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Abstract—This work advocates for cognitive biometric-enabled
systems that integrate identity management, risk assessment and
trust assessment. The cognitive identity management process
is viewed as a multi-state dynamical system, and probabilistic
reasoning is used for modeling of this process. This paper
describes an approach to design a platform for risk and trust
modeling and evaluation in the cognitive identity management
built upon processing heterogeneous data including biometrics,
other sensory data and digital ID. The core of an approach is
the perception-action cycle of each system state. Inference engine
is a causal network that uses various uncertainty metrics and
reasoning mechanisms including Dempster-Shafer and Dezert-
Smarandache beliefs.

I. INTRODUCTION AND MOTIVATION

The future generation security checkpoint for mass-transit
hubs and large public events is anticipated to be a system
that combines: biometric-enabled authentication [12], [19],
[31], [45] and watchlist check [32], screening strategies [37],
deception feature detection [1], [41], [43], [55], as well as
concealed illicit item detection [38], [53]. Such a system will
be an integral part of the security infrastructure, including
logistics and surveillance network with abilities of tracking
individuals-of-interest and analyzing the group behavior. This
vision is introduced, in particular, in the International Air
Transport Association technology roadmap “Checkpoint of the
future” [27].

The currently being developed concept of a future check-
point is called a cognitive checkpoint. This concept is more
complicated compared to the classic security paradigms such
as layered security model [9], [29], [49], [54], or a dynamic
individual risk update [37]. The cognitive checkpoint is a
semi-automated system, which deploys the AI to process the
data sources and to assess trust and risk; this assessment is
submitted to a human operator for the final decision. Fig. 1
depicts the concept of cognitive identity management:

1) An individual is a subject of authentication and risk
assessment based on acquired physical and virtual (online)
sources of information. Four physical sources include data
captured in the following bands:

– Source A: Acoustic domain as a human-machine commu-
nication channel with frequency range of 70 to 200 Hz
for men, 150 to 400 Hz for women, and 200 to 600 Hz

Fig. 1. Four information sources for machine reasoning at the security
checkpoint: biometrics in infrared (3−12µm), audio (70–600 Hz), and visual
(400− 700µm) spectral bands, and UWB radar illumination (3–10 GHz).

for children; the pitch, loudness and timbre of a human
voice are the main parameters used by an e-interviewer
for emotions and deception detection [1], [41], [55] [62];

– Source B: Infrared domain; the human body radiates non-
visible infrared light (3− 12µm waves) in proportion to
its temperature; this band is used for assessment of both
cognitive and physical state [43];

– Source C: Visual domain, 400− 700µm, for authentica-
tion and emotional state assessment using face and face
expression recognition [31], [32];

– Source D: Radar illumination, 3–10 GHz; certain con-
cealed items can be detected using the Ultra Wide Band
(UWB) radar [24], [38].

2) There is a deep causal relationship between the



above sources of information. For example, gait and be-
havior/emotion pattern are correlated with possible possession
of illegal concealed items [1], [41], [55].

3) Machine reasoning is the key operation in these techno-
logies [62]. For example, an insobriety pattern can be reasoned
upon analysis of thermal (infrared) measurements of face
temperature, as well as body gesture and speech abnormalities.
Such reasoning is performed under uncertainty, and, thus it is
a probabilistic reasoning.

As the AI components for processing of heterogeneous data
become more independent and sophisticated, the implications
of their actions become more serious. Such AI tools perfor-
ming actions on behalf of an operator could make errors that
are difficult to “undo”, for example, mis-identification of a
person-of-interest. Moreover, for AI to operate effectively on
the human’s behalf, they might need confidential or sensitive
information of the users such as financial details and personal
contact information [11]. Trust becomes very important if
an AI actions can cause their user physical, financial, or
psychological harm. Thus, the users and the operators must
be confident that the AI tools will do what they ask, and only
what they ask. That is, a trusting relationship must develop
between the humans and the AI tools. In the context of AI
in identity management, trust means no longer controlling the
AI tools directly, and letting the AI act on the human’s behalf
and accepting the risks this might entail.

Human acceptance of AI technology is determined by the
combination of both trust and risk factors (e.g. Can we trust
this machine decision?) and risk factors (e.g. How risky is
this machine decision?) [2], [23], [58], [63]. The contributing
factors include belief, confidence, experience, certainty, relia-
bility, availability, competence, credibility, completeness, and
cooperation [10]. Feelings of trust and risk can be established
quite independently, and together they determine the intelligent
tools success. Note that trust contributes to the AI tools
acceptance, while risk contributes to its rejection. Trust and
risk influence each other reciprocally [30]. It should be noted
that Dempster-Shafer (DS) theory intrinsically contains the
probabilistic ingredients for assessment of the system trust
and risk. These possibilities are used, for example, for trust
modeling in securing online reputation systems [34] and for
risk validation in certificate security [26].

Computing the risk and trust under identity uncertainty has
only been so far, partially studies. For example, effects of
impersonation were studied in [61]. The risk countermeasures
were studied in [6]. However, true AI-based decision making
possibilities at the security checkpoint were not exploited.
Few pilot projects on biometric-enabled AI technologies for
identity management have been reported [22], [28], [33].
Technology-independent model of a checkpoint for border
crossing security is given in Fig. 2 [62].

This work advances a technology further. We propose an
approach based on the decomposition of the risk and trust
assessment into a multi-state process based on the paradigms
of 1) a multi-perception-action cycle (local and global), and
2) a cognitive computation concept (inspired by the cognitive

Fig. 2. Technology-independent model of a multi-state security checkpoint.
The subject (traveler)’s risk is assessed using various mechanisms such
as forward propagation (a process from effect to causes) and backward
propagation (a process from causes to effect) of risk and trust through the
states. Risk and trust are adjusted using their causal relationships. This is the
core principle of traveler’s risk mitigation.

dynamic systems [25]). The associated risks and trust are
propagated from the first state (input data acquired using
multiple cross-spectral sensors as well as prior data and
any contextual data) to the last state (output data in the
form of posterior probabilities and recommendations). At each
intermediate state, the risks an trust are analyzed, updated,
mitigated (via eliciting more information), and predicted. In
legacy systems, risk assessment is performed by humans, such
that data from ID readers and sensors is processed separately,
and is supplied to a human operator to make a decision. In an
AI-enabled decision support, this is enabled via a probabilistic
reasoning mechanism. Modeling using probabilistic reasoning
is a rational solution proposed in this paper.

This paper contributes to solving the three important chal-
lenges in identity management:

How to model security screening in conditions when the
role of intelligent supporting tools becomes critical [56],
[58]; We accept Haykin’s concept of cognitive dynami-
cal systems [25], and developed a multi-state cognitive
identity management process;

How to measure risks and trust in the cognitive identity
management [57], [60], [63]; We accept the Pearl’s con-
cept of the causality in cognitive dynamic systems [42]
and developed the computational platform that combines
various probabilistic measures of causal reasoning; and

How to exploit available approaches and resources for
risk and trust analysis [12], [13], [54]; We accept the
probabilistic notion of risk and trust [10], [47], we
defined the fundamental operations on risk and trust, and
demonstrate how they are implemented in the proposed
computational model.

We revisit the risk and trust evaluation in complex sys-
tems, and define the cognitive security platform for identity
management. We deploy a multi-state model of the identity
management [62]. The core of the proposed cognitive plat-
form is the novel inference engine. The prototype software
implementation of this engine in available in [7].



II. BASIC DEFINITIONS, STATEMENTS, AND PROPERTIES

The core research questions of our study are as follows:
1) Can we trust the cognitive identity management process?
and 2) How risky are the decisions of the cognitive process?
To answer those questions, the trust and risk in identity
management should be defined first.

Definition 1: Risk is a measure of the extent to which an
entity is threatened by a potential circumstance or event, and
typically is a function of: (i) the adverse impact, or magnitude
of harm, that would arise if the circumstance or event occurs;
and (ii) the likelihood of occurrence [39].

Definition 2: Trust is the willingness of the trustor (evalua-
tor) to take risk based on a subjective belief that a trustee
(evaluatee) will exhibit reliable behaviour to maximize the
trustor’s interest under uncertainty (e.g., ambiguity due to
conflicting evidence and/or ignorance caused by complete
lack of evidence) of a given situation based on the cognitive
assessment [10].

Definition 3: Trustworthiness is the degree to which an
information system can be expected to preserve the confi-
dentiality, integrity, and availability of the information being
processed, stored, or transmitted by the system across the full
range of threats [39].

In our approach, risk, trust, and trustworthiness are mea-
sured in terms of probabilities. These general notions of risk
and trust should be specified within the concept of identity
management at a cognitive checkpoint.

A cognitive checkpoint is a complex dynamic system
with the following elements of a cognitive system [25]: 1)
perception-cycle (information gain about the state of identified
person), 2) memory distributed across the entire system, 3)
attention driven by memory to prioritize the allocation of
available resources, and 4) intelligence driven by perception,
memory, and attention; its function is to enable the control and
decision-making mechanism to identify intelligent choices.
These cognitive elements are distributed in the form of a
multi-state multi-perception-cycle semi-automated model [62].
In addition, a cognitive checkpoint is a privacy-sensitive model
[11], [14].

The goal of the cognitive semi-automated checkpoint is to
answer the questions about (1) the risk of the decision (correct
identification of a given individual or his/her behavioral pat-
terns), and (2) the trust of the human operator in the system to
the decision supplied by the AI (machine reasoning). This risk
and trust assessment is based on multiple criteria such as relia-
bility of sources, credibility of information, sensor precision,
recognition algorithm performance etc. This assessment varies
among the systems. Specifically, risk and trust assessment in a
multi-state model is 1) distributed over states, 2) represented in
causal relations, available for 3) propagation, 4) adjustment,
5) prediction, and 6) fusion. The mechanism enabling these
operations is known as probabilistic inference called machine
reasoning.

The key limitation factors of the risk and trust inference
process are determined as follows. 1) The complexity of

relationships between the states refers to various strategies to
risk and trust assessment. Sources of information can have
dual or multiple roles over the states. 2) Time limits of the
operations place certain constraints on the sytem performance
[28], [31], [45]. An example is a security problem known
as the “bottleneck” and “traveler redress”. Such problems
are the reason why the screening process should be well
synchronized with other resources. This is of critical impor-
tance, in particular, in the airport infrastructure. 3) Severity
of consequences of the decisions made reflects the conceptual
aspects of automated or semi-automated screening (decisions
are made under incomplete, conflicting information, and the
AI cognition is incomplete due to data or time constraints).

III. FUNDAMENTAL OPERATIONS ON RISK AND TRUST

We consider a multi-state screening of an individual (Fig.
2) as a dynamic cognitive system that:

1) monitors the traveler data throughout the process of e-ID
checking, face recognition, and continuously assess the
risk using various sources such as behavioral biometrics,
watchlist, e-interview results etc.,

2) updates its states based on the intelligence gathered via
• human-machine interactions (e-interviewer),
• results of the biometric traits recognition based on

machine learning,
• results of the concealed object detection (by adjus-

ting radar illumination, in particular), and others.
Fig. 3 shows an example of the aforementioned functions in

the context of the cognitive identity management for travelers
crossing the borders:

• The traveler’s identity management process is implemen-
ted in four states, S1 (pre-screening based on Advanced
Information), S2 (ID validation), S3 (Traveler authenti-
cation), and S4 (Concealed object detection). Each state
contains several sub-states. For example, the second state
S2 includes four sub-states S(1)

2 , S(2)
2 , S(3)

2 , and S(4)
2 .

• In a semi-automated system, the traveler can be directed
to the manual control after each state, or can be directed
to the next state.

• There are two types of dependency relationships that
exist between states Si and sub-states S(j)

i : intra-iteration
dependency (sub-states in the same loop), and cross-
iteration (previous states) dependency.

• Each state Si and sub-state S(j)
i is a part of the “Layered

Security Strategy”, a contemporary security doctrine [9],
[29], [54].

• Each state Si and sub-state S
(j)
i generates risk and

trust assessments for further processing and inference
using operations such as propagation, causal analysis,
reasoning, etc.

In our work, the taxonomy of risks is defined by the
following fundamental operations:

1) State risk and trust assessment, such as the risk of
the ID being fraudulent, or risks to privacy throughout the



Fig. 3. Taxonomical view of the multi-state cognitive identity management process. Risks and trust are propagated from the first state (input) to the last state
(output), and at each state their risk and trust status is causal analyzed, adjusted, fused, and predicted. Each state is represented by a perception-action cycle
of sub-states.

e-interviewing. In modeling, each risk is represented by a
corresponding probability distribution function.

2) Causal analysis of risks and trust is based on the “cause-
effect” paradigm. In particular, Granger causality analysis is
an advanced tool for this purpose [18], [48].

3) Risk and trust propagation. For example, if a person is
on a watchlist, the risk of mis-identification or impersonation
[61] is propagated through other states such as rik of mis-
detection of a concealed item. The risk propagation problem
was studied, in particular, as a multi-echelon supply chain
problem in [40].

4) Risk and trust reasoning is the ability to form an
intelligent conclusion or judgment using the risk and trust
data. Causal reasoning is a judgment under uncertainty based
on a causal probabilistic network. For example, assessed high
risk to security based on a person’s profiling does not always
result in an overall high risk. Each state operates as a cognitive
agent that makes a decision regarding the user risk and trust
based on the specific resources such as previous experience
(statistics) and observed information. The final risk assessment
of the decision regarding the subject is negation, or consensus
between the states (agents). The theoretical framework of such
approach is known as the group decision making [59], [60].

5) Risk and trust adjustment aims at improving the confi-
dence of the risk assessment. For example, non-match of facial
images, one from an ID and another from a current probe

image, may result in a high risk indicator, but can be later
adjusted using the face aging (also called “template aging”)
factor.

6) Risk mitigation. In most scenarios, the risk can be
lowered through the process of periodical re-assessment, as
some risks can be downgraded to an acceptable level level
and/or mitigated through the feedback and action as explained
below.

7) Risk and trust prediction. In complex systems, meta-
recognition, meta-learning, and meta-analysis can be used to
predict the overall success (correct assessment of the risk
and trust) or failure (incorrect one) of the system. The most
valuable information for such risk assessment is in the “tails”
of probabilistic distributions related to failures [15], [52].

IV. PERCEPTION-ACTION CYCLE

The crucial element of a cognitive checkpoint is the risk
perception-action cycle. A semi-formal description of a user
risk and trust perception-action cycle is as follows:

Person’s

Risk & Trust

assessment

[t+1]

 ≡

Risk & Trust

perception

state

[t]

×

Machine-Human, or

Machine-Machine

action

[t]


where a subject’s risk assessment at time (level) [t + 1]
is a result of a machine-human action over risk perception



resources (state) at time (level) [t]. Notion of the perception-
action cycle is needed in terms of maximizing information
gain about the individual computed from the observable data.
For this, we adopted the perception-action cycle for a dynamic
cognitive system [25].

Fig. 4. Perception-action cycle is the core of a cognitive checkpoint. Each
state in the model in Fig. 3 is represented as a perception-action cycle. In this
loop, the traveler risk is assessed under available resources, and system risks
and trust.

There are three key components of the perception-action
cycle of the cognitive checkpoint (Fig. 4): An individual as a
subject of multiple security measures applied in a supported
infrastructure; A screening actuator that initializes execution
of a security task or several security tasks; and An evidence
analyzer that computes feedback information to the screening
actuator.

Given an individual, the “screening actuator” initiali-
zes screening such as authentication (e.g. e-ID), human-
machine interactions using e-interviewer, risk assessment (e.g.
biometric-enabled watchlist and multi-cross information ga-
thering), and concealed object detection (e.g. weapon and
dangerous items). The observables refer to the results of
security tasks execution. Feedback information computed by
the “evidence analyzer” contains features such as: “failed
authentication, additional data is needed”; next question should
be generated; additional data is needed to complete risk asses-
sment; and user action is needed to finalize concealed object
detection (e.g. interview regarding orthopedic implants that are
detected as dangerous items). Conceptually, the perception-
action cycle reflects the user-adaptive properties based on a
user model [35]. Note that the e-interview in the perception-
action cycle is defined as the means to support the human-
machine interactions using a spoken-dialog technology.

V. INFERENCE ENGINE IN COGNITIVE IDENTITY
MANAGEMENT

In this section, we describe a tool called an inference engine
for modeling the multi-state cognitive identity management
process illustrated in Fig. 3. This computational platform
satisfied the requirements formulated in Section II in the form

of statements and properties, and in Section III in the form of
fundamental operations on risks and trust.

A. Probabilistic reasoning for decision under uncertainty

There are two kinds of operations in human identification
process under uncertainty (Fig. 3): 1) operations within the
system states that perform security tasks such as ID validation,
individual identification, his/her risk assessment, as well as
trust assessment of the risk sources, and 2) cross-state opera-
tions (causal analysis of risks and trust [56], [57], their propa-
gation, fusion, reasoning and prediction [4], [40], [63]). Any
of these operations can be implemented using probabilistic
inference on a Bayesian network. The latter is a breakthrough
concept introduced by Judea Pearl’s and explained as follows:
“Causal reasoning is an indispensable component of human
thought that should be formalized and algorithmitized toward
achieving human-level machine intelligence” [42].

The classic Bayesian networks operate only on one of possi-
ble projections of uncertainty, – point probabilities. However,
there are other measure of uncertainty beyond the point pro-
babilities. Combining causal reasoning with other uncertainty
metrics was proposed, in particular, in [3], [44], a fuzzy
Bayesian network has been developed. In [16], an interval
metric was integrated within Bayesian networks. Reasoning
mechanisms were extended with the belief Dempster-Shafer
(DS) metric in [17], [46], [50]. The DS metric was extended
in [51] and is known as Dezert-Smarandache (DSm) metric.
We combine different uncertainty measures and place them
on a unified reasoning platform [7]. This can be considered
an expansion of the classic Bayesian network concept. In our
approach, causal cognition refers to how a machine perceives,
represents, and reasons about causal relationships of data:

Causal
Cognition ≡


Point Probability, Sec. VI-A;
Probability Interval, Sec. VI-B;
DS Belief, Sec. VI-C;
DSm Belief, Sec. VI-D;
Fuzzy Probability, Sec. VI-E.

B. Taxonomical view of the uncertainty models

Our approach to handle uncertainty in the biometric-enabled
identity management includes two components: (a) a graphical
representation of a given scenario in the form of a causal
network, and (b) a mechanism of uncertainty inference in
different metrics. The causal network is a directed acyclic
graph where each node in the graph denotes a unique random
variable. A directed edge from node n1 to node n2 indicates
that the value that is attained by n1 has a direct causal
influence on the value that is attained by n2. As for metrics, we
use the probability metric, probability intervals, the DS belief
metric and its extension DSm, as well as the fuzzy probability
metric.

Uncertainty inference requires data structures that will be
referred to as conditional uncertainty tables (CUTs) in the
general case. A CUT is assigned to each node in the causal
network. Given a node n, the CUT assigned to n is a table that



is indexed by all possible value assignments to the parents of
n. Each entry of the table is a conditional “uncertainty model”
that varies according to the choice of uncertainty metric:

1) Point probability: Using the probability metric, the CUT
is known as a Conditional Probability Table (CPT) and the
causal networks are then referred to as Bayesian networks.

2) Probability Interval: Using the probability interval me-
tric, the CUT is known as a Conditional Probability Interval
Table (CPIT) and the causal networks are then referred to as
probability interval Bayesian networks.

3) DS Belief: Using the DS metric, the CUT is known as
a Conditional DS Table (CDST) and the causal networks are
then referred to as DS Bayesian networks.

4) DSm Belief: Using the DSm metric, the CUT is known as
a Conditional DSm Table (CDSmT) and the causal networks
are then referred to as DSm Bayesian networks.

5) Fuzzy Probability: Using fuzzy probabilities, the CUT is
known as a Conditional Fuzzy Probability Table (CFPT) and
the causal networks are then referred to as fuzzy probability
Bayesian networks.

Given a risk/trust assessment scenario, the proposed ap-
proach to its modeling includes the following steps:

Algorithm for multi-metric causal modeling

Step 1: Represent the risk/trust assessment scenario by a
causal network.
Step 2: Assign CUTs in the appropriate metric to the nodes.
Step 3: Apply the observed evidence to the causal network
and compute the posterior uncertainty model
Step 4: Make a decision based on a heuristic analysis of the
posterior uncertainty model.

VI. RISK AND TRUST INFERENCE EXAMPLES

This section presents an example of an inference scenario
that demonstrates how to measure risks and trust, and how they
are propagated through a causal network to form a decision
based on various metrics. Any scenario described by the multi-
state model (Fig. 3) can be described and proceed using this
inference engine. In the example below, the state S2 (ID
validation) from Fig. 3 is modeled. Due to the fuzziness of the
variables involved and the lack of statistical data, the numerical
values (probabilities and belief values) that populate the model
are chosen arbitrarily for the sake of example and are not
generated from real data.

A. Probabilistic measures using a Bayesian network

Consider the second state, S2 (Fig. 3) and (b) available
statistics for the CPTs the probabilities and belief values
in this example have been arbitrarily chosen and are not
generated from real statistics). Following the general strategy
of causal network design, we, 1) Assign each state and sub-
states of the model to nodes in a causal network (Table
I), 2) Connect the nodes R,S, V , and C according to their
causal relationships, 3) Construct the CPTs based on expert’s
or experimental knowledge, and 4) Make a decision; the
belief network in Fig. 5 along with the CPTs provides a

tool for probabilistic inference given various scenarios of ID
validation. For example, P (C|V = v1, S = s1) (denoted
P (C|v1, s1) in Fig. 3 for brevity) describes the scenario where
a valid ID was authenticated on the first attempt. From the line
P (C|v1, s1), we can infer that the information credibility is
certainly high in this scenario.

(a)

(b)

Fig. 5. (a) Causal network of the ID validation scenario in terms of risk and
trust factors. (b) Each state of the identity management process is mapped
into a unified causal networks over five metrics. This is an example of how
the state S2 ‘ID validation’ (Fig. 3) with four sub-states defined in Table I
can be mapped onto the uniform causal graph.

The Bayesian decision-making is based on evaluation of a
prior probability given a posterior probability and likelihood
(event happening given some history of previous events):

Prior︷ ︸︸ ︷
P (Hypothesis|Data) =

Likelihood︷ ︸︸ ︷
P (Data|Hypothesis)×

Posterior︷ ︸︸ ︷
P (Hypothesis)

As an example of probabilistic inference using the Bayesian
realization of the belief network, consider the following scena-
rio: IF the reliability of the ID source is known to be ‘low’ and
the credibility of the result to be ‘high’: R = r3, and C = c1,
THEN what is the posterior probability that the ID is valid:
P (V = v1|R = r3, C = c1). This scenario models a situation
of conflict where an unreliable ID produces a credible out-



TABLE I
ASSIGNING STATES AND SUB-STATES OF THE MODEL TO A NODE IN THE CAUSAL NETWORK.

Assigning Comment

S1
2 → R

The node ‘ID source reliability’ (R ∈ {r1, r2, r3}) denotes the three level (r1 =‘high’, r2 =‘medium’, r3 =‘low’)
reliability of the e-passport/ID authentication, which depends on many factors such as: country of issue, number of
defense levels in the document, life cycle history, type of the chip, type of biometric modality, type of encryption, and
the type of RFID mechanism.

S2
2 → V

The node ‘Valid ID’ (V ∈ {v1, v2}) denotes whether the e-passport ID should pass the validation procedure (valid v1)
or not (invalid v2). The ‘valid’ or ‘invalid’ state reflects the true state of the e-passport and not simply the opinion of
the authentication machine.

S3
2 → S

The node ‘ID scan’ (S ∈ {s1, s2, s3, s4}) denotes the outcome of the authentication of the e-passport. The scan is
subject to various unwanted effects such as the individual’s mistakes in using the scanning device, scanner errors, as
well as hidden reasons related to errors in the use of the database, conflicts of comparisons, and communication errors
or delays. These effects are encoded in the form of the number of attempts at scanning the individual document; three
attempts are allowed (s1, s2, s3), after which the individual is directed to manual control (s4). Ideally, if the individual’s
e-passport is invalid, they should always be directed to manual control.

S4
2 → C

The node ‘ID Information credibility’ (C ∈ {c1, c2, c3}) describes the three level (c1 =‘high’, c2 =‘medium’,
c3 =‘low’) credibility of the outcome of the validation process. If the credibility of the validation process is known a
priori, it can be used to compute posterior beliefs related to the validity of the individual document (node V ).

come. The final result is P (V = v1|R = r3, C = c1) ≈ 0.989.
It is very likely that the ID was valid.

Essential features of probabilistic measures of evidential
reasoning using Bayesian networks are as follows: 1) they
represent the certainty in an attribute-value as a point probabi-
lity, and 2) they require complete knowledge of both prior and
conditional probabilities, which might be difficult to determine
in practice.

B. Probability interval measures

Theory from [16] describes operations for creating marginal
probability interval distributions and conditional probability
interval distributions from joint probability interval distribu-
tions. Joint probability interval distributions can be formed
from the probability interval distributions of independent va-
riables. For the current example, an uncertainty radius of 0.1
will be extended around each probability value, except to
where the probability is decisively 0 or 1. For example, the
probabilities for node V will become P (V = v1) = [0.89, 1],
P (V = v2) = [0, 0.11].

As an example of inference using probability intervals, the
same scenario will be considered: IF the reliability of the
ID source is known to be ‘low’ and the credibility of the
result to be ‘high’: R = r3, and C = c1, THEN what is the
posterior probability that the ID is valid: P (V = v1|R =
r3, C = c1). The final result is: P (V = v1|R = r3, C =
c1) = [0.574, 1]. This interval implies that within the flexibility
allowed by the probability intervals, the posterior probability
of the ID being valid can be low as 0.574. It should also be
noted that the posterior probability interval will always contain
the probability value produced by the Bayesian realization of
the belief network (which in this case was 0.989). Probability
interval measures partially improve the Bayesian technique,
but does not have a convenient representation for ignorance
or uncertainty.

C. DS belief measures

DS evidential theory has been considered when an in-
complete probabilistic model is created, i.e. when the prior
probabilities and likelihood functions are unknown [17]. In
contrast, the Bayesian inference does not have this allowance.
A description of DS theory can be found in [46]. The proce-
dure will be the same except for the CUTs. The approach here
uses theory from [17], [20]. However, an alternative approach
has been developed [50]. As an example of inference using the
DS realization of the belief network, the same scenario is used:
IF the reliability of the ID source is known to be ‘low’ and
the credibility of the result to be ‘high’: R = r3, and C = c1,
THEN what is the posterior belief and plausibility that the ID is
valid: Bel(V = v1|R = r3, C = c1), Pl(V = v1|R = r3, C =
c1). The final result is: Bel(V = v1|R = r3, C = c1) ≈ 0.878
and Pl(V = v1|R = r3, C = c1) ≈ 0.951. Together, these two
values form the interval of probability values [0.878, 0.951].
This interval implies that it is very likely that the ID was valid.
Unlike the Bayesian network realization of the belief network,
the DS realization of the belief network produces a range
of probability values. Unlike probability intervals however,
this range is heuristic and may not denote an objectively
quantifiable value.

It should also be noted that the range of probability values
produced by the DS realization of the belief network (which
in this case is [0.878, 0.951]) does not necessarily contain the
probability value produced by the Bayesian realization of the
belief network (which in this case was 0.989).

Fig. 6 explains the low bound, or belief, and upper bound,
or plausibility. It shows what proportion of evidence is truly
of a proposition and what proportion comes merely from
ignorance:

<DS uncertainty interval>= [Belief, Plausibility]



(a) (b)

Fig. 6. The DS uncertainty interval. The DS technique can handle uncertainty,
or ignorance, ythat is, lack of knowledge of the complete probabilistic model
required for Bayesian inference.

where the lower bound is the belief confidence, and the
upper bound is the plausibility confidence. Note that the DS
formulation of a problem collapses into the probabilistic one
using Bayesian network when the uncertainty interval is zero.

D. DSm belief measures

DSm theory is a generalization of DS theory. A description
of the DSm approach can be found, in particular, in [51].
The DSm technique of plausible and paradoxical reasoning
deals with high conflicting uncertainty and imprecise sources
of evidence. For instance, data can be represented using a
formal notion of reliability (refers to quality) and importance
(refers to subjective preferences).

As an example of probabilistic inference using the DSm
realization of the belief network, the same scenario is used:
IF the reliability of the ID source is known to be ‘low’ and
the credibility of the result to be ‘high’: R = r3, and C = c1,
THEN what is the posterior belief and plausibility that the ID is
valid: Bel(V = v1|R = r3, C = c1), Pl(V = v1|R = r3, C =
c1) The final result is: Bel(V = v1|R = r3, C = c1) ≈ 0.878
and Pl(V = v1|R = r3, C = c1) ≈ 0.951. Together, these two
values form the interval of probability values [0.878, 0.951].

E. Fuzzy probability measures

The theory of fuzzy probabilities that will be used in this
experiment is described in [3], [44]. A fuzzy probability
consists of a center value that acts as a normal probability,
and a lower and upper limit that contains the center value. The
interval formed by the lower and upper limit is not subject to
the same requirements as the probability intervals from [16].
For example, the first line of the CFPT corresponding to node
C (ID information credibility) is shown below

Pr(C|V = v1, S = s1) =

 (1,1,1), C = c1(high);
(0,0,0), C = c2(medium);
(0,0,0), C = c3(low).

As an example of probabilistic inference using fuzzy pro-
babilities, the same scenario will be considered: IF the
reliability of the ID source is known to be ‘low’ and the
credibility of the result to be ‘high’: R = r3, C = c1,
THEN what is the posterior probability that the ID is valid:
Pr(V = v1|R = r3, C = c1). The calculations are performed
using theory that is described in [44]. The final result is:
P (V = v1|R = r3, C = c1) = (0.113, 0.989, 8.146). This
fuzzy probability implies that within the flexibility allowed
by the fuzzy probabilities, the posterior point probability can
be as low as 0.113. Despite an upper bound that exceeds 1,
the true posterior point probability still cannot exceed 1. The
upper bound of 8.146 simply shapes the membership function
of the fuzzy posterior probability inside of the interval [0, 1].

F. Inference summary

Table II provides a summary of inference engine operation
for the scenario of the ID validation. In the first column of
Table II, five uncertainty metrics are placed; in the second and
third column, computing probabilities of decision on Valid ID
and Invalid ID, respectively, are reported. In the fourth column,
we refer the theory source of an uncertainty metric. In the
last line, we emphasize that we infer the same scenario that
is represented by the common causal graph (Fig. 5) but for
reasoning was used five uncertainty metrics; this mechanism
is placed on the software platform [7].

These five different uncertainty projections, or
interpretations, strongly suggest that ‘ ID is Valid
given the evidence ‘low’ ID source
reliability and ‘high’ ID information
credibility’. Note, that DS and DSm did not discover
the data conflict features, but this may not be the case in
general. Fig. 7 provides a graphical interpretation of the
results reported in Table II.

This inference summary reflects that initial risks and trust
defined in terms of ‘low’ ID source reliability and ‘high’ ID in-
formation credibility were fused by the reasoning mechanism
and reported in different uncertainty metrics.

VII. SUMMARY, CONCLUSION, AND FUTURE WORK

Deep embedding of the AI into identity management sys-
tems is an emerging trend. What was previously human-human
interaction becomes human-machine and even machine-
machine interactions with delegating decision-making to au-
tonomous agents. The embodiment of this trend in our study
is a proposed cognitive platform. In these new scenarios, risk
and trust factors become the important issue for technology
and policy developers, AI operators and users. This work
contributes to solutions to this challenge, and proposes a multi-
state cognitive identity management platform and inference
engine that are able to predict various unwanted and often
unknown effects in terms of risk and trust. We demonstrate
it on a sample scenario describing the heterogeneous data
management (document validity, contextual information and
biometrics). The key conclusions are as follows:



TABLE II
A COMPARISON OF THE RESULTS OF THE INFERENCE EXAMPLE BASED ON DIFFERENT UNCERTAINTY METRICS FOR VALID ID (V = v1) AND INVALID

ID (V = v2) SCENARIOS USING ‘LOW’ ID SOURCE RELIABILITY (R = r3) AND ‘HIGH’ ID INFORMATION CREDIBILITY (C = c1)

Uncertainty Metric Valid ID Invalid ID Comment
P (V = v1|r3, c1) P (V = v2|r3, c1)

1. Probabilities 0.989 0.011 Inference on classic Bayesian network
2. Probability Intervals [0.574, 1.000] [0.000, 0.426] Based on theory from [16]
3. DS Belief Plausibility [0.878, 0.951] [0.049, 0.122] Based on theory from [17], [46]
4. DSm Belief Plausibility [0.878,0.951] [0.049,0.122] Based on theory from [51]
5. Fuzzy Probabilities (0.113,0.989,8.146) (0.000, 0.011, 0.742) Based on theory from [3], [44]

Common causal network framework of the ID validation scenario in terms of risk and trust [7]

Fig. 7. A graphical interpretation of the inference operation for the ID
validation scenario in five uncertainty metrics (Table II). The posterior
uncertainty quantities over V (valid ID) given the evidence R = r3 (‘low’
ID source reliability) and C = c1 (‘high’ ID information credibility). For
each metric, the left column corresponds to V = v1 (valid ID) and the right
column corresponds to V = v2 (invalid ID).

1) A multi-state model called a cognitive dynamic system
is useful for representation of the identity management
process.

2) A computational platform of this system is based on
probabilistic reasoning build upon a causal network with
a variety of probability measurements. It provides a wide
range of tools for risk and trust assessment, as well as
prediction via inference on the causal network.

In addition, the proposed model (Fig. 3 and Fig. 4) and the
inference engine can be used for estimation of technology
gaps. This is required to identify whether it is possible to
achieve the design goals given the available resources and
technologies [21].

The focus of our future work is the cognitive biases in
machine reasoning in a multi-state identity management pro-
cess. The biases lead to faults in the reasoning processes. The
resulting risk and trust decisions may violate the commonly
accepted normative principles. The analogous biases in human
reasoning are the base for this study. An example is the
overconfidence bias when eliciting probability distributions

from experts in risk analysis [36]. The future work also
includes an extension of the inference engine. In particular,
it will benefit from integrating the causal analysis of risks and
trust using Granger approach [8], as well as from a fusion
of data represented by its probabilistic distribution (known as
copula [5]).
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