucagon sensitivity, are defined in this paper and
both quantities help to determine a patient’s responsive-
ness to glucagon. This work investigates the response
of normal and diabetic patients to exogenous infusions
of insulin, to determine how inter-individual variation
in glucagon sensitivity/effectiveness potentially affects a
patient’s ability to re-stabilise their blood glucose concen-
tration to a safe level.
Methods
The models presented in this work describe the interac-
tions between glucose and insulin in the same way as the
Minimal Model [16], but incorporate additional equations
to describe glucose-insulin-glucagon dynamics (Fig. 1).
The two models, however, treat the interactions between
glucagon and glucose very differently.
Non-linear glucagonminimal model formulation (NLGMM)
The first system extends the Minimal Model and assumes
a complex, non-linear relationship between glucose and
glucagon, and glucagon and insulin. This model is
therefore denoted as the Non-Linear Glucagon Minimal
Model (NLGMM).
The NLGMM consists of the following equations:

dG
dt

= −p1(G − Gb) + (Y − X)G + Ginf(t), (1)

dX
dt

= −p2X + p3(I − Ib), (2)

dI
dt

= −p4(I − Ib) + p5(G − Gb)
+t + Iinf(t), (3)

dE
dt

= −p6(E−Eb)+p7(Gb−G)+t−p11 tanh (α(I − Ib)),
(4)

dY
dt

= −p8Y + p9(E − Eb)+. (5)

Whenmodelling an IVGTT, the NLGMM is subject to the
following initial conditions

G(0) = G0, X(0) = 0, (6)
I(0) = I0, E(0) = Eb, Y (0) = 0.

All parameters are positive and variables appearing within
the model are defined in Table 1. Note that the positive
superscript used in the system above is shorthand nota-
tion for the following function

(G − Gb)
+ =

{
G − Gb, G ≥ Gb,

0, G < Gb.
(7)

A similar definition is used for the functions (Gb − G)+
and (E − Eb)+. In addition, the functions Ginf(t) and

Fig. 1Model schematics. Model schematics for the linear glucagon minimal model (LGMM) and non-linear minimal model (NLGMM). Model
variables are described as: G, glucose; I, plasma insulin; X, active insulin; E, plasma glucagon and Y, active glucagon. Solid lines depict processes
whereas dashed lines depict regulatory-dependent events. Parameter values are described in Table 1. Both models describe the hormonal
regulation of plasma glucose concentration during hyperglycaemia ([G] > 120 mg/dl) and hypoglycaemia ([G] < 70 mg/dl), with the NLGMM
additionally considering interstitial glucagon dynamics, [E], [Y], whereas the LGMM assumes a linear relationship whereby plasma glucose will
increase in proportion to the concentration of glucagon, [E], in the plasma above the basal level
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Table 1 A description of the different variables and parameters
that appear within both the LGMM and NLGMM

Symbol Description Unit

G(t) Plasma Glucose concentration
at time t

mg/dl

I(t) Plasma Insulin concentration at
time t

μU/ml

X(t) Interstitial Insulin activity at
time t

min−1

Y(t) Interstitial Glucagon activity at
time t

min−1

E(t) Plasma Glucagon
concentration at time t

pg/ml

Gb Baseline plasma glucose
concentration

mg/dl

Ib Baseline plasma insulin
concentration

μU/ml

Eb Baseline plasma glucagon
concentration

ng/l

G0 Theoretical value of plasma
glucose concentration at time
t = 0

mg/dl

I0 Theoretical value of plasma
insulin concentration at time
t = 0

μU/ml

p1 Glucose Effectiveness min−1

p2 Rate of clearance of interstitial
insulin

min−1

p3 Rate of excess plasma insulin
stimulated glucose activity

min−2(μU/ml)−1

p4 Rate of insulin disappearance
from plasma

min−1

p5 Rate of second phase insulin
secretion (glucose dependent)

μU/ml min−2(mg/dl)−1

p6 Rate of glucagon
disappearance from plasma

min−1

p7 Rate of excess plasma
glucagon stimulated glucagon
activity

ng/l min−2(mg/dl)−1

p8 Rate of clearance of interstitial
glucagon

min−1

p9 Rate of excess plasma
glucagon stimulated glucose
activity

min−1(ng/l)−1

p11 Maximum rate at which insulin
suppresses glucagon secretion

ng/l min−1

δ Glucagon effectiveness mg/dl min−1 (ng/l)−1

Iinf(t) are used to account for external infusions of glucose
and insulin into the body and can change dramatically in
different tests.
The NLGMM accounts for the concentration of

glucagon in plasma but also accounts for the effects
of glucagon in tissue, termed active glucagon. The idea
behind this model is that the amount of plasma glucagon
is irrelevant. Instead, it is the amount able to stimulate

endogeneous glucose production that directly raises the
concentration of glucose in the blood stream. This
assumption is useful as it allows patients who suffer
from hyperglucagonemia to be easily accounted for and
was first suggested by [22] as a suitable mechanism for
glucose-glucagon dynamics.
The concentration of active glucagon is dependent upon

plasma glucagon and will only increase if the concentra-
tion of plasma glucagon is above its basal value. If this
criterion ismet, there will bemore active glucagon present
in the system and endogeneous glucose production will
increase. However, if the concentration of blood glucose
becomes too high, the concentration of active glucagon
will decrease to zero due to the lack of secretion of plasma
glucagon and thus endogeneous glucose production will
cease.
In terms of modelling the concentration of glucagon

in plasma, this model assumes that glucagon is only
released from the pancreas when glucose concentration
falls below its pre-test, basal level. It further assumes
that high levels of insulin in plasma suppress glucagon
secretion and cause the concentration in plasma to fall.
This phenomenon has been observed in the work of [24]
and should be accounted for in any mathematical rep-
resentation of this system. The term accounting for this
interaction between hormones does not allow the rate of
change of glucagon to continually decrease in the presence
of increasing insulin but rather, it assumes that beyond
a certain insulin concentration, glucagon secretion will
decrease at a constant rate.

Linear glucagonminimal model formulation (LGMM)
The second model presented assumes that the concentra-
tion of glucose is directly affected by plasma glucagon and
therefore omits interstitial glucagon activity. This system
is referred to as the Linearised Glucagon Minimal Model
(LGMM), as the rate of change of glucose depends in a
linear fashion on the concentration of plasma glucagon.
The system of equations for the LGMM is

dG
dt

= −p1(G − Gb) − XG + δ(E − Eb) + Ginf(t), (8)

dX
dt

= −p2X + p3(I − Ib), (9)

dI
dt

= −p4(I − Ib) + p5(G − Gb)
+t + Iinf(t),

dE
dt

=−p6(E−Eb)+p7(Gb−G)+t−p11tanh
(
α(I−Ib)

)
.

(10)

In the case of an IVGTT, the LGMM is solved subject to
the corresponding initial conditions

G(0) = G0, X(0) = 0, (11)
I(0) = I0, E(0) = Eb.
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The new parameter δ is defined in Table 1.
In the LGMM, the concentration of plasma glucagon is

modelled in the same way as in the NLGMM, but the rate
of change of glucose concentration is instead assumed to
be directly proportional to the concentration of plasma
glucagon. In this model, a fall in plasma glucagon concen-
tration will immediately lead to a rise in the concentration
of blood glucose, whereas an increase in plasma glucagon
will lead to an immediate rise in glucose concentration.

Physiological parameters
One of the principal advantages of retaining the glucose-
insulin dynamics as described by the Minimal Model is
that the glucose effectiveness (sG) and insulin sensitiv-
ity (sI ) of a patient may be estimated. Hence, estimates
of these parameters are recovered from the following
equations:

sG = p1, (12)

sI = p3
p2

. (13)

The reader is referred to [14] for more information about
how these estimates are derived. All three of these param-
eters (p1−3) are common to the NLGMM and LGMM,
allowing both models to compute approximations to these
key parameters.
As the interactions between glucagon and glucose are

modelled in a different way, both models return different
estimators of the glucagon effect. Following a similar idea
to that used in [16] to compute insulin sensitivity, if a non-
zero steady state value of glucagon activity is achieved, it
then follows from Eqs. (5) and (1) that:

Y = p9(E − Eb)
p8

(14)

and
dGSS
dt

= −p1(G − Gb) − XG + p9(E − Eb)
p8

G, (15)

where the subscript denotes “steady state”, and corre-
sponds to the rate of change of glucose when the con-
centration of active glucagon is steady. The glucagon
Sensitivity (sE) of a patient may then be defined as:

sE = ∂2

∂G∂E

(
dGSS
dt

)
= p9

p8
. (16)

This is identical to the result given in [22].
The LGMM does not contain the variable represent-

ing active glucagon and is therefore unable to return an
estimate of glucagon sensitivity. However, it is possible to
derive an alternate parameter that allows the effects of
glucagon to be quantified.
Using (8), let us define the function

F(G,X,E) = −p1(G − Gb) − XG + δ(E − Eb)

which describes the rate at which the concentration of
plasma glucose changes. Taking the derivative of this
function with respect to G gives

∂F
∂G

= −p1 = −sG. (17)

This quantity describes the rate at which the concentra-
tion changes according to the amount of glucose present
in the system and is equivalent to the glucose effective-
ness. According to [14], ‘glucose effectiveness is defined
as the enhancement of glucose disappearance due to an
increase in the plasma glucose concentration’. The appear-
ance of the minus sign within the equation above explains
why glucose effectiveness is used to describe the rate of
disappearance as it cause the concentration to decrease.
Taking the partial derivative of (17) with respect to E

yields
∂F
∂E

= δ.

This quantity describes the rate at which the concen-
tration of glucose changes according to the amount of
glucagon present in the system. It is therefore appropriate
to refer to this quantity as glucagon effectiveness. Using
the definition provided above for glucose effectiveness,
the glucagon effectiveness parameter is defined as the
quantitative enhancement of glucose appearance due to
an increase in plasma glucagon concentration.
Clearly, although glucagon effectiveness and glucagon

sensitivity are derived in different ways and defined dif-
ferently, they both allow a patient’s response to glucagon
to be characterised and may be used to quantify how
responsive a patient is to glucagon. (discussed later in the
manuscript).

Model solutions
A detailed analysis of the qualitative behaviour of solu-
tions of the LGMM and NLGMM may be found in
the Appendix. The LGMM consists of a system of four
non-linear differential equations and a maximum of 10
unknown parameters, whilst the NLGMM consists of five
non-linear differential equations and a maxmimum of 11
unknown parameters. As a result of the complexity of
both systems, both are solved numerically in MATLAB
using the ODE45 solver. The unknown parameters are fit-
ted to experimental data using LSQNONLIN, a non-linear
least squares solver, during the solution process.

Results and discussion
Model validation
The accuracy of solutions produced from both the
LGMM and NLGMM were validated against patient data
extracted from Thomaseth et al [17] before being used to
make new predictions. As the LGMM and NLGMM are
designed to be able to model rapid infusions of glucose,
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insulin or glucagon, both models were validated during
two different types of medical test: an IVGTT, and in a
test that artificially induces hypoglycemia via intravenous
infusions of insulin.

Validation against an IVGTT
Model solutions from the LGMM and NLGMM were
compared against experimental data extracted from [17],
whereby an Insulin Modified IVGTT (IM-IVGTT) and a
modified test (GC-IM-IVGTT) was performed on thir-
teen patients. Briefly, insulin-sensitivity can be probed by
the administration of insulin during an IM-IVGTT, which
can cause transient hypoglycemia in healthy insulin-
sensitive patients. The GC-IM-IVGTT however, is a mod-
ified IM-IVGTT test, which includes a glucose infusion, or
“glucose clamp (GC)”, in order to prevent hypoglycemia.
The two different tests are described by [17] as follows:
“Thirteen nondiabetic volunteers [7 male and 6 female,

aged between 25 and 27 years old, with a body mass
index (BMI): 22.1 ± 0.7 kg/m2, (mean ± SD)] were stud-
ied in random order during standard IM-IVGTT: 0.3 g/kg
glucose at time 0 and 0.03 IU/kg insulin at 20 min and
during a modified test (GC-IM-IVGTT) with additional
glucose infusion adjusted manually to prevent plasma glu-
cose concentration from falling below 100 mg/dl. Insulin,
glucose, and NEFA plasma concentrations were measured
at frequent intervals, from 15 min before the beginning of
the test and during the following 3 h. Plasma concentra-
tions of C-peptide, glucagon, cortisol, growth hormone,
epinephrine, and norepinephrine were also measured at
timed intervals.”
The aim of the investigation by [17] was to investi-

gate how nonesterified fatty acids affect the concentration
of glucose during an IVGTT. However, the authors pro-
vide average patient concentrations of glucose, insulin and
glucagon throughout the IM-IVGTT and GC-IM-IVGTT
which allows a thorough comparison of predictions from
both the LGMM and NLGMM to all three quantities. The
rational for using the data from Thomaseth et al. was two-
fold: first, the vast majority of research papers in the avail-
able literature that utilise IVGTTs in an investigation do
not contain any plasma glucagon data, and second, com-
paring model performance against data obtained from
two different types of IVGTT provides a more complete
model validation. It is worth noting that while the data
extracted from Thomaseth et al. was used to validate the
model, the adaptations the authors made to the minimal
model were not deployed in this work because the con-
sideration of free fatty acid kinetics or counterregulatory
responses are not prominent here. Furthermore, the min-
imal model has been ameliorated numerous times since
its inception for different specific outputs. Which amend-
ments to include therefore, are a function of the desired
output.

Modelling both an IM-IVGTT and GC-IM-IVGTT is
more complicated than a standard IVGTT as the addi-
tional infusions of glucose and insulin that are admin-
istered during the test must be incorporated within
the mathematical models. The reader is referred to
the Appendix for a full description of how this is
conducted here.
Figure 2 compares the patient data from [17] to model

solutions for the LGMM, NLGMM and the Minimal
Model. All three model simulations fit the glucose and
insulin data well, while the LGMM and NLGMM provide
a good representation of the glucagon data. The func-
tion representing insulin infusion replicates the actual
dose well in the IM-IVGTT but overestimates the amount
given in the GC-IM-IVGTT. The simulated predictions
of glucagon from both models fit the data well, and pass
through the majority of the errorbars indicating good
accuracy. The goodness of fit values computed from all
three models in this example are contained within Table 2
and indicate that all models provide highly accurate solu-
tions here.

Validation against hypoglycemic data
LGMM and NLGMM simulations were also compared
to the results of Bolli et al., presented in [25]. The aim
of the investigation by these authors was to determine
the role of intraislet insulin in the response of glucagon
to hypoglycemia. In the experiments conducted in this
work, hypoglycemia was artificially induced in both a
control group and a group of patients with diabetes by
infusing patients with insulin intraveneously. Upon com-
pletion of the study, the authors were able to deduce that
glucagon response to hypoglycemia induced by hyper-
insulinemia is independent of intra-islet and circulating
insulin.
The experiments within the above named work may be

replicated using the models proposed here. However, the
hyperinsulinemia triggered by the intravenously adminis-
tered insulin must be modelled separately and provided as
an additional input to the LGMM, NLGMM and Minimal
Model.
According to [25], the participants in the study are

described as follows:
“Seven normal healthy volunteers within 10% of ideal

body weight and five age- and weight-matched insulin-
dependent diabetic subjects were studied after obtaining
fully informed consent. The normal subjects, ranging
in age from 19 to 35 years (26± 3 years, mean±SEM),
had been on a weight-maintaining diet (300 g carbo-
hydrate/d) for at least 1 week before all studies. The
diabetic subjects had diabetes of 13-15 month dura-
tion and were C-peptide deficient (0.08± 0.02 ng/ml
before and 0.08± 0.04 ng/ml after 1 mg glucagon given
intravenously).”
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Fig. 2Model validation. Model simulations produced by the LGMM (blue lines), NLGMM (red lines) and the minimal model (black dashed lines) for
the two different IVGTT’s (mean data and SEM illustrated by circles and error-bars) presented in Thomaseth et al. 2014 [17]. A, B and C shows the
predictions for the insulin modified IVGTT, while D, E and F illustrates the results for the IVGTT with glucose infusion. A and D represent blood
glucose concentration, B and E represent plasma insulin and C and F represent plasma glucagon concentration’

The experimental studies that are referred to in this
paper concern both the control and diabetic group being
infused with insulin intravenously at a rate of 30mU/m2

per minute for an hour from the fasting state. Blood glu-
cose concentrations, plasma insulin and plasma glucagon
concentrations were measured at frequent intervals and
population averages in both groups were taken to deter-
mine the mean group response across the test.
TheMinimalModel is not designed to simulate this type

of experiment as it does not account for the effects of
glucagon. The LGMM and NLGMM however are suitable
for predicting glucose and hormonal responses, therefore
this data was chosen for validation to show their ability
to simulate different tests with accuracy. The reader is

Table 2 Goodness of fitness values (R2) of all model simulations
presented in Fig. 2

Dataset Model Glucose Insulin Glucagon

(IM-IVGTT) LGMM 0.994 0.984 0.779

NLGMM 0.997 0.993 0.850

MinMod 0.990 0.990 -

(GC-IM-IVGTT) LGMM 0.981 0.799 0.841

NLGMM 0.990 0.754 0.937

MinMod 0.992 0.766 -

referred to the Appendix for further details of how model
results are produced in this example.
The original patient data as given by [25] and model

solutions from the LGMM, NLGMM and Minimal Model
are presented in Fig. 3, accompanied by goodness of
fit values in Table 3. It is very clear that the solutions
from the LGMM and NLGMM closely match the given
patient data for glucose, insulin and glucagon in both
the control and diabetic groups. The predicted plasma
glucagon concentrations are incredibly accurate with both
new models fitting the data values almost exactly. The
Minimal Model struggles to fit the glucose data in the
control group and performs worse than the LGMM and
NLGMM. It does however provide a good fit to the glu-
cose data in the diabetic group which is indicative of
patients in this group being less sensitive to the effects
of glucagon.

Model comparison and predictions
Figures 2 and 3 illustrate the ability of the LGMM and
the NLGMM to provide accurate approximations during
both an IVGTT and tests that induce hypoglycemia by
infusing a patient with insulin. The performance of both
models may now be compared in more detail to discern
whether one model is significantly more appropriate than
the other.
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Fig. 3Model simulations produced from both the LGMM and NLGMM for the insulin induced hypoglycemic tests conducted by [25]. A, B and C
shows the predictions for the control group, while D, E and F depicts the results for the diabetic group. Blue lines correspond to solutions from the
LGMM, red lines to solutions from the NLGMM and the black dashed lines to the Minimal Model. Experimental data from [25] is shown as triangles

Comparing the LGMM and NLGMM
A simple way to initially compare the performance of the
two new models is by comparing values obtained from
the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC) in the examples considered
above. The AIC and BIC are penalised-likelihood criteria,
often used during model selection and are representative
of the distance between the fitted likelihood of a model
and the unknown true likelihood function of the data. The
only difference between the two measures is that the BIC
penalises model complexity more heavily.
The second order AIC (AICc) can be calculated to

account for smaller sample sizes which does penalise the
use of additional parameters more heavily than the usual
AIC. In what follows, values from all three criteria are

Table 3 Goodness of fitness values (R2) of all model simulations
presented in Fig. 3

Group Model Glucose Insulin Glucagon

Control LGMM 0.942 0.920 0.967

NLGMM 0.948 0.917 0.967

MinMod 0.666 0.921 -

Diabetic LGMM 0.904 0.787 0.983

NLGMM 0.846 0.792 0.969

MinMod 0.887 0.801 -

used to compare the LGMM and NLGMM. The AIC, sec-
ond order modified (AICc) and BIC values for the two
validation outputs are contained in Table 4. The LGMM
yields the minimum AIC values for three out of the four
tests (IM-IVGTT, GC-IM-IVGTT and the insulin infusion
diabetic group), with the NLGMM yielding the minimum
AIC value for the insulin infusion control group. However,
the AICc and BIC values corresponding to the LGMM
are smaller in all cases, with significantly smaller values
recorded for the IM-IVGTT and control group. The AICc
considers the smaller sample size and therefore lends cre-
dence to the LGMMbeing themost appropriate model for
the insulin infusion results. Moreover, the LGMM model
possesses a smaller parameter space than the NLGMM,
meaning less potential error during parameter estimation.
Hence on the basis of these tests, it seems evident that the
LGMM is the most appropriate model to use.
Another robust test that can be used to compare model

performance is to determine how good both models are
at accurately recreating patient profiles and model param-
eters. This test requires simulated data instead of real
patient data so that a very large amount of tests may be
run and statistically unbiased conclusions may be drawn.
Using precise, known model parameters also allows the
exact error in the parameter estimates to be computed.
In this example, a selection of randomly generated

parameters values are input into both the LGMM and
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Table 4 Values of the AIC, modified AIC and BIC computed from
the model simulations in the two examples used to validate the
LGMM and NLGMM

Test type Model AIC AICc BIC

IM-IVGTT LGMM 552.67 558.06 325.13

NLGMM 683.07 689.57 457.64

GC-IM-IVGTT LGMM 680.50 680.70 423.77

NLGMM 691.62 691.82 434.89

Insulin infusion (Control group) LGMM 277.70 286.87 168.82

NLGMM 276.19 287.68 168.87

Insulin infusion (Diabetic group) LGMM 262.84 273.85 170.73

NLGMM 268.40 279.93 177.72

NLGMM and used to simulate blood glucose, plasma
insulin and plasma glucagon profiles during an IVGTT.
This data is then distorted with a specified level of noise
and used to create a “virtual patient cohort" which is
passed into both models. The models are then fitted to
the data and used to estimate the parameters which are
assumed to be unknown. The returned parameter esti-
mates may then be directly compared to the exact values
that were used originally, facilitating a comparison of
model performance.
As the glucose effectiveness and insulin sensitivity of a

patient are of real clinical significance, this investigation
focuses solely on the accuracy of the estimates obtained
for these parameters. The inclusion of noise within the
data represents potential errors in the way that measure-
ments are taken, collected and/or recorded. Investigating
how the estimates of glucose effectiveness and insulin sen-
sitivity returned by both models are affected by noise will
determine how viable it is to use these models when there
is a reasonable degree of error in the patient data. The
accuracy of the predicted values of glucose effectiveness
and insulin sensitivity was investigated by considering the
relative percentage error (RPE) in each approximation.
The RPE in each approximation was calculated using the
following formulae:

RPE in Glucose Effectiveness =
∣∣∣∣∣
sG − sAG

sG

∣∣∣∣∣ × 100,

(18)

RPE in Insulin Sensitivity =
∣∣∣∣∣
sI − sAI

sI

∣∣∣∣∣ × 100, (19)

where the superscript A denotes the returned approxima-
tion to the parameter of interest. If the relative percentage
error is close to zero, the returned approximation to the
parameter is highly accurate. A complete description of
how these simulations are conducted is contained in a

flowchart within Fig. 4, representing a total of 500 simula-
tions.
The model parameters used in this test are described

fully in Table 6 in the Appendix. The chosen ranges for the
parameters p1−p5 are taken fromNittala et al. [26]. How-
ever, the ranges used for the parameters p6 − p11 and δ

were chosen after empirical testing using trial and error by
the authors. This consisted of using the corresponding fit-
ted values for these parameters in example 1 as themedian
value of these quantities and picking a suitable range of
values either side of the median that provided realistic
glucose, plasma insulin and plasma glucagon behaviour.
Figure 5 presents a series of boxplots depicting the rela-

tive percentage error between the estimated and observed
values of glucose effectiveness (sG) and insulin activity (sI )
obtained from both the LGMM and NLGMM. Equiva-
lent results obtained from the Minimal Model are also
presented to allow further comparison of model perfor-
mance. A series of descriptive statistics that compare the
median and interquartile range of the relative percentage
error produced from each model are further contained in
Table 5.
It is evident in all boxplots that the results produced

from the LGMM are far more accurate than those pro-
duced from the NLGMM. The results obtained from the
LGMM consistently have a much lower spread than the
NLGMM, as indicated by the much smaller box size. The
interquartile range and hence box size increases as the
amount of noise in the patient data increases for all mod-
els, which indicates that the accuracy of the estimates
of glucose effectiveness and insulin sensitivity produced
by all models decreases with noise. This is unsurpris-
ing as errors in patient data will increase the difficulty in
model-fitting and lead to increased uncertainty in param-
eter estimation. There are also significantly more outliers
obtained in this case, not all of which are shown here due

Fig. 4 A flowchart indicating how parameter estimates are computed
and compared during the comparison of the LGMM and NLGMM



Kelly et al. Theoretical Biology andMedical Modelling           (2019) 16:21 Page 10 of 17

Fig. 5 Boxplots of the estimates of glucose effectiveness and insulin sensitivity returned from the LGMM (abbreviated to LM here), NLGMM
(abbreviated to NLM) and the Minimal Model (MM). The top panel shows the boxplots for the RPE in glucose effectiveness and the bottom panel
shows the boxplots for the RPE in insulin sensitivity. The three boxplots above each model label represent 0%, 5%, and 10% noise respectively from
left to right

to the scale chosen. However, themedian values of glucose
effectiveness and insulin sensitivity produced from the
LGMM are still much closer to zero than those obtained
by the NLGMM when there is noise in the data, and
therefore the LGMM still proves to be a more accurate
model in these cases.
The results produced from the Minimal Model are

far more accurate than the NLGMM but comparable
to those produced from the LGMM. Furthermore, the
median and interquartile range produced from both

LGMM and NLGMM are similar at the 5% and 10%
noise levels. There is evidence however that the Min-
imal Model produces the more accurate approxima-
tions to glucose effectiveness and insulin sensitivity
with zero noise in the patient data as the interquar-
tile range is much smaller than that computed for the
LGMM.
A more definitive comparison between the LGMM,

NLGMM and Minimal Model may be obtained by com-
paring the predictions from all models for each dataset

Table 5 Statistical Comparison of the relative percentage error in the approximations to glucose effectiveness and insulin sensitivity,
produced from the LGMM, NLGMM and Minimal Model

LGMM NLGMM MinMod

Noise level Parameter Median IQR Median IQR Median IQR p-value

0% sG 0 1.7362 -1.2291 49.1232 0 0.0238 0.0031

sI 0 1.5644 10.5997 40.3733 0 0.0091 < 0.0001

5% sG -6.2099 30.8770 -13.2109 73.9800 -5.8340 34.3679 0.0041

sI -7.7208 40.1055 16.6060 52.5382 -5.1386 38.8835 < 0.0001

10% sG -6.7471 44.0449 -13.6528 83.1426 -3.3342 44.1309 0.0001

sI -7.1037 69.7317 12.6253 69.7497 -7.6116 71.9373 < 0.0001

The medians of each dataset and the interquartile range (IQR) are presented here and the p-values produced from the Kruskal-Wallis test at the 95% confidence level that
tests if the data from each model is obtained from the same distribution
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using the Kruskal-Wallis test. The Kruskal-Wallis test
checks the null hypothesis that data from all three models
originate from the same distribution against the alter-
native hypothesis that they do not. As can be seen in
Table 5, the p-values produced in all cases for this test are
significant at the 5% level and consequently, the data pro-
duced from all three models does not come from the same
distribution.
The performance of the LGMM and NLGMM may

be compared directly using the Mann-Whitney U-test
and again, statistically significant results at the 5%
level are obtained for all of the simulations produced
here (not shown here). Given that the medians pro-
duced for the LGMM are much smaller than those
produced for the NLGMM and that the interquartile
range is persistently smaller for the LGMM, the results
of these tests indicate that the approximations com-
puted from the LGMM are statistically more accu-
rate than the NLGMM. However, the performance of
the LGMM is comparable to that of the Minimal
Model.

Investigating the response of glucagon during an IVGTT
As both models have been validated against patient data
and have been compared against one another to contrast
model performance, analysis concludes with an investi-
gation into how the concentration of plasma glucagon
varies during glucose tolerance testing. In this example,
the response of glucagon during an IVGTT was investi-
gated. Particular attention was given to the relationship
between insulin and glucagon, in an attempt to determine
how glucagonmay be suppressed during periods of hyper-
glycemia. As a result, all parameter values in this example
are fixed and set equal to the fitted parameter values
obtained from the first dataset in Fig. 2, (see the Appendix
for details) apart from p11, which governs how sensitive
glucagon suppression is for any given concentration of
insulin.
Figure 6 illustrates how different maximum rates

of insulin-dependent glucagon suppression influences
glucagon concentration, during an IVGTT for the
LGMM and NLGMM. In this example, blue lines
correspond to smaller values of p11 which indicate
relatively little glucagon suppression, and red lines
corresponds to larger values, which indicate more sig-
nificant glucagon suppression. Both models predict that
patients with a higher sensitivity (larger p11) of insulin-
mediated glucagon suppression, exhibit a lower glucagon
concentration, compared to a non-sensitive patient.
Figure 6 also illustrates the fundamental differences

between how the glucagon metabolism in the LGMM
and NLGMM is simulated during an IVGTT. The LGMM
predicts that regardless of varying degrees of insulin-
mediated glucagon suppression, glucagon concentration

will peak and plateau at aproximately 150% of basal,
whereas the NLGMM reaches almost 200% of the basal
glucagon concentration, with little sign of decreasing.
Ultimately, the metabolism of glucagon hinges upon the
concentration of glucose, either by direct secretion during
hypoglycaemia, or indirectly via insulin-mediated inhi-
bition during hyperglycemia. In this instance, glucagon
concentration is able to recover quicker within the
LGMM, due to the omission of interstitial glucagon activ-
ity, given that the rate of change of plasma glucagon
is directly proportional to the concentration of glu-
cose. The NLGMM however, does include interstitial
glucagon activity, rendering the concentration of plasma
glucagon a less useful metric than the amount of effec-
tive glucagon working in the system at a given time.
These simulations suggest that first, manipulation of
p11 within both models facilitates simulation of inter-
individual variation with respect to insulin-mediated
glucagon suppression, and second, that the NLGMM is
perhaps better suited to simulate patients who suffer from
hyperglucagonemia.

Investigating the response of glucagon during periods of
hypoglycemia
The final example presented in this work considers
how glucagon response within a patient with Type
1 diabetes mellitus (T1DM) varies during periods of
hypoglycemia. The most novel aspect of the two new
models introduced within this work is that they both
seek to describe the dynamics between glucose, insulin
and glucagon, given that the relationship between glu-
cose and glucagon is key when a patient experiences
hypoglycemia.
Within this example, model simulations explored the

possible variations between patients. The simulated test
represents a patient with T1DM receiving an intravenous
infusion of one unit of insulin in the fasting state and
measures how different values of glucagon effectiveness
and glucagon sensitivity affect the response of both blood
glucose and plasma glucagon over a three hour period,
assuming that no glucose is ingested or administered to
correct sugar levels.
All parameters within this example, except for glucagon

effectiveness (δ) in the case of the LGMM and glucagon
sensitivity (sE) in the case of the NLGMM, are fixed
and detailed within the Appendix. It should be noted
that some of the parameter values used in this example
may not correspond exactly to the physiological param-
eters that one would expect for a Type 1 diabetic so the
predictions produced here should be regarded primarily
as qualitative rather than quantitative.
Figure 7 shows the glucose and plasma glucagon con-

centration profiles of T1DMpatients produced in this test.
The LGMM predicts that a patient with a higher glucagon
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Fig. 6 Variations in endogenous glucagon production. Endogeneous glucagon production during an IVGTT for a range of values of p11 that
correspond to differing maximum rates of glucagon suppression by insulin for the LGMM (a) and NLGMM (b). Blue lines correspond to smaller
values of p11 and red lines correspond to larger values. Parameter values used for the simulations are located in Table 7 in Appendix D, with the
value of p11 varying between 0 and 2 in increments of 0.1 between simulations

effectiveness will experience a rapid reduction in plasma
glucose, followed by a quicker, full recovery to basal levels
(Fig. 7a). Conversely, a patient who is glucagon ineffective,
will fail to recover to pre-test glucose concentrations dur-
ing the 180 min simulation. The NLGMMmodel predicts
that there will be no difference between a glucagon sensi-
tive or insensitive individual for the first 50 min of the test
(Fig. 7b). However, glucagon effective patients will recover
before 150 min, whereas patients who are glucagon inef-
fective will fail to recover to basal glucose concentrations.
Outputs for both models are intuitive, with the predomi-
nant differences between the LGMM and NLGMM rest-
ing in the recovery time. The LGMM predicts glucagon
sensitive individuals may recover rapidly, compared to the
NLGMM, which predicts a much more delayed recov-
ery time. Again, this behaviour is a function of how the
LGMMandNLGMMeach represent glucose metabolism,
with the LGMM rate of change of glucose concentration
being directly dependent on plasma glucagon, leading to
an immediate fall in plasma glucose. The blood glucose
concentrations presented here for a patient with a normal
response to glucagon are qualitatively identical to those
presented in [25] for patients with type 1 diabetes and
normal response to glucagon which further validates the
predictions produced from both models.
Figure 7 also presents the simulated plasma glucagon

concentration profiles from the LGMM and NLGMM
(7 C and 7 D), which are virtually identical in every
case, indicating that an individual with very low glucagon
effectiveness / sensitivity experiences a large increase

in the concentration of plasma glucagon. The only dif-
ference between the LGMM and NLGMM, similar to
the glucose concentration profiles, is the delayed recov-
ery response-time of the NLGMM compared to the
LGMM. It is further evident that type 1 diabetics with
an impaired response to glucagon would be unable to
raise their blood glucose levels and would require an infu-
sion of glucose to recover from hypoglycemia. Type 1
diabetics with a normal response to glucagon however
are able to recover from hypoglycemia without insulin
infusion.

Model considerations and applications
Both the LGMM and NLGMM fit well to the glucose,
glucagon and insulin profiles from modified and glu-
cose infusion IVGTT data. The ability of both models to
replicate the data was compared using the AIC and BIC
penalised-likelyhood criterion tests, which suggested that
the LGMM is considered the superior model with respect
to simulating an IVGTT, as well as for insulin infusion
models. This finding was bolstered during the parameter
re-estimation analysis, where the LGMM was statistically
more accurate when predicting glucose effectiveness and
insulin sensitivities for a “virtual patient cohort” given 0%,
5% and 10% noise. While the LGMM appears to best the
NLGMM in terms of replicating IVGTT and insulin infu-
sion data, simulations of blood glucose and glucagon con-
centrations in Figs. 6 and 7 present the merits of the linear
and non-linear descriptions of glucagonmetabolism. Sim-
ulations of both models allow prediction of how inter-
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Fig. 7 Statistical comparison of glucose effectiveness and insulin sensitivity. The evolution of blood glucose and plasma glucagon concentrations
after an injection of one unit of insulin for patients with different degrees of glucagon sensitivity and glucagon effectiveness. A and C present the
results from the LGMM, while B and D present the results from the NLGMM. The colour scheme indicates low glucagon effectiveness / sensitivity
(dark blue) to high glucagon effectiveness / sensitivity. The value of δ varies between 0.0001 and 0.01 in increments of 0.005, whilst the value of sE
varies between 1 × 10−5 and 5 × 10−4 in increments of 2.45 × 10−5. All of the parameter values used for these simulations are located in Table 8 in
Appendix D

individual variations in glucagon effectiveness and sensi-
tivity can affect plasma glucose and glucagon concentra-
tions. LGMM and NLGMM simulations of IVGTT and
insulin infusion data stand strong compared to the Mini-
mal Model ouputs in Figs. 2 and 3 for glucose and insulin
outputs.
It is important to note that the driving force of this work

was not to improve the accuracy of predicting glucose
effectiveness (sG) and insulin sensitivity (sI ) parameters
with respect to the Minimal Model, but rather, to expand
the mathematical metabolic portrait to include the role
of glucagon, given the current surge of interest it has
received in the field of diabetology.

Conclusion
Presented here are two mathematical models of glucagon-
glucose-insulin metabolism, used to simulate an IVGTT.
The first, assumes a complex, non-linear glucose-
glucagon-insulin relationship, while the second assumes
that the rate of change of glucose concentration is
proportional to the concentration of plasma glucagon.
Both models accurately replicate insulin-modified and
glucose infusion IVGTT data, while also being able to
re-estimate the key physiological parameters, glucose

effectiveness (sG) and insulin sensitivity (sI ). Inclusion of
glucagon dynamics allow estimation of two new param-
eters, glucagon sensitivity (sE) and glucagon effectiveness
(δ), which describe the quantitative enhancement of glu-
cose appearance due to an increase in plasma glucagon
concentration. Perturbation of these parameters facilitates
investigation of inter-individual variation of glucagon sen-
sitivity and the resulting changes on plasma glucose and
glucagon concentration. The LGMM and NLGMM allow
the role of glucagon during an glucose tolerance test-
ing and insulin infusion to be investigated, as well as
providing a mathematical platform from which potential
glucagon-based therapeutics may be explored.

Appendix
Appendix A: Model analysis
Qualitative study of solutions
Due to the inherent non-linearity within both models, it is
impossible to obtain analytical solutions of either system
and numerical methods must be used instead to obtain
approximate solutions. It is possible however to obtain
qualitative information about the behaviour of solutions
of both plasma insulin and plasma glucagon without being
able to explicitly solve for I(t) and E(t). In what follows in
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this section, the qualitative behaviour of the NLGMM is
discussed, as the equationsmodelling the concentration of
plasma insulin and plasma glucagon are identical in both
systems and a separate analysis of both systems here is
unnecessary.
If one attempts to solve (3) in isolation from the rest of

the NLGMM, the solution

I(t) = Ib + (I0 − Ib)e−p4t (20)

+ p5e−p4t
∫ t

0
s(G(s) − Gb)

+ep4sds,

is obtained for t ≥ 0. This solution is of little practical use
as G(t) is unknown but it can be immediately observed
that when G(t) > Gb, I(t) > Ib which is what should
happen as insulin is released to counteract an increase in
glucose. However, if G(s) < Gb, the exact solution

I(t) = Ib + (I0 − Ib)e−p4t (21)

is obtained, which still satisfies I(t) ≥ Ib. It may be
deduced therefore that the equation modelling the con-
centration of plasma insulin in bothmodels does not allow
the concentration to drop below the basal level. This is
also true of the Minimal Model.
The behaviour of plasma glucagon is more complex as it

is assumed to depend on both glucose and insulin and the
ODE is non-linear. However, when a patient is experienc-
ing hyperglycemia and the concentration of plasma insulin
is very high, (3) may be simplified into the following
equation

E′(t) = −p6(E − Eb) − p11. (22)

This ODE possesses the exact solution

E(t) = Eb − p11
p6

(
1 − e−p6t), (23)

where the initial condition E(0) = Eb has been applied. As
t → ∞, this solution tends to the constant value

E∞ = Eb − p11
p6

, (24)

which is the minimum possible concentration of plasma
glucagon and a steady state solution. In order to ensure
physiologically sensible solutions, we must have that

p11
p6

< Eb. (25)

The integral representations of the solutions of both inter-
stitial insulin and glucagon activity are found to be

X(t) = e−p2t
∫ t

0
(I(s) − Ib)ep2ss., (26)

Y (t) = e−p6t
∫ t

0
(E(s) − Eb)+ep6ss.. (27)

Given that both integrands are non-negative for all possi-
ble values of t, it may be deduced that the concentrations

of insulin and glucagon in tissue will always be non-
negative. This is to be expected as it is clearly impossible
to have negative concentrations of hormones in tissue, but
it is reassuring that all model simulations are realistic in
this sense.
Investigating the existence of critical points
Determining the existence of steady-state solutions of
both the NLGMM and LGMM is a useful exercise as
such solutions allow characterisation of the long term
behaviour of solutions obtained from both models.
As a system of differential equations can only possess

one or more critical points if it is autonomous, it follows
that the terms involving (G − Gb)

+ and (Gb − G)+ must
vanish simultaneously to suppress the explicit appear-
ance of the time variable. From this information, one
can deduce that the only possible critical point of the
NLGMM is

(G�,X�, I�,E�,Y �) = (Gb, 0, Ib,Eb, 0). (28)

It similarly follows that the only critical point of the
LGMM is

(G�,X�, I�,E�) = (Gb, 0, Ib,Eb). (29)

In both cases, the critical point corresponds to the physi-
cal situation of the patient not being administered glucose
and thus their body remaining in the fasting state.
Classifying the long term behaviour of model solutions
Having found the critical points of both systems, it is
now of interest to classify their nature and determine how
model solutions behave in the limit t → ∞. The stability
of these critical points may be determined by evaluating
the Jacobian matrices of both systems of equations at the
critical point (see [27] for example). In the case of the
NLGMM, the requisite matrix is

J� =

⎛
⎜⎜⎜⎜⎝

−p1 −Gb 0 0 Gb
0 −p2 p3 0 0
0 0 −p4 0 0
0 0 −αp11 −p6 0
0 0 0 p9 −p8

⎞
⎟⎟⎟⎟⎠ (30)

Attempting to solve for the eigenvalues of this matrix
reveal that they satisfy the equation

(p1 + λ) (p2 + λ) (p4 + λ) (p6 + λ) (p8 + λ) = 0, (31)

and hence

λ = −p1,−p2,−p4,−p6,−p8. (32)

As all model parameters appearing in the NLGMM are
positive, these eigenvalues are negative and hence the crit-
ical point is stable. This means that all solutions produced
from this model will eventually return to the pre-test
fasting levels obtained for a patient.
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In the case of the LGMM, the Jacobian matrix evaluated
at the critical point is

J� =

⎛
⎜⎜⎝

−p1 −Gb 0 δ

0 −p2 p3 0
0 0 −p4 0
0 0 −αp11 −p6

⎞
⎟⎟⎠ , (33)

and the eigenvalues of this matrix are

λ = −p1,−p2,−p4,−p6. (34)

As all obtained eigenvalues are again negative here, this
critical point is also stable and all model solutions will
eventually return to a patient’s pre-test fasting levels.

Appendix B: Modelling an IM-IVGTT and
GC-IM-IVGTT
In a standard IVGTT, glucose is administered intraveously
only at the beginning of the test and there is no infu-
sion of insulin. In this situation, the Minimal Model
and both the LGMM and NLGMM assume that the
initial concentrations of plasma glucose and plasma
insulin are very high at the beginning of the test. These
assumptions have the advantage of simplicity and have
proven to produce accurate predictions in numerous
investigations.
The infusion of insulin that is given after 20 min in

both the IM-IVGTT and GC-IM-IVGTT needs to be
directly accounted for within any approximating model
to ensure that the predicted glucose response is accu-
rate. This requires the use of a suitable function Iinf (t)
to model this dose. Based on the details provided about
the average patient BMI and dosage given in [17],
the insulin infusion is modelled using the following
function:

Iinf (t) = 3920 e−8|t−20|. (35)

This function has been chosen as it represents a dose
administered over a maximum of 60 s. The value 3920
was determined by LSQNONLIN when this function was
fitted to the dataset for plasma insulin given in the IM-
IVGTT.
In the GC-IM-IVGTT, Thomaseth et al. do not give any

indication as to how much glucose is infused to prevent
hypoglycaemia, rather. Instead, the authors indicate that
the additional glucose infusion is adjusted manually to
prevent hypoglycaemia. In the absence of more specific
information, it is assumed that when glucose concentra-
tion reaches 100 mg/dl, it ceases to vary, and hence (1) is
replaced by the alternate equation:

G′(t) = 0.

Whilst this is not a true representation of how the glucose
concentration actually behaves, it does make it possible to

examine whether the simulated behaviour of glucagon is
qualitatively correct or not in this case.

Appendix C: Modelling an insulin infusion test
In an insulin infusion test, insulin is administered intra-
venously at a constant rate for a substantial period of time.
Within this work, the insulin infusion term within Eqs. (3)
and (10) is chosen to be

Iinf(t) =
{
Id, 0 ≤ t ≤ 65,

0, t > 65,

where Id is the provided dosage of insulin with corre-
sponding units μU/ml min−2. This value may be com-
puted using the information regarding dosage provided
by [25].
The initial conditions for both the LGMMandNLGMM

are also much simpler in an insulin infusion test as the ini-
tial concentrations of blood glucose and plasma insulin are
assumed to be at their basal level. The initial conditions
for the NLGMM in this case are:

G(0) = Gb, X(0) = 0, I(0) = Ib, (36)
E(0) = Eb, Y (0) = 0,

and the initial conditions for the LGMM are

G(0)=Gb, X(0)=0, I(0)= Ib, E(0)=Eb.
(37)

As a result, only 10 unknown parameters appear in
the LGMM and 11 unknown parameters appear in the
NLGMM in this test.
Appendix D: Simulation parameters
The following Table contains the parameters used to
investigating the response of glucagon during an IVGTT.

Table 6 The range of parameter values used to create a virtual
cohort of patient data

Parameter Median value Smallest value Largest value

p1 0.01 0.001 0.1

p2 0.05 0.01 0.9

p3 1 × 10−5 1 × 10−6 1 × 10−4

p4 0.225 0.05 0.4

p5 0.005 0.001 0.009

p6 0.055 0.01 0.1

p7 1 × 10−4 1 × 10−5 1 × 10−3

p8 0.26 0.1 0.52

p9 5 × 10−3 1 × 10−4 9 × 10−3

p11 0.125 0.5 2

δ 0.01 0.001 0.1

Gb 85 70 100

Ib 12 7 17

Eb 65 50 85

The corresponding units for each quantity are described in Table 1
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Table 7 Parameter values used in the example investigating
glucagon suppression caused by insulin

Parameter Variable (Yes/no) Value

Gb No 95

Ib No 90

Eb No 70

p1 No 0.01

p2 No 0.015

p3 No 6 × 10−4

p4 No 0.1

p5 No 0.0045

p6 No 0.08

p7 No 9 × 10−4

p8 No 0.13

p9 No 6.5 × 10−5

p11 Yes [0.01,2]

δ No 0.1

G0 No 270

I0 No 325

The corresponding units for each quantity are described in Table 1

Table 8 Parameter values used in the example investigating the
response of glucagon and glucose due to an infusion of insulin

Parameter Variable (Yes/no) Value

Gb No 95

Ib No 0

Eb No 70

p1 No 0.01

p2 No 0.015

p3 No 6 × 10−4

p4 No 0.1

p5 No 0.0045

p6 No 0.08

p7 No 9 × 10−4

p8 No 0.13

sE Yes [0.00001,0.0005]

p11 No 1.5

δ Yes [0.0001,0.1]

The corresponding units for each quantity are described in Table 1
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