Grillo, Francesco (2019) Hero of Alexandria's Automata: a critical edition and translation, including a commentary on Book One. PhD thesis.
http://theses.gla.ac.uk/76774/

Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

Hero of Alexandria's Automata. A Critical Edition and Translation, Including a Commentary on BOOK ONE

Francesco Grillo

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy (Ph.D.)

School of Humanities
College of Arts
University of Glasgow

November 2019

University of Glasgow

College of Arts

Statement of Originality to Accompany Thesis Submission

Name: Francesco Grillo
Registration Number: 2169978

I certify that the thesis presented here for examination for [atan MPhil/PhD] degree of the University of Glasgow is solely my own work other than where I have clearly indicated that it is the work of others (in which case the extent of any work carried out jointly by me and any other person is clearly identified in it) and that the thesis has not been edited by a third party beyond what is permitted by the University's PGR Code of Practice.

The copyright of this thesis rests with the author. No quotation from it is permitted without full acknowledgement.

I declare that the thesis does not include work forming part of a thesis presented successfully for another degree.

I declare that this thesis has been produced in accordance with the University of Glasgow's Code of Good Practice in Research.

I acknowledge that if any issues are raised regarding good research practice based on review of the thesis, the examination may be postponed pending the outcome of any investigation of the issues.

[Delete where appropriate]

Statement if you are submitting this thesis against the advice or without the support of your supervisor
I am submitting this thesis without the knowledge / approval of my supervisor. I fully understand my responsibilities in this context as a researcher under the University's policies, including the Code of Good Practice in Research.

Statement of conjoint work

I confirm that [Chapter X] was jointly authored with [Name] and I contributed y\% of this work.

Statement of inclusion of previous work

I confirm that [Chapter X] was the result of previous study for [name of award] at [name of institution]. The rationale for inclusion of previous work is:

[please provide a short statement]

Signature:
Date: .12/11/2019.

Abstract

This thesis is a critical edition, with introduction, translation and partial commentary, of the Automata, a two-book mechanical treatise written by Hero of Alexandria (first century CE). It provides the first commentary on BOOK One, dealing with the construction of a mobile, as opposed to a stationary, automaton.

The preface summarises the significance, aims and limitations of the work. The opening section gives a summary of some of the conventions and abbreviations used in the thesis, and is followed by a list of figures.

The introduction provides a context for an informed reading of the text. It consists of six parts. Part One discusses the 'Heronian question', with particular attention to the chronology of the Automata and the Pneumatica. Part Two evaluates previous editions and translations, and summarises the main novelties of this study. Part Three assesses the manuscript tradition, including a stemmatic analysis of a large number of manuscripts. Part Four mainly discusses the various forms of the title of the treatise, which is reconstructed as Пعрi av́тoцór ωv (On Automata). Greater uncertainty surrounds the heading of Воок Тwo, Пгрi $\sigma \tau \alpha \tau \omega ิ v$ $\alpha v ̋ \tau o \mu \alpha ́ \tau \omega v$ (On Stationary Automata), which may have been derived from Hero's source, Philo of Byzantium (third-century BCE). Part Five focuses on the work itself. It starts with an overview of the structure of the text, with remarks on previous editorial practices. This is followed by a critical description of the contents of the treatise and by a discussion of the historical, literary and cultural background. This, in turn, allows for consideration of the performative context of Hero's automata. Attention is then paid to the purpose and intended audience of the treatise, followed by an exploration of Hero's relationship with his sources. A stylistic comparison with the Pneumatica sheds new light on Hero's degree of originality, removing suspicions of interpolation. Finally, discussion turns to the status of the text. Internal inconsistencies are best explained as the result of incomplete authorial editing. Part Six addresses the principles of the edition.

The text, apparatus criticus and translation form the centre of the thesis. To maximise readability, the layout of the English translation mirrors the layout of the Greek text. The elucidation of the manuscript sigla and abbreviations used in the apparatus criticus precedes the text.

The commentary is mainly philological and text-critical in nature. However, it also addresses stylistic, interpretive and reconstructive issues, without failing to consider the oldest manuscript diagrams.

Following the commentary are six appendixes: (1) a concordance of editions; (2) addenda et corrigenda to Schmidt's edition; (3) three stemmata codicum; (4) illustrations; (5) a review of Masià (2015); (6) an index of technical terms. Appendix (4) includes manuscript diagrams and reconstruction drawings of the mobile automaton. The thesis closes with a bibliography.

PREFACE

The Automata, our only extant treatise on the design and construction of ancient automata, was probably written sometime between the second half of the first century and the beginning of the second century CE by Hero of Alexandria, one of the most well-known technical and mathematical writers of antiquity. The treatise, which in all likelihood was published (posthumously?) in an incompletely revised form, is divided into two books, each devoted to a different type of automaton, one mobile (ǘ $\pi \alpha \gamma \circ v$) and the other stationary ($\sigma \tau \alpha \tau o ́ v$). We know little about Hero's sources, except that he drew directly on a lost treatise by the third-century BCE mechanical writer Philo of Byzantium for the second part of his work. In fact, it has been suggested that the greater portion of BOOK Two repeats verbatim Philo's earlier text, ${ }^{1}$ and there are indications, including linguistic and stylistic differences between the two books, which tend to confirm this suggestion. Apart from this, a stylistic comparison with the Pneumatica, a treatise on pneumatic devices, suggests that Hero made eclectic use of multiple sources, often improving pre-existing technology.

The Automata is of particular importance for our understanding of both the history of science and technology and Hellenistic and Imperial entertainment culture. Thus far, scholars have tended to focus on particular aspects of the work, such as its continuities and discontinuities with mathematical prose, ${ }^{2}$ the mechanisms of movement of the mobile automaton, ${ }^{3}$ or the theatrical relevance of the stationary model. ${ }^{4}$ However, since the appearance of Schmidt's standard edition in 1899 (with notes, but without a commentary), very little attention has been paid to text-critical problems, ${ }^{5}$ and the sole English translation of the treatise, published by Murphy in 1995, is neither widely available nor unproblematic.

[^0]This thesis has been undertaken as the philological component of a larger research project, 'Hero of Alexandria and his theatrical automata', headed by Professor Isabel Ruffell (School of Humanities, Classics) in collaboration with Dr. Euan McGookin (School of Engineering). The purpose of this project was to investigate the historical, technical and theatrical context of the treatise, the practical and technical viability of the automata (in particular, of the mobile type), and their influence on developments in Renaissance automata and robotics. As part of the project, the present thesis aims to provide a new critical edition of the text, accompanied by apparatus criticus, an English translation, a detailed introduction and a full-scale commentary on Воок One. In particular, it sets out to offer a fresh interpretation of the text, giving special attention to the following aspects: (1) the language and style of Hero; (2) the nature and (philological) status of the text; (3) the manuscript tradition of the text; (4) the situation of the work within the ancient tradition of automata-making; (5) whether and how Hero's devices functioned; (6) Hero's degree of originality.

As with any study, this work has limitations. First, although the edition is based on the collation of a larger number of manuscripts than the previous edition, it has not been possible to access all manuscripts nor to collate all the available manuscripts fully (see further Introduction, §§3.1-2). Because of this, and in the absence of an apparatus fontium, ${ }^{6}$ no attempt has been made to use sigla for the consensus of all complete manuscripts or between groups of manuscripts. Second, the introduction does not include full discussion of the instructional mode in the treatise both because this requires a separate and detailed treatment and because there is no commentary on Book Two. ${ }^{7}$ Third, the thesis does not purport to offer a technological history of the automata or to investigate the text in direct relation to broader technological discourses. Technical and technological issues are addressed in a number of places but do not constitute the main approach of the thesis.

[^1]
ACKNOWLEDGMENTS

I would have never embarked on the study of Greek science were it not for my former supervisors, Professor Camillo Neri and Professor Valentina Garulli. My Master's dissertation, which I defended at the University of Bologna, Italy, in November 2013, started out with the intention of investigating the whole of book fourteen of the Palatine Anthology, thus covering three different epigrammatic genres - arithmetic problems, riddles and oracles. Because of time constraints, and because of the overly ambitious scope of the project, it was agreed that I would confine my study to arithmetic epigram, a choice made all the more apropos by the structure of the book itself. All of a sudden, then, I found myself developing a particular interest in the playful side of Greek mathematics. This provided a springboard for expanding my interests and venturing into the study of Greek mechanics. I thank my former supervisors for enabling me to take the leap.

I am very grateful to The Leverhulme Trust, who funded the research project 'Hero and his theatrical automata' during the years 2014-2017 and without whose support this thesis could not have been undertaken.

I owe a very special debt to Professor Isabel Ruffell, who supervised my doctoral work and patiently advised on every aspect of the thesis. Without her constant encouragement, critical insight and careful guidance, this study could not have been completed in its present form. Her style of mentoring taught me many precious lessons. It challenged me to push my intellectual boundaries, clarify my arguments, and strive for logical coherence. Most of all, perhaps, it empowered me to trust my intuitions. I am also extremely thankful to my second supervisor, Professor Costas Panayotakis. He taught me the real meaning of rigor, precision and accuracy. I am very much indebted to him for showing me how to make the apparatus criticus come to speak to the reader. The presentation of the material in the section on 'Conventions and abbreviations' owes much to his edition of the fragments of the Roman mimographer Decimus Laberius (Panayotakis 2010).

I also wish to thank Dr. Duncan Keenan-Jones, who has participated in the experimental strand of the project and reconstructed Hero's mobile
automaton. He kindly allowed me to access and use the reconstruction drawings of the automaton. Figs. 3, $\mathbf{2 4 b}$ and $\mathbf{2 6 b}$ are based on his work. A similar debt of gratitude goes to Riccardo Ravecca, friend and architect, who explained to me the basic conventions of architectural drawing and who drew some of the more challenging illustrations appended in the thesis (Figs. 2 and 6b).

Parts of the thesis were delivered at conferences and seminars in Glasgow, Madrid, St. Andrews and Canterbury. I am grateful for comments and suggestions received on these occasions.

I wish to express my thanks to the following libraries that provided me with reproductions of manuscripts: Biblioteca Angelica, Rome; Biblioteca Nazionale Centrale, Florence; Biblioteca Nacional de España, Madrid; Biblioteca Nazionale Marciana, Venice; Biblioteca Nazionale Universitaria di Torino, Turin; Bodleian Library, Oxford; Det Kongelige Bibliotek, Copenhagen; Herzog August Bibliothek, Wolfenbüttel; Österreichische Nationalbibliothek, Vienna; Real Biblioteca del Monasterio de El Escorial, San Lorenzo de El Escorial; Universiteitsbibliotheek van Amsterdam, Amsterdam; Veneranda Biblioteca Ambrosiana, Milan. I am also particularly grateful to the librarians of the Universiteitsbibliotheek Leiden and the Bibliothèque National de France, Paris, for granting me access to their manuscript collections.

Mr. Christopher Ashill, from the Joint Library of the Institute of Classical Studies and the Hellenic and Roman Societies, has been kind enough to send me scans of Vicente Bécares Botas’ Diccionario de terminología gramatical griega, Salamanca 1985, and I gratefully acknowledge his help.

I extend my warmest thanks to Dr. Natalia Tsoumpra, Dr. Elena Giusti and Dr. Arianna Gullo, for their friendship and support, and to all my other friends, both in Glasgow and elsewhere, who endured my anxieties and frustrations.

My last words of gratitude go to my partner Enrico and my mother Donatella, for without them I would have never made it this far. It is to them that I dedicate this thesis.

CAVEAT TO THE READER

At the stage of revising the thesis I obtained copies not only of the most recent edition of Hero's Metrica (Acerbi-Vitrac 2014) but also of two less frequently cited studies which deal with, or touch upon, the delicate and complex question of Hero's date (Reinhardt 1930; Sakalis 1972). I have been unable to incorporate these studies into the present thesis. It is worth noting that, while Acerbi-Vitrac (2014: 16-22) offer a valuable discussion of the most important pieces of evidence which are generally used for dating Hero, they are overly pessimistic about the possibility of establishing a fairly secure chronology for the author. The study by Sakalis (1972: 158-60), primarily on linguistic grounds, makes Hero contemporary with Nero, thus lending further precision to Reinhardt's (1930) previous linguistic and stylistic analysis (first century BCE/first century CE). I therefore encourage the reader to consider the opening section of the Introduction only as a preliminary foray into a much-needed reassessment of the status quaestionis on the chronology of Hero and his works. For discussion of the problems associated with Masià's (2015) argument that the eclipse of Dioptr. ch. 35 cannot be used for dating Hero, see Appendix 5.

CONTENTS

ABSTRACT iv
PREFACE v
ACKNOWLEDGMENTS vii
CAVEAT TO THE READER ix
CONVENTIONS AND ABBREVIATIONS xii

1. Ancient authors xii
2. References xiv
3. Periodical and reference works xiv
4. Editions and translations xvii
5. Secondary sources xix
LIST OF FIGURES xx
INTRODUCTION xxii
6. The author xxii
7. Editions and translations of the Automata. xxviii
2.1 Editions xxix
2.2 Translations xxxiii
2.3 The present edition. xli
8. The history of the text of the Automata. xlii
3.1 List of manuscripts. xliii
3.2 Schmidt's account of the tradition xlvii
3.3 Stemmatic analysis 1
3.3.1 The β branch. li
3.3.2 The γ branch lvi
3.4 Conclusions and future research 1xiii
9. Titles lxiv
4.1 Earlier emendations 1xvi
4.2 The original main title lxvii
 1xx
10. The work 1xxi
5.1 Internal arrangement 1xxiii
5.2 Contents. lxxvi
5.3 Historical, literary and cultural background lxxxii
5.4 The performative context of Hero's automata. xcvi
5.4.1 Mobile automaton xcvi
5.4.2 Stationary automaton c
5.5 Hero's intended audience cii
5.6 Hero and his sources cvi
5.6.1 Snake-like motion cxii
5.6.2 Two-counterweight system cxiii
5.6.3 Nauplius' torch cxv
5.7 Status of the text cxvi
11. Principles and criteria cxix
6.1 Text cxix
6.2 Apparatus criticus cxxi
6.3 Translation cxxi
6.3.1 Translating 'diminutives' cxxi
6.3.2 Translating mathematical language, including the formula with है $\sigma \tau \omega$ cxxiii
6.4 Commentary cxxvii
6.5 Illustrations cxxvii
CONSPECTVS SIGLORVM ET NOTARVM cxxix
TEXT AND TRANSLATION 1
COMMENTARY ON BOOK ONE 112
APPENDIX 1. CONCORDANCE OF EDITIONS 251
APPENDIX 2. ADDENDA ET CORRIGENDA TO SCHMIDT 253
APPENDIX 3. STEMMATA CODICVM. 257
APPENDIX 4. FIGURES 261
12. Воок One. Manuscript diagrams and modern reconstructions 262
13. Book Two. Manuscript diagrams 286
APPENDIX 5. SOME CONSIDERATIONS ON MASIÀ (2015) 291
APPENDIX 6. INDEX TERMINORVM TECHNICORVM. 297
BIBLIOGRAPHIC ABBREVIATIONS. 303

CONVENTIONS AND ABBREVIATIONS

1. ANCIENT AUTHORS

Abbreviations of ancient authors and their works follow the conventions of Liddel's and Scott's A Greek English Lexicon, revised and augmented by Jones (henceforth LSJ), of Glare's Revised Supplement to LSJ (henceforth LSJ, Supplement) and of the Oxford Latin Dictionary (henceforth OLD), with the following additions:

Anon. Vit. Aesch.
Eust. Antioch. Engastr.

Gal. Al. Fac.
-_ Foet. Form.
__Meth. Med.

Georg. Torn. Or. Georg. Xiph.

Hero, Mech. Frag.

Hero Byz.
Jos. Genes.

Marc. Diac. Vit. Porph.
Max. Conf. Amb.

Paraphr. rec. in Lycophr.

Anonymus Vitae Aeschyli
Eustathius Antiochensis, De
Engastrimytho contra Origenem
Galenus, De alimentorum facultatibus
Id., De foetuum formatione libellus
Id., De methodo medendi libri quattuordecim Id., De sanitate tuenda
Georgius Tornices, Orationes in honorem Georgii Xiphilini
Hero Alexandrinus, Mechanicorum fragmenta
Hero Byzantinus, De strategematibus
Josephus Genesius, Regum libri quattuor
Marcus Diaconus, Vita Porphyrii
Maximus Confessor, Ambigua ad Joannem

Paraphrasis recentior in Lycophronem

Ph. Parasc.	Philo Byzantinus, Parasceuastica et poliorcetica
Plu. Aet. Rom.	Plutarchus, Aetia Romana et Graeca
\ldots Cur.	Id., De curiositate
Ser. Num.	Id., De sera numinis vindicta
Praec. Ger. Reip.	Id., Praecepta gerendae reipublicae
Ps.-Nonnus, Comm. in Greg. Naz. Serm.	Pseudo-Nonnus, In quattuor orationes Gregorii Nazianzenii commentarii
Ps.-Plu. Lib. Ed.	Pseudo-Plutarchus, De liberis
	educandis
Schol. rec. Ar. Nub.	Scholia in Aristophanis Nubes
	(scholia recentiora Eustathii, Thomae
	Magistri et Triclinii)
Schol. anon. rec. Ar. Nub.	Ead. (scholia anonyma recentiora)
Schol. Tzetz. Ar. Nub.	Ead. (scholia recentiora Tzetzae)
Theoph. Cont.	Theophanes Continuatus,
	Chronographia

I also occasionally abbreviate Biton's Kataskeuai (Constr.), Pappus' Synagoge (Syn.) and Oribasius' Collectiones medicae (Coll. Med.).

References to Greek authors are made according to the standard citation systems of the Thesaurus Linguae Graecae (henceforth $T L G$), with the following exceptions:
(i) Hero's Dioptra, Geometrica, Metrica and Pneumatica are cited by page and line of the pertinent volumes of Heronis Alexandrini opera quae supersunt omnia (Leipzig 1899-1914; repr. Berlin 2011) unless reference is made to the whole chapter (abbreviated as 'ch.', pl. 'chh.');
(ii) Hero's and Philo's Belopoeica and Bito's Kataskeuai are cited according to the edition of Marsden (1971: 66-77), which has been reformatted compared to

[^2]the previous editions of Wescher and Thévenot. So, for example, Hero, Bel. 73.6 refers to page 73 in Wescher and to line 6 in Marsden (so also in the case of Bito's Kataskeuaı), whereas Ph. Bel. 73.22 refers to page 73 in Thévenot and to line 22 in Marsden.

2. REFERENCES

References to the text are by chapter (Roman numeral) and section (Arabic numeral), with page and line numbers of the present edition given in square brackets (for an exception, see Introduction, $\S 3$ with n. 70). Citations of whole chapters or sections are made without reference to page and line number, unless the context otherwise requires (see Introduction, §5.1, and the synopsis headings in the Commentary on Book One). Cross-references to notes in my commentary follow the same citation system. When there is more than one commentary entry for the same line, cross-references to different notes are distinguished by citing the relevant portion of text in bold style. References to illustrations in this edition are shown in bold (e.g. Fig. 1).

3. PERIODICALS AND REFERENCE WORKS

Abbreviations of periodicals follow the conventions of L'Année philologique. The following abbreviations are used for standard reference works:

Bailly
Bécares Botas

Chantraine, $D E L G$

Chantraine, Form.

CID
CODM
A. B., Dictionnaire Grec-Français, Paris 1950.
V. B.B., Diccionario de terminología gramatical griega, Salamanca 1985.
P. C., Dictionnaire étymologique de la langue grecque. Histoire de mots, Paris 1968-1980.
P. C., La formation des noms en grec ancien, Paris 1933.

Corpus des inscriptions de Delphes, Paris 1977-. The Concise Oxford Dictionary of Mathematics, Oxford $2014^{5}\left(1990^{1}\right)$.

Denniston, $G P$	J.D. D., The Greek Particles, Oxford 1954² (1934 ${ }^{1}$).
Didyma	Didyma Inscriptions. Texts and List, ed. D.F. McCabe, Princeton 1985.
DS	C. Daremberg-E. Saglio, Dictionnaire des antiquités grecques et romaines d’après les texts et les monuments, Paris 1877-1919.
$D G E$	F.R. Adrados et al., Diccionario Griego-Español, Madrid 1980-
FGrH	Die Fragmente der griechischen Historiker, ed. F. Jacoby, Berlin 1923-1959.
Frisk, $G E W$	H. F., Griechisches etymologisches Wörterbuch, Heidelberg 1955-1972.
Forcellini	E. F., Totius Latinitatis Lexicon, Prato 18581875.
GEL	J.P. Louw-E. Nida, Greek-English Lexicon of the New Testament Based on Semantic Domains, New York 1988.
$G G$	Grammatici Graeci, Leipzig 1867-1910 (repr. Hildesheim 1965).
HE	A.S.F. Gow-D.L. Page, The Greek Anthology. Hellenistic Epigrams, Cambridge 1965.
IC	Inscriptiones Creticae, ed. M. Guarducci, Rome 1935-1950.
$I D$	Inscriptions de Délos, ed. A. Plassart et al., Paris 1926-1972.
$I G$	Inscriptiones Graecae, Berlin 1873-.
KB	R. Kühner-F. Blass, Ausführliche Grammatik der griechischen Sprache, I. Elementar- und Formenlehre, Berlin 1890^{3} (vol. I), 1892^{3} (vol. II).
KG	R. Kühner-B. Gerth, Ausführliche Grammatik der griechischen Sprache, II. Satzlehre, Hannover/Leipzig 1898^{3} (vol. I), 1904^{3} (vol. II).

LSAM	Lois sacrées de l'Asie Mineure, ed. F.
	Sokolowski, Paris 1955.
LSJ	H.G. Liddell-R. Scott-H.S. Jones, A GreekEnglish Lexicon, Oxford 1940-1968.
LSJ, Supplement	P.G.W. Glare, Greek-English Lexicon. Revised Supplement, Oxford 1996.
Milet	Milet. Ergebnisse der Ausgrabungen und Untersuchungen seit dem Jahre 1899, ed. T. Wiegand, Berlin 1906-.
Mugler, Dictionnaire	C. M., Dictionnaire historique de la terminologie géométrique des Grecs, Paris 1958.
$O L D$	Oxford Latin Dictionary, Oxford 1968-1982.
$P G$	Patrologia Graeca, Paris 1857-.
Powell, Coll. Alex.	J.U. P. (ed.), Collectanea Alexandrina, Oxford 1925 (repr. 1970).
RE	Paulys Real-encyclopädie der classischen Altertumwissenschaft, ed. G. Wissowa et al., Stuttgart 1893-Munich 1978.
SEG	Supplementum Epigraphicum Graecum, Leiden 1923-.
TGL	Thesaurus Graecae linguae, Paris 1831-1865.
TLG	L. Berkowitz-K.A. Squitier, Thesaurus Linguae Graecae: Canon of Greek Authors and Works, New York/Oxford 1990^{3} (Irvine, CA 1977¹).
TLL	Thesaurus linguae Latinae, Leipzig 1900-.
VS	Die Fragmente der Vorsokratiker, ed. H. Diels-W. Kranz, Berlin 1951-1952 ${ }^{6}\left(1903^{1}\right)$.

4. EDITIONS AND TRANSLATIONS

In the apparatus criticus and in the commentary the abbreviation ed. princ. refers to the first edition of Hero's Aut. and Spir. (also referred to as Thévenot). The following editions and translations (listed chronologically) are cited by the name of the editor and/or translator only:

Baldi

Thévenot

Couture D. C. (trans.), Heronis Alexandrini de automatorum fabrica, in Thévenot 243-274.
Prou V. P. (ed.), "Les théâtres d’automates en Grèce au II $^{\mathrm{e}}$ siècle avant l'ère chrétienne d'après les АҮТОМАТОПОІІКА d'Héron d'Alexandrie", Mémoires présentés par divers savants à l'Académie des inscriptions et belles-lettres de l'Institut de France, s. 1, 9.2 (1884) 117-274.
Schmidt
W. S. (ed.), Heronis Alexandrini opera quae supersunt omnia, I.1. Pneumatica et automata, Leipzig 1899.
Schmidt, Supplementum
W. S. (ed.), Heronis Alexandrini opera quae supersunt omnia, I.2. Pneumatica et automata, Supplementum, Leipzig 1899.
Murphy
B. B. (trans.), Di Herone Alessandrino de gli automati, overo machine se moventi, libri due, Venice 1589.

	Apollodori, Philonis, Bitonis, Heronis et aliorum opera Graece et Latine pleraque nunc primum
Couture	
edita, Paris 1693.	

All emendations, deletions and transpositions have been cited in the apparatus critici and in the commentary by the name of their proposer only. J.F.

Boissonade's and B.J. Rozema's (proposed) supplements in $A P$ 11.185.4 have been cited from Floridi (2014: 356, 360), whereas the reference to Commandino in my app. crit. to Papp. 1024.24-1026.2 is to Commandino (1588: 305). The conjectures of A. Brinkmann, H. Diels, F. Haase, P. Hildebrandt, H. Schöne, R. Schöne have been cited from Schmidt's edition of Hero's Aut, except when it was possible to locate their original (or intermediary) source (see below). ${ }^{2} \mathrm{~F}$. Susemihl's supplement has been cited from Susemihl (1891: 744 n. 190). M. Egger's conjectures have been cited from Prou's edition of Bоok Two of Hero's Aut., although it is not clear whether the emendation at XXX. 6 has been proposed by M. Egger or by É. Egger. (In his Index, Prou 255 refers to É. Egger, "Coup d'œil sur l'histoire des acteurs dans l'antiquité", in Id., Memoires de littérature ancienne, Paris 1862, 409-423, but I was unable to find any mention of the conjecture there.) Schmidt's and Prou's have been cited from their respective editions. Weil's have been cited from his review of Prou's original 1881 edition (Weil 1882: 420, 421, 422, 423), while Olivieri's critical observations have been cited from Olivieri (1901: 432, 433, 434). E.S. Forster's supplement (see Comm. on II. 6 [10.4-8]) has been cited from Nussbaum (1976: 152). J.G. Schneider's correction (see Comm. on IV. 1 [18.6]) has been cited from Schmidt's edition of Hero's Spir., whereas G. Murray's conjecture (see Comm. on VI. 3 [24.16-20]) has been cited from Biehl (1970: 47); for the emendations of C. Wescher and L. Dindorf, see Introduction, §4.1. The following abbreviations should be particularly noted:

Diels for XXI. 1 [68.12] and XXII.6 [72.20]: Schöne (1891: 75 n. 3, 76 n. 5)
Haase for II. 8 [12.1], XV. 2 [52.16], XV. 3 [54.2], XVI. 2
[54.16-17], XX. 3 [66.6], XXII. 5 [72.13], XXIII. 6
[78.3]: ‘schedae Schoenianae'; for XX. 1 [64.7]: Haase (1847a: 432 n. 34)

[^3]
5. SECONDARY SOURCES

Secondary sources other than those listed in §§3-4 above are cited by author and date. Publications by two or three authors are referred to by the last names of all authors, separated by a hyphen. If a name contains a hyphen, an en dash is used instead. For works by more than three authors, only the name of the first author is cited, followed by et al. Multiple publications by the same author in the same year are distinguished by lowercase letters (a, b) after the year. For forthcoming works by the same author, Arabic numerals $(1,2)$ are used for the same purpose. English-language titles of cited works are capitalised headline-style, whereas titles in other languages are capitalised sentence-style.

LIST OF FIGURES

Fig. 1 Hero's mobile automaton
Fig. 2 Drive mechanism of Hero's mobile automaton
Fig. 3 Bearing arrangement of the axle of Hero's mobile automaton
Fig. 4 Configuration for straight-line motion (plan view)
(a) manuscript diagram
(b) modern reconstruction

Fig. 5 Bobbin and cord arrangement for straight-line motion
(a) forward
(b) forward and backward
(c) forward and backward with pause

Fig. 6 Side elevation of case and tube
(a) manuscript diagram
(b) modern reconstruction

Fig. 7 Circular motion
(a) manuscript diagram
(b) modern reconstruction

Fig. 8 Configuration for rectangular motion (plan view)
(a) manuscript diagram
(b) modern reconstruction

Fig. 9 Configuration for rectangular motion (side view)
Fig. 10 Mechanism for raising and lowering wheel $\overline{\varepsilon \zeta} / / \bar{v} \bar{\varphi}$
Fig. 11 First configuration for snake-like motion (plan view)
(a) manuscript diagram
(b) modern reconstruction

Fig. 12 Wheel $\overline{\pi \rho}$ mounted on hub and close-up of hub with cord wound around it

Fig. 13 Second configuration for snake-like motion (plan view)
Fig. 14 Third configuration for snake-like motion (plan view)
(a) manuscript diagram
(b) modern reconstruction

Fig. 15 Kindling altar of Dionysus (front view)

Fig. 16 Piping system for libation of milk and wine (front view)
Fig. 17 Modern gas tap vs ancient water tap
Fig. 18 Hero's double-piped tap
Fig. 19 Trigger mechanism for Hero's belly-bow ($\gamma \alpha \sigma \tau \rho \alpha \varphi \varepsilon ́ \tau n \varsigma)$
Fig. 20 Trigger mechanism for weight $\stackrel{\beta}{\mu}$
Fig. 21 Parapet(s) for descending garlands
(a) manuscript diagram (plan view)
(b) modern reconstruction (side view)

Fig. 22 Stylobate, ring (i'tuc) and base of the shrine (plan view)
(a) manuscript diagram
(b) modern reconstruction

Fig. 23 Transmission system for dancing Bacchantes
Fig. 24 Single $\sigma ט ́ \rho \gamma \xi$
(a) manuscript diagram (plan view)
(b) modern reconstruction

Fig. 25 Transmission system for extending the range of the mobile automaton
(a) manuscript diagram (side view)
(b) modern reconstruction

Fig. 26 Double σ ט́pıү
(a) manuscript diagram (plan view)
(b) modern reconstruction

Fig. 27 Bottom of double $\sigma \dot{\rho} \rho \gamma \xi$ with slides (front view)
Fig. 28 Door mechanism for Hero's stationary automaton (front view)
Fig. 29 Starwheel and $\dot{v} \sigma \pi \lambda$ ń $\gamma \gamma$ ıov assembly for moving arms (side view)
Fig. 30 Papyrus scroll for sailing ships (front view)
Fig. 31 Axle and pulley assembly for plunging dolphin (plan view)
Fig. 32 Mechanism for Nauplius' torch (front view)

INTRODUCTION

1. THE AUTHOR

Nothing is known for certain about Hero's lifeexcept that helived and worked in Alexandria, Egypt, ${ }^{1}$ in the mid-first century CE. A highly erudite scholar, ${ }^{2}$ he wrote numerous mechanical and mathematical treatises, most of which are extant either entirely or in part. ${ }^{3}$ His corpus includes works on pneumatics (On Water-clocks, Pneumatica), ${ }^{4}$ artillery (Belopoeica), ${ }^{5}$ land-surveying (Dioptra), geometry (Definitions, De Mensuris, Geometrica, Metrica, Stereometrica), ${ }^{6}$

[^4]catoptrics (Catoptrica), ${ }^{7}$ and applied and theoretical mechanics (Automata, Baroulcos, Mechanica). ${ }^{8}$ The date of his activity has been long debated, with suggestions ranging from the first century BCE to the third century CE. ${ }^{9}$ A consensus was reached after Neugebauer (1938: 22-3) demonstrated that Hero was earlier than Ptolemy (fl. 127-148 CE), and that the lunar eclipse (not a 'Sonnenfinsternis', Asper 2001: 136) mentioned in ch. 35 of his Dioptra is an actual eclipse that occurred on 13 March 62 CE. ${ }^{10}$ The so-called 'Heronian question' has received renewed attention in more recent years, and Sidoli (2011) took pains to show that the date of 62 CE can only be taken as a terminus post quem for Hero's activity. Although many of his observations remain valid, it is worth examining thequestion in some detail.

Sidoli's (2011) main argument is that the eclipse data in Dioptr. ch. 35 do not correspond to an accurately recorded observation that can be attributed (at least with any certainty) to Hero. His aim, therefore, is to partly refute Neugebauer's (1938: 23) earlier argument, which he contends depends upon three claims: (1) the mathematical methods of Dioptr. ch. 35 are purely nomographic and the eclipse of 62 CE , being 'ill-suited' to such methods, must have been used as an appeal to the recent memory of his readers; ${ }^{11}$ (2) the data stated in Dioptr. ch. 35 refer to an eclipse that Hero himself observed, despite the fact that he does not explicitly state this; (3) the lunar eclipse of 13 March 62 CE

[^5]is the only one in the range of dates in which Hero might possibly have been active that gives a good fit for the data provided in the text. ${ }^{12}$ In order to prove his argument, Sidoli (2011: 57-8) points out that the eclipse data in Dioptr. ch. 35 are too vaguely formulated (contra, Giardina 2003: 18), which, as he maintains, accords nei ther with the standards of precision found in other ancient technical works nor with the method of finding the great-arc distance between two locations (in Hero's own example, Alexandria and Rome) set out in that chapter. From these and other observations, he concludes that the reason why that particular eclipse was chosen is that it had been seen in both cities by the contemporaries of Hero or his source, and that Hero might in fact have drawn the eclipse data from the latter (Sidoli 2011: 59). While this argument is cogent, it only indicates that the year 62 CE is a terminus post quemfor Hero's Dioptra, not for his activity as such. There are at least two problems with it. First, it misattributes claim (2) to Neugebauer (1938: 23). ${ }^{13}$ Hero's autopsy of the eclipse was first inferred by Drachmann (1948: 76), ${ }^{14}$ and was later independently suggested as a possibility by Neugebauer (cf. above, n. 11). In his earlier study, Neugebauer (1938: 24) only concluded that 'man Heron entweder an das Ende des ersten J ahrhunderts n . Chr. sezen muss oder alle Daten zwischen etwa-100 und +200 als gleichwahrscheinlich ansehen kann'. ${ }^{15}$ Second, it fails to take account of other pieces of internal evidence used for dating Hero. The evidence can be summarised as follows:
(a) Hero, Mech. 3.20 describes a direct screw press with a female screw cut into its beam, a device which Plin. Nat. 18.317 says was invented twenty-two years before his time. This, together with Hero's description of the screw-cutter (Mech. 3.21), ${ }^{16}$ establishes a terminus post quem of 55 CE for the Mechanica. ${ }^{17}$ This date has been corroborated by Drachmann (1932: 125-8), who called

[^6]attention to the fact that another instrument described by Hero, Mech. 3.16-17, the so-called gal eagra, ${ }^{18}$ is refered to by Plin. Nat. 15.5 as nuper inventum; ${ }^{19}$
(b) Suet. Nero 41.2 and D.C. 63.26 .4 both mention a new type of waterorgan that was demonstrated in 68 CE in Rome. A comparison with Hero's waterorgan (Spir. ch. 1.42) has led Keyser (1988: 219-20) to suggest that the new model was Hero's own invention, which, in turn, would provide an approximate date for the publi cation of the Pneumatica. ${ }^{20}$ 'Composition' is more correct than 'publication', given that the Pneumatica was in all likelihood published posthumously (cf. below, §5.7);
(c) In ch. 25 of his Dioptra, Hero employs Eratosthenic, rather than Posidonian, measurements of the circumference of the Earth. This gives a terminus ante quem of c. 114 CE for the Dioptra, since it was then that the mathematician/geographer Marinus of Tyre introduced the Posidonian measurements inAlexandria; ${ }^{21}$
(d) The first Hebrew treatise on mensuration, the Mishnat ha-Middot, which was composed no later than 150 CE, shows a strong Heronian influence in terms of subject matter (Gandz 1940). This provides a terminus ante quem for the Metrica.

This evidence alone suffices to show that Hero was active between the years 55 and 114-150 CE, and so there seems to be no reason to doubt that the eclipse of 62 CE, whether Hero observed it or not, occurred during his lifetime. As far as (b) is concemed, it should be noted that while the water-organ was first invented by Ctesibius, who lived in the early to mid-third century BCE, ${ }^{22}$ Hero's model was most probably based on an earlier prototype by Ctesibius successor Philo of Byzantium ${ }^{23}$ Unfortunately, we have no means of knowing what Philo's device looked like, and Drachmann (1948: 100) believes that the differences between the Ctesibian and the Heronian versions are so slight that it is of little importance that we cannot distinguish between Philonian and Heronian

[^7]improvements. ${ }^{24}$ What is certain, however, is that the improved version of the device had only recently been introduced in Rome, as one can infer from Suetonius' words (organa hydraulica novi et ignoti generis, Suet. Nero 41.2). The date of 68 CE , therefore, must be regarded as a terminus ante quem for the introduction of the new model into imperial circles rather than for either its invention or, for that matter, the publi cation of the Pneumatica.

An attempt to narrow down the chronol ogi cal range of Hero's activity has been made by Raïos (2000). He adduces two main pieces of evidence in support of a Neronian date (Raïos 2000: 29-31, 34-6). The first is the inauguration of two (unfinished) construction projects, namely, the canal from Lake Avernus to the mouth of the Tiber (probably started in 64 CE) and the canal through the Isthmus of Corinth (67 CE). ${ }^{25}$ In particular, the construction of the latter would provide a more secure terminus ante quem for the Dioptra on the basis of the assumption that the Egyptian geometers forming Nero's entourage (Ps.-Luc. Ner. $4=221.27$ Kayser) included Hero. Clearly, this is highly speculative, and the fact that some of Hero's problems deal with hypsometric differences and the digging of a tunnel cannot be taken as a definitive indication of Hero's involvement in either project. ${ }^{26}$ And even if he did take part in the design and/or construction process, it does not follow that he composed his Dioptra before the years 64-67 CE. The second piece of evidence is the fact that Nero sung the role of Nauplius (Suet. Nero 39.3), whose myth, as will be seen, is displayed in Hero's stationary automaton. The value of such evidence depends on the interpretation of a poem by the first-century CE epigrammatist Lucillius (AP 11.185) as alluding to Nero's performance, a performance which would have taken place during his journey to Greece (67 CE). This would establish either a terminus ad quem or a terminus ante quem for the composition or even the publication of theAutomata. ${ }^{27}$ But let us look at Lucillius' epigram:

[^8]

4 lacunam fere octodecim litterarum praebet \mathbf{P} : $\langle\kappa \alpha \grave{~} \pi \nu \rho \sigma o ̀ v \psi \varepsilon v ́ \sigma \tau \eta v>$ dub. Floridi coll. Crinag. AP 9.429.3-4 et Bass. AP 9.289.3 : <каì $\varphi \rho \cup \kappa \tau o v ̀ \varsigma ~ \psi \varepsilon v \delta \varepsilon i ̂ \varsigma>v e l ~<̨ \kappa ~ \varphi \rho v к \tau \hat{v ~ \psi \varepsilon v-~}$ $\delta \hat{\omega} v>$ Rozema : $\varangle \eta v \sigma i ̀ v ~ \varepsilon ̇ \pi \varepsilon \mu \beta \alpha ́ \alpha \lambda \lambda \omega v>B o i s s o n a d e$

Hegel ochus, my Lord Caesar, once relieved a city fromthe Greeks by coming on stage to sing of Nauplius. Nauplius is always an evil to the Greeks, either bringing a great wave $<^{* * *}>$ or bringing a citharist.

The reference to a performance centred around the character of Nauplius has led most scholars to think that Lucillius is satirising Nero through the figure of the tragic actor Hegelochus, ${ }^{28}$ and hence that the words ${ }^{\circ}$ E $\lambda \lambda \eta$ ńv $\omega v \dot{\alpha} \pi \varepsilon ́ \lambda \lambda v \varepsilon \pi$ ó $\lambda ı v$ (line 1) refer to Nero's proclamation of freedom and tax immunity for Greece (67 CE; Suet Nero 24.2; IG 7.2713.12-14). ${ }^{29}$ This interpretation has been rightly challenged on the following grounds: (1) the myth of Nauplius was a rather popular subject in the early Imperial period, and we know that Nero performed other traditional tragic roles (Suet. Nero 21.2-3);30 (2) the repeated addresses to Kaio $\alpha \rho$ in the Lucillian corpus should be understood as reminders that Nero is the primary addressee of the book rather than as clues to a hidden satire ${ }^{31}$ (3) the inclusion of the poem among epigrams about incompetent singers and actors (AP 11.186-9; cf. lemma to AP 11.185 [B] عic, кı $\theta \alpha \rho \omega \delta$ ov́ৎ, $\dot{\alpha} \lambda \lambda \lambda \grave{\alpha} \mu \eta ̀ \nu ~ \kappa \alpha i ̀ ~ \tau \rho \alpha \gamma \omega-~$
 Thus, the epigram should simply be read as a satire of Hegelochus, and there

[^9]would be no reason to connect Nero's performance with the mythical display of Hero's stationary automaton. The year 67 CE, as a result, does not constitute a chronological indication for the Automata. ${ }^{33}$

2. EDITIONS AND TRANSLATIONS OF THE AUTOMATA

The history of the editions and translations of the Automata is a complex one. The reasons for this are threefold. First, it is intimately connected with questions concerning the history of the text The surviving manuscripts of the treatise, most of which are late and of ancillary importance for the constitutio textus, show a disruption of the order of chh. XXII-XXV. ${ }^{34}$ This issue was not recognised as such until 1882, when H. Weil (1818-1909) published a review of Prou's original edition of Book Two which, among other things, constitutes a val uable source of emendations (Weil 1882). Second, the first translations of the work antedate the editio princeps by more than a century and were based on Greek exemplars that have not yet been identified. This means that these translations should be treated as a source of critical information. Third, Hero's debt to Philo of Byzantium (fl. c. 200 BCE), from book 6 of whose work (now mostly lost) our author derived much of his material on the stationary automaton, has been acknowledged not before the end of the nineteenth century (Schöne 1891; cf. below, § 5.6). The obvious implication of this is that the first attempts to edit the second part of the treatise (which is more problematic textually when compared with the first) did not take into account the surviving portions of Philo's work: of his eight- or nine-book compendium of mechanics
 original Greek, only the fourth book on artillery construction (Вєлолоו̈̈к),

[^10]al ong with substantial excerpts from the seventh and eighth books, concerning, respectively, fortifications (Парабквvабттка) and siegecraft (Подıоркптוка). 35

2.1 Editions

The treatise was edited for the first time by M. Thévenot (1620-1692), Ph. de la Hire (1640-1718) and J. Boivin de Villenewve(1663-1726) in Thévenot 243-74. The text of their edition, which contains facing Latin translation by D. Couture (dates unknown), is largely unsatisfactory, because it is based on three relatively late and inferior manuscripts: Pa Pd and Pf. However, despite his marked reluctance to emend (see Thévenot VI), Thévenot has corrected the text in a few places (II. 9 [12.13], VII. 2 [26.13], IX. 1 [30.6] and [30.9]), while in others he appears to have derived his (variant) readings (or corrections) from the equally late manuscripts $\mathbf{P c}, \mathbf{P e}$ and $\mathbf{P g}^{36}$ The illustrations are copied from Baldi's drawings, occasionally modified in small details and reversed horizontal ly.

A little more than a century and a half later, in 1847, F. Haase (1808-1867) announced a complete reedition that was part of a larger project consisting of a six-volume collection of works by military and mechanical

[^11]writers. ${ }^{37}$ Although none of the projected volumes ever appeared, the announcement remains valuable as an indication of a renewed interest in the works by Hero. Haase intended to use manuscripts (Ae), Mc, Pa, Pc, Pe, Pf, Pg and Ph as the basis for his edition. ${ }^{38}$

In 1881 the civil engineer V. Prou (1831-1884) reedited the second part of the treatise on the basis of seven Paris manuscripts ($\mathbf{P}_{\mathbf{1}}-\mathbf{P}_{\mathbf{7}}=\mathbf{P a}, \mathbf{P b}, \mathbf{P d}, \mathbf{P e}, \mathbf{P f}$, $\mathbf{P g}$ and $\mathbf{P h}$): "Les théâtres doautomates en Grèce au I^{e} siècle avant l'ère chré tienne daprès les AYТОМАТОПОIIKA d'Héron d'Alexandrie", Mémoires présentés par divers savants à l'A cadémie des inscriptions et belles-lettres de I Institut deFrance, s. 1, 9.2 (1881); reprinted, apparently unaltered, as part of an enlarged issue of the same publication in 1884 (erroneously catal ogued under the year at BNF, Gallica, http://gallica.bnf.fr/ark:/12148/cb32813503c/date18780101). ${ }^{39}$ This publication has a quadripartite structure In the introduction ('Introduction historique'), Prou reviews Magnin's (1852) book on the history of European puppetry (which he criticises for not mentioning Hero's work) and discusses previous and contemporary scholarship on the Automata, most notably the first two translations of the treatise (respectively, by Baldi and D'Auria; see below), the editio princeps and the contribution of Martin (1854). Immediately following the introduction, Part One ('Première partie') provides observations on the manuscripts used in the edition, addresses the issue of the disrupted chapter order (al beit without understanding it) and discusses the two types of automaton distinguished by Hero - 'mobile' (v'л $\alpha \gamma \circ v$) and 'stationary' ($\sigma \tau \alpha \tau o ́ v$) - against their mythical and theatrical background. Part Two ('Deuxième partie') furnishes a technical examination of the mechanisms described, or alluded to, in the treatise, and formulates an engineering theory of how (repeated) motion is imparted by means of the counterweight ('théorie des cordons moteurs des automates d'Héron d'Alex-

[^12]andrie'). ${ }^{40}$ Part Three ('Troisième partie') contains the Greek text with French translation undemeath it and footnotes mainly devoted to linguistic and philological matters. The edition closes with an analytical index of topics, persons and Greek words; Part Two and Part Three comprise modern illustrations (some of which appear more than once), whereas Part One and Part Two include partial quotations and translations of BOOK ONE. The main contribution of Prou's edition to schol arship lies in the emphasis he places on the relevance of Hero's automata both to the history of theatre and to the history of technology. All too often, however, he has a very poor understanding of Hero's mechanisms (for two notable exceptions, cf. Comm on V. 3 [22.2-3] and IX. 5 [32.8-9]), offers implausible or even absurd reconstructions, and fails to provide evidence to support them ${ }^{41}$ As a result, despite a relatively good number of improvements and corrections, Prou did not lay solid foundations for an adequate understanding of the text. ${ }^{42}$ Some of his conjectures are ungrammatical, ${ }^{43}$ while others are either unconvincing (for instance ε 'í $\lambda \mu \mu \alpha$, XXV. 5 [88.4]) or al together wrong (for instance $\pi \alpha \rho \alpha \chi \theta \varepsilon ́ v \tau \alpha$, XXIII 8 [78.16]). His footnotes do not al ways specify whether the readings adopted in the text and not found in the editio princeps derive from the manuscripts. The availability of Prou's 1881 edition is very limited. In Europe I know of copies of the original edition in only three university libraries: Freie Universität Berlin (borrowable), ${ }^{44}$ University College London (not borrowable) and Uni versitéParis-Sorbonne (not borrowable). ${ }^{45}$

The decisive turning point in the editorial history of the Automata came in 1899, when W. Schmidt (1862-1905) published the first volume (di vided into

[^13]two parts) of the Heronian opera ommia (Teubner). The first part includes, in addition to the Pneumatica and the Automata, the text, with apparatus criticus, facing German translation and footnotes, of (a) the exiguous fragments of Hero's four-volume work on water-clocks as preserved in Pappus' cormentary on Ptolemy's Almagest (in Ptol. 87.9-88.10 and 89.4-5) and Proclus' Hypotyposis (Hyp. 4.74-7), (b) the Latin version of Philo of Byzantiums Pneumatica, and (c) Vitr. De Arch. 1.6.2, 9.9.2-5 and 10.12-13 (all relating to pneumatics). The second part (Supplementum) is mainly devoted to the manuscript tradition of Hero's twin treatises, and contains an extensive word index to the entire edition. Schmidt's edition can be considered as the only serious attempt to approach the text in a systematic and scholarly fashion. He consulted manuscripts which were apparently unknown to his predecessors (in his apparatus criticus and throughout his discussion of the history of the text sigla are used only for those manuscripts which he considered to be superior, on which see below, §3), made use of al most all of Haase's collations (which had been made available to him through R. Schöne ${ }^{16}$ and were previously unknown to Prou), and printed the text of chh. XXII-XXV in the correct order (though, lamentably, he was not aware of Weil's reconstruction, which is clearly preferable to that of R. Schöne). He greatly improved the readability and presentation of the text (to wit, he punctuates far better than Thévenot and Prou and adopts a text layout that is not just more faithful to that of the manuscripts but also more perspicuous), ${ }^{77}$ although his approach to conjectural emendation appears to have been rather erratic: at times he does not emend where emendation is required (see, for instance, the retention of the manuscript reading $\dot{\varepsilon} \pi \varepsilon 1 \lambda \eta \sigma o ́ \mu \varepsilon \theta \alpha$, VI. 2 [24.12]), at other times he intervenes too rashly (see, for instance, the emendation ö ó àv for ö ó 1 , II. 3 [8.3]), and at yet other times he proposes emendations that are unsupported (see, for instance, the conjecture ěv $\tau \uparrow$ for $\dot{\varepsilon} v \tau \hat{\jmath}, \mathrm{XVI} .3$ [56.1]) or poorly supported (see, for instance, the suggested addition of <úpuófovбav> at XXI. 2 [68.19]). His apparatus criticus records emendations by previous scholars whose first source may be difficult to locate, but contains errors, oversights and omissions (for example, he does not acknowledge readings found in Prou's edition and

[^14]instead treats them as his own conjectures). ${ }^{48}$ Schmidt was the first to discuss the text in relation to (at least some) manuscript diagrams and to comment on the modern illustrations included in his edition (see his "Anmerkungen zu den Automaten, insbesondere zu den Figuren", pp. LI-LXX, which shall be here refered to as Anmerkungen; he provides a similar set of observations for the Pneumatica at pp. XXVI-L). These illustrations, however, which were drawn by H. Querfurth (dates unknown), are not always based on the manuscript diagrams, and not infrequently include more details than are warranted by the text. Schmidt's edition has three major drawbacks: (1) he did not include photographic reproductions of the manuscript diagrams (half-tone photoreproduction processes had only recently become a regular feature of massmarket periodicals, were rather expensive, and would probably not have yielded satisfactory results) ${ }^{49}$ but instead included only a small number of graphic reconstructions; (2) he provided only a partial and at times erroneous account of the history of the text, without undertaking a thorough stemmatic anal ysis of the manuscripts known to him either directly or indirectly; (3) he was excessively inclined to invoke interpolation in a way that ignores the multi-layered and incompletely revised nature of the text.

2.2 Translations

The first translation of the Automata into a Westem language appeared in the sixteenth century when B. Baldi (1553-1617), ${ }^{50}$ mathematician and polymath from Urbino, made a translation into Italian, accompanied by explanatory and textual endnotes, illustrations ultimately based on the manuscript diagrams, and a prolegomenon tracing the history of automata-making ("Discorso di chi traduce sopra le machine se moventi"). ${ }^{51}$ Originally a project of his master F.

[^15]Commandino (1509-1575), ${ }^{52}$ the translation was completed in 1576 and published in 1589 under the aegis of the dedicatee of the work, G. Contarini (1536-1595). ${ }^{53}$ This publication most probably encouraged Baldi's contemporary, the Neapolitan mathematician J. D'Auria (fl. c.1590), ${ }^{54}$ to undertake a Latin translation of the whole treatise (date unknown), now preserved in the seventeenth-century manuscript Parisinus gr. 2380, ff. 211r$241 v .55$ During the last decade of the century, after the publication of his first translation, Baldi retranslated the treatise into Italian. This second translation, preserved in the autograph manuscript Laurentianus Ashburnham 1525 (Due libri di Herone Alessandrino delle machine da se operanti, ${ }^{56}$ saec. XVI), has remained unpublished. ${ }^{57}$ Shortly afterwards, in 1601, Baldi published in Venice a minimally revised version of his first translation, under the title Di Herone Alessandrino de gli automati, overo machine se moventi, libri due, nuovamente ristampato e con ogni diligenza ricorretto. ${ }^{58}$ Bal di's unpublished translation has

[^16]been erroneously considered as the autograph copy of either the first or the third translation: ${ }^{59}$ in his manuscript preface Baldi is explicit that he had based his first translation on a manuscript belonging to Commandino and that, in order to retranslate the treatise, he compared this manuscript with a manuscript that belonged to G. V. Pinelli (1535-1601). ${ }^{60}$ Two further translations are reported to have appeared, respectively, in 1647 (Bologna) and 1661 (place of publication unknown). ${ }^{61}$

Baldi's 1589 translation is of primary interest because it represents the first serious attempt to make sense of the Heronian text. As Baldi 3 r himself states, his rendering was based on a very corrupt manuscript. As a result, his translation leaves much to be desired in terms of intemal coherence and soundness, but it is nonetheless generally accurate, showing peculiar sensitivity to technical language. ${ }^{62}$ Although not free from mistranslations and misunderstandings, particularly with reference to architectural or mechanical descriptions, it contains a number of corrections which are unlikely to be based upon readings of his exemplar and which have been either found in other manuscripts or confirmed by later conjectures (see, for example, my Comm on II. 7 [10.11-14]). Baldi's endnotes are typically informative and succinct, explicating his translation practice and elucidating (albeit not always successfully) problematic passages or less familiar words (his failure to make acceptable sense of the text is exemplified by his imaginative comments on the corrupt words τ ov̀ৎ $\tau \hat{v}$ б $\alpha \mu$ иóvตv χ рóvovц: VI. 3 [24.19]; see Comm. on VI. 3
because digitised copies of Baldi's 1601 translation are of Iower quality, in the present edition I consistently refer to the earlier, unrevised version. It is worth noting that both the preface, which is dated February 1, 1589, and the colophon are reproduced unal tered in the revised edition.
${ }^{59}$ For the former misapprehension, seeRose (1975: 246); for the latter, see Libri (1841: 72 n. (1)), followed by Schmidt, Supplementum 140 n. 2.
${ }^{60}$ Laur. Ashb. 1525, ff. 4^{r-v}. The access to Pinelli's manuscript, which Bal di consulted in Padua, al lowed him to clean up a number of mistakes in his first translation (Ambr. D $332 \mathrm{inf} ., \mathrm{f}$. 107r). The only exampleknown to meis Baldi's rendering (34r) of XXII.4 [72.6], 'si vedevano le navi condotte al mare sui carreti' (reading ỏ $\chi \alpha i \omega v$ in place of 'A $\chi \alpha 1 \omega \hat{v}$), which helater (Laur. Ashb. 1525, f. 44r) was able to correct to 'vedendosi le navi da Gredhi al mare condotte' (cited from Micheli 2005: 251 n. 18). D'Auria (f. 232r), too, has the erroneous version: ‘Naves enim videbantur a arribus deductae'. Sefurther below, n. 63.
${ }^{61}$ See, respectively, Affò (1783: 169) and Martin (1854: 40), who refers to the 1661 translation as an unal tered re-edition of the first translation. Despite my best efforts, I have been unable to locate these posthumous translations.
${ }^{62}$ I agree with Micheli (2005: 251-2) on this point.
[24.16-20]). Some of his translations suggest that his exemplar was a manuscript belonging to what Schmidt considered to be the inferior branch of the tradition (below, §3.2), ${ }^{63}$ and, in particular, a manuscript somewhat allied to M. ${ }^{64}$

The second half of the sixteenth century saw the appearance of at least another translation into vernacular Italian (Delle cose che si muovono. In volgare, Ambrosianus N 237 sup., ff. $56{ }^{r}-78^{v}$), ${ }^{65}$ but the next milestone in the attempts to make the text more accessible to a larger audience is the Latin translation by Couture, Professor at the Collège de la Marche and member of the Académie des inscriptions since 1701. Couture's translation is not particularly noteworthy except for the fact that it is highly dependent on Baldi's. While it is true that Couture shows a certain (admittedly low) degree of independence, as al ready noted by Schmidt, Supplementum 138, he does not improve the places where he deviates from Baldi (there are several mistranslations/misconstructions

[^17]and a few independent omissions scattered throughout, which seem to stemfrom a hasty reading of the text). For the most part, he pays very little or no attention to the Greek, as is apparent from the number of calques and omissions that he shares with Bal di. ${ }^{66}$

It was not until 1881 that the treatise was (partly) retranslated into a Westem language. Prou's translation into French is fluent and easily readable but is based on an inadequately constituted text. Although Prou pays some attention to technical terminology, his translation often lacks accuracy and precision. His tendency to translate freely becomes most obvious in cases where he relegates the correct translation to a footnote. Contrast, for example, his translation of
 with the following explanation (230 n . b): 'reliés par le bas, au moyen d'un cordon sans fin, entourant extérieurment le pied carré de chaque barreau vertical'. Or, to take a more extreme case, in a footnote he translates the term үонююти́рıк (XXVII. 1 [98.5]) as 'tenons de menuiserie' (236 n. c), but in the body of the text, apparently in order to avoid supplying the term of comparison, he opts for its opposite ('mortaises des menuiserie', 236). Some of his renderings are more paraphrases than translations (see, for example, his rendering of XXIV. 2 [80.12-13]: ‘Les outils seron également de couleur naturelle', 216-17), while others are blatantly wrong (see, for example, his rendering of XXX. 7 [110.12-13]: 'La translation des personnages, aussi bien que leurs gestes secondaires'). For a more serious misunderstanding, cf. his Greek

 бovi人ı αi өúpaı ('si jefais toumer l'arbre en sense inverse, pendant que la porte est ouverte, celle-ci sera refermée', 223). ${ }^{67}$

[^18]The first complete modern translation appeared as part of Schmidt's edition. His is a rather sophisticated translation and one which privileges stylistic concerns and accessibility (so to speak) over strict faithfulness to the text. His translated text often does not reflect his Greek text, introducing conjectures and/or supplements (whether his own or someone else's) which are otherwise relegated to the apparatus criticus. Sometimes he alerts the reader to the phenomenon, but other times he does not (in his translation he generally uses square brackets to indicate deletions but refrains from using angle brackets to enclose additions). The most conspicuous example of such discrepancies is his rendering of XXVI. 4 [92.15-17], where he (435) does not fail to include his

 of $\tau \varepsilon$): 'Es ist aber notwendig, wenn man die Wandeldekoration der Achse wirklich nahe gebracht hat, dass man die Fläche der Bühnenhinterwand nur bis zu den Prospektrollen gefüllt hat' (in his note ad loc. he signals his intervention but stresses that the whole of XXVI. 4 [92.14-17], which he deletes as spurious, is suspicious). ${ }^{68}$ There are also terminological inaccuracies and misinterpretations (or not so stringent interpretations). For examples of the former, see Comm on III. 1 [14.18-19] and XIII. 3 [46.4-6]; for examples of the latter, see Comm. on III. 2 [16.7-10], XI. 10 [40.19-42.1] and XVII. 2 [56.22-58.1].

It was only after more than ninety years that the treatise received a translation into English. Murphy's 1995 translation, which comes accompanied by a brief introduction, bidimensional illustrations and textual and explanatory endnotes, is generally of very poor quality. In her introduction, Murphy discusses (albeit sketchily) several aspects of the text, provides a rapid and

[^19]incomplete survey of previous scholarship on the treatise and its author, ${ }^{69}$ and partly explains her principles of translation. These principles can be summarised as follows (Murphy 8): (1) the translation is mostly based on Schmidt's text, al though some reference is made to Prou's edition of Book Two; (2) some of Schmidt's emendations are adopted for the purpose of improving the legibility of difficult or corrupt passages, whereas some of his lacunæe are ignored when the text is deemed translatable without recourse to emendation; (3) occasional departures from Schmidt's textual choices and assessments are duly indi cated in the endnotes.

There are several problems with the application of principles (2) and (3) and with Murphy's translation more generally. First, Murphy has a poor grasp of Greek grammar and syntax, which results in frequent mistranslations, misinterpretations and/or unwarranted interpretations. Murphy seems to have a peculiar notion of how to deal with corrupt or lacunose passages, and while she usually uses angle brackets to enclose additions, she also uses square brackets for the same purpose (Murphy otherwise uses square brackets to indicate del etions). This is perhaps best exemplified by her translation of VI. 2 [24.12-15]

 stretches of it [sc. the cord], glue them on to the cylinder and then wind the [remaining] cord in the opposite direction and attach it to the counterweight' (15-17). Terminological choices aside, it is unclear what the reader should make of '[remaining]' and whether it is intended to correspond to $\{\grave{\varepsilon} \pi \varepsilon \imath \lambda \eta$ ñou $\varepsilon v\}$, which is enclosed in square brackets in Schmidt's text. Take also, for instance, her rendering of XIII. 4 [46.11-13], which contains a lacuna (ε к $\delta \grave{\varepsilon} \tau 0 \hat{\xi_{0}} \dot{\alpha} \gamma$ $\gamma \varepsilon$ íov <***> from the container $\Xi \mathrm{O}$, another pipe $\mathrm{X} \Psi \Omega \varsigma$, likewise bearing towards cylinder YФ' (23) Here the subject $\sigma \omega \lambda \eta$ nv seems to be treated as the direct object of the main verb of the immediately preceding sentence, ккíб $\theta \omega$, which is freely translated as 'put'. Second, Murphy only very rarely takes note of the (admittedly many) instances in which she departs from Schmidt's text, and, even when she does, misreadings may be involved (see Comm. on III. 2 [16.7-10]). In

[^20]all other cases, it is not al ways clear whether she emends the text in a different way (but see the caveat in Murphy 8), whether she in fact follows Schmidt's (or Prou's) translation, whether she translates creatively or whether she understands the Greek text correctly. One example will suffice Her translation of XX. 2 [64.19-66.2] runs as follows (28): 'as though drawn up [sc. the figure of Athena] by means of a cord, it can appear, upright, and then be hidden again as though drawn down by another cord' ($\dot{\omega} \pi \varepsilon \rho$ í π ò $\sigma \pi \alpha ́ \rho \tau o v ~ \tau ı v o ̀ \varsigma ~ \varepsilon ̇ \pi ı \sigma \pi \alpha \sigma \alpha \mu \varepsilon ́ v \eta \varsigma ~ o ̉ \rho \theta o ̀ v ~$
 ('as though... as though') in the Greek, and it is difficult to see how 'drawn up' could correspond to غ̇ $\pi 1 \sigma \pi \alpha \sigma \alpha \mu \varepsilon ́ v \eta \varsigma$, which cannot but refer to the cord ($\sigma \pi \alpha \dot{\rho} \tau \sigma v$
 been ε ह̇ $1 \sigma \pi \alpha \sigma \alpha \mu \varepsilon ́ v o v ~(g e n d e r ~ s w i t c h ~ s h o u l d ~ h e r e ~ b e ~ r u l e d ~ o u t ~ b e c a u s e ~ ' u p r i g h t ', ~$ oj ρ Oóv, still agrees with $\zeta(\varrho \delta \delta ı v)$. Third, Murphy has a contradictory approach to interpolations, and while she generally follows Schmidt in deleting passages as interpolated, she treats (or appears to treat) some of these passages as authentic (XI. 7 and XI.10, on which see synopsis on XI; for equally unfortunate results, seeComm. on XVI. 2 [54.17-18]). Her translation is also not free from omissions (in Book Two alone, for example, she omits translating the whole of XXVIII. 7 [104.9-13] غ̇ $\pi 1 \sigma \tau \rho \varepsilon ́ \psi \varepsilon \varepsilon . . . \bar{\varepsilon}$), (terminological) inconsistencies and errors (note especially that she has section XVIII. 4 start with XVIII. 3 [60.3] каì $\tau \alpha ̀ s$, $\alpha \lambda \lambda \alpha$, etc.). On the whole, Murphy has produced a translation that is certainly more accessible than Schmidt's (at least to readers who may not know German) but which lacks coherence and is misleading or confusing. Murphy's illustrations are rudimentary, not always faithful to the text and occasionally without letter labels; despite her claim to the contrary (Murphy 8), additional elements not mentioned in the text are inconsistently indicated in the endotes or in the illustrations themselves. For reasons that she leaves unspecified, she did not see the manuscript diagrams.

A number of partial translations also exist, scattered throughout various books, theses, and articles. Let me single out only McCourt (2012), who offers not always accurate English translations of III.1 [14.17-16.4], V.3-5 [20.18-22.20], VI.1-2 [22.21-24.9], VII.1-VIII. 2 [26.6-28.19], IX.1-3 [28.4-30.2], X. 3 [34.12-13], XI.1-4 [36.1-28]. My debt to previous translations is clearly seen in the Commentary.

The overview offered so far shows that previous attempts to edit and translate the treatise have been unsatisfactory to a greater or lesser degree. Until now, one major drawback was the absence of a comprehensive edition and commentary, an absence more acutely felt in recent years in response to the growing scholarly interest in ancient science and technology more generally and in Hero and his works more specifically. The present edition aims at partially filling this gap by offering the first-ever full-scale commentary on BOoK One, alongside a reexamination of the manuscript tradition and a systematic, consistent and accurate translation of the entire treatise based on a completely new text. The following aspects of this doctoral study should be particularly noted: (1) the edition depends on a larger manuscript-base than the edition of Schmidt, and al phabetical sigla have been consistently assigned to all manuscripts; (2) the constitutio textus and concomitant interpretation have taken into account, in addition to those emendations and editorial interventions already found in Schmidt's edition, the contributions by Weil (1882), Olivieri (1901) and Schmidt (1903); (3) a more balanced approach has been adopted with regard to interpolations, and careful attention has been devoted to the nature and status of the text; (4) the oldest manuscript di agrams have been consulted and included in the study, and a whole new set of reconstructions accompanies the thesis (Appendix 4); (5) in order to facilitate comparison between pre and postSchmidt editions (where chh. XXII-XXV are arranged in different orders), a concordance of editions has been appended (Appendix 1). For an explanation of the principles and criteria followed in the present edition, se below, §6.

3. THE HISTORY OF THE TEXT OF THE AUTOMATA ${ }^{70}$

On the basis of current evidence, the text of the Automata has been transmitted by 43 manuscripts either in its entirety or in part. Schmidt knew only of $38 .{ }^{71}$ The earliest manuscript dates to the thirteenth century: A (Marcianus gr. Z. 516, ff. 196-208r), ${ }^{72}$ which Schmidt selected as codex optimus. All the other manuscripts are recentiores, dating from the fifteenth to the eighteenth centuries. The other three manuscripts upon which Schmidt mainly based his text all date from the sixteenth century. These are \mathbf{G} (Gudianus gr. 19, $\mathrm{ff} .1^{r}-20^{v}$),,$^{73} \mathbf{M}$ (Magliabechianus II.III.36, ff. 125r-141v) and \mathbf{T} (Taurinensis B.V.20, ff. 82v$101^{ }$), the last of which, having been heavily damaged by fire in 1904, now contains only portions of lines 2.1-66.6 (ff. 102r-114r are completely lost). ${ }^{74}$

In what follows, I shall first discuss Schmidt's method of listing manuscripts and then provide an updated list, which includes those witnesses to the text that were unknown to him (Ba, Bd, Mb)..75 This will also allow me to provide information on my use of the manuscripts. I shall proceed to give a summary of Schmidt's account of the tradition. This will lead to an examination of the relationships between the manuscripts. Finally, I shall offer conclusions and future lines of enquiry into the transmission of this text.

[^21]Before listing the manuscripts, it is important to note that the treatise has come down to us under three different titles: Пعрi аvंтонатолопптıкйऽ (the oldest
 my view, none of these is the original title, which I have reconstructed as Пع ρi $\alpha v ̇ \tau o \mu \alpha ́ \tau \omega v$; see my detailed discussion below, §4.) Schmidt, Supplementum 546 classified the manuscripts in three main categories according to the presence, absence and form of the title, citing separately those whose title was unknown to him (in his list manuscripts are numbered continuously 1-38,76 followed by number 39, which corresponds to D'Auria's Latin translation). Schmidt's list is no longer satisfactory for at least three reasons. First, as will become clear below, the form of the title is not necessarily suggestive of a distinct branch of the tradition. Second, Schmidt lumped together manuscripts bearing the title
 $\pi о i \eta \tau \iota \kappa \hat{\omega} v$ when in fact the latter form is a corruption of the former. Third, his fourth and last group of manuscripts (nos. 33-8) includes manuscripts whose title either was al ready known in his time (nos. 36-7) or is no longer unknown (nos. 33-4). The list below gives (in al phanumerical order) the name and date of each manuscript, and, when known, the folios containing the text or portion thereof (square-bracketed numbers refer to errors made by Schmidt in the respective descriptions of the manuscripts, ${ }^{77}$ whereas angle-bracketed numbers and/or letters to information he did not provide). The following superscript signs when appearing over manuscript sigla are used to indicate, if known and applicable, the presence or absence of the (different forms of) the title: * $=\Pi \varepsilon \rho i \alpha v i \tau o \mu \alpha \tau o-$
 $=$ no title A superscript? indi cates that the title is unknown.

[^22]- Ambrosianus C 266 inf., saec. XVI, ff. 331${ }^{\text {v }} 349{ }^{r}=$ Aa * [1]
- Ambrosianus D 131 inf., saec. XVI, $\left\langle\right.$ ff. $1^{r}-28^{r}>=A^{* * *}$ [16]
- Amstelodamensis III.F. 26 (olim104), saec. XVII, र्বf. 1r-28r>=Ac** [33]
- Angelicanus gr. 109 (olim S.I.17), saec. XVI (1548-1553), ff. 49-67r = Ad** [17]
- Argentoratensis C.III.6, saec. XVI, ff. $167{ }^{\mathrm{v}-193^{v}}=(\mathbf{A e})^{*}[2]^{78}$
- Barberinianus gr. 69, saec. XVI-XVII, f. 6^{r} (only $64.2-14$ up to $\left.\dot{\alpha} \theta \eta v \hat{\alpha} v\right)=$ Ba
- Barberinianus gr. 261 (olimII. 82), saec. XVI, ff. 44r-66v = Bb** [18]
- Baroccianus gr. 169, saec. XV (1476-1500), ff. 194v-212 ${ }^{\text {<>> }}=$ Bc * [3]
- Burneianus gr. 108, saec. XVI¹/4, ff. 81-100 = Bd ${ }^{\text {² }}$
- Escurial ensisT.I.3, saec. XVI, रff. 51r-69v>=Ea** [19]
- Escurialensis Ф.I.10, saec. XVI, ff. $50^{<v>}><70 r>=E b^{* *}$ [20]
- Fabritius 93 kvart (olim Hauniensis universalis 93), saec. XVIII, ff. $1^{r}-15^{v}>=$ F^{*} [5]
- Gudianus gr. 19, saec. XVI, ff. $1^{r}-20^{v}=\mathbf{G}^{*}$ [4]
- Harleianus 5589, saec. XVI ${ }^{3 / 4}$, ff. 19r-27r $=\mathbf{H a}^{* *}$
- Harleianus 5605, saec. XVI ${ }^{2-3 / 4}$, ff. $50^{v}-69=\mathbf{H b}^{* *}$
- Leidensis Bonaventurae Vul canii 4, saec. XVI/XVII (1500-1600?), ff. 35«». $44^{\varangle \gg}$ (up to 32.18 ह́ $\rho o \hat{\mu} \mu \varepsilon v$) $=$ La $^{* * *}$ [21]
- Leidensis Scaligeri 45, saec. XV ex./XVI¹, ff. 64v-96v = Lb ${ }^{\downarrow}$ [32]
- Leidensis Vossianus Miscellanaeus 6, saec. XVII, ff. 35৫-39<v>
(up to 32.18 ع่pov̂ $\mu \varepsilon v$) $=$ Lc $^{* * *}$ [22]
- Leidensis Vossianus Miscellanaeus 17, saec. XVII, ff. 11 [10]-36®> $=$ Ld ${ }^{* * *}$ [23]
- Magliabechianus II.III.36, saec. XVI, ff. 125r-141 $=$ M $^{* *}$ [24]
- Marcianus XXX. 4 (Class. 11), saec. XVI/XVII = Ma [35]
- Marcianus gr. Z. 516, saec. XIII, ff. 196v-208 = A* [6]
- Matritensis 4788 saec. XVI, ff. 52r-71v $=$ Mb $^{* *}$
- Monacensis gr. 431, saec. XVI, ff. 17r-36r = Mc* [7]
- Monacensis gr. 577, saec. XVII, ff. $1^{r}-11^{\mathrm{v}}=$ Md $^{\text {² }}$ [8]

[^23]- Oxoniensis Collegii Beatae Mariae Magdalenae 12, saec. XVI (1569-1570), ff. 15v-33v[34] = \mathbf{O}^{*} [9]
- Parisinus gr. 2428, saec. XVI, ff. 524>-71V[73] =Pa* [25]
- Parisinus gr. 2430, saec. XVI/XVII (1590-1610), ff. 143 ${ }^{〔>}$-168v[170] $=$ Pb * [10]
- Parisinus gr. 2431, saec. XVI (1540-1550), ff. $^{\left.52^{v}-72^{v}>=\text { Pc }^{*} \text { [11] }\right] ~}$
- Parisinus gr. 2432, saec. XVI (1555-1575), ff. 51 ${ }^{«>}-71^{«>}=$ Pd* $^{*}[36]$
- Parisinus gr. 2434, saec. XVI (1520-1570), ff. 56»-90V[93] = Pe* [12]

- Parisinus gr. 2520, saec. XVI, ff. $1^{\varangle>}-35 \vee[38]=$ Pg $^{* *}[13]^{79}$
- Parisinus suppl. gr. 11, saec. XVI, ff. $51^{\varangle>}-70^{\boxed{*}>}=$ Ph $^{* *}$ [26]
- Philippsianus 1548, saec. XVI (fortasse 1541 vel 1542), ff. 55v-76r $=\mathbf{P i}^{*}$ [14]
- Riccardianus gr. 47, saec. XVI, ff. 76v-104r = R** [27]

 $\mu \varepsilon v)=\mathbf{T}^{* *}$ [28]
- Thottianus 215, saec. XVI, বf. 48r-71$>=$ Tb $^{* *}$ [34]
- Vallicellianus R 29, saec. XVI, ff. $1^{4 \geqslant} 25^{r}=\mathbf{V a}^{?}$ [38]
- Vaticanus gr. 1054, saec. XVI, ff. 47「-66 = Vb** [30]
- Vaticanus Urbinas gr. 75, saec. XVII, ff. 38r-57v =Vć* [31]
- Vindobonensis suppl. gr. 21, saec. XVII (c.1600), ff. 143 ${ }^{\varangle>}-168^{\varangle \gg}=$ Vd $^{k}[15]$

Apart from $\mathbf{A}, \mathbf{G}, \mathbf{M}$ and \mathbf{T}, Schmidt fully collated manuscripts La, Lb, Mc, $\mathbf{P i}$ and \mathbf{R}. Others he partially collated ($\mathbf{A a}, \mathbf{B b}, \mathbf{M a}, \mathbf{M d} \mathbf{T a}$), although the extent of his collations is not al ways clear. ${ }^{80}$ Additionally, he also relied on the (selective) collations made by Haase (($\mathbf{A e}$), $\left.\mathbf{P a}, \mathbf{P c}, \mathbf{P e}, \mathbf{P d}{ }^{81} \mathbf{P f}, \mathbf{P h}\right)$, Hildebrandt (Vb) and Prou ($\mathbf{P a}, \mathbf{P b}, \mathbf{P e}, \mathbf{P d}, \mathbf{P f}, \mathbf{P h}$). On the other hand, he had no access, either direct

[^24]or indirect, to $\mathbf{A b}$, $\mathbf{A c}$, $\mathbf{A d} \mathbf{B c}$, Ea Eb, F, Lc, Ld O, Tb, Va, Vc and $\mathbf{V d}{ }^{82}$ In producing the present edition, I have prioritised the main manuscripts used by Schmidt and those that he did not collate or were unknown to him. Given the scope of this work, I have decided to leave out of consideration Pi, which Schmidt convincingly eliminated as apograph of A (Supplementum 114). I have thus seen manuscripts La Lb, Lc, Ld Pa Ph Pg and Pf, and photographic or microfilm reproductions of manuscripts A, Aa, Ab, Ac, Ad Ba, Bb, Bc, Ea Eb, $\mathbf{F}, \mathbf{G}, \mathbf{M}, \mathbf{M b}, \mathbf{O}, \mathbf{P b} \mathbf{P C}, \mathbf{P d} \mathbf{P e} \mathbf{T}, \mathbf{T a}$, Tb and $\mathbf{V d}$ I have also been able to consult images of $\mathbf{B d} \mathbf{H a} \mathbf{~ a n d ~} \mathbf{H b}$, but these manuscripts came to my attention too late to be examined and collated for the purposes of the constitutio textus and the stermatic anal ysis. ${ }^{83}$ In addition to the lost manuscript (Ae), I have been unable to locate Ma Mc, Md and Va For this reeson, and because of pressing time and financial constraints, I could not secure access to all manuscripts. I have therefore taken the readings of manuscripts (Ae), Mc and \mathbf{R} either from the apparatus criticus or from the Supplementum of Schmidt. The same applies to those readings of \mathbf{T} which are (a) partially preserved or (b) no longer extant. The following list gives all the occurrences of (a) and (b) within 2.1-66.6 (in the former case square brackets enclose portions of text now lost):

 غ̇к $\delta \theta \varepsilon ̀ v, ~ 32.9 ; \kappa \lambda \varepsilon \varepsilon \theta$ íov ... $\pi \lambda \imath v \theta i ́ o v ~ T 2 n g, ~ 32.14-15 ; ~ \bar{\eta}, 34.7 ; \pi \varepsilon \rho \varepsilon \imath \lambda \eta \varphi \theta \varepsilon i ̂ \sigma \alpha$,

[^25]

 62.11; катакє $\omega \rho \emptyset ́ к \alpha \mu \varepsilon v, ~ 64.5-6 ; ~ ß о \nu \lambda о ́ \mu \varepsilon \theta \alpha, ~ 64.7 ; ~ غ ̇ \pi ı \gamma \rho \alpha ́ \varphi \varepsilon ı v, ~ 64.8 ; ~ к \alpha і ̀, ~$ 64.11; $\gamma \grave{\alpha} \rho, ~ 94.18$.

3.2 Schmidt's account of the tradition

Schmidt divides his account of the tradition into three parts. Misleadingly titted "Der Archetypus der Automaten", the first part combines discussion of the disruption of the order of chh. XXII-XXV with observations on the archetypical manuscript of the text (Supplementum 107-111). He convincingly argues that, because the manuscripts (known to him) have the disrupted chapter order, ${ }^{84}$ they

[^26]all ultimately derive from a single common exemplar ('Exemplar', not 'Archetypus'). ${ }^{85}$ Schmidt ascribes such disruption to a transposition of two folios rather than to the combination of said transposition with the replacement of a lost folio with a folio coming from a different manuscript (Schöne's thesis), ${ }^{86}$ and advocates (wrongly in my view) for the archetype as a strongly interpol ated manuscript. ${ }^{87}$ The second part, titled "Der kritische Wert von AGT für die Automaten", examines the (comparative) value of \mathbf{A}, \mathbf{G} and \mathbf{T}, mainly showing that (1) \mathbf{A} is the best manuscript, and (2) $\mathbf{A G}$ belong to a superior class of manuscripts as against T (Supplementum 111-12). Building upon the analysis of the preceding section, the third part, titled "Beurteilung der übrigen Handschriften der Automaten", assesses the rest of the tradition, and includes preliminary consideration of D'Auria's Latin translation (Supplementum 112-18). Here Schmidt divides the tradition into two classes of manuscripts. One class consists primarily of manuscripts bearing the title Пєрi $\alpha \dot{v} \tau о \mu \alpha \tau о \pi о п \eta \tau \iota \kappa \bar{\varsigma}$ (as in \mathbf{A} and \mathbf{G}). To it also belongs $\mathbf{L b}$ (where the treatise is untitled). This he regards as the better class ('bessere Klasse'). The other, inferior class ('schlechtere
unlikely that Ma, Va, Vband Vc contain the correct textual sequence. On how the disruption occurred, see below, n. 86.
${ }^{85}$ See al ready Schöne (1891: 74 n. 2).
${ }^{86}$ Schöne's (1891: 74 n. 2) thesis rests on two facts: (1) the repetition of XXII.6 [74.1-3] кع $\alpha v v o ̀ \varsigma . . . \mu \hat{v} \theta$ oc; (2) the lacunose state of XXIV.1 [80.1]. In his view, the lost folio contained XXII.6-XXIV.1 [74.3-80.1] $\mathfrak{\eta} \mu \varepsilon ̀ v ~ o u ̂ v ~ \delta 1 \alpha ́ \theta \varepsilon \sigma ı \varsigma . . . ~ ব K \alpha i ̀ ~ \tau \alpha v ̂ \tau \alpha ~ \mu \varepsilon ̀ v>a n d ~ w a s ~ r e p l a c e d ~ b y ~ a n o t h e r ~$ folio which contai ned more words at the beginning ($\kappa \varepsilon \rho v v o ̀ \varsigma \ldots \mu v ̂ \theta \circ \varsigma$) and less words at the end (hence the lacuna at the beginning of ch. XXIV). I espouse Schmidt's thesis (Supplementum 1089) that the scribe, after skipping one folio and real ising his mistake, signalled the disruption by repeating the lines immediately preceding the end of ch. XXII (which, however, would include
 ó λ ó γ os oî̃oc (which are indeed attested in the oldest manuscript). The textual divergences between the two iterations of XXII. 6 [74.1-3] $\tau \varrho ิ \pi^{\prime} v \alpha \kappa 1 . . . \mu v ̂ \theta$ oc can be explained by assuming that the scribe was citing from memory. Equally, the omission of the initial words of ch. XXIV need not necessarily have occurred at the same time as the di sruption, and might represent a later stage of the transmission. Schmidt's thesis makes sense only if we assumethat, out of the four folios containing chh. XXII-XXV, the first and the third were rectos: (ar) [...]-XXII.6[74.3]

${ }^{87}$ Schmidt, Supplementum 110 bases his argument mainly on the assumption that XI. 7 [38.15-40.2], XI. 10 [40.17-42.3] and XXVI.4 [92.14-17] are the result of interpolation. I believe that these passages are authentic, and consider the treatise to have been compiled from various sources. Seefurther below, $\S 5.6$ (esp. §5.6.1 on snake-like motion). Regardless of the passages in question, Schmidt's appeal to interpol ation is logically flawed because extraneous material is much more likely to have been interpolated at a later stage.
 \mathbf{M} and \mathbf{T}) or Пгрi $\tau \hat{\omega} v \alpha \dot{v} \tau о \mu \alpha \tau о \pi о ו \eta \tau \iota \kappa \hat{\omega} v$. In addition to these two classes, he identifies three broad groups of manuscripts:
(a) Aa, (Ae), Mc and Md a group closely allied to G. Aa, Aeand Mc are shown to be independent of each other, whereas Md is considered a copy of Mc. Pb, which Vincent (1858: 171) was inclined to consider a copy of (Ae), closely follows this group (Supplementum 112-13);
(b) Pa, R and presumably Ta, a group closely allied to T. Pa and \mathbf{R} are dismissed as unimportant in view of this affinity (Supplementum 115-16);
(c) Bb, La, M, Ph and presumably Pd (Supplementum 116-17).

Two points are especially striking about Schmidt's eval uation and use of the manuscripts. The first is that he seems to include \mathbf{M} among the codices potiores, al though in fact he di scusses it together with the other manuscripts (his consensus codicuma indeed comprises only AGT)..88 The second point is that he is inclined to regard even those manuscripts of which he has no knowledge as either good or bad, depending on which title they bear (see Schmidt, Supplementum 114, 117). I have investigated the manuscript tradition in more detail and have constructed three provisional stemmata based on a partial collation of the manuscripts (Appenolix 3). ${ }^{89}$ (Note that, in order to avoid incorrect, incomplete or misleading results, my stemma includes neither those manuscripts which Schmidt collated and which I did not collate nor the lost manuscript (Ae) nor the extremely fragmentary manuscript Ba; for the purposes of the constitutio textus, I have undertaken a complete collation of $\mathbf{A}, \mathbf{G}, \mathbf{M}$ and T, the last three of which have been consistently cited in the apparatus criticus as representatives of different sub-branches of the tradition.) As I shall demonstrate, my investigation offers some significant corrections to Schmidt's analysis.

[^27]The manuscript tradition divides into two branches：branch β ，represented by manuscripts A，Aa Bc，Ea，F，G，Lb，O，Pb，Pc，Pe，Pg Vd（Stemme 1）；and branch γ ，represented by manuscripts $\mathbf{A b}, \mathbf{A c}, \mathbf{A d}, \mathbf{B b}, \mathbf{E b}, \mathbf{L d}, \mathbf{M}, \mathbf{M b}, \mathbf{P a}, \mathbf{P d}$ ， $\mathbf{P f}, \mathbf{P h}, \mathbf{T}, \mathbf{T a} \mathbf{T b}$ ，and the fragmentary La Lc and Ba（Stemma 2）．The disruption of the order of chh．XXII－XXV suggests that both these branches derive from a common hyparchetype（ α ）rather than directly from the archetype (Ω) ，which will have presumably contained the correct sequence of chapters． Manuscripts of the β branch are superior to manuscripts of the γ branch，as is clear，for instance，from thefollowing textual divergences：
12.11 七へ̂c β ：каì γ（praeter Ba）
20.16 ov̉ β ：каì γ（praeter Ba）

28.15 ő $\tau \alpha v$ ；ov̌兀 $\omega \varsigma \gamma$（praeter Ba）

$42.5 \omega \varsigma \beta$ ：$\neq \tau \varepsilon \kappa \alpha \grave{~} \omega \varsigma \gamma$（praeter BaLaLc）
$64.11 \tau \hat{\nu} \vee \beta$ ：каı̀ γ（praeter LaLc）
$82.8 \tau \rho \cup \pi \hat{\omega} \beta: \tau \rho v ́ \pi \eta \eta \mu \gamma$（praeter BaLaLc）

$102.23 \gamma \alpha{ }_{\alpha} \beta$ ：đò γ（praeter BaLaLc）

This bifurcation is further evidenced by a number of omissions that are found in γ but not in β ．Take the following examples：
4.10 ì β ：om γ（praeter Ba）
28.13γ ò β ：om．γ（praeter Ba）
$28.20 \tau \hat{\omega} v^{1} \beta$ ：om γ（praeter Ba）
54.13 ốvoc β ：om．γ（praeter BaLaLc）
58.9 каì β ：om γ（praeter BaLaLc）

These two branches are each further subdivided into two main subbranches, with the β branch leading to \mathbf{A} and δ, and the γ branch leading to ε and ζ. Let us first consider the β branch and then turn to γ.

3.3.1 The β branch

The manuscripts belonging to this branch share only one error in common, namely the omission of 90.6 ov̉v. The δ sub-branch contains manuscripts $\mathbf{A a} \mathbf{B c}$, $\mathbf{F}, \mathbf{G}, \mathbf{O}, \mathbf{P b} \mathbf{P c}, \mathbf{P e} \mathbf{P g} \mathbf{V d}$ and cannot stem from \mathbf{A}, because \mathbf{A} (and its indirect descendants Ea and Lb) has a separative error at 22.19 đ́ $\mu o ̀ v ~(~(\alpha ̀ v ~ \delta) . ~$

Schmidt, Supplementum 111 rightly regarded A as the codex optimus because it has comparatively few significant errors and offers good readings not
 $\mathbf{A}^{\boldsymbol{x c}}$), $96.12 \mu \varepsilon \varepsilon_{\rho}$ oc (shared by $\mathfrak{\imath}$). (Of these readings, he cites only $14.14 \delta^{\prime} \varepsilon^{v} v$ and $96.12 \mu \varepsilon ́ \rho o \varsigma$, to which he further adds 20.13 عv̉Өzíac; but here A reads ε غ̇л $\varepsilon v \theta \varepsilon$ cíac, rather than ε ' π ' $\varepsilon \dot{v} \theta \varepsilon \varepsilon^{\prime} \alpha c$.)

On the other hand, the vast majority of the δ manuscripts offer a superior
 al though they share the former reading with ε and the latter with κ. (Schmidt, Supplementum 112 cites the former reading among the good readings of \mathbf{G}; for the disadvantages of his approach, see below.)
δ splits into two further sub-branches (θ and \mathfrak{i}), containing, respectively, manuscripts Aa, Bc, G, F, O, Pb, Vdand Pc, Pe, Pg.

The 1 manuscripts share several conjunctive errors, which prove that they form a close-knit group:

 $110.6 \hat{\eta} \varsigma] \hat{\eta} \varsigma$ દ̇бтı.

They share an error found in \mathbf{A} :

They share two errors found in ζ :
$\left.6.16 \delta \imath^{2} \dot{\varepsilon} \varphi \eta \lambda \omega \tau \omega ิ v\right] \delta \imath^{\prime} \dot{\varepsilon} \varphi \eta \lambda \alpha \tau \hat{\omega} v$

Pe and Pg cannot derive from Pc because $\mathbf{P c}$ has the following separative errors against both manuscripts:

Pc cannot derive from Pe and Pg because the latter two manuscripts share at least two significant errors not found in Pc: 2.17 каì] каì каì, 20.19 غ่v $\hat{\hat{\varphi}}]$ g̀v $\hat{\varrho}$ $\dot{\varepsilon} v \hat{\dot{\omega}}$. Cf. also the correct reading of PePg at $20.14 \dot{\alpha} \pi о \pi о \rho \varepsilon i ́ \alpha ~ n o t ~ f o u n d ~ i n ~ a n y ~$ other manuscript, including Pc ($\alpha \pi$ o ρ sí αv). Pecannot have been copied from $\mathbf{P g}$ because Pg has a separative error at $18.17 \alpha \mathfrak{\alpha} v \alpha \pi ı \tau v \sigma \mu \varepsilon ́ v o c ̧$ (a reading taken from $\zeta)$. Similarly, Pg cannot have been copied from Pe because at 14.12 Pe has an error (каì veótepov) which Pg could hardly have corrected by conjecture (каì vótepov $\mathbf{P g}$). Pe and $\mathbf{P g}$ thus seem to share a common exemplar (ξ), in its tum derived from.

Manuscripts $\mathbf{A a} \mathbf{B c}, \mathbf{F}, \mathbf{O}, \mathbf{P b}$ and $\mathbf{V d}$ ultimately derive from a common exemplar with \mathbf{G}, namely θ, as shown by the foll owing conjunctive errors:

The existence of intermediate exemplars (v and τ) between θ and $\mathbf{A a} \mathbf{B c}, \mathbf{F}$ and \mathbf{O} (from which are indirectly derived $\mathbf{P b}$ and $\mathbf{V d}$) is supported by two facts. The first is that all these manuscripts (henceforth indicated by v) share at least two significant errors not found in \mathbf{G} :

The second is that $\mathbf{A a} \mathbf{B c}$ and \mathbf{O} (together with its indirect descendants $\mathbf{P b}$ and $\mathbf{V d}$) share a number of conjunctive errors not found in \mathbf{F} :
 $\tau \alpha l] \pi \rho о \sigma \alpha \gamma о \rho \varepsilon v ́ o v \tau \alpha l, 42.3 \mu \varepsilon \sigma о \lambda \alpha \beta \circ \hat{\sigma \alpha}] \mu \varepsilon \sigma о \sigma v \lambda \lambda \alpha \beta о \hat{\sigma} \sigma \alpha, 54.13$ ov̉v] $\delta \varepsilon ̀$,

Aa, Bc and \mathbf{O} must therefore derive not from v (as \mathbf{F} seems to do) but from its descendant τ. Before looking more closely at the τ manuscripts, let us consider F. Fs scribe seems to have had access to \mathbf{G} because the manuscript contains
 32.14 ó $\mu \mu \grave{v} v$] ó $\mu \grave{v}$, 48.10, $\beta \alpha ́ \rho \eta] ~ \beta \alpha ́ \rho \alpha, 52.20 \alpha v ̉ \tau o ́ \mu \alpha \tau \alpha] ~ \alpha v ̉ \tau o ́ \mu \alpha \tau o c . ~ C f . ~ a l s o ~$ the following two passages, where \mathbf{F} reproduces (almost exactly) the readings of G:
 that the scribe does not realise that G's underlining is meant to correct кє $\mu \varepsilon$ viv to $\mu \varepsilon ́ v \eta)$
$108.10 \mu \varepsilon ́-\mid$ tò $\mathbf{G}^{\mathbf{a c}}$: $\underline{\varepsilon} \varepsilon^{-}$vac. c. 3 tò \mathbf{F} (Fs underlining draws the reader's attention to the tentative marginal correction $\mu \varepsilon ์ \sigma o v$, presumably taken fromthe γ branch)

F also shows signs of cross-contamination from ψ (cf. 90.14 í $\pi \sigma \gamma \varepsilon \gamma \rho \alpha \mu \mu \varepsilon ́ v \alpha)$ and o (cf. $90.14 \dot{\varepsilon} v, 106.1 \dot{\alpha} \pi \sigma \sigma \pi \alpha \sigma \theta \varepsilon i ́ \sigma n s$, the former also occurring in Pepes).
$\mathbf{A a}, \mathbf{B c}$ and \mathbf{O} form a recognisable subgroup, as shown by the following agreements:

Aa and Bc probably derive from a common sub-hyparchetype (v) because they both have at least one significant error not found in O: 50.17 үivetal] каì γ ivetal (каì γ ívetal Aa). Bc cannot derive from Aa for chronological reasons, and
because it has the correct text at 28.8 коричѝ (коіричй AaO) and 100.15 ह̈л $\alpha \rho-$ $\sigma ı v$ (̇̇л α paбıv AaO). Similarly, Aa is independent of $\mathbf{B c}$ because of the following two separative errors of Bc against Aa $80.9 \mu \eta \delta \varepsilon ̀ v] ~ \mu \eta \delta \varepsilon ̀, 110.8$ к α
 contamination from the γ branch, and perhaps more specifically from ζ : cf. readings at $4.12 \sigma \kappa \varepsilon \rho \pi \alpha v i ́ \zeta o v \tau \alpha, 6.15 \dot{\alpha} \pi \omega \theta \omega ́ \sigma \alpha v \tau \varepsilon \varsigma$ (a further corruption of $\dot{\alpha} \pi 0-$
 BbEaLbTb). Cross-contamination is also likely to have occurred between Aa and, respectively, o and Ph for the former relationship, cf. 42.2 tovíov ($\mathbf{A a p}{ }^{\text {pcs }}$:
 all probability was already found in к); for the latter, cf. 106.12 а $\mu \pi \tau \cup \alpha \varsigma$ (Aa Ph ${ }^{\text {(dha in mgl) })}$.

O, Pband Vdshare the following errors agai nst Aa and Bc:

Pb and Vd share numerous conjunctiveerrors not found in \mathbf{O}, for instance:

 $\mu \alpha \tau$.

Pb cannot derive from Vd because Vd has omissions not found in Pb: 22.1 '̂́oo, 30.19-22 торєvө̂̂vaı... $\pi \lambda \varepsilon \cup \rho \alpha ̀ v ~(\pi о \rho \varepsilon v \theta \eta ̂ v \alpha ı ~ o m ~ P b), ~ 66.21-22 ~ \alpha ̉ v \alpha \gamma \varepsilon \gamma \rho \alpha \mu \mu \varepsilon ́-~$ vตv... av̇tov̂ (omitted also by BbTa, probably through contamination), 106.4 $\dot{\eta} \mu i ̂ v$. Likewise, Vd is unlikely to have been copied from Pb because Vd does not reproduce the text of 42.5-7 as it appears in Pbo $\dot{\omega} \varsigma \dot{\varepsilon} \alpha ̀ v ~ \pi \rho о \alpha ı \rho ' ि \mu \varepsilon \theta \alpha ~ \delta ı \alpha \mu \varepsilon \mu \eta \rho v-~$

 seem to be close copies of an exemplar (ω) derived from \mathbf{O}.

The θ manuscripts present a superior text than \mathbf{A} at 6.19 vi $\pi \alpha ́ \rho \chi!\eta, 40.19$

these readings are shared either by ε (106.7, 106.13), by η (6.19) or by both (108.13). (Schmidt, Supplementum 112 cites 40.19, 106.7 and 106.13 among the good readings of \mathbf{G} but he clearly overlooks the connections between \mathbf{G} and manuscripts of the ε branch, in particular M.) \mathbf{G} is superior to the other manuscripts of this family (including the earlier manuscript Bc) because, as the lists above have shown, they contain a number of additional errors not found in G. G has a better reading not found in A, M and T at 108.17 тov́ $\tau \omega$ (shared also by AaAcLdTa).

Finally, before moving on to consider the γ branch, let us look at Ea and Lb. These two manuscripts (the former of which transmits the text under the title
 not found in the other manuscripts. In addition to 22.19 d μ òv (se above), cf. the following (minor) errors: $20.2 \gamma \grave{\alpha} \rho \gamma \varepsilon v \eta \theta \dot{v} v \tau \omega v$] $\gamma \grave{\alpha} \rho \gamma \varepsilon \gamma \varepsilon v \eta \theta \varepsilon ́ v \tau \omega v$ (in A two letters have been erased after $\gamma \varepsilon$, perhaps $v v$, as suggested by comparison with
 vi $\pi \varepsilon \rho \tau \rho \frac{\prime}{\chi} \omega v$ (here \mathbf{T} now reads [***]ó $\omega \omega$ v, although the agreement of EbPaTa gives us what is in all probability the original reading, í $\pi \varepsilon ̀ \rho ~ \tau \rho o ́ \chi \omega v ; ~ P f ' s ~ c o r r u p t ~$ reading $\dot{\tau} \pi \varepsilon{ }_{\varepsilon} \rho \tau \rho o ́ \pi \omega v$, too, supports both the word-division and the accentuation). Ea and Lb also share numerous conjunctive errors that prove that they are gemelli. Some examples:
 10.4 ठ $\varepsilon i ̂ ~ \chi \rho \eta ̂ \sigma \theta \alpha ı] ~ \chi \rho \eta ̂ \sigma \theta \alpha ı ~ \delta \varepsilon i ̂, ~ 20.13 \pi о \rho \varepsilon i ́ \alpha v] ~ \pi v \rho i ́ \alpha v, ~ 20.19 \pi \lambda ı v \theta i ́ o v] ~ \pi \lambda ı v \theta i ́-~$

 $\mu \eta \tau \alpha$.

Both manuscripts share an error found in ε :

They al so share some errors found in ζ, for instance:

Abstract

Lb cannot derive from Ea because Ea has omissions not found in Lb: $14.18 \tau \varepsilon \sigma \sigma \alpha ́ \rho \omega v$ ($\tau \varepsilon \tau \tau \alpha ́ \rho \omega v$ Lb), 16.15 тov. Ea al so has a separative error at 88.2 $\tau \rho$ v́ $\pi \eta \mu \alpha$ (a reading taken from ζ; here Lbhas $\tau \rho$ v́ $\pi v \alpha$, an error probably due to a misreading of the exemplar, which in all likelihood will have reproduced the hardly legible reading found in $\mathbf{A}: \tau \rho v \pi \hat{\alpha} v \mathbf{A}^{a x}: \tau \rho v \pi \stackrel{\omega}{\omega} \mathbf{A}^{\text {pc(ut videur) }) \text {. On the other }}$ hand, I have been unable to find errors peculiar to Lb which could exclude the possibility that Ea has been copied from Lb. The close correspondences between the two manuscripts would suggest that Ea is the apograph of $\mathbf{L b}$, but in the absence of a full collation it is difficult to reach definitive conclusions. Regardless, it seems clear that the two manuscripts derive from a descendant of A which is now lost and in which the treatise was untitled (η); Ea must have taken its title from γ.

3.3.2 The $\boldsymbol{\gamma}$ branch

The γ branch is more complex than the β branch. Its two sub-branches (ε and ζ) contain, respectively, manuscripts Ab, Ac, Ad Bb, La, Lc, Ld, M, Mb, Pd, Ph, $\mathbf{T b}$ (and apparently al so the exiguous fragment of $\mathbf{B a}$) and $\mathbf{E b}, \mathbf{P a}, \mathbf{P f}, \mathbf{T}$ and $\mathbf{T a}$ The ε manuscripts share errors not found in ζ and vice versa, al though there are evident traces of contamination between the two sub-branches:
$4.1 \kappa \varepsilon \kappa \lambda \varepsilon 1 \sigma \mu \varepsilon ́ v \alpha l \varepsilon$ (praeter BaTbocs) : кєк ${ }^{\circ} \varepsilon 1 \sigma \mu \varepsilon ́ v \omega \nu \zeta$ Tbocs

10.18 к $\alpha \tau \alpha ̀ \varepsilon$ (praeter Ba) : غ̀ $\pi \grave{~ o m . ~} \zeta$
12.10 бта兀оîc ε (praeter Ba) : $\sigma \tau$ ратоîऽ ζ

106.4ε £̇ μ oì ε (praeter BaLaLc) : $\mathfrak{\eta} \mu \varepsilon ̀ v \zeta$
ε splits into two further sub-branches (κ and λ), containing, respectively, manuscripts $\mathbf{A b}, \mathbf{A c}, \mathbf{B b}, \mathbf{L a} \mathbf{L c}, \mathbf{L d}$ and $\mathbf{A d}, \mathbf{M}, \mathbf{M b}, \mathbf{P d}, \mathbf{P h}$ and $\mathbf{T b}$. The
following readings shared by some manuscripts of κ and λ indi cate that there has been contamination between the two sub-families:

The λ manuscripts share a few conjunctive errors and probably derive, through intermediaries, from a common exemplar. I list the common errors that I have found: 2.11 ஸpıб $\mu \varepsilon ́ v o v \varsigma] ~ ஸ \rho \iota \sigma \mu \varepsilon ́ v \alpha, ~ 10.7 ~ \kappa \alpha \tau \alpha \tau \varepsilon \tau \alpha \gamma \mu \varepsilon ́ v o \varsigma] ~ \kappa \alpha \tau \alpha \tau \varepsilon \tau \alpha \mu \varepsilon ́ v o \varsigma, ~$
 noted:
62.1 ท̀ $\lambda \varepsilon \varepsilon \theta$ píov MTb: $\mathfrak{\eta} \lambda_{1} \theta \rho i ́ o v$ AdPdPh: $\eta \lambda_{1} \theta$ рíov Mb

 Tb $\left.{ }^{\text {pocs }}\right)$

The exact relationship between manuscripts belonging to this group is difficult to establish. ${ }^{00}$ However, it seems possible to make the following suggestions:
(1) $\mathbf{A d} \mathbf{M}, \mathbf{P h} \mathbf{T b}$ seem to ultimately depend on a different subhyparchetype (π) from $\mathbf{M b}$ and $\mathbf{P d}$ because they have at least one significant error not found in Mb and Pd 64.10 ảv $\alpha \gamma \varepsilon \gamma \rho \alpha \mu \mu \varepsilon ́ v \omega v] ~ \kappa \alpha \grave{~ \alpha ̀ v \alpha \gamma \varepsilon \gamma \rho \alpha \mu \mu \varepsilon ́ v \omega v . ~}$ Conversely, Mb and Pd have a separative error at 96.11 દ̉ $\gamma \kappa v \theta \varepsilon i ́ \sigma \eta \varsigma ~(c f . ~ a b o v e ; ~$

(2) Ad and Ph seem close to each other and perhaps presuppose a common exemplar (χ), as suggested by the following conjunctive errors not

 because of the following separative errors of Ad against Ph $58.17 \tau \eta ̀ v \bar{\lambda}$ om.,

[^28] Similarly, Ad cannot derive from $\mathbf{P h}$ because of the following separative errors
 above under (1);
(3) $\mathbf{T b}$ appears to have a closer relationship to \mathbf{M} than the other manuscripts of this group, although it generally presents a more comupt text than M and shows signs of contamination (I have called their hypothetical hyparchetype ψ). Consider especial ly the following common omissions of \mathbf{M} and Tb not found in the other manuscripts and which $\mathbf{T b}^{\mathbf{2}}$ has often filled either above the line or in the margin: $2.17 \dot{\eta}$ (add. $\mathbf{T b}^{2 d}$), 16.2 ह̇ $\pi i \kappa \varepsilon ı \tau \alpha l$ (add. $\mathbf{T b}^{2 \mathrm{mg}}$), $26.21 \dot{\eta}$ (add. $\mathbf{T b}^{23}$), $98.13 \dot{\eta}$. Cf. also the following errors common to both manuscripts and not found elsewhere: 18.2 тó тоv] тоо́лоv (то́тоv Tbocs), 26.18
 90.14 іллолєழраүнє́vа] i $\pi о \gamma \varepsilon \gamma \rho \alpha \mu \mu \varepsilon ́ v \alpha$. Tb appears to have derived some readings from θ (for instance $94.4 \dot{\varepsilon} v \alpha v \jmath \tau \hat{\text { in }}$) and from ζ (for instance 80.12 ó μ-χ о́ $\rho o v$, also shared by Mb). Seeal so above.

In comparison with other manuscripts belonging to the ε branch, M more consistently offers good readings not found in A, G and T. Schmidt, Supplementum 117 belittlingly calls these 'leichteren Verbesserung' and claims (rightly, I believe) that they are due to conjectural emendation. He gives a list of 19 passages but singles out as particularly remarkable only three: 8.3 غ̇ $\gamma к и к \lambda$ íous, (so also Tb, the other ε manuscripts are variously corrupted), 10.8 हैбт $\alpha, ~ \delta \hat{\eta} \lambda o v$, $94.17 \pi \lambda$ oí ωv (so al so OTa and the other ε manuscripts except $\mathbf{B b}$, which derives its reading, $\pi \lambda \varepsilon \varepsilon_{i}^{\prime} \omega v$, from a different branch). Cf. also especially $6.6 \mu \eta \delta \varepsilon ̀ v \varepsilon$ غ̇ $\pi \iota \zeta \eta-$
 100.18 ह̇лıкє $\mu \varepsilon ́ v \eta .{ }^{91}$ It is likely that most of these conjectural corrections were al ready in ε.

Manuscripts Ab, Ac, La, Lc and Ld ultimately derive from a common exemplar with $\mathbf{B b}$, namely κ, as shown by the following conjunctive errors:

[^29] $\delta ı \alpha ̀, 16.15 \pi \alpha \rho \alpha \kappa \alpha \theta \varepsilon ́ \zeta \varepsilon \tau \alpha 1] \pi \alpha \rho \alpha \kappa \alpha \theta$ í̧ $\varepsilon \tau \alpha 1,14.20$ દ̀ $\varphi \varepsilon ́ \sigma \tau \eta \kappa \varepsilon$ om. (add. Ac²ng

There is also little doubt that some errors common to $\mathbf{A b}, \mathbf{A c}, \mathbf{B b}$ and $\mathbf{L d}$ and occurring beyond the point in which La and Lc break off were al ready found in

 Contamination is likely to have occurred at the level of κ because all these manuscripts have the same reading (or insignificant variations thereof) as that

Manuscripts Ac, La, Lc and Ld seem to descend (through various intermediaries) from a common exemplar with $\mathbf{A b}$ which was copied from κ, namely o. This is suggested not only by the fact that all these manuscripts have the title Пєрì $\tau \hat{\omega} v \alpha \dot{\tau} \tau о \mu \alpha \tau о \pi о п \tau \tau \kappa \hat{\omega} v$ but also by the presence of conjunctive errors of $\mathbf{A b}, \mathbf{A c}$ and $\mathbf{L d}$ The ones that I have found all occur beyond the point in which La and Lc break off (for the relationships between La, Lc and Ld see below). Some instances:

Cross-contamination is likely to have occurred at the level of \mathbf{o}, too, because $\mathbf{A b}$, $\mathbf{A c}$ and $\mathbf{L d}$ all share with β the omission of 90.6 oủv (on which, see above). Ab, furthermore, seems to have consulted \mathbf{A} (or, perhaps more likely, its apograph Pi) because it shares with \mathbf{A} the omission of 12.9-10 $\delta \grave{\alpha} \ldots . . \dot{\varepsilon} \mu \beta \dot{\alpha} \lambda \lambda \varepsilon \tau \alpha \mathrm{l}$ (add. $\mathbf{A}^{\mathbf{m g}}$ Abmo .

The existence of intermediaries between o and Ac, La, Lc and Ld can be inferred from the following considerations.
(1) Ac, La, Lc and Ld cannot derive from $\mathbf{A b}$ because $\mathbf{A b}$ has numerous errors and omissions not found in Ac, La, Lc and Ld (or in Ac and Ld alone when these occur beyond the point in which La and Lc break off). Some

om (add. $\mathbf{A b} \mathbf{b}^{\text {mg }}$), $\left.58.15 \overline{\varepsilon \zeta}\right] \overline{\varepsilon \zeta} \overline{\varepsilon \zeta}$. Given the mutual independence of Ac, La, Lc and Ld (on which, see points below), the following error common to these manuscripts and not found in $\mathbf{A b}$ was already in their common (ultimate) exemplar (φ) : $\mu^{\prime} \gamma \mu \alpha \tau \iota \varphi: \pi i ́ \gamma \mu \alpha \tau \iota \mathbf{A b}^{\boldsymbol{x}}: \pi v^{\prime} \neq \mu \alpha \tau \iota \mathbf{A b}^{p o s}$ (a reading probably taken from Bb). The same applies to some errors common to Ac and Ld and occurring beyond the point in which La and Lc break off. One example: 100.6

(2) La Lc and Ld cannot (partly) derive from Ac because Ac has the following omissions not found in La, Lc and Lct 6.12-13 عis, τ ò ó oí $\sigma \omega, 30.3-32.3$ 'H δ غ̀... oûv.
(3) Ac, La and Lc cannot (partly) derive from Ld because Ld has a
 from β and appearing also in $\mathbf{L a x}^{\boldsymbol{c}} \mathbf{T a} \mathbf{A c}^{\mathbf{2 n g}}$ corrects the reading of other $\boldsymbol{\varepsilon}$
 from La and Lc (on which, see point (4) below), it is likely that the following errors common to La, Lc and Ld and not found in Ac were al ready in Lds direct ancestor ($\alpha \alpha$): 18.17 $\alpha v \alpha \pi v \tau \imath \sigma \mu o ̀ \varsigma] ~ \alpha ̉ v \alpha \pi ı \tau \imath \sigma \mu o ́ c, ~ 20.18 ~ \tau ı] ~ \tau o ̀, ~ 30.21 ~ \alpha v ̉ \tau \omega ̂ v ~ \tau \grave{v} v$ om
(4) Ld cannot derive from La and Lc both because the latter two manuscripts are incomplete and because they share the following conjunctive, separative errors against Lct
 бıи́ $\omega, 28.7-8 \tau \rho о \chi o i ̀ . . \overline{\pi \rho}$ om.

Lc cannot derive from La because La has the following separative errors against

 by AbAcBbLd). Similarly, La does not seem to have been copied from Lc because Lc has at least one separative error against La 20.10 $\pi \pi \alpha ́ v ı o v]$ o $\pi \alpha ́ v o w$ (ỏ $\pi \alpha ́ v i o v \mathbf{L C} \mathbf{c}^{\mathrm{mg}}$). It is therefore likely that La and Lc descended from a common, incomplete exemplar ($\beta \beta$), in its turn derived from $\alpha \alpha$.

Although Ac and Ld are somewhat removed from one another, they often share the same variant readings and marginal annotations. Some of these are
nothing more than erroneous conjectures, while others are the result of contamination from β - or, in some cases, more specifically from i. As an illustration, consider the following agreements:
 supra)
 Ld ${ }^{19}$
 ceteri codicesfamiliae ε) : al. cod. $\gamma \rho \alpha ́ \varphi \varepsilon ı v ~ \kappa \alpha ı v[*] \tau \varepsilon \rho o v ~ A c^{2 m g}: ~ a l . ~ c o d . ~ \gamma \rho \alpha ́ ́ \varphi \varepsilon ı v ~$

XX. $164.8 \pi \rho o ̀ ~ \grave{\eta} \mu \hat{\omega} \nu \mathbf{A c} \mathbf{1 d}^{\mathbf{L}}{ }^{(\text {in textu) }}$ (sicut ceteri codices praeter EaPc ξ) : $\pi \rho o ̀ \varrho$,

Let us conclude our analysis by turning to ζ. Within this family, we can distinguish, on the one hand, between Pf and $\mathbf{T a}$ and, on the other, Eb, T and Pa Pf and Ta appear to derive directly from ζ and to have little independent value when compared with other manuscripts of the samefamily, especially \mathbf{T}. This is so for two reasons. First, Ta presents a composite text, with readings taken from β and ε. Examples of the former:

66.7 к $\alpha \tau \alpha \tau \rho \varepsilon ́ \chi о \nu \tau \alpha \varsigma \mathbf{T a}$ (sicut Bb ${ }^{\text {pes }}$) : к $\alpha \tau \alpha \tau \rho \varepsilon ́ \chi о v \tau \varepsilon \varsigma ~ T ~(s i c u t ~ c e t e r i ~ c o d i c e s ~$ familiae \boldsymbol{y} praeter $\mathbf{B b}^{\text {pos }}$)

Examples of the latter:

20.21 $\sigma \nu \mu \varphi v \varepsilon i ̂ ¢ ~ T a(s i c u t ~ P e) ~: ~ \sigma v \mu \varphi v \grave{\varsigma} \mathbf{T}$ (sicut ceteri codices familiarum β et ζ) 22.1 oi $\mathbf{T a}$ (sicut \mathbf{F}^{mg}) : if \mathbf{T} (sicut ceteri codices familiarum β et ζ praeter \mathbf{F}^{mg})

See also above Second, Pf seems more corrupted than \mathbf{T} (I will provide some examples below). Pf cannot derive from Ta for chronological reasons, and because Ta has the following errors peculiar to itself: 36.4 к α] ö ótı, $96.7 \dot{\varepsilon} \xi \varepsilon \lambda i ́ \sigma-$
 cannot derive from Pf because Pf has the following two unique omissions: 24.3-4 ó μ ó́ ω с... $\pi \alpha ́ \lambda ı v, ~ 100.14-15 ~ \tau o ̀ v . . . ~ \pi \rho \alpha \gamma-. ~$

Manuscripts Eb, T and Pashare a number of conjunctiveerrors not found in Pf and Ta
 vє

Eb and Pa, moreover, share conjunctive errors (presumably) not found in T:

Eb is closer to \mathbf{T} than Pa is, because it reproduces, either exactly or nearly so, some omissions and marginal additions of \mathbf{T} that Pa does not: 24.3-4-סó $\theta \omega \ldots$
 28.11 каì (add. $\mathrm{T}^{\mathbf{2 m g}} \mathrm{Eb}^{2 \mathrm{mg}}$), 32.14-15 $\kappa \lambda \varepsilon 1 \theta$ píov... $\pi \lambda 1 v \theta^{\prime}$ ív (add. $\mathrm{T}^{2 \mathrm{mg}} \mathrm{Eb}^{2 \mathrm{mg}}$), $54.4 \pi \varepsilon \rho ı \tau_{i} \theta \varepsilon \tau \alpha 1 . . . \sigma \pi \alpha ́ \rho \tau o v$ (add. $\mathrm{T}^{2 \mathrm{~mm}}$: $\sigma \pi \alpha \dot{\rho} \tau \tau 0 . . . \tau \hat{\tau} \varsigma$ add. Eb ${ }^{2 n g}$). These dissimilarities between $\mathbf{E b}$ and $\mathbf{P a}$, al ong with the existence of errors of Eb not found in Pa (for instance 80.14 av̀兀̀̀v] $\alpha v \grave{\tau o v ̀ \varsigma), ~ s u g g e s t ~ t h a t ~} \mathrm{~Pa}$ does not derive from Eb. Similarly, Eb cannot derive from Pa because Pa has the following separative errors against Ebx $6.10 \mu \hat{\tau} \tau \varepsilon$ om, 16.7 vaíбкос] $\alpha v i ́ \sigma \kappa о \varsigma, ~ 36.21-22 ~$ $\left.\chi \alpha^{\prime} \lambda \alpha \sigma \mu \alpha\right] \chi \alpha \alpha^{\sigma} \mu \alpha$. There is, therefore, enough evidence to suggest that Eb and Pa are descended from the hyparchetype of $\mathbf{T}(\mu)$ through a common intermediary (σ).

Finally, note the following agreements between, respectively, (1) Eb and Pf and (2) Paand Pf:
(1)
$2.6 \sigma 0 v \varepsilon \lambda o ́ v \tau \iota] \sigma v v \alpha \lambda o ́ v \tau \iota\left(c o r r . \mathrm{Eb}^{2 \mathrm{~s}}\right)$
(2)

22.3α v่̉ท̀] बv̉yท̀

In this section, I have shed new light on the history of the text of the Automata. As has been seen, Schmidt divided the manuscript tradition into two branches, within which he identified three rather vague groups of manuscripts. While he was able to diminate Md and Pi as apographs, his analysis did not go far enough in examining the relationships between the manuscripts and, in particular, between the main branches of the tradition. My starting point has been Schmidt's classification of the manuscripts. I have focused my attention on updating his classification, on the one hand, and on attempting to establish the relationship between the manuscripts, on the other. My stemmatic anal ysis has demonstrated threethings:
(1) While Schmidt's division into two branches still broadly holds, the manuscript tradition is much more fluid than his account leads us to believe (for cross-contamination, see Stemme 3, where, for the sake of simplicity and clarity, I have indicated only the first layers of the main families of manuscripts). Manuscripts belonging to the β branch al most always, but not exclusively, share
 manuscript Ea has been shown to have derived its title (П反рi $\alpha v i \tau o \mu \alpha \tau о \pi о т \tau \tau-$ $\kappa \hat{\omega} v$) from the γ branch. ${ }^{92}$ Schmidt's criterion for predicting the value of indi vidual witnesses, therefore, is no longer entirely adequate;
(2) Although \mathbf{G} and \mathbf{T} occupy a lower position in the stemma when compared to other manuscripts of their families, they are of superior stemmatic val ue and should therefore be retained as representatives of their branches;
(3) Because \mathbf{M} offers good readings not found in \mathbf{A}, \mathbf{G} and \mathbf{T} and presents a purer text than $\mathbf{T b}$, it deserves to be included among the main manuscripts. As a result, my consensus codicum a differs from that of Schmidt in its inclusion of M.

My analysis of the manuscript tradition of the Automata shows that there is still much work to be done, and I conclude by suggesting briefly some

[^30]directions for future research. First, future work should focus on undertaking a full collation of all extant manuscripts. Only when that is done and all manuscripts incorporated into the stemma will it be possible to identify apographs, revise the apparatus criticus and use sigla indicating consensus between groups of manuscripts. Second, considering the nature of the tradition, it would be fruilful to investigate contamination at a more granular level. Such investigation, which will necessarily include closer inspection of marginalia, is expected to shed more light on the links between manuscripts. Third, greater attention will need to be devoted to palaeographical and codicological aspects. The primary purpose of such a study will be to provide an updated description of the manuscripts, which will in turn benefit the stemmatic anal ysis. Fourth, the issue of scribal emendation will have to be examined more closely in order to better assess and compare the val ue of indi vidual witnesses.

4. TITLES

The discussion in the previous section leads us to the inevitable question: 'What was the original title of the work?'. The form Пєрi $\tau \hat{\omega} v \alpha \dot{v} \tau о \mu \alpha \tau о \pi о ו \eta \tau ו \kappa \hat{\omega} v$ should beleft out of consideration because, as we have seen, it is a corruption of Пعюi גvivo $\iota \alpha \tau о \pi о ו \eta \tau \iota \kappa \omega ิ v$ which appears in an inferior branch of manuscripts.
 Пعюi аи̇тонатолоıптıкө̂v. The former has been adopted by Schmidt and Murphy, ${ }^{93}$ while the latter was the only titte known to Thévenot (who adopted it) and to Prou ${ }^{94}$ (who emended it; see below, §4.1) and was apparently endorsed by LSJ s.V. av̉то α толоптєкй. ${ }^{55}$ Before starting our discussion, we should bear two

[^31]things in mind．The first is that the various versions of the title attested in the manuscripts include the author＇s name（usually，＂Нрюvos＇A $\lambda \varepsilon \xi \alpha v \delta \rho \varepsilon ́ \omega \varsigma)^{96}$ as their first element．The second is that uncertainty often surrounds the genuineness and reliability of titles of ancient works．${ }^{97}$

While Schmidt，Supplementum 54 found both Пгрi аvंтонатолоוптוкทิऽ and Пєрi аи̇тонатолопптıкюิv plausible，${ }^{98}$ he preferred the former title on grounds of manuscript support．To corroborate his preference，he made two additional points．First，Пєрi $\alpha v ̇ \tau о \mu \alpha \tau о \pi о п п \tau ı к \eta ิ \varsigma ~ f i n d s ~ b e t t e r ~ s u p p o r t ~ i n ~ o t h e r ~$
 （Procl．in Euc．41．8），о́руаvотоӥки́（Procl．in Euc．41．5），ঠıолтрєки́（Procl．in Euc．42．4）and о̀ттıки́（Procl．in Euc．38．12，40．9，59．23，63．8）．Second，Hero uses the term α и̇тонаєотопп七ки́ at I．1［2．7］；but cf．also I．1［2．3］．The paralled forms cited by Schmidt are not parallel stricto sensu．They are suffixed either with－ıко́s or with $-\pi$ оӥко́ ς ，not with $-\pi$ опптко́c．${ }^{99}$ Furthermore，in none of the passages quoted do they serve as titles．The fact that Hero（twice）uses the term $\alpha v i \tau o \mu \alpha \tau о \pi о п \tau ⿺ 𠃊 \eta$ does not necessarily imply that the treatise originally bore the

Schmidt＇s discussion is hardly satisfactory，not only for the reasons just given but also for three other main reasons：（1）he overlooked earlier emendations；（2）he misinterpreted an important piece of literary evidence which so far has not been placed in its proper perspective（see below）；（3）he left out of

[^32]account the presence of a separate heading introducing the second part of the treatise ($\Pi \varepsilon \rho i ̀ \tau \tau \alpha \tau \hat{v} \alpha v \dot{\tau o \mu \alpha ́ \tau \tau \omega v) . ~}{ }^{101}$ Discussion of such heading will be relegated to the end of the section because it can be used as corroborating evidence for what I think is the original main title.

4.1 Earlier emendations

The following emendations of Пгрi $\alpha \dot{\tau} \tau о \mu \alpha \tau о \pi о и \eta \tau \iota \kappa \varrho ิ v ~ h a v e ~ b e e n ~ p r o p o s e d: ~$
 $\mu \alpha \tau о \pi о ו \ddot{\kappa} \hat{v}$ (Wescher 1867: 71 unnumbered n.), and Avंтонатолоиїка́ (Prou 117 with n. 1; Tittel 1912: 1049). ${ }^{102}$ These conjectures are improbable, not least because neither av̇тонатолоínтоц nor аv̇тонатолоӥко́с is attested in extant Greek literature ${ }^{103}$ Dindorf's α v̇то $\mu \alpha \tau о \pi о$ п́n $\tau \omega v$ is curious for two reasons. First,
 and therefore we would rather expect av̉то $\mu \tau \tau о \pi о$ wôкv. Second,
 poetasque [Turnebus: -pictasque vel -pitasque codd.] machinas (Vitr. 9.8.4). Unlike its Latin counterpart, the Greek term looks like a passive verbal adjective, and so would not yield a reasonable sense ('On things made automatically'). The nominative plural neuter Avंтодатотоиїко́ is preferable to Пєрi $\alpha \dot{\tau} \tau о \mu \alpha \tau-$ $\pi о i \ddot{\kappa} \omega \hat{v}$ (cf. above, n. 98), but neither Wescher's comparison between similar forms ($\beta \varepsilon \lambda о \pi о$ ӧкќ, о’руаvотоӥка́, $\lambda \mu \mu \varepsilon$ оотоӥко́) ${ }^{104}$ nor Prou's reference to Plato's use of óчотоӥко́с (Smp. 187e4, Grg. 463b3, 464d4, 465b1, 465d6; cf.

[^33]also 465 d 2 and $500-5)^{105}$ provides sufficient grounds for prefering a compound in -лоӥко́с. For the same reason, av̇тонатотоппткк̂ऽ (1.1 [2.3]) should not be

4.2 The original maintitle

None of the emendations proposed so far answers our question, and we are still left with the two altemative forms of the title. The title Пгрi वvizoцатолоппткйs
 that the latter form arose as a corruption of the former. However, as will become clear below, other Heronian titles which follow the same pattern consist of $\pi \varepsilon \rho i$ followed by the name of an object rather than that of a technē.

The answer to our question comes from the following passage in book 8 of the Mathematical Collection of Pappus (fourth century CE):

5 ídpíos scripsi secutus Martin (infra, n. 108); vide etiam locos ibi citatos : í $\rho \rho \varepsilon i_{1} 1 \varsigma ~ c o d d .$, rec. Commandino et Hultsch

The ancients also call mechanicians the wonder-workers, of whom some pursue their art by means of air, as Hero in Pneurnatica, some seem to imitate the movements of animate things by means of little strings and cords, as Hero in Automata and Balances, others by means of bodies floating in water, as Archimedes in Floating Bodies, or by means of water-driven clocks, as Hero in Hydria, which in fact appears cognate with the study of sur-dials.

[^34]Scholars almost unanimously agree that the term α vitó $\mu \alpha \tau$ оc, is here used as the title of the treatise ${ }^{107}$ This interpretation is supported by the mention not only of other works of Hero ${ }^{108}$ but also of Archimedes' Floating Bodies. ${ }^{109}$ If one were to follow Tittel (1912: 1049) in interpreting these words as referring to classes of objects, one would have to understand the dative as instrumental, which does not accord well with the repeated use of δ ó + genitive Moreover, a reference to Archimedean floating bodies would be redundant, because the corresponding generic class is designated as $\tau \alpha \dot{\varepsilon} \dot{\varepsilon} \varphi$ ' ư $\delta \alpha \tau o \varsigma$ ó óov́ $\mu \varepsilon v \alpha$. The crucial issue here is not, I believe, whether the plural datives refer to ancient works, but rather what sources lie behind the passage Berryman's (2009: 59-60) comparison between the classifications of mechanics by Pappus (Syn. 1024.12-1026.4) and Proclus (in Euc. 41.3-18, drawing on the first-century BCE writer Geminus) ${ }^{110}$ led her to conclude that Pappus, too, drew on a doxographical tradition. ${ }^{111}$ This is correct as far as it goes, but it does not go far enough. The question of sources proves much more complex. Hultsch (1877: 115, 119-22) identifies two main sources for Pappus' book 8. Hefels that one major source was Hero's Mechanica, which he believes to have been excerpted by Pappus himself in the introduction. ${ }^{112}$ However, he contends that an informed but less polished interpol ator, in addition to excerpting Hero's Mechanica, supplemented the introduction, and particularly

[^35]the section devoted to the classification of the discipline, ${ }^{113}$ on the basis of a commentarial tradition originating from the so-called Heronian school (oi $\pi \varepsilon \rho i$ tòv "Hpตva $\mu \eta \chi \alpha v ı \kappa o i ́, ~ P a p p . ~ 1022.14-15) . ~ " 14 ~ T h e ~ m a i n ~ i m p l i c a t i o n ~ w h i c h ~$ concerns us here is that, even if Hero did not mention his work on automata in his Mechani ca, the interpolator's source contained a reference to the title of the treatise. This titte, which likely reflects an earlier stage of the tradition, can be reconstructed as Пعрi α v̇то $\mu \dot{\tau} \tau \omega v$ on anal ogy with other Heronian titles, such as

How are we to explain, then, the oldest attested titte? The most plausible explanation involves the assumption that the treatise came to lack all or part of its title. The fact that in the manuscripts the title is not repeated at the end may be taken as a tentative indication that it was originally placed at the beginning, rather than at the end, of the roll. ${ }^{116}$ If so, it would have been more easily exposed to damage, and hence more likely to be replaced by a different tite ${ }^{117}$ The presence of an internal title, of course, does not preclude that the roll also bore an extemal title, but ancient testimony suggests that such titles (usually written on fragile parchment labels) were optionally added at the request of the
 supplied on the basis of the opening of the treatise, all the more likely because ancient works were often identified by their incipits. ${ }^{119}$ So, while we cannot be

[^36] advantages. First, albeit based on thin evidence, it rests on more solid and authoritative ground than Пкрi $\alpha \dot{v} \tau о \mu \alpha \tau о \pi о п п \tau \iota \kappa \eta \varsigma, ~ w h i c h ~ i s ~ a t t e s t e d ~ o n l y ~$ relatively late. Second, it conforms more closely to the author's mode of titling. If Hero had used av̀тоиатотопт兀кós in the main title, he would probably have chosen a plural neuter (Аขँтонатолоוптıк人). ${ }^{120}$

 genuine title; (2) it is an interpolation; ${ }^{121}$ (3) it is a subtitle ${ }^{122}$ The first two interpretations support the idea that neither of the manuscript titles is the original one, although (1) is more unlikely than (2). Let us briefly consider these three options:
(1) This interpretation does not tally well with the main titles, which do not include indication of the book number. If either of them were the original title, one would have expected Hero to use the same title for both books and to specify the book number, just as he does with his Pneumatica. Furthemore, accepting this interpretation would seemingly require that the original title be Пєคì viтаүóv $\tau \omega v \alpha \dot{v} \tau о \mu \alpha ́ \tau \omega v$, which is not only unsupported but al so unsuited to the more general character of thefirst book (cf. I-II);
(2) This interpretation begs the question of how the heading was supplied. It might have been based on XX.1 [64.7] $\pi \varepsilon \rho \grave{~} \delta \dot{\varepsilon} \tau \hat{\omega} v \sigma \tau \alpha \tau \hat{v} \alpha v ̉ \tau o \mu \alpha ́-$ $\tau \omega v$ (cf. also I. 8 [49-50]), but the absence of the article would seem to suggest that the scribe had Пغрi av̇тo $\mu \alpha ́ \tau \omega v$ before his eyes. This interpretation, therefore, may serve as indirect confimation of our reconstructed title;
(3) This interpretation, at least as I understand it, presupposes that the heading is genuine. Two possibilities arise here: either Hero felt the need to add

[^37]a subtitle to the second part of the work, or (morelikely) hefound it in book 6 of Philo's Mechanical Collection. ${ }^{123}$

While I cannot exclude entirely (2), I am inclined to interpret this heading as a genuine, originally Philonian subtitle

5. THE WORK

Hero's Пعрì av̉zoнó $\tau \omega v$ is our only extant treatise entirely devoted to the design and construction of ancient automata. It belongs to what might be called the 'supergenre' of technical ekphrasis, namely the verbal description of a technical artefact ${ }^{124}$ 'Supergenre' is a more appropriate term than 'genre' not only because distinctions between different genres of technical literature are not easy to grasp, but also because such descriptions appear across a variety of text types and genres, ranging inter al ia from epigram and didactic poetry to commentary, instruction manual and epistolary prose ${ }^{125}$ The treatise situates itself firmly in the context of Graeco-Roman culture, while also being highly reminiscent of Hellenistic mechanical works. It combines an interest in a single specialised subject, such as is found in Philo's Belopoeica (and such as would presumably have been found in his lost treatise on automata), ${ }^{126}$ with a systematic, unified approach typical of other works of its time (the most important example certainly being Vitruvius' De Architectura); Hero achieves this mainly in two

[^38]ways: by intertwining several disciplines, both scientific and non-scientific, and, as we shall see, through presenting variations upon a range of mechanical arrangements. ${ }^{127}$

As has been already noted, Hero presents us with two types of automaton, one mobile (ïr $\alpha \gamma$ ov) and the other stationary ($\sigma \tau \alpha \tau$ óv). Both these, as Hero himself describes them (in Book One and Book Two, respectively), ${ }^{128}$ are devices that use stored energy to perform a series of actions. One shared characteristic of both the mobile and the stationary automaton is their power source. Both devices are powered by a falling counterweight, although Hero (II.6 [10.8-9]) mentions another possible power source for mobil eautomata - the so-called vo $\sigma \pi \lambda \eta \xi$, a mechanism analogous to the torsion engine for catapults and which is not used anywhere in the treatise (In Book Two, we find a different device, mostly referred to as io $\pi \lambda$ ǹ γ iov, which is used to produce a vertically swinging motion; seefurther below, $\S 5.2$ and Comm. on II. 6 [10.4-8].) It is interesting to note that, when Hero uses the term avitónatos (or its corresponding adverb aùroнút $\omega \varsigma$) esewhere, he refers to motion that is brought about by means of a falling weight. ${ }^{129}$ But, mechanics (and indeed language) aside, Hero does not tell us exactly where or how his automata were used, nor does he tell who his treatise (or similar treatises) was intended for. He is, on the other hand, slightly more explicit about his sources, for, apart from Philo, he acknowledges the existence of a tradition that he has inherited and improved upon.

In what follows, I shall first provide a convenient overview of the structure of the text, paying particular attention to the editorial practices of previous editors. This will be followed by a brief critical description of the contents of the treatise and then by a discussion of its historical, literary and cultural background. This, in tum, will allow me to consider possible settings in which Hero's automata might have been used. After that, I shall discuss the

[^39]intended audience of the treatise Finally, after discussing Hero's use of sources, I shall address the status of the text.

5.1 Intemal arrangement

The treatise, as it stands in the Teubner edition, is divided into 30 chapters, further subdivided into 161 numbered sections. Chapter divisions mostly follow manuscript practice, ${ }^{130}$ with a few being supplied by Schmidt (XXIII, XXIV, XXVI, XXX). ${ }^{131}$ Further subsectioning, as well as chapter and section numbering, is a modern innovation, although two points should be noted: (1) XI. 9 and XIII. 3 are marked off, respectively, in G (with an L-shaped sign) and \mathbf{T} (by rubric); (2) Schmidt's claim (app. crit to 342.11) that in the manuscripts the chapters are not numbered is misleading because, even though no corresponding numbers are found, in M chh. V-XXVII are (discontinuously) numbered 1-16. ${ }^{132}$ The division into chapters is also adopted in Thévenot (31 indented paragraphs) and, as far as Book Two alone is concemed, Prou (11 $\theta \varepsilon \omega \rho \dot{\eta} \mu \alpha \tau \alpha$, subdivided into 45 sections), but in neither case does it reflect faithfully obvious divisions in the manuscripts.

Hero's material is usually organised into (semi-)coherent, largely selfcontai ned units, with cross-references both within and between books. However, order is far from being the governing principle of the text. Although Hero uses signposting throughout (most of) the work, ${ }^{133}$ the narrative is interspersed with digressions, and some topics are addressed in more than one place.

For readers wishing to obtain an overall impression of the contents of the treatise, Schmidt's edition provides a useful starting point. His translation is accompanied by 44 descriptive headings, which are placed both at the beginning of each chapter and at the beginning of (or within) sections. Most of these are

[^40]incorporated, sometimes in a slightly altered form, in his list of contents (Schmidt 510-11), which, however, does not give a complete idea of the internal arrangement of the work. Prou, too, provides descriptors, though not always satisfactory. Here I attempt to remedy these shortcomings by offering a fairly detailed outline of the structure of the text:

Book One

I [2.3-6.8] Preface

I.1 [2.3-8] Automata-making
I.2-7 [2.9-4.22] M obile and stationary automata
I.7[4.22-6.2] Automata-makers as wonder-workers
I.8 [6.3-8] Affirming one's authority

II [6.9-14.16] Constructional preamble
II.1 [6.9-17] Ideal ground surface, trackway
II. 2 [6.17-8.2] Lightweight materials
11.3 [8.3-8] Smoothness of components, different types of bearings (кvต́$\delta \alpha \kappa \varepsilon \varsigma$ and रouviкiঠєऽ)
II. 4 [8.9-12] Importance of lubrication
II.4-5 [8.12-10.3] Cords
II. 6 [10.4-10] Two different power systems (v̌ $\sigma \pi \lambda \eta \gamma \xi$ and counterweight)
II. 7 [10.11-19] Basic components (axle, wheels and case)
II. 8 [12.1-3] Cal ibrating the forces
II. 8 [12.3-6] Movements other than locomotion
II.8-9[12.6-13] Descent of the counterweight in the tube, trickling grains
II. 9 [12.13-15] Principle of movement explained
II.10 [12.16-19] Unequal movements
II.10-11 [12.19-14.10] M ore on cords
II. 12 [14.11-16] Novelty and pleasantness of the arrangement

III-IV [14.17-20.7] A rrangement and performance of the mobile automaton
III. 1 [14.17-16.4] Dimensions of the mobile automaton (base, column shafts, architrave)
III.2-4 [16.5-22] Arrangement of the mobil e automaton
IV.1-4[18.1-20.1] Performance of the mobile automaton
IV.4[20.1-6] General advice on dimensions

V-VI [20.8-26.5] Forms of motion. Straight-line motion
V.1-2 [20.8-17] Forms of motion (straight-line, circular and rectangular)
V.3-5 [20.18-22.20] Straight-line forward motion, drive mechanism
VI.1-2 [22.21-24.15] Straight-line backward motion
VI. 3 [24.16-20] Repeated forward and backward motion
V.4 [26.1-5] Side elevation of the case

VII-VIII [26.6-30.2] Circular motion
VII [26.6-28.3] Configuration for circular motion
VIII [28.4-30.2] Mathematical principles underlying circular motion
IX-X [30.3-34.24] Rectangular motion
IX.1-3 [30.3-24] Configuration for rectangular motion
IX.4.-6 [32.1-17] Pauses, initiation of movement (digression)
IX.6-X [32.17-34.24] Raising and lowering the wheeds (re-configuration)

XI [36.1-42.8] Other forms of motion
XI.1 [36.1-5] Polygonal and snake-likemotion
XI.2-5 [36.6-38.6] First configuration for snake-like motion
XI.6[38.7-14] Measurement of cords (digression)
XI. 7 [38.15-40.2] Second configuration for snake-like motion
XI. 8 [40.3-7] Technical superiority of pivots (кvต́ठакєऽ) over hubs (χ ouvtкíסєऽ)
XI.9-10 [40.8-42.3] Third configuration for snake-likemotion
XI. 11 [42.4-8] Smooth and easy movement of the case XII [42.9-44.14] Other movements. Lighting of the altar(s) XIII.1-7 [44.15-48.13] Pouring of liquids XIII. 7-9 [48.13-50.15] Rotation of Dionysus and Nike XIV [50.16-52.6] Sound of kettledrums and cymbals XV [52.7-54.7] Descending garlands XVI [54.8-56.10] Dancing Bacchantes XVII.1-2 [56.11-58.2] Conceal ing the cords XVII.3-XVIII [58.3-60.9] Increasing the range (I). Potentially unsuccessful modifications
XVII.3 [58.3-8] Bigger wheels, smaller axle
XVIII.1-3 [58.9-60.3] Mechanical transmission
XVIII.3-4 [60.3-9] Increasing the range of other movements, repeated rotation of Dionysus
XIX [60.10-62.20] Increasing the range (II). Two-counterweight system

Book Two

XX [64.2-68.4] Preface
XX.1 [64.2-7] Looking back
XX.2-3[64.7-66.2] Praise and criticism of Philo, Athena's machine
XX.3-4 [66.3-10] Philo's forgetfulness (sound of thunder, bolt of lightning)
XX. 4 [66.10-18] Sound of thunder (digression)
XX. 5 [66.19-68.4] Praise of Philo, improved presentation
XXI.1-2 [68.5-18] Generic account of stationary automata XXI. 2 [68.18-70.3] Setting the scene
XXII.1-2 [70.4-16] Ancient versus modern stationary automata
XXII.3-6 [70.17-74.4] The Nauplius arrangement (five scenes)
XXIII.1-2 [74.5-13] Construction of the $\pi i v \alpha \xi$
XXIII.2-8[74.14-78.19] Automatic opening and closing of the doors

XXIV [80.1-84.10] First scene. Greeks repairing their ships
XXIV.1-3[80.1-82.7] Preliminaries
XXIV.3-6[82.7-84.10] Automatic movement of the arms

XXV [84.11-90.5] Second scene Launching of the ships
XXV.1-3 [84.11-86.12] Preliminaries
XXV.4-6[86.13-88.12] Automatic unrol ling of the cloth
XXV.6-7 [88.12-90.5] Concluding remarks

XXVI [90.6-96.15] Third scene (I). Sailing of the ships
XXVI.1-6 [90.6-94.14] Preliminaries
XXVI.6-7 [94.14-96.15] Automatic (un)rolling of the papyrus scroll

XXVII [98.1-100.4] Third scene (II). Plunging dolphins
XXVII.1-3 [98.1-19] Preliminaries
XXVII. 4 [98.20-100.4] Automatic movement of the dol phins

XXVIII [100.5-104.13] Fourth scene Nauplius the torch-bearer and Athena
XXVIII.1[100.5-10] A ppearance of Nauplius and Athena
XXVIII.1-3 [100.11-102.2] Concealing thetorch and other devices
XXVIII.3-6[102.2-104.4] Construction of the torch
XXVIII.6-7 [104.4-13] Automatic lighting of the torch

XXIX [104.14-106.3] Fifth scene (I). Shipwreck. Appearance of Athena by mechanical means
XXX.1-6[106.4-110.10] Fifth scene (II). Shipwreck. Drowning Ajax
XXX.1-5 [106.4-108.14] Bolt of lightning
XXX.5-6 [108.14-110.10] Disappearance of Ajax
XXX. 7 [110.11-15] Epilogue

5.2 Contents

As is clear enough from the schematic outline I have just provided, Bоok One (which takes up two-thirds of the treatise) opens with a preface which introduces the whole work. There Hero describes the types of automata that can be built, articulates his position as author and editor, and, more importantly, makes a number of claims to justify his enterprise. Hegives two main reasons for deal ing
with the topic of automata-making, both grounded in the tradition that he has received. First, there is a striking element of wonder involved in the viewing and
 explicit that the construction of automata belongs to a broader tradition of spectacular marvels ($\theta \alpha 0 \mu \alpha \tau$ оир $\boldsymbol{i}^{\prime} \alpha$ or $\theta \alpha v \mu \alpha \tau о \pi о$ ו́í ; I. 7 [4.22-6.2]), and we have seen in $\S 4.2$ above that in later times Hero's treatise was still felt to belong to such tradition (the later interpolator in Pappus). Second, the making of automata incorporates all types of mechanical knowledge (I.1 [2.6-8]), and thus
 [2.4-5]). This claim certainly serves to magnify Hero's own work, but it is not without grounds: when we read Hero's descriptions of the automata (particularly of the mobile type), we find that he makes use of hydraulic elements, with comparisons drawn between some of his devices and artillery technology (II. 6 [10.6-8], XIII.9[50.10-11]). ${ }^{135}$

The rest of the book deals almost in its entirety with the mobile automaton (which I will describe shortly). Hero's account is preceded by an explanation of the (pre)conditions leading to mechanical success (or failure), including information on procedures and principles for achieving motion (I have called this section 'Constructional preamble'). Two points of particular interest emerge from this portion of the treatise. One is Hero's concem with the characteristics of the surface on which mobile automata (such as wheed ed shrines or temples) move (II.1-2 [6.9-17]). The ground should be as flat and as even as possible to ensure smooth operation of the device As an alternative, Hero suggests the use of a prepared trackway consisting of grooved wooden boards so that the wheeds of the automaton may be made to fit into the grooves. This arrangement recalls the railways used in theatrical performances to move either entire stage buildings (theatres at Sparta and Megalopolis) or $\grave{\varepsilon} \kappa к и к \lambda \eta ́ \mu \alpha \tau \alpha$ (thearre at Eretria). ${ }^{136}$ What is particularly suggestive here is the fact that, as noted by Lewis (2001a: 9), in the Hellenistic theatre at Megal opolis the rails

[^41]were probably made of wood rather than stone (as in the other examples) because no trace of them has been found. The second point is that all the movements in both the mobile and the stationary automaton are ultimately brought about by the vertical action of a single counterweight (al though in fact Hero later suggests the addition of a second counterweight in the mobile automaton; see below, §5.6.2). The counterweight is located in a (rectangular) tube (σ ópry') full of millet or mustard seeds (dry sand is instead preferred in the stationary automaton to extend the length of the performance: cf. Comm. on II. 9 [12.10-13]). When these grains trickle through an aperture situated at the bottom of the tube (which is opened manual Iy: IX. 5 [32.12-13]), the counterweight falls down, drawing cords which are connected to various instruments - mainly axles, but al so drums, pulleys and other cylindrical components. To regulate the timing of movements, there are slack hanks of cord glued onto the appropriate place with wax (II. 10 [12.19-14.6]). These are Hero's tools. He makes no use of toothed wheeds or gears, and yet he achieves a variety of results. ${ }^{137}$

Hero's mobile automaton is essentially a roofed shrine of Dionysus set on top of four colums (Fig. 1), with Bacchantes dancing around the figure of the god, seff-kindling altars (one in front and the other behind him), a miniature panther effigy lying at his feet and a winged Nike holding a wreeth and resting upon the apex. The automaton is about 1.5 metres high - Hero gives only approximate dimensions of some of the automaton's components such as the base, the colurn shafts and the (Ionic) architrave (III.1 [14.17-16.4]) - and moves upon wheeds which are housed in a small casing ($\pi \lambda ı v \theta$ íov). In its basic form, it moves forward in a straight line, stops, performs a ritual scene ('apotheosis of Dionysus'), ${ }^{138}$ and then moves back to its starting point. Other pattems of movements are possible, either theoretically (rectangular) or

[^42]practically (circular, snakelike, and perhaps also the more elusive polygonal), and the automaton can also move back and forth many times; ${ }^{139}$ Hero likewise suggests several possibilities for extending the range of motion, although only the last one might have proved feasible at all (further details on all these configurations are given below and/or in the Commentary ad locc.). When the automaton comes to a halt, the upper display animates itself. The altar in front of Dionysus flares up. Milk or water spurts from the thyrsus the god holds in his left hand, and wine flows out of his cup onto the panther lying beneath. ${ }^{140}$ Garlands sink down from the upper part of the peristyle, immediately followed by the Bacchantes dancing in a circle to the accompaniment of kettledrums and cymbals. When the sound ceases, the figures of Dionysus and Nike rotate simultaneously 180 degrees. All these movements (except for the sinking of the garlands) repeat themselves once more, with Dionysus and Nike returning to their original position.

Book Two opens with a preface that provides a transition between the two main themes of the treatise. The stationary automaton consists of a box called $\pi^{\prime} \mathrm{v} \alpha \xi$, which is set on top of a wooden pillar. Hero does not provide any information about its size, ${ }^{141}$ although we are informed that in neither type of automaton should the dimensions raise suspicion of human agency (IV. 4 [20.1-6]). The $\pi i v \alpha \xi$ type mimics the function of a theatre, with, among other things, doors that open and close and figures painted on a series of backdrops which possess movable parts. (On the theatrical relevance of the term $\pi i v \alpha \xi$, see below, §5.4.2.) In this case, too, there is scope for repeating the movements (XXI. 1 [68.8-14]; cf. I.3-4 [2.17-4.9]). The particular specimen chosen by Hero seems to go back to Philo, although it is not impossible that it predates him by

[^43]some years. ${ }^{142}$ Before describing his preferred model, which presents the myth of Nauplius through a succession of five scenes, ${ }^{143}$ Hero (XXII.1 [70.4-14]) recalls the earliest type of stationary automaton. This presumably pre-Philonian model featured a succession of three scenes, allowing only limited movements (opening and closing of doors, a painted face with moving eyes, and dropping backdrops). ${ }^{144}$ On the other hand, in Philo's model, which was improved upon by Hero (see further below, §5.6), we find a wider range of movements (cf. the remark at XXII. 2 [70.14-16], which suggests that the passage was al ready to be found in Philo). The animated scenes of the automaton can be briefly summarised as follows:
(1) Twelve figures are painted on the backdrop of the box. They represent the Greeks ($\Delta \alpha v \alpha o i ́$ or 'A $\alpha \alpha \omega_{1}$) repairing their ships after the capture of Troy. ${ }^{145}$ Their right arms, which are made of horn, are attached flush to the backdrop and move up and down. Their movement is brought about by means of
 ($\mathbf{v} \sigma \pi \lambda \dot{\prime} \gamma \gamma 10 v$) behind the backdrop;
(2) The ships are launched. They are painted on a piece of cloth the same size as the backdrop of the box and which is held up by means of a cord fixed to a pin. When the cord is released, the cloth drops under the weight of a rod which is attached to its underside (the same principle is at work at XV. 4 [54.6-7] and XXX. 3 [108.1-2]). Similar dropping backgrounds are used in scenes (4) and (5);

[^44](3) The ships sail by, with dolphins swimming al ongside. The sailing of the ships is achieved by means of a horizontally scrolling backdrop made of papyrus and with sky and sea painted on it. The scroll slides back and forth rapidly so as to produce the illusion that the ships painted on the cloth background actually move. The dol phins are each fixed by means of an axle to a pulley hidden inside the floor of the stage. As the pulley rotates, the dolphins appear to swim, plunging down into the hidden cavity which shields the door axle;
(4) Nauplius and Athena appear, both painted on a backdrop. Nauplius holds up a blazing torch. The lighting of the torch is effected by means of a lamp hidden inside the top part of the box. The lamp is set inside a chest which has a triangular bronze plate. When the plate slides, turning around its own pin, the flame reaches up and sets the shavings on fire A similar arrangement is used to kindlethe altars of Dionysus;
(5) The ships are wrecked, Athena appears on stage and (Locrian) Ajax drowns being struck by lightning. The last dropping backdrop depicts the shipwreck and Ajax swimming. The rotating figure of Athena is placed on a pivoted base, which allows it to flip up and down, with two cords pulling it from below. (This mechanism, as we shall se below, replaces Philo's earlier use of a $\mu \eta \chi \alpha v \eta_{\text {. }}$) The base is either on or connected to an axle. The combination of these two elements forms a mechani cal joint (iб $\chi \alpha ́ \rho ı o v) .{ }^{146}$ As for the painted figure of Ajax, it is made to disappear by being covered by a piece of cloth of its size. The cloth is painted so as to resemble the rest of the background, and drops down at exactly the same time as the board depicting the bolt of lightning.

The description of the stationary automaton is followed by two cursory, interre ated observations (XXX. 7 [110.11-14]): (a) that all the movements occur in the same way (with explicit reference to the forward motion of the mobile automaton, π о $\rho \varepsilon i \alpha$); (b) that all the $\pi i v \alpha \kappa \varepsilon \varsigma$ are managed by the very means that have been put into practice in Hero's chosen arrangement. These reassert the mechanical and scenic flexibility of contemporary automata as opposed to their distant predecessors, thus picking up a number of remarks made throughout the treatise (I. 8 [6.4-7], II.12 [14.12-14], XXI. 2 [70.2-3]). The text, as it stands now,

[^45]ends in a lacuna, which probably contained a statement as to the variability of the stories represented in the stationary automata (XXX. 7 [110.14-15]): $\pi \lambda \grave{\eta} v$ ö τ $\delta ı \alpha \lambda \lambda \alpha ́ \sigma \sigma o v \tau \alpha _<* * *>{ }^{147}$

5.3 Historical , literary and cultural background

In order to contextual ise Hero's models, it is necessary to examine briefly the literary and cultural history of ancient automata. Three main strands can be identified, all of which are somehow connected to the dimension of wonder and amazement. The first strand concerns epic representations of automata. These imaginary automata differ from actual models especially as far as their power source is concerned. The second strand concerns isolated inventions, dating to the Classical period, that use different power sources but which have limited programmability compared to later examples. The third strand concems the development of a systematised tradition, which begins in the Hellenistic period and extends well into the Imperial era (and beyond). ${ }^{148}$ This tradition is associated, in particular, with the name of Ctesibius.

The idea of creating self-working artefacts can be traced back as far as Homer. In the Iliad, we find the first examples of mythical automata, such as the

[^46]self-opening gates of Olympus (II. $5.749=8.393$) and Hephaestus' self-moving tripods (II. 18.369-79), the latter being described as 'a wonder to behold' ($\theta \alpha 0 \hat{\mu} \alpha$ i $\delta \varepsilon$ б́ $\theta a 1$, line 377). The workshop of Hephaestus al so famously includes golden maidservants ' with a mind, voice and strength of their own' ($\tau \hat{1} \varsigma \dot{\varepsilon} v \nu \mu ̀ ̀ v ~ v o ́ o s$, દ̇бđì $\mu \varepsilon \tau \grave{\alpha} \varphi \rho \varepsilon \sigma i ́ v, ~ \varepsilon ̇ v ~ \delta \varepsilon ̀ ~ \kappa \alpha i ̀ ~ \alpha v ̉ \delta \grave{~ \mid ~} \kappa \alpha i ̀ ~ \sigma \theta \varepsilon ́ v o c, ~ I I . ~ 18.419-20) ~ a n d ~ b e l l o w s ~ w h i c h ~$ respond to their master's will (II. 18.468-73). It is unclear, indeed unlikely, that any of these devices involves mechanical skill, and other examples such as the Phaeacians' self-piloting ships (Od. 8.555-62) or the Hesiodic Pandora (Op. 6082) certainly support the idea that divine power is the source of animation. ${ }^{149}$

The first securely attested examples of mechanically automated devices date to the fourth century BCE. One such example is found in Aulus Gellius (second century CE), who, drawing on Favorinus, ascribes to the phil osopher and statesman Archytas of Tarentum the construction of a wooden flying dove (Gell. 10.12.8-10 =Archyt. T A 10a Huffmann). Although the account lacks necessary details concerning the design of the device, Gellius, who concludes his passage with a direct quotation from his source, informs us that it operated through a combination of air and counterweight (libramentis suspensum et aura spiritus inclusa atque occulta concitum). Schmidt (1904: 349-351) offered a reconstruction of the functioning of the device, arguing that the dove was propelled by compressed air which was rel eased by a valve (nowhere mentioned by Gellius). His reconstruction is not unproblematic, not least because such a use of compressed air is unparalleled in later pneumatic devices, and it is more likely that air was introduced through a tube to provide the initial impulse. ${ }^{150}$ Nevertheless, he also suggests, rather convincingly, that the dove was used as part of larger display to impress guests at a symposium ${ }^{151}$ This certainly accords

[^47]well with the characterisation of the dove as something wonderful (admirabile). ${ }^{152}$

Archytas' flying dove is in some respects a unicum in the history of ancient automata. This is so not only and not so much because of its pneumatic power source (we have seen that Hero envisages two different power sources of automata, neither of which involves a fluid) but rather because, as noted by Huffman (2005: 575), there are no other examples of birds actually flying. Nonetheless, it is tempting to associate its origin with the technological advances that took place under Dionysius I, tyrant of Syracuse (405-367 BCE), with whom Archytas was allied and under whose patronage could have been involved in the development of catapults. ${ }^{153}$ A similar association is made by a third-century CE source. In a fictive letter from the philosopher Speusippus to the tyrant Dion ([Socr.] Ep. 35 Hercher), ${ }^{154}$ the Syracusans are congratulated for rejecting a number of innovations of Dionysius I, including the habit of sending ingenious (σ opó) devices to Delphi in the form of dedi cations. Although the text is rather cryptic, there is mention made of Apollo (perhaps a playful allusion to Dionysius 1) ${ }^{155}$ 'hearing and seeing the small cart running around in the hippodrome
 טutó $\mu \alpha \tau \sigma v)$. Here there is no indication as to what might have powered the automaton. Rehm (1937: 329) ruled out the use of a counterweight (it is not clear where it would go) and suggested, on the basis of his reconstruction of Demetrius' snail (see below), that the cart was operated by two men, one turning a windlass to drive the wheels and the other changing the direction of motion.

[^48]Technical considerations aside, the cart is explicitly described as small (although it is difficult to say how small) and would probably not have contained all that equipment. A perhaps more likely power source would be something like Hero's v̋ $\sigma \pi \lambda \eta \gamma \xi$, involving sinew spring, which would have been well known to the technical entourage of Dionysius I.

The tradition exemplified by the pseudo-Socratic letter is also reflected in the works of Aristotle, where we find the first references to α vitó $\mu \alpha \tau \alpha$ (whether or not in direct connection with wonder). The two sources I have in mind areArist. GA 734b7-15 and MA 701b2-10, where automata are invoked as analogues for living organisms or biological processes (in the former case for sperm motility, in the latter for animal locomotion). In both cases the point of comparison is the ability to tum an initial impetus into a causative sequence of actions. ${ }^{156}$ The second passage distinguishes two types of device, $\alpha \cup \jmath \tau o ́ \mu \alpha \tau \alpha$ and $\dot{\alpha} \mu \alpha \xi^{\prime}, \alpha$, but the text is particularly difficult and corrupt, ${ }^{157}$ and it is not clear exactly how these devices would have functioned. Nussbaum's (1976: 149-50) interpretation is that the first type refers to marionettes which move thanks to a system of interlinking pegs and cables ($\sigma \tau \rho \varepsilon ́ \beta \lambda \alpha \iota$), but this is perhaps overprecise and it is not impossible that their power source may have been the unwinding of cords (possibly of sinew) from a windlass. ${ }^{158}$ As for the cart mentioned in line 5, I am not entirely convinced that it was fully automatic (as Ruffell has it), ${ }^{159}$ but

[^49]certainly Aristotle refers to an automatic change in the pattern of movement
 lines 5-6). Both the mention of unequal wheels and the (rather obscure) comparison in relation to solid geometry bring the device closer to Hero's mobile automaton. ${ }^{160}$

It is only in the Hellenistic period that we see a sustained tradition of automata-making emerge Perhaps the originator and first exponent of such tradition was Ctesibius of Alexandria (c.300-230 BCE), ${ }^{161}$ who, according to Vitruvius (De Arch. 9.8.2; cf. 9.8.4), was also the founder of pneumatics as a discipline. Unfortunately, none of his works has survived, but we know that he wrote two works, called respectively Pneumatic Theorems (Пvсvцатıк $\theta \varepsilon \omega \rho \eta ́-$ $\mu \alpha \tau \alpha$, Ph. Bel. 77.12) and Commentaries ('Yлонv $\eta \mu \alpha \tau \alpha$, Ath. Mech. 29.10). ${ }^{162}$ Although best known for inventing the fire-pump, the water-clock and, as we have seen, the water-organ, he also described the application of hydraulic principles to the construction of automata of the kind we find in Philo's and Hero's Pneumatica (singing birds and drinking animals). ${ }^{163}$ Vitruvius selected only Ctesibius' more practical inventions and instead left out of consideration 'those things which are not for the sake of necessity, but for the sake of pleasure' (quae non sunt ad necessitatem sed ad deliciarum voluntatem), referring the reader for more details to Ctesibius' own Commentaries (DeArch. 10.7.5).

[^50]That Ctesibius was associated with the royal court at Alexandria under the reign of Ptolemy II Philadel phus (283-246 BCE) is made clear from Hedylus' description (in Athenaeus) of Ctesibius' invention of a drinking-horn (ρ vóvv), ${ }^{164}$ to which I shall return in more detail below. Similar drinking vessels are later encountered in Philo's and Hero's Pneumatica, and some of them would have provided spectacular entertainment at royal symposia. ${ }^{165}$ Ctesibius horn, however, belongs to a different class of devices, namely that of 'temple automata': automata that were placed in temples, sanctuaries and similar confined religious settings, either temporarily or permanently, and which mainly served either (politico-)religious or decorative functions (or both). ${ }^{166}$ At the same time, it also belongs to what Bur (2016: 79 n . 31) calls 'dedicated inventions', that is to say dedications which were used to promote scientific and technological achievements. ${ }^{167}$ Although much of our evidence for automatic contrivances comes from the Roman Imperial era (Hero's Automata and Pneumatica) or is filtered through the Arabic tradition (Philo's Pneumatica), automata must have featured prominently among such Hellenistic achievements because they were an offshoot of the intellectual activity of the Mouseion, whose scientific work reached its apex in the thi rd century BCE. ${ }^{168}$

Ctesibius' hom was shaped in the form of the head of the Egyptian god Bes and featured an automatically operated trumpet which would emit a shrill sound (λy yòv $\hat{\eta} \chi o v$, HE 1845) when the wine flowed out. It was dedicated by Ctesibius himself in the temple of Arsinoe Zephyritis (erected 270 BCE), and was probably placed upon a pedestal or plinth on which was inscribed Hedylus'

[^51]dedicatory epigram ${ }^{169}$ The poem leaves no doubt that its true focus is on the figure of Ctesibius, ${ }^{170}$ who is emphatically praised for his clever invention ($\dot{\alpha} \lambda \lambda \grave{\alpha}$
 of a larger propagandistic strategy in the Ptolemaic programme of political legitimation and self-aggrandisement, ${ }^{171}$ as the following example will make clear.

At a slightly earlier date than the erection of Arsinoes temple, Alexandria was host to a procession which took place at the Ptolemaia festival in the city's stadium, the so-called Grand Procession. The procession, which occurred under Ptolemy's auspices (probably in the years 280-275 BCE), was described by Callixeinus of Rhodes in a work called OnAlexandria (Ath. 197c203b \cong Callix. FGrH 627 F 2; Rice 1983) and consisted of a series of smaller processions. The surviving text deals almost entirely with the procession of Dionysus, featuring a conspicuous display of weal th. The procession was opened by Silens, Satyrs, Nikai with golden wings and other lavishly ornamented figures, followed by the statues of Dionysus (4.60 metres high) and Nysa (3.70 metres high), both seated on a cart (Ath. 197e-198f). Holding a thyrsus in its left hand, the statue of Nysa - a personification of Dionysus' birthplace, following (Rice 1983: 66-8), rather than the god's nurse - stood up ‘mechanically without
 and then sat back down after pouring a libation of milk (Ath. 198f). Callixeinus' description, textually and iconographically, recalls Hero's mobil e automaton, all the more so as the seated statue of Dionysus appears to pour a libation. ${ }^{173}$ The functioning of Nysa is unclear. Rice (1983: 63-65), picking up and amplifying an earlier suggestion by Fraser (1972: 1.426), suggested that Nysa was the work of Ctesibius (or of someone directly influenced by him) on two grounds: (a) that Ctesibius was connected with the royal court (as noted above); and (b) that the Nysa statue (which was presumably built with hinged joints) was powered by a

[^52]cam-and-lever arrangement, ${ }^{174}$ a solution which would accord well with Ctesibius' experiments with the transference of circular motion into linear motion attested by the rack-and-pinion mechanism of his water-clock (Vitr. 9.8.4-7). Leaving aside the attribution (and therefore also leaving aside Ctesibius' water-clock), it is worth noting that, while the cam seems to be attested already in the third century $\mathrm{BCE},{ }^{175}$ Rice's reconstruction is perhaps overdetailed, and Nysa’s repeated action could just as easily have been achieved using cords and axles in the fashion usually favoured by Hero and apparently also Philo. ${ }^{176}$ Be that as it may, what needs to be stressed here is that the prominence assigned to Nysa by being positioned at the beginning of the procession anticipates and confirms the propagandistic intent of the parade, which is most fully accomplished through the celebration of the Indian campaign of Dionysus-Alexander (Ath. 200d-201c), ${ }^{177}$ and thereby of Ptolemy's own legacy. What we have here, it seems to me, is a combination of propaganda, entertainment and the element of wonder.

A similar example of this, but with more emphasis on technical mastery, is described in Polybius Histories. Polybius, quoting the Athenian orator Demochares, briefly mentions a mobile type of automaton associated with one of Demochares' sworn enemies, Demetrius of Phal erum, the governor of Athens in the years 317-307 bCE (Plb. 12.13.11 = Democh. FGrH 75 F 4). The automaton was part of a procession through the theatre of Dionysus, which probably took place at the Dionysia festival of 309/308 bCe (Rehm 1937: 317): 'a snail moving automatically went before him [sc. Demetrius] in the procession,
 \quad ía $\lambda o v \alpha \dot{\alpha} v \alpha \pi \tau v ́ \omega v)$. On the basis of a highly speculative reconstruction by Schramm (in Rehm-Schramm 1929: 20-1 with Figs. 6-7) of a siege-engine known as the $\dot{\varepsilon} \lambda \varepsilon$ ह́ло $\lambda ı \varsigma$ ('city-taker') of Posidonius of Macedonia and described by Bito (Constr. 53.4-56.7), ${ }^{178}$ Rehm (1937) reconstructed Demetrius' snail as a

[^53]three-wheded, human-operated automaton, three or four metres in height, with its two rear wheels powered by an internal treadmill and a controllable whed at the front. The implausibility of Rehm's reconstruction aside, ${ }^{179}$ comparison with the $\dot{\alpha} \mu \alpha \dot{\xi}, \alpha$ discussed above, on which Demetrius' snail seems to have been an advance, ${ }^{180}$ and with Hero's mobile automaton suggests to me that this model should have been considerably smaller than the size suggested by Rehm What brings the snail closer after all to its Heronian successor is the combination of motion (in this case, probably linear) with the projection of liquids. It is certainly noteworthy that, in describing Dionysus' libation, Hero uses the terms $\alpha v \alpha \pi v \tau 1-$ $\sigma \mu o ́ s ~(I V .3$ [18.17]) and α 人vaлvтíc ω (XIII.1 [44.15-16]), themselves ultimately derived from $\dot{\alpha} v \alpha \pi \tau v \in,{ }^{181}$ which suggests that the same or a similar hydraulic mechanism was at work in Demetrius snail. At any rate, although frustratingly silent about the mechanics of the device, Demochares testimony is particularly val uable for what it tells us about the snail's performance context.

The theatrical use of automata is better attested in the Roman Imperial period, al though most of our evidence from that time more directly relates to private settings (see below). Two examples seem to me particularly relevant. The first example concerns Nero's famous attempt to kill his mother Agrippina in 59 CE. One of our sources for the episode (or, in fact, series of episodes) is Suetonius, ${ }^{182}$ who tells us that Nero, after trying to kill her with poison and then contriving a collapsing ceiling (lacunaria, quae noctu super dormientem laxata machina deciderent), devised a ' collapsible boat' (solutilis navis) to destroy her either by shipwreck or by the falling down of its cabin (vel naufragio vel camarae ruina). ${ }^{183}$ The (ultimately unsuccessful) idea of such boat is attributed by Tacitus (Ann. 14.3) to Nero's former preceptor Anicetus, who would be responsible for Agrippinås death (Tac. Ann. 14.8; D.C. Epit. 61.13.4-5),

[^54]whereas in Cassius Dio it is associated with the emperor's future wife, Poppaea Sabina, who herself instigated the murder, and with whom Nero watched an automatic collapsing ship in the theatre(D.C. Epit. 61.12.2-3):
$\tau \alpha \chi \varepsilon ́ \omega \varsigma ~ દ ̇ v \alpha \cup \pi п \gamma \gamma \dot{\sigma} \sigma \alpha \nu \tau$.

Having seen in the theatre a ship parting asunder by itself, letting loose some beasts and coming back together so as to be robust again, they quickly had one such ship built for themsel ves. ${ }^{184}$

The second example is found in Apuleius Metamorphoses, where the protagonist Lucius attends the pantomime performance of the Judgment of Paris in the Roman colony of Corinth (Met. 10.30-4). The scene is Mount Ida, a towering wooden structure 'built with sublime craftsmanship' (sublimi[s] instructus fabrica), with abundant vegetation, goats grazing among the low grasses and a fountain pouring out water from the mountain's peak (Met. 10.30). The performance prominently features dances of Juno, Minerva and Venus (all with attendants) with the aulos accompaniment, followed by a moralising interlude on the corruptness of judges. It concludes with a wine-saffron mixture showering down from the peak of the mountain and a spectacular earthquake (Met. 34):
tunc de summo montis cacumine per quandam latentem fistulam in excel sum prorumpit vino crocus diluta sparsimque defluens pascentis circa capellas odoro perpluit imbre, donec in meliorem maculatae speciem canitiem propriam luteo colore mutarent. Iamque tota suave fraglante cavea montem illum ligneumterrae vorago decepit.

[^55]Then, from the very peak of the mountain, through a concealed pipe, saffron dissolved in wine spurted out high into the air and, flowing down in scattered streams, sprinkled the goats grazing all around with a fragrant shower, until, dyed to a greater beauty, they changed their natural hoariness to a goldenyellow col our. And now that the whole theatre was smelling sweetly, a chasm in the earth swall owed the wooden mountain.

Although Dio's account may have been rooted in anecdote, ${ }^{185}$ and despite the fictional nature of Apuleius story, both examples reflect theatrical practices which were common in early Imperial times. The best evidence comes from Seneca's Epistles. In one such letter, Seneca contrasts the true sapiens with someone who invents (among other ingenious devices) 'a system for squeezing saffron up to an immense height from concealed pipes' (quemadmodum in immensam altituofinem crocum latentibus fistul is exprimat, Ep. 90.15), whereas in another letter he describes 'unexpected devices such as objects fitting together which come apart, or separate objects which join together automatically, or objects which stand erect, then gradually collapse' (ex inopinato varietates aut dehiscentibus quae cohaerebant, aut his, quae distabant, sua sponte coeuntibus aut his, quae eminebant, paulatim in se residentibus, Ep. 88.22). ${ }^{186}$ Significantly, these contrivances are mentioned as a product of the arts of entertainment (artes ludicrae), which, as Seneca says, 'aim at the pleasure of the eyes and the ears' (ad voluptatem oculorum atque aurium tendunt; cf. Vitr. 10.7.5 quae delectationibus oculorum et aurium usu sensus eblandiantur, in reference to Ctesibius' devices).

Quite the same taste for entertainment is known to have been catered for at the private banquets of the Roman elite Our richest source of information is Petronius. In the Cena, we find frequent references to automata (or closely

[^56]related devices), and the use of actual theatrical apparatus contributes to transforming Trimal chio's house into a stage (see Panayotakis 1995: 91). So, at the beginning of the dinner, Trimalchio is introduced to us as having a 'clock and a uniformed trumpeter in his dining-room' (horologium in triclinio et bucinatorem... subornatum, Sat 26.9), where horologium seems to refer to a water-clock. ${ }^{187}$ Later on we encounter the narrator Encol pius watching out for a not better-specified automatum (Sat. 54.4) and then, a few chapters later, a selfopening ceiling which lets out a hoop adorned with golden crowns and perfumes (Sat. 60.1-3; note especially the description of the automaton as an earthquake: lacunaria sonare coeperunt totumque triclinium intremuit, Sat. 60.1). ${ }^{188}$ Immedi ately following this is a dish with a pastry figure of Priapus holding fruits and grapes which spurt out saffron when touched (Sat. 60.4-6). Yet another textual portion presents us with the famous zodiac dish (Sat. 35.1-6 and 36.1-4). The disclosure of the upper part of the dish allows the guests to see an impressive display (Sat. 36.1): birds, sow's udders, a winged hare made to look like Pegasus, and fish swimming in a spiced sauce which was flowing out of the wine-skins of the four figures of the satyr Marsyas at the comers of the dish (notavimus etiam circa angulos repositorii Marsyas quattuor, ex quorum utricul is garum piperatum currebat super pisces, qui quasi in euripo natabant). This was certainly intended to resemble public fountains, which were often ornamented with statues (see, for instance, Prop. 2.32.15-16), and Hero in the Pneumatica describes similar figures of Satyrs pouring water from their skins (Spir. chh. 1.37 and 2.15). ${ }^{189}$ Meerwaldt (1921: 411 with n. 1) argued that the swimming of the

[^57]fish was effected automatically by mechanical means, an argument which seems to have ultimately depended on the difficulties he faced in interpreting the text (he printed the reading quicunque instead of qui quasi). On the basis of a (highly dubious) comparison with Hero's configuration for circular motion in the mobile automaton and with the mechanisms used in Spir. ch. 1.16, he suggested that there was a hollow cavity beneath the 'canal' (euripo), with a cord wound around an axle and having one end passing through two pulleys and the other end attached to a counterweight; the falling weight would have caused the axle to turn by pulling upon the cord, which would, in turn, rotate the canal. ${ }^{190}$ There are many problems with this reconstruction. I shall mention only the most conspicuous. First, there is no hint in the text that the basin containing the fish would rotate; the fish are merely said to ' swim', and the illusion could easily be achieved by the constant flowing of garum Second, the circular pattem of motion in the mobile automaton in real ity depends on the fact that the two main driving wheels are not of the same size, but the outer whed is bigger than the inner one (cf. synopsis on VII-VIII). Third, the mechanical arrangement found in Spir. ch. 1.16 features a combination of weights and pneumatic elements and, al though a counterweight is used to turn an axle (only 180 degrees), the ultimate power source of the whole device is running water. Here mechanical means are used to animate a scene where birds stop singing when an owl turns to look at them and then resume when it looks away again (Spir. 90.10-16):

 $\varphi \theta \varepsilon ́ \gamma \gamma о v \tau \alpha 1$. каі̀ тоиิто $\pi \lambda \varepsilon о \vee \alpha ́ к ı \varsigma ~ \gamma i ́ v \varepsilon \tau \alpha 1 . ~$

Several birds are constructed, arranged either in a spring or in a cave or generally wherever there is running water, and beside them an owl which turns automatically towards the birds and turns away again; when it has turned away, the birds twitter, and when it has turned towards them they no longer twitter. And this takes place several times.

[^58]It has been recently suggested that this and other Heronian and Philonian displays involving singing birds ${ }^{191}$ or drinking animal ${ }^{192}$ are likely to have been used in temples because, unlike temples and other public spaces, the $\alpha v \delta \rho \omega$ of private houses did not have access to running water ($\varepsilon \pi$ í $\rho \rho v \tau o v ~ v ̋ \delta \omega \rho) .{ }^{193}$ This suggestion is partly misleading, since it does not take into account the architectural transformations of the Roman house occurred between the third century BCE and the first century CE. Schürmann (2002: 41, 44) has argued (rightly, in my view) that Hero's hydraulic showpieces, with their emphasis on a continuous source of running water (cf. above, n. 193), seem to reflect the development of the Roman house in the Late Republic and Early Empire, when many triclinia either looked onto or were built in a planted garden with different water sources. It seems very tempting, therefore, to take Hero's reference to a 'cave' as a sign of the popularity of elaborated grottoes in the Roman Imperial period. ${ }^{194}$

Tracing the history of ancient automata from their first mythical appearances as imaginary artefacts to their more spectacular Imperial instantiations reveals that they were used in different contexts, ranging from public occasions such as religious festivals and theatrical shows (with occasional overlaps, as in the case of Demetrius' snail) to private elite settings such as the Greek symposium and the Roman comissatio (with or without overtly theatrical connotations). Mainly used for entertainment, automata took the form of performance pieces or dedications (sometimes overlapping), and could also serve religious and political purposes, especially in the affimation of economic and technological power.

[^59]
5.4 The performative context of Hero's automata

The discussion in the previous section leads us to the question of where the automata described by Hero were used. Very few scholars have addressed this issue, and, as far as I know, in only two cases has the question of the context of use of the mobile automaton been the subject of separate investigation. In what follows, I shall discuss the context of use of the mobile and the stationary automaton separately. Before doing so, it is worth summarising briefly the positions taken by previous scholars both because they sometimes argue that the automata were used in the same context and because none of them discusses in detail the context of deployment of both automata. The following positions are mentioned in logical rather chronological order:
(1) Schürmann (1991: 190) confidently claims that both automata were used in private parties ('privaten Festen'), but she does not explain. ${ }^{195}$ This argument is slightly elaborated in Schürmann (2002: 45, 53), where, however, she focuses only on the stationary automaton. ${ }^{196}$ The envisaged sympotic context concerns Philo's stationary automaton rather than Hero's later version; ${ }^{197}$
(2) Prou 147 suggests that, while spectacles involving mobile automata were initially performed in the theatre's orchestra, the $\lambda 0 \gamma \varepsilon i ̂ v o n g h t ~ h a v e ~$ provided a more appropriate performance context for Hero's mobil e automaton;
(3) Bur (2016: 101) argues, on the one hand, that the mobile automaton was likely used as a paratheatrical form of entertainment at an ancient festival of Dionysus, and, on the other hand, that the stationary automaton seems more suited to a private context, either the symposium or the temple.

5.4.1 Mobile automaton

Let us start, then, by considering the performative context of the mobile automaton. As noted above, Prou asserted that the theatre's orchestra was the

[^60]place where the earliest mobile automata were displayed. There is no need to discuss the val idity of this assertion both because we have seen that other public venues are attested for the Classical period - Delphi's hippodrome from the pseudo-Socratic epistle comes to mind - and because there is no way of knowing for certain whether this was in fact the case. The premise of Prou's assetion is the suggestion that the apotheosis of Dionysus may have been a popular subject of such representations because it would have served to harmonise the introduction of brand new (scenic) technology (that is, the mobile automata) with Dionysus' role as the patron god of theatre. A gain, we do not know whether the subject was popular, although we do know that the particular presentation of the mobile automaton was Hero's (I.8 [6.4]). Certainly, though, Dionysus' patronage of drama is something we should keep in mind as we proceed.

Prou's suggestion that the mobile automaton performed its motions on the λ oyधiov has been harshly criticised by Bur (2016: 101). Bur's criticism revolves around two points: (1) Prou misinterprets the symbolic significance of the automaton in that he compares it to an actor ('un véritable acteur'); (2) Hero's description of the performance, with its emphasis on the repetition of movements (in particular, the double half-rotation of Dionysus), rather suggests that the automaton was completely surrounded by the audience. As for the first point, I cannot find any misinterpretation. Prou's comparison sounds like a rhetorical exaggeration, a device not infrequent in his writing. The second point is not less problematic because, regardless of where the automaton was employed, Dionysus will not have faced all the spectators at any given time. Assuming a circular audience, only half of it will have faced the god when not in motion. Prou's suggestion, in my view, accords well with the increasing prominence assumed by the scene buil ding in Graeco-Roman theatres, where the λ oyعiov could extend out to one-half of the orchestra's radius (Kurit 1988: 23), al though some of the spectators would perhaps have been too distant to enjoy the spectacle. The weakness of Prou's position rather lies in how he elaborates his suggestion. He imagines that the automaton travels back and forth along an Lshaped path: from the outermost thyromata to the middle of the scene, and from there to the middlle of the λ oyعiov. ${ }^{198}$ This is not an instance of rectangular or

[^61]circular motion, as Prou maintains, but of polygonal motion, a pattern which is only alluded to in passing by Hero. On the whole, the theatre remains a plausible context for the performance of the mobile automaton. A part from the central role of the figure of Dionysus in the display itself, it is supported by two sets of evidence: (1) the theatrical automata I have discussed in $\S 5.3$ above (I am thinking in particular of Demetrius' snail, whose affinities with Hero's mobile automaton have been noted); ${ }^{199}$ (2) Hero's own observations at II.1-2 [6.9-17] concerning, on the one hand, the properties of the ground, ${ }^{200}$ and, on the other, the use of a prepared trackway, which, as we have seen in $\S 5.2$ above, has recognisable parallels in earlier theatrical practice (the Hellenistic theatre at Megal opolis offers the closest paralled).

Bur's criticism of Prou's position leads her to envisage a processional context. She puts forth three possibilities (Bur 2016: 101-2): (1) the automaton was paraded on a cart (as was the statue of Nysa); (2) the automaton was brought out during the final sacrificial feast; (3) the automaton was employed during one of the pauses of the procession when specific ritual acts were performed to the accompaniment of music, singing and dance ${ }^{201}$ She prefers options (2) and (3) because, although option (1) has the advantage of being supported by a historical paralle, ' one cannot help but feed that the overall impact of the "miracle" of the machine would likely have been more impressive in a slightly calmer situation where all the attention was focused on this spectacular piece of technology' (Bur

[^62]2016: 101). Although I agree with her on this point, I do not agree that the statue of Nysa offers a historical parallel both because it was considerably larger than the figure of Dionysus - we do not know the latter's dimensions but the automaton itself was more than half the size of Nysa - and because it was in some respects a different kind of automaton (articulation, absence of rotation). Apart from size, there is another problem with a strictly processional use of the mobile automaton, that is, it would probably have taken a long time to set it up for performance, a feature the automaton shares with the stationary type ${ }^{202}$ It seems therefore possible to rule out both option (1) and option (3), unless we suppose that the automaton had been set up in a fixed location (stadi um, theatre or the like) well in advance. As far as option (2) is concerned, it is perhaps worth noting that we do not know where the Grand Procession terminated. Processions usually ended at the deity's altar, where, after the sacrifice, there was a public banquet generally followed by athletic or artistic contests (Chaniotis 2011: 301). This may not have been the type of situation which would have allowed spectators to focus all their attention upon the automaton. Rice (1983: 35) suggested either that each of the smaller processions within the Grand Procession headed toward the altar of its own deity or, more likely, that the whole procession continued to a large assembly point. Alternatively, because no trace of a monumental altar has been found in Alexandria, it has been suggested that the final destination of the procession was the Acra or citadel of the city, ${ }^{203}$ which was probably located within the Inner Palaces of the city and where a pavilion had been designed and constructed to serve as a dining hall designated for the entertainment of royal guests (Ath. 196a-197c; Rice 1983: 31-4). This pavilion, asA thenaeus describes it, had important iconographic connections with the procession of Dionysus in terms of its decorative elements, such as colums resembling thyrsoi (196c), symposia scenes featuring figures from tragedy, comedy and satyr drama (197f) and niches containing Delphic tripods (Rice 1983: 32). A context such as this is not processional in the strictest sense but in fact sympotic, and would have certainly offered a more intimate environment in which to enjoy the automatic performance. In this respect, it is certainly not

[^63]without significance that the iconography of the mobile automaton represents Dionysus as the patron of wine (wine spurting out of his бкv́甲os) rather than as the patron of theatre, with explicit emphasis on the god's orgiastic connotations (thyrsus, Bacchantes). Since the automaton would have needed some space to move around in different directions, it might just as easily - in fact, perhaps more easily - have appeared in outdoor spaces such as domestic gardens (compare the examples of hydraulic devices given in §5.3 above).

To sum up, two different performative contexts emerge as the most plausible for the mobile automaton. On the one hand, the evidence pertaining to the device's mobile ancestors points to public settings, first and foremost among them the theatre. This is further supported by internal evidence conceming the performance preconditions. On the other hand, the automaton would have also provided suitable entertainment at private (outdoor) banquets, where the domestic and theatrical spheres could overlap and intertwine (as with Trimal chio's dinner party). Represented as the patron of wine, Dionysus could thus reclaim and reassert his role as god of the theatre.

5.4.2 Stationary automaton

The situation is perhaps less complex in the case of the stationary automaton. Schürmann (2002: 45,53) has concinvingly suggested that Philo's stationary automaton was used as a form of entertainment in Hellenistic private symposia, where it replaced or complemented the more traditional puppet shows. ${ }^{204}$ The basis of her suggestion is an implicit comparison with some of Philo's hydraulic showpieces which are not in any way bound to a particular place because all that they need is a table or base on which to be positioned. ${ }^{205}$ Thus, she argues, Philo describes devices that are appropriate for a sympotic venue both because they do not require access to running water (for an exception, see above, n. 193) and because they do not take up much space; the stationary automaton would have

[^64]fitted in the average $\alpha v \delta \rho \dot{v} v$ even when all the couches (up to seven in number, with a maximum of fourteen people) were occupied. I find no difficulty with this view, and considering that the Roman triclinia generally had only three couches each accommodating three persons, ${ }^{206}$ I cannot see why the automaton could not have been used in Roman banquets as well. A performative context of this type is supported by another set of considerations, which make it a much better fit for the symposium/comissatio than for the temple. Beacham (2013: 33), who, following in the footsteps of Formigé (1921), investigates Book Two as a source of evidence for theatrical practice in the Hellenistic age, observes that such a presentation would find its ideal occasion in private Roman banquets, where, as we have seen, automata were popular and where a variety of performances took place (cf. below, n. 207). I am not sure that 'ideal' is the right word given that we do not know exactly what form tragic presentations took in the Imperial period. ${ }^{207}$ Nevertheless, I believe that the explicit theatricality of the stationary automaton is significant, and it is certainly something that would have appeal ed to the tastes of learned Roman banqueters. In addition to the narrative itself, which has obvious dramatic origins, I would like to recall briefly other salient connections with the domain of theatre: (1) the automaton forms a proscenium arch, with the audience facing the stage, the performance area 'framed' and some of the mechanisms hidden in an upper space which terminates on either side in wings (XXVIII.2-3 [100.11-102.3]); ${ }^{208}$ (2) the automaton displays a series of painted scenes, and takes its name ($\pi i v \alpha \xi$) from the painted panels that were increasingly popular in the Hellenistic and Roman theatres (seefurther Comm. on I. 3 [2.17-18]); (3) the device which Hero uses for producing the sound of thunder is explicitly compared with a theatrical device

[^65]employed for a similar effect (XX. 4 [66.10-18]); ${ }^{209}$ (4) the (possible) use of one or more $\mu \eta \chi \alpha v \alpha i ́$, first introduced by Philo and later apparently rejected by Hero; ${ }^{110}$ (5) the dropping backdrops which are used for scene changes (scenes two and four) - or, in one case, to bring about the dénouement of the plot (scene five) - are comparable to the Roman si paria; ${ }^{211}$ (6) the continously moving scroll of papyrus used to create the illusion of movement of the ships (scene three) is similar in effect to the scaena ductilis (as opposed to the scaena versilis), a movable painted screen which could be drawn off to the side to disclose another scene behind. ${ }^{212}$ It goes without saying that the use of such machinery and equipment would create much the same theatrical ised environment as we saw in the Cena. My conclusions here do not differ greatly from those reached on the performative context of the mobile automaton.

5.5 Hero's intended audience

Having established a broader context for Hero's automata, I would now like to address the question 'What was Hero's intended audience?'. In order to answer this question, we need to interrogate oursel ves about the nature and purpose of the treatise It has been said that the work belongs to what I have called the 'supergenre' of technical ekphrasis, a category which encompasses many different genres and forms. Hedylus' dedicatory epigram considered above (§5.3), to take an extreme example, describes Ctesibius' drinking-horn only from the perspective of the viewer and is far removed in both purpose and form from other works belonging to the same category such as Philo's and Biton's construction manuals on artillery engines and Hero's general introduction to the

[^66]same subject, to name just a few. Roby (2016: 199-242) has investigated the relationship between description and instruction in these and other texts which include instructions for building a technical artefact, showing that the way in which an author modulates his or her authorial voice shapes the relationship between author, reader and technical object. My aim here is not to examine the instructional mode in the treatise because this would require a separate and more detailed discussion, particularly in view of the Philonian origin of the material in Book Two. However, the approach is relevant to the present topic and should be kept in mind when considering internal evidence from the work itself. So, what kind of text is the Automata? Murphy $2-4$ emphati cally argues that it is neither a complete textbook on mechanical principles (as is, for instance, the Mechanica) nor an instruction manual, basing the latter part of her argument on the fact that Hero frequently leaves out a number of practical details. ${ }^{213}$ To illustrate this, she cites examples such as exactly how to connect a cord to the counterweight or how to prevent the cords from getting tangled up. The second example is not entirely appropriate, considering what Hero says at XXIII. 8 [78.15-17]. A better example would perhaps have been the complete absence of information on the position of such elements as axles and pulleys. ${ }^{214}$ At any rate, while it is true that the treatise does not take the form of a discussion of mechanical principles, the reader is expected to some extent to master such theoretical knowledge, one which can in many cases be acquired only through experience ${ }^{215}$ and which is most clearly exemplified by Hero's appeal to the principle of concentric circles and his subsequent attempt at clarification by implicit reference to the principles of leverage (XVIII. 3 [60.1-3], with Comm ad loc.). On the other hand, I do not understand why the treatise should not be considered a construction manual. Roby (2016: 199-200) shows that the defining characteristic of texts providing instructions for building is the quality of 'generativity', namely, the ability to present an object as coming together before the reader's eyes. And this is

[^67]precisely what we see in the treatise, where instructions for constructing the two types of automaton are provided gradual ly and sequential ly. ${ }^{216}$

Let us return, then, to the question of audience, a topic which has al ready been addressed by scholars. The paucity of practical details has suggested to Murphy 4 that the treatise may have been intended for craftsmen special ised in building automata. ${ }^{217}$ Cambiano (2011: 33) draws a similar conclusion from his examination of some of the main linguistic features of BOOK ONE. He shows that in the first part of the work, much more than in the second, Hero shows a preference for an impersonal and geometrical style similar to that of Euclid, which makes use of letter labels, third-person imperatives like $\neq \sigma \tau \omega / \varepsilon ँ \sigma \tau \omega \sigma \alpha v$ and vocíб $\theta \omega$ and infinitive clauses introduced by $\delta \varepsilon i ̂ ~ a n d ~ \delta \varepsilon n ́ \sigma \varepsilon ı . ~ 218 ~ I n ~ B o o k ~$ Two, by contrast, linguistic standardisation gives way to a more personal style that recalls Philo's instructional mode in his Belopoeica, ${ }^{219}$ and in which first person singular forms abound along with frequent altemations between present, future and aorist ${ }^{220}$ The higher degree of linguistic standardisation of BOOK ONE (indeed, the more Heronian part of the work) leads Cambiano to think of an audience consisting of craftsmen or designers ($\alpha \rho \chi ı \varepsilon$ кєктоvєऽ) who, as he points

[^68]out, must have had at least a basic knowledge of geometry. This is especially true if we consider that, according to Vitruvius (DeArch. 1.1.3-10), the architect should ideally be trained in a curriculum which merged theory and practice and which comprised a number of disciplines including draughtsmanship, geometry and philosophy. ${ }^{21}$ However, while advanced practitioners would certainly have been able to grasp Hero's explanation of circular motion in terms of a cone (ch. VIII) ${ }^{222}$ or to interpret the diagrams which he intended to accompany the text, ${ }^{223}$ it does not follow that non-specialists would not have been interested in the treatise. More recently, Keenan-J ones-Ruffell-McGookin (2016: 182) have tentatively suggested that the treatise envisages a 'bifurcated audience'. Practitioners, they argue, would probably be familiar with some of the specialised terminology used throughout the treatise ${ }^{224}$ and would equally be able to fill the gaps both in Hero's own account of the automata (practical details included) and in his reasoning for taking certain design decisions. So, for example, not only does Hero not fully explain the differences between the two main axle configurations (by means of two different types of bearing, the кv'ш$\delta \alpha \xi$ and the $\chi 01 v i \kappa i \varsigma),{ }^{225}$ but he also leaves it to the reader to figure out why enlarging the wheels is preferable to thinning the axle in order to lengthen the automaton's journey (XVIII. 3 [58.3-8])..226 Non-specialists, they go on to say, would be fascinated with the exhibition of mechanical skill as Hero expertly reveals the working of 'wonders'. After all, as is sufficiently clear from what has been said above (§5.2), he is more than interested in offering flexible templates that can be adapted and readapted for multiple arrangements, and this al one is a source of wonder and amusement even to the most inexperienced reader. The idea of a bi partite audi ence receives further support from Hero's own descriptive

[^69]strategy. As noted by Roby (2016: 146), Hero pays great attention to what a spectator would see and that requires him to shift imaginatively from the description of the device's interior to the description of its exterior. On the one hand, then, he repeatedly lays emphasis on the need to hide the mechanisms. ${ }^{227}$ On the other hand, he invites the reader to assume the position of the hypothetical viewer, appealing not just to sight but also to the senses of touch and hearing. ${ }^{28}$ It is perhaps no coincidence that this two-pronged strategy is implicitly foregrounded in the opening statement of the treatise, where, as we have seen, Hero juxtaposes the perspectives of the craftsman ($\delta \eta \mu 10 v \rho \gamma i ́ \alpha$) and of the spectator ($\theta \varepsilon \omega$ pía).

In summary, the treatise - no doubt an instruction manual on the construction of automata - seems to have been intended both for specialist practitioners and non-specialists. The former would have had to rely on their practical and theoretical knowledge to make full use of Hero's incomplete instructions. The latter would have focused their attention on the wondrous aspects of the work, in some cases possibly motivated by a desire to further their understanding of the complex art of making automata.

5.6 Hero and his sources

In composing his works, Hero drew freely on a variety of sources, including, but not limited to, his mechanical predecessors. The mechanician Ctesi bius was one of his sources, as suggested by the title under which his treatise on artillery has
 Hero's Belopoeica deals with early third-century BCE models, and Philo, in his homonymous treatise, describes two artillery inventions by Ctesibius that used

[^70]than the traditional springs made of twisted sinew or hair. ${ }^{230}$ The Pneumatica, as will become clearer later, comes from far more diverse sources. If we limit ourselves to the main written sources, we know that 15 out of the 80 devices described in the work are taken from Philo (al beit usually modified) and that two chapters, Spir. 2.17 (cupping instrument) and 2.18 (pus extractor), appear to derive from some surgical book. ${ }^{231}$ In the introductory section of the treatise, moreover, Hero not only quotes almost verbatim the third-century BCE philosopher Strato of Lampsacus (Spir. 24.20-26.8) ${ }^{232}$ but also appeals to different theories to explain rarefaction effects. ${ }^{233}$ Similarly, the Mechanica contains traces of three now-lost works by Archimedes devoted, respectively, to centres of gravity (Mech. 1.24), upright supports (Mech. 1.25-8, 30-1 and 2.3541) and balances (Mech. 1.33-4). ${ }^{234}$

When considering Hero's (use of) sources in the Automata, we need to consider separately the whole work and the parts into which it falls. Let us first look at the individual books.

In Book Two, Hero explicitly refers to Philo as his source, stating that the latter's work far surpassed that of other, unspecified predecessors (XX. 1 [64.8-10]). Hero's aim is to improve the Philonian model, which in turn drew on preexisting (Ctesibian?) technology. ${ }^{235}$ Whether Ctesibius was Philo's source is doubtful, but, as we have seen in $\S 5.3$ above, he certainly had constructed (water-powered) automata. Hero claims (whether explicitly or implicitly) to have improved Philo's model in two ways: by replacing the $\mu \eta \chi \alpha v \eta$ used for the appearance of Athena with a hinged device (on which, see above, §5.2) and by

[^71]showing how to produce the sound of thunder and to strike Ajax with lightning (the descriptions of the latter effects were apparently accidentally left out by Philo; XX.2-4 [64.12-66.10]). ${ }^{236}$ Despite his intentions, Hero elsewhere makes mention of a $\mu \eta \chi \alpha v$ ń (XXII. 6 [72.20], XXVIII. 2 [100.15], XXVIII. 3 $[102.2-3]^{\text {bis }}$), which can hardly refer to any other machine than Athenảs (but cf. the more generic reference to $\mu \eta \chi \alpha v a i$ outside the $\pi i v a \xi$ at XXI. 2 [68.15-16]). This contradiction has led Schöne (1891: 77) to tentadively suppose that the main part ('Hauptthel') of the book was derived verbatim from Philo and that Hero failed to remove all unnecessary references to the $\mu \eta \chi \alpha v \eta$. This suggestion tends to be confimed by the linguistic and stylistic differences found between the two books (cf. above, §5.5). At any rate, Hero (XXII.2-3 [70.14-18]) makes it explicit that he relies on technological advances of his time when, after noting the superiority of his contemporaries over the ancients, he goes on to describe the Nauplius arrangement (tov̂ סoкои̂vtós μ о кряítтovoc, with which cf. XXI. 2 [68.18-19]). In Book Two, therefore, Hero's novelty consists more in providing an updated presentation of earlier material than in the technical improvements themselves, ${ }^{237}$ as he himself programmatically proclaims at XX. 5 [66.22-68.3]. ${ }^{238}$

The situation is less clear-cut in Bоok One, although there is no doubt more scope for innovation. Here, too, Hero refers to his predecessors on a

[^72]number of occasions, and some of his references likewise serve the double purpose of justifying his work as being part of an established tradition and emphasising the novelty of his contribution (see Cambiano 2011: 24). So, while predecessors play a central role in presenting automata-making as a worthy subject of study (I.1 [2.3-4]), ,239 Hero later criticises them rather harshly. Hero's criticism revolves around two interconnected issues: the aesthetic appeal of the mobile automaton and the technical effectiveness of the construction techniques. The reason for refusing scenic arrangements of earlier times (II.12 [14.11]) is that the methods used by the ancients were not advanced enough to allow practitioners to achieve aestheically satisfying results. This becomes evident when we compare Hero's remarks on the replicability of methods (II. 12 [14.12-14]; cf. Corm ad loc.) with V.1 [20.8-12]. His predecessors, says Hero, have handed down ($\pi \alpha \rho \varepsilon \delta \delta \omega \kappa \alpha v)$ a system of moving the automaton back and forth along a straight line, but this has often proved unsuccessful owing to
 were unreliable but al so could not stand up to systematic empirical testing. Hero does not specify who his predecessors are, but he does refer to a tradition that by his time had al ready been codified in written form This seems precisedy the kind of tradition to which Vitruvius refers in DeArch. 7 praef. 14, where he gives a list of Greek writers on machinery (de machinationibus) that includes Ctesibius and Philo. The improvement of earlier methods permits Hero not only to provide a fresher-looking device (каıvótєpov... кат兀бквv́aбна, II. 12 [14.12]) but also to perfect and extend its mechanisms of movement ${ }^{240}$ In addition to providing a safer mechanism for straight-line motion, Hero claims to have introduced more complex patterns of movement such as circular and rectangular (V. 2 [20.13-17]). ${ }^{241}$ He later (XI.1 [36.1-5]) introduces the possibility of moving the automaton in other ways, too, namely, al ong a non-rectangular polygonal track

[^73]and in a snakelike pattem. ${ }^{242}$ A comparison with the Pneumatica seems to suggest that at least the first of these patterns of movement represents a Heronian innovation.

A part from the sources mentioned above, we have no way of knowing exactly what material Hero used in compiling his Pneumatica. Drachmann (1948: 81-2) posited a number of different sources, ranging from books to actual instruments. He found confirmation of Hero's eclectic and varied use of sources in the fact that there are some differences in the wording of the headings of the chapters (Drachmann 1948: 82-4). He identified five different openings, which may occasionally occur within, rather than at the beginning of, chapters. OpENING A, introduced by connecting formulae, characterises completely revised chapters but gives no hint of the underlying sources. Opening B, corresponding to 'E $\pi \grave{\tau} \tau \iota \omega v$, etc. or "Evia $\tau \hat{\omega} v$, etc., indicates descriptions of familiar devices, often improved by Hero. Opening C, namely genitive absolute followed by future indicative or present infinitive, together with OPENING D, which begins with катабкєvŋ́/катабквvá̧єтаı or the like, introduces either a well-known device or an invention by Hero. Finally, Opening E, which comprises variations on the foregoing, indicates an improvement made by Hero; it may be introduced by expressions like $\Delta v ́ v \alpha \tau \alpha ı ~ \delta غ ̀ ~ \kappa \alpha i ̀ ~ \alpha ̈ ~ \lambda \lambda \omega c, ~ e t c . ~ o r, ~$ exceptionally, by 'Eàv $\delta \check{~} \beta$ ov $\lambda \omega \mu \varepsilon \theta \alpha$, etc. (Spir. 128.5). ${ }^{243}$ Drachmann's review of the chapter headings of the Pneumatica led me to examine the Automata, and I have found that some sections throughout the text begin with Opening A, Opening D and Opening E, or, at least, with variations thereof. Before reviewing these openings, let me make two points. The first point (a methodological one) is that Drachmann's model does not apply to the Automata in exactly the same way as it does to the Pneumatica, because, while in the latter case chapters are devoted to individual instruments, in our case the text has a less rigid structure. This is particularly obvious in the case of Opening A, but, nonetheless, the nature of the inferences involved is essentially the same. The second point (a more specific one) is that three passages begin with what could be argued to be Opening C. These are XI. 11 [42.4-7], XXVIII. 1 [100.5-7] and

[^74]XXIX. 1 [104.14-15]. In none of these cases does the phrasing (genitive absolute + future indicative) introduce the description of a device or configuration. And even though XI. 11 [42.4-7] refers generally to an improvement made by Hero, the shared presence of a connective discourages identification with OpeNINg C. Let me now, then, review the openings:
(A) Connecting formulæ occur quite consistently throughout the text, with a preponderance in Bоok One. Overall, Opening A occurs 65 times, of which 39 times in Book One and 26 times in Book Two. These figures take into account occurrences of $\delta \grave{\varepsilon}$ кaí/ $\delta \grave{\varepsilon} . . . \kappa \alpha i ́$, excluding those appearing in
 the beginning of the chapter. For the editorial implications of the distribution of connecting formulæe ${ }^{244}$ see below, §5.7.

OpENING A, for instance, introduces the descriptions of backward motion (VI.1 [22.21]), circular motion (VII.1 [26.6]) and rectangular motion (IX. 1 [30.3]). The descriptions of the piping system (XIII. 2 [44.17]), of how the Bacchantes dance (XVI.1 [54.9-10]) and the cords are concealed (XVII.1 [56.12-13]) all begin in the same way ((ivetaı ov̂v кaì $\tau 0 \hat{\tau} \tau 0$ oṽ $\tau \omega \varsigma$), with which cf. especially XIV. 1 [50.17-18]. The same pattern (π оı́nбоиєv ov̉v кגi... ov̋ $\tau \omega \varsigma$) is followed by XXVI.1 [90.10] and XXVIII. 2 [100.11], al though in the latter case the true beginning is XXVIII. 2 [102.3-4]; see below.
(D) There is only one occurrence of Opening D, XXVIII. 2 [102.3-4], which introduces the description of Nauplius' torch: $\mathfrak{\eta}$ тov̂ $\pi \cup \rho \sigma o \hat{v} \gamma i v \varepsilon \tau \alpha \iota ~ \kappa \alpha \tau \alpha-$
 common use, as confirmed by XXVIII. 6 [104.2-4]. The phrase found at I. 2 [2.9-10], ка兀 $\alpha \sigma \kappa \varepsilon \cup \alpha ́ \zeta o v \tau \alpha ı ~ v \alpha o i ̀ ~ \grave{̀ ~} \beta \omega \mu$ oí, must not be classed here; the verb only refers generally to the process of construction, as it does at II. 2 [6.18] and XXIII.1[74.5].
(E) Overall, there seem to beeight instances of OPENING E, of which four occur in an explicit form One chapter, dealing with the two-counterweight

[^75]possibility of effecting polygonal motion. The immediately following clause builds directly upon it, and relates to snakelike motion (ě̃ı $\delta \grave{\varepsilon}$ кaì... $\delta v v a \tau o ́ v$ غ̇б兀ı, XI.1 [36.3-4]). The explanation of how the mobile automaton makes a pause starts with $\dot{\varepsilon} \alpha{ }_{\alpha} \delta \delta \dot{\varepsilon} \beta$ ouv $\bar{\mu} \mu \varepsilon \theta \alpha$ (VI. 2 [24.9]), which is incrementally varied to introduce repeated forward and backward motion ((̇̀̀v $\delta \grave{\varepsilon}$ кגì... $\beta 0 v \lambda \omega \mu \mu \varepsilon \theta \alpha$, VI. 3 [24.16]). To these instances we may add XIV. 2 [52.3], XX. 2 [64.15] and XXVIII.6 [102.23].

This review sheds some light on the presence of alternative, apparently incompatible versions of mechanisms. These have generally been explained by having recourse to assumptions of interpolation, but unnecessarily 50 . In what follows, I will discuss three instances of this phenomenon, referring the reader to the Commentary on Book One when appropriate.

5.6.1 Snakelike motion

In ch. XI, Hero presents three configurations for achieving snake like motion. McCourt (2012: 194), who discusses in some detail most of Hero's mechanisms of movement, does not acknowledge the presence of these altemative versions; moreover, he misunderstands the first configuration, claiming that it allows for 'all patterns of movement'. This seems due to the fact that, as we have seen above, Hero starts off by suggesting the possibility of polygonal motion. But nowhere else in the rest of the chapter does he connect any of his configurations with other patterns of movement. The presence of three distinct configurations is a clear indi cation of multiple layers in the mobile automaton, al though without explicit attribution. The fact that Hero begins his account with what I have classed as a variation of OPENING E seems to suggest that we are dealing with one of his improvements, unless we are to suppose that he is silently appropriating, in part at least, earlier (Philonian?) material. The latter possibility is very tempting indeed, especially since Hero ends up preferring the third
 the front axle is replaced by two independent axles. It may well be, then, that the first and the second configurations do not represent genuine Heronian improvements. And even if Hero had in fact modified the first configuration (with the front wheeds mounted on separate rotating hubs and the rear wheed
turning on pivots), adding a third hub and fixing the rear axle to the base of the automaton would have been the easiest, most natural thing to do. Certainly, Hero recognises that the hubs do not rotate effectively, and expresses his insight into the greater efficiency of the кvó $\alpha \alpha \xi$ (XI. 8 [40.3-7]). Hero's use of the impersonal form $\dot{\alpha} \rho \varepsilon ́ \sigma \kappa \varepsilon \iota$ in this context recall s a similar idiom inAth. Mech. 33.5 and 35.4, where the phrase 'Apéøкعı $\delta \varepsilon ́ ~ \mu o ı, ~ e t c . ~ i n t r o d u c e s ~ t w o ~ t e c h n o l o g i c a l ~ i n n o v a t i o n s: ~$ the forewhed ($\pi \rho o ́ \tau \rho о \chi о \varsigma)$ for tortoises and other stone-throwing machines and the goblet-jointed crane (where the element of innovation consists in the combination of the goble-joint, $\chi \alpha \rho \chi$ ๆ́ σ ıv, and the crane, $\gamma \varepsilon$ ќ $\alpha v o \varsigma) .{ }^{245}$ This somewhat parallel usage lends further support to the idea that the third configuration belongs to Hero. For more on snakelike motion, including discussion of Schmidt's interpolations, seeComm ad loc.

5.6.2 Two-counterweight system

In ch. XIX, Hero discusses an alternative system for bringing about motion in the mobile automaton. Instead of having only one counterweight, the automaton now has two counterweights, one bringing about forward and backward motion, the other all those movements that do not have to do with locomotion ($\alpha i \delta \bar{\varepsilon}$
 separate tube, which is nothing other than a section of the previously undivided бúpıyگ. The whole chapter has been deemed an interpolation by Olivieri (1901: 431-2). Olivieri's main point is that the chapter does not constitute an altemative explanation of how movements are effected, but rather a failed attempt to fill a Iacuna in the text. What is missing, he argues, is the explanation of how the movements other than locomotion succeed one another. The chapter, which Olivieri regards as unrelated to the preceding sections (XVII.3-XVIII), would thus provide only limited information on the connection between forward and backward motion and all the other movements. Olivieri's argument rests on two misconceptions: (1) that $\alpha \not \lambda \lambda \omega \varsigma$ (XIX. 1 [60.10]) is out of context (he considers

[^76]the term 'strano e sintomatico', p. 431); (2) that the marginal note found at the end of almost all manuscripts ($\lambda \varepsilon$ cíncı) indi cates a lacuna occurring in BOOK One. As far as these two points are concerned, Schmidt (1903: 277-8) notes that in ch. XIX the movements are presented as occurring in a different way than before (namely, by means of two counterweights) and that λ عíncı can only indicate a lacuna at the end of the treatise (cf. already above, n. 147). This is certainly correct, but there is no reason to presume that, because the mobile automaton features two distinct types of movement, the two-counterweight system represents the oldest version of the device. ${ }^{246}$ From what has been said so far, it is fairly clear that Hero is adapting at least one prior version of the automaton, and that the version handed down to him by his predecessors is the one featuring a single counterweight. Furthermore, as we have seen, ch. XIX begins with Opening E, which does not merely argue against interpolation but indeed suggests that the two-counterweight system is Hero's own improvement. If so, then, why does Hero seem to prefer the single-counterweight system? There are, I think, at least two non-mutually exclusive ways of answering this question. The first way is to assume that the improved model was still in an experimental phase at the time of Hero's writing. This would have probably meant that it had not yet been further adapted to incorporate configurations for more complex pattems of movement. The second way is to deny downright that Hero prefers either system. The most logical thing for himto do was to adopt only one system (the oldest one) and progressively adapt it to various forms of motion. Describing the two-counterweight system earlier on would have, at least to some extent, disrupted the narrative, and so Hero relegated his description to the end of the book. Was Olivieri right, then, in assuming that the chapter has no connection with what precedes? Schmidt (1903: 277-8) suggests, rather cryptically, that the connection between XVII.3-XVIII and ch. XIX lies in the fact that the locomotion of the automaton is still brought about by means of a single counterweight. While this is true as far as it goes, it overlooks the purpose of XVII.3-XVIII.2. There Hero proposes three alternative modifications to the basic configuration of the automaton, which would, at least in theory, lengthen

[^77]the distance travelled. ${ }^{247}$ A tube containing two counterweights would have meant a double length of cord connected to the wheed axle, and that would have increased the range of motion. The two-counterweight system, therefore, does not represent sic et simpliciter an alternative to the single-counterweight system, but rather an improvement on the potentially unsuccessful modifications described in the preceding context. It does, in other words, find its natural place inch. XIX.

5.6.3 Nauplius' torch

In ch. XXVIII, Hero deals mainly with the construction and operation of Nauplius' torch. The device consists essentially of a bronze chest containing a
 véc, XXVIII. 3 [102.5]), but later as equipped with a triangular bronze plate
 second version of the device, where wood shavings are used as a combustible, recalls the mechanism used to light the fire on the altar of Dionysus in the mobile automaton (XII.2-4 [42.16-44.11]). Hero may have this in mind when he speaks of 'another' plate Before explaining how the plate is moved mechanically, Hero proposes equipping it with a wooden peg: кaì $\gamma \grave{\alpha} \rho$ そú $\lambda 1 v o v$
 $\tau \grave{̀} v \quad \varphi \lambda o ́ \gamma \alpha$ (XXVIII. 6 [102.23-24]). Schmidt LXIII found these words suspicious, and tentatively suggested (app. crit. to 444.4) either replacing ė $\pi \iota o v ́-$ $\rho 10 v$ with $\kappa \lambda \varepsilon 1 \theta$ piov or deleting the whole passage. His main reasons for suspecting interpolation are as follows: (1) the peg is made of wood, unlike the rest of the chest; (2) there is a contradiction with XXVIII. 3 [102.5];248 (3) capping the lamp means that the flame goes out when oxygen is exhausted. As to the peg, Schmidt no doubt fears that it would catch fire (cf. below, n. 250). If we follow Prou 241 n . q, however, the flame of the lamp is covered by the surface near the base of the plate, which, by absorbing the heat of the flame, would prevent the shavings from catching fire owing to overheating. It is thus unlikely

[^78]that the peg, driven through the extremity opposite the base, ${ }^{249}$ would start burning. To this we should probably add that Schmidt's proposed emendation is pointless - and this not only because а к $\lambda \varepsilon ı \theta$ píov ('slide’) would still be made of wood but above all because it could not act as a pivot point for the rotation of the plate. ${ }^{250}$ As regards the second point, there is no contradiction here. At first glance, there seems to be a contradiction between XXVIII. 3 [102.5] and XXVIII. 5 [102.15-16], but, as we shall see, it is only apparent. Moreover, the fact that the passage contains a conditional clause introduced by a slight variation of Opening E leads us to think that the capping of the lamp is an improvement made by Hero. Finally, with respect to the threat posed by oxygen exhaustion, we note that Hero only intends to conceal the flame. He does not say anywhere that the plate is airtight. When he instructs the reader to cut out an aperture in the upper side of the chest (XXVIII. 4 [102.9-10]), ${ }^{251}$ he does not say what shape it should be, and nothing compels us to believe that it is shaped to match the plate All in all, Schmidt's arguments are at best inconclusive, and it seems unnecessary to resort to interpolation to explain the apparently contradictory elements of the text. The reasons for this claim will become clear in the following section.

5.7 Status of thetext

The question of the status of the text is intimately connected with Hero's relationship to his sources. Once again, a comparison with the Pneumatica is instructive Drachmann (1948: 79-80) has convincingly hypothesised that the Pneumatica, as we now have it, is Hero's posthumously published notebook. In his view, the introduction and the first eight chapters, all of which begin with Opening A, represent either Hero's own manuscript or a rough draft for the beginning of the work, whereas the remaining chapters would be his material in

[^79]the form of more or less finished notes. Drachmann's hypothesis explains not only the disorderly arrangement of the material but also various inconsistencies such as the absence of letter labels in certain descriptions. One of the most interesting examples he cites of the latter is Spir. ch. 2.34, which contains two slightly different descriptions of the same instrument (the so-called miliarium, a water-heating device), one with and the other without letter labeds. ${ }^{252}$

Let us proceed, then, on the assumption that Hero did not complete his revision of the Automata and see whether it fits with, and justifies, the status of the text. This assumption would in effect explain the following:
(a) The references to topics not discussed anywhere in the treatise, such as II.6 [10.8] and III . 2 [16.10];
(b) Some digressions or apparently misplaced material, such as XII. 3 [44.1-2] and XXVIII.2-3 [100.11-102.3];
(c) The disorderly or discontinuous arrangement of the material such as occurs, for example, in XII.2-4 [42.14-44.11] and XIII.2-7 [44.17-48.13];
(d) The contradiction concerning the appearance of Athena, who is also described as being painted on the cloth background at XXVIII. 1 [100.7-8];
(e) The contradiction(s) concerning Nauplius torch;
(f) The (partial) repetition or duplication of the information such as occurs at XII . 4 [44.7-9], XXVIII. 3 [102.3-4] and XXVIII. 4 [102.14];
(g) The complete absence of letter labels in some descriptions, such as XIV.1-2 [50.18-52.6], XX. 4 [66.10-18], XXV.2-6 [84.15-88.14], XXIX.1-2 [104.19-106.3] and XXX.1-6 [106.7-110.10]. It is interesting to note that three of thefour passages fromBоOK Two contain genuine Heronian descriptions; ${ }^{253}$
(h) The clear-cut bipartite structure of ch. XXVI, where we first find a description without letter labels, mainly dealing with constructional details, and then a short, badly corrupt description with letter labels, explaining the associated configuration. The first description may have been taken directly

[^80]from Philo, whereas the second description may have been either added or, more likely, edited by Hero. ${ }^{254}$

Drachmann (1948: 80) finds confimmation of his hypothesis, e contrario, in the fact that whenever Hero describes two devices, of which one is a clear improvement on the other, the original version always comes first. The situation is not different in the case of the Automata. We have seen that Hero presents multiple configurations, and that he does so in a progressive fashion. The three configurations for snake like motion, for instance, follow naturally from each other just as the two-counterweight system follows from the less reliable mechanisms for increasing the range. Similarly, Hero's own version of Nauplius' torch comes after the first (presumably Philonian) version of the device, as also happens in the case of the sounding devices described in ch. XIV (see synopsis ad loc.).

The hypothesis that the Automata was published (perhaps posthumously) in an incompletely revised form has clear advantages. It enables us to avoid the vicious circles involved in certain assumptions of interpolation. It enables us to avoid interpreting the lack of details or follow-up information as an indi cation of the incompleteness of the text. ${ }^{255}$ It enables us to correlate the distribution of connecting formulae with the processes of authorial revision and thereby to confirm that Book One had been revised to a greater extent than Book Two (which, indeed, shows a higher degree of internal incoherence). Overall, it enables us to see the text in a new light, one which accords best with Hero's actual use of sources.

[^81]
6. PRINCIPLES AND CRITERIA

6.1 Text

The constitutio textus owes much to the work of the previous editor, although divergences are not at all rare. Compared to Schmidt, I take a bolder yet more consistent approach to conjectural emendation, while retaining manuscript readings wherever possible. All text-critical decisions have been driven by the concern to offer a text as close as possible to the original. For this purpose, I took into account Hero's style and vocabulary, as well as statistical and contextual considerations. Pal aeographical aspects played a role as well, and the reader will find evidence of this in the Commentary. Textually, Book Two represents a more difficult challengefor the modern critic than BOOK ONE, and it is certainly regrettable that, within the confines of this work, it was not possible to provide a commentary on the whole treatise. Nevertheless, al though the precise extent of Hero's debt to Philo is unknown, the usage of the latter author has been consistently taken into account as part of the text-critical process. Comparison with Philonian material proved particularly instructive wherever Heronian evidence was scarce or absent.

The formatting and layout of the text follows as far as possible manuscript practice I have adopted the chapter divisions which appear in the main manuscripts, but, for the sake of convenience, I have accepted the additions made by Schmidt and Haase (cf. above, §5.1). Similarly, in order to avoid introducing a new system of internal division, I have employed Schmidt's subdivisions without altering the consecutive numbering of chapters and sections. Internal paragraphing more faithfully reflects that of the manuscripts, in particular \mathbf{T} and - in places where the latter is no longer extant (VII.1 [26.7] and XIX. 1 [60.12]) - its closely related manuscript Eb. In two cases, I have followed AGM (XXIV. 2 [80.14]) and M alone (XXVI. 1 [90.10]). However, in order to achieve consistency with other chapter openings of Book Two, I have
preferred not to indent XXV. 1 [84.12] and XXVI. 1 [90.6], both of which are marked off (with an L-shaped sign) in M. ${ }^{256}$

Spelling has been normalised throughout. ${ }^{257}$ Capitalisation has been preserved as found in the manuscripts, except in the case of personal names, which are always capitalised. Unlike in the previous edition, letter labds have been reproduced as they appear in the manuscripts: lower case and overlined. The following spelling and accentuation errors were overlooked by Schmidt: кат $\alpha \pi \rho o ́ \sigma \theta \varepsilon v$ and/or the further corruption катд̀ $\pi \rho o ́ \sigma \theta \varepsilon v$ (inexplicably printed
 former is attested much more frequently in later times (from Oribasius onwards), and which I have silently corrected at VI.4 [26.3] and XXIV. 5 [84.3]; хعpíov/- α for χ ह́pıov/- α.

Punctuation presents a different set of issues and problems. Thévenot's (and, to a slighty lesser extent, Prou's) punctuation is, on the whole, confusing and unhelpful, because, apparently, it is based on the manuscript punctuation, which is often haphazard and erratic. The punctuation of Schmidt's edition is much more accurate and systematic, al though it is not al ways clear when he is following the manuscripts and when he is supplying his own punctuation (in his apparatus criticus he does not record deviations from the main manuscripts, nor does he provide a statement of practice elsewhere). I have therefore chiefly adopted his punctuation, deviating from it where a different punctuation either accords better with my understanding of the text (see, for instance, XXIV. 2 [80.12]) or improves its readability and consistency (see, for instance, XXII. 5 [72.12]).

[^82]The apparatus criticus has been composed in the positive way, except in the following cases: (1) when a negative entry does not cause inconvenience, confusion or obscurity (for instance II. 9 [12.10]); (2) when I record deviations from Schmidt's punctuation (for instances, cf. above, §6.1). As a rule, I have not recorded orthographic errors and variants when they do not alter the meaning of the transmitted text.

6.3Translation

As has been seen in $\S 2.2$ above, the most recent complete translations of the treatise are not unproblematic, particularly with respect to transparency and faithfulness to the text. Moreover, Murphy's English translation is not easily accessible, and readers are still more likely to derive greater benefit from Schmidt's older translation into German. In my English translation I have attempted to adhere as closely as possible to the original text while at the same time aiming at clarity, literary quality and readability. I have tried to convey Hero's stylistic features as much as possible, although on the whole I have prioritised accuracy over style. This proved particularly important in the case of an author like Hero, who intertwines different discourses and domains (to wit, mathematics, technology, theatre, architecture and philosophy) and who deliberately deploys technical language. The reader should therefore not be amazed, for example, that 'hank', 'doorjamb' and 'peristyle' have been preferred over words like ‘ coil’, ‘doorpost' and 'colonnade'.

6.3.1 Translating 'diminutives'

A striking characteristic of the Automata and other Heronian works, in particular the Pneumatica, is the ubiquitous use of what are commonly, al beit sometimes erroneously, referred to as 'diminutives'. This broad category, which has been thoroughly studied by Petersen (1910) and others, ${ }^{259}$ includes, among others, the following kinds of terms: nouns equivalent to their primitives (for instance $\alpha \gamma$ -

[^83]$\gamma \varepsilon^{\prime} \delta(o v)$ or whose diminutive force is faded (for instance $\left.\pi \alpha \rho \alpha \sigma \tau \alpha \delta \iota o v\right) ;$ instrumental nouns (for instance μ о λ íov, каvóviov); nouns conveying the idea 'made of' (for instance π ıर́́кıov, $\sigma \alpha v i ́ \delta ı v)$; nouns whose diminutive meaning is closely associated or concomitant with the idea of resemblance (for instance $\sigma \varphi \alpha$ ipíov); nouns more or less exclusively denoting resemblance (for instance $\dot{\alpha} \sigma \tau \varepsilon \rho i ́ \sigma \kappa о \varsigma)$. Unlike in previous translations, where it is not always clear why a diminutive form has been translated in such and such a way, words suffixed with -ıov, -íc, -íбкoৎ, -(δ) ópıov, -(ε)í íıov, -v́ $\lambda \lambda ı \frac{1}{}$ have been studied individually. Their translation has been based upon (1) an investigation of the Heronian usage of such terms and their primitives wherever existing, (2) a careful perusal of previous scholarship (which, however, does not discuss all such terms) and (3) a comparison with terms unambiguously belonging to one of the above-mentioned classes. The results of this study showed, among other things, that, regardless of the class they belong to, a number of 'diminutives' tend to be used as stylistic

 $\tau \rho \dot{\pi} \pi \eta \mu \alpha / \tau \rho v \pi \eta \mu \alpha ́ \tau \iota o v, \tau \dot{\mu} \mu \pi \alpha v o v / \tau v \mu \pi \alpha ́ v ı v, \chi \alpha ́ \lambda \alpha \sigma \mu \alpha / \chi \alpha \lambda \alpha \sigma \mu \alpha ́ \tau \iota v / \pi \alpha \rho \alpha \chi \alpha \lambda \alpha-$
 סıov, which, as has been convincingly shown by K osmetatou (2004), can be used to denote both resemblance and small size (contra, Petersen 1910: 230). This term has been translated here as 'figurine', except where it is specified by the possessive pronoun α v̇兀ท̂c/av̉兀ov̂ (XX. 2 [64.16-17], XXII. 6 [74.2]). ${ }^{260}$ In cases where the precise value of a term cannot be easily determined ($\alpha \rho \mu \varepsilon ́ v i \alpha, ~ غ ̇ \pi ı o v ́-~$ ρ ov, π upríov), the diminutive value is cautiously prefered. ${ }^{261}$

[^84]6.3.2 Translating mathematical Ianguage, including the formula with हैб $\tau \omega$

Mathematical language al so deserves some comment here. The following points are particularly relevant:
(1) Elliptical expressions referring to geometrical (or geometrised) entities have been generally left implicit as in the original Greek except when (a) it is necessary for the sake of clarity to specify what the objects in question are, ${ }^{262}$ and/or when (b) such expressions are not otherwise understandable or translatable into English. In the latter two cases, in line with the editorial conventions followed in the translation (on which, see below), angle brackets are used to enclose elided expressions. As an example of (a), take, for instance, VII. 1 [26.9], where we find the first mention of $\dot{\eta} \overline{\varepsilon \alpha \zeta}$ [sc. $\gamma \rho \alpha \mu \mu \eta$ '], 'the dine> $\overline{\varepsilon \alpha \zeta^{\prime}}$ (later referred to more simply as $\overline{\varepsilon \zeta, ~ V I I . ~} 2$ [26.13]). For (b), see, most relevantly, XXIV. 3 [82.12], where the hand and arm are described geometrically
 use of angle brackets does not extend to expressions involving the term $\dot{\eta} \varepsilon \dot{v} \theta \varepsilon i \alpha$, because the reference to a line is unambiguous to modern readers.
(2) A related issue has to do with the way in which Hero refers to the diagrams accompanying his mechanical or geometrical descriptions. As shown by Roby (2016: 176-7), Hero - like Biton before him, and unlike Philo establishes a direct relationship between the mechanical components and the corresponding elements in the diagrams, assigning letter labels to the objects described rather than resorting to the (typically Philonian) periphrastic use of $\dot{\varepsilon} \pi i$ + genitive (on which, see point (4) below). As part of his direct approach, Hero describes geometrical/geometrised objects in mathematical style, using constructions such as हैб $\tau \omega$ रáp $\tau ı \pi \lambda \imath v \theta i ́ o v ~ \tau o ̀ ~ \overline{\alpha \beta \gamma \delta ~(V .3 ~[20.18-19]) . ~ I n ~}$ translating this and similar expressions, I have mostly opted for the more unconventional option and taken the verb ciuí (or γ í $\gamma v o \mu \alpha ı$) as existential ('Let there be a case, $\overline{\alpha \beta \gamma \delta}$ ', henceforth referred to as option (a)) rather than as copulative ('Let $\overline{\alpha \beta \gamma \delta}$ be a case' or 'Let a case be $\overline{\alpha \beta \gamma \delta}$ ', or, even worse, 'Let the case be $\overline{\alpha \beta \gamma \delta}{ }^{\prime}$, henceforth referred to, respectively, as options (b^{1}), (b^{2}) and

[^85]$\left.\left(b^{3}\right)\right) .{ }^{263}$ There are two main reasons for this choice. First, as pointed out by Netz (1999: 43-4) and most recently reiterated by Roby (2016: 175), ${ }^{264}$ the use of the
 preexistence of $A B$ qua straight line, and hence the more conventional understanding (option (b^{1}) is much more frequent than (b^{2}) and $\left(b^{3}\right)$) would yield 'Iet the straight lineAB be a straight line' (where the straight lineAB is assigned an altribute that it al ready possesses by virtue of its grammatical correlation with the indefinite noun $\varepsilon v \dot{\theta} \theta \varepsilon i \alpha)$. On the other hand, the first option (in this case, 'Let there be a straight line, AB') establishes (or, in fact, brings into existence) an object, only later assigning a diagrammatic location to it. Second, Federspied (1995), who, like Netz (1999), advocates the use of existential $\varepsilon i \mu$ í, persuasively demonstrates on linguistic and stylistic grounds that, except under specific circumstances, in a mathematical proposition the first occurrence of a geometrical object (as opposed to its second occurrence) is indefinite (this is what he calls 'Loi fondamentale', and is further articulated by his 'Règle I'), ${ }^{265}$ further noting that in such occurrences letter labels are used appositionally. ${ }^{266}$ This has two important implications. On the one hand, if letter labels are indeed used appositionally, then the more correct interpretation of the éoro formula is the one which takes the verb as existential (option (a)). ${ }^{267}$ In other words,

[^86]translating the verb sipí as copulative confers (a certain degree of) definiteness where there is none in the original (Federspiel 1995: 249), and this is particularly obvious in the case of options (b^{1}) and (b^{3}). On the other hand, apparently definite expressions such as $\dot{\varepsilon} \pi \varepsilon \zeta \varepsilon v ́ \chi \theta \omega \dot{\eta} \mathrm{AB}$ (where $\dot{\eta} \mathrm{AB}$ has not been mentioned in the preceding context) are in fact elliptical indefinite expressions in which letter labels are in apposition to an elided noun (in this particular case,
 geometrical entity is preceded by the article and is not determined either as representative of a class of elements or in relation to its geometrical construction ('Règles Ila-b', cf. above, n. 265), the use of the article is dictated by syntacticstylistic reasons rather than by the actual definiteness of the object at hand ('Règle Ib', involving neutralisation of the opposition definite/indefinite). The most relevant cases that have been identified by Federspie (1995: 255-7, 27481) are those where (1) the noun agrees with an attributive participle which in
 $\dot{\varepsilon} \mu \pi i \pi \tau 0 v \sigma \alpha$, Euc. 1.29) and (2) the noun is modified attributively by a
 Apollon. Perg. Con. $1.14=52.21$ Heiberg). Generally speaking, therefore, my translation reflects the presence or absence of the definite article, but always omits it when it precedes the first mention of a geometrical/geometrised entity that occurs under the circumstances just mentioned. Consider the following examples:

- VII. 1 [26.8] $\delta ı \eta ́ \chi \theta \omega$ นıc $\dot{\eta} \overline{\alpha \delta}$ ('Let a certain বine>, $\overline{\alpha \delta}$, be drawn'). This is the first mention of line $\overline{\alpha \delta}$. The expression stands for ${ }^{*} \delta{ }^{\prime} \eta \chi \theta \omega \tau \iota \varsigma \varepsilon \dot{v} \theta \varepsilon i \alpha \alpha$ $\dot{\eta} \overline{\alpha \delta}$, and its indefiniteness is emphasised by the use of the pronoun $\tau \iota c$ (on the usage, see Federspiel 1995: 272). So also VII. 2 [26.14]. In this and similar cases, I do not specify that the line is straight to avoid excessive redundancy.
 ('Let there be a knob placed on top of the shrine, $\overline{\kappa \lambda} \mu^{\prime}$ '). Unlike most of the components mentioned in the immediately preceding context, the knob has not been mentioned before. (Equally, the base of Dionysus has not been mentioned before, but the article preceding β áбıs is justified by the genitive $\tau 0 \hat{} \Delta \Delta$ ıvv́бov.)

[^87]The reference is therefore indefinite, and the article particularises the knob as lying on the roof (attributive participle governing a noun in the dative).
 (' 4 Let there be> a notch on the side, $\overline{\alpha \beta}$ '). The notch has not been mentioned before, and hence the reference is indefinite. The article preceding $\dot{\varepsilon} \kappa к о \pi \eta$ is justified by the prepositional phrase $\dot{\eta} \dot{\varepsilon} \kappa \tau \hat{\eta} \varsigma \pi \lambda \varepsilon u \rho \hat{\alpha} \varsigma$, which specifies the location of the notch. The same principle is at work at VI. 4 [26.4-5], where, al though the ring has al ready been mentioned before(VI.1 [24.3]), its mention (o $\delta \grave{\varepsilon} \dot{\varepsilon} v$ av̉兀ṇ̂ крíкоऽ $\delta \bar{\varepsilon}$) is part of a reconfiguration in which all other components lack the article Hero in this case could have dispensed with the article by adopting a different word-order (крíкоц $\delta \dot{\varepsilon}$ ह̀v גv̉t@̣ ó $\bar{\varepsilon}$). Compare X. 2 [34.6]

(3) As a corollary to (2), note that, while letter labels usually stand in apposition to the first occurrence of a geometrical/geometrised entity, in subsequent occurrences they are found in attributive position. Contrast, for example, the first mention of the knob $\bar{\xi}$ at V .4 [22.4] with its second mention in the same paragraph ($\tau o ̀ v \bar{\xi} \tau v ́ \lambda o v, 22.10$). The only way to distinguish between appositionally and attributively used letter labels is the use of punctuation. Therefore, following in the footsteps of Netz (2004b), I place appositionally used letter labels between commes (or between a comma and a semicolon or a period) whenever English syntax al lows, even though such punctuation does not reflect that of the Greek text and may appear redundant at times.
(4) The periphrastic use of $\grave{\varepsilon} \pi \dot{\prime}+$ genitive to denote points of a diagram is found exclusively in the allegedly Philonian portions of Book Two. Perhaps the
 $\bar{\kappa}$ ('the end of the cord, where the <point> $\bar{\kappa}$ is'). In all other instances of this use, the verb 'to be' is understood, and has therefore been enclosed in angle brackets.

The editorial signs employed in the translation are the same as those used in the text and apparatus criticus (cf. Conspectus siglorum et notarum), except that square brackets encl ose explanations or clarifications of terms.

6.4 Commentary

The Commentary is predominantly, but not at all exclusively, philological. Its purpose is threefold: (1) to explain as far as possible individual translation and textual choices; (2) to offer a fresh interpretation of the text that takes into account not only intemal evidence but also how the work relates to the (literary, philosophical, technological) traditions within which it is situated; (3) to assess the technical feasibility of the mechanisms described in the text and, where possible, to provide evidence-based reconstructions. The decision to focus on Hero's language and style has been made in the belief that the close study of the text is the only way to understand it correctly. Commentary units correspond to the main textual units outlined in $\S 5.1$ above and are always prefaced by summarising synopses.
6.5 Illustrations

At the end of the thesis I append a number of illustrations (Appendix 4), namely (a) manuscript diagrams and (b) modem reconstructions.

As far as (a) is concerned, note that the vast majority of surviving manuscripts contain letter-labelled diagrams. These are usually interspersed in the text, but may also appear in the margins and, in one case, are appended at the end (Bb). Other manuscripts leave empty spaces ($\mathbf{A c}, \mathbf{B c}, \mathbf{L a} \mathbf{M}, \mathbf{P d} \mathbf{P e} \mathbf{P h}$ $\mathbf{V d}$), while yet others have both diagrams and empty spaces ($\mathbf{A b}, \mathbf{L c}$). One manuscript alone has neither diagrams nor empty spaces (Ld). As part of a tradition of mechanical diagrams (on which, se Roby 2016: esp. 154-163), our manuscript diagrams did not originate with Hero himself. Because they underwent a number of alterations in the course of their transmission over a long period of time, they cannot be taken in any way as a faithful reflection of the originals (see, for instance, my discussions in Comm on XI. 10 [40.18-19] and XVI. 1 [54.13-14]). Therefore, when I refer to manuscript diagrams in my Commentary, I consider them, at best, as offering indicative rather than conclusive evidence. All manuscript diagrams included in this thesis were taken from the oldest manuscript, A, which is stored in the Biblioteca Nazionale Marciana in Venice, Italy. Permission to reproduce these diagrams has been
granted by the holding library. Unfortunately, because of budget limitations, it was not possible to provide coloured photographic reproductions. The reader should also bear in mind that, since the present study is mainly confined to a textual examination of Hero's treatise, I have not examined the Heronian diagrammatic tradition in any detail. All references to 'manuscript diagrams' in my Commentary should, nonetheless, be understood as implying that all the manuscript diagrams that I have seen are unanimous in their representation of specific elements.

As for (b), I provide modem reconstructions of the mobile automaton, which has been the primary focus of the project on Hero's automata as a whole. All such reconstructions are informed by a minimalist approach to design and are based on a careful study of the text itself. As such, they differ in a number of ways from the surviving manuscript diagrams, and are in no way intended to replace them. Unless otherwise stated, all modern illustrations are my own. The vast majority of my reconstructions were made using Vectr (http://vectr.com). Figs 2 and $\mathbf{6}$ b were made with SketchUp 2018. My own reconstructions, of course, make no pretence to absolute accuracy.

Given the mutually supporting relationship between text and images, the reader may wonder why no attempt has been made to intersperse illustrations throughout the text. The choice to relegate illustrations to an appendix was made to allow strict synchronisation between text and translation. All references to illustrations conveniently appear in the right margin of the English translation next to the pertinent portion of the text.

CONSPECTVS SIGLOR VM ET NOTARVM

Codices potiores

A
codex Marcianus gr. Z. 516, saec. XIII
codex Guelferbitanus Gudianus gr. 19, saec. XVI
codex Magliabechianus II.III.36, saec. XVI
codex Taurinensis B.V.20, saec. XVI (1541)
consensus codicum AGMT

Rarius citantur

codex Ambrosianus C 266 inf., saec. XVI
codex Ambrosianus D 131 inf., saec. XVI
codex Amstelodamensis III.F. 26 (olim 104), saec. XVII
codex Angelicanus gr. 109 (olim S.I.17), saec. XVI (1548-1553)
codex deperditus Argentoratensis C.III.6, saec. XVI
codex Barberinianus gr. 261 (olim II.82), saec. XVI-XVII
codex Baroccianus gr. 169, saec. XV (1476-1500)
codex Escurialensis T.I.3, saec. XVI
codex Fabritius 93 kvart (olim Hauniensis universalis 93), saec. XVIII
codex Leidensis Bonaventurae Vulcanii 4, saec. XVI/XVII (1500-1600?)
codex Leidensis Scaligeri 45, saec. XV ex./XVI ${ }^{1}$ codex Leidensis Vossianus Miscellanaeus 6, saec. XVII codex Leidensis Vossianus Miscellanaeus 17, saec. XVII codex Matritensis 4788 saec. XVI
codex Monacensis gr. 431, saec. XVI
codex Oxoniensis Collegii Beatae Mariae Magdalenae 12, saec. XVI (1569-1570)
codex Parisinus gr. 2428, saec. XVI
codex Parisinus gr. 2430, saec. XVI/XVII (1590-1610)
codex Parisinus gr. 2431, saec. XVI (1540-1550)
codex Parisinus gr. 2432, saec. XVI (1555-1575)

Pe	codex Parisinus gr. 2434, saec. XVI (1520-1570)
Pf	codex Parisinus gr. 2519, saec. XV vel XVI
Pg	codex Parisinus gr. 2520, saec. XVI
Ph	codex Parisinus suppl. gr. 11, saec. XVI
R	codex Riccardianus gr. 47, saec. XVI
Ta	codex Taurinensis B.I.18, saec. XVI
Tb	codex Thottianus 215, saec. XVI
Vd	codex Vindobonensis suppl. gr. 21, saec. XVII (c.1600)

Viri docti

Baldi	Bernardino Baldi
Brinkmann	August Brinkmann
Diels	Hermann Diels
Egger	Maximilien Egger, sed in uno tantum loco incertum est utrum agatur de Maximilien Egger an Émile Egger; vide supra, p. xviii
Haase	Friedrich Haase
Hildebrandt	Paul Hildebrandt
Olivieri	Alessandro Olivieri
Prou	Victor Prou
H. Schöne	Hermann Schöne
R. Schöne	Richard Schöne
Schmidt	Wilhelm Schmidt
Susemihl	Franz Susemihl
Weil	Henri Weil

X^{1}	lectio primae manus	adn. crit.	adnotationes criticae
X^{2}	correctio vel lectio	app. crit.	apparatus criticus
	secundae manus	cens.	censuit
$\mathrm{X}^{\text {ac }}$	lectio ante	cett.	ceteri (editores)
	correctionem	coni.	coniecit
X^{pc}	lectio post	corr.	correxit
	correctionem	del.	delevit
$X^{\text {cp }}$	lectio in compendio	distinx.	distinxit
	scripta	dub.	dubitanter
X^{mg}	lectio in margine	edd.	editores
	scripta	fort.	fortasse
$\mathrm{X}^{\text {s1 }}$	lectio supra lineam	interpunx.	interpunxit (-erunt)
	scripta	$1(1)$.	linea (-ae)
$\dagger \dagger$	corruptela	n.	nota
$<\alpha \beta \gamma>$	litterae ab editore	obl.	oblocutus est
	additae	om.	omisit (-erunt)
$\{\alpha \beta \gamma\}$	litterae ab editore	$\mathrm{p}(\mathrm{p})$.	pagina (-ae)
	deletae	prob.	probante (-ibus)
<***>	lacuna suppleta est	rec.	recepit (-erunt)
[***]	litterae deperditae	suppl.	supplevit
add.	addidit	transp.	transposuit

TEXT AND TRANSLATION

HP $2 N O \Sigma$ A $\Lambda E E A N \Delta P E \Omega \Sigma$ ПЕРI AYTOMATQN

 $\sigma \kappa \varepsilon v \alpha \sigma \mu \varepsilon ́ v \omega v$.

[^88]
HERO OF ALEXANDRIA'S

ONAUTOMATA

I (1) Since the subject of automata-making was favourably received by the former generations on account of both the varied types of craftsmanship in it and the astounding character of the spectacle $<^{* * *>}$. For, to speak briefly, every part of mechanics is taken over in the very practice of automata-making, through the things which are completed in it one by one
(2) Its scope is as follows: shrines or altars of suitable size are constructed, which move forward by themselves and stop at certain defined locations; and each of the figurines that are inside them moves by itself in accordance either with the set purpose or with the appropriate story, and <eventual ly> they return to their starting point. Therefore, such crafted types of automata are cal led ' mobile'.
(3) However, there is also among them [the automata] another kind, which is called 'stationary'. Its purpose is as follows: a box with open doors stands on a pillar, and inside it <appears> an arrangement of figurines prepared for the sake of some story.

 ors.

[^89](4) So, when the box is closed, the doors open by themselves, and the painted array of figurines appears; not long after, once the doors have closed and opened again automatically, another arrangement of figurines, corresponding with the one appeared before, appears; once the doors have closed and opened again, another arrangement of figurines, corresponding with the one set up before, appears again, and either <this> completes the pre-conceived story or yet another arrangement appears after this one, until thestory is brought to an end.
(5) And then each of the painted figurines displayed in the box can be seen in motion, if the story requires it: for example, some sawing, some hewing with the adze, some others working with hammers or axes, so as to make noise with each blow, just like in real life
(6) Other movements can also be performed inside the box, such as the lighting of a fire or the appearance of figurines which were not visible before, and their disappearance In short, anyone can set the figurines in motion as they may choose with no one going closer to them
(7) Then, the mechanism of the stationary automata is safer and freer from danger, as well as admitting of more types of arrangements than the mobile ones. Former generations used to call those crafting such automata 'won-
 $\tau \uparrow \varsigma \varsigma \theta \varepsilon \omega$ píac.

 $\dot{\alpha} \rho \mu o ́ \sigma \varepsilon ı ~ \pi \alpha ́ \sigma ற ̣ ~ \delta ı \alpha \theta \varepsilon ́ \sigma \varepsilon ı ~ \pi \rho o ̀ \varsigma ~ \tau o ̀ ~ \delta u ́ v \alpha \sigma \theta \alpha ı ~ \tau o ̀ v ~ \pi \rho о \alpha ı \rho о v ́ \mu \varepsilon-~$
 $\delta i \alpha \theta \varepsilon ́ \sigma \varepsilon \omega \varsigma$ દ̇vદ́ $\mu \alpha ́ \tau \omega v \gamma \rho \alpha ́ \psi о \mu \varepsilon \nu$.

兀ò ỏ π í $\sigma \omega$ દ̇ $\pi เ v \varepsilon v ́ \omega \sigma เ v . ~$

[^90]der-workers' because of the astounding character of the spectacle
(8) Therefore, in this book I am writing on mobile automata, setting forth a complex configuration of my own which will adapt to every <other> arrangement; in this way, whoever chooses to arrange differently will be able <to do so>, not lacking anything for the actualisation of the arrangement. In the following <book> I will write on stationary automata.

II (1) First of all, the ground on which the automaton is to move must be hard, horizontal and level, in order for its wheed s neither to sink when they are pressed down, nor to be hindered by any unevenness, nor to tilt backwards down while forcing their way up.
(2) But if the surface is not such as has been described, boards must be laid level on the ground, on which there will be grooves lengthwise with rods nailed on them in order for the wheels to roll along the grooves. Mobile automata must be constructed from light and dry timber, and should any other component of theirs be constructed from some other material, it will be necessary to try to make this too as light as possible in order that the auto-
 ǐv $\alpha \mu \eta ̀ ~ \delta ı \alpha ̀ ~ \tau o ̀ ~ \beta \alpha ́ \rho o s ~ \delta v \sigma \kappa i ́ v \eta \tau \alpha ~ \gamma \varepsilon ́ v \eta \tau \alpha ı . ~$
 $\tau \alpha \hat{\tau} \tau \alpha$ हैv $\tau \rho \rho v \alpha ́ \tau \varepsilon \alpha \dot{\alpha} \kappa \rho ı \beta \hat{\omega} \varsigma \kappa \alpha \grave{~} \pi \varepsilon \rho \grave{~ o ̀ ~ \kappa ı v \varepsilon i ̂ \tau \alpha ı ~} \lambda \varepsilon i ̂ \alpha ~ \kappa \alpha \grave{~} \mu \eta ̀$

 $\dot{\alpha} \rho \chi \hat{\eta} \varsigma \kappa \alpha \tau \varepsilon \sigma \tau \alpha ́ \theta \eta \sigma \alpha v$.

[^91]mata may not become difficult to move because of their own weight.
(3) Furthermore, anything that makes circular rotations or movements must be accurately tumed and anything around which things> are moved must be smooth and not rough, for example, the wheels around iron pivots inserted into iron sockets, and the figurines around bronze axles

Fig. 3 (cf. II.7) fitted tightly into bronze collars.

(4) It will al so be necessary to pour oil onto these tools so that they may all be easy to rotate in every possible way and there may be no jamming at all. Otherwise, nothing of what has been previously said will go according to plan. Also, the cords which we use for these purposes must neither stretch nor contract, but remain the length they were at the very beginning.
(5) This will be accomplished if we put them around some pegs, carefully stretch them to the utmost, leave them in place> for a short time and stretch them again; and \&his will be accomplished if,> after repeating the entire process several times, we smear a compound of wax and resin. It will also be better for us to hang a weight on them and leave them for a rather long time. If it [the cord] is pre-

 $\mu \varepsilon v$.

 $\lambda \varepsilon i ́ \alpha \varsigma ~ \mu о \lambda ı \beta \hat{\jmath} \varsigma$.

 $\pi \rho о \sigma \delta \varepsilon \delta \varepsilon \mu \varepsilon ́ v \eta \nu, \tau \eta ̀ \nu \delta \grave{\varepsilon} \dot{\varepsilon} \tau \varepsilon ́ \rho \alpha \nu \pi \rho o ̀ \varsigma ~ \tau @ ̣ ~ \kappa ı v o v \mu \varepsilon ́ v \varrho ~ \pi \rho о \sigma-$

 $\alpha v ̉ \tau о \mu \alpha ́ \tau o v ~ \pi \lambda ı v \theta$ tiov.

[^92]tested in this way, it will stretch not at all or really very litte. Or again, if we find, after getting the automaton strung, that one of those <cords> is stretched, we will cut it off.
(6) Nothing made of sinew must be used - except when it is necessary to make use of a hysplēnx - as it [the sinew] stretches or contracts depending on atmospheric conditions. Let the hysplenx be just like the axle which in catapults is set in the half-spring, as will become apparent in what follows. All these mobile automata start moving by means of a hysplēnx or a lead counterweight.
(7) What causes motion and what is moved have a cord in common, which has one end bound to what causes motion, and the other looped around what is moved. What is moved is an axle around which the cord is wound. Wheels are fitted to the axle so that, when the axle rotates and the cord unwinds, the wheeds, resting on the ground, may rotate as well. The case of the mobile automaton encircles the wheels.

 $\rho \varepsilon i ́ \alpha \varsigma ~ \kappa ı ท ŋ ́ \sigma \varepsilon ı \varsigma ~ \gamma i ́ v o v \tau \alpha ı ~ \pi \alpha \sigma \hat{v} \tau \hat{\nu} \sigma \pi \alpha ́ \rho \tau \omega v \pi \rho о \sigma \eta \gamma \kappa \cup \lambda \omega-$

[^93](8) The tension of the hyspl $\bar{n} x$ or the heaviness of the counterweight must be adjusted to the whole, so that neither the heaviness nor the tension of the hysplenx may be overcome by the case. Movements other than the journey [of the case] occur with all the cords, on the one hand, looped around the instruments being moved and, on the other, bound to the counterweight The counterweight is inside a tube, in which it can also descend fittingly and easily.
(9) In the case of mobile automata, either millet or mustard is put inside the tube, since both of them are light and flow easily, whereas in stationary automata dry sand is put inside; and when these <grains> pour out through the bottom of the tube, the counterweight descends gently and brings about motions by drawing each cord. The origin of motion lies in the tension of a cord, while the end of motion বies in> the loosening of a cord, that is, when the loop falls off the knob on the instrument being moved.
(10) Despite the fact that the cords being drawn by the counterweight are all drawn at equal speeds, they do not generate motions with equal speeds because they are not wound around equal instruments, but some are wound around bigger circles, some around smaller ones. Cords

 $\chi \alpha \lambda \alpha ́ \sigma \mu \alpha \tau \alpha$ है $\chi \varepsilon เ \nu$.
(11) $\tau \alpha ̀ ~ \delta \grave{~} \chi \alpha \lambda \alpha \alpha^{\sigma} \mu \alpha \tau \alpha \mu \eta \rho v ́ \mu \alpha \tau \alpha$ $\delta \varepsilon i ̂ ~ \pi о ו \varepsilon i ̂ v ~ \kappa \alpha i ̀ ~ \pi \rho о \sigma к о \lambda-~$

(12) $\delta \varepsilon i ̂ ~ \delta \varepsilon ̀ ~ \kappa \alpha i ̀ ~ \tau \alpha ̀ \varsigma ~ \tau \emptyset ิ v ~ \alpha ̉ \rho \chi \alpha i ́ \omega v ~ \varepsilon ̇ \kappa \varphi v \gamma \varepsilon i v ~ \delta ı \alpha \theta \varepsilon ́ \sigma \varepsilon ı \varsigma, ~ o ̈ \pi \omega \varsigma ~$

 $\theta \varepsilon ́ \mu \varepsilon \theta \alpha$ A M T : $\dot{\varepsilon} \kappa \tau \imath \theta \varepsilon ́ \mu \varepsilon v \alpha G \quad 17<{ }^{\prime} E \sigma \tau \omega>$ Schmidt $\pi \eta \prime \chi \varepsilon \circ \varsigma \mathbf{a A c a c}$:

 عíkoбl $\left.\mathrm{Tb}^{\text {(intextu) }}:{ }^{[* * *}\right] \mathrm{T}$
for instruments which are not moved at the same time must not be pulled taut at the same time, but cords for <instruments> which are moved later must have slack parts.
(11) It is necessary to make the slackenings into hanks and glue them down with wax onto the appropriate place inside the case, so that the counterweight may stretch the cord gently while taking up the slack. Attention must al so be paid to the cords, ensuring that each of them has been looped around its own instrument and not wound improperly; for, if one of them has been changed or wound improperly, the whole assemblage will come to a rest.
(12) The arrangements of the ancients must also be avoided, in order for the device to look morefresh; for it is possible, as previously mentioned, to create many different arrangements by employing the same methods. Whoever is devising a more pleasant arrangement will perform better in these things. The arrangement I set forth is such a one.
(1) \& Let there be>a base having a length of approximately one cubit, a width of about four palms and a height of nearly three palms, with a moulding running around both its upper and its lower parts. Four column shafts, having a height of roughly 8 palms and a width of two palms, stand on the corners, with little base-mouldings placed at the

 ő $\lambda о v, \dot{\omega} \varsigma \delta \alpha \kappa \tau \cup ́ \lambda \omega v \bar{\varepsilon}$.
(2) $\kappa \alpha \tau \alpha ̀ ~ \delta غ ̀ ~ \tau о \hat{v} \varepsilon ̇ \pi ı \sigma \tau \cup \lambda i ́ o v ~ к \alpha \tau \varepsilon ́ \sigma \tau \rho \omega \tau \alpha ı ~ \sigma \alpha v i ́ \delta ı \alpha ~ \kappa \alpha \lambda u ́-~$

 $\nu \varepsilon ı \alpha \nu, \kappa \alpha \theta \alpha ́ \pi \varepsilon \rho$ єірท́бєт α.

 $\pi \alpha \rho \alpha \kappa \alpha \theta \varepsilon ́ \zeta \varepsilon \tau \alpha l ~ \delta \varepsilon ̀ ~ \pi \alpha v \theta \eta \rho i ́ \sigma \kappa o \varsigma ~ \pi \rho o ̀ \varsigma ~ \tau o i ̂ \varsigma ~ \tau o v ̂ ~ \Delta l o v v ́ \sigma o v ~$ побív.

 $\sigma \mu \alpha \tau \alpha\{\tau \hat{\nu} \sigma \alpha \nu i \delta \omega \omega v\} \tau \varepsilon \kappa \tau о v ı \kappa \alpha ̀ ~ \xi \eta \rho \alpha ̀ ~ \omega ̋ \sigma \tau \varepsilon ~ \varepsilon ช ̋ \kappa \alpha v \sigma \tau \alpha$

 $\tau \imath \varsigma \pi \rho \circ \alpha ı \rho \hat{\tau} \alpha \downarrow$.

[^94]bottom and capitals in line with them placed at the top. On the capitals, all around, lies something> like an architrave, with a height oneeighth of the whole column, approximately 5 fingers.
(2) On the architrave are laid boards covering its upper surface, and a moulding runs all around. On the covering stands prominently, in the middlle, a circular shrine with six columns. On this stands a small cone-shaped cupola with a stretched surface, as will be said.

Fig. 1 (cf. XIII.3)
(3) On the peak stands a Nike with spread wings and holding a wreath in her right hand. In the middle of the shrine stands a figurine of Dionysus holding a thyrsus in his left hand, and a cup in his right. An effigy of a panther sits by Dionysus' side at his feet.
(4) In the spaces before Dionysus and behind him, on the covering, is an altar with woodwork shavings \{made of boards\}, dry enough to burn easily. At each of the columns of Dionysus' shrine, outside the shrine, stands a Bacchante prepared in whatever way one may choose.

 $\tau \eta ̂ \varsigma ~ \beta \alpha ́ \sigma \varepsilon \omega \varsigma ~ \tau о ́ \pi о \varsigma . ~ \alpha i ~ \delta غ ̀ ~ \pi \varepsilon \rho ı к и ́ к \lambda \varrho ~ В \alpha ́ к \chi \alpha ı ~ \pi \varepsilon \rho ı \varepsilon \lambda \varepsilon v ́ \sigma о v-$

 бuvєлıбтраюท́бєтаı.

[^95]Iv (1) With things in this way, at the beginning the automaton is put in a specific location and after a short time, while $<w e>$ keep away from it, it will move to some defined location. Once it has come to a standstill, the altar in front of Dionysus will flare up. Either milk or water will be made to spurt from Dionysus' thyrsus, while wine will stream out of his cup onto the panther lying beneath.
(2) Every place near the base's four columns will be adomed with garlands. The Bacchantes all around will go around the shrine dancing. There will be a clash of kettledrums and cymbals. Afterwards, when the noise has stopped, the figurine of Dionysus will turn towards the outside. The Nike placed on the small cupola, too, will rotate at the same time with it.
(3) Then again, the al tar that is in front of Dionysus, which before was behind him, will flare up. A gain there will be the spurt from the thyrsus, and the stream from the cup. Again the Bacchantes will dance to the sound of kettledrums and cymbals, going around the shrine. Again, once they have come to a stop, the automaton will move back to its starting point.

[^96](4) In this way the performance will come to an end. I employed the mentioned dimensions out of necessity; for if they are any larger, the sight will arouse suspicion as though someone was contriving these movements from the inside. Then, as a result, in both the mobile and the stationary automata, one must watch out for great dimensions, because of the suspicion that will arise. So, the arrangement having been described, I will next construct its parts one by one.
v (1) So, those who came before me have handed down to us a way of effecting forward and backward motion al ong a single বine>, though troublesome and involving danger; for success is rarely achieved by following the methods they have written down, as is clear to those who have tried them.
(2) I, by contrast, will show that forward and backward motion along a strai ght line can take place both easily and without danger and, in addition, that the case or the figurine <can> be carried on a given circle, and, what is more, even al ong a given rectangular paralle ogram
(3) First, I will talk about <motion> along a straight line

Figs. 4ab Let there be a certain case, $\overline{\alpha \beta \gamma \delta}$, in which let there be placed an axle, $\overline{\varepsilon \zeta}$, turning on pivots and fitted into sockets which are on the sides of the case. Let there be two equal

 $\lambda i ́ \kappa \tau \rho \alpha v \dot{\eta} \sigma \pi \alpha ́ \rho \tau о \varsigma$.
 $\mu \varepsilon ́ \sigma o v ~ \tau o ̀ ~ \pi \lambda ı v \theta i ́ o v, ~ \grave{\eta} \dot{\varepsilon} \tau \varepsilon ́ \rho \alpha \alpha \dot{\alpha} \rho \chi \eta ̀ ~ \tau \hat{\varsigma} \sigma \pi \alpha ́ \rho \tau o v ~ \delta i \alpha ̀ ~ \tau \rho o \chi i ́-~$

[^97]wheeds, $\bar{\eta} \bar{\eta}$ and $\overline{\kappa \lambda}$, attached to the axle, with their circumferences worked so as to be lentil-shaped; বet there be>a bobbin in the middle of the axle, $\overline{\mu v}$, and <et> this <be> attached to the axle The cord will be wound around this bobbin.
(4) To this [the bobbin] let there be attached a knob, $\bar{\xi}$, around which the loop of the cord will lie. Let there be another whed, $\overline{o \pi}$, in the middle of side $\overline{\gamma \delta}$, rotating within a frame, $\overline{\rho \sigma \tau v}$, around a very small axle, $\overline{\varphi \chi}$. Let the axles of the wheels be adjusted in such a way that the case may stand level in every part So, after the loop of the cord has been put around the knob $\bar{\xi}$, let the cord be wound around the bobbin.
(5) With a rectangular tube placed perpendicularly in the middle of the case, let the other end of the cord pass through a pulley towards the upper part of the tube and be fastened to a lead weight that is inside the tube So, if

Fig. 5a

Fig. 2 someone lets the weight go down in the tube, they will stretch the cord. This will turn the wheels $\overline{\eta \theta}$ and $\overline{\kappa \lambda}$ by being unwound from the bobbin; these will drive the case by rolling along the ground, until either the loop falls off the knob or the weight comes to rest on something.
vi (1) Therefore, forward motion occurs in the manner described, and backward motion as follows. Once the cord has been wound to a certain extent around the bobbin,

 $\tau \alpha$.

[^98]having been put around the knob $\bar{\xi}$, let it be wound around the bobbin in the direction opposite to the preceding <one>. Subsequently, let it be likewise attached to the counterweight with a ring joined to it. So again, the counterweight will unroll the first winding while descending, and the case will move
(2) Then, after it [the cord] has detached from the knob, it will turm the wheels in the opposite direction, and thus the case will come back. However, if we want the case, once it has travelled, to stand still for some time and move back in this way, we will wind the cord and put it around the knob without winding it the other way around immediately. Instead, after we have formed a hank, glued it onto the bobbin and wound the cord> again contrari wise, we will attach it to the counterweight, and what has been said before will happen.
(3) If we also want the case to move forward and backward many times, we will make altemate windings more frequently and the intervals \&between them> the size we may choose; we will also regulate the timings of the pauses by means of hanks of the length we may choose.

 $\bar{\varepsilon}$.

 $\tau \hat{v} \tau \rho \iota \omega ิ \nu \tau \rho о \chi \varrho ิ v, \dot{\eta} \lambda i ́ \kappa o v$ òv $\pi \rho о \alpha \iota \rho \omega ́ \mu \varepsilon \theta \alpha$. $\delta \chi о \tau о \mu i ́ \alpha ~ \delta \varepsilon ̀$

 $\overline{\theta \kappa}, \overline{\pi \rho}, \alpha \not ้ \xi o v \varepsilon \varsigma ~ \delta \grave{\varepsilon} \alpha v \jmath \tau \hat{\omega} v$ oi $\overline{\tau 0}, \overline{o \chi}$.

 $\mu \varepsilon \tau \alpha \xi \grave{v} \tau \hat{\omega} \nu \bar{\alpha}, \bar{\eta} \dot{\eta} \dot{\varepsilon} \xi \varepsilon \lambda i ́ \kappa \tau \rho \alpha \kappa \varepsilon i ́ \sigma \theta \omega, \pi \varepsilon \rho \grave{\imath}$ îv $\dot{\eta} \sigma \pi \alpha ́ \rho \tau о \varsigma$,

[^99](4) Let the case, al ong with the tube, be conceived as seen
from the side, and let there be a case, $\bar{\psi} \bar{\omega}$, a bobbin, $\bar{\varsigma}$, a tube, $\bar{\tau}$, a cord $\overline{\alpha \beta}$ lying around a pulley, $\overline{\mathrm{C}}$, a counterweight, $\bar{\delta}$, and a ring on it, $\bar{\varepsilon}$.
(1) The motion in a circle occurs in thefollowing way.

Let there be a circle along which the case must be
Figs, 6ab carried, $\overline{\alpha \beta \gamma}$, with its centre $\bar{\delta}$. Let a certain বine>, $\overline{\alpha \delta}$, be drawn, and let a dine> $\overline{\varepsilon \alpha \bar{\zeta}}$ be drawn perpendicular $\langle 0\rangle$ it at $\bar{\alpha}$. Let the diameter $\overline{\varepsilon \zeta}$ be the diameter> of one of the three wheels, of whatever size we may choose Let its point of bisection be the \langle point $>\bar{\alpha}$, and let the \langle ines $>\overline{\delta \varepsilon}$ and $\overline{\delta \zeta}$ bejoined.
(2) Let a dine> $\overline{\alpha \eta}$ be equal to the size of the axle of the wheeds, and a বine> $\bar{\eta} \bar{\theta}$ parallel to $\overline{\varepsilon \zeta}$. Let there be a case, $\overline{\mu \lambda v \xi}$, with the dine> $\overline{v \xi}$ parallel to $\overline{\alpha \delta}$. Let another certain বine $>\overline{\delta o}$, be drawn, and \langle et $>$ a বine $>\overline{\pi \rho}$, which is bisected by the <point> $\overline{0}$, <be drawn> perpendicular to it. The positions of the wheds will then be along the diameters $\overline{\varepsilon \zeta}, \overline{\theta \kappa}$ and $\overline{\pi \rho}$, and their axles will be $\overline{\tau v}$ and $\overline{\sigma^{\chi}}$.
(3) So, let the wheeds be arranged in such a position that the case set on them may be in equilibrium The pivots of the axles will then be at the points $\bar{\tau}, \bar{v}, \bar{o}$ and $\bar{\chi}$. So again, let the bobbin around which the cord is wound be placed

Figs. 7ab (cf. VIII.1)

七ò $\pi \lambda ı v \theta$ íov.

 § c̀ τ ò $\bar{\delta} \sigma \eta \mu \varepsilon$ îov.

 кıvยît α.

[^100]between $\bar{\alpha}$ and $\bar{\eta}$, and let the same happen as has been said before. The case will thus be carried al ong the said circle.
(1) If a cone rolls on a plane, its base will describe a circle, whose radius is equal to the side [a generatrix] of the cone, and its vertex will remain motionless, being the centre of the said circle. The wheels $\overline{\varepsilon \zeta}, \overline{\theta \kappa}$ and $\overline{\pi \rho}$ are inside two cones, whose bases are the circles $\overline{\varepsilon \zeta}$ and $\overline{\pi \rho}$, and whose vertex is the point $\bar{\delta}$.
(2) It is clear that the cones which are isosceles, as they roll along, describe circles and have their vertex motionless. For, when <a cone> lies on the plane and stands on its side, it is in equilibrium with itself; it is, in fact, bisected by the plane that is generated through the side perpendicularly to the horizon. When it rolls, having been overcome by another force, each of the semicircles on its surface which are on the same side overcomes with equal force the remaining semicircle of the same circle, and thus this moves.
(3) If the semicircles are conceived <as reaching> up to the vertex, there is no semicircle left in the apex, nor anything else with dimensions. For this reason, since the motive force no longer has any means to overcome what lies on the other side, it cannot move the apex during the
 γ ívetal.

 $\tau \rho о \chi$ о̀̀ τ го̀ऽ $\overline{\pi \rho}, \overline{\sigma \tau} \kappa \alpha i ̀ ~ o ́ \mu о i ́ \omega \varsigma ~<* * *>\tau o ̀ v ~ \overline{v \varphi}$.

 $\mu \varepsilon \tau \varepsilon \omega \rho \iota \sigma \theta \eta ́ \sigma o v \tau \alpha ı$ oi $\bar{\eta} \bar{\theta}, \overline{\kappa \lambda}, \overline{\mu \nu} \tau \rho \circ \chi o i ̀ ~ \alpha ̉ \pi o ̀ ~ \tau o v ̂ ~ \varepsilon ̇ \delta \alpha ́ \varphi o v ৎ, ~$

 $\overline{\pi \rho}, \overline{\sigma \tau}, \bar{v} \bar{\varphi}, \kappa \alpha i ̀ ~ \pi \alpha ́ \lambda ı v \delta \imath^{\prime} \alpha v ̉ \tau \hat{\omega} v \tau \grave{v} v \varepsilon \tau \varepsilon ́ \rho \alpha v \tau 0 \hat{v} \pi \alpha \rho \alpha \lambda \lambda \eta \lambda 0-$

 غ̇ π ì 七ò $\pi \alpha \rho \alpha \lambda \lambda \eta \lambda o ́ \gamma \rho \alpha \mu \mu \circ v$ 七ò $\pi \lambda \imath v \theta$ íov.

[^101]rotational motion, unless perhaps it is overcome by a forward propulsion.

IX (1) The motion of the case along a rectangular paralledogram will occur in the following way.

Let there be a case, $\overline{\alpha \beta \gamma \delta}$, in which let there be an axle,

Figs, 8ab, 9 (cf. X.1-2) $\overline{\varepsilon \zeta}$, with wheeds attached to it, $\bar{\eta} \bar{\theta}$ and $\overline{\kappa \lambda}$; let there be the third wheed, $\overline{\mu v}$. The forward and backward motion takes place by means of these wheeds, as has been written before. Let there be another axle, $\overline{\xi_{0}}$, with wheels attached to it, $\overline{\pi \rho}$ and $\overline{\sigma \tau}$, and likewise $<* * *>, \bar{v} \bar{\varphi}$.
(2) Let the axle $\bar{\xi}$ be above the axle $\overline{\varepsilon \zeta}$, at a sufficient distance from it. Let the wheeds $\overline{\pi \rho}$ and $\overline{\sigma \tau}$ have the potential to be raised and lowered together with the axle $\bar{\xi}$, as I will explain next; and likewise the wheel $\bar{v} \bar{\varphi}$. Thus, if we lower the wheels $\overline{\pi \rho}, \overline{\sigma \tau}$ and $\overline{v \varphi}$, so that they rest on the ground, the wheed $\overline{\eta \theta}, \overline{\kappa \lambda}$ and $\overline{\mu \nu}$ will be raised from the ground, and the case will effect its motion by means of $\overline{\pi \rho}$, $\overline{\sigma \tau}$ and $\bar{v} \bar{\varphi}$.
(3) When the axle $\overline{\xi_{0}}$ has been pulled up, so that again $\overline{\eta \theta}$, $\overline{\kappa \lambda}$ and $\overline{\mu \nu}$ rest on the ground, \{and\} the case will move over the other side of the parallel ogram by means of them Then again, once it has stopped, $\overline{\pi \rho}, \overline{\sigma \tau}$ and $\bar{v} \bar{\varphi}$ will be lowered, and again the case will be carried along the other side of the parallelogram by means of them. When this happens in an altemate sequence, the case will go along the parallelogram as many times as we may choose.

 θ íov. $\dot{\omega} \varsigma \delta \grave{\varepsilon} \delta \varepsilon i ̂ ~ \tau o v ̀ \varsigma ~ \tau \rho \varepsilon i ̂ \varsigma ~ \tau \rho о \chi о v ̀ \varsigma ~ \mu \varepsilon \tau \varepsilon \omega \rho i ́ \zeta \varepsilon \sigma \theta \alpha i ́ ~ \tau \varepsilon ~ \kappa \alpha i ̀ ~$ $\tau \alpha \pi \varepsilon เ v o \hat{\sigma} \sigma \theta \alpha ı \varepsilon ่ v \alpha \lambda \lambda \alpha ́ \xi, v \hat{v} v \dot{\varepsilon} \rho \circ \hat{\mu} \mu \varepsilon v$.

 $\pi \rho o ̀ \varsigma ~ \tau o i ̂ \varsigma ~ \tau o ̛ ́ \chi o i \varsigma ~ \tau o v ̂ ~ \pi \lambda \imath v \theta i ́ o v . ~ \tau \alpha ̀ ~ o v ̂ ้ ~ \varepsilon i ̣ ๆ \eta \mu \varepsilon ́ v \alpha ~ \varepsilon ̇ \mu \pi v \varepsilon \lambda i ́-~$

[^102](4) It will produce pauses of the motion however we may choose, by means of the windings of the cord and its slackenings. So, in order for the heavy counterweight not to descend in the tube too forcefully and move the case at speed, we will put something light, fine and providing resistance inside the tube, such as millet or mustard, upon which the counterweight will cometo rest.
(5) We will pierce the bottom of the tube with a hole of suitable size, which will be opened and closed by a slide fastened to a cord; the end of this will be visible to us from the outside through the hole, so that, when we want the case to move, we may grab the cord and \{not\} unobtrusively open the slide As the millet gently pours out into the base below, the case moves.
(6) In order for the case not to make a rush forward while the slide is being opened, the cord will have a little slack to it, so that, when a little millet has flown out, it will be pulled taut and move the case. Now I will say how the three wheels must be alternately raised and lowered.
$\mathbf{x} \quad$ (1) Let there be the three stated wheels, $\overline{\alpha \beta}, \overline{\gamma \delta}$ and $\overline{\varepsilon \zeta}$, and $\bar{\alpha} \bar{\beta}$'s and $\overline{\gamma \delta}$'s axle, $\overline{\eta \theta}$. It is thus clear that the pivots at $\bar{\eta}$ and $\bar{\theta}$ are fitted into certain sockets which are near the

 $\delta ı \alpha ́ ~ \tau ı v o \varsigma ~ \pi \varepsilon \lambda \varepsilon к i ́ v o v ~ к \alpha \tau \alpha \beta \imath \beta \alpha \zeta о \mu \varepsilon ́ v \varrho ~ \varepsilon i ́ \varsigma ~ \tau o ̀ v ~ \pi \rho o ̀ \varsigma ~ \tau \widehat{~} \overline{\varepsilon \zeta}$

 $\bar{\eta}, \bar{\theta} \kappa \nu \omega ́ \delta \alpha \kappa \varepsilon \varsigma \cdot$

[^103]sides of the case. So, let the said sockets be on certain barframes. Let the bar-frames run vertically down the sides of the case by means of dovetails.
(2) Let the small whed $\overline{\varepsilon \zeta}$ be likewise <placed> into a certain vertical bar-frame which is made to run down by means of a dovetail to the $\overline{\varepsilon \zeta}$ side of the case. So, let there be the said bar-frame, $\overline{\eta, \theta}$, and a mortise in it, $\overline{\kappa \lambda} \overline{\mu v}$. Inside this বet there be> a small whed, $\overline{\varepsilon \zeta}$, with an axle $\bar{\xi}$. At the, $\bar{\eta}$ end of the bar-frame let a block $\bar{\pi}$ be screwed on. On the $\overline{\varepsilon \zeta}$ side of the case let two dowels, $\overline{\rho \sigma}$ and $\overline{\tau v}$, be screwed on like bars. Let a screw $\overline{\varphi \bar{\chi}}$ turn on these, and the block $\bar{\pi}$ engage the thread of the screw.
(3) Therefore, if someone turns the screw $\overline{\varphi \chi}$, the barframe $\overline{\eta, \theta}$ will be raised and lowered through the block $\bar{\pi}$. So, in order for this to happen automatically, let a cord be wound around the unused part of the screw, altemating windings and slack parts arranged in hanks commensurate with the distances over which the case moves. Let the same things happen in the case of the two remaining barframes, in which are the pivots at $\bar{\eta}$ and $\bar{\theta}$.
(4) The three screws must be equal in thickness, the windings around them precisely equal and likewise the slackenings, so that the three wheed s may be raised and lowered at one and the same time. For the motion of the case will thus be safe and easy.
$\mathbf{X I}$ (1) $\Delta v v \alpha \tau o ̀ v ~ \delta \varepsilon ́ ~ \varepsilon ̇ \sigma \tau ı ~ к \alpha i ̀ ~ o ̛ \lambda \lambda \omega \varsigma \varsigma ~ \kappa \alpha ́ \mu \pi \tau \varepsilon เ v ~ \tau o ̀ ~ \pi \lambda \lambda v \theta i ́ o v, ~ o v ̉ ~$ $\mu o ́ v o v ~ \varepsilon ̇ v ~ o ̉ \rho \theta o \gamma \omega v i ́ ̣ ~ \pi \alpha \rho \alpha \lambda \lambda \eta \lambda о \gamma \rho \alpha ́ \mu \mu \varphi, ~ \grave{\alpha} \lambda \lambda \grave{\alpha}$ к $\alpha \grave{~} \varepsilon$ ह̀v

 $\gamma \rho \alpha \mu \mu \varepsilon ́ v \eta \varsigma \mu \varepsilon$ бо́боv.

 そ̌'or oi $\overline{\pi \rho}, \overline{\sigma \tau}$.
(3) દ̀àv oûv $\pi \varepsilon \rho \grave{~ \grave{\varepsilon} \kappa \alpha \tau \varepsilon ́ \rho \alpha v ~ \chi о ı v ı к i ́ \delta \alpha ~ \sigma \pi \alpha ́ \rho \tau о \varsigma ~} \pi \varepsilon \rho เ \varepsilon ı \lambda \eta-$

 тò $\pi \lambda ı v \theta i ́ o v ~ غ ̇ \pi ’ ~ \varepsilon v ̉ \theta \varepsilon i ́ \alpha c ~ \pi о \rho \varepsilon v ́ \varepsilon \sigma \theta \alpha ı ~ \sigma v v \varepsilon \pi ı \sigma \tau \rho \varepsilon \varphi о \mu \varepsilon ́ v o v ~$ кגì $\tau \circ \hat{\text { к人 }} \overline{\kappa \lambda} \tau \rho о \chi 0 \hat{0}$.

 عītа $\pi \alpha ́ \lambda ı v ~ \tau \alpha ́ \sigma ı v ~ \lambda \alpha ß о v ́ \sigma \eta \varsigma ~ \tau ท ̂ \varsigma ~ \sigma \pi \alpha ́ \rho \tau о v, ~ \alpha ̛ ́ \mu \alpha ~ o i ~ \overline{\pi \rho}, \overline{\sigma \tau}$

 бŋऽ.

[^104]xI (1) It is also possible to tum the case in a different way, not only in a rectangular parallelogram, but also in any rectilinear figure. Moreover, the motion can be snakelike and \&his> much more easily than by the method written about before.
(2) Let there be the case in which are the wheds, $\overline{\alpha \beta \gamma \delta}$, inside of which let there be two axles, $\overline{\varepsilon \zeta}$ and $\overline{\eta \bar{\theta}}$; of these, let $\overline{\eta \theta}$ tum freely on pivots with a wheed attached to it, $\overline{\kappa \lambda}$, whereas let $\overline{\varepsilon \zeta}$, befitted to the case, having been worked on a lathe to an even thickness. Let two hubs, $\overline{\mu v}$ and $\overline{\xi_{0}}$, be set around this [the axle], turning freely and closely around it, and these with their inner and outer surfaces worked on a lathe. Let there be equal wheeds attached to the hubs, $\overline{\pi \rho}$ and $\overline{\sigma \tau}$.
(3) So, if a cord wound around each hub, is attached to the counterweight inside the tube, it will happen that, when the counterweight descends and the cords unwind, the wheeds will turn with the hubs, and thus the case will move along a straight line, and the wheel $\overline{\kappa \lambda}$ will rotate at the sametime.
(4) Therefore, if $\overline{\pi \rho}$, of wheed $\overline{\pi \rho}$ and $\overline{\sigma \tau}$, remains motionless because its cord has some slack to it, the whee $\overline{\sigma \tau}$ will rotate and turn $\overline{\kappa \lambda}$ at the same time, until the counterweight takes up the slackening of the hank on the hub $\overline{\mu v}$. Then,

Figs. 11ab

Fig. 12 when the cord becomes taut again, the wheels $\overline{\pi \rho}$ and $\overline{\sigma \tau}$ will turn at the same time, and the case will be carried al ong a straight line resulting fromits own turn.

 $\mu \varepsilon ́ v \omega v$ д̀кодои́ $\theta \omega \varsigma ~ \tau \alpha i ̂ \varsigma ~ \varepsilon i ̉ p \eta \mu \varepsilon ́ v \alpha ı \varsigma ~ \varepsilon v ̉ \theta \varepsilon i ́ \alpha ı \varsigma, ~ \kappa \alpha \theta ’ ~ \alpha ̀ \varsigma ~ \delta \varepsilon \imath ̂ ~$

(6) $\delta \varepsilon \eta ́ \sigma \varepsilon 1 ~ \delta غ ̀ ~ \tau \alpha ́ ~ \tau \varepsilon ~ \mu \eta ́ \kappa \eta ~ \tau \varrho ิ v ~ \varepsilon ̇ \pi \varepsilon ા \lambda \eta ́ \sigma \varepsilon \omega v ~ \kappa \alpha i ̀ ~ \tau \alpha ̀ ~ \tau ิ ิ v ~ \mu \eta \rho v-~$

 $\gamma \varepsilon ı v ~ \tau o ̀ ~ \pi \lambda ı v \theta i ́ o v \cdot \alpha ̉ v \alpha ́ \pi \alpha \lambda ı v ~ \gamma \grave{\alpha} \rho ~ \alpha v ̉ \tau o ̀ ~ \kappa ı v o v ̂ v \tau \varepsilon \varsigma ~ \tau \alpha i ̄ \varsigma ~ \chi \varepsilon \rho \sigma i ́ v, ~$

 $\lambda \omega ́ \mu \varepsilon \theta \alpha$ ка́ $\mu \pi \tau \varepsilon ı v$ тò $\pi \lambda ı v \theta$ íov, ε हैv $\tau \hat{\omega} v \overline{\pi \rho}, \overline{\sigma \tau} \tau \rho о \chi \bar{\omega} v$

[^105](5) So, the said slack part will have to be such that the case turns in the straight line over which we want it to move Let the same be imagined for the whed $\overline{\sigma \tau}$, too. Thus, if more windings take place and hanks in accordance with the said straight lines, al ong which the case must be carried, what has been previously stated will happen.
(6) It will be necessary to establish both the lengths of the windings and those of the hanks by actual experiment, as we begin to make the windings from the point where the case is to stop; for when we move it by hand backwards al ong the path in which it is meant to travel, we will wind the cords and give them some slack. For in this way the case will start moving and necessarily stop at the place where we began to wind the cords.
(7) It is better that the whed $\overline{\kappa \lambda}$ is al so set around the axle

Fig. 13 $\bar{\eta} \bar{\theta}$ on a hub, that the axle is likewise attached to the case just as $\bar{\varepsilon}$ is, and again that the cord wound around the hub of the whed $\overline{\kappa \lambda}$ \{and with slack parts\} is attached to the counterweight, †in order thatt, whenever we want to turn the case, one of the wheels $\overline{\pi \rho}$ and $\overline{\sigma \tau}$ comes to a stop clearly because there is some slack in its cord around the hub - and the wheed $\overline{\kappa \lambda}$ rotates with the remaining wheed, until the case makes the necessary turn, and then, when the
 $\tau \grave{v} v \dot{\varepsilon} \pi^{\prime} \varepsilon v ̉ \theta \varepsilon i ́ \alpha c$ ó òòv $\varphi \varepsilon ́ \rho \eta \tau \alpha ı \tau o ̀ ~ \pi \lambda ı v \theta i ́ o v . ~$

 $\delta \iota \alpha ̀<\tau o ̀>\tau o ̀ ~ o ̋ \lambda o v ~ \tau o v ̂ ~ \pi \lambda ı v \theta i ́ o v ~ \beta \alpha ́ \rho o s ~ \varepsilon ̇ \pi ’ ~ \alpha v ̉ \tau \alpha ̀ \varsigma ~ \varepsilon ̇ \pi ı к \varepsilon i ̂ \sigma \theta \alpha u, ~$

 $\delta \alpha \xi ı v$.

[^106]cord with the slack is stretched taut again and the three wheel s move at the same time, the case moves over the straight-line path.
(8) Thus, since the hubs holding the wheels and set around the axles move and rotate with difficulty because the whole weight of the case rests on them, it is recommended that, in the automata, anything that is moved in a circle turns around pivots. So, we will make <this> in the following way.
(9) Let there be the case \langle with $>$ an upright partition fixed where the axle holding the two wheds $\langle a y>$. Let there be sockets on either side of it, in which the pivots will be inserted. Let there be two axles with the wheeds attached to them; let each of these be set on pivots between the said upright partition and the sides of the case, so that the wheel s rest on the ground and each $<$ of them>turns on its own pivots.
(10) Let the cords around the axles be double [doublewound] so as to take the whed in the middle [of the axle] and tum it evenly. Let there be another axle \{in front of

 $\sigma \pi \alpha ́ \rho \tau о \varsigma ~ \mu \varepsilon \sigma о \lambda \alpha ß о 0 ิ \sigma \alpha$ тòv $\tau \rho \circ \chi o ́ v$.
(11) $\pi \alpha ́ \lambda ı v$ oûv $\tau \hat{\omega} v \sigma \pi \alpha ́ \rho \tau \omega v$ غ̇ $\pi \varepsilon ı \lambda \eta \theta \varepsilon \iota \sigma \hat{\omega} v \dot{\varepsilon} v \alpha \lambda \lambda \lambda \dot{\alpha} \xi$ ó $\sigma \alpha ́-$

 $\beta \omega \mu \hat{\omega}$.

 фó $\mu \varepsilon$ vov.

[^107]the case\} moving in a similar way to these, so that the case travels again on the three wheds. Let a cord be likewise laid double around this [the axle], taking the wheel in the middle
(11) So again, when the cords are alternately wound as many times as we want with slack parts arranged in hanks however we may choose, as stated, the case will also move as we may choose, easily and smoothly because of the pivots.
xII (1) So, I believe that I have said enough about the forward and backward motion of the case I will next talk about movements other than the joumey. The first movement we have concerns the lighting of the fire on the altar.

Fig. 15
(2) It takes place as follows: let there be an altar made of bronze or iron sheets, $\overline{\alpha \beta \gamma \delta}$, with a hole in the middle of the hearth, $\bar{\varepsilon}$. Under this [the hole] let there be a plate, $\overline{\zeta \eta}$, which can be shifted aside like the lid of a chest, masking the hole $\bar{\varepsilon}$; Iet there be a thin chain $\overline{\eta \theta \kappa}$ attached to this [the plate] around an axle set inside the altar and turning freely.
(3) Let a cord $<^{* * *}>$ extend from the axle to the counterweight. After the forward motion, this [the cord], having

 $\sigma \theta \alpha 1$.

 $\dot{\alpha} \lambda \cup \sigma \varepsilon ı \delta i ́ o v ~ \sigma \pi \alpha ́ \rho \tau о \varsigma ~ \tau \alpha \theta \varepsilon i ̂ \sigma \alpha ~ \varepsilon ̇ \pi ı \sigma \pi \alpha ́ \sigma \varepsilon \tau \alpha ı ~ \tau o ̀ ~ \overline{\zeta \eta} \lambda \varepsilon \pi i ́ \delta ı v$, ढ̈бтє α 人

XIII (1) Metò $\delta \varepsilon ̀ ~ \tau \grave{v} v ~ \theta v \sigma i ́ \alpha v ~ \delta \varepsilon i ̂ ~ \varepsilon ̌ \kappa ~ \mu \varepsilon ̀ v ~ \tau o v ̂ ~ \theta o ́ \rho \sigma o v ~ \gamma \alpha ́ \lambda \alpha \alpha ~ \alpha ̉ v \alpha-~$

[^108]been pulled taut by the counterweight, will tum the axle and move the plate aside, and when the loop has fallen off the knob, what follows will be carried out. Let a grate $\overline{\mu \nu}$ be placed under the hole $\bar{\varepsilon}$, with the flame beneath the hole Let flammable material, as has been said before, be set on the altar.
(4) Woodwork shavings work better than anything else So, whenever the case, during its travel, comes to a stop, the cord <coming> from the thin chain $\overline{\eta \theta \kappa}$ will then become taut and draw the plate $\overline{\bar{\eta}}$, so that the aperture may be opened and the flame may shoot upward and light the al tar. Let the same be imagined for the other al tar, except that the slack of the cord must be greater than the one just mentioned, in order for the cord, during the subsequent movements, to be pulled tight and produce the other kindling.

XIII (1) After the sacrifice, milk must be made to spurt from the thyrsus, and wine from the cup.
(2) So, this takes place as follows: a pipe is attached under Dionysus' feet, with two holes near one another on its

Fig. 16 (cf. XIII.6-7)

 غ̀лíкєıтаı.

 өи́poov.

 $\bar{\alpha}, \pi \varepsilon \rho i ̀ ~ o ̂ ~ \alpha ’ \gamma к ט ́ \lambda \eta ~ \sigma \pi \alpha ́ \rho \tau о v ~ \pi \varepsilon \rho ı \beta \varepsilon \beta \lambda \eta ́ \sigma \theta \omega ~ \chi \alpha ́ \lambda \alpha \sigma \mu \alpha$

 app. crit 4 ó om G $11 \bar{\tau} \mathrm{AGM}^{2 s I} \mathrm{~T}$: iò $\mathrm{M}^{1} \quad 12$ lacunam statuit

 Schmidt in adn. crit. et Olivieri : $\overline{\mathrm{C}} \mathrm{A} \mathrm{G}^{\mathrm{C}} \mathrm{M} \mathrm{T}: \overline{\mathrm{C}} \mathrm{G}^{\infty}$: Y, T Schmidt $20, \bar{\alpha}$

 T : $\dot{\alpha} \pi \mathrm{o} \delta \varepsilon \delta \varepsilon \mu \varepsilon ́ v \eta$ M : $\dot{\alpha} \pi о \delta \varepsilon \delta о \mu \varepsilon ́ v \eta \varsigma$ Schmidt dub. in app. crit. 22 an $\tau \alpha-$

(3) Let there be the base of Dionysus, $\overline{\alpha \beta}$, the pipe connected to this, $\overline{\gamma \delta}$, the holes in it, $\bar{\varepsilon}$ and $\bar{\zeta}$, and the small pipes stretching from these, $\overline{\zeta_{\eta}}$ and $\overline{\varepsilon \theta}, \overline{\zeta \eta}$ to the thyrsus, $\overline{\varepsilon \theta}$ to the cup. Let there be a knob placed on top of the shrine, $\overline{\kappa \lambda \mu}$. Inside this, let there be a container, $\overline{v \xi}$, with a partition in the middle, \bar{o}. From the container $\overline{v o}$ let a pipe $\overline{\pi \rho \sigma \tau}$ lead to a certain other pipe, $\bar{v} \bar{\varphi}$, fitted tightly to the pipe $\overline{\gamma \delta}$ and attached from below to the covering on which the shrine rests.
(4) Let the hole $\bar{\tau}$ be set opposite $\bar{\varepsilon}$. From the container $\overline{\xi_{0}}$ $<^{* * *}>$ another pipe, $\overline{\chi \psi \omega \bar{s} \text {, and likewise leading to the }}$ pipe $\bar{v} \bar{\varphi}$. Let the hole $\bar{\varsigma}$ be positioned opposite $\bar{\zeta}$. Then, if someone pours wine into the container $\overline{o v}$, and milk into ξ_{0}, the wine will be conveyed into the cup and the milk into the thyrsus, as the holes $\bar{\varepsilon}$ and $\bar{\zeta}$ lie opposite $\bar{\tau}$ and $\bar{\kappa}$.
(5) So, to keep the liquids in at the eerlier time, let there be a tap [stopcock], $\bar{\Pi}$, which, as has been said, shuts the liquids off by means of a plug, $\bar{\alpha}$; let a loop of cord be put around this, with someslack to it and attached to the counterweight, so that, having been pulled taut at the appropriate time, it [the cord] may turn the plug and the liquids may be conveyed. After Dionysus has rotated and the
甲ع́pعıа \dagger

 $\kappa \lambda \varepsilon i \varsigma ~ \dot{\varepsilon} \tau \varepsilon ́ \rho \alpha \varsigma ~ \sigma \pi \alpha ́ \rho \tau о v ~ દ ̇ \pi ı \sigma \pi \alpha \sigma \alpha \mu \varepsilon ́ v \eta \varsigma ~ \tau o ̀ ~ \varepsilon ̇ \pi ı \tau o ́ v ı o v ~ \varepsilon i ́ \varsigma ~ \tau \grave{\alpha}$ غ̌т $\varepsilon \rho \alpha \mu \varepsilon ́ \rho \eta$.

 v̇ $\pi \varepsilon \rho \varepsilon ́ \chi \circ v \tau \circ \hat{\gamma} \overline{\gamma \delta} \sigma \omega \lambda \hat{\eta} \nu \circ \varsigma$.

[^109]other altar has lit, wine and milk must flow yet once more; to rotate in the following way; farc of a semicirclet
(6) Let there be other holes, $\bar{\beta}$ and $\bar{\gamma}$, diametrically opposite to the holes $\bar{\tau}$ and $\bar{\varsigma}$; and from $\bar{\beta}$ let a pipe $\overline{\beta, \delta}$ lead to $\overline{\rho \sigma}$, and from $\bar{\gamma}$ another pipe $\overline{\gamma, \varepsilon}$ to $\bar{\psi} \bar{\omega}$. Then, after Dionysus has rotated, when the holes $\bar{\varepsilon}$ and $\bar{\zeta}$ face $\bar{\beta}$ and $\bar{\gamma}$, again the tap $\overline{\mathrm{C} \lambda}$ will be opened, and wine and milk will likewise flow. The tap is opened when another cord has drawn the plug to the opposite side.
(7) The pipes $\overline{\rho \sigma}$ and $\bar{\psi} \bar{\omega}$ must run through one of the shrine's columns which is hollow under the shrine's base, in order to be invisible. Dionysus rotates with the Nike placed on the knob as follows. Let an axle $\overline{\zeta, \zeta}$ be set in such a way as to be attached to the Nike through the knob, turning freely around a pivot, $\bar{\zeta}$, and let a cord wound around it pass through a pulley $\bar{\eta}$ towards the base of the shrine and through a pulley $\bar{\theta}$ towards the projecting part of the pipe, $\overline{\gamma \delta}$.

 ò Δ ı́óvooc $\mu \eta \delta \varepsilon ̀ v ~ \pi \alpha \rho \alpha \lambda \lambda \alpha ́ \sigma \sigma o v \tau \varepsilon \varsigma ~ \kappa \alpha \tau \alpha ̀ ~ \tau \eta ̀ v ~ \theta \varepsilon ́ \sigma ı v . ~ i ̌ v \alpha ~$

(9) ó $\delta \varepsilon ̀ ~ \sigma v \gamma к \varepsilon к о \imath v \omega \mu \varepsilon ́ v о \varsigma ~ \tau @ ̣ ~ \beta \alpha ́ \rho \varepsilon ı ~ к р i ́ к о \varsigma ~ \chi \varepsilon ю ŋ ̀ ~ к \alpha \tau \varepsilon \chi \varepsilon ́ \tau \omega ~$

[^110](8) So, if someone turns the pipe $\overline{\gamma \delta}$, they will unwind the cord around the axle $, \overline{5}, \bar{\zeta}$ and rotate the Nike and Dionysus at the same time; let their rotation occur in the same direction. Let the axle $\overline{5, \zeta}$ be equally thick as the pipe $\overline{\gamma \delta}$, so that the Nike and Dionysus may return together without changing anything with respect to their position. Then, in order for this to happen automatically, let another chain be wound around the jut of the pipe $\overline{\gamma \delta}$ and pass through a pulley $\stackrel{\alpha}{\mu}$ towards a weight $\stackrel{\beta}{\mu}$.
(9) Let a ring, which is firmly fastened to the weight, hold it with the aid of a claw and a trigger, as happens in cata-

Fig. 20 pults, so that, once the trigger has been rel eased by a certain cord, the weight may descend and tum Dionysus and the Nike. Let the cord $\overline{\eta, \theta}$ be hidden by means of another column, just as has been said of the pipes.
(1) After Dionysus has poured a libation for the first time, there will need to be a rattle of cymbals and kettledrums. This takes place as follows: in the base below, where the wheeds are too, is placed a container with small lead balls, which roll along together towards the bottom. In the bottom there is a hole that can easily receive the small balls, with a slide which is opened by the cord whenever needed. A kettledrum is placed slantwise under the hole, and a cymbal should be fastened to it.

 $\dot{\alpha} \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \varepsilon 1$. $\delta \dot{v} v \alpha \tau \alpha l ~ \delta \grave{\varepsilon} \mu \varepsilon ́ \sigma o v ~ \delta \alpha ́ \alpha \varphi \rho \alpha \gamma \mu \alpha ~ \lambda \alpha \beta o ̀ v ~ \tau o ̀ ~ \alpha ̉ \gamma-~$

 $\beta \alpha ́ \sigma \varepsilon$.

 $\pi \lambda \varepsilon \cup \rho \alpha ̀ v ~ \tau о \hat{v} \theta \omega \rho \alpha к i ́ o v ~ \gamma i ́ v \varepsilon \tau \alpha l, ~ \omega ̈ \sigma \tau \varepsilon ~ \varepsilon ̇ \pi ı \pi \omega \mu \alpha ́ \sigma \alpha ı ~ \tau o ̀ ~ \pi \lambda \varepsilon ́-~$

 тои̂ $\theta \omega \rho \alpha к i ́ o v ~ \mu \varepsilon ́ \rho o s ~ \sigma \tau \rho о \varphi \omega \mu \alpha ́ \tau i \alpha ~ \varepsilon v ̋ \lambda \nu \tau \alpha ~ \lambda \alpha \mu \beta \alpha ́ v \varepsilon ı, ~ ̌ ̌ v \alpha ~$

[^111](2) So, as they drop, the little balls will hit the kettedrum first and, as they fall off it onto the cymbal, they will produce the sound. If the container is provided with a partition in the middle, it can form two spaces, so that there may be small balls in each one <and> those in one section may produce the first sound, those in the other the second, after the slide has likewise been opened.
(1) Subsequently, the peristyle on the base must be adomed with garlands.
(2) It takes place as follows: let a parapet $\overline{\alpha \beta \gamma \delta}$, which is placed on top of the four-column peristyle, be conceived as having another parapet inside, $\overline{\varepsilon \zeta \eta \theta}$, so that the space between the two parapets may be empty on the underside. Once a wreath has been made from rectangular garlands, intertwined however one wants, in a visually pleasing fashion, and once this has been folded, it is hidden in the said space between the parapets, with its upper ends fastened to the parapet.
(3) In order for it [the wreath] not to descend spontaneously, a long board is fitted to the space between the

Fig. 21a

Fig. 21b

 $\delta \varepsilon \mu \varepsilon ́ v \alpha \pi \rho o ̀ \varsigma ~ \tau o ̀ ~ \tau \alpha \chi \varepsilon ́ \omega \varsigma ~ к \alpha \tau \alpha \varphi \varepsilon ́ \rho \varepsilon \sigma \theta \alpha 1$.

 й $ү о$.

 $\pi \varepsilon \rho \grave{~ \alpha} \mathfrak{\tau} \tau o ̀ v ~ \sigma \tau \rho \varepsilon ́ \varphi \varepsilon \sigma \theta \alpha$.

 غ̇кбл α б $\theta \alpha ı$ -
(3) $\mathfrak{\eta} \delta \varepsilon ̀ ~ \dot{\varepsilon} \tau \varepsilon ́ \rho \alpha ~ \delta i \alpha ̀ ~ \tau \rho o \chi i ́ \lambda o v ~ \alpha ̉ \pi о \delta \varepsilon \delta o ́ \sigma \theta \omega ~ \varepsilon i ̉ \varsigma ~ \tau o ̀ ~ к \alpha ́ \tau \omega ~ \mu \varepsilon ́-~$

[^112]that, when the parapet> has been covered, they [the boards] may be held from the other side by a rotating hook, thus without opening.
(4) From the other side of the hook a loop of cord is put around, so as to fall off when the cord has been pulled taut and the hook has turned. In this way, the wreath is lowered. The wreath will have small lead weights fastened to it on the underside, so as to descend swiftly.
(1) It just remains to show how the Bacchantes dance at the appropriate time. So, this takes place as follows: let the circular shrine, where Dionysus is situated, have a circular stylobate, which is al so smooth over its height.

Therefore, let this be $\overline{\alpha \beta \gamma \delta}$. Let a ring $\overline{\varepsilon \zeta \eta \theta \kappa \lambda \mu \nu}$ be set around it, fitting to the stylobate so as to rotate freely around it.
(2) Let a groove be turned on the lathe around the side of the $\operatorname{arc} \overline{\kappa \lambda \mu \nu}$, in which a cord, having been wound, should be put \{into the depth of the groove\}; let one end of this be pushed into the depth of the groove by means of a peg, so as not to be pulled out any further.
(3) Let the other end pass through a pulley towards the underside of the parapet and be wound into another groove

 őtı $\sigma \tau \varepsilon v o ́ \tau \alpha \tau о v$.

[^113]which is on the drum; a freely tuming axle should be attached to this. Let another cord be wound around the axle and attached to the counterweight. So, it will happen that, when the cord around the axle has been stretched tight, the cord from the ring will be wound onto the drum that is attached to it [the axle], and the Bacchantes will thus dance. Then, since they must dance twice, the cord around the axle has a slack part forming a hank, so that there may be a standstill of the Bacchantes because of the slackening. When it [the cord] has been pulled taut, they will dance again. For the Bacchantes will be placed on the stated ring.
(1) All the cords that extend from the base below to the counterweight must be invisible. So, this takes place as follows.

Let there be the mouth of the tube, in which is the counterweight, $\overline{\alpha \beta \gamma \delta}$, and let a partition be set through the mouth in the tube along the straight line $\overline{\varepsilon \zeta}$, separating off the space $\overline{\delta \varepsilon}$, which is as narrow as possible
(2) The millet will then be put inside the space $\overline{\varepsilon \beta}$, and the cords from below will be brought upwards into the space $\overline{\gamma \delta \varepsilon \zeta}$ and pass through a pulley towards the counterweight inside the space $\overline{\alpha \beta \zeta \varepsilon}$; for all the cords that are brought up from below will thus be invisible. Therefore, since many movements take place and the journey of the case is long,
 סєî каì тov̂to $\mu \eta \chi \alpha v \eta ́ \sigma \alpha \sigma \theta \alpha$.
(3) $\pi \rho o ̀ \varsigma ~ \mu \varepsilon ̀ v ~ o v ̂ v ~ \tau o ̀ ~ \mu \hat{\kappa} \kappa о \varsigma ~ \tau \eta ̂ \varsigma ~ \pi о \rho \varepsilon i ́ a \varsigma ~ \delta u ́ v \alpha v \tau \alpha l ~ o i ~ \pi \varepsilon \rho \grave{~}$

 $\sigma \pi \alpha ́ \rho \tau о \varsigma, \pi \varepsilon \rho \varepsilon \varepsilon \wedge \lambda \eta \varepsilon \varepsilon i \sigma \alpha \alpha \dot{\alpha} \pi \circ \delta \varepsilon \delta o ́ \sigma \theta \omega \pi \varepsilon \rho \grave{~ \tau o ̀ ~} \bar{\eta} \bar{\theta} \tau \cup ́ \mu \pi \alpha v o v$.

 $\rho \not \gamma \gamma \imath \lambda \varepsilon i ́ \alpha v \tau \grave{\imath} \nu \bar{\lambda}$.

 $\rho \varepsilon i ́ \alpha c$ үíveбӨaı.

[^114]the height of the tube must \{not\} suffice, and this, too, must be engineered.
(3) So, as for the length of the joumey, either enlarging the two wheels around the axle or diminishing the axle's thickness can result in a great length; for when the axle has turned once, the case will move so long a distance as the circumference of one wheel. On this account, one must reasonably try to makethem [the wheeds] bigger.
(1) Over and above that, it can even be done as follows. Let the thickness of the axle be conceived [to exist], $\overline{\alpha \beta}$, and dikewise> the circumference of the wheed attached to it, $\overline{\gamma \delta}$; Iet another axle be placed above, turning freely on pivots, <and> whose thi ckness should be $\overline{\varepsilon \zeta}$. Let there bea drum attached to this, $\bar{\eta} \bar{\theta}$. Let a cord wound around the axle $\overline{\alpha \beta}$ pass around the drum $\overline{\eta \theta}$. Let another cord, having been fastened to the axle $\overline{\varepsilon \zeta}$ and having been wound, pass through a pulley $\bar{\kappa}$ towards the counterweight inside the tube, λ.
(2) So, it will happen that, when the axle $\overline{\varepsilon \zeta}$ has turned once, a small part of the tube will be emptied in a way commensurate with the circurfference of the axle $\overline{\varepsilon \bar{\varepsilon}}$, and the cord from the axle $\overline{\alpha \beta}$ will be wound once <0 nto $>$ the drum $\overline{\eta \theta}$, which is bigger than the axle $\overline{\alpha \beta}$, so that the axle $\overline{\alpha \beta}$ may turn several times with the whed $\overline{\gamma \delta}$, and thus a great length of thejourney may be attained.

 $\tau \alpha \hat{\tau} \tau \alpha \gamma \grave{\alpha} \rho \delta i \alpha ̀ \tau \hat{\nu} \nu \mu \sigma \chi \lambda i ́ \omega v$ ס
 $\delta ı \alpha ̀ \mu \kappa \rho \hat{v} \delta \iota \alpha \sigma \tau \eta \mu \alpha ́ \tau \omega v$ ह̇ $\pi ı \varepsilon \varepsilon \lambda \varepsilon i \sigma \theta \alpha 1$.

 $\dot{\alpha} \pi о \delta i ́ \delta o \sigma \theta \alpha ı$ عí $\tau \grave{\alpha} \varsigma \lambda \varepsilon i_{\alpha} \varsigma$.

[^115](3) However, one must know that a bigger counterweight is needed as bigger circles are moved by smaller ones; for these things take place by means of levers. Big as they are, the movements other than the journey can be completed through small radii.
(4) For this happens> if the cord that moves the instrument of Dionysus passes around bigger circles, and the one going towards the counterweight passes around smaller axles, which are also attached to the bigger one, just as I have shown for the journey.
xIX (1) It is also possible for both the forward and backward motion and the movements other than the joumey> to take place in a different way.

Let there be the mouth of the tube, $\overline{\alpha \beta \gamma \delta}$, divided by two partitions through the entire height of the tube al ong the straight lines $\overline{\varepsilon \zeta}$ and $\overline{\eta \theta}$, so that the cords below may be brought up through the space between the partitions and attached to the counterweights.
(2) So, the counterweight in the tube $\overline{\alpha \beta \varepsilon \zeta}$ will produce both forward and backward motion, and the counterweight in $\overline{\eta \theta \gamma \delta}$ \&will produce> the other movements as follows; for let there be a hole in the bottom of the tube $\overline{\alpha \beta \varepsilon \zeta}$,
 є $<о ́ \pi \not \omega \varsigma ~ \pi \alpha \rho \alpha ́ \gamma \varepsilon \sigma \theta \alpha 1$.

 őбov ท̂v τ ò $\tau \hat{\varsigma} \sigma \pi \alpha ́ \rho \tau \sigma v \chi \alpha ́ \lambda \alpha \sigma \mu \alpha$.

 τ ò $\pi \lambda \iota v \theta i ́ o v, ~ \dot{\varepsilon} \tau \varepsilon ́ \rho \alpha ~ \sigma \pi \alpha ́ \rho \tau о \varsigma ~ \varepsilon ̇ \pi ı \sigma \pi \alpha ́ \sigma \varepsilon \tau \alpha l ~ \tau o ̀ ~ \pi \rho o ̀ \varsigma ~ \tau ̣ ̂ ~ \bar{\kappa}$
 $\pi о џ \prime \sigma \varepsilon \tau \alpha 1$.

[^116]through which the millet flows out, $\bar{\kappa}$, and a hole in $\bar{\eta} \overline{\theta \gamma \delta}$, $\bar{\lambda}$. Let each have a slide which can be easily shifted.
(3) Then, when the case is about to move, we will shift the slide of the hole $\bar{\kappa}$, so that it may be opened. In order for the case <not> to make a sudden rush forward and move, the cord going from the \{over\} wheels to the counterweight will have a slack to it. It is clear that, once we have stood away before the case moves, there will be an interval as long as the slack of the cord.
(4) When the case must come to a halt and complete the other movements, a certain cord will pull theslide at $\bar{\lambda}$ and open it while the case is still travelling. Again, in order that no other movement may occur while it [the case] is moving, the cord bound to the other counterweight which, when stretched tight, will also pull the slide at $\bar{\kappa}$ will have someslack too.
(5) The case will thus stop, and the other movements will be completed. So, when the case must come back again, another cord will pull the slide at $\bar{\kappa}$ and open it. In this way, it [the case] will effect its backward motion.

ПEPI $\Sigma T A T \Omega N$ AYTOMATSN

 $\xi \varepsilon ́ v \omega \varsigma ~ \pi \alpha \rho \alpha ̀ ~ \tau \alpha ̀ ~ \pi \rho o ̀ ~ \grave{\eta} \mu \hat{\rho} v \dot{\alpha} v \alpha \gamma \varepsilon \gamma \rho \alpha \mu \mu \varepsilon ́ v \alpha \alpha \kappa \tau \alpha \kappa \varepsilon \chi \omega \rho i ́ \kappa \alpha-$

 кıvoú $\mu \varepsilon$ vov đòv $\mu \varepsilon ̀ v \pi \rho \hat{\tau} \tau 0 \vee ~ \chi \rho o ́ v o v ~ \kappa \alpha \tau \alpha \kappa \varepsilon \kappa \lambda \mu \varepsilon ́ v o v ~ \varepsilon i ̀ v \alpha u, ~$

[^117]
ON STATIONARY AUTOMATA

xx (1) So, I consider that I have adequately covered in what has been written before whatever needed to be discussed about the mobile automata; for I have recorded methods that are feasible, riskless and unusual compared to those described before us, as is clear to anyone who has tested the previously described methods. As for the stationary automata, I want to write something rather original, and I have found, of my forebears' writings, none better and at the same time <more> apt for teaching purposes than those of Philo of Byzantium
(2) The events about Nauplius constitute the> story and the arrangement. In it there are many and di verse configurations, which are not poorly handled except for Athena's machine. \langle Philo>, in fact, made its construction somewhat too laboriously. For it was possiblefor her to appear inside the box without a machine and then disappear again; for her figure can be moved on a hinge by its feet and initially laid down, so as not to be visible, and then, as though
 $\dot{\varepsilon} \tau \varepsilon ́ \rho \alpha \varsigma \kappa \alpha \tau \alpha \kappa \lambda ı \theta$ ๆ̂vaı.

 $\mu \varepsilon ́ v o v ~ \tau o ̀ v ~ \pi v \theta \mu \varepsilon ́ v \alpha ~ \alpha ̀ \pi о \sigma \chi \alpha ́ \zeta \varepsilon \sigma \theta \alpha ı ~ \kappa \alpha \tau \alpha ̀ ~ \tau o ̀ v ~ \delta \varepsilon ́ o v \tau \alpha ~ \kappa \alpha ı-~$

 Introductionem, p. xlii post d̀v $\alpha \gamma \varepsilon \gamma \rho \alpha \mu \mu$ ćvov non interpunx. Weil кגì ̂̌ $\neq \omega c$ Haase : к $\alpha \theta \dot{\omega} \varsigma$ a post hoc verbum lacunam dub. statuit Schmidt in app.

 (16)? $18 \dot{\alpha} \pi \sigma \tau \varepsilon \lambda \hat{\eta} A G: \alpha \dot{\alpha} \pi о \tau \varepsilon \lambda \varepsilon i ̂ M \quad 19 \tau \omega ิ v^{1} A^{C P} M$: τ òv G 21 ov̉ om. M
<roused> by the pull of a certain cord, it can appear upright and belaid down again by another <cord>.
(3) Moreover, al though he promised, in addition to this, to make a bolt of lightning fall on the figurine of Ajax and to produce the sound of thunder, he did not record it; for al though I have come across many of his books, I did not find this recorded. Perhaps one will think that in running Philo down I am criticising him for being unable to fulfil the promise, but it is not so.
(4) Since his promises in the arrangement are many, perhaps he forgot to write this one out. For a container with small lead balls inside and with a hole in the bottom can be opened at the appropriate time, and the small balls can make the sound of thunder as they fall on a piece of dry and dense leather which has been spread out. For in theatres, too, whenever it is necessary to produce a similar sound, containers holding weights are opened, so that, as they fall on a piece of leather, which is - as stated - dry and tightly stretched \{the hide\}, the weights may generate the sound, just like in kettledrums.
(5) As for the other things which take place one by one in the Nauplius arrangement, I am very happy with the orderly and well-thought-out way they have been set down by him [Philo]. For this reason, then, I have not rejected his writings about the things I said; for in this way I be-

 бкદvฑ̂ऽ vôv $\dot{\alpha} \rho \xi \oplus \mu \varepsilon \theta \alpha \lambda \varepsilon ́ \gamma \varepsilon เ v$.

 $\tau \hat{v} \delta 1 \alpha \theta \varepsilon ́ \sigma \varepsilon \omega v, ~ \grave{\nu} \nu \mu \alpha ́ \lambda 1 \sigma \tau \alpha$ крívo $\mu \varepsilon v$, каì $\mu \varepsilon \tau \alpha ̀ \ll \alpha v ̂ \tau \alpha>$

[^118]lieve that those who come across <my treatise> obtain the greatest benefit, when things well said by the ancients are laid before them, and those which have been overlooked or have been corrected are al so placed on record. So, I will now begin to talk about the construction of the boxes.

XXI (1) Therefore, the making [of stationary automata] is much safer and freer from danger than that of mobile automata, as well as involving a performance which is not implausible. The issue is such that, once a box has been set on a little wooden pillar, it opens by itself and the painted figures inside it are shown moving in accordance with the current arrangement; and again, after it has closed by itself, a very short time elapses and, once opened, other figures which are painted in it appear, and as far as possible these, or some of them, move once more - and this repeats itself several times;
(2) outside the boxes either machines are shown being raised and turned around or some other movements. So, such is the proposition; but the most refined of the practitioners is the one who devises the neatest arrangement. As a result, of the arrangements I will propose one which I

 ó $\pi i ́ v \alpha \xi$, τ ò $\mu \varepsilon ̀ v ~ \pi \rho o ́ \sigma \omega \pi о \nu ~ o v ̉ \kappa \varepsilon ́ \tau \imath ~ \varepsilon ́ \omega \rho \alpha ̂ \tau o, ~ \zeta @ ́ \delta i \alpha ~ \delta غ ̀ ~ \gamma \varepsilon-~$ $\gamma \rho \alpha \mu \mu \varepsilon ́ v \alpha$ है́ $\tau \imath v \alpha \mu \hat{v} \theta$ ov $\delta \imath \varepsilon \sigma \kappa \varepsilon v \alpha \sigma \mu \varepsilon ́ v \alpha$.

 $\mu \alpha ́ \tau \omega v$, $\tau \eta ̀ v \tau \rho i ́ \tau \eta \nu<\delta \dot{\varepsilon}>\tau \hat{\omega} \nu$ ह̇ $\pi \kappa \kappa \alpha \lambda \nu \pi \tau o ́ v \tau \omega v$. oi $\delta \grave{\varepsilon} \kappa \alpha \theta^{\prime}$

 v $\alpha \hat{\text { v̂c кגì } \gamma ı \text { ó } \mu \varepsilon v o ı ~ \pi \varepsilon \rho і ̀ ~ к \alpha \theta о \lambda к \eta ́ v . ~}$

[^119]particularly rate, and after <this> I will explain its construction. It will be enough $\langle * * *>$ about only one box; for again the same things are handled by the same methods, just as I have proved for the mobil e automata.
(1) So, the ancients employed a certain simple arrangement: when the box opened, a painted face appeared in it. This moved its eyes, closing and opening them several times. When the box closed and opened again, the face was no longer seen, but painted figurines \langle were seen>, prepared for the sake of some story.
(2) And again, when it [the box] closed and opened, another arrangement of figurines appeared, completing the current stories one after another, so that only three different movements would take place in the box, one of the doors, another of the eyes, and the third of the coverings. On the other hand, our contemporaries have inserted stylish stories inside the boxes and have made use of many and disparate movements.
(3) As I proposed, I will talk about one box which seems superior to me. The story set in it was the one about Nauplius. The individual scenes went as follows. At the outset, when the box opened, twelve painted figurines appeared: these were divided into three rows; they were made to represent some of the Greeks refitting their ships and busy launching them

 $v \eta \chi o ́ \mu \varepsilon v o \varsigma, \mu \eta \chi \alpha v \grave{\eta} \tau \varepsilon\{\kappa \alpha i ̀\} \not ้ v \omega \theta \varepsilon v$ тои̂ $\pi i v \alpha \kappa о \varsigma ~ \varepsilon ̇ \xi \eta ́ \rho \theta \eta$

[^120](4) These figurines moved, some sawing, some working with axes, some with hammers, some others using bow-drills and augers, <and>they made a lot of noise, just like in real life \{may happen\}. After sufficient time elapsed, the doors closed and opened again, and there was another arrangement; the ships, in fact, were shown being launched by the Achaeans. After they [the doors] closed and opened again, nothing appeared in the box except painted sky and sea.
(5) Not long after, the ships sailed in line ahead, and some were out of sight, some in view. Often dolphins swam al ongside, too, sometimes plunging into the sea, sometimes visible, just like in real life. The sea gradually grew stormy, and the ships ran uninterruptedly. After it [the box] closed again and opened, none of the sailing ships was seen, but Nauplius holding up the torch and Athena standing beside him $<$ were seen>;
(6) fire blazed up above the box, as if a flame appeared on high from the torch. After it [the box] closed and opened again, the wreck of the ships appeared, and Ajax swimming; and a machine was raised above the box, and as

 $\mu \alpha \kappa \rho о \tau \varepsilon ́ \rho \omega v \pi \lambda \varepsilon \cup \rho \hat{\rho} v$.

1-3 $\tau \hat{\varrho} \pi^{\prime} v \alpha \kappa ı \ldots \mu \hat{\theta}$ os alio loco iterant codices ($\tau \hat{\varrho}$ тívaкı iterata esse noluerunt Prou et R. Schöne; vide infra, 3-4) $\quad \mathbf{1 - 2}$ そ̈ $\pi \varepsilon \sigma \varepsilon v$ om $\mathbf{a}^{\text {(atter loco) }}$
 $\mathbf{3}$ oṽ $\tau \omega \varsigma \mathbf{a}^{(\text {priore loco) }: ~ o v ̃ \tau \omega ~} \delta \varepsilon \mathbf{\varepsilon}^{\text {(adtero loco) }} \quad$ ordinem capitum antea confusum restituit Weil : post $\mu \hat{v} \theta$ os in codicibus sequuntur II. 80.1-84.11 ovit $\omega \varsigma$ रive$\tau \alpha 1 . .$. тov̀ $\tau \varepsilon \kappa \tau о v \varepsilon v ́ o v \tau \alpha \varsigma ~ o v ́ \tau \omega \varsigma . ~ d e i n d e ~ i t e r u m ~ s e q u u n t u r ~ I I . ~ 1-3 ~ \tau @ ̣ ~ \pi i ́ v \alpha к ı . . . ~$
 pergunt usque ad finem (II. 84.12-110.15 к $\lambda \varepsilon \iota \sigma \theta \varepsilon ́ v \tau o \varsigma ~ \delta غ ̀ . . . ~ \delta ı \alpha \lambda \lambda \alpha ́ \sigma \sigma o v \tau \alpha 1) ~: ~$ similiter etiam R. Schöne, qui solum II. 1-3 кعрøvvò...$\mu \hat{\theta} \theta$ oc iterata cens. (hunc ordinem rec. Schmidt); vide Introductionem, p. xlvii-xlviii n. 84 5 caput distinx. Schmidt $\delta \grave{\varepsilon}$ om G è $\gamma \rho \alpha ́ \psi \alpha \mu \varepsilon v ~ A ~ G M: ~ a n ~ i ́ \pi о \gamma \varepsilon \gamma \rho \alpha ́ \varphi ~ \varphi \alpha-~$

 $\pi \mathfrak{\eta} \xi \alpha v \tau \alpha$ R. Schöne 8 тò éктоv $\mu \varepsilon ́ \rho o \varsigma ~ S c h m i d t ~ d u b . ~ i n ~ a p p . ~ c r i t . ~: ~ \tau o v ̂ ~ \bar{\zeta}$
 $\dot{\alpha} \chi \alpha v \varepsilon ̀ \varsigma$ Brinkmann ante $\varepsilon i ¢$, leviter interpunx. Prou dub. in adn. crit., prob. Olivieri : ő $\boldsymbol{\pi} \boldsymbol{\sigma} \theta \varepsilon v$ A G M \& $v>$ Schmidt dub. in app.

thunder rumbled in the box itself a bolt of lightning fell on Ajax, and his figure vanished. Thus, when the box closed, the story came to an end. So, such was the arrangement.
(1) It is necessary to construct a frame the size one would want to make the box, as I have illustrated, and to build it out of exceptionally lightweight boards; let the boards be one-sixth as wide as the length of the longer sides.
(2) The backdrop of the box must be fitted into the middle of the frame, and under the lower part of the frame a hollow enclosure must be attached, which is invisible from the front; after the doors have been fixed $\langle 0>$ this, pivots will run down such a length that, when these are turned from below, the doors open and close again.
(3) Thus, let there be the enclosure seen from the front, $\overline{\alpha \beta}$,

Fig. 28 and pivots going down from the doors, $\bar{\gamma}$ and $\bar{\delta}$. Then, if someone turns the pivots on each side by hand, they will open and close the doors. So, in order for this to happen

 $\mu \kappa \rho o ̀ v ~ \tau \hat{\nu} v ~ \sigma \tau \rho о \varphi \varepsilon ́ \omega v ~ \tau o ̀ v ~ \overline{\varepsilon \zeta}, \sigma \tau \rho \varepsilon \varphi o ́ \mu \varepsilon v o v ~ \varepsilon v ̉ \lambda u ́ \tau \omega \varsigma$.

七ò $\overline{\varepsilon \zeta} \kappa \alpha ́ \tau \omega \theta \varepsilon \nu$.
 غ̇лıо́porৎ $\dot{\alpha} \rho \alpha \rho о ́ \tau \omega \varsigma ~ \tau \imath \sigma i ́ v, ~<\delta ı \alpha \tau \varepsilon i ́ v \alpha \varsigma>\varepsilon v ̉ ~ \mu \alpha ́ \lambda \alpha ~ \tau \grave{\alpha} \varsigma ~ \sigma \pi \alpha ́ \rho-~$

 θ ópal.
 scripsi : ह̇v \quad ópvoc a quod rec. Schmidt, ex glossemate ortum existimo : $\varepsilon u ̉-$

 M $9 \pi \varepsilon \rho i ̀$ A G M : $\pi \alpha \rho \alpha ̀$ Schmidt dub. in app. crit. $10 \tau \eta ̀ v \mu \varepsilon ̀ v \kappa \alpha \tau \alpha ̀ ~ \tau o ̀ ~ \gamma \delta ~$ A GM : $\tau \alpha ̀ \varsigma ~ \mu \varepsilon ̀ v ~ \kappa \alpha \tau \alpha ̀ ~ \tau \alpha ̀ ~ \gamma ~, ~ \bar{\delta}$ Schmidt dub. in app. crit. : an $\tau \grave{v} v \mu \varepsilon ̀ v ~\{\kappa \alpha \tau \alpha ̀ ~ \tau o ̀ ~$

 Brinkmann dub. «ка日’> غ́кќ́бтทv Schmidt dub. in app. crit: : <**, каì
 post $\tau \iota \sigma i ́ v ~ l e v i t e r ~ i n t e r p u n x i, ~ g r a v i t e r ~ A ~ G M ~: ~ n o n ~ i n t e r p u n x . ~ e d d . ~<i \iota \alpha \tau \varepsilon ́-~$ vac> supplevi 13-14 $\tau \alpha ̀ \varsigma ~ \sigma \pi \alpha ́ \rho \tau о v \varsigma ~ A ~ G M: ~ \tau ต ̂ v ~ \sigma \pi \alpha ́ \rho \tau \omega v ~ P r o u, ~ i u n g e n s ~$
 supplevi post $\bar{\varepsilon}$ leviter interpunx. ed. princ. : non interpunx. A GM, Prou et
 Schmidt dub. in app. crit. 15 блর́ptoı < $\alpha \theta \varepsilon i ̂ \sigma \alpha ı>$ Schmidt dub. in app.
 qui $\alpha i \mu \varepsilon ̀ v<\tau \alpha \theta \varepsilon i ̂ \sigma \alpha ı ~ \sigma \pi \alpha ́ \rho>$ rot dub. coni. in app. crit. : an \{к $\{\grave{\}}\}$ ai $\mu \varepsilon ̀ v ~ \sigma \pi \alpha ́ \rho-~$
 statuit Schmidt, qui <oi $\delta \dot{\varepsilon} \sigma \tau \rho \circ \varphi \varepsilon i ̂ \varsigma ~ \pi \alpha ́ \lambda ı v ~ \tau \alpha ̀ ~ \varepsilon ̇ v \alpha v \tau i ́ \alpha ~ \varepsilon ̇ \pi ı \sigma \tau \rho \alpha \varphi \eta ́ \sigma o v \tau \alpha ı>d u b . ~$ suppl. in app. crit.
automatically by means of the cord, when it is pulled by the counterweight which is on the sand in the tube, I place a freely revolving axle $\overline{\varepsilon \zeta}$ across the pivots and at a small distance from them
(4) I bored a hole in each of the pivots and, taking a cord, wound it double, put this single cord into the hole, drove a peg in adding glue and secured it, so that it would not pull out any further, but remain tightly fastened. Having done this, I laid the ends around the axle, one over $\overline{\gamma \delta}$ from above the axle, the other over $\overline{\varepsilon \zeta}$ from below.
(5) After likewise piercing the axle, I secured each end firmly with some pegs, carefully <stretching> the cords to the utmost>, one at $\bar{\varepsilon}$, the other at> $\bar{\zeta}$. The cords will rotate the pivots and open the doors. Whenever I turn the axle the other way around, tand in fact they [the cords] will be slackened, $<^{* * *}>$ whence the doors will close

 $\bar{\theta}$, каì $\lambda \alpha \beta \grave{\omega} v ~ \sigma \pi \alpha ́ \rho \tau о v ~ к \alpha i ̀ ~ к \alpha \tau \alpha \mu \varepsilon \tau \rho \eta \sigma \alpha ́ \mu \varepsilon v o \varsigma ~ \tau o ̀ ~ \mu \eta ̂ \kappa о \varsigma, ~$

 $\pi \alpha \rho \alpha \kappa о ́ \lambda \lambda \eta \mu \alpha$.
(8) к $\alpha \grave{~ \tau \alpha ̀ ~} \pi \alpha \rho \alpha \chi \alpha \lambda \alpha \sigma \mu \alpha ́ \tau 1 \alpha ~ \alpha v ̉ \tau \hat{\imath} v \pi \rho o ̀ \varsigma ~ \tau o ̀ v ~ \alpha ̉ \xi o v \alpha ~ \pi \rho o \sigma-~$

 $\pi i ́ v \alpha \kappa \alpha \chi \rho o ́ v o v \varsigma ~ \kappa \alpha i ̀ ~ \delta เ \alpha \lambda \varepsilon i ́ \mu \mu \alpha \tau \alpha ~ \delta \iota \delta o v ิ \sigma \alpha . ~$

[^121](6) So, in this way both doors will close <at one moment>, and open at the next, simultaneously with one motion. Thus, in order for this to happen <automatically> by means of the counterweight, I thrust knobs into the axle above where the <points> $\bar{\eta}$'s <are> and below where the <points> $\bar{\theta}$'s <are> - and having taken a cord and measured its length against the tube containing the sand and the> counterweight, I made loops at intervals of whatever size. Let there be a cord, $\bar{\kappa}$, and loops, $\bar{\lambda}$'s.
(7) Therefore, I put the first loop from the <point> $\bar{\kappa}$ around the first knob from $\bar{\varepsilon}$, where the <point> $\bar{\eta}$ <is>, and the next loop around the lower knob $\bar{\theta}$, and thus gluing them all one after another around the axle $\bar{\varepsilon} \zeta$ with a compound of wax and resin. \{This gluing has been concealed.\}
(8) I also glue their slack parts onto the axle, so that none of them may become tangled up and hamper the mechanism. So, whenever the end of the cord (where the <point> $\bar{\kappa}$ is), is pulled gently being fastened to the counterweight, it will open and close the box, providing the timings and intervals.

 عîvaı, $\pi \rho о \sigma \kappa \varepsilon i ̂ \sigma \theta \alpha ı ~ \delta \varepsilon ̀ ~ \varepsilon ̇ v ~ \tau \alpha i c ̧ ~ \chi \varepsilon \rho \sigma i ̀ ~ \kappa \alpha i ̀ ~ \alpha ̉ \pi о \gamma \varepsilon \gamma \rho \alpha ́ \varphi \varphi \theta \alpha ı ~ \tau \grave{\varsigma}$,
 $\pi \rho о \sigma \hat{\kappa}$ ќv દ̇бтıv.

[^122]xxiv (1) \langle So, this>takes place in this way. After the first opening of the doors, tit is for us somehowt figurines carrying out joinery work to appear in the box; and it is necessary to explain how they receive their motion. Thus, while all the other parts of the figurines must be painted on the backdrop of the box and arranged in the most convincing way, the right arms must not <be> painted on the box, but attached to it and very carefully wrought out of thin pieces of light horn, so as to fit closely and leave no visible gap.
(2) The small tools, with which they work, must be of horn too and set in their hands, and the hands painted the same colour as the rest of the body, and the small tools as is appropriate

So, let there be the hand and arm, $\overline{\alpha \beta}$. Thus, I pierced it with a hole through the shoulder and made the hole square, as has been illustrated, and after taking a horn peg and squaring it off I fitted it into the shoulder and glued it

 кıvŋ̂таı каì $\tau o ̀ ~ \pi \rho o ̀ \varsigma ~ \tau @ ̣ ̂ ~ ढ ̋ \mu \varrho . ~$

 $\mu \varepsilon ́ \rho \varepsilon ı ~ \tau о v ̂ ~ \pi i ́ v \alpha \kappa о \varsigma . ~ i ̌ v \alpha ~ o v ̂ v ~ \pi v \kappa v ต ̂ ̧ ~ \kappa \alpha i ̀ ~ \alpha v ̉ \tau о \mu \alpha ́ \tau \omega \varsigma ~ \kappa ı v ฑ ̂ \tau \alpha ı, ~$

[^123]on; \triangleleft made> the rest of the peg rounded and thoroughly smooth.
(3) Having bored a hole through the right shoul der, I thrust the peg in properly, until the small arm has drawn near to the figurine So, if we seize the projecting part of the peg with our fingers from the back of the box and tum it, the arm will move. Therefore, in order for it to move by itself under the impulse of the counterweight, I make a bar, $\overline{\gamma \delta}$, pierce it with a hole at $\bar{\theta}$, insert the peg jutting out from the arm towards the back of the box tightly into the hole of the bar and glue it on, so that, as the bar moves, that \&which originates $>$ in the shoulder may move too.
(4) This bar is called hysplēngion. So, after boring a hole at one side of the hyspl ēngion, I fastened a cord to it, hung a lead counterweight, $\bar{\imath}$, and fixed a peg under the extremity of the hysplenx, $\bar{\zeta}$, so that the end of the hysplengion may come to rest on it. Then, if we will press down the $\bar{\gamma}$ side of the hysple $\overline{n g}$ ion with our finger, the $\bar{\delta}$ side will be raised together with the counterweight; and if we let it go, it will fall down on the peg as the counterweight pulls it, and it will make a noise.
(5) It will also transmit movement to the arm at the front of the box. So, in order that it may move frequently and

 крои́ṇ $\pi \nu \kappa \chi \alpha ́$.

 $\chi \varepsilon i ̂ \rho \alpha ~ \kappa ı v \varepsilon i ̂ \sigma \theta \alpha ı, ~ \alpha ̇ \pi о \sigma \chi \alpha \sigma \theta \varepsilon i ̂ \sigma \alpha ~ \alpha ̇ \pi o ̀ ~ \tau o v ̂ ~ \tau ט ́ \lambda o v ~ † \pi \varepsilon \rho \imath \gamma v o i ́ n ~ \dagger ~$

 $\pi i ́ v \alpha \kappa о \varsigma>, \delta \varepsilon i ̂ ~ \tau o v ̀ \varsigma ~ \mu \varepsilon ̀ v ~ \tau \varepsilon к \tau о v \varepsilon v ́ o v \tau \alpha \varsigma ~ \mu \eta \kappa \varepsilon ́ \tau ı ~ \varphi \alpha i ́ v \varepsilon \sigma \theta \alpha u, ~$ $\tau \grave{\alpha} \varsigma ~ \delta \grave{~ v \alpha u ̂ c ~} \kappa \alpha \theta \varepsilon \lambda \kappa о \mu \varepsilon ́ v \alpha \varsigma$.

[^124]automatically, I place \{the\} a starwhed revolving around a peg securely fixed to the backdrop of the box. The starwhed will have a pulley $\bar{\eta}$ tightly fastened to it; having been wound several times around this [the pulley], the cord will be attached to the counterweight, so that, as the counterweight draws the cord>, it may slowly tum the starwhed and the starwhed may hit the hysplēnx repeatedly while rotating.
(6) Having been looped, the furthest end of the cord is put around the knob where $\bar{\eta}$ <s $>$. When $<* * *>$ no longer to move the arm, it [the cord?] having been released off the knob \dagger
(1) \langle So,> woodworkers' activities $\Varangle a k e ~ p l a c e>~ i n ~ t h i s ~$ way. After the box> has closed and subsequently opened, the woodworkers must no longer be seen, but the ships <must be seen> as they are launched.
(2) This too, then, occurs, as I am going to say. It is necessary to take a thin and closely woven piece of linen cloth, which is the same size as the backdrop of the box, and after dying this with white and exceedingly fluid paint, so
 $\kappa \alpha \theta \varepsilon \lambda \kappa о \mu \varepsilon ́ v \alpha \varsigma ~ v \alpha v ̂ \varsigma ~ \kappa \alpha i ̀ ~ \pi \rho о \sigma \theta \varepsilon ́ v \tau \alpha \varsigma ~ \pi \rho o ̀ \varsigma ~ \tau o ̀ v ~ \pi i ́ v \alpha к \alpha ~ \tau o ̀ ~$

 ő λ оv $\pi \alpha ́ \chi \circ \varsigma$ ё $\chi о \nu \tau \alpha \sigma$ $о ́ \mu \mu \varepsilon \tau \rho о \vee$,

 $\sigma \omega \mu \varepsilon v$ vícò $\tau \eta ̀ v ~ \pi \lambda \varepsilon \cup \rho \alpha ̀ v ~ \tau o v ̂ ~ \pi \lambda ı v \theta i ́ o v ~ \kappa \alpha i ́, ~ o ̌ \tau \alpha v ~ \beta o v \lambda \omega ́-~$

 $\lambda u ́ \psi \varepsilon ı \tau \alpha ̀ ~ \varepsilon ̀ v ~ \tau @ ̣ ̂ \pi i ́ v \alpha \kappa ı ~ \gamma \varepsilon \gamma \rho \alpha \mu \mu \varepsilon ́ v \alpha$.

[^125]that it may easily be rolled together, <it is necessary> to paint the ships being launched; holding it against the box, <one must> tack its upper part to the surface [the backdrop] of the box under the side itself of the frame, and fasten a bronze rod that has an entirely appropriate thickness to the underside of the cloth,
(3) so that, when we wind the cloth around the rod towards the upper part of the box and when we roll it up completely, we may hold it in place> under the side of the frame, and let it go whenever we want; once released, the cloth will be unrolled by the weight of the rod, and by being unrolled in a trice it will cover the figures painted in the box.
(4) So, this must happen automatically, with the box closed. At the beginning it [the cloth] must remain rolled together above It takes place as follows. When the cloth> was wholly wound towards the upper part and put under the side of the frame, <a hole> was bored below the roll near it into the backdrop of the box, and a loop of cord was pushed through the hole from the back of the box to the front, until it jutted out a moderate distance and was firmly secured with a peg.

 тоиิ $\pi \lambda \imath v \theta$ íov т ρ v́тп $\mu \alpha$ عv̉

 $\delta \grave{\alpha} \tau \eta \uparrow \varsigma \dot{\alpha} \gamma \kappa \cup ́ \lambda \eta \varsigma$.
(6) $\mu \varepsilon ́ v \varepsilon ı ~ o u ̉ v ~ \sigma u v \varepsilon \sigma \varphi \imath \gamma \mu \varepsilon ́ v o v ~ \tau o ̀ ~ \varepsilon ’ ’ \lambda \eta \mu \alpha ~ \tau o v ̂ ~ o ̉ \theta o v i ́ o v ~ \sigma u v \varepsilon-~$

 $\tau \hat{\nu} \stackrel{\alpha}{\gamma} \kappa$ ќ́ $\lambda \eta v$ каì $\pi \varepsilon \rho o ́ v \eta \nu \lambda \alpha \beta o ́ v$.

[^126](5) The particular case will indicate how great the distance> must be. Then, over against the hole itself in the backdrop I pierce a hole, wider than the one below, in the side of the frame and file it down thoroughly tso that moret. $<^{* * *}>$ and after the cloth has been rolled around this [the rod?], press it close to the loop and drive a pin through the hole in the side and from above, having pushed it through the loop.
(6) Thus, the roll of cloth remains bound together as it is held by it [the loop]. When the figures in the box must be covered, the doors being shut, draw the cord which is fastened to the pin and attached to the counterweight. So, all the coverings were made in this way, after they had been rolled together and placed al oft one after another in a row, each of them with <its own>loop and pin.
(7) ő ơov δ^{\prime} àv $\tau o ́ \pi o v ~ к \alpha \tau \alpha \lambda \alpha ́ \beta n ~ \tau \alpha ̀ ~ \varepsilon i ̉ \lambda \eta \mu \varepsilon ́ v \alpha ~ \tau \omega ̂ v ~ o ̉ \theta o v i ́ \omega v, ~$

 ő $\psi i v$.

 кגì $\theta \alpha \lambda \alpha ́ \sigma \sigma п ŋ \varsigma ~ \gamma \varepsilon \gamma \rho \alpha \mu \mu \varepsilon ́ v \omega \nu$ к $\alpha \grave{~} \mu \varepsilon \tau \alpha ̀ ~ \tau \alpha \hat{v} \tau \alpha \pi \alpha \rho \alpha \pi \lambda \varepsilon i ̂ v \tau \alpha ̀ \varsigma$, vấc.

[^127](7) Screen off with boards the space that the rolls of cloth take up, in order that they may not be seen. The board serves as lintel \{of the doors\}. On this, it is necessary to make an architrave with rounded carvings, so that it may have a fine appearance.

XXVI (1) So, this takes place in this way. After the box has closed and opened, I say that nothing appears but painted sky and sea, and after this the ships sail by.

Thus, we will make the sailing scene as follows. On each side of the doors, near the pivots, the box will have shielded empty spaces, peculiarly finished over the outside like <those> of pilasters.
(2) Within these empty spaces are placed blocked boards, with bars in the middle constructed $<$ so as to be> quadrangular, equilateral and upright, and the angles of which will betied down. These will be of fir, in order not to warp because they are thin. Attached to the underside of them will be little bronze knobs turned on the lathe, with sock-
 кגì $\lambda \varepsilon i ̂ \alpha$.

 $\lambda \varepsilon i ̂ v ~ \tau o ̀ v ~ \chi \alpha ́ \rho \tau \eta \nu ~ \pi \varepsilon \rho i ̀ ~ đ o ̀ v ~ \kappa \alpha v o ́ v \alpha ~ \kappa \varepsilon \kappa \lambda \varepsilon \iota \sigma \mu \varepsilon ́ v o v ~ \tau o u ̂ ~ \pi i ́ v \alpha-~$

[^128]ets below them to tum easily; at their upper ends $<{ }^{* * *>}$ made round and smooth.
(3) When the side of the frame has been perforated at the top, they [the bars] will be driven through, so that they are neither caught nor too loose for turning. After these things have been done, one must take an exceptionally thin scroll of the so-called 'royal papyrus' and cut a length of it which may cover in height the backdrop of the box, up to the rolled-up cloths; and trimming off the roller of the scroll <one must> glue it [the scroll] onto the bar on the right-hand side of the box,
(4) so that the bar is glued on in place of the roller, and thus, by turning what sticks out from the box, one may wind the scroll around the bar when the box is closed. This is turned until the entire backdrop of the box has been covered by the scroll. This will <not>take place until you draw near to the region of the other bar $<^{* * *}>$ to have filled up and thus, if something is in excess, to trimit off.

 < $\mu i ́ \alpha v ~ \mu \varepsilon ̀ v>\kappa \alpha ́ \tau \omega \theta \varepsilon v ~ \pi \alpha \rho \alpha ̀ ~ \tau o ̀ ~ \pi \alpha \rho \alpha \sigma \tau \alpha ́ \delta ı o v ~ \tau о и ̂ ~ \pi i ́ v \alpha к о \varsigma, ~$

 $\pi \lambda \mathrm{oí} \omega v \pi \alpha \rho \alpha \pi \lambda \varepsilon v ิ \sigma \alpha ı, \delta \varepsilon i ̂ \pi \rho o \mu \eta \chi \alpha v \eta \sigma^{\sigma} \alpha \sigma \theta \alpha ı \tau \alpha \hat{\tau} \tau \alpha$.

[^129](5) It is necessary to glue a bar worked very thin under the extremity of the scroll. So, let the roll be hidden near the doorjamb, so as not to be seen when the box is open. Therefore, I fasten thin cords to the bar glued to the extremity of the scroll, <one> below near the doorjamb of the box, another above near the lintel, and attach them to the other bar on the left.
(6) Then, if we turn the bar, it will pull the cords; for the cords attached to the extremity of the scroll will be wound up, and the scroll will follow them. So, when the box is closed, let it [the bar] rotate up to the point where the whole backdrop has been covered by means of the scroll. This will have sky and sea painted <0 it $>$. These mechanisms must be engineered in advance, in order that the scroll may move by itself and, despite the counterweight pulling it slowly, its sliding may occur rapidly, so that a great number of ships sail by.
(7) Let there be the box seen from behind, $\overline{\alpha \beta \gamma \delta}$, and \downarrow et>

Fig. 30 the upper part of the bar, around which the scroll is rolled, <have> a lathe-turned bobbin, $\overline{\zeta \eta}$; against the box, above the hysplengia and after I have drawn it a little bit away from the starwheeds that move the arms, I place a drum $\overline{\theta \kappa}$.

(8) каì $\pi \varepsilon \rho \grave{~ \imath o ̀ v ~ \alpha ̉ \xi o v \alpha ~ \tau o ̂ ~} \tau v \mu \pi \alpha ́ v o v ~ \alpha ̛ \lambda \lambda о v ~ \pi \varepsilon \rho ı \tau i ́ \theta \eta \mu ı$

 \bar{v}.

 тойৎ $\dot{\alpha} \sigma \tau \varepsilon \rho i ́ \sigma к о и \varsigma ~ к \alpha i ̀ ~ т o ̀ ~ \tau ט ́ \mu \pi \alpha v o v ~ \alpha ̉ v \varepsilon \mu \pi о \delta i ́ \sigma \tau \omega \varsigma ~ к ı v \varepsilon i ̂-~$ $\sigma \theta \alpha ı$.

[^130]Let the drum have at its vertex \{part\} a pulley turned on the latheall around.
(8) A round the axle of the drum, I set another axle, small and firmly fitted to the axle, $\bar{\mu}$, so that \{attached like\} it will rotate together with the> bigger drum. So, after winding a cord around the bobbin $\bar{\eta} \bar{\zeta}$, as much as is expected to unroll the scroll, twhicht I pass $<^{* * *>}$ I wind the cord going to the counterweight around 4 the> other pulley $\bar{\mu}<{ }^{* * *}>$ with the first drum; let it [the counterweight] be \bar{v}.
(9) So, it is clear that, when the cord has been pulled by the counterweight just a little, a large portion of the scroll will be unwound, and swiftly. \&et there be> an axle, on which revolves the drum, $\overline{\mathrm{o} \xi}$. The starwheds and the drum must move unhampered.
 $\mu \varepsilon ̀ v ~ \kappa \alpha \tau \alpha \delta v ́ \sigma o v \tau \alpha u, ~ o ̀ \tau \varepsilon ̀ ~ \delta \varepsilon ̀ ~ \varphi \alpha v \eta ́ \sigma o v \tau \alpha ı ~ \kappa \alpha \tau \alpha ̀ ~ \tau o ̀ v ~ v ́ \pi o \gamma \varepsilon-~$

 ต̋ $\sigma \tau \varepsilon \delta 1 \alpha \varphi \alpha i ́ v \varepsilon ı v ~ \varepsilon i ̊, ~ \tau o ̀ ~ \theta \omega \rho \alpha ́ к ı о v ~ к \alpha ́ \tau \omega . ~$
(2) $\kappa \alpha \tau \alpha \lambda \alpha \beta \grave{v} \sigma \alpha v i ́ \delta \alpha$ है $\gamma \rho \alpha \psi \alpha$ $\tau \alpha ̀ ~ \delta \varepsilon \lambda \varphi เ v \alpha ́ \rho ı \alpha, ~ \dot{\eta} \lambda i ́ \kappa \alpha \beta$ оv́-

 $\lambda о \varsigma ~ \delta \grave{\varepsilon}$ ó $\overline{\varepsilon \zeta}$.

 $\pi \varepsilon \rho เ \alpha ́ \gamma \eta n ~ \tau o ̀ v ~ \tau \rho o \chi i ́ \lambda o v ~ \tau ก ̣ ̂ ~ \chi \varepsilon ı \rho i ́, ~ o ̂ \tau \varepsilon ̀ ~ \mu \varepsilon ̀ v ~ \kappa \alpha \tau \alpha \delta v ́ \sigma \varepsilon \tau \alpha ı ~ o ́ ~ \delta \varepsilon \lambda-~$

[^131]XXVII (1) So, the coasting voyage takes place in this way. The dolphins will now plunge, now come into view in the way described below. On the lower side of the frame, which is fitted to the enclosure, having left a small interval from the pivots, I made narrow notches like <those> for tenons, in such a way that they allow light through to the enclosure below.
(2) After taking a board, I drew the dol phins of the size I want, cut around their outtines and filed them down. Under the dolphin's chest let there be an axle, in which I fixed an iron pin; and $<* * *>$ to the dolphin's chest. Let there be a pulley inside the notch driving on one side, as illustrated below. \&et there be> a notch on the side, $\overline{\alpha \beta}$,

Fig. 31
(3) Thus, I pierce the axle with a hole $\langle a t>\bar{\theta}$ opposite the notch and fixed the dolphin's pin <in it>. Therefore, if someone turns the pulley by hand, the dolphin will dive down through the notch into the enclosure at one time, and come up inside the box at the next.
(4) So, in order for <this> to happen automatically, I make a loop in a cord, put it around the knob which is on the pulley, $\bar{\zeta}$, and after winding it around the pulley, I attach it

 $\delta \grave{\varepsilon} \overline{\gamma \delta}$ 的 $\xi \omega v \pi \rho o ̀ \varsigma ~ o ̉ \rho \theta \grave{\alpha} \varsigma ~ \tau \widehat{̣} ~ \theta \omega \rho \alpha к i ́ \omega . ~$

 $\nu \eta \tau \alpha{ }^{-}$

[^132]to the counterweight. The dol phin will thus befixed to the axle like $<{ }^{* * *}>$ at $\bar{\kappa}$, being at right angles to the axle, and the axle $\overline{\gamma \delta}$ at right angles to the encl osure.

XXVIII (1) So, when the voyage comes to an end, the doors will close again, and the cord, having been pulled tight, will draw out the pin and bring down the cloth, on which will be painted Nauplius, holding up the torch, and Athena. Once the box has opened, the ships are not in sight, but what has been said before. It will also be necessary for the torch to blaze up promptly.
(2) Therefore, we will make the mechanisms for the torch as follows: on the architrave and triglyphs we will have a board overshadowing the whole box, which will conceal the bobbin that triggers the voyage, the fire lighting device and the lifting of the machine, so that none of the above may be seen fromthe front of the box;
(3) but in order for the board not $\langle 0$ be> set in place without apparent reason, a pediment is added to it just like

 $\pi \lambda \varepsilon \cup \rho \hat{\alpha} \varsigma ~ \tau о v ̂ ~ \kappa ı \beta \omega \tau \alpha \rho i ́ o v ~ દ ̇ к \kappa \varepsilon к о ́ \varphi \theta \omega$ ỏ $\pi \grave{~} \delta 1 \alpha \varphi \alpha$ ívovб α

 $\tau \alpha \rho i ́ o v ~ к \alpha i ̀ ~ \tau \eta َ \varsigma ~ \pi \varepsilon \pi \omega \mu \alpha \sigma \mu \varepsilon ́ v \eta \varsigma ~ \lambda \varepsilon \pi i ́ \delta o \varsigma ~ \varepsilon ̇ \pi \tau \tau i ́ \theta \eta \mu ı ~ \xi v ́ \sigma \mu \alpha \tau \alpha$

 $\tau \varrho \prec \kappa ı \omega \tau \alpha \rho i ́ \varphi$.

[^133]to a shrine The remaining wings on either side of the board are painted black or the colour of the sky; the machine is positioned next to the bobbin. On the other side of the machine is the torch, which is constructed as follows. It is necessary to make a kind of small chest out of bronze sheets, with no lid, but wide open.
(4) This must be stood upright behind the covering board and nailed down onto the side of the frame. Let the small chest have its bottom against the board, and its opening looking out from the board. Let an aperture be cut out of the upper side of the small chest, letting light through just like a little window, so that, when a lamp has been lit and put into the small chest, the tip of its flame reaches into the upper part of the small chest through the aperture. As it stands, let the lighted lamp be set beneath.
(5) We cap the aperture with another triangular bronze plate, so as to close off the flame. Above the small chest and the capping plate, I place especially dry woodwork shavings. Therefore, when I draw away the plate that covers the aperture, the flame of the lamp will set the shavings on fire, and they will immediately flare up. Until the shavings catch fire, the flame of the lamp is not seen, being hidden in the small chest;
(6) for it will have a litte wooden peg, if we want to make the flame invisible by capping it off completly from all

 $\pi \cup \rho o ́ s$.

 $\dot{\alpha} \lambda \nu \sigma \varepsilon$ íßıov каì દ̇ $\pi เ \sigma \pi \alpha ́ \sigma \eta \tau \alpha ı ~ \tau o ̀ ~ \lambda \varepsilon \pi i ́ \delta ı v . ~ غ ̇ \pi ı \sigma \tau \rho \varepsilon ́ \psi \varepsilon ı ~ \delta \varepsilon ̀ ~$ ó μ oí $\omega \varsigma ~ \tau o ̀ ~ a ́ \xi o ́ v ı o v ~ \sigma \pi \alpha ́ \rho \tau о \varsigma ~ દ ̉ \kappa ~ \tau \eta ̂ \varsigma ~ \lambda \varepsilon i ́ \alpha \varsigma ~ \pi \varepsilon \rho i ̀ ~ \tau u ́ \lambda o v . ~$

 $\kappa \alpha v \theta \varepsilon ́ v \tau о \varsigma, \kappa \lambda \varepsilon \iota \sigma \theta \eta ́ \sigma \varepsilon \tau \alpha ı \pi \alpha ́ \lambda ı v$ ó $\pi i ́ v \alpha \xi$. каі̀ $\varepsilon \kappa \sigma \pi \alpha ́ \sigma \alpha \sigma \alpha \alpha \dot{\eta}$

 тúdous.

 $\dot{\alpha} \pi о \sigma \chi \alpha \sigma \theta \varepsilon i ́ \sigma \eta \varsigma ~ \delta \varepsilon ̀ ~ \tau \alpha u ́ \tau \eta \varsigma ~ \alpha ̈ \partial \lambda \lambda \eta ~ \pi \varepsilon \rho ı к \varepsilon \mu \mu \varepsilon ́ v \eta ~ \pi \varepsilon \rho i ̀ ~ t o ̀ ~ \theta \omega \rho \alpha ́-~$

[^134]sides. In order that the lamp may remain steady inside the small chest, let there be a pin projecting from the underside. Let the lamp be <one> of those placed in lanterns and set around a pin. So, in order for the plate to open by itself at the proper time, I place an axle at a distance from the flame.
(7) After fastening a thin chain to the plate, I bound it to the axle, so that, when the axle rotates, the thin chain may be wound and may draw the plate A cord <attached> to the counterweight <and looped> around a knob will likewise turn the axle. \{Let there be the plate, $\bar{\alpha}$, a chain around the knobs, $\bar{\beta}$, an axle, $\bar{\gamma}$, a knob, $\bar{\delta}$, and the cord around the knob, $\bar{\varepsilon}$.\}
xXIX (1) After the previously mentioned effects have been seen and fire has blazed up, the box will close again. When the cord has drawn out the pin, it will bring down the cloth, on which will be painted the wreck of the ships and the figurine of Ajax swimming. Athena will appear in the box. Her base will have knobs in appropriate places.
(2) One cord will raise her up by pulling from behind the joint [mechanical element] in accordance with her counterbal ance. When this has been released, another <cord> lying around the enclosure will tum her around, until she reaches the same place from which she set off. When this

 $\kappa \alpha \tau \alpha \kappa \lambda ı v \varepsilon i ̂ ~ \tau \grave{̀} v$ ' $A \theta \eta v \alpha ̂ v$.

 $\nu \omega v \tau \varrho ิ v$ ко $\lambda \lambda \alpha ́ \beta \omega v \tau \grave{v} v \tau \alpha ́ \sigma \omega ้$ है $\chi \omega \sigma \tau v$.
(3) $\varepsilon \gamma \varepsilon \rho \theta \check{v} v \delta \varepsilon ̀ ~ \sigma \alpha v i ́ \delta i o v ~ \lambda \varepsilon \pi \tau o ̀ v ~ к \alpha \grave{~ v ̇ \pi o ́ \mu \eta \kappa \varepsilon \varsigma, ~} ̄ \sigma \tau \varepsilon \chi \omega \rho \varepsilon i ̂ v$

[^135]has been released, another cord will pull from behind the joint and thus lay A thena down.
(1) It remains for us to detail how the bolt of lightning will fall inside the box and the figurine of Ajax will vanish. So, these effects take place just as I am going to spell themout one by one. The figurine will be painted where the backdrop of the box $\langle\mathrm{s}>$. Across from it, let there be a notch made <both> in the upper side of the frame and in the lower one, just as I have shown for the dol phins.
(2) So, two extremely thin gut strings of the kind placed on sambucas are stretched tight from the upper side of the notch down into the enclosure through the notch above In order for them to be stretched taut inside the shrine, they are fastened to two pegs on high, so as to obtain tension when the pegs are turned.
(3) Once a thin and longish board has been raised, so that it passes through the notches easily, and once it has been made to stand beyond the lintel, so as not to jut out from the lintel itself into the box $\left\langle^{* * *}\right\rangle$. Having been pierced lengthwise with two holes, it encases the strings by means

[^136]of pegs; \{the\} a thin lead weight is al so glued onto the back of the board, so that it may acquir re heaviness.
(4) Thus, if we drive the board upward through the notch by hand, it will fall full pelt straight through the box, as it lies around the strings. So, the strings are dyed black, in order not to be conspicuous. The underside of the board is gilded and polished to the utmost over its lower part. On the upper surface, something resembling fire is traced out, in such a way as to create the image of lightning.
(5) Once re eased, this falls in the middle of the figurine, since the strings are pulled taut. This [the board] remains held up above by a pin, just like the pieces of cloth, so that, when it is convenient, the cord may draw the pin and hurl the lightning bolt. As soon as the bolt of lightning falls, the figurine disappears as follows: there is another piece of cloth made just like the other coverings, but small, in order that the cloth covers exactly the figurine. On this, sea is painted like that which surrounds the figurine and the waves.

 рavoov̂ ท̀ $\varphi \alpha v i ́ \sigma \theta \alpha$.

 $\lambda \alpha ́ \sigma \sigma o v \tau \alpha l<* * *>$

[^137](6) If anything else, of the things nearby, is seen, it is added, so that, when the figurine has been masked, the cloth may be> all alike. The cloth must likewise be additionally painted the colour of the sea on the underside. In order for the cloth not to be seen at all \{when covered\}, it is rolled up al oft and propped up by the one pin which al so supports the bolt of lightning, so that, when it is dragged out, the lightning bolt falls on the figurine and this is covered by the cloth at one and the same time, with the result that it [the figurine] seems to vanish being struck by lightning.
(7) Therefore, the effects in the box are managed in this way. The movements of the figurines and those of the journey all occur in a similar way through such instruments, and all the boxes are likewise managed by these means, except that they differ $\langle * * *>$

COMMENTARY ON BOOK ONE

I [2.3-6.8] Preface
In a succinct preface, Hero presents the subject matter of the treatise. The incipit is conventional in both form and content (seeAlexander 1993: 71, 75-7), but the presence of a lacuna hinders comparison with similar openings. Stationary automata (I.3-6) are given more space than their mobile counterparts (I.2), possibly because of the author's stated preference for the former type (I.7 $\ddot{\varepsilon} \sigma \tau \iota \delta \dot{\varepsilon} . .$. $\dot{v} \pi \alpha \gamma o ́ v \tau \omega v)$. The words with which the opening sentence now closes are re peated at the end of 1.7 and create an inclusio. As a result, the last paragraph (I.8) presents itself as an independent unit, in which Hero can affirm his editorial authority (Mansfed 1998: 52).

 $\varphi \uparrow \lambda о \sigma o ́ \varphi \omega v \tau \varepsilon$ каì $\mu \eta \chi \alpha \nu 1 \kappa \hat{\varrho} v$, etc. (with Mansfeld 1998: 51; correct $\pi \rho o ́ \tau \varepsilon \rho \omega v$ to $\pi \rho o ́ \tau \varepsilon \rho o v ?$ see below). As first noted by Bal di $42^{r} n .1$, there is no main clause following this genitive absolute Previous translators have obviated the problem by rendering the genitive absolute as an independent sentence. Schmidt rightly suspected a lacuna after $\theta \varepsilon \omega$ pías (I.1 [2.5]; cf. Catoptr. 318.11). Comparison with other scientific prefaces, most notably Hero, Dioptr. 188.3-9 and Spir. 2.410 (see Alexander 1993: 70 with n. 6), indicates that here, too, the author's intention to write would have been expressed in the first main clause of the preface, and that such a clause would have foll owed the openi ng subordi nate clause. However, nothing suggests that the main clause here should coincide with Spir.

 ively proposed by Schmidt in his app. crit. This is not because, as has been asserted by Olivieri (1901: 434), Hero draws on Philo exclusively for Book Two, but because in the Automata, just as in the Dioptra (cf. Dioptr. 188.5-9 $\dot{\alpha} v \alpha \gamma \kappa \alpha i ̂ 0 v \ldots \pi \rho \circ \alpha ́ \xi \alpha \iota)$, he prioritises improving and ameliorating earlier models over order and inventiveness.

For the use of the term $\pi \rho \alpha \gamma \mu \alpha \tau \varepsilon i ́ \alpha$ (and its corresponding verb $\pi \rho \alpha \gamma \mu \alpha \tau \varepsilon v^{\prime} \mu \alpha 1$) in scientific prefaces, see Alexander (1993: 96-7), where the
present passage, Hero, Dioptr. 188.3 (Tท̂ऽ $\delta ı \pi \tau \rho ı \kappa \hat{\varsigma ~} \pi \rho \alpha \gamma \mu \alpha \tau \varepsilon i ́ \alpha \varsigma)$ and Spir. 2.4 (quoted above) are cited among others (add XX. 1 [64.3] $\pi \rho \alpha \gamma \mu \alpha \tau \varepsilon v \theta \hat{\eta} v \alpha \iota)$. The term clearly refers to the subject of the treatise rather than to the treatise itself ('II Trattato delle Machine Se moventi', Baldi 16'; amplified in Couture 243). Murphy 11 ('The study of automaton-making') overemphasises its theoretical connotations. Schmidt's translation is more puzzling: ‘Die Schaustellung der Automaten (Automatentheater)' (339). For the term in a more concrete sense ('device'; not recorded by LSJ s.v.), cf. XXVIII. 2 [100.15].

I prefer $\pi \rho \circ \tau \varepsilon ́ \rho \omega v$ ($\mathbf{G M}$) to $\pi \rho o ́ \tau \varepsilon \rho o v(\mathbf{A T})$, which has been adopted by Schmidt. Nowhere else in the Heronian conpus does the substantivised adverb occur with reference to predecessors. When referring to predecessors, Hero uses either prepositional phrases (oi $\pi \rho o ̀ ~ \varepsilon ̇ \mu o v ̂: ~ D i o p t r . ~ 188.5-6 ; ~ o i ~ \pi \rho o ̀ ~ \eta j \mu @ ̂ v: ~ V . ~ 1 ~$ [20.8], XX.1 [64.8], Be. 73.6, Dioptr. 188.11, 292.22, Metr. 4.6) or substantivised adjectives (oi dop $\rho \alpha 0$ ôo: II. 12 [14.11], XX. 5 [68.1], XXII. 1 [70.4], Deff. 104, Metr. 72.29, Spir. 2.9, Stereom. 1.21.3; oi $\pi \alpha \lambda \alpha ı$ í: I. 7 [4.22]; cf. Be. 112.9-10; oi $\pi \rho$ о́тєрот: Dioptr. 292.24-5).
 gued that Hero exploits the metaphorical meaning of the term π окínos ('artful', 'wily', LSJ s.v. III.3.c) in order to establish a connection betwen mechanical craftsmanship, cunning intelligence ($\mu \hat{\eta} \tau \iota \varsigma$) and the production of wonder. To support her argument, she cites Hes. Th. 511 and A. Pr. 308, where the term refers to Prometheus' cunning. However, she ignores the fact that the notion of $\pi о \kappa \iota \lambda i ́ \alpha$ is strongly associated with $\mu \hat{\eta} \tau \iota$, only in the Archaic and Classical periods (see Grand-Clément 2015: 407-10, citing DetienneVemant 1974: 25-31). Rinaudo (2009: 59 with n. 141) has pointed out that from the fourth century onwards π оккílos usually means ‘diverse' or 'various’ (Grand-Clément 2015: 407 misunderstands this to mean that 'by the Hellenistic period the adjective retains only the meaning of "varied"'), and it is in this sense that Hero primarily uses the term. What is even more interesting to note is the aesthetic effect that Heronian $\pi о$ окı λ í α produces upon the audience. Several sources attest to the pleasure arising from $\pi 0 \iota \kappa \imath \lambda i ́ \alpha$, and Ps.-Plu. Lib. Ed. 7b explicitly mentions its relieving effect in connection with dramatic performances (Bevegni 2014: 322-4; cf. Arist Po. 1459b26-31, with Micalella 2009: 247-8). Hero's references to $\pi \mathrm{o} \lambda \lambda \alpha$ í $\tau \varepsilon$
 elements) and to a broad range of dissimilar movements (XXII. 2 [70.16]; cf. Spir. 28.14-15) suggest the intentional use of kinetic varietas to entertain and captivate the audience. Hero's own arrangement is, after all, one full of delight (II. 12 [14.14-16]; cf. XXI. 2 [68.17-18]). Another aspect of π oוкı λ í α is its ability to stimulate more than one sense (see Grand-Clément 2015: 413-15). Hero's descriptions of the devices engage the reader's imagination not only on the visual level, but also on the auditory and tactile levels (Roby 2016: 116-18). Information about sound effects (woodworking sounds: I.5 [4.13], XXII. 4 [72.3], XXIV. 4 [82.20]; kettedrums and cymbals: IV. 2 [18.10-11] bis, IV. 3 [18.19-20], XIV. 1 [50.16-17], XIV. 2 [52.2] and [52.5-6]; peal of thunder [or similar]: XX. 3 [66.4], XX. 4 [66.14], [66.15] and [66.18], XXII. 6 [74.1]), along with tactile and material indications (e.g. lightness: II. 2 [6.18] and [8.1], II. 9 [12.9], IX. 4 [32.5], XXIII.1 [74.7], XXIV.1 [80.7]; smoothness: II. 3 [8.4-5], XVI. 1 [54.11], XXIV. 2 [82.2], XXVI. 2 [92.2]), contributes to recreating a multisensory experience for the reader, thus enhancing (syn)aesthetic appreciation of the work; on aesthetic-oriented descriptions in the treatise, see Roby (2016: 146 with n. 25), citing, among others, II. 12 [14.12] and XV. 2 [52.12-14] (add

 Iate, mainly because $\theta \varepsilon \omega$ pí has multiple meanings. Alexander (1993: 59; cf. 978) interpreted the term to mean 'intellectual study pursued for its own sake' (see LSJ s.v. III.2.b), whereas other scholars, including edi tors and translators, understood it as 'spectacle' (Baldi 16v; Schmidt 339; Murphy 11, adapted by Tybjerg 2003: 451) or 'sight' ('vista', Cambiano 1994: 621; cf. LSJ s.v. III.3). The latter sense is certainly the primary one, as confirmed by the reference to the notion of گ$\kappa \pi \lambda \eta \xi 1 \varsigma$, strong emotional impact upon the audience (cf. esp. Anon. Vit. Aesch. 14 and PI. Ion 535b2-3, with Pace 2008: 232-3; on the adjective éк $\pi \lambda \eta \kappa \tau о \varsigma$, see below). In order to uncover deeper levels of meaning, we must turn to Hero's concept of wonder.

According to Tybjerg (2003: 449, 463-4), Hero's concept of wonder is twofold: on the one hand, it refers to 'intellectual surprise', that is to say, the kind of wonder experienced when leaming about the causes of mechanical phenomena
(Mech. $2.33=172.4-11 \mathrm{Nix}$); on the other hand, it refers to Aristotle's aporetic wonder (Metaph. 982b12-21 and 983a11-21, where he mentions automata), which the philosopher describes as leading to knowledge. Tybjerg (2003: 464) implies that the latter form of wonder is particularly characteristic of automata (see al ready Meißner 1999: 58-9, cited by Roby 2016: 147), insofar as it stems from an epistemic disparity between the uninformed audience and the experienced mechanician. Hero's wonder, however, is much more than this. As shown by Nightingale (2001: 49-53; 2004: 261-5), in the Parts of Animals (645a7-23) Aristotle conceives of an aesthetic form of wonder that accompanies, rather than precedes, the contemplation ($\theta \varepsilon \omega$ pí α) of animals. What is most relevant here is that, in order to illustrate the investigation of the animal world, A ristotle adduces the example of artistic representations (PA 645a11-15):

 vó $\mu \varepsilon$ voí $\gamma \varepsilon$ đ $\alpha \varsigma ~ \alpha i t i ́ \alpha \varsigma ~ \kappa \alpha \theta о \rho \alpha ̂ v . ~$

It would be strange, and contrary to reason, if we take pleasure in contemplating representations of these things [i.e the animals] - because we are gazing at the art which fashioned them, as, for instance, painting or scul pture- but do not take more delight in the contemplation of those things formed by Nature, despite being able to observe the causes.

Commenting on this passage, Nightingale (2001: 50; 2004: 263) notes that both artistic and philosophic contemplation entail the theoretical apprehension ('"viewing"') of a technical design. This aspect is brought out most clearly by
 here 'indicates the desirability... of an aesthetic experience of mimetic art', Halliwell 2002: 181). In order to properly understand Hero's notion of wonder, we must therefore take into account the fact that automata are, by definition, mimetic objects (Gem ap. Procl. in Euc. 41.13-14; cf. Papp. 1024.26-7; Cambiano 1994: 624-5; Introduction, pp. Ixvii-Ixviii with n. 107). Another Aristotelian
passage helps us gain a clearer insight into the ways in which aesthetic wonder would have arisen from the $\theta \varepsilon \omega$ pí α of automata. In the Poetics (1448b15-19), the Stagyrite distinguishes between the pleasure derived from recognising and understanding a mimetic work qua representation and the pleasure taken in technical craftsmanship ($\dot{\alpha} \varepsilon \varepsilon \rho \gamma \alpha \sigma_{i ́ \alpha}$), colour and other material properties. As Halliwell (2002: 185) cautions, however, such distinction is possible only as a result of an imperfect æesthetic experience. The passage cited above from the Parts of Animals, by making repeated reference to theoretical activity, indirectly confirms this. Thus, just as mimetic works are the product of a $\delta \eta \mu ı \rho v \rho \gamma \eta{ }^{\prime} \sigma \alpha \sigma \alpha$ $\tau \varepsilon ́ \chi \vee \eta$ (PA 645a11), Hero's automata are $\delta \eta \mu 10 v \rho \gamma \eta \mu \mu \alpha \alpha$ (I.2 [2.14]), and it is telling that at I.7 [4.22-6.2] the reason adduced to explain why the crafters of automata (oi $\delta \eta \mu 100 \rho \gamma o v ̂ v \tau \varepsilon \varsigma)$ would traditionally have been called 'wonderworkers' is, indeed, tò ěкл $\pi \lambda \eta \kappa \tau о v ~ \tau \eta ̂ \varsigma ~ \theta \varepsilon \omega \rho i ́ \alpha \varsigma ~(C a m b i a n o ~ 1994: ~ 621) . ~ I n ~ t h i s ~$ way, Hero creates a link between everlasting, if not ever-growing, wonder (cf. Aristotle's definition of $๕ \prec \kappa \pi \lambda \eta \xi ı \varsigma ~ a s ~ \theta \alpha v \mu \alpha \sigma ı o ́ \tau \eta \varsigma . . . ~ v i \pi \varepsilon \rho \beta \alpha ́ \lambda \lambda \lambda o v \sigma \alpha, ~ T o p . ~$ 126b17) and the aesthetico-cognitive apprehension of the automata as both mimetic artworks and crafted artefacts, an experience that allows the audience to take ' ${ }^{*}$ plectic' pleasure in the recognition and understanding of intricate mechanical devices as representational objects and, at the same time, to luxuriate in artistic and material features (e.g. technical accuracy: XXIV.1 [80.8], XXVI. 1 [90.13]; colour: XXIV. 2 [80.11-13], XXVIII. 3 [102.1-2], XXX. 4 [108.5], XXX. 6 [110.3-4]). Wonder in the Automata can, but does not necessarily have to, arise from ignoring the mechanical causes behind the spectacles. Ripe with
 reader to the aesthetic sense of wonder felt, in varying degrees, when 'viewing', 'contemplating' and ‘studying' the automata. All in all, Hero’s wonder does not merely concem, as Berryman (2009: 51-3) maintains, the spectators' perceptions of mechanics, but first and foremost its 'theory' in both its visual and philosophical sense

For $\begin{gathered}\kappa \\ \kappa \lambda \eta к к т о \varsigma ~ i n ~ t h e ~ a c t i v e ~ s e n s e ~ o f ~ ' a s t o u n d i n g ', ~ L S J ~ s . v . ~ I V ~ c i t e ~ o n l y ~\end{gathered}$ RFIC 53 (1925) 208 =SEG 3.774 .5 = IC 3.4.38.5 = Ep. 44.5 Mart́nez Fernández $\gamma \lambda \alpha \dot{\theta} \theta 1 \alpha \varsigma$ ह̇к $\pi \lambda$ и́ктоия (first century BCE c.). Unsurprisingly, Crönert (app. crit. to SEG 3.774.5) glosses it as follows: $̄ \sigma \tau \varepsilon ~ \dot{\kappa} \kappa \pi \lambda \eta ́ \tau \tau \varepsilon \sigma \theta \alpha ı ~ \pi \alpha ́ v \tau \alpha c ~ o ́ p ต ิ v \tau \alpha c . ~ A c-~$ cording to Levi (1925: 209), who first published the Cretan inscription, the ad-
jective bears this sense also at Orph. H. 39.10 (erroneously cited as 38.10) $\psi v \chi \hat{\eta} \varsigma$ $\dot{\varepsilon} \kappa \pi \lambda \eta$ йктоv. But the meaning will most certainly be passive there; seLSJ s.v. II; Fayant (2014: 334), translating 'épouvantée'.

On the lacuna, see note on I.1 [2.3-4].
I. 1 [2.6-7] है $\begin{gathered} \\ \tau \iota \\ \gamma \alpha ́ \rho . . . ~ \\ \alpha \alpha \rho \alpha \lambda \alpha \mu \beta \alpha v o ́ \mu \varepsilon v o v . ~ T h i s ~ p o w e r f u l ~ m e t o r i c a l ~ s t a t e m e n t ~\end{gathered}$ presents automata-making as an encapsulation of mechanics (Roby 2016: 266-7; ‘sintesi e coronamento di tutta la meccanica', Ferrari 1985: 266). Roby (2016: 266) finds it remarkable that mechanics is explicitly described as consisting of
 matics) and Hero, Bel. 72.5-6 (artillery-construction).

Note the use of the phrase $\dot{\omega} \varsigma, \sigma v v \varepsilon \lambda o ́ v \tau \iota ~ \varepsilon i \pi \varepsilon i v$, which adds rhetorical force to the statement (pace Alexander 1993: 94, who, however, omits the present passage from his list of expressions for 'briefly' in scientific writings). Cf. I. 6 [4.17] ($\dot{\alpha} \pi \lambda \hat{\omega} \varsigma)$.
I.1 [2.7-8] $\delta i \alpha ̀ ~ \tau \hat{\omega} v . . . \varepsilon ̇ \pi \tau \tau \varepsilon \lambda o v \mu \varepsilon ́ v \omega v$. The verb $\varepsilon ̇ \pi \tau \tau \varepsilon \lambda \varepsilon ́ \omega$ ('complete', 'finish') occurs four other times in the treatise, three times with reference to mechanical movements (XVIII. 3 [60.5], XIX. 4 [62.10], XIX. 5 [62.16]; cf. LSJ s.v. I.1), once with an indeterminate and neuter subject (XII. 3 [44.2]). The latter occurrence ($\left.\tau \alpha \dot{\alpha} \dot{\varepsilon} \xi \hat{\eta} \varsigma \varepsilon \dot{\varepsilon} \pi i \tau \varepsilon \lambda \varepsilon \sigma \theta \eta \eta_{\sigma \varepsilon \tau \alpha 1}\right)$ clearly refers to the sequence of mechanical movements described at XII.4 [44.8-11]. Here, therefore, Hero appears to use the verb to refer not to mechanical knowledge as such (Roby 2016: 266-7, who takes the participle to refer to the 'parts' of mechanics; so also Murphy 11), but rather to the various processes involved in the construction of automata, processes which, as a whole, reflect the application of a number of different mechanical principles (cf. 'was... ausgeführt wird, zur Anwendung', Schmidt 339). This understanding of the verb also agrees with the immediately following context (I.2-6 [2.9-4.19]), where stress is repeatedly laid on the automatic movements that take place in both the mobil e and the stationary automaton.

For ка兀亠̀ $\mu \hat{\varepsilon} \rho о \varsigma, ~ c f . ~ I V . ~ 4 ~[20.7] ~(c o m p o n e n t s ~ o f ~ t h e ~ m o b i l e ~ a u t o m a t o n), ~$ XX. 5 [66.20] and XXII. 3 [70.19] (both referring to the scenes of the Nauplius play), XXX. 1 [106.7] (description of the disappearance of Ajax).
I.2 [2.9] $\mathfrak{\eta}$ ह̇ $\pi \alpha \gamma \gamma \varepsilon \lambda i ́ \alpha$. The term ε $\pi \alpha \gamma \gamma \varepsilon \lambda i ́ \alpha$ occurs only twice in Hero, here and at Dioptr. 286.20-1 (δ ıолт $\rho \kappa \alpha ̀ \varsigma, ~ غ ̇ \pi \alpha \gamma \gamma \varepsilon \lambda i ́ \alpha c), ~ w h e r e ~ i t ~ s e e m s ~ t o ~ b e ~ u s e d ~ s y n o n y m-~$ ously with $\pi \rho o ́ \beta \lambda \eta \mu \mu \alpha$ ('dioptrischen Problemen', Schöne 1903: 287; so also Lewis 2001a: 281). Here the term refers to that which automata-making 'promises' (so Baldi $16^{\text {}}$ and Schmidt 339; cf. 'quod hinc expectatur', Couture 243; LSJ s.v. 3) to accomplish, and hence to the 'subject' (or, perhaps better, 'scope', as I have translated) of automata-making (Murphy 11 freely translates 'topics to be discussed'). The relationship between these two meanings is close Note especially Gal. Libr. Propr. 91.9-10 and 92.11 Müller, where the term is used synonymously with $\dot{\varepsilon} \pi \alpha \dot{\alpha} \gamma \varepsilon \lambda \mu \alpha$ ('subject' of a treatise, LSJ s.v. غ̇ $\pi \alpha \gamma \gamma \varepsilon \lambda i ́ \alpha ~ 6) . ~ L S J ~$ s.v. ह̇ $\pi \alpha ́ \gamma \gamma \varepsilon \lambda \mu \alpha 2$ understand the meaning of the term as 'that which it [i.e the treatise] purports [sic] to contain'. The connection is further strenghtened by the use of ímó $\theta \varepsilon \sigma$ ç at XXI. 2 [68.17] (cf. LSJ s.v. II.3; Verhasselt 2015: 614-15, on S.E. M. 3.3 =Dicaearch. fr. 78 Wehrli). In a similar sense, I. 3 [2.17] (v́ κ ó $\quad \chi \varepsilon \sigma \iota$) and XXI.1[68.7] ($\pi \rho o ́ \beta \lambda \eta \mu \alpha)$.
 emend $\grave{\eta}$ to к $\alpha i ́$, as tentatively suggested by Schmidt in his app. crit. The context makes it clear that Hero is referring to the types of mobile automata that can be built rather than, as Schmidt's proposal implies, to Dionysus' shrine and its associated altars (see al ready Baldi $42^{\text {r n. }}$ 2). Hero does not go into detail about the arrangement of his mobile automaton until ch. III, and the opening sections of the treatise are not devoid of general considerations. For more specific references (introduced by oiov), cf. I. 5 [4.12-13] and I. 6 [4.16-17] (both referring to the figures in the stationary automaton).

By the adjective σ ט́ $\mu \varepsilon \tau \rho о \varsigma$, Hero here intends to denote proper proportion between the parts of automata ('proportionati', Baldi 16"; 'of appropriate size', Murphy 11; cf. 'apte', Couture 243) rather than moderate size ('von mässigem Unfange', Schmidt 339). The adjective recurs in the same sense at IX.5 [32.7-8] (of the hole through which the millet flows) and XXV. 2 [86.6] (of the thickness of a rod). The emphasis Hero lays on proportionality and suitability recalls Philo's descriptions of artillery engines, the components of which are repeatedly qual ified as 'proportionate' (Schiefsky 2015: 625-6 with n. 23, citing Ph. Bel. 53.24-5, 54.15 and 54.21 [$\sigma \nu \mu \mu \varepsilon ́ \tau \rho \omega c] ; ~ c f . ~ a l s o ~ 63.28, ~ 66.7 ~ a n d ~ 67.12-13) . ~ V i t-~$
ruvius, too, uses the concept of 'symmery' to refer to proportionality in machines: Vitr. 10.10.1 (ballistae and catapuls). On Vitruvius' concept of symmetria, see Lefas (2000).

For $\sigma u ́ \mu \mu \varepsilon \tau р о с$ as indicating a moderate size, cf. XXV. 4 [86.20] (of a gap, as at Dioptr. 242.1).
I. 2 [2.10-11] av̉тó $\boldsymbol{\alpha \tau o i ́ . . . ~ \tau o ́ t o v c . ~ O n ~ H e r o ' s ~ n o t i o n ~ o f ~ \alpha u ̉ \tau o ́ \mu \alpha \tau o c , ~ s e e ~ B e r r y - ~}$ man (2002: 245), who, drawing upon Galen's comparison between living organisms and theatrical devices (Foet. Form. 4.688-9 Kühn), stresses that it is the intemal constitution of the devices that allows a sequence of causally dependent movements to take place 'automatically' (namely, without constant human intervention); see also Beryman (2003: 365; 2007: 39; 2009: 142 and, more generally, 201-5). This conception emerges most trikingly in XXVI. 6 [94.14-17], where Hero emphasises the centrality of mechanical design to the automatic rolling and unrolling of a scroll of papyrus (Fig 30): îva oûv aỉtó $\pi \alpha \rho \alpha \gamma \varepsilon ́ v \eta \tau \alpha ı$ ó $\chi \alpha ́ \rho \tau \eta \varsigma . . . ~ \delta \varepsilon i ̂ ~ \pi \rho о \mu \eta \chi \alpha v \eta ́ \sigma \alpha \sigma \theta \alpha ı ~ \tau \alpha v ิ \tau \alpha$, with which cf. Ph. Be.
 $\dot{\alpha} \pi$ огб $\alpha<\varepsilon \sigma \theta \alpha \mathrm{a}$. At the heart of any automatic sequence of movements, then, is not external agency (cf. IX. 5 [32.9-12]), but a ‘stored power source’ (Beryman 2009: 202-3) that Hero calls ह̀vépysı (I.7 [4.20]; cf. TGL s.v. aùtó $\alpha \alpha \tau o \varsigma:$
 the term in its original sense of 'spontaneous', 'acting of one's own will' (Be lardi 2005: 44-7 with n. 21), cf. XV.3 [52.17] and [52.20] (both negated).

I follow Brinkmann in emending $\pi \rho \circ \sigma \alpha{ }^{\gamma}$ ovtal to π poóyovesc in preference to Die's' emendation $\pi \rho о \sigma \alpha \gamma^{\prime} \mu \varepsilon v o t$, printed by Schmidt. The middle voice of the verb $\pi \rho 0 \sigma \alpha \alpha^{\prime} \omega$ never means ‘move forward’ ('heranbewegen', Schmidt 339; so also Murphy 11), but 'bring to (oneseff)', 'bring over to one's side', 'take to oneself', 'take up' (LSJ s.v. B.I-II; used only once at Dioptr. 190.16 $\pi \rho \circ \sigma \alpha<\gamma \alpha>\gamma o ́ \mu \varepsilon v o r$ [sc. $\mu \eta \chi \alpha v \dot{\eta} \mu \alpha \tau \alpha]$ toîc $\tau \varepsilon i \chi \varepsilon \sigma v)$). By contrast, the verb π прó́ $\mathbf{\sigma}$ - which Hero uses elsewhere in the figurative sense of 'advance' (Metr. 2.7) - can be used intransitively to mean 'lead the way', 'make an advance' (LSJ s.v. II.1; cf. Evans 1954: 9). LSJ s.v. II. 1 compare the Platonic instances of the verb (PI. Phdr. 227cl and Phd. 90b5) with X. An. 6.5.6, where it refers to the

The corruption of $\pi \rho \circ \alpha \dot{\gamma} \gamma \boldsymbol{v} \tau \varepsilon$, to $\pi \rho о \sigma \alpha ́ \gamma o v \tau \alpha \iota ~ p r o b a b l y ~ a r o s e ~ u n d e r ~ t h e ~ i n f l u-~$ ence of катабкєvá̧ovtaı in the preceding line For the scribal confusion betwen $\pi \rho \circ \alpha \dot{\gamma} \gamma \omega$ and $\pi \rho \circ \sigma \alpha ́ \gamma \omega$, se LSJ s.v. $\pi \rho \circ \alpha \dot{\gamma} \gamma \omega$ I.2.c (Ruf. fr. 68 Darember-g-Ruelle=Aë. 5.84) and II. 3 (Hdt. 9.92).
 то́лov).
I. 2 [2.11-12] $\tau \hat{1} v$ ह่vóv $\tau \omega v . .$. кıveîtal. The reference is to mechanical human figures of the kind one finds in Hero's automata. The participle $\tau \hat{\omega} v \varepsilon$ हैvóv $\tau \omega v$ no doubt means 'being in(side)' (so Schmidt 339 and Murphy 11) rather than 'being on (top of)' ('che sopra vi sono', Baldi 16); see LSJ s.v. हैvéuı I.1.a. Couture 243 translates more vaguely 'ibi dispositarum'.

As noted by Bal di 42^{r-v} n. 3, Hero generally uses the term $\zeta \propto \dot{\rho} \dot{\circ} \mathrm{ov}$ to refer to human-shaped figures. Nowhere in the text does the word refer to animal figures (pace Rossi-Pagano-Russo 2010: 155, who translate 'figurines representing animals'; cf. rather Spir. 136.23, 138.3, 144.10, 328.2). Hero's use conforms to the primary usage of the word (on which, see Kosmetatou 2004: 481: 'the term
 man figures' [my emphasis]).

The adverb idía appears to be used synonymously with גv̉тó $\mu \alpha \tau о \varsigma / \alpha v ̉ \tau o \mu \alpha ́ \tau \omega c$. For the same sense, cf. Dioptr. 194.15-16 (idía $\sigma \tau \rho \alpha \varphi$ ท́ $\varepsilon \tau \alpha \iota$ тò $\tau \nu \mu \pi \alpha ́ v ı v)$. Elsewhere Hero uses it in the sense of 'separately' (Geom 322.23, Spir. 112.14 and 270.27). Previous translations have placed emphasis on the distinctiveness of each figure's motion. Couture 243 has 'proprio et sibi singulari motu', whereas Murphy 11 believes that the figures move 'indipendently' of one another. More neutrally, Baldi $16^{\text { }}$ ('con un proprio moto') and Schmidt 339 ('für sich'). Note, however, that the figures of Dionysus and Nike are described as moving together (IV.2 [18.13-14], XIII. 7 [48.13-14], XIII. 8 [50.2-3] and [50.5-6]).
I. 2 [2.12-13] $\pi \rho o ̀ \varsigma ~ \lambda o ́ \gamma o v . . . ~ \dot{\alpha} \rho \mu o ́ \zeta o v \tau \alpha . ~ N o t e ~ c h i a s m u s . ~ F o r ~ \pi \rho o ̀ \varsigma ~ \lambda o ́ \gamma o v, ~ c f . ~$ XXI. 1 [68.10] (with genitive).

Baldi 16' ('propositione... che s'ha inanzi') translated the words $\pi \rho о к \varepsilon \mu \varepsilon \varepsilon v \eta \nu \quad \pi \rho o ́ \theta \varepsilon \sigma$ v correctly, but he misconstrued the syntax, taking
$\dot{\alpha} \rho \mu o ́ \zeta o v \tau \alpha$ as referring to λ ójov. This led him to misunderstand the term $\pi \rho o ́ \theta \varepsilon \sigma \iota \varsigma$ - additionally translated as 'proposito’ ('purpose', cf. LSJ s.v. II.1) as denoting the 'story' (Bal di 42^{\vee} n. 4), and to take $\pi \rho о к \varepsilon \mu \varepsilon ́ v \eta v$ as referring both to $\pi \rho o ́ \theta \varepsilon \sigma v$ and to $\mu \hat{v} \theta$ ov. But $\hat{\imath}$ is clearly disjunctive. At any rate, Baldi's transIation is more accurate than Schmidt's ' dem vorliegenden Plane' (339). Murphy 11 mistranslates, omitting the participles: 'according to the argument of the arrangement or story' (my emphasis). Couture 243 omits even more: ‘qualem [i.e. motum] exigit fabula'. For $\pi \rho o ́ \theta \varepsilon \sigma \iota \varsigma$ as denoting advance planning, cf. GEL 30.63. (The idea is here brought out by the use of the verb $\pi \rho$ о́кє $\mu \alpha 1$, as at I. 4 [4.8].)

The term $\mu \hat{v} \theta$ os is used el sewhere in the treatise to refer to the stories enacted in stationary automata (generic references: I. 3 [2.19], I. 4 [4.8] and [4.9], I. 5 [4.12], XXII.1 [70.9], XXII. 2 [70.11] and [70.15] [both plural]; Nauplius play: XX. 2 [64.11], XXII. 3 [70.18], XXII. 6 [74.3]). The use of the word here suggests that mobile automata, too, would somehow have all lowed the (re)enactment of polyscenic mythical narratives. For the distinction between monoscenic and polyscenic narrative regarding Hero's automata, see Prou 138 and Cambiano (1994: 614), both of whom speak of 'acts' (but see the caveat in Marshall 2003: 261-2 n. 3).
 $\dot{\alpha} \pi о \kappa \alpha \tau \alpha \sigma \tau \alpha \theta$ ท́ $\sigma \varepsilon \tau \alpha \iota$ [sc. τ ò $u \delta \omega \rho$]. For this sense of $\alpha \pi о \kappa \alpha \theta$ í $\sigma \tau \alpha \mu \alpha »$ ('return'), see al so XIII. 8 [50.5] (rotating Nike and Dionysus), Spir. 8.6-7 and 8.10; other

 Ids its use in geometry, where the verb describes figures, both plane and solid, completing a full rotation: DGE s.v. I. 3 (Archimedes; but the usage is al ready attested in Euclid: Heath 1897: clxix); compare especially Hero, Deff. 7, 27bis, 76, 83, 95 and 97, Metr. 126.15. For $\dot{\alpha} \pi о к \alpha$ Өíбтпиı in the (unusual) sense of 'lay’, cf. XXIII.4[76.9].

On the lacuna suspected by Schmidt after тó $\boldsymbol{\pi}$ оv, se note on III. 2 [16.8-10].
I. 2 [2.14-15] $\delta \eta \mu$ iovprท́ $\mu \alpha \tau \alpha$. Qua nomen rei actae in $-\mu \alpha$, the word denotes the automata as the result of the crafting process ($\delta \eta \mu ı$ оир $\bar{\varepsilon} \mathrm{iv}: ~ I .7$ [4.22-6.1], IV. 4
[20.3-4]). According to Chantraine, DELG s.v. סnurovpyós, the term סп μ ov́prqua, meaning 'work of art', is attested late; but see, for instance, Aesop. 102, D.H. Comp. 1 and 10, [Longin.] Subl. 13.4. As noted by LSJ s.v., the word is used in a biological context (Hierocl. El. Eth. col. I 11) to designate a living 'creature'. On the possible Chrysippean origin of this meaning, see Basti-anini-Long (1992: 375), who recall the contrast drawn by Porph. Gaur. 47.12-13 between the ëpy of nature and the $\delta \eta \mu$ оиорүй $\mu \alpha \tau \alpha$ of a shipbuilder. With this passage one should compare Plu. Ser. Num 559d = Posidon. fr. 367.27-8

 notead loc.).
I. 3 [2.17-18] $\dot{\varepsilon} \pi i ́ \tau v v o c . . . e ̀ z(\omega v$. At first sight, it seems strange that a threedimersional object such as the stationary automaton is designated by the word $\pi i v a \xi$ ('board', 'plate' or 'tablet'; on the meanings of the term, see Pritchett 1956: 250). The word has received various translations. Paradigmatically, Schmidt renders it as either 'Tafel' (cf. 'tavola', Baldi; 'tabula', Couture), 'Bühne', 'Spid haus' or 'Automatentheater'; cf. '(toy) stage' or '(toy) theatre' (Murphy; evidently based on LSJ s.v. 8); ‘scène' or 'thê̂tre' (Prou). More recently, Marshall (2003: 261, 263) has rightly argued that the π ivak' is a 'box' (cf. XXIII. 1 [74.5-7] and note on II.7 [10.18-19]), while also drawing attention to the use of the term in the context of Hellenistic theatre. With its painted backdrops (cf. esp. XXIV.1 [80.4-5], XXV. 2 [84.15-86.2], XXV. 6 [88.12-13], XXVI. 6 [94.9-14], XXVIII. 1 [100.7-8], XXIX. 1 [104.16-18], XXX. 5 [108.15-18]), Hero's stationary automaton recalls the changeable scene panes placed in the so-called thyromata ('openings') of Hellenistic and Roman theatres: for details on the location of the π ivaкとc, see Penny Small (2013: 116), with further references. More specifically, it calls to mind some descriptions of painted panels in the Delian temple inventories (after 166 BCE). Among the types of Delian panels originally studied by Vallois (1913) and lately reviewed in a more systematic fashion by J ones (2014) appeers the shuttered panel, which could rest on a base: [π ívaка ह̇̇ì

$304^{* * *}$ s.W. $\left.\tau \varepsilon \theta \cup \rho \omega \mu \varepsilon ́ v o \varsigma ~[a d d ~ 1414 ~ b ~ c o l . ~ I ~ 21-23] ~ a n d ~ \varepsilon ̇ ~ \varepsilon \grave{~} \beta \alpha ́ \sigma \varepsilon \omega \varsigma\right) . ~ I t ~ t h u s ~$ becomes evident that what Hero means by кıovíккос is, indeed, a pedestal supporting the automaton (for this suggestion, see Baldi $42^{\mathrm{v}} \mathrm{n}$. 5, who translates 'piedi stalletto'; cf. also XXI.1 [68.8]). The connection between the nomenclature chosen for the stationary automaton and the Hellenistic tradition of panel painting is strenghtened by Hero's description of the primitive type of device (XXII.1-2 [70.4-14]), a π ivas equipped with shutters and with a face painted on it ($\pi \rho o ́ \sigma \omega \pi o v \gamma \varepsilon \gamma \rho \alpha \mu \mu \varepsilon ́ v o v)$. This description not only harks back to the $\kappa \alpha \lambda 仑 ́ v \mu \alpha \tau \alpha \pi \rho о \sigma \omega ் \pi \omega v$ (IG 42.1.102 A col. I 57 and 68; cf. A col. I 58-9 and 102 B col. I 77) that were set into ceiling coffers in the Sanctuary of Asclepius at Epidaurus in the early fourth century BCE (on these, see Hellmann 1992: 92 with n . 23), but also evokes the portraits (π ivaкєऽ ε iкоvıкоí) so frequently mentioned in the Delian inscriptions; cf. esp. ID 1403 Bb col. I $57 \pi i v \alpha \kappa \alpha \pi \rho o ́ \sigma \omega \pi \alpha$ है $\chi \circ v \tau \alpha$ т ${ }^{\prime} \alpha$ (erroneously cited by J ones 2014: 304** s.v. $\pi \rho o ́ \sigma \omega \pi \alpha$ है $\chi o v \tau \alpha ~ \tau \rho i ́ \alpha ~ a s ~ 1403 ~$ B.1.28).

For the derivative $\pi ı$ vóкıov, cf. XX. 5 [68.3].

 etheless translates his proposed supplement: ‘sieht man', 341). Brinkmann's proposed 《ধ́ $\gamma \rho \alpha \pi \tau \alpha l>$ might seem equally attractive, especially since the following reference to the arrangement of figures (1.4 [4.2]) is to $\dot{\eta} . . . \tau \alpha \mathcal{q}^{\prime} 1 \mathrm{~s}$ $\gamma \varepsilon \gamma \rho \alpha \mu \mu \varepsilon v \eta$ (note the presence of the article). As the passage goes on, however, the emphasis is on the spectator's viewpoint, as indicated by the reiteration of the perceptual verb paívouaı and its compounds. (Tybjerg 2003: 457 n. 46 erroneously refers to eleven occurrences of paivo [sic] within the portion I.3-5 [2.17-4.20] as against nine, including è $\pi \iota \varphi \alpha$ iveб $\theta \alpha ı$ and $\dot{\alpha} \varphi \alpha v i ́ \zeta \varepsilon \sigma \theta \alpha 1$, within the same portion: cf. Cambiano (2011: 31). A further argument against Brinkmann's proposal is that the passive of $\gamma \rho \alpha \dot{\varphi} \varphi \omega$ is never used of $\delta 1 \alpha \alpha^{\theta} \varepsilon \sigma \sigma$ ic in Hero. The omission of paiveraı is easily explained palaeographically (the form occurs twice in close proximity: I.4[4.2] and [4.4]).

The term $\delta \alpha \dot{\alpha} \theta \varepsilon \sigma ı \varsigma$, corresponding to the Lat dispositio, appears to be used in three different ways in the treatise. In a technical sense, as an inheritance from professional criticism (cf. Vitr. 1.2.1-2 and, most relevantly, Plin. Nat 35.80,
with Pollitt 1974: 23, 163-4), it refers to the position of the figures (or parts thereof) in relation to one another (here, as at I. 4 [4.4] and [4.6], XXII. 2 [70.10], XXIV. 1 [80.5]; cf. I. 4 [4.9]). This sense is closely related to the basic meaning of the word ('arrangement', LSJ s.v. 1, citing Aristotle's definition of δ óo $\theta \varepsilon \sigma ı$, as
 broader sense, as an extension of the previous meaning, it signifies the scenic 'arrangement' (cf. 'subject', 'content' of a painting: Pollitt 1974: 162-3, with references) and/or the theatrical '(re)presentation' (LSJ s.v. I.2.a, citing XX. 2 [64.11]; cf. also I. 7 [4.22], I. 8 [6.5] and [6.7], II. 12 [14.11], [14.14] and [14.15], IV. 4 [20.6], XX. 4 [66.9], XX. 5 [66.19], XXI. 1 [68.10], XXI. 2 [68.18] and [68.19], XXII.1 [70.4], XXII.4 [72.5], XXII.6 [74.4]). This meaning overlaps, at least to some extent, with the rhetorical use of the term ('delivery' of a speech, LSJ s.v. I.2.a; cf. Tybjerg 2003: 455 with n. 41, who, however, al so cites in this connection XXIV. 1 [80.5]); in this sense, therefore, $\delta 1 \alpha \dot{\alpha} \theta \varepsilon \sigma ı c$ can be understood to denote the spectacle (ε д́ízı $\xi ı$) as delivered to the watching audience ('disposizione scenica esibita davanti a un pubblico', Cambiano 1994: 613; on غ̇лí $\delta \varepsilon 1 \xi 1$, see note on IV. 4 [20.1]). In a narrower sense, it refers to configurations of a mechanical nature(I.8[6.4] and XX. 2 [64.12]). This meaning is brought out most clearly in XX. 2 [64.12-14]: $\pi \circ \lambda \lambda \alpha i ́ ~ \tau \varepsilon ~ \kappa \alpha i ̀ ~ \pi о ו к i ́ \lambda \alpha ı ~ \delta 1 \alpha \theta \varepsilon ́ \sigma \varepsilon ı \varsigma . . . ~ o v ̉ ~ \varphi \alpha v ́ \lambda \omega \varsigma ~, ~$
 Iates here: ‘Aufführungen’; cf. ‘scenes’, Murphy 28). For $\delta 1 \alpha ́ \theta \varepsilon \sigma ı \varsigma ~ a s ~ m e c h a n i c a l ~$ ‘arrangement', ‘design', cf. Ph. Bel. 56.14, 59.28, 68.16-17, 68.20, 72.22-3, 76.21, 77.11-12, 78.23; Hero, Bel. 73.7 and 112.10.
I. 3 [2.19-20] $\pi \rho o ́ \varsigma . . . ~ \delta เ \varepsilon \sigma \kappa \varepsilon v \alpha \sigma \mu \varepsilon ́ v \omega v . ~ C f . ~ X X I I . ~ 2 ~[70.9] ~ ह ै \varsigma ~ \tau \imath v \alpha ~ \mu \hat{v o o v ~}$ ঠıєбкєvаб $\mu \varepsilon ́ v \alpha$.
I. 4 [4.1-2] кєк $\lambda \varepsilon \iota \sigma \mu \varepsilon ́ v o v . . . ~ \alpha ̉ v o i ́ \gamma o v \tau \alpha 1 . ~ H . ~ S c h o ̈ n e ~ p r o p o s e d ~ a d d i n g ~<દ ̇ \xi ~ \alpha \dot{\alpha} \rho \chi n ̂ \varsigma>~$ after oûv. This supplement is unnecessary because the context makes it clear that Hero is referring to the first opening of the doors. The $\pi i v a \xi$ is presumed to be initially closed also at XXI.1 [68.7-9] and XXII. 3 [70.19-20] (α voox日́́vгoc $\dot{\varepsilon} v$ áp犭ṇ̂ тои̂ $\pi i ́ v \alpha к о \varsigma) . ~$
I.4 [4.3-4] каì $\mu \varepsilon \tau^{\prime}$ ov̉... $\alpha \mathfrak{v} \tau о \mu \alpha ́ \tau \omega c$. The doors of the $\pi i v \alpha \xi$ have not previously been described as closing automatically. I have therefore transposed the words

 geschl ossen und geöffnet', Schmidt 241; Murphy 11 has it the other way around, while Baldi 16^{v} unmistakably takes $\pi \alpha ́ \lambda \iota v$ to refer to $\left.\alpha v o \not \chi \theta \varepsilon \iota \sigma \hat{\omega} v\right)$. The $\pi i v \alpha \xi$ is initially described as having open doors (θ v́pac ěz $\chi \omega v$ àvorүoú́vac, I. 3 [2.18]), which, however, is easily explained by the general and introductory character of the passage. The initial position of the $\pi i v \alpha \xi$ no doubt presupposes closed doors
 and opening of the doors, cf. XXI. 1 [68.10-12] (where $\pi \alpha \dot{\alpha} \lambda ı v$ is perhaps better taken as referring to $\varphi \alpha i$ veб $\theta \alpha \mathrm{l}$).
I. 4 [4.5] $\dot{\alpha} \rho \mu o ́ \zeta o v \sigma \alpha ~ \tau n ̣ ~ \pi \rho o ́ \tau \varepsilon \rho o v ~ \varphi \alpha v \varepsilon i ́ \sigma n ̣ . ~ C f . ~ I . ~ 4 ~[4.7] ~ \dot{\alpha} \rho \mu o ́ \zeta о v \sigma \alpha ~ \tau n ̣ ~ \pi \rho o ́ \tau \varepsilon \rho o v ~$ $\kappa \varepsilon _\mu \varepsilon ́ v n ̣$ (with variatio). For this use of $\dot{\alpha} \rho \mu o ́ \zeta(\omega$, meaning 'correspond', see LSJ s.v. II.1.b (add III.1 [16.1], of capitals).
I. 4 [4.5-7] кaì $\pi \alpha ́ \lambda \imath v . . . ~ к \varepsilon ı \mu \varepsilon ́ v n . ~ A ~ c a r e l e s s ~ r e p e t i t i o n ~ o f ~ t h e ~ i m m e d i a t e l y ~ p r e c e d-~$ ing lines (I. 4 [4.3-5]), according to Baldi $42^{\vee} \mathrm{n}$. 7. This could possibly explain why Couture 244 omits translating these words, which, however, do not seem redundant. Each appearance of the figures as described at I.4 [4.2-9] (cf. XXI.1 [68.9-14]) corresponds to a separate scene in the stationary automaton. From XXII.1-2 [70.4-12], it is obvious that the earlier prototype of π iva displayed no less than three scenes, which were later expanded into a five-scene sequence (cf. Introduction, p. Ixxx n. 144). The omission of these words would therefore result in an incomplete succession of scenes, with the third and potentially final scene described as optional (I.4[4.8-9]).
 $\dot{\alpha} \pi \alpha \rho \tau i ́ \zeta \varepsilon 1$ (R. Schöne), an obvious enough emendation (also adopted by Schmidt). Schmidt's tentatively suggested addition of <xürn> (referring to $\varepsilon \tau \varepsilon$ ह́ $\rho \alpha$ $\delta i \alpha \dot{\theta} \varepsilon \sigma \iota$, in the previous clause) seems necessary to make the clause more intelli-

The phrase iò $\pi \rho о к \varepsilon$ í $\mu \varepsilon v o v ~ \mu \hat{v} \theta$ ov denotes the 'story', or perhaps even (dramatic) 'plot' (LSJ s.v. $\mu \mathrm{v} \theta$ os II.5; so Landels 1978: 204), that has been ' set forth' (so Bal di $17{ }^{r}$ and Couture 244), with adverbial prefix $\pi \rho o-$ presumably meaning both 'forth' and "beforehand’ (LSJ s.v. π pó D.III. 2 and 5): cf. 'the planned story' (Murphy 11). A less faithful interpretation in Schmidt 341: 'das zu Grunde lie gende Stück'. On $\pi \rho$ о́кє $\mu \alpha ı$ as denoting foreplanning, see noteon I. 2 [2.12-13].
I. 5 [4.10-11] $\tau \hat{\imath} v \varphi \alpha ı v o \mu \varepsilon ́ v \omega v . . . ~ \varepsilon ̌ \kappa \alpha \sigma \tau o v . ~ T h e r e ~ a p p e a r s ~ t o ~ b e ~ n o ~ n e e d ~ t o ~ a d o p t, ~$
 meant to correct the letters which in \mathbf{A} are found in margine and in \mathbf{T} and \mathbf{M} in textu. Schmidt failed to notice that A corrects π íкккı to π ivoкı. The marginal letters $v \alpha$ are therefore probably intended to repeat the correction for reasons of clarity. Instead of breaking the word at the end of the line, the scribe writes the last two letters slightly above the line and partially into the margin, which can possibly explain what we find in \mathbf{M}, namely the reduplication of the 1 and the subsequent intrusion of ivva. Cf. also I. 2 [2.11-12] $\tau \hat{\omega} v \ldots . . \zeta \varphi \delta i ́ \omega v$ ह̈к $\alpha \sigma \tau \sigma v$.
I. 5 [4.12-14] $\hat{\alpha} \mu غ ̀ v \pi \rho i ́ \zeta o v \tau \alpha . . . \dot{\alpha} \lambda \eta \theta \varepsilon i ́ \alpha c$. These lines lend themselves to close comparison with XXII. 4 [72.1-4] $\tau \grave{\alpha} \mu \grave{\varepsilon} v \pi \rho i ́ \zeta o v \tau \alpha \ldots \dot{\alpha} \lambda \eta \theta \varepsilon i ́ \alpha c$. Based on the resemblance between the two passages, Schmidt hesitantly proposed adding $\langle\hat{a}$
 $\sigma \kappa \varepsilon \pi \alpha \rho v i ́ \zeta o v \tau \alpha>$ after XXII. 4 [72.1] $\pi \rho i ́ \zeta o v \tau \alpha$. Tempting though it may sem, restoration of either passage need not be urged. The two textual portions do exhibit a high degree of formal correspondence, but this does no more than point to a common source. Assuming that XXII.4 [72.1-4] are more or less directly derived from Philo, we could explain the present passage as a citation from memory or, perhaps more pertinently, as a revised quotation of the Philonic text.

Note how the lines under discussion display a carefully balanced structure and rhythmic character (but π and ρ are also repeated throughout XXII. 4 [72.1-4], with ρ occurring two more times). The alliteration of π, ρ and κ, al ong with the homeoteleuton ($\pi \rho^{\prime} \zeta$ оv $\tau \alpha \ldots \sigma \kappa \varepsilon \pi \alpha \rho v i \zeta o v \tau \alpha$, picked up by $\pi 0 \ldots \hat{\nu} \tau \tau \alpha$), evokes the pounding sound of the woodworkers' tools and thereby adds to the vividness of the description. Hero's use of such literary devices must be seen as part of a larger ekphrastic strategy of visualisation (on Imperial technical ek-
phrasis as drawing on contemporary rhetorical theories of enargeia, see Roby 2016: 90-1). In this connection, Roby (2016: 116-17) draws attention to how detailed descriptions of the auditory features of the machines in both the Pneur matica and the Automata stimulate the reader's imagination and enable him or her not only to 'see' but also to 'hear' the device described (see note on I. 1 [2.4-5]). Hero's insistence that the figures produce noise $\kappa \alpha \theta$ ' ε غ́cá $\sigma \tau \eta \nu \tau \lambda \eta \gamma \eta{ }^{\prime} \nu$ will surely serve a similar function. What brings Hero's description closer to rhetorical ekphrasis, however, is not just the inclusion of specific (auditory) details (note the variety of carpentry tasks mentioned in the first part of the clause), but a more general concern with verisimilitude (on the introduction of vivid details as a retorical strategy of verisimilitude, see Schmit 2000: 63-8). By stat-
 (repeated twice more: XXII.4[72.3-4] and XXII.5 [72.12-13], both al ready cited in Cambiano 2011: 31; Marshall 2003: 274, who likens the language of XXII. 5 [72.10-13] to that of poetic ekphrasis), an expression which may rightly be regarded as belonging to what Halliwell (2002: 155) calls "the traditional Greek language of "likeness(es)"' (for a list of relevant expressions, see Halliwell 2002: 20 n .48), Hero appears to conform to the requirements of rhetorical enargeia: cf. esp. [Longin.] Subl. 15.8 and Quint. Inst. 6.2.30, with Webb (2009: 101-3 with n. 41, and 168). It is in this light that we can better understand both Hero's claim that the painted figures of the woodworkers must be arranged in an
 [68.6-7], with a litotes, and not a positive adjective, as suggested by Tybjerg 2003: 455 n .41) and the occurrence of the word $\varphi \alpha v \tau \alpha \sigma^{\prime} \alpha$ with reference to the sketch of the lightning (XXX.1 [108.8-9]). As variously observed in previous studies (Cambiano 1994: 625 with n. 54; Tybjerg 2003: 455- 6 with n. 41; Berryman 2009: 140), Hero holds credibility and persuasi veness close to his heart, and this is where lifelikeness comes into play. Aiming for fictional plausibility, Hero combines the exercise of rhetorical effects with an explicit interest in descriptive vividness and verisimilitude. If it must have cost the reader little trouble to imagine the Greek sailors noisily repairing their ships, the watching audience would certainly not have doubted the credibility of the representation (cf. XXIV. 1 [80.9], where the flushness of the arms contributes to this effect).
 and hence 'in(side)' (cf. the mathematical use: LSJ s.v. C.2.b). In his app. crit. Schmidt hesitantly proposes emending to $0 \pi \pi \grave{\varepsilon} \rho$, a reading found in the margin of manuscript La (the letter pi is here realised neither as π nor as ϖ, but looks like u, in a rather compressed form; for this n-shaped pi, cf. Thompson 1912: 189, 191-4; Gardthausen 1913: 180, 196, and PI. 4b coll. 12-13). In support of his conjecture, Schmidt cites XXII. 6 [72.17] ínèp tòv π ívaка (of fire coming out of Nauplius' torch) and [72.20] ớv $\omega \theta \varepsilon v$ гov π ívaкоs, which he takes to refer to the lifting of Athena's machine. While the torch is placed immediately above the $\pi i v \alpha \xi$ (XXVIII. 2 [100.11-15]; but perhaps the $\sigma \alpha v i \varsigma ~ \varepsilon ̇ \pi ı \sigma к о \tau o v ̂ \sigma \alpha ~ m e n t i o n e d ~$ there can be regarded as part of the overall structure), the figure of Athena is said (XX. 2 [64.15-16]) to appear ínò τ òv $\pi i ́ v \alpha \kappa \alpha ~(i ́ \pi o ̀ ~ M T ~: ~ i ́ \pi \grave{\rho} \rho \mathbf{A G}$), and Hero details the mechanisms for its appearance inside the box (XXIX. 1 [104.18]). Schmidt 406-7 himself prefers ínò ('auf') to viđغ̀ ('über') at XX. 2 [64.15], but warns that the prepositions are frequently confused by the scribes (Supple mentum 112). Even assuming that the prepositions have been inadvertently swapped, in $\pi \rho$ does not give a satisfactory sense as no figure appears outside the $\pi i v \alpha \xi$. Despite being found elsewhere (XXX. 7 [110.11]), ка兀 α (Diels) is palaeographically implausible.

Other interpretations of $\dot{i} \pi$ ó prove infelicitous. Bal di 17 ('dietro la tavola'), followed by Couture 244 ('pone tabulam'), appears to translate the phrase by analogy with íлò бкпvท́v (cf. Schmidt's suggested 'hinter der Scene’ [341 n. 1]), whereas Murphy 11 renders it as 'below the stage' (cf. 'under the platform', Rossi-Pagano-Russo 2010: 156). I cannot find any reference either to the lighting of a fire or to the appearance of figures behind/below the π ivas. (Note, however, that the dolphins are made to disappear into a chamber underneath the $\pi^{\prime} \mathrm{v} \alpha \underset{(}{ }$ (Fig. 31): XXVII. 3 [98.16-18].)
I. 6 [4.17] $\dot{\alpha} \pi \lambda \hat{\omega} \varsigma$. On the adverb as conveying the idea of brevity, see LSJ s.v. II.3. See also Dioptr. 234.14. For brevitas as a stylistic device, see note on I.1 [2.6-7].
 ing $\check{\text { é }} \lambda \eta \tau \alpha 1$. H. Schöne proposed emending to $\pi \rho o \hat{\prime} \lambda \varepsilon \tau \alpha 1$. However, Hero never
uses the aorist of $\pi \rho 0 \alpha 1 \rho$ ह́oual, preferring instead the present. For similar expressions, cf. Ph. Bel. 62.7 and 66.21-2.
I.6 [4.18] $\mu \eta \delta \varepsilon v o ̀ s ~ \pi \rho o \sigma$ óviooc. A phrase reminiscent of Ath. 198f (on Nysa's statue), cited in Introduction, p. Ixxxviii.
I. 7 [4.20-2] そ̀бтı $\delta \grave{\varepsilon} . . . \dot{v} \pi \alpha \gamma$ óvtตv. Hero’s preference for stationary automata is
 best understood outside the boundaries of comparison). To substantiate his preference, Hero cites two reesons: (1) the safety of the mechanism (2) a higher degree of scenic flexibility. The first reason is clea. Because stationary automata do not involve locomotion, their operation, as well as their construction (π oínoı, XXI. 1 [68.5]), is safer compared with that of mobile automata (Cambiano 1994: 615; for some of the problems associated with mobile automata, see synopsis on II). The second reason is less clear, particularly because at I. 8 [6.4-7] Hero praises the scenic adaptability of the Dionysiac arrangement. Cambiano (1994: 615) takes the words $\mu \hat{\alpha} \lambda \lambda o v . . . \delta$ oúderov to mean the ' possibilità spettacolari' of the $\pi i v a \xi$, which he explains by virtue of the dramatic nature of the performance. However, there is no hint anywhere in the text that suggests that the two types of automaton are compared in terms of spectacular outputs and/or variety of movements. Hero's aim, as Cambiano (1994: 619-20) himself recognises, is to transmit procedural knowledge (II. 12 [14.12-14], XXI. 2 [70.1-3]), one that can be applied to the construction of other devices and arrangements. The higher degree of scenic flexibility of stationary automata is therefore best explained by the re ative ease with which the automata-maker (re)arranges and prepares the π ivaž for performance ('facilité qu'il [i.e le thêâtre fixe] offre aux combinaisons scéniques', Prou 139).

On ह̇vépycio as 'mechanism', 'action', see LSJ s.v. I.1.a, who cite only the present passage. The term occurs also at 1.8 [6.7], where it appears to refer to the actual isation of the arrangement. The latter usage recalls the phil osophical use of the term Cf. especially the description of the motion of the parts of the automata in terms of 'potentiality' (δ v́vauı) and 'actual ity' (' ε vépysı') in Arist GA 734b10-13.
 (or automata-making) in the category of wonder-working, cf. the classifications of mechanics found in Papp. 1024.12-1026.4 and Procl. in Euc. 41.3-18 (Introduction, pp. Ixvii-Ixix). The term $\theta \alpha 0 \mu \alpha \tau o v p \gamma o ́ s$ nowhere else refers to makers of devices, and in fact in Pappus (Syn. 1024.25) and Philoponus (in GA 77.16, 77.21, 77.23-4, 77.27, 78.17) it is replaced, respectively, by $\theta \alpha v \mu \alpha \sigma$ юv γ ós and $\theta \alpha v \mu \alpha \tau о \pi о$ óc. Berryman (2009: 50) points out that the latter terms are commonly used in late Greek to refer to 'makers of theatrical devices', but $\theta \alpha v \mu \alpha \sigma$ ovprós is found only in Pappus in this sense (and elsewhere only at Eust. Antioch. Engastr. 15.2 and Georg. Torn. Or. Georg. Xiph. 2.7). (Berryman 2009: 53 n. 136 erroneously refers to Francis 1995 for details on the use of $\theta \alpha v \mu \alpha \sigma \iota o v \rho \gamma$ ós to denote sorcerers and wonder-workers; his study focuses instead on the word $\theta \alpha v \mu \alpha$ толоוós and its derivatives.) Another term employed in connection with mechanics, and one which carries associations with trickery and magic, is $\mu \alpha \gamma \gamma \alpha v \alpha ́ p ı o \varsigma ~(P a p p . ~ 1024.14 ~ a n d ~ 1028.16 ; ~ H u l t s c h ~ 1877: ~ 118) . ~$.
I. 7 [6.1-2] τ ò éккл $\lambda \eta \kappa \tau o v \tau \eta ̂ \varsigma ~ \theta \varepsilon \omega \rho$ íac. For the expression, cf. I.1 [2.5] with note ad loc.
1.8 [6.4] غ̇к $\theta \dot{\varepsilon} \mu \varepsilon v o l . . . \dot{\eta} \mu \hat{\mu} \varsigma$. I follow Schmidt in retaining the manuscript reading
 aorist participle may simply express a logical rather than a temporal anteriority. For દ̇к θ ء́ ε коos as denoting time, cf. Dioptr. 190.22 and Metr. 126.9 (both accompanied by $\pi \rho o ́ \tau \varepsilon \rho \circ v)$.

The most fitting interpretation is one that reads $\gamma \varepsilon$ as emphatic ('my own complex scenario', Murphy 11) rather than limitative ('Darstellung... welche wenigstens nach unserer Meinung mannigfaltig ist', Schmidt 343); on emphatic $\gamma \varepsilon$, cf. Denniston, GP 115-40. The particle is altogether omitted in translation by Baldi $17{ }^{\text {r }}$ ('dispositione varia secondo noi') and Couture 244 ('certa [?] quam elegimus dispositione').
 $\pi \rho \circ \theta \varepsilon ́ \sigma \varepsilon \varepsilon$, citing I. 2 [2.13] ($\tau \grave{\nu} \nu \pi \rho о \kappa \varepsilon \mu \varepsilon ́ v \eta \nu \pi \rho o ́ \theta \varepsilon \sigma \imath v$) in support. This emend-
ation is unnecessary and arbitrary. Hero's point here is obviously to stress the scenic flexibility of his configuration; see note on I. 7 [4.20-2].
 of $\gamma \rho \alpha ́ \varphi \rho \mu \varepsilon v$ to $\gamma \rho \alpha ́ \psi o \mu \varepsilon v$. This slight emendation is justified by Hero's reference to the 'following book' ($\tau \hat{\varrho} \dot{\varepsilon} \xi \hat{\eta} \varsigma$). In addition to the passage cited by Schmidt in his app. crit. (Spir. 28.13-14), cf. esp. Bel. 112.8 (ε ह́ņ̃ кגì $\tau \alpha ̀ \mu \varepsilon ́ \tau \rho \alpha$

II [6.9-14.16] Constructional preamble Before detailing the construction and operation of the mobile automaton, Hero sets out a series of conditions for achieving mechanical success, each of which is introduced by $\delta \varepsilon \hat{\imath}\left(I I .1,2^{\text {bis }}, 3,4,6,8,10,11{ }^{\text {bis }}, 12\right.$) or $\delta \varepsilon \eta \dot{\eta} \sigma \varepsilon l(I I .2,4)$. There are concerns with stability and weight distribution (II.1, 8); concerns with materials and their properties (II.2, 3, 5-6, 9); concems with (mechanical) implements and their basic arrangement, with recurring emphasis on cords (II.4-5, 7-8, 10-11); concerns with friction (II.1, 4) and jamming (II. $4 \sigma \varphi_{i}^{\prime} \mu \alpha, 11$), and with some of the principles underlying (different types of) motion (II.7-10); see Cambiano (2011: 31-2 with n .13). Despite the relative lack of (interest in) constructional details, much of what comes later in the treatise (especially, but not exclusively, in Book One) relies heavily on the information contained in this preamble Cambiano (2011: 31) argues, somewhat tentatively, that the use of the future
 $\lambda \dot{\eta} \psi \varepsilon \tau \alpha l, 12 \dot{\alpha} v \alpha \sigma \tau \rho \varepsilon ́ \psi \varepsilon \tau \alpha l)$ suggests that Hero's preliminary instructions presuppose the absence of an al ready constructed prototype, but the claim that the mechanical components will have to be lubricated (II. $4 \kappa \alpha i$ č̀ $\alpha \kappa \iota v . . . \tau \alpha \hat{v} \tau \alpha$) clearly implies a completed device (as al so recognised by Cambiano 2011: 32). In the concluding paragraph (II.12), Hero, by creating a link back with I.8, re affirms the superior aesthetic (cf. $\chi \alpha \rho ı \varepsilon \sigma \tau \varepsilon ́ \rho \alpha v . . . \delta i \alpha ́ \theta \varepsilon \sigma \tau v$) and mechanical status of his own model over the ancients.
II.1 [6.9-13] $\Delta \varepsilon \hat{\imath ิ} \delta \varepsilon ̀ ~ \pi \rho \hat{\tau} \tau 0 v . . . ~ غ ̇ \pi ı v \varepsilon v ́ \omega \sigma ı v . ~ T h e ~ c a r e f u l l y ~ b a l ~ a n c e d ~ a n d ~ r e p e t i t i v e ~$ structure emphasises the significance of the characteristics of the ground and, in
particular, their role in averting potential stability issues. Note especially the repetition of $\mu \dot{\prime} \tau \varepsilon$ and the almost chiastic relationship between ка兀 $\alpha \delta$ v́v $\omega \sigma$ ৷
 metrically attached: $\pi \rho \rho ̀ \varsigma ~ \alpha ̉ v \alpha ́ \beta \alpha \sigma ı v . . . ~ \varepsilon i ́ \varsigma ~ \tau o ̀ ~ o ̀ \pi i ́ \sigma \omega) . ~$

The ideal ground surface is likely to be paved with stone slabs: cf. Sor. Gyn.

 $\lambda_{1} \theta$ óбт $\rho \omega \tau$, a late term usually denoting paved streets (on which, se Lolos

 only to prevent overload and loss of equibrilium but al so to minimisefriction.
 pensate for uneven ground is made by [A pollod.] Poliorc. 173.9-12 (where a siege tower is provided with a separate base, ivó $\theta \eta \mu \alpha$); on this passage, see the brief comments of Whitehead (2010: 119).

I follow Schmidt in emending the nonsensical $\dot{\alpha} \pi$ о θ ' $\sigma \alpha \nu \tau \alpha \varsigma$ (AG) to $\dot{\alpha} \pi$ ор $\theta \omega ́ \sigma \alpha v \tau \alpha c$. In support of this emendation, Schmidt (app. crit. ad loc.) quotes Papp. 166.2 ($\tau \hat{\mu} \mu \pi \alpha v o v \pi \rho o ̀ \varsigma ~ \kappa \alpha v o ́ v \alpha ~ \alpha ̉ \pi \omega \rho \theta \omega \mu \varepsilon ́ v o v), ~ b u t ~ c f . ~ a l s o ~ S p i r . ~ 204.5, ~$ where the verb refers to evening out a surface. In his app. crit. Schmidt tentatively suggests adding <iגк $\lambda ı v \varepsilon i ̂<>$ before the participle, but this supplement seems somewhat redundant in the context. The participle ímoӨท́баviac ('having placed under') which the second hand of \mathbf{M} wrote in the margin is tempting, especially in light of Ps.-Apollodorus' usage of $\dot{v} \pi o ́ \theta \eta \mu \alpha$, but would probably

 'having pushed back') is not only implausible, but al so contradicts the statement that the boards should be placed on the floor.
 see Introduction, pp. Ixxvii-Ixxviii. (Prou 143-4 was naïf enough to think that the system described here had been invented by Hero.) There is no need to emend ε हैv
to $\dot{\varepsilon} \varphi$ ' (Prou). Hero uses $\dot{\varepsilon} v+$ dative in the same sense ('on', 'over') at XXV .7 [90.3-4] ($\varepsilon \pi^{\prime}$ Prou); but cf. also Bel. 105.4 ($\left.\dot{v} v \tau n ̂ ̃ \sigma v^{\prime} \delta t\right)$.

The adjective $\dot{\varepsilon} \varphi \eta \lambda \omega \tau$ óc, formed from $\dot{\varepsilon} \varphi \eta \lambda$ ó ω ($\dot{\varepsilon} \pi i ́+\dot{\eta} \lambda o ́ \omega, ~ ‘ n a i l ~ o n '), ~ i s ~ a ~$ hapax legomenon. Baldi $43^{r} \mathrm{n}$. 10 corrected the manuscript reading at his disposal (it is unclear whether he found $\delta i \varepsilon \varphi \eta \lambda \varepsilon \tau \omega \hat{v}$ or $\delta \varepsilon \varepsilon \varphi \eta \lambda \eta \tau \hat{\omega} v$, as he mistakenly cited both) to $\delta เ \varepsilon \varphi \eta \lambda \circ \tau \omega \hat{\nu}$, probably intending $\delta 1 \varepsilon \varphi \eta \lambda \omega \tau \hat{\omega}$ (but neither $\delta ı \varepsilon \varphi \lambda \lambda \omega$ тós nor $\delta \iota \varepsilon \varphi \eta \lambda$ ó ω is ever attested). It is difficult to see how such a reading, if acceptable, could make sense grammatical ly, since it has the di sadvantage of eliminating $\delta \iota \alpha$ and making the genitive $\delta i \varepsilon \varphi \eta \lambda \circ \tau \hat{\omega} \nu$ depend on $\sigma \omega \lambda \hat{\jmath} v \varepsilon \varsigma$ (' canaletti di regoletti imbroccati', Baldi 17v).
 be used, but later on he mentions fir (XXVI. 2 [90.17]). (The use of lightweight wood is not limited to mobile automata: XXIII.1 [74.7].) Other woods, such as cedar and pine, may have been a viable altemative (Thphr. HP 5.7.1, on shipbuilding), although fir has the advantage of being lighter (Thphr. HP 3.9.7); see Meiggs (1982: 118). For a contrast between 'sturdy' (Ev̋iova) and 'light' (кои̂ча) wood, cf. Bel. 102.5-7 (where the latter is recommended for components not subject to wear). This constrast is reminiscent of Bito's more explicit

II.2 [6.18-8.2] кờv $\mathfrak{\varepsilon} \xi . .$. . $\gamma \dot{v} v \eta \tau \alpha 1$. ' Le caisson roulant doit être du moindre poids possible, afin de ménage l'effort moteur' (Prou 159). Lightness of construction (to paraphrase Prou's words) provides mechanical advantage as it lessens the effort required to overcome the weight of the device, the forces of inertia and friction (see Pauwels 1980: 149). The amount of friction depends, in fact, on the Ioad applied to the bearings. On the different types of bearing, see note on II. 3 [8.5-7].
II. 3 [8.3] ǒ $\sigma \alpha$... π oleit α. I follow Brinkmann in retaining the manuscript reading
 (ő $\sigma^{\prime} \alpha \hat{\alpha} \ldots$.. π oiñ α) unnecessarily gives the text an indefinite sense (but strangely
he does not emend the following кıveitaı to кıvîtal). For the phrasing, cf. XI. 8 [40.6].

 ($\dot{v} v+\tau o ́ \rho v o c)$ is used elsewhere to denote round bodies which are turned on the lathe: Pl. Lg. 898a4-5 тю̂v غ̇vтó $\rho v \omega v . . . ~ к и ́ к \lambda \omega v, ~ 898 b 2 ~ \sigma \varphi \alpha i ́ p \alpha c ~ \varepsilon ̇ v \tau o ́ \rho v o v ; ~ c f . ~$ XXVI. 2 [90.19] ($\pi v \rho \eta v^{\prime} \delta i \alpha$), Papp. 1102.13 ($\tau \dot{\mu} \mu \pi \alpha v \alpha$) and DGE s.v. 1. The adjective/adverb combination غ̌vторvos $\dot{\alpha} \kappa \rho ß \hat{\omega}$, is found in a theol ogico-cosmological context at Bas. Caes. Hom. in Hex. 3.4 (argument against the sphericity of the heavens). Given Hero's insistence throughout the text on the use of the lathe (XI.2 [36.9-10], [36.12-13], XXVI.7 [94.20], [96.2]; cf. XVI. 2 [54.16]
 turned'): cf. Baldi 17v ('tornite') and Couture 245 ('tornatas'). Schmidt 345 ('recht rund') and Murphy 12 ('perfectly round') translate more loosely. The adverb ėvtópvตc is attested only once (cf. app. crit. to XXIII. 3 [76.4]), but, judging fromits context, it appears to be a late insertion.
II. 3 [8.4] $\pi \varepsilon \rho \grave{\alpha}$ ò кıveîtal. The subject of кıveîtaı, which must be supplied, is the preceding ő $\sigma \alpha$ (thus Couture 245, Schmidt 345, Murphy 12); contra, Baldi 17v, who unwisely construes $\pi \varepsilon \rho$ as absolute and $\hat{\alpha}$ as the subject of the relative clause.
II. 3 [8.5-7] oiov... $\chi \alpha \lambda \kappa \hat{\alpha} \varsigma$. Two types of axle configurations, using different
 mentioned anywhere else in the treatise in connection with the figures). Recent investigations by Keenan-J ones-Ruffell-McGookin (2016: 174-79, 181-2) have shed light on the characteristics of these bearings as emerging from a variety of sources. While the кvต́ס $\alpha \xi$ is a thin, probably pointed pivot (either fixed or rotating within its socket, as in the Automata: Fig. 3), the रovviкí, cylindrical in shape, generally denotes the hub (as at XI.3 [36.15], XI. 4 [36.24], XI. 7 [38.15], [38.17], [38.22], in the context of snake like motion) or the collar of a wheded axle (but it usually refers to hinge sockets in inscriptions); it, too, can be either fixed (as in the present passage) or rotating (its rotation generally being inde-
pendent of the movement of the axle). The choice of iron over bronze (on which, cf. Orib. 49.3.5-6) and the physical characteristics of the кvต́ $\delta \alpha \xi$ provide the former type with high wear resistance and a low coefficient of friction. For Hero's predilection for кvต́ $\alpha \kappa \varepsilon \varsigma ~ o v e r ~ \chi о ı v к i ́ \delta \varepsilon \varsigma, ~ c f . ~ X I . ~ 8[40.3-7] . ~$.

As for ε ह̀ $\mu v \varepsilon \lambda i$ í ('socket'), the termis not attested outside Hero. It appears to be used quite interchangeably with $\pi v \varepsilon \lambda i ́ c$ (V. 3 [20.20]; cf. [Apollod.] Poliorc. 148.8) and ε ย̇лиє $\lambda i ́ \delta$ ıov (X.1 [32.21] and [32.22], XI. 9 [40.10], XXVI. 2 [90.19]).
II. 3 [8.8] $\sigma 0 v \varepsilon \sigma \mu \eta \rho ı \sigma \mu \varepsilon ́ v a c$. In his app. crit. Schmidt notes that the second hand of \mathbf{T} corrects $\sigma \mu \eta \rho \imath \sigma \mu \varepsilon ́ v a \varsigma$ to $\sigma u v \varepsilon \sigma \mu \eta \rho \imath \sigma \mu \varepsilon ́ v \alpha c$. I cannot find the presence of two different hands here, even though the first five letters of the word appear to be written in lighter ink. Even assuming that a correction occurred, it is hard to say whether the original reading was $\sigma \mu \eta \rho ı \sigma \mu$ vac or, rather, $\mu \eta \rho ı \sigma \mu \varepsilon ́ v \alpha c . ~$
$\sigma v \sigma \mu \eta \rho i \zeta \omega$ is a technical term found only in Hero. It is much more frequent than its uncompounded form $\sigma \mu \eta \rho i ́ \zeta \omega$ (17 occurrences against 2), which is likewise unattested elsewhere Of uncertain origin (perhaps derived from $\sigma \mu \eta(\omega / \sigma \mu \alpha ́ \omega$, 'rub', ‘wipe’; cf. Frisk, GEW s.v.), $\sigma \mu \eta \rho i ́ \zeta \omega$ is explained as meaning 'to smooth so as to make an air- or watertight joint' (cf. Spir. 78.2-4). The compound form consistently refers to two tubes (or two cone-shaped containers: Spir. 186.17-18) fitted one inside the other (cf. XIII. 3 [46.8]), the whole structure being called $\sigma \mu \eta \rho_{\rho} \sigma \mu \alpha$ (eg. Spir. 54.11) or $\sigma \mu \eta \rho \iota \sigma \mu \alpha ́ \tau \iota o v(e g . ~ S p i r . ~ 54.1) ; ~ ;$ see LSJ s.v. $\sigma \mu \eta_{\rho} \rho \sigma \mu \alpha$ I and Drachmann (1948: 50). It is surely far-fetched to posit a relationship between $\sigma \mu \eta \eta_{\rho} \sigma \mu \alpha$ and $\mu \eta \eta_{\rho} \mu \alpha$, as does Meister (quoted in Schneider 1801: 120-1); on the latter term, see note on II.11 [14.4].
 supemis in modiolis emboli masculi torno politi et oleo subacti. Unfortunately, neither Vitruvius nor Hero specifies the type of oil to be employed, but we can perhaps rule out olive oil (pace Murpy 40 n . 3) because of its superior quality (see Harris 1974: 33) - unless, of course, the cheapest and lowest grade (é $\lambda \alpha \ldots v$ रuסaîov) was utilised (on qualitative distinctions for oil, see Mayerson 2002: 101-5, 108-9). Note that the term best understood in the generic sense of ‘(vegetable) oil' when occurring unqualified (Mayerson 2001: 115-17, drawing on Sandy 1989: 18-24).

R．Schöne＇s deletion of the first $\pi \alpha \dot{\alpha} \tau \alpha$（accepted by Schmidt）is unneces－ sary，since the expression к $\alpha \tau \alpha ̀ ~ \pi \alpha ́ v \tau \alpha ~ \tau p o ́ \pi o v ~ m a k e s ~ g o o d ~ s e n s e ~ t a k e n ~ t o g e t h e r ~$ with the following $\varepsilon 0$ кú $\lambda_{1} 1 \sigma \tau \alpha$（＇easy to rotate in every possible way＇，i．e＇in every possible direction＇；cf．＇in tutto，e per tutto＇，Baldi 17^{v} ）．Nor is it necessary
 could be made to rotate easily either in their entirety（ $\kappa \alpha \tau \grave{\alpha} \pi \alpha ́ v \tau \alpha ~ \tau o ́ \pi o v, ~ o f . ~$ Hero，Spir．12．19）or in part．R．Schöne compared Hero＇s words with Ph．Parasc． 88.32 and 96.4 ，where the common phrase ка兀о̀ т ρ ó π ov（＇fitly＇，＇duly＇，as with LSJ s．v．т ρ ó $о$ oc II．4．b）is used．To these Schmidt（app．crit．ad loc．）added Hero， Bel． 73.8 and Dioptr． 290.12 （context corrupt），but he failed to notice that the expression ка兀а̀ $\pi \alpha ́ v \tau \alpha ~ \tau \rho o ́ \pi o v ~ o c c u r s ~ e l s e w h e r e ~ i n ~ t h e ~ c o r p u s ~(B e l . ~ 102.5) . ~ P e r-~$ haps part of the problem perceived by R．Schöne and later by Schmidt has to do with the indeterminate pronoun $\tau \alpha 0 \mathrm{\tau} \alpha$ ，but even assuming it does not refer to all of the components mentioned at II． 3 ［8．5－7］，ка兀ò $\tau \rho o ́ \pi o v$ is not necessarily bet－ ter than the transmitted text，which，in any case，implies proper rotation．Un－ troubled by any such concerns，Couture 245 and Murphy 12 omitted translating these words．

Among the main manuscripts，only \mathbf{G}, \mathbf{M} and \mathbf{T} have $\pi \alpha ́ v \tau \alpha$ between к $\alpha \tau \alpha ̀$ and $\tau \rho o ́ \pi o v . ~ A, ~ i n s t e a d, ~ h a s ~ \pi o ́ v \tau \tau ~\left(w r i t t e n ~ a s ~ \pi \alpha v^{\tau^{\prime}}\right.$ ，which I have reproduced in my app．crit．ad loc．）．The scribe of \mathbf{A} commonly employs two vertically aligned dots in combination with τ（＇dotted τ^{\prime} ）to express $\tau \alpha$（on this abbreviation，see Allen 1889：3－4），but in this case he sems to have forgotten to write them down．

II． 4 ［8．12－15］$\delta \varepsilon i ̂ ~ \delta \varepsilon ̀ ~ \kappa \alpha i ̀ . . . ~ к \alpha \tau \varepsilon \sigma \tau \alpha ́ \theta n \sigma \alpha v . ~ B e c a u s e ~ w h a t ~ i s ~ s o u g h t ~ i s ~ n o n-e l a s t i-~$ city（rather than＇constant tension＇，as believed by Murphy 40 n .4 ），cords are made of material other than sinew（II．6［10．4－5］），possibly hemp or flax（for the latter，see al ready Murphy 40 n .3 ）．Non－sinew cords need to be pretreated（or ＇pretested＇，as at II． 5 ［8．21］）like sinew spring－cords but，unlike the latter，their prestressing greatly reduces，if not removes，springiness（the whole process， which is performed manually，is described at II．5［8．16－10．1］；cf．Dioptr．254．13－ 15 and 262．13－14，passages in which a cord that has been（pre）－tested is defined in terms of its ability to maintain a constant length）；on the stretching of spring－ cords（with or without the aid of an instrument called évóvovo），cf．Ph．Be．
61.6-16, Vitr. 10.12.2, Hero, Bel. 98.10-99.1, 107.10-108.7. Se al so note on II. 6 [10.7-8].

There is a logi cal leap from the considerations of II.3-4 [8.3-12] to the statement that the cords are used $\varepsilon i \varsigma, \tau \alpha \hat{\tau} \tau \alpha$ (εi, clearly expresses purpose since it depends on $\pi \rho о \sigma \chi \rho \omega \dot{\mu} \varepsilon \theta \alpha$ and cannot be taken as indicating direction: cf. 'on these moving parts', Murphy 12). Even though the function and the positioning of the cords have not yet been discussed at any length (the first discussion of these matters occurs at II. 7 [10.11-14]), the reader can easily fill the gap in the argument by taking $\tau \alpha \hat{v} \tau \alpha$ to refer to the movements effected by means of the bearings.
II. 5 [8.16-17] $\beta \alpha \lambda o ́ v \tau \varepsilon \varsigma . . . \varepsilon v ̉ ̉ ~ \mu \alpha ́ \lambda \alpha$. If we accept the manuscript reading $\lambda \alpha \beta o ́ v \tau \varepsilon \varsigma$, we have to construe $\pi \varepsilon \rho^{i}$ with $\delta 1 \alpha \tau \varepsilon$ iv $\alpha v \tau \varepsilon \varsigma$ (which is quite uncommon) and delete the comma after $\pi \alpha \sigma \sigma \alpha \lambda i ́ \sigma \kappa о ч с$. In his app. crit. Schmidt tentatively proposed $\pi \varepsilon \rho ı \beta \alpha \lambda o ́ v \tau \varepsilon \varsigma$ on the basis of V .4 [22.10] and VI. 2 [24.11], but H. Schöne's uncompounded form has the advantage of being easier to explain palaeographically, i.e. through simple letter inversion. The verb $\beta \dot{\alpha} \lambda \lambda \omega$ is also used in a comparable way at Mech. Frag. $3.2=$ Papp. 1132.8 ő $\pi \lambda$ ov β ó $\lambda \lambda o v \tau \varepsilon \varsigma \pi \varepsilon \rho \grave{~}$ $\alpha v ̉ \tau o ́[i . e . ~ \xi u ́ \lambda o v$]. It is unnecessary to join the two participial clauses with a coordinating каí (Diels) since asyndetic coordination is not unknown to Hero: see, for instance, XI. 3 [36.17].
II. 5 [8.19] кn९òv $\mu \varepsilon \tau \grave{\alpha}$ ค $\eta \tau i v \eta$. The same mixture is used for gluing loops of cord onto the axle that imparts movement to the doors of the $\pi i v a \xi:$ XXIII. 7 [78.13]. Commenting on the latter passage, Prou 224 n . o identified this compound with the so-called $\zeta \dot{\omega} \pi \iota \sigma \sigma \alpha$ ('live pitch', i.e. pitch and wax from the hulls of ships). It is not clear whether Hero's compound is $\zeta \omega$ $\omega \iota \sigma \sigma \alpha$ or simply pitch and wax (no salt added). Note, however, that Hero is referring to wax mixed with pitch as opposed to pitch mixed with wax (cf. the definitions of zopissa/ $\langle\dot{\pi} \pi 1 \sigma \sigma \alpha$ by Plin. Nat. 16.56 and Dsc. 1.72.5). This could perhaps be taken as an indi cation that the two substances were mixed together in different proportions. At any rate, the compound clearly serves here as a bonding agent. Similarly, resin (but not wax, as far as evidence goes) was probably used in the pre-
paration of hair-rope for catapult springs (Marsden 1969: 76 n. 2, on Plb. 5.89.9; cf. al so Landels 1978: 111, al though the passage is left unspecified).
II. 5 [10.1-3] $\hat{\eta} . .$. عvóp $\omega \mu \varepsilon v$. The scribe of \mathbf{A} has corrected $\hat{\eta}$ to what seems to me to be one of the abbreviated realisations of каí (something like κ^{\prime}), one that is frequently confused with η i. Schmidt's app. crit. does not record A's correction, possibly because it closely resembles ì. The confusion between the two conjunctions might explain why the corrected reading was not recognised as such by the scribes and, consequently, was not copied in any other manuscript. At any rate, such a correction (al ready proposed by R. Schöne) does not seem quite right, since Hero is envisaging a scenario in which the procedure he has just described (II. 5 [8.16-10.1]) does not yield the most desired results. So, the words ì $\pi \alpha{ }^{\lambda} \lambda ı$ correctly introduce an altemative; cf. I.4 [4.8] and Metr. 4.29-6.1.

The manuscripts have $\dot{\varepsilon} \xi \alpha \rho \tau \eta ́ \sigma \alpha \nu \tau \varepsilon \varsigma$ in place of $\dot{\varepsilon} \xi \alpha \rho \tau v ́ \sigma \alpha \nu \tau \varepsilon \varsigma$ (Brinkmann and H. Schöne; also adopted by Schmidt), but this is an error owing to iotacism. The verb $\varepsilon \xi \xi \alpha \rho \tau \alpha ́ \omega$ (used once at XXVI. 6 [94.10]) would require both a direct
 the automaton') would hardly make sense in the context. Baldi 17v, apparently followed by Couture 245, translated ad sensum ('dopo averle attaccate [sc. Ie corde] alla Machina se Movente') by turning the direct object into the indirect object and by supplying 'cords' as the direct object of $\bar{\varepsilon} \xi \alpha \rho \tau \eta$ ń $\sigma \alpha \tau \varepsilon \varsigma$. In support of his correction, Brinkmann adduced some examples of Philo's use of the verb
 and $\mu \varepsilon \tau \varepsilon \xi \alpha ́ \rho \tau v \sigma \iota \varsigma$ (Bel. 58.2 [hapax]; but LSJ s.v. doubt its authenticity), all refering to the process of readying, that is, stringing a catapult (for ε है $\alpha \rho \tau v ์ \omega$ in this sense, cf. also Ph. Bel. 54.19, 61.7, 61.8, 61.20, 66.17). Although the verb $\grave{\varepsilon} \xi \alpha \rho \tau v ์ \omega$ does not appear elsewhere in the Heronian corpus, it accords well with Hero's tendency to make comparisons with catapult technology (II.6 [10.6-7], XIII. 9 [50.11]). On the confusion between $\dot{\varepsilon} \xi \alpha \rho \tau \alpha ́ \omega$ and $\dot{\varepsilon} \xi \alpha \rho \tau v ́ \omega$, cf. also the variant readings atA. Pr. 711.

I adopt Schmidt's emendation $\pi \alpha \rho \varepsilon \kappa \tau \varepsilon \tau \alpha \mu \varepsilon ́ v \eta \nu$. The only other plausible reading is G's $\pi \alpha \rho \varepsilon v \tau \varepsilon \tau \alpha \mu \varepsilon ́ v \eta v$, but the verb $\pi \alpha \rho \varepsilon v \tau \varepsilon$ ívo $\mu \alpha$ is never attested in Hero or in other mechanical writers. Schmidt rightly bases his conjecture on II. 6 [10.4]. Cf. also Ph. Bel. 65.30 (the stretching of a spring-cord).
II. 6 [10.4-8] vevpív@ $\delta \dot{\varepsilon} . . . \delta \hat{\eta} \lambda \boldsymbol{\imath v}$. This passage has attracted interest since the sixteenth century. Baldi $43 \mathrm{nn} .12-13$ was the first to discuss the term 0 v̈ $\pi \lambda \eta \gamma \xi$ (or, more commonly, v̋ $\sigma \pi \lambda \eta \xi$, as in LSJ s.v. v̋ $\sigma \pi \lambda \eta \xi$ 1) within the context of the Automata, al beit without being able to explain the comparison drawn with catapult technology. After enumerating three meanings of the term, that is, 'whip' ('flagello', ‘sferza'), 'cord serving as a barrier in footraces' ('la corda, che si stende inanzi à chi corre il palio) and 'ox-' or 'pig-goad’ ('pongetto', ‘stimolo de' buoi', 'sferza da porci'), he observed (n. 12) that the word here means 'wooden bar' ('righetta di legno'), because this is the sense in which it is employed (mostly in its derived form $\dot{\sigma} \sigma \pi \lambda n \gamma \gamma 10 v$) in Hero's description of the mechanism controlling the movement of the Greek sailors' arms (cf. esp. XXIV. 4 [82.13]; on the mechanism more generally, see XXIV.3-5 [82.7-4.7];

Fig. 29). Baldi's notes 12-13 have been recently examined by Micheli (2005: 254-7), who, following in the steps of Prou 177-8, has elucidated (if only partially) the mechanism of Hero's v̋ $\pi \lambda \lambda \gamma \xi$, a mechanism which finds no practical application in the treatise. Micheli (2005: 255-7 with nn. 30, 37, 39) makes the following points: first, v̈б $\pi \lambda \eta \gamma \xi$ and $\dot{v} \sigma \pi \lambda \eta \gamma \gamma \gamma 10 v$ have different functions, the former being a 'bar' powered by twisted sinew ($\mathfrak{\eta} \mu \tau$ óviov would denote a single bundle of sinew, as at Hero, Bel. 83.4, and not half of it, as intended by Ph. Bel. 68.24-6; see also Marsden 1969: 17; 1971: 49 n . 18) like the arm ($\dot{\alpha} \gamma \kappa \overline{\mathrm{c}} \mathrm{v}$) of the torsion catapult, the latter an 'axle' which is repeatedly set in motion by a whee ($\dot{\alpha} \sigma \tau \varepsilon$ í́бкоৎ), and hence works in a similar fashion as an escapement (see already Preus 1983: 102); second, the quasi-escapement mechanism of the $\dot{v} \sigma \pi \lambda n \gamma \gamma 10$ suggests that the torsion engine comprising the $v \sigma \pi \lambda \eta \gamma \xi$ was attached to a toothed device that served as a flywhed; third, the only other attestation of v̋ø $\pi \lambda \eta \gamma \xi$-powered automata is Arist MA 701b2-3; fourth, more importantly, Baldi's notes are misleading or pointless, all the more so since the meanings of $v \not \sigma \pi \lambda \eta \gamma \xi$ listed by the Renaissance scholar are not relevant to the understanding of Hero's text.

Two interrelated questions arise from these observations: 'In what sense
 between these two devices?'. Prou 177-8 has to some extent al ready answered these questions by saying that the original mechanism of the $\dot{v} \sigma \pi \lambda \eta \gamma \gamma \gamma \circ \mathrm{v}$, involving torsion springs, was replaced by a more effective and safer counter-
weight mechanism, while still retaining its ancient name (there follows a brief discussion of the term v̋б $\pi \lambda \eta \xi$ employed in the senses of 'barrier' and 'swing door', but no source is cited in support of the latter). The hypothesis that a different mechanism was used (by Hero?) at an earlier stage, together with the incompletely revised state of the text (on which, see Introduction, pp. cxvii-cxviii), would in effect explain the reference to a missing passage in the treatise ($\dot{\omega}, \dot{\varepsilon} \xi \hat{\eta} \varsigma$
 believed by Schmidt 347 n . 1.

Now, if we look back at the term $v ̋ \sigma \pi \lambda \eta(\gamma) \xi$, we see that it may refer, among other things, to a movable barrier controlling the start of a race (LSJ s.v. v̋ $\sigma \pi \lambda \xi$ 3). In the wake of the discovery (1970) of a Panathenaic amphora which dates to 344/343 BCE (stored in Athens, Third Ephoreia of Classical Antiquities, inv. no. A6374) and which shows on its reverse such a starting system, Val avanis (1999: esp. 35-44) reconstructed a new type of $0 \varnothing \pi \lambda \eta \gamma \xi$ (for a detailed analysis of the reverse of the amphora, see Valavanis 1999: 20-31, with Figs. 19, 20-3, 25), as compared to the one discovered and reconstructed by Brooner (1973: 49-52) at Isthmia. Valavanis (1999: 32-41, 51) demonstrated that the newer type of v̋б $\pi \lambda \eta \gamma \xi$, mainly consisting of two poles with a cord or wooden rod stretched between them, owed its design and technology to the advent of torsion artillery machines in the fourth century BCE, a fact which is reflected in the shared terminology used to describe certain elements of these devices (for example, the
 word of caution against making too much of such terminological overlaps has been offered by Miller 2001: 53 n .125). So, Hero's comparison between the $\ddot{v} \sigma \pi \lambda \eta \gamma \xi$ and the catapult arm ($\alpha \xi \omega v$ unmistakably signifies the $\alpha \gamma \kappa \omega \nu$ of a catapult, as is made clear by the variant reading ${ }_{\alpha} \gamma \kappa \omega v$ [sic] of manuscript Pe, possibly a supralinear gloss rather than a correction), which has al ready been highlighted by Valavanis (1999: 33 n .95), indicates that Hero is deliberately using the term $\begin{gathered}\sigma \\ \pi \lambda \eta \gamma \xi \\ \text { to refer to a mechanism operating substantially in the same }\end{gathered}$ way as the torsion system depicted on the Panathenaic amphora. Contrary to what has been argued by Micheli (2005: 255-6), therefore, what Hero has in mind is not simply a 'bar' but a torsion engine in its entirety (why else, then, paraphrase $\dot{\alpha} \gamma \kappa \omega \nu$ as $\delta \dot{\alpha} \xi \omega \nu . . . \dot{\eta} \mu \tau \tau v i ́ \omega$ if not to designate the whole arrange-
ment?). Furthermore, despite Baldi's erroneous interpretation, not all of the meanings quoted by him are, in some way or other, irrelevant.

Moving on to consider the relationship between $v ̋ \sigma \pi \lambda \eta \gamma \xi$ and $\dot{v} \sigma \pi \lambda \hat{\eta} \gamma \gamma 10 v$, it seems unquestionable that the latter originally derived its name from the resemblance it bore to the starting barrier rather than from the fact that, as suggested by Preus (1983: 103), a lever such as that may sometimes have been activated by a ‘small pig whip' (LSJ s.v. v̋ $\sigma \pi \lambda_{\eta \xi} 6$). This last supposition is based on the understanding of the word v̋ $\sigma \pi \lambda \eta \gamma \xi$ at II. 8 [12.1] and [12.3] as referring to 'twisted cords', in accordance with LSJ s.v. v̋ $\pi \lambda \eta \xi 2$ (so al so Schmidt 347; Murphy 40 n. 4, in turn, wrongly regards $v ̋ \sigma \pi \lambda \eta \gamma \xi$ as a common word for the catapult spring), but it is difficult to see why the term should have a different sense from that in which it is used in all previous occurrences, including II. 6 [10.9] (mentioned together with the counterweight, as at II. 8 [12.1], where $\tau \alpha{ }^{\prime} \sigma \iota \varsigma$ vo $\sigma \pi \lambda \eta \gamma \gamma$ os, may very well refer to the tension controlling the whole mechanism). The connection between the two devices is brought out most clearly at XXIV. 4
 $\lambda \varepsilon i ́ \alpha \varsigma ~ \kappa \alpha i ̀ ~ \psi o ́ \varphi o v ~ \pi о и ́ \sigma \varepsilon ı, ~ b e c a u s e ~ a n c i e n t ~ d e s c r i p t i o n s ~ o f ~ t h e ~ v ̋ \sigma ~ \pi \lambda n \gamma \xi$ include mention of its (downward) motion (cf. esp. Lucianus, Cal. $12 \tau \eta ̂ \varsigma ~ v ̋ \sigma \pi \lambda \eta \gamma о \varsigma . .$. $\kappa \alpha \tau \alpha \pi \varepsilon \sigma о$ ќøŋร) and of the noise produced when its poles were pulled down to the ground (cf. AP 11.86.3 ó $\psi o ́ \varphi o \varsigma ~ ท ̂ v ~ v ̋ \sigma \pi \lambda \eta \gamma o \varsigma ~ \varepsilon ̇ v ~ o v ̋ \alpha \sigma ı, ~ a l s o ~ q u o t e d ~ b y ~ P l u . ~$ Praec. Ger. Reip. 804e); see Val avanis (1999: 5 with nn. 28 and 30), from whom I take the non-Heronian references. However, if Hero's quasi-escapement $\dot{v} \sigma \pi \lambda n \gamma \gamma 10 v$ maintains some links with the automatic $v \not \sigma \pi \lambda \eta \gamma \xi$, it does not necessarily follow that the particular type of $0 \sigma \pi \lambda \lambda \gamma \xi$ referred to in our passage should be provided with a flywheed to reduce the speed at which the sinew spring-cords would have been released. What, at least, emerges from Valavanis' (1999) investigations is that rollers could be used to ease the movement of the cords (starting system of Kos, p. 141), but nothing more than that.

Finally, the more general implication of all this is that Hero's v̋ $\pi \lambda \lambda \eta \xi$ as reconstructed here cannot be straightforwardly compared with the first of the two mechanisms hinted at by Arist. MA 701b2-10:

[^138]

J ust as automatic puppets move as a result of a small movement, when the cords are released and the pegs strike one another, and just as the small cart <moves> (for he who rides $\langle\mathrm{in}$ it> sets it in motion straight ahead, and again it moves in a circle because it has unequal wheels: for the smaller acts as a centre, just like in the cylinders), so too do animals move. For they have organs so constituted, both sinews and bones, the latter <being> like the pegs and the iron therein, the sinews like the cords; when these are released and slackened, the animals> move

I follow here the text of Nussbaum (1978) rather than that of J aeger (1913), except for $\tau \rho 0 \chi$ ov́c (line5), which Nussbaum (1978: 43) has misprinted as τ pó χ ous (same error in Nussbaum 1976: 146). The textual problems of the passage, which had previously been ignored by Jaeger (1913), have been discussed by the most recent editor in Nussbaum (1976: 150-2), with a review of the solutions proposed and interpretations offered by other scholars. The text adopted by Micheli (2005: 256 n . 34) differs somewhat from Nussbaum's (1978), but the differences between the two texts do not affect the present line of argument. (It is not clear to me whether Micheli accepts Forster's addition of tò before ỏ χo ó $\mu \varepsilon v o v$ [codd. plerique : ỏ $\chi o u ́ \mu \varepsilon v o c, b_{1}$] at line 4, because of his inconsistent use of round brackets; cf. already the text cited in Micheli 1998: 458 n .146.) Textual problems aside, Aristotle's α ơtó $\mu \alpha \tau \alpha$ ('automatic puppets') cannot easily be made to correspond to any of the devices described by Hero. Micheli (1998: 458-9), for example, reads the Aristotelian passage through the lens of Hero's Automata, but his anal ogy between the puppets and the apparatuses constituting the Dionysian arrangement lacks stringency (such analogy forms the basis of his more recent argument, as laid out in Micheli 2005: 257). Berryman
(2009: 73), in turn, suggests that the starwhed and $\dot{v} \sigma \pi \lambda n \gamma \gamma 10 v$ assembly of XXIV.4-5 (why would the moving arm belong to 'a figure of Hephæestus'?) fits well with the Aristotelian lines, but unfortunately she does not el aborate further. We can at least infer from her diagram of the Heronian device (Beryman 2009: 74 Fig. 2, based on Schmidt 425 Fig. 103a) that she takes the $\xi \dot{v} \lambda \alpha$ of line 2 to correspond to 'pegs' attached to the starwhed (cf. also Berryman 2009: 74 n. 75), but the word used by Hero, $\dot{\alpha} \sigma \tau \varepsilon \rho i ́ \sigma к о \varsigma, ~ r a t h e r ~ l e a d s ~ o n e ~ t o ~ i m a g i n e ~ a ~ t o o-~$ thed, gear-like whee. Moreover, the starwheel's projections, whether they be pegs or teeth, strike not against one another (as A ristotle's ' pegs' do) but against the $\dot{0} \sigma \pi \lambda n \gamma \gamma ı v$. From a different perspective, Nussbaum (1976: 149-50) tentatively equates the iron component mentioned at line 8 (o σ i $\delta \eta \rho o \varsigma$) with the axle connecting the wheeds of the mobile automaton, but the whed axle is nowhere said to be made of iron. On the other hand, she observes (p. 149) that Hero's figures (which she erroneously considers puppets; cf. also Nussbaum 1978: 347 n . 5), unlike most of the automatic marionettes mentioned in ancient sources, cannot be made to move their limbs by means of a mechanism consisting essentially of interlinking pegs and cables (at least following Nussbaum's reconstruction, but other reconstructions are possible: see Introduction, p. Ixxxv n. 158). [Arist.] Mu. 398b13-19, one of the passages cited by Nussbaum (1976: 147-8) to support her reconstruction of the puppets' mechanism, distinguishes between two categories: $\mu \eta \chi \alpha v o \tau \varepsilon ́ \chi v \alpha l$ ('machine workers') and vevpoo $\pi \alpha ́ \sigma \tau \alpha 1$ ('puppeteers'); the former initiate automatic sequences of movements using the machine's single release-mechanism ($\delta i \alpha ̀ \mu \hat{\alpha} c$ obpyóvov $\sigma \chi \alpha \sigma \tau n \rho i ́ \alpha c$), whereas the latter make their puppets move automatically by pulling a single rope (μ íav $\mu \eta \eta_{\rho} v \theta$ ov $\left.\varepsilon ̇ \pi ı \sigma \pi \alpha \sigma \alpha ́ \mu \varepsilon v o \imath\right)$. Hero's mobile automaton is activated by pulling a cord (cf. IX. 5 [32.10-12]), just like a puppet, but all subsequent movements, including those of the figures, occur through self-triggered activation of regulatory devices (cf. esp. XIII. 9 [50.12-14] ö $\pi \omega \varsigma ~ \tau ท ิ \varsigma ~ \sigma \chi \alpha \sigma \tau \eta \rho i ́ \alpha \varsigma ~ \alpha ̉ \pi о \lambda v \theta \varepsilon i ́ \sigma \eta \varsigma ~ \alpha ̉ \pi o ́ ~$
 which are indeed missing inAristotle's puppets, as noted by Preus (1983: 100).

Returning to the topic of the $v \sigma \sigma \pi \lambda \gamma \xi$, the term, as pointed out by Micheli (2005: 257 n .35) himself, is absent in the Aristotelian passage, and it is hard to accept his interpretation of the words $\lambda v o \mu \varepsilon ́ v \omega v \tau \omega v \sigma \tau \rho \varepsilon \beta \lambda \omega \nu$ (which he transIates as ' corde attorcigliate che si sciolgono') as a clear reference to this type of
device When Nussbaum (1976: 150) compares the arrangement of Aristotle's $\sigma \tau \rho \varepsilon ́ \beta \lambda \alpha 1$ (i.e cords wound around a whed or roller) with an unspecified Heronian mechanism, she is probably thinking of the $\dot{\varepsilon} \xi \varepsilon \lambda i ́ \kappa \tau \rho \alpha$ (first mentioned at V. 3 [22.2]; see note on V. 3 [22.2-3]), the bobbin attached to the whed axle and around which the cord is wound, certainly not of the v̈б $\pi \lambda \eta \gamma \xi$, which, as we saw above, she understands as 'torsion cable' (the lack of any mention of $\sigma \tau \rho \varepsilon ́ \beta \lambda \alpha$ in the present context excludes the possibility that Hero's $\begin{gathered} \\ \sigma \\ \pi \\ \eta \gamma \xi \\ \text { was connected }\end{gathered}$ to some kind of wheel). To this must be added that the purpose of the v o $\sigma \lambda \lambda \gamma \xi$ as defined at II. 6 [10.8-9] seems to be to impart motion to the mobile automaton as a whole, not (or not just) to the figures. There seems to be no reason, therefore, to suppose that Arist. MA 701b3 contains a reference to a v̋ $\pi \lambda \lambda \gamma \xi$-type of engine rather than simply to (torsion?) cables (cf. MA 701b9-10). Hero, after all, remains our only written source attesting to a possible use of the so-called v̌ $\pi \lambda \lambda \eta \xi$ ('trigger board' ?) as motiveforce of automata.
II. 6 [10.4] ov̉סevì $\delta \varepsilon i ̂$. In his app. crit. Schmidt correctly says that A's oủסevì seems to be a correction. In the wake of the previous editor, I have reproduced the reading of \mathbf{A} as it is found in the manuscript (cf. app. crit. ad loc.). A's reading before correction is ov̉ $\delta \varepsilon v o ̀ s ~ \delta \varepsilon i ̂, ~ w i t h ~-o ̀ s ~ b e i n g ~ w r i t t e n ~ i n ~ c o m p e n d i o ~ a b o v e ~$ the v. It would appear that the o has been neatly inked out, and the termination added at a later stage. The scribe did not need to add a grave accent because he had al ready written one when abbreviating -òs. Other manuscripts, such as Gac and \mathbf{T}, have ov̉ $\delta \varepsilon v o ̀ s ~ i \delta \varepsilon i ̂, ~ p r o b a b l y ~ b e c a u s e ~ t h e ~ s c r i b e, ~ n o t ~ r e c o g n i s i n g ~ o v ̉ \delta \varepsilon v i ̀ ~ a s ~$ a correction, regarded the i as belonging to the following word (wrong worddivision). The scribe of \mathbf{G}, however, corrects oủ $\delta \varepsilon v o ̀ s ~ i \delta \varepsilon i ̂ ~ b y ~ r e p l a c i n g ~ t h e ~ o ~$
 oủ $\delta \varepsilon v i ̀ ~ \delta \varepsilon i ̂ . ~ T h e ~ s c r i b e ~ m i g h t ~ h a v e ~ t h o u g h t ~ i t ~ s u f f i c i e n t ~ t o ~ r e p l a c e ~ t h e ~ p e n u l t i m a t e ~$ letter of ovं $\delta \varepsilon v o ̀ s$ or simply forgotten to underline the ς.
II. 6 [10.4-5] $\pi \alpha \rho \varepsilon \kappa \tau \varepsilon i v \varepsilon \tau \alpha ı ~ \grave{\eta} \sigma v \sigma \tau \varepsilon ́ \lambda \lambda \varepsilon \tau \alpha ı . ~ S c h m i d t ' s ~ t e n t a t i v e ~ c o n j e c t u r e ~ \grave{\eta}$ is preferable to кaì. Some manuscripts, including A and M, write кaì compendiously (on the confusion between η ’ and the каí compendium, cf. note on II. 5 [10.1-3]), and the disjunctive is what we find in parallel expressions, such as Ph.

 Here the repeated kaí presumably marks an addition to the content of the preced－ ing context（see generally Denniston，GP 293），which，although lacunose，can easily be reconstructed：cf．Ps．－Hero，Spir．90．25－7 $\tau \hat{\omega} v$ $\sigma u \rho i ́ \gamma \gamma \omega v$ ท̂́ro七
 $\sigma v \sigma \tau \varepsilon \lambda \lambda$ о $\mu \varepsilon \varepsilon^{v} \omega v$（note the anteposition of the first каì and the suppression of the second）．
 of this phrase，see note on II． 6 ［10．4－8］．

The reading кат $\alpha \tau \varepsilon \tau \alpha \gamma \mu \varepsilon ́ v o \varsigma$, which is transmitted by AGT，is surely genu－ ine，because it describes the insertion of the axle（i．e the arm）through the bundle of sinew．The reading of \mathbf{M}（ка兀а兀єт α ह́vос），by contrast，is probably a mistake owing to the omission of γ ．A number of manuscripts（ $\mathbf{A b}, \mathbf{A c}, \mathbf{B b}, \mathbf{L a}$, Lc，Ld）have évicta $\mu \varepsilon ́ v o c$ ．This can possibly be explained as an erroneous cor－ rection of $\kappa \alpha \tau \alpha \tau \varepsilon \tau \alpha \mu \varepsilon ́ v o c, ~ m a d e ~ u n d e r ~ t h e ~ i n f l u e n c e ~ o f ~ t h e ~ w o r d s ~ \varepsilon ̇ v ~ \tau ~ ̣ ̂ ~ \eta ~ \mu ~ \mu \tau o v i ́ ~ \varphi . ~$ The verb èvisívo is，in fact，used several times to denote the act of stretching or stringing catapult springs（Ph．Bed．61．20；Hero，Bel．78．4－5，99．3，107．10；of． Hero，Bel．101．10，102．1－2；Ph．Bel． 58.20 reads દ̇кєєîvaı đòv tóvov，but Diels thought fit to emend the infinitive to ε हvteivaı：cf．Ph．Bel．58．27 Diels－ Schramm），or entire torsion engines（Ph．Bel．56．12， 56.19 and 67．25）；hence the name of the so－called évcóviov（＇stretcher＇），a device used to give tension to the springs：cf．Vitr．10．12．1－2 and，especially，Hero，Bel．107．1－110．3；criticised by Ph．Bel．57．32－58．5（on this device，see Marsden 1969：30－1，42；1971： 59 Fig． 23）．On the stringing of a catapult，see also note on II ． 5 ［10．1－3］．
 see note on II．6［10．4－8］），Hero prefers the latter．What appeals to him is perhaps the counterweight＇s wider applicability．Hero insists（II． 8 ［12．3－6］）that the movements other than locomotion，too，take place by means of a（single）coun－ terweight．This is ultimately true，even though a secondary counterweight is used to rotate the figures of Dionysus and Nike（cf．XIII．8－9［50．6－14］）．Murphy 42 n ． 29 has tentatively wondered whether this secondary counterweight is the addi－
tional counterweight introduced in the two-counterweight configuration (XIX. 2 [60.18-19]). This seems to me to be utterly implausible not just because, as Murphy points out, these counterweights are activated by different means, but especially because they are positioned in different places (outside and inside the $\sigma ט ́ \rho ı \xi \xi$, respectively).

Prou 162 observes that '[p]our réduire le volume de ce contrepoids, on le fabriqueen plomb, d' un poids total cal culésur l'ensemble des résistances à vaincre, quantité facile à déterminer par l'expérience'. Indeed, the density and the workability of lead (on which, see Nriagu 1983: 59, 256-7; Wright 2005: 235) make it a good choice for a small counterweight, which is made to sink in the limited space provided by the σ ט́pyگ (II. 8 [12.6-7], V. 5 [22.15). That Hero is well aware of the heaviness of lead is clear from IX.4 [32.3] and XXX. 3 [108.2]; cf. also XV. 4 [54.6-7].
II. 7 [10.11-14] кovvòv $\delta \varepsilon ́ . . . ~ \pi \rho о \sigma \eta \gamma к \nu \lambda \omega \mu \varepsilon ́ v \eta v . ~ T h e ~ c o r d ~ c a n n o t ~ b e ~ ' n a i l e d ' ~ o r ~$ 'riveted' (following the manuscript reading $\pi \rho \circ \sigma \eta \lambda \omega \mu \varepsilon ́ v \eta v$) to the element being moved, as this would hinder the transmission of the movement. Baldi 18 vad apparently al ready real ised the incorrectness of this reading since he translated it as 'aviluppato' [sc. il capo della corda], thus anticipating Brinkmann’s conjecture $\pi \rho о \sigma \eta \gamma \kappa \nu \lambda \omega \mu \varepsilon ́ v \eta v$. Murphy's translation ('one end attached to each', 12) erroneously conflates the $\mu \varepsilon ̀ v$ and $\delta \grave{\varepsilon}$ clauses into one expression. Hero, however, is describing two different modes of attachment ('binding' and 'looping') between the cord and either of the elements. The participle $\pi \rho о \sigma \eta \gamma к \nu \lambda \omega \mu \varepsilon ́ v \eta v$ has been conjectured by Brinkmann, and rightly so, on the basis of two occurrences of $\pi \rho о \sigma \alpha \gamma к v \lambda$ óo μ (II. 8 [12.4], II. 11 [14.8]) and II. 9 [12.14-15] ($\alpha \gamma \kappa v i \lambda \eta$). If we look closer at the context of II. 8 [12.4], we find the same distinction as we have here, but expressed in less abstract terms (II.8 [12.4-6]). Also relevant is the definition of τ ò кıvov́ $\mu \varepsilon v o v$ as $\alpha \not \xi \omega v . . . \pi \varepsilon \rho \grave{̀}$ ôv $\dot{\eta} \sigma \pi \alpha ́ \rho \tau о \varsigma$, $\pi \varepsilon \rho ı \varepsilon^{\lambda} \eta \tau \alpha \imath$ that immedi atel y follows the present passage.

 rolled up'), but this correction only indi cates that the scribe, perhaps identifiable with the second hand, had a poor understanding of the mechanism whereby mo-
tion is transmitted to the wheel axle (on which, cf. also V. 5 [22.15-19], VI. 1 [24.4-6], XI. 3 [36.15-19]). It is self-evident that, by being pulled by the counterweight, the cord being wound around the axle, and passing through a pulley at the top of the σ ט́pı乡 ([V.5] 22.13-14), was unrolled. Here, however, the reader is first presented with the turning of the axle, and then with the unwinding of the
 teron proteron focuses attention on how the movement is transmitted from the axle to the wheels, thus letting the reader know immediately how the automaton starts moving.
 T. The former reading has better manuscript support (AG) and also appears much more frequently in conjunction with ε है $\delta \alpha \rho \circ$, than к $\alpha \tau \alpha$ does (both outside and inside Hero's works). There is only one instance in Hero (V.5 [22.18-19]) of
 the accusative: the syntagm к $\alpha \tau \alpha ̀$ tò $\varepsilon \delta \alpha \varphi \rho$, is extremely rare, occurring only in Iate sources (Hippiatr. Berol. 129.39.11, J os. Genes. 2.8.34, Theoph. Cont. 230.6 and Paraphr. rec. in Lycophr. 625). Similarly, all other Heronian occurrences of the prepositional phrase 'on the ground' (II.2 [6.15], XI.9 [40.14], Bel. 89.3, Dioptr. 202.15-16, 204.12, Mech. Frag. 3.1 ${ }^{\text {bis }}=$ Papp. 1130.11 and 1130.17) have ε èní governing the genitive (cf. also Ath. Mech. 30.2, [Apollod.] Poliorc. 162.1, 164.3). The preponderance of the genitive in these phrases suggests that we emend τ ò $\begin{gathered} \\ \delta \alpha \varphi \rho o \varsigma ~ t o ~ \tau o v ~ \\ \varepsilon \\ \delta \\ \alpha\end{gathered} \rho o v \varsigma$, but it is difficult to rule out the possibility that this is merely a semantic equivalence (see generally Bortone 2010: 183-4).
II. 7 [10.18-19] $\tau 0 i ̂ \varsigma ~ \delta \varepsilon ̀ . . . ~ \pi \lambda ı v \theta i ́ o v . ~ F o r ~ a ~ s i m i l a r ~ e x p r e s s i o n, ~ c f . ~ X X X . ~ 3 ~$ [106.20-108.1] $\pi \varepsilon \rho ı \lambda \alpha \mu \beta \alpha ́ v \varepsilon ı ~[s c . ~ \tau o ̀ ~ \sigma \alpha v i ́ \delta ı o v] ~ \tau \alpha ̀ \varsigma ~ \chi о \rho \delta \alpha ́ c . ~ . ~$

The term $\pi \lambda$ ıv θ iov here, as throughout the rest of the book, denotes the ' base unit' of the mobile automaton (cf. III.1 [14.17] ßáбıc). Perfectly, or almost perfectly, synonymous with $\pi \lambda \alpha i$ í ωv and $\pi \lambda ı v \varepsilon \varepsilon i o v$, it can be used to refer to any kind of 'frame' or, more generally, to any 'rectangular object' or 'figure' (for a review of these terms and their relationships, se Saliou 2004: 187-9). Both Philo (Bed. 60.5) and Hero (Be. 81.8), for example, adopt the word as a technical termfor the wooden frame of a catapult (see Marsden 1969: 57; 1971: 47-8
n. 16), whereas Bito (Constr. 60.1) speaks of $\pi \lambda ı v \theta$ íov as a box (perhaps a ‘shalIow tray', as conjectured by Marsden 1971: 95 n. 48). The word occurs again in the context of stationary automata, where it most certainly designates the frame of the $\pi i v \alpha \xi$. Thus, there appear to be two main uses of the word $\pi \lambda ı v$ viov in the treatise, both of which are related, though in different ways, to architecture and construction.

According to Baldi $43^{r} \mathrm{n} .14$, the term (which he mistakenly accented on the antepenultimate syllable) is used in architectural contexts of the 'lowest square part of the base [sc. of a column], namely the socle', but his words are more correctly applied to the primitive form $\pi \lambda i$ iv θ oc (cf. LSJ s.v. II.3; but cf. Didyma 38.10 [277/276 BCE] for the diminutive $\left.\pi \lambda ı v \theta^{\prime} \varsigma\right)$ and its Latin equivalent plinthus (Ionic order: Vitr. 3.5.1-3 and 5.9.4; but cf. Vitr. 3.3.2, where plinthis is used twice). What is interesting for present purposes is that this more specialised meaning is thought to have been derived from the meaning of 'building block', 'wall block' (Hellmann 1992: 342, with 'pierre d'assise'), a meaning which in epigraphic sources is attached not just to the word $\pi \lambda^{\prime}$ iv θ os (IG 13. 474 A col. I 10, 474 A col. I 95, 474 A col. I 104 [Erechteion construction work inventory, 409/408 BCE], CID 2.56 col. II C 82 [337/336 вCE] and 2.62 col. II A 2 [335/334 BCE], Didyma 102.22), as erroneously believed by Hellmann (1992: 342), but al so to its derivatives, such as $\dot{\eta} \mu ı \pi \lambda i v \theta 1 o v$ (Didyma 99.11-12) and $\pi \lambda ı v \theta$ íc (IG $2^{2} .1668 .26,1668.93$ [the so-called Arsenal inscription, 347/346 BCE]). This, together with the altemative designation of $\pi \lambda ı v \theta$ ív ('case') as β óбı serving as a support for the whole automaton, suggests that Hero's usage is influenced, even if only to a limited extent, by the architectural meaning of the word and its close relatives (in other instances, the words $\pi \lambda \alpha i$ írov and $\pi \lambda ı v \theta \varepsilon i o v$ have been interpreted as meaning ‘stand' or 'socle', but it is more likely that they refer to the frame of a votive offering; see Hellmann 1992: 340 n .3).

As for the usage of $\pi \lambda \lambda_{v}$ 园ov in the second part of the treatise, it somewhat parallels the usage of its associates $\pi \lambda \alpha$ ívıov and $\pi \lambda ı v \theta \varepsilon i o v ~ i n ~ i n s c r i p t i o n s, ~ p a r-~$ ticularly those from Delos. In addition to the more common meaning of 'frame [sc. of a votive offering]' (cf. also ID 1443 B col. II 51 and 1446.24π тvóкıov $\left.\pi \varepsilon \pi \lambda \alpha 1 \sigma 1 \omega \mu \varepsilon \varepsilon_{0} v\right)$, both of these words can also refer to the upper frame of a (painted) ceiling coffer ($\pi \lambda \alpha$ íбıov: IG 13 .474 B col. I 240-1 and 474 B col. II 246, ID 504 A 13, 504 A 15, 504 A 16 [279 bCE]; $\pi \lambda ı v \theta \varepsilon i ̂ o v: ~ D i d y m a ~ 103 ~ a .36, ~$

IG 112.165.22, 165.32 [Delos, 279 BCE]; Saliou 2004: 188 n. 11 further compares Vitr. 9.8.1 plinthium sive lacunar); for discussion of the link between Hero's stationary automaton and the tradition of panel painting, of. note on I. 3 [2.17-18]. When Hero instructs the reader to equate the dimensions of the $\pi i v \alpha \xi$ and the $\pi \lambda$ rveiov (XXIII.1 [74.5-7]), therefore, he is tal king about the 'skeletal frame' of the whole $\pi i v \alpha \xi$, not about an ordinary 'case' or 'box', as translators have understood the term This interpretation is further confirmed by another architectural meaning of the term $\pi \lambda 1 v \theta \varepsilon i ̂ o v$, namely that of '(stone) door trim', as attested by papyrological (PDura 19.10 [88/89 CE]) and epigraphic (Dura7-8 no. 872 [157/158 CE], Y CIS 14.1955.139.6 [169/170 CE]) documents (I take these references from Saliou 1992: 91 n. 95, quoted by Saliou 2004: 188 n .12); see al so LSJ s.v. III. 2 (' window-frame') and Hellmann (1992: 340 n. 1).
II. 7 [10.19] av̇to μ órov. The correct reading (al ready conjectured by Schmidt) is transmitted only by manuscript F. All other manuscripts have erroneous readings. Two manuscripts (Ea, Ta) appear to correct $\alpha v ̉ \tau o \mu \alpha ́ \tau o \varsigma ~ t o ~ \alpha v ̉ \tau o ́ \mu \alpha \tau o \varsigma, ~ b u t ~$ the nominative singul ar masculine form likewise does not fit grammatically into the sentence. It is at any rate noteworthy that in Fabr. 93 the reading avito μ ótov might have been influenced by the immediately following $\pi \lambda \mathrm{v} v$ 0ion (in place of $\pi \lambda ı v \theta^{\prime}$ ov). The scribe would seem to have misread the ending of $\pi \lambda ı v \theta$ iov in his exemplar, which would presumably have led him to (mechanically) replace

II. 8 [12.1-3] $\tau \alpha ́ \sigma v v \delta \dot{\varepsilon} . . . \pi \lambda ı v \theta i ́ o v$. We might suppose that the words $\tau \hat{\varsigma} \varsigma \varepsilon_{i ́ \alpha} \varsigma$, have fallen out between tò and β ápos (but cf. IX. 4 [32.3] tò $\left.\beta \alpha \alpha_{\rho} \rho \varsigma \tau \eta \uparrow \varsigma \lambda \varepsilon i ́ \alpha \varsigma\right) . ~$ These words would complete the somewhat chiastic structure of the passage, al though iò β ápoc can no doubt be understood without further specification (cf. V. 5 [22.15], [22.16] and [22.20], XIII. 8 [50.9], XIII. 9 [50.10] and [50.12-13]).
 of ε ह̇к兀òc. This emendation has been tentatively proposed by Schmidt (app. crit. ad loc.) on the basis of XII. 2 [42.11], which likewise refers to the movements other than locomotion of the case. Similar references are found at XVIII. 3 [60.3-4] and XIX. 1 [60.11] (supplemented), although in both these passages
$\dot{\varepsilon} \kappa \tau o ́ \varsigma$ is replaced by ε है $\xi \omega \theta \varepsilon v$. But while these prepositions can be followed by the genitive to express an exceptive meaning ('apart from', 'except'; cf. LSJ s.w.
 I.5, however, record the earlier spatial meaning of 'outside of', 'beyond'). In a Iater discussion of the treatise, Schmidt (1903: 275) reconsidered his opinion and regarded $̇ \kappa$ as equivalent to $̇$ éктós. The preposition is, by contrast, altogether omitted by Murphy 12 ('Movements in a forward di rection').
II. 8 [12.5-6] $\dot{\alpha} \pi \mathrm{o} \delta \varepsilon \delta \varepsilon \mu \varepsilon ́ v \omega v . . . \lambda \varepsilon \varepsilon^{\alpha} \alpha v$. Perhaps we shoul d emend $\dot{\alpha} \pi о \delta \varepsilon \delta \varepsilon \mu \varepsilon ́ v \omega v$ to $\dot{\alpha} \pi \mathrm{o} \delta \varepsilon \delta o \mu \varepsilon \varepsilon^{v} \omega v$. Hero prefers the verb $\dot{\alpha} \pi \mathrm{o} \delta \dot{\delta} \delta \omega \mu \mathrm{u}$ to refer to the attachment of cords (or chains: XIII. 8 [50.9]) to the counterweight rather than $\dot{\alpha} \pi \mathrm{o} \delta \varepsilon \varepsilon \omega$, which is used only here in the Automata (and only once elsewhere in the corpus in the same way: Spir. 94.9). There is further support for the proposed emendation in the fact that manuscripts oscillate between $\dot{\alpha} \pi \mathrm{o} \delta \varepsilon \delta \varepsilon \mu \varepsilon ́ v o s$ and $\dot{\alpha} \pi \mathrm{o} \delta \varepsilon \delta o \mu \varepsilon ́ v o s$ (XII. 2 [42.18], XIII. 5 [46.21]), and between $\dot{\alpha} \pi о \delta \varepsilon \delta \varepsilon ́ \sigma \theta \omega$ and $\dot{\alpha} \pi \mathrm{o} \delta \varepsilon \delta o ́ \sigma \theta \omega(\mathrm{~V} .5$ [22.14], XII. 3 [42.21], XIII. 7 [48.17], XIII. 8 [50.9], XVI. 3 [54.21]; cf. Spir. 130.2, 180.3 and 180.5). But cf. II. 7 [10.13] ($\pi \rho \circ \sigma \delta \varepsilon ́ \omega)$.
 V. 5 [22.12-13].

 found nowhere else in Hero (and indeed only twice elsewhere: Papp. in Ptol. 91.4 and Hsch. $\eta 767$ Latte [paroxytone]), $\varepsilon v ̉ \lambda u ́ t \omega c$ appears 30 times, nearly onehalf of the total occurrences of the adverb in Greek literature. In all but one instance (XIV. 1 [50.20]), it occurs with verbs of motion, often describing the ease with which mechanical components (chiefly axles) are made to rotate: see, for instance, XI. 2 [36.8] and [36.11] (cited above), XII. 2 [42.19-20], XIII. 7 [48.16], XVI. 3 [56.1-2], XVIII. 1 [58.12], Bel. 84.4-5, Mech. Frag. 1.1 ${ }^{\text {bis }}=$ Dioptr. 308.4 and 310.24-5, Spir. 300.7 and 300.16. The combination of the two adverbs may be a stylistic alternative to a more expanded type of phrase such as that found at

pare this with Spir. 94.4-6; cf. also Mech. Frag. 1.1 =Dioptr. 312.4-5) or Spir. 204.5-6 (downward motion of a piston). This is implied, albeit indirectly, by Prou 163: ‘[I]e contrepoids. . . s’ajuste à la section du tuyau, de maniereà pouvoir y descendre aisément'.

Theterm $\dot{\alpha} \rho \mu$ oбt ω, has been corrected in \mathbf{A}. The scribe added two letters (in all likelihood or) above the line. According to Schmidt (app. crit. ad loc.), these letters have been written above $\hat{\varsigma}$, but a closer look at the manuscript shows that they have been superscribed between $\varsigma(=\sigma \tau)$ and ω (the accent appears above the final ς). One cannot therefore be sure whether the scribe intended to correct $\dot{\alpha} \rho \mu о \sigma \tau \omega \hat{\varsigma}$ to $\dot{\alpha} \rho \mu$ обтoì or to $\dot{\alpha} \rho \mu о \sigma \tau o i ̂ c . ~ I t ~ i s ~ w o r t h ~ o b s e r v i n g ~ t h a t ~ i n ~ A, ~$ as in \mathbf{T} ($\dot{\alpha} \mu$ оотоı $\dot{\omega}$, , with or above the line), the topmost point of o is the starting point for a cross-stroke that goes straight through i . This might be intepreted as the horizontal stroke of σ, were it not so long. It is difficult to resist the impression that both the scribe of \mathbf{A} and the scribe of \mathbf{T} copied the whole digram or from a text they did not manage to decipher correctly.
II. 9 [12.8-10] $\dot{\varepsilon} v \delta \varepsilon ̀ \tau \hat{1} . . . \varepsilon \dot{\varepsilon} \mu \beta \dot{\alpha} \lambda \lambda \varepsilon \tau \alpha 1$. According to the explanation given by Landels (1978: 204), dry sand is prefered in stationary automata because it flows out more slowly, and thus allows for a longer performance It would have been superfluous for Hero to spell this out, since emphasis is al ready placed on the properties of millet and mustard ($\delta 1 \grave{\alpha}$ tò кои̂pá $\tau \varepsilon$ д̉ $\mu \varphi o ́ \tau \varepsilon \rho \alpha$ عìvaı каì ò $\left.\lambda_{1} \sigma \theta n \rho \alpha ́\right)$ as opposed to sand. Unlike other translators, who render ò $\lambda_{1} \theta \eta \rho \rho \alpha$ literally ('glissants’, Prou 163; ‘schlüpfrig', Schmidt 347; ‘slippery', Murphy 12), Baldi 18 ('flussibile') and Couture 245 ('fluxa') have the correct understanding of the term (so al so Cambiano 2011: 31 n. 13); cf. the use of the termto refer to foods that pass easily through the digestive system, as, for instance, in Gal. AI. Fac. 6.536, 562, 587, 593, 634 Kühn. The contradiction between the present description and that of IX.4[32.5-6] (кои̂甲óv $\tau ı$ каì $\lambda \varepsilon \pi \tau$ iòv каì $\gamma \lambda i ́ \sigma \chi \rho o v$, oiov кદ́ $\gamma \chi \rho \circ v$ そ̀ $v \hat{\alpha} \pi v$) is only apparent, since there is a difference in emphasis (in the latter case stress is laid on the necessity to prevent abrupt motion of the case, as is made explicit in the immediate context: IX.4 [32.2-4]; cf. IX.6 [32.14-15]). There seems to be a preference for millet over mustard because the former is mentioned far more frequently than the latter (in addition to the passage quoted, cf. IX. 5 [32.12], IX. 6 [32.16], XVII. 2 [56.18] and XIX. 2 [60.20]).

II． 9 ［12．10－13］$\hat{\dot{\omega} v ~ \varepsilon ̇ к \rho \varepsilon o ́ v \tau \omega v . . . ~} \sigma \pi \alpha \dot{\alpha} \rho \tau o v$. These lines are complemented by IX．5－6［32．7－17］，even though the focus there is limited to the motion of the case．Schmidt 349 is surely right，therefore，when he keeps the plural $\tau \alpha$ ， кıvíб\＆וৎ（＇die Bewegungen＇）．Other translators，on the other hand，are not so scrupulous，since they all render the term as if it was singular（but perhaps we must concede that a certain degree of generalisation is involved）．

The adverb $\eta \mathrm{\eta} \varepsilon$ ќ α is used by Hero on three other occasions，once with refer－ ence to the downward flowing of millet（IX．5［32．13］），and twice to connote the gradual vertical movement of water－either upward（Spir．238．2）or downward （Spir．248．14）；contrast the use of $\pi \rho \alpha ́ \omega \varsigma / \pi \rho \alpha \varepsilon ́ \omega c$ for the gentle stretching of a cord（II． 11 ［14．6］，XXIII． 8 ［78．18］）．

For a modern application of the principle described here（i．e．decentring of arches by the so－called＇sand box＇method），see Prou 163－5；see al so，most re cently，Varghese（2007：79－80 with Fig．8．4）．

II． 9 ［12．12］$\tau \grave{\alpha} \varsigma ~ \kappa ı v \eta ́ \sigma \varepsilon є \varsigma ~ \alpha \dot{\alpha} \pi о \tau \varepsilon \lambda \varepsilon i ̂ . ~ P e r h a p s ~ w e ~ s h o u l d ~ e m e n d ~ \alpha \dot{\alpha} \pi о \tau \varepsilon \lambda \varepsilon i ̂ ~ t o ~$ $\dot{\varepsilon} \pi ı \tau \varepsilon \lambda \varepsilon i ̂$ ．The verb $\dot{\alpha} \pi \sigma \tau \varepsilon \lambda \varepsilon \varepsilon_{\omega}$ is generally used by Hero to refer to the production of sound（ $\mathfrak{n} \chi o v$ ：e．g．XIV． 2 ［52．3］and［52．5］，XX． 4 ［66．18］，Spir． 98.2 and 100．14；$\varphi \omega v \eta$ ：Spir． 316.16 ［of a blackbird］and 320．13），whereas $\dot{\varepsilon} \pi \tau \tau \varepsilon \lambda \varepsilon \dot{\varepsilon} \omega$ is the usual verb for carrying out movements（cf．note on I．1［2．7－8］）．For the scribal confusion between $\varepsilon ่ \pi I \tau \varepsilon \lambda \varepsilon ́ \omega$ and $\dot{\alpha} \pi$ o七 $\tau \lambda \varepsilon ́ \omega$ ，cf．app．crit to XIX． 4 ［62．10］．
 tó⿱㇒日ध 1 ，which appears in the ed．princ．This reading seems to be a correction be－ cause the manuscripts used by Thévenot have either the erroneous $\pi \alpha \dot{\sigma} \pi \varsigma$（Pa and Pf，like AGT）or $\sigma \pi \alpha ́ \sigma ı \varsigma ~(P d, ~ l i k e ~ M) . ~ \tau \alpha ́ \sigma ı \varsigma ~ i s ~ p r e f e r a b l e ~ t o ~ \sigma \pi \alpha ́ \sigma ı \varsigma ~(p o s s i b l y ~ a ~$ conjecture based on the preceding $\dot{\varepsilon} \pi \iota \sigma \pi \omega \mu \varepsilon ́ v \eta)$ not only because Hero uses the term elsewhere to refer to the stretching of a cord（XI． 4 ［36．25］，XXX． 2 ［106．16］，Bel．83．6）but also because it forms an antonymic pair with $\dot{\alpha} \pi o ́ \lambda v \sigma ı \varsigma$ （note parallelism：$\tau \alpha ́ \sigma \iota \varsigma ~ \sigma \pi \alpha ́ \rho \tau о v . . . ~ \alpha ̇ \pi o ́ \lambda \nu \sigma ı \varsigma ~ \sigma \pi \alpha ́ \rho \tau о v) . ~$

The vast majority of manuscripts read the second colon as follows：кıvŋ́бєळৎ， $\delta \grave{~ \sigma \tau \alpha ́ \sigma ı \varsigma ~} \dot{\alpha} \pi o ́ \lambda v \sigma \iota \varsigma ~ \sigma \pi \alpha ́ \rho \tau o v . ~(M a n u s c r i p t s ~ P a r . ~ g r . ~ 2519 ~ a n d ~ L e i d . ~ B o n . ~ V u l c . ~ 4 ~$ replace $\sigma \tau \alpha ́ \sigma \iota$, respectively，with $\sigma \tau \alpha ́ \sigma \varepsilon ı \varsigma$ and $\tau \alpha ́ \sigma ı$, ，but these readings can be dismissed as mere errors．）The perplexing phrase кıvท́бєшৎ $\delta \varepsilon ̀ ~ \sigma \tau \alpha ́ \sigma ı \varsigma ~ h a s ~ s o ~ f a r ~$
been understood as referring to the end of motion. In particular, Baldi 18^{r}, followed by Couture 245-6, interpreted the term $\sigma \tau \alpha \dot{\sigma} ィ \varsigma$ as denoting both the endpoint of motion and the subsequent state of rest: 'fine e stato del medesimo [i.e. il moto]' (Baldi's words 'stato del medesimo' are not without ambiguity, as they might also be taken to mean 'state of motion'). However, there are two arguments agai nst this interpretation. First, $\sigma \tau \alpha \dot{\sigma} \sigma \varsigma$ is nowhere attested with the meaning 'end' (for a review of the different meanings of the term, see Artés Hernández 2014: 183). Second, it is extremely difficult, if not impossible, to explain why rest should be predicated of its opposite (cf. LSJ s.V. $\sigma \tau \alpha \alpha^{\circ} \iota \varsigma$ II.B. 1 and, especially, PI. Sph. 252d6-11, 255a4-b2). Even admitting that motion indeed partakes of rest (PI. Sph. 256b6-9; for a detailed discussion of the different interpretations proposed for this problematic passage, including his own, see Movia 1991: 370-3; with a different perspective, see, more recently, Ambuel 2007: 153-4), the term кívnoıs, as used by Hero, should not be taken in the Platonic sense as referring to the pure form of motion (as Movia 1991: 372 with n . 128, following Rosen 1983: 279, believes is the case with PI. Sph. 256 b 6 aviǹ кívnбıৎ). On these grounds, therefore, I have taken $\sigma \tau \alpha ́ \sigma ı \varsigma ~ a s ~ a n ~ i n t r u s i v e ~ g l o s s ~$ and emended to té ${ }^{\prime} \mathrm{oc}$. It is plausible to presume that a scribe glossed the ori-

 was later mistaken for a variant reading. This explanation has the additional advantage of allowing us to restore parallelism to the lexically and conceptually

 refering to the loop of cord, as is clear enough from the preceding context; of. al so the use of the verb $\pi \rho о \sigma \alpha \gamma к \nu \lambda$ óo $\mu \alpha 1$ at II. 7 [10.13] (conjecture), II. 8 [12.4] and II. 11 [14.8]. The definition of II. 7 [10.14-15] ($\grave{2} \delta \varepsilon ̀ ~ \kappa ı v o v ́ \mu \varepsilon v o v ~ đ ̋ \xi \omega v ~ \varepsilon ̇ \sigma \tau i ́, ~$
 must exclusively mean an axle ('axi', 246; cf. Prou 162). In addition to being found on axles (whed axle: cf. esp. V. 4 [22.4-5], and XII. 3 [44.1-2] $\tau \uparrow \varsigma ~ \dot{\alpha} \gamma \kappa v ́ \lambda \eta \varsigma ~$ દ̇клєбои́ซnя $\dot{\alpha} \pi o ̀ ~ \tau o v ̂ ~ \tau u ́ \lambda o v, ~ w i t h ~ n o t e ~ a d ~ l o c . ; ~ d o o r ~ a x l e: ~ c f . ~ e s p . ~ X X I I I . ~ 6 ~$
[78.3-4]; cf. also XXVIII. 7 [104.10], and Orib. 49.4 .25 for a definitional approach), a tú ${ }^{2}$ os ('knob') is also found on such devices as pulleys (XXIV. 6 [84.8-9], XXVII. 4 [98.20-100.1]; for the use of multiple knobs in a different context, cf. XXIX. 1 [104.19-20]). Whenever a loop of cord falls off its knob, motion is interrupted, even if imperceptibly (change of direction: VI. 2 [24.7-9]; cf. VI. 2 [24.11]), or brought to an end (V. 5 [22.19-20], given as an alternative to the complete descent of the counterweight, and XXIV. 6 [84.9-10] [corrupted]; cf. also the paralled expression quoted above). In order for the loop of cord to fall off, it must not be fixed in any way; cf. Bel. 83.1-2 $\alpha \gamma \kappa v ́ \lambda \alpha \varsigma . . . \pi \varepsilon \rho o ́ v \alpha 1 \varsigma$,

For the use of the term τ í $\mathrm{\lambda}$ os in a different sense, 'wooden block' engaging the thread of a screw, cf. X. 2 [34.8], [34.11] and X. 3 [34.13]; on this usage, of. esp. Mech. Frag. 2.5quinquies = Papp. 1126.3, 1126.9, 1126.10, 1126.15, 1126.17 (Ferriello-Gatto-Gatto 2016: 37 curiously translate the word as 'hinge'; but see Ferriello-Gatto-Gatto 2016: 376); the term has been borrowed into Arb. ț̂̂lus (cf. Mech. 2.5 and 2.19, with Drachmann 1963a: 59, 81; see al so Laird 2015: 300).
 $\dot{\varepsilon} \mu \pi 010 \hat{v} \tau \alpha \mathrm{~L}\left(\mathbf{A}^{\mathrm{a}} \mathbf{M T}^{2}\right)$ not only because it receives better manuscript support but

II. 10 [12.18-19] $\delta i \alpha ̀ ~ t o ̀ ~ \mu \grave{. . . ~}$ ह̇ $\lambda \alpha ́ \sigma \sigma o v a c . ~ M u r p h y ~ 40 ~ n . ~ 6 ~ e x p l a i n s ~ H e r o ' s ~ r e f e r-~$ ence to instruments of different diameter by saying that 'the different sizes of the axles - like differential gears - allow events in the moving automaton display to occur in sequence'. This misses the point entirely. First, Hero uses the term őprovov to refer to any kind of circular component, as the reference to bigger and smaller circles at XVIII. 3 [60.2] makes clear. Second, cogwheeds are nowhere used in the treatise (Introduction, p. Ixxviii). Third, the possibility of a series of movements depends on the use of slackenings (II. 10 [12.19-14.3]) rather than on the different size of the axles. Rather, Hero's point is that since instruments of different diameter rotate at different speeds, they impart different velocities to the components connected to them. The greater the diameter, the
longer the time required to complete a single rotation, and therefore the slower the movement.

Here the adjective ö μ oios denotes geometrical equality rather than geometrical similarity, because, mathematically speaking, all circles are similar (Hero, Deff. 118; Giardina 2003: 344). For this meaning LSJ s.v. III. 1 cite only three passages fromAristotle (Cael. 296b20, 297b19, 311b34) and Thales ap. Procl. in Euc. 251, all with reference to angles. This use of the term seems to reflect a naïve usage rather than an archaic ($\dot{\alpha} \rho \chi \alpha \ddot{\kappa} \omega \dot{\tau} \varepsilon \rho o v$, Procl. in Euc. 251.1) usage (Rankin 1960: 75-6).
II. 10 [12.19-14.2] $\delta \varepsilon \imath ̂ ~ \delta \varepsilon ̀ ~ \tau \hat{v ~ \tau \varepsilon \tau \alpha ́ \sigma \theta \alpha ı . ~ M a n u s c r i p t ~ P h ~ r e a d s ~} \alpha$ vact $\tau \alpha \dot{\sigma} \sigma \theta \alpha$ in place of $\ddot{\mu} \mu \alpha \tau \varepsilon \tau \alpha ́ \sigma \theta \alpha 1$. This reading does not suit the context, for all the cords that are attached to the counterweight extend upwards (XVII. 2 [56.18-20]). It is not clear whether Bal di's exemplar read $\alpha, \alpha \alpha \tau \varepsilon \tau \alpha ́ \sigma \theta \alpha ı, \alpha, v \alpha \tau \varepsilon \tau \alpha \hat{\sigma} \theta \alpha 1$ (as in M) or simply $\tau \varepsilon \tau \alpha ́ \sigma \theta \alpha 1$ ('Bisogna anco, che le corde... non siano tese'). Couture 246 (' Observa. .. funes tensos esse omni ex parte') is more emphatic.
 transmit force to the instrument to which it is connected. Hence, if a cord has some slack to it, it must be made longer (Prou 173). As Baldi 43v rightly pointed out, the arrangement of the so-called $\chi \alpha \lambda \alpha \alpha^{\sigma} \mu \alpha \tau \alpha$ into hanks ($\mu \eta \rho v^{\mu} \mu \alpha \tau \alpha$, cf. II. 11 [14.4-6] with note ad loc.; cf. the use of the verb $\delta 1 \alpha \mu \eta \rho v i \omega$ at X. 3 [34.16], XI. 11 [42.6], XVI. 3 [56.7]) glued onto their respective instruments prevents cords from tangling (see also Drachmann 1963a: 197). These slackenings are used either to delay the start of movements (locomotion of the case: IX. 6 [32.14-15], XI. 6 [38.11-14], XIX. 3 [62.4-9]; all other movements: XIX. 4 [62.12-14]) or to produce pauses between motions (forward and backward motion: VI. 2 [24.12-15], VI. 3 [24.19-20]; rectangular motion: IX. 4 [32.1-2], X. 3 [34.14-17]; snakelike motion: XI. 4 [36.21-4], XI. 5 [38.1-3] and [38.4-6], XI. 7 [38.19-22]; dances of the Bacchantes: XVI. 3 [56.6-8]).
II. 11 [14.4-6] $\tau \grave{\alpha} \delta \dot{\varepsilon} \chi \alpha \lambda \alpha ́ \sigma \mu \alpha \tau \alpha . . . \tau o ́ \pi \sigma v$. For the function of such an arrange ment, cf. previous note

Mńpup α is the term normally employed by Hero to refer to the slack coils of cord (hanks): VI. 3 [24.20], XI. 5 [38.4], XI. 6 [38.7]; cf. VI. 2 [24.12] ($\mu \eta \rho v \mu \alpha ́ \tau i o v$). We al so find it in his Belopoeica (81.11, 82.3), where it denotes a hank of spring-cord (Marsden 1971: 23); cf. Ph. Bel. 65.22, 66.1, 67.23-24 (note that these occurrences have been rendered differently by Marsden 1971: 133, 135; cf. al so LSJ s.v. μ ńpv $\mu \alpha$). The present occurrence has been translated by LSJ s.v. as 'kink' (a translation largely adopted by Murphy; contrast her strange renderings of VI. 2 [24.12], ‘stretches' [15], and of VI. 3 [24.20], ‘lengths’ [17]), but this understanding does not accord well with the gloss given by Hsch. μ 1259 Latte $\mu \eta \rho_{\rho} \mu \mu \cdot \sigma \pi \varepsilon i ́ \rho \alpha \mu \alpha$. $\grave{\eta} \varepsilon \in \kappa \tau \varepsilon เ v o ́ \mu \varepsilon v o v$ ($\mu \eta \rho \rho \nu \mu \alpha$ is the reading of the Cyrillian manuscripts, against $\mu \eta^{\rho} \rho v \gamma \mu \alpha$, which is transmitted by the Hesychian manuscript: see Latte's app. crit. ad loc.; for $\mu \eta \rho^{\prime} v \gamma \mu \alpha$, cf. also Nic. Th. 160, 265). At XI. 4 [36.24] all manuscripts read $\chi \alpha ́ \lambda \alpha \sigma \mu \alpha$ $\tau 0 \hat{v} \mu \eta \rho i ́ \sigma \mu \alpha \tau o$, ($\mu \varepsilon \rho \eta ́ \sigma \mu \alpha \tau о \varsigma \mathbf{T a c}^{\text {ac }}$. Likewise, μ и́ $\iota \sigma \mu \alpha$ receives a gloss, al beit interpolated, in Hsch. $\mu 1263$ Latte ($\mu \eta \prime \rho \iota \sigma \mu \alpha \cdot \kappa \alpha ́ \tau \alpha \gamma \mu \alpha, \eta \geqslant ~ \sigma \pi \alpha ́ \sigma \mu \alpha ~ \varepsilon ́ \rho i ́ o v), ~ a l t h o u g h ~ t h e ~ n o n-~$ Hesychian branches of the tradition have in its stead μ ń \quad vy $\mu \alpha$ (Cyrillian manuscripts) or $\mu \dot{\eta} \rho v \mu \alpha$ ($\Sigma v v \alpha \gamma \omega \gamma \grave{\eta} \lambda \varepsilon ́ \xi \varepsilon \omega v$ र $\rho \eta \sigma i ́ \mu \omega v$, on which see Cunningham 2003); see Latte's app. crit. ad loc. Now, we must remember that Salmasius thought fit to emend $\mu \mu^{\prime} \rho \imath \sigma \mu \alpha$ (almost certainly an error owing to iotacism) to $\mu \eta \rho_{\rho} \quad \sigma \mu \alpha$ (see app. crit. to Hsch. $\mu 1262$ Schmidt) and, more importantly, that Schmidt 374, treading in Salmasius' steps, printed $\mu \eta \rho$ v́ $\sigma \mu \alpha \tau o c$ (which I have accepted in my text) in lieu of μ пní $\mu \mu \alpha$ гos (a conjecture anticipated by L. Dindorf ap. TGL s.v. $\mu \eta \rho_{\rho} v \mu \alpha$, yet with doubts expressed about the soundness of the reading because of the σ). While they correctly pointed out that both of these instances of $\mu \eta{ }^{\prime} \rho v \sigma \mu \alpha$ (treated as equival ent to $\mu \eta \eta_{\rho} \mu \mu \alpha$ in LSJ s.v. $\mu \eta \rho v \sigma \mu \alpha$) are in fact conjectures, LSJ s.V. $\mu \eta^{\prime} \rho \iota \sigma \mu$ failed to notice that there is some manuscript evidence, however slim, for this form. So, G transmits $\mu \eta \rho$ v́ $\sigma \mu \alpha \tau \alpha$ instead of $\mu \eta \rho v \mu_{\mu} \alpha \alpha$ (AT) in the present passage, and the ed. princ. has $\mu \eta \rho v \sigma \mu \alpha$ in place of the correct $\sigma \mu \eta \rho \rho \sigma \mu \alpha$ at Spir. 252.4. Therefore, notwithstanding Dindorf's doubts and Lobeck's (1837: 433) complete rejection of the term, $\mu \eta$ ' $\rho v \sigma \mu \alpha$ may well have been regarded, al ong with $\mu \eta \eta_{\rho} \gamma \mu \alpha$, as an acceptable variant of $\mu \eta ́ \rho v \mu \alpha$ (a view implicitly embraced by Schneider 1801: 120; Lobeck 1837: 433 n. 1 suspected the term μ र́ри $\mu \alpha$, too, but did not propose any emendation, as erroneously maintained by Schmidt in his app. crit. to Hsch. $\left.\mu 1258 \mu{ }_{\mu} \rho v[\gamma] \mu \alpha\right)$.

For this reason, and in the absence of conclusive grounds for rejecting $\mu \eta{ }_{\mu} \rho v \sigma \mu \alpha$, I have treated \mathbf{G} 's $\mu \eta \rho$ v́ $\sigma \mu \alpha \tau \alpha$ as a mere variant reading, relegating it to the app. crit., and accepted Schmidt's conjecture at XI.4 [36.24].

It remains to consider, however briefly, the reading that we find in \mathbf{M} ($\mu \grave{\eta}$ $\rho \dot{\rho} \mu \alpha \tau \alpha)$. This seems best explained as due to wrong word-division. Not only is the negative utterly misplaced, but the word $\rho \dot{\prime} \mu \alpha \tau \alpha$, no matter how we interpret it, does not convey a reasonable sense Even if we leave aside ρ र́ر $\mu \alpha$ ('stream'), we are left with two omographs, namely $\hat{\rho} \hat{\nu} \mu \alpha / \rho \hat{\rho} \mu \alpha$: the first ('bow-shot', 'towline') comes from ε ह́ví ('drag', 'draw'), the second ('defence', 'protection') from épv́oual ('protect', corresponding to LSJ s.v. غ́pv́ఱ (D)), and not from the middle of the said $\dot{\varepsilon} \rho v \omega^{\omega}$, as with LSJ s.v. $\rho \hat{v} \mu \alpha$ (B). Cf. Chantraine, DELG s.v. ěpu $\mu \alpha ı$ and ε èpv́.
II. 11 [14.7-10] $\pi \rho 0 \sigma \varepsilon ́ \chi \varepsilon ı v ~ \delta \grave{~} \delta \varepsilon i ̂ . . . ~ \lambda \eta ́ \psi \varepsilon \tau \alpha u . ~ H e r o ' s ~ a p p a r e n t l y ~ p e d a n t i c ~ i n s i s t-~$ ence on the proper arrangement of cords culminates in a premonition of the automaton's potential failure; of. II. 4 [8.11-12]. Especially noteworthy is the repetition of the expression $\varepsilon \pi \pi^{\prime} \dot{\alpha} \rho ı \sigma \tau \varepsilon \rho \alpha ́$. Scholars such as Baldi 18^{v} and Prou 173 interpreted these words as denoting direction. While the latter took them literally ('à gauche', cf. Hero, Deff. 8), the former understood them somewhat more loosely ('al contrario'). The unspoken implication of both these renderings is that the cords should only be wound rightward in order to guarantee smooth functioning of the device, but Hero never gives so many details in connection with the winding or the fastening of cords. So, for example, when a cord must be wound in the opposite direction - $\tau \grave{\alpha}$ èvavtí (VI.1 [24.1-2], VI. 2 [24.14]; cf. VI. 2 [24.12]), not $\dot{\varepsilon} \pi^{\prime} \dot{\alpha} \rho ı \sigma \tau \varepsilon \rho \alpha \dot{\alpha}$ - the direction of winding is not specified. Couture 246 , in turn, went too far astray with his paraphrase ('ne circumvectiatur alieno [sc. instrumento]', which covers the words $\mu \grave{\eta} . . . \lambda \alpha \dot{\alpha} \beta \eta$), failing even to notice that the phrase was repeated a second time in the original text. Taking a different perspective, Schmidt 349 ('verkhert') and Murphy 13 ('incorrectly'), with whom I agree, understood the phrase $\grave{\varepsilon} \pi^{\prime} \dot{\alpha} \rho ı \sigma \tau \varepsilon \rho \alpha ́$ in a metaphorically extended sense, thus shifting the focus from the direction of winding to the manner of winding. The interesting point here is that the adjective $\dot{\alpha} \rho ı \sigma \tau \varepsilon \rho o$ s is used as an antiphrastic euphemism (see generally Caroli 1999: 52-3 with n. 24, with bibliography) to avert ill luck and ward off a potential breakdown of the auto-
maton (contrast its use at III. 3 [16.14], where it simply denotes the left hand of the figure of Dionysus, without bearing any mantic or religious overtones; ff. the passage quoted above from Hero's Definitions, and XXVI.5 [94.8] ह̀v toîc
 whom the euphemistic sense of d.pıotepós faded away after the fifth or fourth century bCE (but see, for instance, Plu. De Iside et Osiride 378b, Didache 12.1, cited in DGE s.v. 2; cf. also LSJ s.v. 4). Further, this apotropaic function is intensified through repeition. One could even go so far as to say that Hero invests mechanics with the supernatural power of prediction and omen reading, because he is employing a term whose origins lie in bird augury and divination (see Caroli 1999: 52). On mechanical foreseeing, cf. also the use of the verb $\pi \rho о \mu \eta \chi \alpha v \alpha ́ o \mu \alpha ı$ at XXVI. 6 [94.17].
II.12 [14.11-12] deî dè кגi... paivntaı. On the significance of this claim, see my remarks in the Introduction, p. cix. Drachmann (1948: 100) argues rather cryptically that the claim applies not only to the scenic presentation of the automaton ('the plays of the theatre') but more generally to Hero's (technical) ability to innovate, particularly in the Pneumatica. He bases his argument on the fact that only a few of the instruments described in the work are connected with Philo's homonymous treatise (see Introduction, p. cvii). Even if we leave aside the questionable basis of his argument, I still do not understand why the claim should be extended to cover the Pneumatica or, indeed, the whole of his work. Hero makes it quite clear that he is refering to the appearance (φ aivital) of the automaton.

Couture 246 and Murphy 13 take катабквv́aбна to refer to the scenic presentation tout court Baldi $18{ }^{v}$ ('opera') and Schmidt 349 ('Apparat'), by contrast, translate correctly. The term катабквv́aби is used only once else where in Hero: Spir. 238.1 (automatic fountain; Drachmann 1948: 154-6).
II.12 [14.12-14] סvvatòv... π тоє̂̂o $\theta a \mathrm{u}$. This clearly refers back to I .8 [6.4-7]. On the significance and implications of this statement, see note on I. 7 [4.20-2].

place of $\alpha v \alpha \sigma \tau \rho \varepsilon ́ \psi \varepsilon ı$ (note that Schmidt's translation presupposes the middle form of the verb: 'grösser wird sein Erfolg sein', 349). According to LSJ s.v. A, the verb $\alpha v \alpha \sigma \tau \rho \varepsilon ́ \varphi \omega$, in the active voice, primarily means 'turn upside down', 'turn back', 'write with anastrophe' and secondarily 'invert', 'retire', 'deny/re fuse' (occurring only once in this sense, as equivalent to $\dot{\alpha} \rho v \varepsilon \varepsilon^{\circ} \mu \alpha 1$, in S. Fr. 1012) 'rally' and 'convert', but none of these meanings fits within the context. In the passive voice, by contrast, the verb has, among other meanings, that of 'conduct oneself', 'behave'. Thus used, it is sometimes construed with $\dot{\varepsilon} v+$ dative, and can be qualified by an adverb (for examples of this usage, see LSJ s.v. B.II.1). In support of his conjecture, Schmidt (app. crit. ad loc.) cites Spir. 2.11

 these passages, the first two are not close enough to provide support. First, the verb $\dot{\alpha} v \alpha \sigma \tau \kappa$ '́ $\varphi \rho \mu \iota 1$ is used, respectively, in the senses of 'to be engaged in' and 'dwell upon' (both meanings are recorded by LSJ s.v. B.II.1). Second, the pre position $\dot{\varepsilon} v$, as used in the second passage, has a more concrete sense than it is used here (εv тovíoıৎ, sc. 'automata-making'). On the other hand, the Philonic passage provides a more appropriate comparison, since the passive of
 т ρ ó π ov. Here the comuption probably arose from the confusion of the tachygraphic sign for - $\tau \alpha l$ (for which, see Allen 1889: 24 with PI. VII; Gardthausen 1913: 340) withï.

III-IV [14.17-20.7] Arrangement and performance of the mobile automaton After giving the dimensions of some of the most important parts of the automaton (III.1), Hero describes its arrangement (III.2-4) and its performance (IV.1-3). The performance consists of three distinct phases: forward motion, apotheosis of Dionysus, and backward motion (Prou 138, 165-6). The main scene involves two al most identical series of movements. There are six different movements, each of which is controlled by a separate cord (Olivieri, 1901: 426; Schmidt 1903: 276). The movements occur one after the other in the following order: (1) lighting of either of the altars (cf. XII); (2) sacrificial libation of wine and milk or water (cf. XIII.1-7); (3) sinking of garlands (cf. XV; occurring only once); (4) dance of the Bacchantes (cf. XVI) and (5) sound of kettledrums and
cymbals (cf. XIV); (6) half rotation of Dionysus and Nike (cf. XIII.7-9). Despite lack of explicit mention, the last of these movements will have been performed
 With a renewed attention to the dimensions of the automata, particularly of the mobile type, Hero closes the section (IV.4) by emphasising the apparent absence of human intervention.
 the sentence lacks a main verb. The omission of "Eбт ω may have been acci-
 ning of a sentence, cf. Spir. 80.6, 88.3, 224.2, 242.12; cf. also XIII.3 [46.1].

The dimensions given here are only approximate (for the use of $\dot{\omega}$, to denote approximation, cf. LSJ s.v. E; cf. also III.1 [14.21] and [16.4]), as was al ready recognised by Baldi 19 and Schmidt 353. Couture 246 translated the first $\dot{\omega}$, ('circiter'), but omitted the last two. Less felicitously, the presence of the adverb (here, as at III. 1 [14.21] and [16.4]) has been overlooked altogether by Murphy 13 and McCourt (2012: 196). Based on Hultsch's (1882: 697) table of correspondences, Schmidt 353 with n . 2 gave the approximate metric equivalents of Hero's measures (length: 46 cm ; width: 31 cm ; height: 23 cm). This is remarkable not only for the different degrees of approximation used, but also because the height of the кıóvia (for Schmidt's misunderstanding of the term, see note on III. 1 [16.3-4]), which is given in the text as approximate (62 cm), is elsewhere (Schmidt 353 n .3) specified as being 61.7 cm For the sake of consistency and clarity, I prefer to give exact figures rather than approximations (see al ready Prou 140 n .55), since the degree of approximation is unknown (I, too, base myself on Hultsch 1882: 697). The base is about 46.24 cm long (one cubit), 30.83 cm wide (four palms) and 23.12 cm high (three palms), which means that we must imagine a very small casing. It thus becomes clearer why the automaton needs to be constructed out of lightweight materials (II. 2 [6.17-8.2]). For the dimensions of the column shafts (кıóvia), cf. note on III.1 [14.20-16.1]; the measures of the whole column and of the architrave are discussed in note on III.1[16.3-4].
 chitectural, and denotes any vertical convex moulding (for an analysis of the term, see Hellmann 1992: 245-7). Previous translations are not accurate, since the term has been interpreted as meaning either 'cornice' (Bal di 19"), 'curved line' ('coronide', Couture 246), or 'groove’ (Murphy 13; McCourt 2012: 196). Schmidt 353 has 'Hohlkehle'. That would be a 'hollow [sc. concave?] moulding', whereas кән⿰́́tıov can, at best, refer to the cyma reversa, which is a compound moulding (both convex and concave); see Hellmann (1992: 246).

For the phrasing, cf. Ph. Bel. 66.27 кv $\mu \alpha ́ \tau \iota o v ~ \pi и ́ \xi \imath v o v . . . ~ к и ์ к \lambda \omega ~ \pi \varepsilon \rho ı \rho \varepsilon ́ \chi о v ~$
 moulding that runs on the protective cover of Philo's wedge-catapult (cf. also Ph. Bel. 62.7-8). It is, in my opinion, overinterpretation to regard Philo's кицátıov as a 'wave-moulding' (Marsden 1971: 127 for Ph. Bel. 62.8) or a 'beading' (Marsden 1971: 135 for Ph. Bel. 66.27 and 67.1). On Philo’s wedgecatapult, see Marsden (1969: 42).
III.1 [14.20-16.1] кıóvia... סv́o. The column shafts have a height of approximately 61.68 cm (eight palms) and a diameter of 15.41 cm (two palms); compare the figures given by Schmidt 353 with n. 3: 62 cm (or 61.7 cm) and 15.5 cm , respectively; see also note on III.1 [14.17-18]. Manuscript Tb reads عíкобı (154.2 cm) instead of $\bar{\eta}$, a dimension which would result in a disproportionate height for the columns. This erroneous reading must have arisen from the confusion between minuscule η and κ (κ corresponds to twenty), as confirmed by the fact that the scribe later corrected the mistake by adding $\bar{\eta}$ in the margin. For the suggestion that the кıóvia should measure ten palms (77.1 cm) in height, see McCourt (2012: 196); for discussion, cf. note on III.1 [16.3-4].
III. 1 [16.2-3] દ̇лì $\delta \dot{\varepsilon} \tau \hat{\nu} v . . . ~ к ט ́ \kappa \lambda \omega$. There seems to have been some confusion about the meaning of the term $\dot{\varepsilon} \pi ı \sigma \tau$ ú $\lambda ı v$. Baldi $43^{v} n .16$ was the first to comment on Hero's usage of the term According to the Renaissance scholar, the
 chitrave') given in the following line, III.1 [16.3-4] (for discussion of these, see following note), mean that there is no room for both the frieze and the cornice, and so Hero would be using the term to denote any ornament that is laid upon
the columns．He，therefore，explained his translation（＇comice＇，Baldi 19＇）by saying that it would have been inconvenient to leave out（what he thought to be） the main element of the entabl ature rather than the architrave and the frieze（but the opposite is，in fact，the case，with the architrave being the main element，and frieze and cornice the accessory elements：see，for instance，Ginouvès 1992： 110 with n .440 ）．These observations are especially interesting because they suggest that what is really needed on top of the columns is not an architrave（or some－ thing like it；on Schmidt＇s addition，see below）but a whole entablature．If we leave aside Couture＇s translation（＇coronis＇，246；also used for the ко μ＇⿱㇒⿻二丿⿴囗⿱一兀寸וov：see note on III．1［14．18－19］），we are left with three maj or interpretative possi bilities：
 means ‘entablature＇or＇crown（ing）＇（Prou $229 \mathrm{n} . \mathrm{t}$ ）；（3）$\dot{\pi} \downarrow \sigma \tau$ ט́入ıov means ‘lin－ te＇（McCourt 2012：196）．We can dismiss the third possibility right away，since the lintel is commonly found across the top of a door or window，and no such element occurs here The second possibility is more problematic．First，entabla－ ture and crown（ing）do not coincide．The word used by Prou for the latter，＇cour－ onnement＇，can，at best，refer to the upper element of the architrave in the Doric and Ionic orders（Ginouvès 1992：111－14），but certainly not to the entablature （＇entablement＇）．Second，the term ε ह̇ıбтט́ $\lambda 10 v$ can be used to denote both the architrave and the entablature（Ginouvès 1992：110－11）．If we follow Gros （2010：131）in maintaining that the term has gradually extended its meaning to include the frieze and the cornice since the beginning of the Imperial period，we would be led to think that ε होıбтv́ λ ıov here means＇entablature＇．However，the fact that in the immediately following context the dimensions of the $\varepsilon \pi I \sigma \tau \dot{\prime} \lambda 10 v$ are defined in terms proportional to the height of the whole column suggests otherwise，as this is how，according to Vitruvius（DeArch．3．5．9），the proportion of the Ionic architraves should be calculated（see Chitham 2005：22）．I have， therefore，translated $\dot{\varepsilon} \pi 1 \sigma \tau$＇́ $\lambda 10 v$ as＇architrave＇，in the belief that it still retains its original meaning．All things considered，the first possibility is the likeliest one， and the one that adds to the understanding of Hero＇s automaton in relation to ancient architectural practice．What Hero has in mind is，perhaps，the Ionic or－ der．

Now that the meaning of the term is clear，it remains to consider the shape of the architrave．Schmidt 351 Fig． 82 seems to invite us to imagine，and rightly so，
a rectangular (so al so Baldi 19 r unnumbered Fig.) architrave, since its general shape is made to match that of the case By contrast, Murphy 13 and 41 n. 9
 196), as being circular (as opposed to oval [?]), although this cannot be easily infered from her graphic representation of the automaton (Murphy 14 Fig. 1). Such a view depends on an erroneous interpretation of the word ки́к $\lambda \omega$ (cf. also III. 2 [16.6], XXVI. 7 [96.2]), which is used adverbially with the sense of 'in a circle', '(all) around’ (LSJ s.v. ки́клоৎ 2) and cannot refer to the shape of the architrave Had Hero meant to assign a circular shape to this element, he would
 this way, cf. III. 2 [16.8], XVI.1 [54.10] and [54.11]; cf. also XXVI. 2 [92.1]). It may be worth wondering in this context whether the original text would have read кúк $\lambda \omega<\tau \varepsilon \rho \tau \tau \rho \varepsilon \chi \circ v>$, which seems implied by Baldi's 'che corre intorno' (19') and Couture's ‘circumducta’ (246). Cf. III.1 [14.18-19] коно́тıv... $\pi \varepsilon \rho ı \tau \rho \varepsilon$ र́ v, with note ad loc. (especially comparePh. Bel. 66.27, cited there).
 cannot serve as the grammatical subject. In his app. crit. Schmidt adduced a par-
 protective cover of the frame of Philo's wedge-catapult; see Marsden (1969: 61), and note on III. 1 [14.18-19]. For a similar expression, cf. Gal. San. Tu. 6.344 Kühn ($̇ \gamma \kappa \varepsilon i ̂ \sigma \theta \alpha \imath ~ \tau \imath ~ \kappa \alpha \theta \alpha ́ \pi \varepsilon \rho ~ \lambda i ́ \theta o v)$).
III.1 [16.3-4] v̌ $\psi o c . . . \bar{\varepsilon}$. Previous scholars have been misled by these measures. According to Schmidt's interpretation (353 with n. 4), one-eighth of the height of the whol e column corresponds to 7.71 cm , that is, one palm (one-eighth of the height of the кıóvio in his understanding: III.1 [14.20-1]), and this does not match the figure given by Hero, five fingers $(9.65 \mathrm{~cm})$. He therefore suggested with some hesitation that $\bar{\varepsilon}$ should be emended to δ^{\prime} (but how would the corruption have occurred?) because four fingers correspond to one palm (see Hultsch 1882: 697). Although not brave enough to adopt his conjecture in the Greek text, in his translation he opted for 'vier' rather than 'fünf'. Schmidt's conjecture was later endorsed by Murphy 40 n .9 , who, despite everything, preferred to follow the manuscript reading and, hence, to translate 'five' (Murphy 13). This, however, is contradi cted by the height assigned to the architrave in Murphy 14 Fig. 1
(one palm). A slightly different stance has more recently been taken by McCourt (2012: 196), who thought that the height of the кıóvia, 'eight' ($\bar{\eta}$) palms, should be changed to 'ten' palms (77.1 cm), that is to say, in Greek numerical terms, t . This would solve the hypothetical di screpancy between the two different measures of the architrave (one proportional, the other numerical), given that oneeighth of ten palms equals five fingers. This escamotage has the advantage of leaving $\bar{\varepsilon}$ unaltered, provided that we are ready to accept $\bar{\eta}$ as an error of some sort. I believe that it is possible to account for these measures without having to assume that the text is comupt. As has become clear, all the scholars mentioned above treat the phrase tov кíovos ö λ ov in the same manner as they treat the кıóvi人 of III.1 [14.20], but Hero's usage of the adjective ő λ os seems to imply a contrast. So, if Murphy 13 translates кıóvi α as ‘little columns' (see al ready Bal di 19v; Couture 246), Schmidt 353 and McCourt (2012: 196) rather think of them, respectively, as 'pilasters' ('Pilaster') or 'small pillars'. What has so far gone unnoticed, though, is that at III. 1 [14.20-16.2] the кıovic are mentioned alongside base-mouldings ($\sigma \pi \varepsilon \iota \rho i ́ \alpha)$ and capitals ($\kappa \varepsilon \varphi \alpha \lambda \alpha i ́)$, which strongly suggests a different meaning for the term кıóviov, that of '(column) shaft' rather than of 'column'; for a comparable usage of the primitive form кí ω v, see Hellmann (1992: 217). Thus, when Hero says that the architrave is one-eighth the height of the whole column, he most probably means the column with all its formal elements, namely base, shaft and capital (see, for instance, Ginouvès 1992: 62). We find that there is no discrepancy between the two measures of the architrave, because in the previous lines Hero has not given the dimensions of the whole column, but only those of the column shaft (for these, see note on III. 1 [14.20-16.1]). The architrave, therefore, measures approximately 9.65 cm (five fingers) in height, a measure which equates to one-eighth of the height of the whole column. We can easily deduce the height of the whole column, 77.2 cm a figure which comprises shaft (approximately 61.68 cm), base and capital (these two, taken together, being approximately 15.52 cm).

As for the width of the architrave, Murphy 40-1 n. 9 has drawn attention to the fact that it is not specified in the text, arguing that it has to be at least six palms to match the long side of the case (see also Murphy 14 Fig. 1); but what she has in mind is a circular architrave (cf. previous note). There is no reason to suppose that the long and short sides of the (rectangular) architrave are much
different from those of the case，approximatel y 46.24 cm and 30.83 cm ，respect－ ively．
 manuscripts cannot be right because it contradicts the previous mention of only one architrave（III．1［16．3］）．R．Schöne conjectured τ ò $̇ \pi \imath \sigma \tau \dot{\prime} \lambda 10 v$ ，which would， in effect，agree with Hero＇s natural preference for $\kappa \alpha \tau \alpha$＋accusative．However， Schmidt＇s doubtful suggestion（ $\tau 0 \hat{\varepsilon} \dot{\varepsilon} \pi \tau \sigma \tau v \lambda i ́ o v)$ fits better into the context．The
 ded form are most generally used in conjunction with $\kappa \alpha \tau \alpha \dot{\alpha}+$ genitive rather than
 （Dsc．2．130．1）and ка兀⿳亠㐅$\gamma \gamma \hat{\wedge} \varsigma ~ \varepsilon ̇ \sigma \tau \rho \omega \mu \varepsilon ́ v o c ~(D s c . ~ 3.126 .1, ~ 4.15 .1 ; ~ c f . ~ H i m ~ O r . ~$ 12．116）．The corruption probably arose from the occurrence of the plural
 ［22．18－19］．

III． 2 ［16．7－8］vaírкоৎ $\sigma \tau \rho о \gamma \gamma u ́ \lambda о \varsigma ~ \pi \varepsilon \rho ı \varphi \alpha v \grave{\varsigma} \varsigma$ ．The manuscripts Pc and Pg both offer the marginal variant reading $\pi \varepsilon \rho \iota \varphi \varepsilon \rho \grave{\zeta} \varsigma$ for $\pi \varepsilon \rho \iota \varphi \alpha v \grave{\varsigma}$ ．The adjective $\pi \varepsilon \rho \iota \varphi \varepsilon \rho \eta ́ \varsigma ~ h a s ~ s e v e r a l ~ m e a n i n g s, ~ o n l y ~ o n e ~ o f ~ w h i c h ~ w o u l d ~ b e ~ p e r t i n e n t ~ h e r e ~$ （＇rounded＇or＇curved＇，LSJ s．v．I．2）．LSJ s．v．I．2．a－c give two instances of the use of $\pi \varepsilon \rho \iota \varphi \varepsilon \rho \eta \varphi_{\rho}$ in combination with $\sigma \tau \rho \frac{\gamma \gamma v ́ \lambda o s ~(H p . ~ V C ~}{11}$ and，in a meta－ phorical sense，D．H．Rh．10．13；for this combination，cf．also PI．Ep．III 342b8， ［Arist．］Mech．851b15，Corn．ND 56.9 Lang，Plu．Cur．517e，Gal．UP 3.216 and 658 Kühn，Hsch．$\delta 1855$ Latte），and one instance of the use of the term to mean ＇domed’（ $\pi \varepsilon \rho 1 \varphi \varepsilon \rho \varepsilon i \varsigma \varsigma \tau \tau \varepsilon \gamma \alpha 1$, Demetr．Eloc．13）．This reading is therefore either an intrusive gloss that has replaced $\pi \varepsilon \rho \iota \varphi \alpha v \grave{\varsigma}$ or a deliberate conjecture，for it is unlikely that Hero would have laid more emphasis on the shape of the shrine． What matters here is the conspicuous appearance（ $\pi \varepsilon \rho \iota \varphi \alpha v$ ńs）of the shrine（＇ri－ guardevole＇，Bal di 19＂；‘von allen Seiten sichtbar＇，Schmidt；cf．also Prou 140 and 142），situated as it is in the middle of the к $\alpha \tau \alpha \sigma \tau \rho \omega \mu \alpha$ ．

Couture 246 （＇aedicula．．．ad aspectum jucunda＇）overemphasises the aes－ thetic element here，but only at the cost of obscuring the sense．Murphy 13 ，on the other hand，translates＇freestanding＇，which erroneously implies that the shrine is not attached to the underlying surface．This interpretation seems to de－
pend on the translation given to $\pi \varepsilon \rho \iota \varphi \alpha v$ ńc by LSJ s.v. 1, who understand the expression $\pi \varepsilon \rho \iota \varphi \alpha \vee \hat{\eta} . . . \zeta \varrho \bar{\alpha}$ (Callix. ap. Ath. 199e $=$ FGrH 627 F 2, further compared to Callix. ap. Ath. 205c =FGrH 627 F 1) as indicating 'figures standing and unattached', in contrast to figures in relief ($\pi \rho o ́ \sigma \tau v \pi \alpha$). But in fact Callixeinus contrasts figures 'in high relief' with figures 'in low relief' (Olson 2007: 463).
 first has to do with what is meant by 'stretched surface' ($\varepsilon v \tau \varepsilon \tau \alpha \mu \varepsilon ́ v \eta v . .$. $\dot{\varepsilon} \pi เ \varphi \alpha ́ v \varepsilon 1 \alpha \nu)$. The second concerns the fact that the manuscripts have ε " $\rho \eta \tau \alpha 1$ in place of the conjectured $\varepsilon i p \eta \eta^{\sigma} \varepsilon \tau \alpha ı$ (R. Schöne). Bal di 43^{\vee} n. 17 was the first to realise that the transmitted words каӨáл $\varepsilon \rho$ ع'pn $\tau \alpha ⿺$ are out of context, noticing that Hero has so far never mentioned either the $\pi v \rho \gamma$ iov (which he translated as ‘cupola’ [19v]; see also Schmidt 1899a: 353, with ‘Kuppe') or its surface. After recording R. Schöne's conjecture, Schmidt in his app. crit. made reference to XIII. 3 [46.4-5], because, as he explained elsewhere (LI), Hero there tal ks about the roof of the shrine (see also Murphy 41 n .10). In truth, what Hero says in that passage is that ' $\overline{\kappa \lambda \mu}$ should be a knob (π טрйv) placed on top of the shrine', which certainly implies, but does not directly state, that the knob rests on the summit of the roof (for more on this, see note on on XIII.3 [46.4-6]). While not dismissing R. Schöne's conjecture as unlikely, Schmidt LI tentatively suggested that $\varepsilon \nmid \rho \eta \tau \alpha 1$ is a corruption of ε e $\theta 1 \sigma \tau \alpha 1$, a verb which he found at Spir. 250.2 (erroneously cited as 250.3). It is not clear, however, how $\varepsilon^{\prime} 1 \theta 1 \sigma \tau \alpha \iota$ was intended to improve the sense of the passage, all the more so since the expression $\dot{\varepsilon} v \tau \varepsilon \tau \alpha \mu \varepsilon ́ v \eta v . .$. ह̇ $\pi \iota \varphi \alpha \alpha^{\prime} \varepsilon ı \alpha \nu$ had not been properly understood. If we look closer at this expression, we find that Baldi 19^{v} was, as I will explain below, the only one to offer the correct interpretation of it ('superficie distesa'). Couture 246
 difficult to see how the surface of a conical turret can be said to be 'bent like a bow'. Taking a more serious approach, Schmidt LI showed his approval of Brinkmann's interpretation of the expression ('eine anstrebende Oberfläche', namely ' a surface that extends upwards'), an interpretation arrived at by comparing Hero's words with Marc. Diac. Vit. Porph. 75.15-16 α 人 $\alpha \tau \varepsilon \tau \alpha \mu \varepsilon ́ v o v ~ \varepsilon i ́, ~ v ̋ \psi o s ~$ (of a conical turret). In Schmidt's opinion, this interpretation would have the
advantage of allowing us to avoid assuming a lacuna in the text (more precisely, the lacuna which he suspected after I.2 [2.14] tótov: the reference made by Schmidt LI to a suspected lacuna occurring here in the text must be corrected),
 has just been said', following Schmidt LI) would be redundant and pointless. Schmidt 353 himself, though, must not have been entirely convinced by Brinkmann's comparison (indeed, the verb évicivo cannot bear the sense of 'stretching up'; cf. LSJ s.v.), as he mysteriously glossed his translation of ε होv $\tau \tau \alpha \mu \varepsilon ́ v \eta v$ ('überspannt') with the term 'überdacht' ('roofed'). The same caution has not been observed by Murphy 41 n. 40, who accepted what she erroneously believed to be a conjecture of Schmidt (α v $\alpha \tau \varepsilon \tau \alpha \mu \varepsilon ́ v \eta v$, translated as 'raised’ [13]), claiming that the word $\dot{\varepsilon} v \tau \varepsilon \tau \alpha \mu \varepsilon ́ v \eta \nu$ does not make any sense at all. The verb $\varepsilon \in \tau \varepsilon i v \omega$ is used elsewhere by Hero with reference either to the stretching of the string of a bow (Spir. 186.21) or to the stretching or stringing of the spring of a catapult (for references, cf. note on II. 6 [10.7-8]), but nonetheless it is in a different context - Hero's Definitions - that we find the closest parallel to its usage here. Hero, Deff. 9 augments Euclid's definition of a plane surface (EI. 1 Def. 7
 adding the words ỏ $\rho \theta \grave{\eta}$ ov̉ $\sigma \alpha \dot{\alpha} \pi \sigma \tau \varepsilon \tau \alpha \mu \varepsilon ́ v \eta$ (as noted by Heath 1956: 171), and then goes on to explain that, if a straight line joins two points on this surface, the surface adapts itself completely to the said straight line, that is to say, it is uniformly stretched to match the entire line (see Giardina 2003: 281). In this way, Hero explains the Euclidean definition in similar terms to those he uses (Deff. 4) to explain Euclid's definition of a straight line (El. 1 Def. 4, on which Euc. 1 Def. 7 is based), a line that lies evenly with respect to its points and which is,
 $\dot{\varepsilon} \pi^{\prime} \not{\alpha} \kappa \rho \circ v \tau \varepsilon \tau \alpha \mu \varepsilon ́ v \eta$ said of a plane surface, cf. Procl. in Euc. 117.7-8; see Giardina 2003: 272-3). In the light of these definitions, particularly the first, there is little doubt that Hero simply meant to describe the cupola as having a plane surface and that, in order to do so, he used the middle of the verb ε evteiv ω as a synonymfor $\dot{\alpha} \pi о \tau \varepsilon \tau \alpha \mu \varepsilon ́ v \eta v$ or $\tau \varepsilon \tau \alpha \mu \varepsilon ́ v \eta v$. Thus, the meaning of the term is exactly the opposite of 'bent' or 'raised', and has al so nothing to do with the function of the turret as the roof of the shrine. While we cannot determine whether Baldi in
some way understood Hero's terminology, we can conclude that he was right in retaining the original sense of $\dot{\varepsilon} v \tau \varepsilon \tau \alpha \mu \varepsilon ́ v \eta v$.

At this point, we can consider the words к $\alpha \theta \alpha \dot{\pi} \varepsilon \rho$ عíp $\eta \tau \alpha \iota$ more carefully. The perfect ε " $p \eta \tau \alpha l$ cannot be right, because, as has been said, no previous reference has been made to the cupola. Schmidt did not give an explanation for his conjecture $\varepsilon^{i} \theta 1 \sigma \tau \alpha l$, but reading к $\alpha \theta \alpha ́ \pi \varepsilon \rho$ عi' $\theta 1 \sigma \tau \alpha l$ ('as is customary') would presuppose common knowledge of what 'stretched surface' refers to. At Spir. 250.2-3, the passage cited by Schmidt in support of his conjecture, Hero begins his description of the construction of a cupping glass (σ кvo α) by saying that the
 is invited to draw on general rather than specialised knowledge Even without knowing the technical application of the term (LSJ s.v. бıкv́o II; BliquezRodgers 1998: 238 with nn. 11 and 13), any reader would have been able to imagine the shape of an instrument bearing the same name as a fruit ('[bottle] gourd'). This is to say that Schmidt's conjecture does not seem to me well supported. The alternative envisaged by Schmidt in his app. crit. to 338.15 consists of assuming a lacuna after 1.2 [2.14] τ ó π ov. This possibility largely depends on his (mis)understanding of the previous lines as a precise reference to Hero's own mobile automaton rather than as a broad reference to various types of mobile automata (see further note on 1.2 [2.9-10]). It is extremely unlikely, therefore, that a lacuna occurred there, even more so because it would unnecessarily interrupt the flow of the narrative. Following R. Schöne, I deem it more likely that the future $\varepsilon i \rho \eta$ ' $\sigma \varepsilon \tau \alpha \iota$ corrupted into ε ́p $\tau \tau \alpha$. This corruption is easy to explain palaeographically both in absolute and relative terms (when compared to $\left.\varepsilon^{i} \theta 1 \sigma \tau \alpha 1\right)$. The difficulty remains that Hero makes no further mention of the cupola's surface He was probably planning to return to the subject, but forgot to do so.
 $\dot{\varepsilon} \kappa \pi \varepsilon \tau \alpha \dot{\alpha} v v \mu_{\mathrm{I}}$ with the accusative of respect is unparalleled in Greek literature A cultivated reader of Hero's time would have been reminded of the Meleagrean image of Eros spreading his wings: AP 5.179.10 = HE 4037 દ̇клє́t $\alpha \sigma o v$ $\tau \alpha \chi ı \alpha ̀ \varsigma . . . \pi \tau \varepsilon ́ \rho v \gamma \alpha c$. As noted by Floridi (2007: 318), this imagery seems to have
been picked up and adapted by Strato of Sardis in AP 12.221.2 $\tau \alpha \mathfrak{c} \varsigma \delta 1 \varphi u \varepsilon i ̂ \varsigma$, غ̇клєто́баৎ $\pi \tau \varepsilon ́ \rho \cup \gamma \alpha \varsigma$ (said of an eagle).
III. 4 [16.18-20] $\xi v v^{\sigma} \mu \alpha \tau \alpha . .$. cîvaı. I accept Schmidt's suggested deletion of $\tau \hat{\omega} v$ $\sigma \alpha v^{\prime} \delta \omega v$. In his app. crit. Schmidt rightly pointed to XII. 4 [44.7] ($\tau \alpha ̀ ~ \tau \varepsilon \kappa \tau о v ı \kappa \grave{\alpha}$ $\xi v ́ \sigma \mu \alpha \tau \alpha)$ and XXVIII. 5 [102.17-18] ($\xi v ́ \sigma \mu \alpha \tau \alpha \tau \varepsilon \kappa \tau о v ı \kappa \grave{\alpha} \xi \eta \rho o ́ \tau \alpha \tau \alpha)$. Neither the expression $\xi v ́ \sigma \mu \alpha(\tau \alpha) \tau \hat{\omega} v \sigma \alpha v i \delta \omega v$ nor the variant $\xi v ́ \sigma \mu \alpha(\tau \alpha) \tau \hat{v} \sigma \alpha v i \delta i ́ \omega v$, for instance, is found in any ancient source. When we find similar expressions elsewhere ($\xi v ́ \sigma \mu \alpha \tau \alpha$ $\xi v ́ \lambda \omega v$ or $\xi v ́ \sigma \mu \alpha \tau \alpha$ $\xi v i \lambda \omega v$ $\xi \eta \rho \alpha ́: ~ A p o l l o d . ~ P o l i o r c . ~ 145.13 ~$ [where <n $\rho \alpha \dot{>}$ > is doubtfully suggested by Whitehead 2010: 88], Hero Byz. 217.1; $\xi v ́ \sigma \mu \alpha \tau \alpha ~ \tau \omega ิ v ~ \xi u ́ \lambda \omega v ~ \kappa \alpha i ̀ ~ \kappa \alpha \lambda \alpha ́ \mu \omega v ~ v e ~ s i m: ~ S c h o l . ~ a n o n . ~ r e c . ~ A r . ~ N u b . ~$ 130c beta, Schol. rec. Ar. Nub. 130a, Schol. Tzetz. Ar. Nub. 129a), the term $\xi v \sigma^{\prime} \mu \alpha$ is never qualified by the adjective $\tau \varepsilon \kappa \tau$ тоvıóc. This speaks in favour of the assumption that $\tau \hat{\omega} v \sigma \alpha v^{\prime} \delta \omega v$ is a later insertion, intended to explain the words $\xi v ́ \sigma \mu \alpha \tau \alpha ~ \tau \varepsilon \kappa \tau о v i \kappa \alpha ́ . ~ O n ~ t w o ~ o t h e r ~ o c c a s i o n s, ~ X X V I I I . ~ 5 ~[102.19-20] ~ a n d ~$ [102.20], the term ξ v́ $\mu \mu \alpha$ appears unqual ified, but this seems to be due to the fact that these occurrences are preceded by XXVIII.5 [102.17-18].

On the efficacy of woodwork shavings over other (unspecified) combustibles, cf. XII.4[44.7].
 spatial proximity: cf. Lyr. Alex. Adesp. 37.13 = Powell, Coll. Alex. $199 \pi \alpha \hat{i} \delta \alpha$ $\kappa \alpha \tau \alpha ̀ ~ \kappa \rho \eta ́ v \eta v$ (cited by LSJ s.v. B.II.1). There is no need, therefore, to add <́кккабтov>after кíova (R. Schöne). Nothing in the text warrants Murphy's interpretation that the Bacchantes are 'in line with' (13) each colum.
 expressed his amazement at the sober decency of Hero's language here, but the verb $\delta 1 \alpha \sigma \kappa \varepsilon v \alpha ́ \zeta \omega$, in Heronian usage, has generally more to do with function than with appearance. In addition to I. 3 [2.19-20] and XXII. 1 [70.8-9], compare Spir. 86.5, 118.6, 116.3-4, 246.13-14, 304.2, where pneumatic components are cast into a particular form; for other, more aesthetically oriented expressions, cf. Spir. 126.2 and 280.5. As indirectly acknowledged by previous translators (see, in particular, Schmidt 353 and Murphy 13, both referring to the Bacchantes'
posture), a veiled reference to the demeanour of the Bacchantes as known from mythological accounts would have been out of context.
IV. 1 [18.1-2] Tov́ $\omega \omega v \delta \varepsilon \varepsilon_{. . . ~}^{\text {<in }} \mu \hat{\omega} v>$. Schmidt is right in suggesting, however hesitantly, that the text should be supplemented with <in $\hat{\omega} v>$. It seems apt to compare, as does Schmidt in his app. crit, the present passage with XIX. 3 [62.7-8] $\dot{\alpha} \pi о \sigma \tau \alpha ́ v \tau \omega v \dot{\eta} \mu \omega ิ v . \dot{\alpha} \pi о \sigma \tau \alpha ́ v \tau \omega v$ can, indeed, be regarded as qualifying an unexpressed $\dot{\eta} \mu \hat{\omega} v$, but the subject cannot be easily supplied from the context (see generally KG 2.81). Note the accumulation of genitive absolutes, each with a different subject. Examples of genitive absolute with unexpressed subject are frequent in Book Two (π íva૬: XXI. 1 [68.11-12], XXII. 5 [72.14-15], XXII. 6 [72.18-19] and [74.3], XXV. 1 [84.12-13] [perhaps to be supplemented]; θ v́paı: XXII. 4 [72.7]). Cf. also XIX. 4 [62.13].
 mitted by GM) to $\dot{v} \pi \alpha ́ \xi \varepsilon$, a reading conjectured by Schmidt. A's reading was recorded by Schmidt in his app. crit. as $\tilde{\varepsilon} \pi \alpha \dot{\prime} \xi \varepsilon$, but the Teubner editor failed to
 word. When making the correction, the scribe did not limit himself to changing the smooth breathing into the rough, but he conjoined the first two letters in one stroke, starting at the top of ε rather than at its bottom. Since normally initial epsilons in A are not conjoined with the letter that follows, this stroke seems to me to have been intended to correct ε to v. Scribes copying from this manuscript could be easily deceived into writing $\dot{\varepsilon} \pi \alpha ́ \xi \varepsilon ı$ as in \mathbf{T}.
 line by the second hand of \mathbf{M} as a correction of $\varepsilon \kappa \pi ı \tau v \sigma \theta n ́ \sigma \varepsilon \tau \alpha ı, ~ t h e ~ l a t t e r ~ a l s o ~$ transmitted by $\mathbf{A}, \mathbf{G}^{\mathbf{p c}}$ and \mathbf{T}. Three other manuscripts ($\mathbf{A a}, \mathbf{B c}, \mathbf{O}$) have $\dot{\varepsilon} \kappa \pi \tau v \sigma \theta$ ท́б\&тג1. A similar kind of variation is found at IV. 3 [18.17]
 $\dot{\alpha} v \alpha \pi \nu \tau \iota \sigma \theta \hat{\eta} v \alpha ı / \alpha<v \alpha \pi \iota \tau v \sigma \theta \hat{\eta} v \alpha ı$ (M/AGT). The Teubner editor preferred to print the reading with better manuscript support in each of these places, and indeed we find separate entries in LSJ for the forms $\alpha v \alpha \pi ı \tau ט ́ \zeta \omega / \alpha v \alpha \pi v \tau i \zeta \omega$,

 assign different meanings to the verbs $\dot{\alpha} v \alpha \pi ı \tau$ '́ک $\omega / \alpha \mathfrak{v} \alpha \pi v \tau i \zeta \omega$ ('cause to spirt out/' spit up', 'spout up') on the one hand, and to the verbs غ̇клıтúఢ $\omega / \grave{\kappa} \kappa \pi \nu \tau i \zeta \omega$ ('eject'/'spit out') on the other. What is interesting is that the verbs α va $\alpha ו \tau v$ ' $\zeta \omega$ and $\varepsilon \kappa \pi \iota \tau u ́ \zeta \omega$ are not attested outside the Heronian corpus. What is more, they are used in exactly the same way as $\dot{\alpha} v \alpha \pi \nu \tau i \zeta \omega$ and $\varepsilon \kappa \pi \pi v \tau i \zeta \omega$, namely, to describe a spurt of liquid (usually water). غ̇клıтט́弓ఱ occurs only once more at Spir. 134.19, whereas $\dot{\alpha} v \alpha \pi ı \tau \cup ́ \zeta \omega$ appears in no other place than XIII. 1 [44.15]. At all other times, we find forms of α vaлutí ω (Spir. 134.1 [J. G. Schneider :
 غ̇клиті亡ळ (Spir. 242.10, 242.11, 242.20, 246.1). The compound verbs $\alpha v \alpha \pi v \tau i \zeta \omega ~$ and $\dot{\varepsilon} \kappa \pi \nu \tau i \zeta \omega$ are formed, respectively, by the prepositions $\alpha v \alpha$ and $\dot{\varepsilon} \kappa$ and the verb $\pi v \tau i \zeta \omega$. One fragment attributed by Theodoridis (1976: 351) to the firstcentury BCE grammarian Philoxenus of Alexandria gives us information on the verb $\pi v \tau i \zeta \omega$ (fr. *587 = Orion, Etymologicum s.v. $\pi v \tau i ́ \zeta \varepsilon ı ~[134.20-1 ~ S t u r z] ~+~$ Et. Gen. s.v. $\pi v \tau i ́ \zeta \omega$ [= EM 697.57]; cf. Ps.-Zonar. Lex. s.V. $\pi v \tau i ́ \zeta \varepsilon ı v): ~ \pi v \tau i \zeta \varepsilon ı v \cdot ~$
 goes on to compare the derivation of $\pi v \tau i \zeta \omega$ from $\pi \tau v \in \omega$ with that of $\pi v \xi$ from $\pi \tau v ́ \sigma \sigma \omega$ ($\pi \tau v \sigma \sigma \omega \rightarrow \pi \tau v \xi \omega \rightarrow \pi \tau v \prime \xi \rightarrow \pi \dot{\prime} \xi$), but this portion is taken from the Etymologicum Genuinum, more precisely from the text of the tenth/eleventhcentury CE manuscripts Vaticanus gr. 1818 (A) and Laurentianus S. Marci 304 (B). Similarly, the lemma $\pi v \tau i \zeta \varepsilon ו v ~ a n d ~ t h e ~ w o r d ~ \pi v \tau i \zeta \omega ~ a r e ~ t r a n s m i t t e d ~ b y ~ e i t h e r ~$ or both of AB ($\pi v \tau i ́ \zeta \varepsilon ı v: \pi v \tau i \zeta \omega A$), while Orion's text (Par. gr. 2653, sixteenth century CE) gives, in their stead, $\pi \imath \tau$ и́ $\zeta \varepsilon i v ~ a n d ~ \pi ı \tau ט ́ \zeta \omega$. These forms do not seem right in the context of the etymological explanation, because the term $\pi \tau v \tau i \zeta \omega$ appears in Orion, too. One may suggest emending $\pi \tau v \tau i \zeta \omega$ to $\pi \tau \iota \tau u ́ \zeta \omega$, but in that case the origin of the term would not be clear. Nor does it seem necessary to think, with Sturz (1820: 134 n .50), that the whole of Orion's entry should be replaced by an etymological gloss on the verb $\pi \imath \tau v \lambda i ́ \zeta \varepsilon i v$ ('practise regular swinging of the arms', according to LSJ s.v. 1), for this has a quite different meaning from $\pi i \tau v ́ \zeta \omega / \pi v \tau i \zeta \omega$. All of this suggests that the forms
 occurring once at Spir. 134.14) originated as scribal errors owing to iotacism no Iater than the thirteenth century CE, when the scribe of A copied the forms
$\dot{\varepsilon} \kappa \pi ı \tau v \sigma \theta \mathfrak{\eta} \sigma \varepsilon \tau \alpha ı, \alpha \dot{\alpha} \alpha \pi ı \tau v \sigma \mu o ́ s$ and $\alpha \dot{\alpha} \alpha \pi \iota \tau v \sigma \theta \hat{\eta} v \alpha ı$. The same mistake appears to have taken place in the transmission of the text of Philoxenus of Alexandria. I have, therefore, adopted the readings which are found in \mathbf{M} ($\alpha v \alpha \pi v \tau i \sigma \mu o ́ s$ is a hapax legomenon, too), thinking that each pair of LSJ entries should be merged into a single entry: $\alpha v \alpha \pi v \tau i ́ \zeta \omega, \alpha \dot{\alpha} \alpha \pi v \tau \iota \sigma \mu o ́ \varsigma$ and $\dot{\varepsilon} \kappa \pi v \tau i ́ \zeta \omega$. Likewise, Spir.

IV. 2 [18.9-10] גi $\delta \varepsilon ̀ ~ \pi \varepsilon \rho ı к v ́ к \lambda \omega . . . ~ v a i ̈ ́ к к о v . ~ I ~ f o l l o w ~ S c h m i d t ~ i n ~ a d o p t i n g ~ D i e l s ' ~$ correction $\pi \varepsilon \rho ю к ์ к \lambda \omega$ (against the manuscript reading $\pi \varepsilon \rho i ̀ ~ к и ́ к \lambda \omega$), since the adverb is generally written as one word in non-classical authors (cf. LSJ s.v. $\pi \varepsilon р i ́ к о к \lambda о \varsigma)$. Bal di 20 and Schmidt 355 correctly bring out the attributive position of the adverb. Couture 247 ('in gyrum circuibunt') and Murphy 13 ('will dance in a circle'), on the other hand, treat $\pi \varepsilon \rho \iota \kappa v ́ \kappa \lambda \omega$ as an adverb modifying the main verb (their translations omit, respectively, ұopevóovodı and $\pi \varepsilon \rho \iota \varepsilon \lambda \varepsilon v ́ \sigma o v \tau \alpha \iota)$.
 variously emended and/or supplemented, mainly because of the strange use of the verb ícin μ t to refer to the noise of kettedrums and cymbals coming to an end. R. Schöne wondered whether the word $\chi \omega v$ should be replaced by the word $\mathfrak{\eta} \chi \hat{\omega} v$, but the term commonly used by Hero to denote any kind of noise is $\hat{\eta} \chi \circ \varsigma$, not $\mathfrak{\eta} \chi \eta$ (never found in Hero): see, for instance, IV. 2 [18.10], XIV. 2 [52.2], XX. 3 [66.4], XX. 4 [66.14], [66.15] and [66.18]; for further references, see Schmidt, Supplementum 160 s.v. 方 $\chi o c$. A lacuna was suspected by H . Schöne and Brinkmann, who proposed similar conjectures: $\sigma \tau \alpha \theta \varepsilon ́ v \tau \omega v<\tau \omega ิ$ $\zeta \oplus \delta i ́ \omega v$ к $\alpha i ̀ \tau \alpha v \sigma \theta \varepsilon ́ v \tau \omega v>\tau \hat{v}$ ท้ $\chi \omega v$ (H. Schöne) and $\sigma \tau \alpha \theta<\varepsilon \iota \sigma \hat{v} \tau \hat{v} \beta \alpha \kappa \chi \varrho ิ v$ $\kappa \alpha \grave{~} \pi \alpha v \theta>$ '́v $\tau \omega v \tau \hat{v} v$ ク̈ $\chi \omega v$ (Brinkmann). H. Schöne's solution has the merit of being less invasive than Brinkmann's, even though the Bacchantes are never explicitly called $\zeta \oplus \varphi \delta \Delta \alpha$ in the treatise. The verb $\pi \alpha v(\omega$, indeed, occurs twice in Hero in connection with sounds (Spir. 198.4, 200.18) and other six times to describe the interruption of a liquid flow (Spir. 42.6, 82.3 [libation], 182.11-12, $232.5,258.14,268.17$), al beit never used in the aorist passive form In the wake of Brinkmann's proposal, Schmidt tentatively suggested emending $\sigma \tau \alpha \theta \varepsilon ́ v \tau \omega v$

$\alpha v \jmath \tau \omega ิ v$ [i.e. $\tau \hat{\omega} v \beta \alpha \chi \hat{\omega} v$]. There are, however, two objections to this and other emendations. First, $\mu \varepsilon \tau \alpha ̀ \tau \alpha \hat{\tau} \tau \alpha$ al ready refers to the movements that have taken place up to this point, including the dance of the Bacchantes. Second, throughout IV. 3 [18.16-20] there is stylistic variatio: note, especially, the use of the nouns
 [18.6-7]), the inversion of the syntactic roles of the verbs $\pi \varepsilon \rho 1 \varepsilon \rho \chi \circ \mu \alpha 1$ and रорєv́ш (cf. IV. 2 [18.9-10]), and the prepositional phrase $\mu \varepsilon \tau \alpha ̀ ~ \psi o ́ \varphi o v ~ \tau \nu \mu \pi \alpha ́ v \omega v ~$ к α ко $\kappa \beta \alpha \dot{\lambda} \lambda \omega v$ replacing the main clause of IV. 2 [18.10-11]. There is therefore nothing to suggest that the text should contain the same (type of) reference as that of IV. 3 [18.20], and one may even wonder why scholars did not feel the urge to supplement the latter passage on the basis of the words $\sigma \tau \alpha \theta \varepsilon ́ v \tau \omega v \tau \omega ิ$ ท้ $\chi \omega v$. Perhaps we should content ourselves with emending $\sigma \tau \alpha \theta \varepsilon ́ v \tau \omega v$ to $\pi \alpha v \sigma \theta \varepsilon ́ v \tau \omega v$. We may suppose that the first syllable of $\pi \alpha v \sigma \theta \varepsilon ́ v \tau \omega v$ had been omitted and that the resulting reading $\sigma \theta \varepsilon ́ v \tau \omega v$ was later corrected to $\sigma \tau \alpha \theta \varepsilon ́ v \tau \omega v$ through addition of $\tau \alpha$. As much as I amtempted to print $\pi \alpha v \sigma \theta \varepsilon ́ v \tau \omega v$, I prefer to kep open the possibility that Hero used the passive of íбin μ in an unusual way.
 altar's position clearly depends on the fact that Dionysus has rotated. Neither of the altars moves around the figure of the god, contrary to what Murphy 14 be lieves: 'the altar that started behind Dionysus arrives in front of him'. M replaces
 understanding. Cf. also IV.1 [18.4] and XII.1-4 [42.11-4.14].

Schmidt's proposed correction of the manuscript reading $\tau \hat{\varrho} \delta \iota o v v i \sigma \omega$ is necessary, since $\varepsilon \mu \pi \rho \rho \circ \sigma \theta \varepsilon v$ governs the genitive only (LSJ s.v. II).
 रopev́бovøı (already conjectured by Schmidt) against all the other manuscripts, which have χ opsúovol. The future tense agrees better with the context than the present (cf. the consistent use of the future throughout IV.1-4 [18.3-20.1]). On Schmidt's suggested χ opev́ซovor at XVI.1 [54.9], see note on XVI.1 [54.8-9].
 $\sigma \tau \alpha \theta \varepsilon \iota \sigma \hat{v} \alpha \hat{\tau} \hat{\omega} v$ ('Wenn sie dann zum zweiten Male stehen bleiben', Schmidt
355) rather than to the main verb $\alpha v \alpha \chi \omega \rho \eta$ 'бєı ('e di nuovo... ritomerassi la machina', Bal di 20°). The automaton has not come back before, whereas the Bacchantes have already danced once (IV.2 [18.9-10]). The adverb has been omitted in Couture 247 ('Quibus omnibus perfectis... machina sponte reverteretur', my emphasis) and Murphy 14 ('when they stop the automaton will return').
 166 apparently corrected). The verb $\alpha v \alpha \chi \omega$ píc ω has the causative meaning of 'make to go back' (LSJ s.v.), whereas here we need the corresponding non-causative meaning of $\alpha, v \alpha \chi \omega \rho \varepsilon ́ \omega ~(L S J ~ s . v . ~ I .2) . ~ R e a d i n g ~ \alpha ̉ v \alpha \chi \omega \rho i ́ \sigma \varepsilon ı ~ w o u l d ~ p r e s u m-~$ ably mean taking tò α vitó $\mu \alpha \tau$ ov as the direct object rather than the subject and assuming that the subject is missing. But the whole point is that the automaton moves back on its own. The reading $\alpha, \alpha \chi \omega \rho i ́ \sigma \varepsilon ı ~ c a n ~ b e ~ e a s i l y ~ e x p l a i n e d ~ a s ~ h a v-~$ ing been caused by iotacism
IV. 4 [20.1] $\mathfrak{\eta} \mathfrak{\varepsilon} \pi \boldsymbol{x}^{\prime} \delta \varepsilon ı \xi ı$. The term, as Cambiano (1994: 614) rightly pointed out, refers to the performance ('esibizione') of the automaton. For the same sense, cf. XXI.1 [68.6] and Spir. 174.8 (automatic fountain). Commenting on Hero's use of the term, Tybjerg (2003: 455) has drawn attention to its rhetorical meaning ('display speech'; cf. LSJ s.v. 3). Note, however, that during the Hellenistic and Imperial periods the word is used to refer not only to the exhibition of oratorical skills, but also to any kind of artistic performance (Pepe 2013: 272-3; cf. Van Liefferinge 2000: 150-1 with n . 10 [Delphic decrees]).

On the theatrical presentation ($\delta \dot{\alpha} \theta \varepsilon \sigma \iota \varsigma$) as encompassing the $\dot{\varepsilon} \pi i \delta \delta \varepsilon \varepsilon \xi \varsigma$, see note on I. 3 [2.19].
 double purpose: to emphasise the sense of wonder inspired in the viewer by creating the illusion of self-motion, and to assert the identity of the automaton as a wholly mechanically operated device. Roby (2016: 146) has recently compared Hero's words $\mu \varepsilon \iota \zeta$ óv $\omega v . .$. in η ıovprov̂vioc with Ph. Bel. 78.11-12, where great importance is attached to the appearance of Ctesibius' catapult as a means of achieving mechanical credibility (se Roby 2016: 144-5 with n. 118, drawing on

 low specific measurements (and hence, more generally, to avoid too big dimensions in both types of automata) can, therefore, be read as setting out one of the preliminary conditions for the proper functioning of the device (contra, Cambiano 2011: 32; but see Cambiano 1994: 623). Needless to say, the dimensions given by Hero at III. 1 (on which, cf. notes on III.1 [14.17-18], [14.20-16.1] and [16.3-4]) could easily forestall suspicion of a human operator inside the automaton (Murphy 41 n .11).

Baldi 20°, partly followed by Couture 247, took the words $\delta \varepsilon i ̂$ $\varphi v \lambda \alpha ́ \sigma \sigma \varepsilon \sigma \theta \alpha 1 . .$. vi π óvouαv to mean ' one must follow the mentioned dimensions to avoid the suspicion that might arise' ('bisogna serbare le dette grandezze per fuggir' il sospetto, ch'indi potrebbe nascere'), but the verb φ v λ ó $\sigma \sigma \omega$ is here in the middlle voice (cf. LSJ s.v. C.II. 1 for its use with the accusative) and cannot mean 'preserve', 'maintain' (a metaphorical meaning attested in the active: LSJ s.v. B.3; cf. B.6). Moreover, the term $\mu \hat{\varepsilon} \gamma \varepsilon \theta$ oc does not seem to refer to size in general (LSJ s.v. I.1), but to great size (' grossen Dimensionen', Schmidt 355), as implied by the concurrent use of $\mu \varepsilon ́ \tau \rho o v$ a few lines earlier and by $\mu \varepsilon i \zeta o ́ v \omega v . .$. ঠпиıоируои̂vто६.
IV.4 [20.2] $\gamma \dot{\alpha} \rho \boldsymbol{\gamma \varepsilon v \eta} \theta \dot{\varepsilon} v \tau \omega v$. The reading of \mathbf{G}, \mathbf{M} and \mathbf{T} is to be preferred to that of $\mathbf{A}(\gamma \alpha ̀ \rho \gamma \varepsilon \gamma \varepsilon v \eta \theta \varepsilon \varepsilon v \tau \omega v)$, since the combination $\gamma \alpha \dot{\alpha} \rho \varepsilon$ is entirely, or almost entirely, avoided (Denniston, GP liii with n. 3). After $\gamma \varepsilon$ two letters (perhaps $v v$) have been deleted. The scribe might have begun writing $\gamma \varepsilon v \eta \theta \varepsilon ́ v \tau \omega v$, but made a mistake and repeated the $v(\gamma \varepsilon v v-)$. He would thus have corrected his error and written the word $\gamma \varepsilon v \eta \theta \varepsilon ́ v \tau \omega v$ over again, albeit without deleting the remaining letters $\gamma \varepsilon$.

V-VI [20.8-26.5] Forms of motion. Straight-line motion
Hero introduces the main types of motion: straight-line, circular and rectangular (V.1-2). While the mechanism for straight-line motion is clearly presented as an improvement on the method (ódó, V .1) of the author's predecessors, circular motion (VII-VIII) and rectangular motion (IX-X) represent brand-new contribur tions to the field. Hero then proceeds to detail the configuration for forward motion (V.3-5), while also providing general information about the drive mechan-
ism of the automaton. There follows a description of backward motion (VI.1-2), including a mechanism for producing a pause between outbound and inbound journeys (VI.2). After suggesting a configuration for making the automaton travel forth and back many times (VI.3), Hero closes the section with a reference to a side view of the case(VI.4).
V. 1 [20.9-10] кגi... . ė π кívסvvov. The каí is concessive and is used to emphasise the dangerousness and impracticality of the ancient system (Murphy 15 , unlike other translators, omits it).
 s.V. каколаӨ'я II cite only this instance of the adjective in the sense of 'trouble some', 'difficult'.
 tical testing ($\pi \varepsilon i ̂ \rho \alpha)$, cf. note on XI. 6 [38.7-8].
 straight-line motion, Hero sets himself apart from and above his predecessors.
 adverb $\xi \dot{\varepsilon} v \omega \varsigma, ~ X X .1$ [64.4-5]), emphasises the success of the method Hero is going to describe, in sharp contrast ($\delta \varepsilon ́$) with the terms какол $\alpha \theta \hat{\eta} \tau \varepsilon$ к $\alpha \grave{\imath}$ ह̇ $\pi \iota к i v \delta u v o v$. Perhaps the adverb $\dot{\alpha} \kappa ı v \delta$ v́v $\omega \varsigma$, with its privative al pha, implies that the locomotion of the automaton still involves some element of risk. McCourt (2012: 188) is clearly wrong to say that all other mechanisms of movement have no 'guarantee' attached. In addition to the passage cited above, cf. Hero's remarks on rectangular (X.4[34.23-4]) and snake-like (XI.11 [42.6-8]) motions.
 in Hero, unlike étı $\delta \varepsilon ̀$ кaí, which occurs a total of 11 times. On these grounds, I have corrected the $\tau \varepsilon$ of the manuscripts to $\delta \varepsilon$: cf. esp. XI. 1 [36.3] and XX. 3 [66.3] (both at the beginning of the sentence) and, after $\tau \varepsilon$-каí coordination (as here), Mech. Frag. 2.1 = Papp. 1116.9 ($\tau \varepsilon . .$. каí), Metr. 132.7-8 ($\tau \varepsilon ~ к \alpha i ́ . . . ~ к \alpha i ́) ~(~) ~$ and Bel. 74.1-3 ($\tau \varepsilon$ к кí... к $\alpha i ́ . . . ~ к \alpha i ́ . . . ~ к \alpha i ́) . ~ A s ~ f a r ~ a s ~ t h e ~ s y n t a x ~ i s ~ c o n c e r n e d, ~ I ~$ have preferred to follow Schmidt in supplementing <<б兀ı> after $\dot{\omega}$.

Hildebrandt's deletion of $\dot{\omega} \varsigma$, on the other hand, does not seem quite right to me, because it presupposes a long-distance dependency between the $\begin{gathered}\circ \\ \sigma \\ \tau\end{gathered}$ at the beginning of the previous subordinate clause and the infinitive φ ह́p $\varepsilon \sigma \theta \alpha \mathrm{a}$ (occurring twice, once here and once at the end of the sentence). It is helpful to compare the
 verb is repeated from the previous sentence.

In his app. crit. Schmidt suggested, somewhat hesitantly, that the article
 be deleted. In support of his conjecture he cited V. 3 [20.18-19] (ε б $\sigma \tau \omega \gamma \alpha{ }_{\alpha} \rho \tau$ $\pi \lambda ı v \theta^{\prime}$ ov, etc.), but there the use of the indefinite pronoun is best explained by the geometric style of the description (see further note ad loc.). The proposed deletion of $\hat{\eta}$ tò $\zeta(\hat{\phi} \delta \iota v$ is more tempting. The main problemlies in the fact that no figure is said to move in a rectangular pattern (the verb $\pi \varepsilon \rho 1 \alpha ́ \gamma \omega$ at XXIX. 2 [104.24] suggests that the figure of Athena, just like the Bacchantes, could be made to move in a circular fashion), but perhaps we have to assume that the altemative was not intended to apply to the following clause. To further complicate matters, Schmidt 357 with n. 1, followed by Murphy 15, translated 'ein Kasten oder eine Figur' (my emphasis). The presence of the second definite article does not seem to be too problematic, if we concede that Hero was following his own train of thought.
V. 2 [20.16-17] ov̉ $\mu \grave{v} v \dot{\alpha} \lambda \lambda \alpha \alpha_{\text {... }} \varphi \varepsilon ́ \rho \varepsilon \sigma \theta \alpha 1$. Or, more simply put, along a given rectangle Curiously, Couture 247 took these words to mean that motion can be effected along an octagonal path ('per latera parallelogrammi octogoni'). This is even more surprising when we realise that at XI.1 [36.2] he understood the adjective ỏpӨorǿvıos correctly. For Hero's definition of rectangular parallelograms (based on Euc. 2 Def. 1, as implied by Giardina 2003: 199 n. 25), cf. Deff. 56

V. 3 [20.18-19] हैб $\sigma \omega$ $\gamma \alpha ́ \rho . . . \overline{\alpha \beta \gamma \delta . ~ H e r o ~ b e g i n s ~ h i s ~ d e s c r i p t i o n ~ o f ~ t h e ~ c o n f i g u r-~}$ ation for forward motion in standard geometrical style. All manuscripts, except La have the indefinite pronoun τ. Manuscript La has iò in its stead. One might be tempted to accept iò, since the case ($\pi \lambda \imath v \theta^{\prime}$ iov) is by now well-known to the
reader. This, however, is the first of a series of similar geometric-like descriptions in which the definite article is generally omitted, as required by the formuIaic nature of the geometrical Ianguage (see Schironi 2010: 349); but cf. XI. 2
 case in the treatise where the indefinite pronoun accompanies the first mention of either a geometrical or geometrised object; but similar examples are frequent in the Pneumatica (for instance, हैб $\tau \omega$ $\tau \iota \dot{\alpha} \gamma \gamma \varepsilon \hat{1} o v: ~ e g . ~ S p i r . ~ 44.13, ~ 112.16, ~$

 given to the words $\tau \alpha ̀ \varsigma \pi \varepsilon \rho ı \varphi \varepsilon \rho \varepsilon i ́ \alpha \varsigma ~ \varepsilon i \rho \gamma \alpha \sigma \mu \varepsilon ́ v o t ~ \varphi \alpha к о \varepsilon ı \delta \varepsilon i ̂ c . ~ B a l ~ d i ~ 43-44\ulcorner ~ n . ~ 19, ~$ who was the first to acknowledge the proper meaning of the term $\varphi \alpha \kappa о \varepsilon เ \delta \dot{n} \varsigma$ ('lentil-shaped'; cf. Schmidt 357), brought to the reader's attention the distinction made by Pappus (more correctly, by Hero ap. Papp. 1126.21-1128.2 [= Mech. Frag. 2.5]) between two types of screw-thread: square ($\tau \varepsilon \tau \rho \alpha ́ \gamma \omega v o \varsigma)$ and lentil-shaped ($ф \kappa о \varepsilon ı \delta и ́ s ~ o r ~ \varphi \alpha к \omega \tau o ́ s, ~ t h e ~ l a t t e r ~ b e i n g ~ a ~ m o r e ~ t e c h n i c a l ~ d e s i g n a-~$ tion, according to Drachmann 1963a: 59). If wefollow Pappus' account (cf. also Mech. 2.5, with Drachmann 1963a: 58-9), the square screw-thread is the one with perpendicular indentations, while the lentil-shaped screw-thread is the one with oblique indentations that converge to a single line. This equates to saying that the lentil-shaped screw-thread is much sharper than the square screw-thread (see Schmidt 1900: 287 with Figs. 71a-b). Thus, based on these features, Bal di concluded that what Hero had in mind were toothed wheeds, and this because, as Hero himself pointed out (?), wheels of this kind had a better grip on the ground. Slightly more than a century later, Couture 247 ('orbes acute dentati') accepted this interpretation without any hesitation. In a more original way, Prou 160 thought of the physical properties of lentils and so provided the rim of wheds $\bar{\eta} \bar{\theta}$ and $\overline{\kappa \lambda}$ with a 'surface rugueuse' ('rough surface'), despite what is said at II. 3 [8.3-5]. Hero's primary goal would, once again, be a firm grip on the ground. A nother, more eclectic approach has been taken by recent translators. Murphy 15 came up with 'wheels. . . with bevelled edges' (my emphasis), whereas McCourt (2012: 188) assigned a 'convex... shape' to the entire wheels. Given all this confusion over what the expression $\tau \grave{\varrho} \varsigma \pi \varepsilon \rho \iota \varphi \varepsilon \rho \varepsilon i ́ \alpha \varsigma ~ \varepsilon i p \gamma \alpha \sigma \mu \varepsilon ́ v o l ~ \varphi \alpha к о \varepsilon ı \delta \varepsilon i ́ \varsigma ~$ refers to, I would like to pay more attention to the distinction between the two
types of screw-threads. In order to obtain a clearer picture of what a lentilshaped screw-thread should have once looked like, we need to turn to another source. After briefly dismissing the square screw-thread, Oribasius (Coll. Med. 49.4.56) explains that lentil-shaped ($\varphi \alpha \kappa \omega \tau o i ́) ~ s c r e w s ~(t h a t ~ i s, ~ s c r e w s ~ w i t h ~ a ~ l e n-~$ til-shaped thread) 'are those that have the roots ($\tau \alpha \grave{\varsigma} \mu \varepsilon ̀ v ~ к о i ́ \lambda \alpha \varsigma ~ \varepsilon ̌ \lambda ı л \alpha \varsigma) ~ n a r r o w ~$ at the bottom but wide at the top, and the crests ($\tau \alpha \dot{\varsigma} \delta^{\prime} \dot{v} \pi \varepsilon \rho \varepsilon \chi о v ́ \sigma \alpha \varsigma$) broad at their base but tapered at the top, resembling a lentil cut in a half ($\dot{\eta} \mu \tau$ ó $\mu \varphi$ $\varphi \propto \kappa \hat{\varrho})^{\prime}$. Therefore, the crests have the same shape as the roots but inverted, the inversion being explained by the very alternation between roots and crests. Oribasius' explanation is interesting because it accords with some technical applications of the term раковıঠńc. As noted by LSJ s.v., Ruf. Onom. 153.12 uses the adjective to refer to the lens capsule of the eye (which has the appearance of a convex disc), and Galen (Meth. Med. 10.448 Kühn) speaks of a knife with a 'blunt and smooth lentil-shaped guard that projects at the margin' (see J ohnstonHorsley 2011: 217 Fig. 7 no. 4). In yet another context, Plu. Aet. Rom. 288b8-11 $=$ VS 21 A 60.20-22 reports Empedocles' view that the shape of the half-moon coincides with that of the lentil and the disc. This short survey allows us to make three observations about the meaning of the expression $\tau \alpha ̀ \varsigma \pi \varepsilon \rho ı \varepsilon \varepsilon \rho \varepsilon i ́ \alpha$, єipy $\alpha \sigma \mu \varepsilon ́ v o ו ~ \varphi \alpha к о \varepsilon ı \delta \varepsilon i \varsigma . ~ F i r s t, ~ t h e ~ w h e e l s ~ c a n n o t ~ b e ~ t o o t h e d, ~ s i n c e ~ t h e ~ a d j e c t i v e s ~$ факовіঠи́я and 甲акюто́s denote not the altemation between roots and crests in a lentil-shaped screw-thread but their form concave in one case, convex in the other. Second, there is no indi cation in our sources that the adjective $\varphi \alpha к о \varepsilon i \delta$ ńs ever meant 'rough' or ' bevelled'. Three, McCourt (2012: 188) was right to think of a convex shape, given what we know about wheel-making in antiquity (see Weller 1999; Stieber 2006: 585, 587-8, on E. Ba. 1066-7). This, however, does not characterise the wheels as a whole, but only their circumferences or rims. What Hero almost certainly meant was that the outer surface of the whed rim should be worked so as to be convex.
 text with Schmidt's proposed $\langle\kappa \sigma \tau \omega\rangle$, since the main verb is missing. Previous translations, including McCourt's (2012: 188), appear to supply the thi rd-person singular imperative form from the $\% \sigma \tau \omega \sigma \alpha \nu$ of the preceding sentence, but the presence of coordi nation (каì $\alpha v ̉ \tau \eta ̀ ~ \sigma u \mu \varphi v \grave{\varsigma, ~ e t c .) ~ s u g g e s t s ~ t h a t ~ a ~ v e r b ~ i s ~ n e e d e d . ~}$

Moreover, it is extremely rare, if not impossible, at least in the Automata, to find omission of third-person imperatives, especially when they are used to introduce the description of an object.

Hero’s $\grave{\varepsilon} \xi \varepsilon \lambda i ́ \kappa \tau \rho \alpha$ (literally ‘unwinder’, following KenanJ ones-Ruffell-McGookin 2016: 167) has first attracted the attention of Prou 161 with n . 143. Unlike most scholars, who understood the term as referring simply to a 'cylinder', Prou 161 n. 143 acknowledged that the ε है $\varepsilon \lambda i ́ \kappa \tau \rho \alpha$ is in fact a 'spool' (see al so Drachmann 1948: 145-6, on Spir. 298.7-302.3, where the term occurs thrice) or 'bobbin' (' un dévidoir, une bobine'). Rather than being derived from the noun $\begin{gathered} \\ \lambda\end{gathered} \lambda \xi$ (as maintained by Prou), the term (which is never attested outside Hero) is, more correctly, derived from the verb $\dot{\varepsilon} \xi \varepsilon \lambda i ́ \sigma \sigma \omega$ (see already Keenan-J ones-Ruffell-McGookin 2016: 173). Prou observed that the ending $\tau \rho \alpha$ indicates that the object has a rectilinear shape. This is a very curious remark, given that the feminine suffix - $\tau \rho \alpha$, and the corresponding neuter form $\tau \rho o v$, can be used to denote all sorts of instruments (Chantraine, Form 330-3), regardless of their shape. Add to this that Hero's $\dot{\varepsilon} \xi \varepsilon \lambda i \kappa \tau \rho \alpha$ is probably cylindrical (in addition to the translations, see Bal di 20^{v} unnumbered Fig.; Fig. 5; the $\varepsilon \varepsilon \xi \varepsilon \lambda i ́ \kappa \tau \rho \alpha$ cannot be distinguished from the axle in Schmidt 356-7 Figs. 83ab and Murphy 16 Fig. 2), as it is used to 'unwind' the cord from the whed axle. More recent attention has been drawn to the origin and function of the $\grave{\varepsilon} \xi \varepsilon \lambda i ́ \kappa \tau \rho \alpha$. Keenan-J ones-Ruffell-McGookin (2016: 172-4) have shown how Hero's $\dot{\varepsilon} \xi \varepsilon \lambda i ́ k \tau \rho \alpha$, which can, perhaps, be traced back to Philo (also compare Philo's mention of a wooden ε ह̀ $\varepsilon \lambda i$ íк $\tau \rho o v$ for storing, or assisting with reinstallation of, catapult spring-cords: Ph. Bel. 67.22-5), functions as an inverted windlass ('un-windlass', in their terminology). While the windlass, as described by Hero, Mech. Frag. 2.1 = Papp. 1118.2-10 (ì кגì... ő̧ovı del. Hultsch), lifts heavy weights using a smaller force, the axle and $\varepsilon \xi \varepsilon \varepsilon \lambda i ́ \kappa \tau \rho \alpha$ assembly is made to rotate by a cord being unwound under the impulse of a light weight. As stressed by Keenan-J ones-Ruffell-McGookin (2016: 174), the most probable function of
 was to reduce the inclination angle of the cord and, therefore, to minimise the resulting loss of force. If Hero did derive the term ε $\varepsilon \xi \varepsilon \lambda i ́ k \tau \rho \alpha$ from Philo, as might well be the case, the empl oyment of the feminine rather than neuter suffix need not be overemphasised (Keenan-J ones-Ruffell-McGookin 2016: 173), all
the more so when we consider the overlap of meaning between - $\tau \rho \rho v$ and $-\tau \rho \alpha$ (Chantraine, Form. 333). Theterm $\dot{\varepsilon} \xi \varepsilon \lambda i ́ \kappa \tau \rho \alpha$ also occurs in Book Two, whereit refers to the bobbin used to unwind a scroll of papyrus (seafaring scene): XXVI. 7 [94.20], XXVI. 8 [96.6], XXVIII. 2 [100.13-14], XXVIII. 3 [102.2]. The etymology of the term is clearly brought out by XXVI. 8 [96.5-7] $\pi \varepsilon \rho 1 \varepsilon 1 \lambda \eta$ ń α,

V. 4 [22.4] tú $0 \varsigma \mathfrak{o} \bar{\xi}$. Schmidt was no doubt right in correcting the manuscript reading $\overline{v \xi}$ to $\bar{\xi}$ (not just here but also at [V.4] 22.10 and [VI.1] 24.1), since \bar{v} al ready denotes one extremity of the $\bar{\varepsilon} \xi \varepsilon \lambda i ́ \kappa \tau \rho \alpha$. Furthemore, a knob is never designated by more than one letter. The reading of \mathbf{M} before correction ($\sigma \tau$ ví 0ς) is obviously a mistake, for it makes no sense to have a 'pillar' attached to the白 $\xi \varepsilon \lambda i ́ \kappa \tau \rho \alpha$.
V. 4 [22.5-7] $\tau \rho o \chi o ̀ s . . . ~ \sigma \varphi o ́ \delta \rho \alpha . ~ T h i s ~ i s ~ c l e a r l y ~ a ~ n o n-d r i v i n g ~ w h e e d ~ i n ~ t h a t ~ t h e r e ~$ is no cord connecting its axle to the counterweight. It is labelled $\overline{\rho \pi}$ in the manuscripts, but $\bar{\rho}$ is al ready used for one of the points of the whed's frame ($\overline{\rho \sigma \tau v})$. It is, once again, necessary to accept Schmidt's correction (see previous note). The reading π ' $\gamma \mu \alpha \tau$ u, which is transmitted by \mathbf{G} and $\mathbf{M}^{\mathbf{p c}}$, is surely right as against $\pi n \prime \gamma \mu \alpha \tau \alpha$ ($\mathbf{A}^{\Phi p}$), because ε v requires the dative. Manuscript Pg bears in the margin the plural π ' $\gamma \mu \alpha \sigma$, which does not make sense in the context. The whed is, in fact, set within its own frame, as illustrated by the manuscript diagrams (see Fig. 4a). The plural also does not agree with the following $\tau \hat{\varrho} \overline{\rho \sigma \tau v}$. По $\ell \varepsilon v o ́ \mu \varepsilon v o$, (AGT) fits better here than π орєvó $\mu \varepsilon v o \varsigma$ (M). The middle passive voice of the verb π op ε v́ ω ('to be driven', 'go') never refers to the automaton's wheeds, only to the $\pi \lambda \iota v \theta$ iov as a whole. By contrast, the verb $\pi \mathrm{o} \lambda \varepsilon v v^{\omega} \omega$ is used elsewhere in the middle-passive voice with regard to a screw (or its extremities) tuming on dowels (X.2 [34.10]) or within $\delta 1 \alpha \pi$ ' $^{\gamma} \gamma \mu \tau \alpha$ (Mech. Frag. $2.6=$ Papp. 1128.20-3).

V. 5 [22.12-13] σ ó $\rho \gamma \gamma o \varsigma . . . \pi \lambda ı v \theta i ́ o v . ~ A s ~ c o r r e c t l y ~ p o i n t e d ~ o u t ~ b y ~ M u r p h y ~ 41 ~ n . ~$. 12 , the tube is placed at the centre of the case (between the four columns) for the sake of bal ance and to facilitate attachment of the cords to the counterweight. Its designation as $\tau \varepsilon \tau \rho \alpha ́ \gamma \omega v o \varsigma$ ('viereckige', Schmidt 359) probably refers to a rectangular shape (so Murphy 15) rather than to a square shape (so Bal di 20°; Couture 248; Prou 162). When referring to a square, Hero sometimes uses the adjective together with iбóл $\lambda \varepsilon$ гирос (Deff. 51 and 100; cf. XXVI. 2 [90.15]). The rectangular shape here has the advantage of allowing maximisation of the space between the four columns. In any case, it is clear that the tube is not conceived as cylindrical, as supposed by Landels (1978: 203). It is not until IX. 5 [32.7-8] that the reader is informed of the hole at the bottom of the tube, but the missing information can easily be reconstructed fromII. 9 [12.10-11].
V. 3 [22.13-14] $\tau \rho o \chi i \lambda o v$. Hero's $\tau \rho o \chi i ́ \lambda o s$ is a singlesheaved pulley, which is used exclusively to change the direction of the force (KenanJ ones-Ruffell-McGookin 2016: 173). On the term, see especially Rambaldi (1999: 77 with $n .51$), with further bibliography.

 emendation, Schmidt (app. crit. ad loc.) cited five occurrences of the verb катарє́роноı (II. 9 [12.12], VI.1 [24.4], IX. 4 [32.3], XV. 3 [52.17], XV. 4 [54.7]): of these, the first three refer to the fall of the counterweight, and the other two to the fall of the wreath. Indeed, the usual verb for the descent of the counterweight is катафќро α (in addition to the passages cited, cf. XI. 3 [36.17] and XIII. 9 [50.13]). The adverb кótढ occurs elsewhere in Hero only once modifying $\varphi \varepsilon ́ \rho о \mu{ }^{\prime}$ (Spir. 122.9), but the resulting expression refers to a pipe bearing downwards, not to a body falling down. The second emendation (anticipated by Baldi 20^{v}) is necessary too, as Hero shows a strong tendency to prefer future forms in the apodosis of conditional clauses of this type (for two exceptions, cf. Stereom. 1.43.2a and 2.3.1).

I take the subject of the apodosis to be the same as the subject of the protasis (cf. XIII. 8 [50.1], XXIII. 3 [74.18-19]), rather than assuming an unexpressed
'counterweight' (so Couture 248; Schmidt 359). I do not understand why Murphy 15 and McCourt (2012: 188) translate éáv $\tau \iota \varsigma$ as ‘if anything'.
 is by changing the direction of winding of the cord that the automaton can travel forth and back (see also Keenan-Jones-Ruffell-McGookin 2016: 173). Prou 166-8 devised a system whereby forward and backward motion would be brought about by the winding and unwinding of two distinct cords, each looped around the knob $\bar{\xi}$. During the time when the first cord would unwind from the $\dot{\varepsilon} \xi \varepsilon \lambda i ́ \kappa \tau \rho \alpha$ and thus cause the automaton to moveforward, the second cord would instead wind in the opposite direction. This would then be followed by the unwinding of the second cord and, consequently, by the backward motion of the automaton. Prou 168 even specified that the second cord should be longer than the first, arguing that this is what Hero wams his readers about at VI. 2 [24.9-14]. What Hero says there, however, is only that a pause can be effected between the forward and backward motions by forming a slack hank of cord to be glued on the ε é $\varepsilon \lambda i ́ \kappa \tau \rho \alpha$. This does not represent a waming ('précaution indispensable', in Prou's words) but an altemative or additional configuration to that illustrated here (as also signalled by Opening E, ε àv $\delta \varepsilon \grave{\varepsilon} \beta$ ov $\lambda \omega \dot{\mu} \varepsilon \theta \alpha$). It is all the moresignificant that only one cord is mentioned in that context too. Schmidt, Supple mentum 139 was therefore right in conderning Prou's addition $\langle\hat{a} \lambda \lambda \lambda>$ after $\pi \varepsilon \rho i \tau \varepsilon \theta \varepsilon i \sigma \alpha$, for having two cords does not accord with the author's intentions.

The reading transmitted by \mathbf{M} ($\varepsilon \pi \iota к \varepsilon i ́ \sigma \theta \omega)$ in place of $\dot{\varepsilon} \pi \varepsilon ı \lambda \varepsilon i ́ \sigma \theta \omega$ (AGT)
 should be replaced by something else (but what?). From what follows (see above), it is clear that the cord has to be alternately wound and cannot be ' placed contrariwise in/on the preceding $<$ winding>' (taking è π íк $1 \mu \alpha l$ with the following dative, cf. LSJ s.V. esp. I. 2 and II.1). Schmidt rightly based his proposed
 probably omitted owing to its proximity to $\dot{\varepsilon} \pi \varepsilon i \lambda \varepsilon$ í $\sigma \theta$. In his app. crit. Schmidt added 'minus placet $\hat{\eta}$ pro $\tau \underline{n}$ ', but it is not immediately obvious whether he meant $\grave{\eta} \pi \rho o ́ \tau \varepsilon \rho \circ v<\varepsilon ̇ \pi \varepsilon \lambda \hat{\lambda} \sigma \varepsilon \mathrm{l}>$ (which does not sound right to me) or simply $\mathfrak{\eta}$ $\pi \rho o ́ \tau \varepsilon \rho \circ v$ (occuring only once in Hero: Spir. $38.1 \pi \lambda \eta \rho \varepsilon ́ \sigma \tau \varepsilon \rho \circ$ ì $\pi \rho o ́ \tau \varepsilon \rho \circ v$). Translators such as Baldi 21r, Couture 248 and McCourt (2012: 189) must have
felt some difficulty here, since they omitted translating $\tau \underline{1} \pi \rho o ́ \tau \varepsilon \rho o v$. Despite not printing his own addition in the Greek text, Schmidt 359 ('Umwicklung') adopted it in his translation.
 emending $\sigma v v \varepsilon \chi о \mu \varepsilon ́ v o v ~ t o ~ \sigma ט \gamma к \varepsilon к о т v \omega \mu \varepsilon ́ v o v ~(' f i r m l y ~ f a s t e n e d ') ~ o n ~ t h e ~ b a s i s ~ o f ~$
 erally used by Hero in its primary meaning of 'hold together', 'confine' (XV. 3 [52.20], XXV. 6 [88.8], Bel. 83.3, 107.4, Dioptr. 196.18, 196.28, Spir. 310.10), but can also refer to liquids being held back (Spir. 58.14, 202.3, 274.12). On three other occasions (Bel. 99.6, 99.8, 100.7), it is found in the passive voice in connection with the joining or fitting of components together. Schmidt's pro-

VI. 2 [24.10-11] غ̇ $\pi \varepsilon \lambda \lambda \eta \sigma_{\sigma \alpha v \tau \varepsilon \varsigma . . . ~ \tau u ́ \lambda o v . ~ T h e ~ a o r i s t ~ p a r t i c i p l e ~}^{\tau \varepsilon \rho ı \beta \alpha \lambda o ́ v \tau \varepsilon \varsigma ~ i s ~}$ preferable to the present $\pi \varepsilon \rho \imath \beta \dot{\alpha} \lambda \lambda$ oviєя ($\mathbf{P a}$ and $\mathbf{P f}$) because, just like $\dot{\varepsilon} \pi \varepsilon \imath \lambda \eta$ ท́ $\alpha v \tau \varepsilon \varsigma$, it serves to indicate anteriority to the future action of the main verb દ̇ $\pi \varepsilon ı \lambda \eta ́ \sigma o \mu \varepsilon v$ (on Brinkmann’s conjecture, see following note).
VI. 2 [24.12-15] ov̉к ε v̉ θ ह́ ω ц... λ عíav. Unlike the Teubner editor, I have adopted
 $\dot{\varepsilon} \pi \varepsilon \varepsilon \lambda \varepsilon$ é is never used by Hero in the middle voice, which strongly argues for $\dot{\varepsilon} \pi \varepsilon \imath \lambda \eta \sigma o ́ \mu \varepsilon \theta \alpha$ being a mistake. Presumably this reading arose under the influence of the preceding β ov $\lambda \omega \mu \varepsilon \theta \alpha$. As recorded in Schmidt's app. crit, Brink-
 This must be right, because the (deleted) $\dot{\varepsilon} \pi \varepsilon \iota \lambda$ ńбонєv appears out of context. The participle $\varepsilon \pi \varepsilon \varepsilon \lambda \eta$ ท́б $\alpha \nu \tau \varepsilon \varsigma$ and the main verb $\dot{\alpha} \pi о \delta \omega \dot{\sigma} \sigma \mu \varepsilon v$ presuppose an unexpressed object such as $\tau \grave{v}$ б $\pi \alpha ́ \rho \tau o v ~(c f . ~ a l s o ~ V I .1 ~[24.1-3]), ~ w h e r e a s ~ \pi o v ́ ø \sigma \alpha v \tau \varepsilon \varsigma ~$ and $\pi \rho о \sigma \kappa о \lambda \lambda \eta$ ńбаv $\tau \varepsilon \varsigma$ are clearly construed with the direct object $\mu \eta \rho \cup \mu \alpha \alpha_{\tau} \tau \circ$. Accepting $\dot{\varepsilon} \pi \varepsilon \imath \lambda \hat{\prime} \sigma о \mu \varepsilon v$ would thus imply that the hank is wound on the $\dot{\varepsilon} \xi \varepsilon \lambda i ́ \kappa \tau \rho \alpha$, which is not consistent with the purpose of the cord slackenings (see note on II. 10 [14.2-3]). Prou 168 with n. 156 quoted the Greek text from the ed. princ., but instead of writing the erroneous $\pi \rho о \sigma к о \lambda$ v́б $\alpha v \tau \varepsilon \varsigma$ (in lieu of
$\left.\pi \rho о \sigma \kappa о \lambda \lambda \eta{ }^{\prime} \sigma \alpha \nu \tau \varepsilon \varsigma\right)$, he wrote the equally erroneous $\pi \rho о \sigma \kappa \omega \lambda \hat{\sigma} \sigma \alpha \nu \tau \varepsilon \varsigma$ (from $*_{\pi \rho о \sigma \kappa \omega \lambda v ́ \omega ?) ~ a n d ~ c u r i o u s l y ~ t r a n s l a t e d ~ i t ~ a s ~ ' a p p l i q u e ́ ' . ~ I ~ w a s ~ u n a b l e ~ t o ~ f i n d ~}^{\text {a }}$ such reading in any of the manuscripts consulted by Prou, which means that it is either an unhappy conjecture or a trivial mistake.

As for Schmidt's tentatively suggested $\mu \eta \rho v \mu \alpha ́ \tau i \alpha$, it has been conjectured on the grounds that the plural of the primitive form $\mu \eta \rho_{\rho} \mu \mu \alpha$ occurs at II. 11 [14.4] and VI. 3 [24.20]. However, I would like to raise two objections. First, the use of the plural in the first passage can be explained by the fact that Hero there is making a general observation. Second, the context of the second passage is quite different from the present one. There Hero mentions the possibility of performing repeated forward and backward motion (which entails the occurrence of several pauses), whereas the current configuration is for the automaton to move, stop and come back. Unlike with the configuration for repeated motion, there is no need to form multiple hanks here, because the automaton is configured to make only one pause.

 $\dot{\alpha} \pi о \pi о \rho \varepsilon i ́ \alpha$, picked up and varied by VI. 2 [24.10]; but cf. Metr. 148.2 and 184.10. For the phrasing, cf. XI. 5 [38.6].
 being an interpolation by Schmidt LII. The main reason which Schmidt implicitly adduced in support of his opinion is that in ch. XIX, the only other place in the text where Hero speaks of outbound and inbound journeys, there is no hint as to how to repeat the movements. The aim of ch. XIX, however, is to illustrate the use of two counterweights and two tubes as an improved alternative to the more traditional and perhaps safer single-counterweight system (Introduction, p. cxiv). A further point made by the previous editor is that the configuration for repeated forward and backward motion requires the placement of multiple knobs on the $\dot{\varepsilon} \xi \varepsilon \lambda i ́ \kappa \tau \rho \alpha$. This is not necessarily true A configuration with only one knob is still possible, provided that the latter is sized to receive multiple cord loops. To this must be added that the section begins with a variation of OpENING

al ready suggested by Olivier (1901: 432), Hero is simply elaborating upon the configuration of VI. 2 [24.9-15], al beit without giving full practical details.

More problematic are the concluding lines of the passage The text, as it stands in the manuscripts, reads τ oùৎ $\tau \hat{v} \delta \alpha \mu$ óvตv χ рóvovৎ π оıи́бо $\mu \varepsilon v \delta i \alpha ̀ ~ \tau \hat{v}$ $\mu \eta \rho v \mu \alpha ́ \tau \omega v$, etc. The reference to certain $\delta \alpha i ́ \mu o v \varepsilon \varsigma$ is problematic because Hero does not use the term anywhere else. Three different interpretations have been proposed, none of them convincing. The first, and oldest (Baldi 44 n .20), is that Hero might have meant to refer to Greek planetary gods (or, presumably, figures thereof) who, introducing themsel ves into the automaton, would have mimicked the motion of the planets. While such an interpretation is clearly absurd, it demonstrates that despite his apparent mistranslation of the term ('Tempij' [21r] instead of 'Tempi'; cf. 'templa', Couture 249), Baldi understood the text correctly. The second interpretation (Schmidt 361-3 n. 2) relies upon the editor's choice to translate his tentative conjecture χ opov̀s for $\chi \rho$ óvovc. Schmidt seems to think that $\delta \alpha \mu o ́ v \omega v$ refers to the Bacchantes, insofar as they are the only dancing figures in the automaton. As he points out, the dances take place whil e the automaton is not moving and the cord slackenings are being taken up. This is no doubt true, but it is not clear how such a reference would fit within the context. Schmidt's interpretation is, moreover, made less plausible by the fact that the female followers of Dionysus are designated as $\delta \alpha i ́ \mu o v \varepsilon \varsigma$ only twice and in late sources (Bas. Caes. Epist. 74.1.21 and Ps.-Nonnus, Comm. in Greg. Naz. Serm. $39.4=223.21-3$ Nimmo Smith). The third interpretation (Murphy 41 n .13) seems to take 'deities' to mean Dionysus. That the term refers to the god, and perhaps also to the Nike, is a possibility, but a slack hank of cord has just been mentioned in connection with the pause of the automaton (VI. 2 [24.12]). Perhaps the best way to make sense of the transmitted text is to suppose that the phrase tov̀ $\tau \hat{\omega} v \delta \alpha \mu o ́ v \omega v ~ \chi \rho o ́ v o v ৎ ~ o r i g i n a t e d ~ i n ~ a ~ s e p a r a t e ~ s o u r c e . ~ T h e ~ t e r m ~$ $\delta \alpha i ́ \mu \omega v$ could thus refer to such figurines as might have been described in Hero's now lost Zó ${ }^{\prime} \alpha \alpha$ (Introduction, pp. Ixvii-Ixviii with n. 108). However, the fact that the term never occurs in Hero (or in other mechanical writers) seems to suggest otherwise. This naturally leads to the assumption that the text was corrupted and that $\delta \alpha \mu \mu^{\prime} v \omega v$ should read $\delta \grave{\varepsilon} \mu$ ovติv (Brinkmann). This conjecture gives excellent sense and is palaeographically plausible ($\delta \dot{\varepsilon} \mu o v \hat{v} \nu>\delta \alpha ı \mu o v \hat{v}>$ $\delta \alpha 1 \mu o ́ v \omega v$), al though it produces an akward word order (contra, Brinkmann ap.

Schmidt's app. crit. to $\delta \alpha \mu \mu o ́ v \omega v)$. Denniston, GP 186 records only one instance of $\delta \varepsilon ́$ immediately following two definite articles (E. Tr. 848 тò $\tau \hat{\alpha} \varsigma ~ \delta \grave{~[M u r r a y ~: ~}$ $\tau \alpha ิ \sigma \delta \varepsilon$ codd.] $\lambda \varepsilon v к о \pi \tau \varepsilon ́ \rho o v)$, but this is clearly treated as an exception. The most likely scenario is that $\delta \varepsilon$ was interpol ated into the text. Perhaps a scribe, thinking of the hal tstate of the automaton (VI.2[24.9-10]), corrected $\tau \hat{\nu} v$ to $\tau \hat{\omega} v \delta \varepsilon$ (but in fact he should have more correctly written $\tau \hat{\nu} v \delta \varepsilon \tau \hat{\nu} \mu \circ v \hat{\omega} v)$. The demonstrative pronoun was probably later misread as $\tau \omega ิ v \delta \varepsilon ̀ ~(i n c o r r e c t ~ w o r d-d i v i s i o n), ~$ which subsequently led to the coruption of $\delta \dot{\varepsilon} \mu$ ovôv. On these grounds, I have deleted $\delta \grave{\varepsilon}$. The resulting phrase (τ ov̀s $\tau \hat{v} v \mu$ ovôv χ póvovc) has a paralled in Gal.
 stomach).
VI.4[26.1-5] vocíणӨ... $\bar{\varepsilon}$. Hero does not merely assign a different set of points to his configuration, as he does later on in the case of rectangular motion (VI. 4 [32.19-20]). Rather, he also gives a side elevation of the case, as can be seen in the accompanying diagram (Fig. 6a). Contrast VI. 4 [20.18-22.2], with Fig. 4a (plan view). As pointed out by Drachmann (1972: 489), nowhere else does Hero givetwo elevations of the same device

Schmidt was right to delete $\delta \grave{\varepsilon}$ after $\tau \rho o \chi i \lambda$ ov, both because it repeats the preceding $\delta \varepsilon$, and because of its odd position. All manuscripts except \mathbf{F} have the participle $\pi \varepsilon \rho \kappa \kappa \varepsilon \mu \varepsilon ́ v \eta v . ~ F ~ h a s ~ \pi \varepsilon \rho ı к \varepsilon i ́ \mu \varepsilon v o v, ~ w h i c h ~ p r o b a b l y ~ a r o s e ~ u n d e r ~ t h e ~$ influence of the preceding $\tau \rho o \chi i \lambda$ ov. This reading cannot be right, since it is the cord that is wound around the pulley. I have therefore corrected $\pi \varepsilon \rho ı \kappa \varepsilon \mu \varepsilon ́ v \eta \nu$ to $\pi \varepsilon \rho ı \kappa \varepsilon \mu \varepsilon$ v η to makethe participle agree with the subject $\sigma \pi \alpha \dot{\rho} \rho \tau \circ \varsigma$.

> VII-VIII [26.6-30.2] Circular motion

Hero's treatment of circular motion shows a high degree of geometrisation. As Roby (2017: 533) acutely notes, the automaton is reduced to 'an imaginary mathematical "skeleton" of itself'. Ch. VII describes the configuration for circular motion, whereas ch. VIII lays the mathematical principles of motion itself. The configuration consists of three wheels mounted on two axles which are set at an angle. From VIII. 1 oi $\delta \dot{\varepsilon} \overline{\varepsilon \zeta}, \overline{\theta \kappa}, \overline{\pi \rho} \tau \rho о \chi o i ̀ \varepsilon v ~ \kappa ळ ́ v o ı \varsigma ~ \varepsilon i \sigma i ~ \delta v \sigma i v, ~ \hat{\omega} v ~ \beta \alpha ́ \sigma \varepsilon ı \varsigma, ~$ $\mu \dot{\varepsilon} v$ oi $\overline{\varepsilon \zeta}, \overline{\pi \rho} \kappa \dot{v} \kappa \lambda о \iota$, it is clear that the outer wheel $\overline{\varepsilon \zeta}$ ought to be made bigger than the inner whed $\overline{\theta \kappa}$ (see al so Murphy 41 n .15). This results in a fixed turn-
ing radius，no matter how large the latter is（VII．1 $\tau \iota \varsigma \dot{\eta} \overline{\alpha \delta}$ ）．For more on this configuration，see McCourt（2012：190－2）．

VII．1［26．7－8］हैб $\tau \omega \gamma \dot{\alpha} \rho . . . \overline{\alpha \beta \gamma}$ ．Schmidt＇s proposed emendation for τ ò must be accepted because the article before $\overline{\alpha \beta \gamma}$ has to agree with кúк λ oc（see generally Schironi 2010：347）．Schmidt in his app．crit．correctly cited XII． 2 ［42．15］ó $\overline{\alpha \beta \gamma \delta}$［sc．$\beta \omega \mu o ́ \varsigma] ;$ but cf．also，for instance，Metr．54．9－10，Spir．158．8－9．

VII． 1 ［26．8－9］＜$\tau \rho o ̀ \varsigma>\tau \alpha v i \tau \eta v . . . \overline{\varepsilon \alpha \zeta}$ ．When the adjective ó $\rho \theta$ ós is used to ex－ press a relation of perpendicularity，it is followed by π 几ós＋accusative（LSJ s．v． ỏp日óc I．b；cf．also Mugler，Dictionnaire s．v．óp日ós 2－3），not by the dative（ $\tau \alpha v ́ \tau \underline{1}$ ， following the manuscripts）：see，with reference to a straight line，Deff．115．2， Dioptr．232．22，290．17－18，292．3－4，292．4－5 and Metr．96．2－3；for further refer－ ences in Hero＇s Definitions and Stereometrica，see Heiberg（1914：259）s．v． ó $\rho \theta$ ó ς ．I have therefore emended $\tau \alpha v$ vin to $\tau \alpha$ vitnv and added＜τ ò $\varsigma>$ in front of it．In his app．crit．Schmidt hesitantly suggested replacing ojp θ ŋ̀ with the prepos－ itional phrase $\pi \rho o ̀ \varsigma ~ o b ~ \rho \theta \grave{\alpha} \varsigma ~[s c . ~ \gamma \omega v i ́ \alpha c], ~ b u t ~ t h i s ~ i s ~ c l e a r l y ~ a ~ m o r e ~ i n v a s i v e ~ e m e n d-~$ ation．For $\pi \rho$ ò ς ob θ 先 $\varsigma+$ dative（very frequent in Hero），see，for example，VII． 2 ［26．15］and XXVII． 4 ［100．3］，already cited by Schmidt in support of his sugges－ tion；cf．also XXVII．4［100．4］．

VII． 2 ［26．12］$\tau \hat{\varrho} \delta \varepsilon \bar{\varepsilon} \mu \varepsilon \gamma \varepsilon ́ \theta \varepsilon 1 . . . \overline{\alpha \eta}$ ．Line $\overline{\alpha \eta}$ ，as has been correctly noted by Murphy 41 n .14 ，corresponds to the portion of the axle contained between wheeds $\overline{\varepsilon \zeta}$ and $\overline{\theta \kappa}$ ．The whole axle，in fact，appears to be $\overline{\tau v}$（VII． 2 ［26．16－17］）． This distinction is also shown in some diagrams，such as that of \mathbf{A}（Fig．7a）．For $\alpha \not \xi \omega v$ as denoting the＇axle shaft＇，cf．XIII． 8 ［50．4］．

VII． 2 ［26．13］$\dot{\eta} \overline{\eta \theta \kappa}$ ．In his app．crit．Schmidt proposed emending $\overline{\eta \theta \kappa}$ to $\overline{\theta \eta} \bar{\kappa}$ ， certainly because $\bar{\eta}$ represents the midpoint of the line．The suggestion makes good sense in terms of its consistency with the preceding $\overline{\varepsilon \alpha \zeta}$（VII．1［26．9］）．I have，however，preferred to retain the best attested reading，since its letters are arranged in al phabetical order（on this tendency，see Roby 2017：523）．M and manuscripts Ld and $\mathbf{P h}$（in margine）have，respectively，$\overline{\theta \kappa}, \overline{\eta \theta \eta}$ and $\overline{\eta \kappa \theta}$ ．The first two readings are clearly errors：$\overline{\theta \kappa}$ arises from haplographic omission of η ，
whereas $\overline{\eta \theta \eta}$ from confusion between minuscule η and κ. The reading $\overline{\overline{\kappa \kappa}}$ probably represents a fail ed attempt to correct $\overline{\bar{\theta} \kappa}$.
VII. 2 [26.13-14] iò $\delta \bar{\varepsilon} ~ \pi \lambda ı v$ íov... $\bar{\alpha} \bar{\delta}$. It is probably unnecessary to add $<\pi \lambda \varepsilon u \rho \alpha ̀ v>$ after $\overline{v \xi}$, as doubffully suggested by Schmidt in his app. crit (but see al ready Baldi 22v; Couture 249). זǹv $\overline{v \xi}$ can simply be understood as refering to the line \bar{v} in the accompanying diagram.
VII. 2 [26.15] $\mathfrak{\eta} \bar{\pi} \bar{\rho} . . \bar{o}$. Both Murphy 17 and McCourt (2012: 190) have interpreted the phrase to mean that $\overline{\pi \rho}$ bisects $\overline{\delta o}$ below (ínó) the point $\overline{\mathrm{o}}$. But the participle $\tau \varepsilon \mu v o \mu \varepsilon ́ v n$ must be understood as passive (so Baldi 22v; Couture 249; Schmidt 363) rather than middle. Moreover, it would be pointless to say that a bisection occurs below a point denoting the extremity of a line. Murphy 17 Fig. 3 shows $\overline{\pi \rho}$ bisecting $\overline{\delta o}$ into two unequal parts, but $\delta i \chi \alpha \alpha \tau \bar{q} \mu v \varepsilon{ }^{\prime} v$ signifies geometrical bisection (for instances, see Mugler, Dictionnaire s.v. τ ह́ $\mu v \varepsilon \varepsilon v ;$ cf. VIII. 2 [28.13-15]). McCourt (2012: 191 Fig. 2), on the other hand, has no point $\overline{-}$.

Schmidt's tentative emendation $\tau \hat{\tau} \varsigma \overline{\delta_{0}}$ (anticipated by Baldi 22^{\prime}) for tov̂ \bar{o} is tempting but perhaps unnecessary. The line $\overline{\pi \rho}$ is in fact bisected by the line $\overline{\delta 0}$. Taking ${ }^{-}$as the point of bisection (δx хото $\mu^{\prime} \alpha$, cf. VII. 1 [26.10]) implies that one of the extremities of the axle of $\overline{\pi \rho}$ coincides with the centre of the whed ($\overline{\pi \rho}$ being the wheed, $\overline{o x}$ its axle: VII. 2 [26.16-17]), which is clearly absurd. However, some manuscripts diagrams, including that of \mathbf{A} (Fig. 7a), show the point \bar{o} (not the 'line' $\overline{\mathrm{o}}$, as Couture 249 has it) a little further away from $\overline{\pi \rho}$, but still inside the circurference passing through $\bar{\alpha}$ (which, indeed, is not one of the extremities of the axle of $\bar{\varepsilon})$. This might be taken to reflect the original arrange ment for two main reasons. First, the cones within which are inscribed $\overline{\bar{\zeta}}$ and $\overline{\pi \rho}$ are said to describe more than one circle (VIII. 2 [28.7-11]). If $\overline{\bar{\rho}}$ were as distant from the centre as $\overline{\varepsilon \zeta}$ (as illustrated in Baldi $22{ }^{\circ}$ unnumbered Fig. and McCourt 2012: 191 Fig. 2), the wheds would describe the same circle. Second, placing ${ }^{-}$ on or outside the circurference (see, respectively, Murphy 17 Fig. 3 and Baldi 22 unnumbered Fig.) would probably result in the point itseff, and hence the pivot (VII. 3 [26.19-20]), being too distant from the wheel. Speculatively speaking, if Hero was describing the diagram as we find it in \mathbf{A}, he might have been
influenced by the proximity of \bar{o} to $\overline{\pi \rho}$. The text could therefore be not corrupt, but simply inaccurate.
 peated and then corrected in the margin of manuscript Par. suppl. gr. 11, where we read кvต́дакєє $\pi v \varepsilon \lambda i ́ \delta \varepsilon \varsigma$. These words have been written in a different ink, perhaps by a later hand. There seems to be no reason to adopt the reading $\pi v \varepsilon \lambda i ́ \delta \varepsilon \varsigma$ instead of $\kappa v \omega \dot{\delta} \alpha \kappa \varepsilon \varsigma$. The points $\bar{\tau}, \bar{v}, \bar{o}$ and $\bar{\chi}$ represent the extremities of the axles of the wheeds $\overline{\varepsilon \zeta}, \overline{\theta \kappa}$ and $\overline{\pi \rho}$ (VII. 2 [26.17]), and are therefore correctly identified with the pivots of the axles. Furthemmore, saying $\pi v \varepsilon \lambda i \delta \varepsilon \varsigma, \tau \hat{\omega} v$ $\dot{\alpha} \xi{ }^{\prime}{ }^{\prime} v \omega v$ would probably entail that the sockets are part of the axles, which is not true.

It is worth wondering whether the word $\sigma \eta \mu$ cios is a later addition. It could have been added by a scribe sedking to elucidate the reference to the said points. In fact, similar references largely take the form of elliptical phrases in the treatise: cf. esp. oi $\pi \rho$ òs тoî̧ $\bar{\eta}, \bar{\theta} \kappa v \omega ́ \delta \alpha \kappa \varepsilon \varsigma ~(X .1 ~[32.20-1], ~ X . ~ 3 ~[34.18-19]) ; ~ b u t ~ c f . ~$ VIII.1[28.9] (τ ò $\bar{\delta} \sigma \eta \mu \varepsilon$ îov).
VII. 3 [28.1-2] каì... عíp η évorı. Presumably, a reference to the drive mechanism as described at V.4-5 [22.9-20].
 by the best manuscripts, it seems better to accept also Schmidt's proposed emendation of $\mu \varepsilon \varepsilon^{v \varepsilon ı}$ to $\mu \varepsilon v \varepsilon i ̂$, with only a slight change of accent. It is curious that the Teubner editor preferred $\gamma \rho \alpha ́ \psi \varepsilon ı$ over $\gamma \rho \alpha \dot{\varphi} \varphi \varepsilon$, not least because in his app. crit. he made reference to VIII. 2 [28.11] ($\gamma \rho \alpha ́ \varphi o v \sigma \iota$).
H. Schöne inserted < বбобкє λ ท̀ऽ> after к@ิvoc. This is unnecessary, as Hero's words seem indended to apply generally. It is not entirely clear why H. Schöne did not also suggest supplementing the text at VIII.1 [28.7-8] (oi $\delta \grave{\varepsilon} \bar{\varepsilon} \bar{\zeta}, \overline{\theta \kappa}, \overline{\pi \rho}$
 isosceles at VIII. 2 [28.10] (oi кต̂vor oi ìбобкє $\lambda \varepsilon i ̂$).

For the use of the term $\pi \lambda \varepsilon u \rho \alpha$ to denote the generatrix of a cone (or cylinder), that is, any line extending from its vertex to its base, cf. LSJ s.v. III.d (Archimedes); Mugler, Dictionnaires.v.
 VIII.1 [28.4]), since the subject changes from plural to singular; cf. al so VIII. 2

 $<\tau \alpha \rho \alpha \lambda \lambda \hat{\eta} \lambda \omega \tau \hat{\varrho}$ ópí̌ov $\imath>$, adducing in support of his proposal several passages from Hero's Dioptra and Pappus' Mathematical Collection (iò $\pi \alpha \rho \alpha \grave{~ \tau o ̀ v ~ o ́ p i ́ ̌ o v \tau \alpha ~}$ غ̇ $\pi i ́ \pi \varepsilon \delta o v: ~ H e r o, ~ D i o p t r . ~ 232.15-16, ~ P a p p . ~ 1028.12 ~ a n d ~ 1054.5 ; ~ \varepsilon ̇ \pi i ́ \pi \varepsilon \delta o v ~$ $\pi \alpha \rho \alpha ́ \lambda \lambda \lambda \lambda \frac{\nu}{\tau} \uparrow$ ọ ópí̧ovıı: Hero, Dioptr. 204.28, 226.20-228.1, 228.12, 230.14, 230.22-3 and 232.2-3). These expressions merely serve to indi cate that the plane in question, being paralle to the horizon, is horizontal (contrast ε ह̇ít $\pi \delta \delta$ os ob $\rho \theta$ òs, $\pi \rho o ̀ s ~ \tau o ̀ v ~ o ́ p i ́ \zeta o v \tau \alpha, ~ d e n o t i n g ~ v e r t i c a l ~ i t y, ~ a s ~ i n ~ t h e ~ f o l l o w i n g ~ s e n t e n c e) . ~ S u c h ~ s p e ~-~$ cification would be superfluous in the present context, given that Hero has al ready provided details on the inclination of theground at II.1 [6.9].
VIII. 2 [28.12-13] $\beta \varepsilon \beta \eta \kappa \omega े \varsigma . . . \pi \lambda \varepsilon v \rho \alpha{ }_{2} v$. The perfect participle of $\beta \alpha i ́ v \omega$ is used in a strictly geometrical sense to mean 'stand' (LSJ s.v. A.I.2.b; Mugler, Dictionnaire s.v.). In this sense the verb is more commonly followed by $\dot{\varepsilon} \pi i ́+$ genitive or $\pi \rho$ ós + dative; but for comparable examples with $\kappa \alpha \tau \alpha$, cf. Bito 50.10 and Ptol. Alm. $1.8=30.11-12$ Heiberg. Murphy's 'moving along' (18) and McCourt's (2012: 191) 'moving upon’ are clearly inappropriate; cf. also LSJ s.v. A.I.2.a.
VIII. 2 [28.13-15] $\tau \varepsilon ́ \mu \nu \varepsilon \tau \alpha 1 . . . ~ \delta i ́ \chi \alpha$. This simply means that the cone is notionally divided into two equal parts by a vertical plane passing through one of the sides of the cone, presumably along its axis. There was no need for Hero to specify which side he referred to, because in an isosceles cone (following Archimedes' terminology) all sides are equal (Heath 1897: clxv; Netz 2004b: 60 n. 63, on Archim Sph. Cyl. $1.8=23.13$-24.2 Mugler). The implication here seems to be that the weight is equally distributed between the two parts, and hence the cone remains in equilibrium McCourt (2012: 191) understood Hero's words in a rather idiosyncratic way: 'for it is cut through by a plane perpendicular to the line produced by the side, dividing [the cone] in two'. The first observation to make is that ' the line' is nowhere to be found in the Greek text. Theterm $\pi \lambda \varepsilon v \rho \alpha$ al ready denotes the generating line (or generatrix) of the cone (cf. note on VIII. 1
[28.4-6]). Therefore, it does not make sense to say that a line is produced by the side A second point is that ob $\rho \theta$ ov cannot govem the participle $\dot{\varepsilon} \kappa \beta \alpha \lambda \lambda$ о $\kappa \varepsilon ́ v o v$. The plane resulting from the imaginary extension of the side of the cone is perpendicular to ($\pi \rho \frac{1}{\varsigma}$) the underlying surface (thus Schmidt 365, followed by Murphy 18), insofar as the latter is parallel to the horizon (cf. note on VIII. 2 [28.12]). Finally, iòv ópícov α is a substantive participle, and should not be taken with the following adverb (note the hyperbaton between $\tau \varepsilon \mu \nu \varepsilon \tau \alpha, ~ a n d$ δ ' $\chi \alpha$).
$\dot{\varepsilon} \kappa \beta \alpha \lambda \lambda$ o $\mu \varepsilon ́ v o v$ is replaced by $\dot{\varepsilon} \mu \beta \alpha \lambda \lambda$ o $\mu \varepsilon ́ v o v$ in \mathbf{M}. The latter reading ('put in[to]') does not make sense in the context of the geometrical abstraction. For

 that "̋on should be emended to кıvov́oṇ somewhat peculiar. The emphasis is correctly placed on the uniform transmission of the force, which results in smooth, uninterrupted motion. δ v́v $\alpha \mu \iota$, can be nothing else than the ' motiveforce'.
 the second $\tau \hat{\omega} v$. If we were to retain the article, we would translate thus: 'If the semicircles which <reach> up to the vertex are conceived [sc. as existing], etc.' . The main objection to the transmitted text is that the semicircles have al ready been imagined into existence, al beit implicitly, at VIII. 2 [28.16-18]. What matters here, instead, is that the semicircles are visual ised ($\dot{\varepsilon} \pi \mathrm{ivoov} \mu \dot{\varepsilon} v \omega v$) up to the vertex of the cone, and this is possible only if we delete $\tau \hat{v v \text {. The presence of the }}$ article has been strangel y overlooked by previous translators.
VIII. 3 [28.21-2] ov λ eíneral... $\delta \boldsymbol{\delta} \alpha \sigma \tau \alpha \tau o ́ v$. Because the vertex of the cone is a point (VIII.1 [28.9]; cf. Deff. 85), and this is, by definition, $\pi \varepsilon$ р αc c $\alpha \delta \alpha \dot{\alpha} \sigma \tau \alpha \tau o v . .$. $\dot{\alpha} \mu \varepsilon \rho \varepsilon ́ \varsigma ~ \tau \varepsilon \kappa \alpha \grave{\alpha} \alpha \mu \varepsilon ́ \gamma \varepsilon \theta \varepsilon \varsigma ~ \tau v \gamma \chi \alpha ́ v o v ~(D e f f . ~ 1) . ~ F o r ~ t h e ~ N e o p y t h a g o r e a n ~ a n d ~ N e o p l a-~$ tonic influences on Hero's conception of geometric point, see Giardina (2003: 255-64).
VIII. 3 [28.23] $\tau 0 \hat{\text {.... } \mu \text { é } \rho \eta \text {. Technically, nothing lies on the opposite side, given }}$ the adimensionality of the vertex. But Hero probably thinks about the cone in
more concrete and physical terms. G transmits кıvov μ ह́vov instead of кєıц́vov. Such a reading may easily be dismissed as erroneous, because no movement at all is produced in the vertex (VIII.1 [28.6]).
VIII. 3 [30.1-2] ε i $\mu \grave{\prime}$ ơ $\rho \alpha . .$. yivetal. The term $\pi \rho \circ \omega \sigma \mu o{ }^{\prime}$, formed from the verb $\pi \rho o \omega \theta \varepsilon ́ \omega$ ('push forward'), is a hapax legomenon. Manuscripts such as \mathbf{G} and \mathbf{M} have in its stead the meaningless reading $\pi \rho o \omega \rho ı \mu$ òv, (mis)corrected by the second hand of \mathbf{M} supra lineam to $\pi \rho \frac{0}{} \rho \stackrel{\sigma}{ } \mu$ òv ('early determination', LSJ s.v.). Baldi 22 " gave a curious paraphrase of these words: 'se non forse se [sc. Ia forza movente] lo [i.e il vertice] spingesse in qualche luogo stabilito'. This cannot be right, because it contradicts what has just been said. What is especially note worthy, however, is that Baldi translated the reading in his exemplar (presumably $\pi \rho o \omega \rho \iota \sigma \mu o ̀ v$) as 'qual che luogo stabilito'. He would seem to have corrected $\pi \rho о \omega \rho \imath \sigma \mu o ̀ v$ to $\pi \rho o \omega \rho \imath \sigma \mu \varepsilon$ vov ('predetermined') and to have understood his correction as referring to an unexpressed tó $\boldsymbol{\pi}$ ov (which is strange enough), perhaps influenced by the use of the perfect participle of opíc ω at l. 2 [2.11] ($\kappa \alpha \tau \alpha$
 together with the fact that he took av̇ın̂s as a subjective rather than as an objective genitive, meant that he had to supply 'lo' as a di rect object.

IX-X [30.3-34.24] Rectangular motion

Hero introduces a mechanism comprising two sets of three wheeds, one of which is alternately raised and lowered (IX.1-3). He interrupts his description to give a fuller account of how the automaton initiates its motion (IX.4-6; cf. II.9). He then returns to the original topic to consider more closely the mechanism for raising and lowering the additional set of wheels (X , with a reconfiguration). In order to produce a rectangular pattern, the two sets of wheeds will have been mounted at right angles to each other, as shown in Figs: 8ab(see also Olivieri 1901: 427; McCourt 2012: 193). There is, however, at least one significant problem with this configuration: the force caused by the counterweight (no matter how heavy) would not have been enough to lower the second set of wheeds and to lift the automaton (McCourt 2012: 193).
IX. 1 [30.7-8] $\delta \iota^{\prime} \hat{\omega} v . . . \pi \rho o \gamma \varepsilon ́ \gamma \rho \alpha \pi \tau \alpha 1$. Hero's point is not that the automaton can be carried both forward and backward al ong a rectangular path, but rather that the wheed $\bar{\eta} \bar{\theta}, \overline{\kappa \lambda}$ and $\overline{\mu \nu}$ correspond to those appearing in the mechanism for forward and backward motion. Having the automaton travel backwards along a rectangle would have required programming both sets of wheds.
IX. 1 [30.8-9] $\bar{\varepsilon} \sigma \tau \omega ~ \delta \grave{\varepsilon} \kappa \alpha i ̀ . . . \bar{v} \varphi$. A few words must have dropped out betwen ó μ oí $\omega \varsigma$ and τ òv $\bar{v} \bar{\varphi}$, because the wheel $\bar{v} \bar{\varphi}$ (cf. IX. 2 [30.13]) cannot be fitted to the same axle as the wheels $\overline{\pi \rho}$ and $\overline{\sigma \tau}$. All manuscript diagrams agree in showing the whed $\overline{v \varphi}$ as being mounted on its axle within a frame that is attached to the middle of the side $\overline{\alpha \delta}$, as shown by the example of \mathbf{A} (Fig. 8a). Furthemore, at $X .2$ [34.6-7] the whed $\overline{\varepsilon \zeta}$ (corresponding to $\bar{v} \bar{\varphi}$ here) is said to be provided with its own axle $\overline{\xi_{0}}$ (not to be confused with the current axle $\overline{\xi_{0}}$). It is curious that modern scholars such as Schmidt 366-7, Murphy 18 and McCourt (2012: 193), while acknowledging that the setting of $\overline{v \varphi}$ should be independent of the setting of $\overline{\pi \rho}$ and $\overline{\sigma \tau}$ (Schmidt 366 Fig. 88; Murphy 18 Fig. 4 and 41 n . 16; McCourt 2012: 194 Fig. 4), accepted the transmitted text. McCourt (2012: 193) went even as far as to say that both the axle of $\overline{\pi \rho}$ and $\overline{\sigma \tau}$ and the whee $\bar{v} \bar{\varphi}$ were intended to be set within their own 'frames' (the каvóvi人 of X.1 [34.1]? On this term, see note on X.1 [32.22-34.1]), a fact that is not reflected in his Fig. 4 (where only the wheeds $\overline{\mu \nu}$ and $\bar{v} \bar{\varphi}$ are correctly shown enclosed in separate casings). No less ambiguous is Schmidt, who (app. crit. ad loc.), although somewhat anticipated by Baldi 23r ('Siavi anco la ruota u, x '), tentatively proposed
 comparison with IX. 1 [30.6-7] ó $\delta \dot{\varepsilon} \tau \rho$ ítos $\tau \rho \sigma \chi o ̀ \varsigma ~ ह ै \sigma \tau \omega ~ o ́ ~ \overline{\mu \nu}$. However, the presence of the words каì ó μ oí $\omega \varsigma$, al ong with the accusative article before $\bar{v} \bar{\varphi}$, suggests to me that the lacuna should contain a reference to the whed's axle (cf. $\alpha \bar{\alpha} \xi \omega v . . \overline{\sigma \tau})$. Since the axle of $\bar{v} \bar{\varphi}$ is not mentioned in the rest of the chapter, and indeed it is assigned its own label at X. 2 [34.7], we would expect only a generic mention of it. I therefore believe that the text should be supplemented by some-
 overall distribution of the adjective $\sigma v \mu \varphi v \eta$ (in the accusative case, serving as the predicate of an object) and the participle of $\varepsilon \chi(\omega$ in the Heronian corpus shows a preference for the sequence 'participle + adjective' over the sequence
'adjective + participle': 10 instances as against 4 instances. If we confine our attention to contiguous or nearly contiguous sequences (i.e. with or without one intervening word), we find that this preference becomes less marked, with the former sequence occurring 5 times (XI. 2 [36.8], Dioptr. 294.17, 294.22, 310.2-3, Spir. 164.4), and the latter 4 times (here, as well as at IX. 1 [30.5-6], XI. 9 [40.12], Dioptr. 294.1). Given that almost all (quasi-)contiguous sequences of the type ' participle + adjective' have the singular form of the adjective (the opposite being true of the sequence 'adjective + participle'), the missing words are perhaps more likely to be $\langle\dot{\alpha} \xi \omega v$ है $\chi \omega v \sigma \nu \mu \varphi v \hat{\eta} \tau \rho \sigma \chi o ̀ v>$ (cf. esp. XI. 2 [36.7-8] ó
 erwise In the absence of fimmer evidence, it seems more prudent to place an unfilled lacuna in the text, leaving it to the reader to decide which, if any, of these suggestions woul d fit best.
IX.2[30.12-13] $\dot{\omega} \varsigma \dot{\varepsilon} \xi \hat{\eta} \varsigma ~ \varepsilon ̇ \rho o v ̂ \mu \varepsilon v . ~ C f . ~ X .1-3 ~[32.19-4.19] . ~$.

 stood as a continuation of the consecutive clause $\check{\sigma \tau \varepsilon . . . ~ غ ̇ \delta \alpha ́ \varphi ~} \varphi$. This meant that an early scribe added кaí (deleted by Brinkmann) at the beginning of the main clause and altered π ор $\varepsilon v \theta$ ńб\& $\alpha \alpha l$ (restituted by Schmidt) into the infinitive π о $\rho \varepsilon v \theta \hat{\eta} v \alpha 1$. Schmidt in his app. crit. correctly cited in support of his correction
 $\pi \lambda$ uv日íov); but, more generally, note that the future tense is used consistently throughout IX.2-5 [30.15-2.12].
IX. 3 [30.23-4] غ̇ $\lambda \varepsilon \varepsilon^{\prime} \sigma \varepsilon \tau \alpha 1 . . . \pi \lambda 1 v \theta i ́ o v$. It is unnecessary to emend tò $\pi \alpha \rho \alpha \lambda \lambda \eta \lambda o ́ \gamma \rho \alpha \mu \mu \circ v$ to $\tau 0 \hat{v} \pi \alpha \rho \alpha \lambda \lambda \eta \lambda$ о $\gamma \rho \alpha ́ \mu \mu \circ v$, as doubtfully suggested by Schmidt in his app. crit Despite the fact that $\grave{\varepsilon} \pi i ́ t$ genitive is found in a similar
 his suggestion), the accusative may have been selected to convey a spatial sense of direction (LSJ s.v. ह̇лí C.I.3; cf. Nez 2004a: 101 [geometrical usage]). We cannot exclude the possibility that the two constructions are used interchange-
ably: compare the occurrence of the accusative in place of the genitive at II. 7 [10.18] દ̇ $\pi i ̀ ~ t o ̀ ~ ह ै \delta \alpha \varphi o \varsigma ~(s e e ~ n o t e ~ a d ~ l o c) . ~.$.
IX.4[32.1-2] $\pi о \rho \varepsilon i ́ \alpha \varsigma ~ \delta \varepsilon ̀ . . . ~ \chi \alpha \lambda \alpha \sigma \mu \alpha ́ \tau \omega v . ~ V i n d o b . ~ s u p p l . ~ g r . ~ 21 ~ i s ~ t h e ~ o n l y ~ m a n u-~$ script to transmit the reading μ ovàc, already conjectured by Haase and also pre supposed by Baldi 23r ('II fermarsi'). Several other manuscripts, including a have μ óvac (for the confusion between the feminine form of μ óvos, and the term μ ovń, see K roll's app. crit to Procl. in R. II 188.23), which appears to have been corrupted into μ óvov in some witnesses ($\mathbf{A b}, \mathbf{B b}, \mathbf{L a} \mathbf{L C}, \mathbf{L d}$). If we were to folIow Thévenot 251 and Murphy 19 in adopting the best attested reading, we would have to take π орєíac as accusative plural rather than as genitive singular. This would appear somewhat strange, since Hero never uses the term π o α sí α in the plural. It is al so not clear what purpose the cord slackenings would serve. Similar problems would arise if we tried to make sense of the variant reading uóvov: 'It [i.e. the case] will only makejourneys however we choose, etc.' .

Brinkmann believed that the words $\tau \varepsilon \ldots$ кai should be deleted, probably on the grounds that absence of motion is generally linked directly with the slackenings of the cord (cf. note on II. 10 [12.19-14.3]), and not with its windings. This is true as far as it goes, but it fails to take into account the observation (XI. 6 [38.8-12]; cf. XI.6 [38.12-14]) that, in order to determine the length both of the windings and of the slack hanks of cord, the automata-maker drives the case backwards by hand and starts making the windings from the point where he wants it to stop. The reason for this is that the automaton ceases to move as soon as the winding of the cord is completely unrolled, at which point the slackening starts being taken up. There is nothing suspicious, therefore, in the fact that the slackenings are mentioned alongside the windings (cf. also X. 3 [34.15-16] and XI. 5 [38.4-5]).
IX. 5 [32.8-9] ô $\kappa \lambda \varepsilon i \theta \rho i ́ \varphi . . . ~ \sigma \pi \alpha ́ \rho \tau \varphi$. Before the word $\sigma \pi \alpha ́ \rho \tau \omega$ the manuscripts have either $\dot{\varepsilon} \kappa \delta \varepsilon \theta \dot{\varepsilon} v$ (as in AGT) or $\dot{\varepsilon} v \delta \varepsilon \theta \varepsilon ̀ v$ (as in M). Schmidt (quite unnecessarily, in my view) obelised the oldest attested reading, relegating his own suggestions ($\varepsilon \kappa \delta \varepsilon \theta \varepsilon ́ v \tau \iota ~ a n d ~ \varepsilon ̇ v \delta \varepsilon \theta \varepsilon ́ v \tau ı, ~ t h e ~ f o r m e r ~ b e i n g ~ s u b s t a n t i a l l y ~ a n t i c i p a t e d ~ b y ~$ Brinkmann's $\dot{\varepsilon} \kappa \delta \varepsilon \theta \varepsilon$ vivı $<\dot{\varepsilon} v>$), to the app. crit. Although syntactically possible, a neuter participle agreeing with the subject (ǒ) poses problems, because it is not
the hole, but the lock that is connected to the cord (cf. IX. 5 [32.11-12]; cf. also XIX. 4 [62.11-12]). In their translations, Baldi 23 vand Schmidt 369 included the last two words in a new sentence, which rather suggests that the main verb is missing and that the neuter nominative singular participle agrees with an unexpressed $\kappa \lambda \varepsilon 1 \theta$ píov: 'detto serraglio sarà raccomandato ad una corda' (Baldi), ‘[d]ieser [sc. Schieber] ist an eine Schnur geknüpft' (Schmidt). This, however, entails punctuating heavily after клєıбӨŋ́б\&t between either of the participles and $\sigma \pi \alpha ́ \rho \tau \omega$. I prefer to adopt Schmidt's doubtful emendation ε ह́v $\delta \varepsilon \theta \dot{\varepsilon} v \tau \iota$ (apparently al so adopted by Murphy 19), which makes the participle agree with $\kappa \lambda \varepsilon 1 \theta$ pí ω and avoids the need for further emendation. To support his conjecture, Schmidt cited Spir. 188.6 (iò $\dot{\alpha} \lambda u \sigma \varepsilon$ íßov $i o ̀$ $\dot{\varepsilon} v \delta \varepsilon \delta \varepsilon \mu \varepsilon ́ v o v)$, but there the verb is followed by $\varepsilon i \varsigma$ + accusative. This is the only occurrence of ε ह̇v $\delta \varepsilon ́ \omega$ in Hero (unless one follows Schmidt 1900: 258 and accepts the manuscript reading ε v $\delta \varepsilon \delta \varepsilon \mu \varepsilon \varepsilon_{v \alpha}$ of Dioptr. 308.12-13 [$\varepsilon \kappa \delta \varepsilon \delta \varepsilon \mu \varepsilon ́ v \alpha ~ H . ~ S c h o ̈ n e, ~$ al so tentatively favoured by Schmidt, but without attribution: see his app. crit. to Mech. Frag. $1.1=258.13]$), although the verb is commonly attested with the dative (LSJ s.v.; cf. also, for instance, [A pollod.] Poliorc. 164.2-3, 173.3-4, Bito $50.6-7,50.10-11$). By contrast, the verb ε к̇к $\delta \dot{\varepsilon} \omega$ (which occurs more frequently in Hero, especially in reference to cords) is normally construed with the genitive (with or without $̇$ غ́к, cf. LSJ s.v.); Hero uses it not only with $\dot{\varepsilon} \kappa+$ genitive (e.g. XVIII.1 [58.15], XIX. 4 [62.14], XXIII. 8 [78.17-18]) but al so with عis + accusative (eg. XXIV. 4 [82.13-14], XXVIII.7 [104.7-8]). Schmidt's suggested altemative ($\varepsilon \kappa \delta \varepsilon \theta \varepsilon ́ v \tau \iota)$ would therefore require further emendation, perhaps something
 бто́pтov (Brinkmann's conjecture can be easily dismissed because ε દ่к $\delta \varepsilon ́ \omega$ is never followed by ε èv + dative).

The term к $\lambda \varepsilon 1 \theta$ píov occurs only in the Automata and nowhere else The term is mainly used to refer to the lock mechanism of the σ v́ply (or to either of the two mechanisms in the context of the two-counterweight configuration: XIX. 3 [62.3-4], XIX. 4 [62.12] and [62.15], XIX. 5 [62.18-19]), but it also refers to the mechanism whereby the balls producing the sound of kettledrums and cymbals are released (XIV.1 [50.21], XIV.2 [52.6]). An entirely similar mechanism is presumably alluded to at XX. 4 [66.10-13] (cf. XX. 4 [66.15-16]), where Hero sets out to illustrate the device for generating the sound of thunder. In its most
basic form, the mechanism appears to consist of a slide (Prou 163; Schmidt 369 and passim) that is pulled back (either manually or automatically; cf. the use of the verb è $\pi \iota \sigma \pi \alpha ́ \omega$ at XIX. 4 [62.11], [62.15] and XIX. 5 [62.18]; cf. also XIX. 2 [62.2] and XIX. 3 [62.3]) by means of a cord. In one case, there is reason to believe that the slide was closed automatically (cf. XIX. 4 [62.14-15] with note ad loc.). The closest parallel to the usage of $\kappa \lambda \varepsilon 1 \theta$ piov is found in Str. 17.1.37, where the plural form $\kappa \lambda \varepsilon i \theta \rho \alpha$ denotes the locks used to regulate the inflow and outflow of water in a canal (i.e. a locking system consisting essentially of a key and a horizontally sliding wooden bar: see Bonneau 1993: 74-5 with n. 620, cited by Laudenbach 2015: 213); this use is not recorded by LSJ s.v., but see Helmann (1992: 221 n. 18), where Strabo's passage is erroneously cited as 17.4.35. Another related meaning of $\kappa \lambda \varepsilon i \theta \rho o v$ is 'boom (harbour barrier)': cf. LSJ s.v. I. 2 and, most recently, Whitehead (2016: 313), on Ph. Parasc. 94.40-2.
IX. 5 [32.11-12] દ̇ $\pi ı \lambda \alpha \mu \beta \alpha v o ́ \mu \varepsilon v o 1 . . . ~ к \lambda \varepsilon \imath \theta$ píov. The negative ov̉ is clearly a later addition, since Hero's audience is not supposed to know how the automaton is activated (in his app. crit. Schmidt misreported that manuscripts Lb and Pc omit ov, and therefore left it out from the text: see Schmidt, Supplementum 114 and 115 n .1). The reading might have arisen from a copyist repeating the ending of the preceding $\sigma \pi \alpha ́ \rho \tau о v$.
IX. 5 [32.12-13] кגì ov̋̃డc... $\pi \lambda ı v \theta$ íov. The passive form кıveit $\alpha ı$ (Lang; cf. 'si faccia il moto', Baldi 23^{v}) is to be preferred to the active form кıvei (transmitted by all other manuscripts, including Leid. Bon. Vulc. 4 in textu) because iò $\pi \lambda_{1 v}$ 日iov is best understood as subject (Baldi 23^{v}; Couture 251; Murphy 19) rather than as object ('sezt die Schnur den Radkasten in Bewegung', Schmidt 369). The reading кıveî would necessitate a pronominal subject refering to the pouring out of millet (e.g. \llô̂to> кıveî tò $\pi \lambda ı v \theta_{\text {íov) }}$). Contrast IX. 6 [32.15-17] ท̀ $\sigma \pi \alpha ́ \rho \tau о \varsigma . . . \tau \alpha \theta \varepsilon i ̂ \sigma \alpha \kappa เ v \eta ́ \sigma \varepsilon ı ~$ tò $\pi \lambda ı v \theta$ íov. Schmidt expressed his tentative approval of кıvદîtaı by citing X. 3 [34.17] (кıveîtaı тò $\pi \lambda ı v \theta i ́ o v)$; for the passive of кıvéต, cf. also I. 2 [2.12], II. 3 [8.4] and VIII. 2 [28.19].

Murphy 19 seems to have understood the term β áoıs, here as referring to a catch basin placed somewhere inside the base of the automaton. I fail to understand why the term should denote anything different from the base containing
the wheels (cf. note on II. 7 [10.18-19]), primarily because it has been used consistently up to this point. It is not difficult to imagine the millet pouring out on the ground, if we suppose that the base was bottomless. The bottom of the case had to be at least partial ly hollow to allow the wheels to rest on the ground.

On Hero's use of $\mathfrak{\eta} \rho \varepsilon ́ \mu \alpha$, see note on II. 9 [12.10-13].
 Hero al most al ways uses the subjunctive after ö $\pi \omega \varsigma$. Cf. esp. IX. 5 [32.9-12] and, for a similarly constructed passage, XVI. 3 [56.6-8]. There are, however, at least two other instances of ö $\pi \omega \varsigma$ with future indicative: XXVI. 8 [96.3-5] $\pi \varepsilon \rho ı \tau$ í $\eta \mu \mathrm{\imath}$
 тò $\tau 0$ v̂ $\pi \rho \omega ́ \tau o v ~ \varepsilon ̇ \mu \beta \alpha \delta o ̀ v . . . ~ ह ै \sigma \tau \alpha ı ~ \tau \rho ı \pi \lambda \alpha ́ \sigma ı o v ~(w i t h ~ a ~ s e e m i n g l y ~ p a r a t a c t i c ~ c o n-~$ struction used imperatively; on this usage, cf. Cooper 1998: 720-22).
X. 1 [32.19-20] 'E $\sigma \tau \omega \sigma \alpha v . . . \bar{\eta} \bar{\theta}$. The wheds $\overline{\alpha \beta}, \overline{\gamma \delta}$ and $\overline{\varepsilon \zeta}$ correspond, respectively, to $\overline{\pi \rho}, \overline{\sigma \tau}$ and $\bar{v} \bar{\varphi}$, as illustrated in Fig. 8a The axle $\overline{\eta \theta}$ corresponds instead to $\overline{\xi_{0}}$ (cf. IX.1 [30.8-9] and Schmidt 369 n . 1). The manuscript diagram accompanying this (re)configuration lacks any letter labels, but these were first supplied by Thévenot 252 unnumbered Fig.; see also Baldi 24 r unnumbered Fig., but with partial lettering.
X. 1 [32.22-34.1] $\tau \alpha ̀$ oûv... kavóvia. No explanation is given of what these кavóvia are Baldi 23^{v} ('rigoli') and Couture 251 ('normulis') strangely understood the term as indicating 'rulers' or 'measuring-rods' (LS), Supplement s.v. кavóviov); similarly, but more generally, Schmidt 371 ('Latten'). The term is used el sewhere in the treatise in its general sense (X.2 [34.9], on which see more below; ט́ $\sigma \lambda \lambda$ ń $\gamma \gamma$ ıv: XXIV. 3 [82.8], [82.10], [82.11] and XXIV. 4 [82.13]), but here it seems to have a more specific meaning. The observation that the wheel $\overline{\varepsilon \zeta}$ is placed ěv $\tau \iota v ı$ кavovị́ (X. 2 [34.3]; on such arrangement, cf. note on X. 2 [34.3-5]), in fact, points to some kind of frame. This is not entirely surprising, considering that the semantically related diminutive кavovis is attested in the meaning of 'door-frame' (Hellmann 1992: 187 with n. 7): IG 2².1672.155 (Eleusis, 329/328 вСЕ; but LSJ , Supplement s.v. II doubtfully suggest ' upright of a door-frame'), ID 1403 Bb col. I 48 (165-157/156 BCE). Add to this that Hero,

Bel. 100.8-9 uses the base noun кavóv to refer to the beams constituting the stock of a stone-throwing engine, the so-called кл $\mu \alpha к$ кс ('ladder'; on this, see Marsden 1969: 23-4 with Fig. 13): $\delta \alpha \dot{\alpha} \pi \eta \gamma \mu \alpha \kappa \alpha \tau \alpha \sigma \kappa \varepsilon v \alpha ́ \zeta \varepsilon \tau \alpha ı ~ \grave{\varepsilon} \kappa ~ \tau \varepsilon \sigma \sigma \alpha ́ \rho \omega v$ каvóvตv боvєбтпко́я. For a similar use of the derivative каvóvıov, cf. Ph. Bel. 74.7-8.

Murphy 19 first adopted the term 'bar-frame' (which I also adopt in my translation) to refer to the кavóviov of wheed $\overline{\varepsilon \zeta}$ (in addition to the above-cited occurence, cf. $X .2$ [34.5], [34.7] and X. 3 [34.13]; cf. also Murphy 41 n. 17), but rendered the other occurrences of the word by either ' bars' (here and $X .1$ [34.1]) or 'guidebars' (X.2 [34.9]). Although the wheels $\overline{\alpha \beta}$ and $\overline{\gamma \delta}$ (unlike $\overline{\varepsilon \zeta)}$) are not each encased by their own kavóviov (they are in fact on the same axle; an arrangement similar to that of $\overline{\varepsilon \zeta}$, would have required $\overline{\alpha \beta}$ and $\overline{\gamma \delta}$ to be mounted on separate axles), there seems to be no reason why the term should be taken as denoting a different structure. The three каvóvio are all attached to the sides of the case with dovetails (cf. X.1-2 [34.1-4], and following note), their purpose being to permit simultaneous lifting and lowering of the wheeds (cf. X.3-4 [34.17-23]). The case is different with regard to X. 2 [34.9], where the term seems merely intended to specify the shape of the γ ó μ por, ' dowels' (see further note on X. 2 [34.9]). I cannot understand why the γ ó $\mu \varphi$ or should serve as 'guidebars' (my emphasis). They appear to be used only to hold the screw $\overline{\varphi \chi}$ in place, allowing it to rotate but not to slide back and forth: cf. X. 2 [34.10-11].

Schmidt tentatively suggested adding either <eंv \quad р $\mu \circ \sigma \mu \varepsilon ́ v \alpha>$ or
 the nature of the $\dot{\varepsilon} \mu \pi v \varepsilon \lambda i ́ \delta 1 \alpha$. The constructions $\varepsilon \in v \alpha \rho \mu o ́ \zeta \omega+\varepsilon i \varsigma$ and $\dot{\varepsilon} \mu \beta \alpha i v \omega+$ sic, as used by Hero, refer to components fitting one into the other: for example,
 Schmidt in support of <'ंvnp \quad об $\mu \varepsilon ́ v \alpha>$). The sockets, which are made to receive the pivots, are to be fitted on(to) the каvóvia, not 'into' them (as with Murphy 19), just as at XI. 9 [40.9-10] other $\dot{\varepsilon} \mu \pi v \varepsilon \lambda i \delta i \alpha$ are on ($\dot{\varepsilon} v)$ either side of a $\delta \iota \alpha ́ \pi n \gamma \mu \alpha$ (cf. also V. 3 [20.20-1] $\pi v \varepsilon \lambda i ́ \delta \alpha c . . . ~ غ ̇ v ~ \tau o i ̂ c . . . ~ \tau o i ́ \chi o r \varsigma, ~ w i t h ~ K e n a n-~$ Jones-Ruffell-McGookin 2016: 176). The preposition cic is here clearly used instead of ε ह̀v, a late usage (LSJ s.v. cic I.2; cf. XXVII. 2 [98.11] and Spir. 16.4 and 274.4, with Hammer-Jensen 1910: 502).
X. 1 [34.1-2] $\tau \alpha ̀ ~ \delta غ ̀ ~ \kappa \alpha v o ́ v ı \alpha . . . ~ \tau o i ́ \chi o v, . ~ S l i d i n g ~ d o v e t a i l ~ j o i n t s ~ a r e ~ p r o b a b l y ~ u s e d ~$ here because the кavóvia are joined perpendi cularly (ỏ $\rho \theta$ d, cf. X. 2 [34.3]) to the sides of the case. In order for the кavóvia to be able to move up and down (X. 3 [34.12-13]), the joints will not have been made too tight. The term $\pi \varepsilon \lambda \varepsilon \kappa i v o c, ~ i n ~$ its technical sense of 'dovetail' (LSJ s.v. III) has been convincingly explained by Orlandos (1968: 102) as referring to the double-axe shape of the joint (cf. Lat. securic[u]la, OLD s.v. 2); see al so Baldi 44r n. 21 and, more recently, GinouvèsMartin (1985: 109).
X. 2 [34.3-5] iò $\overline{\varepsilon \zeta} . . . \pi \lambda ı v \theta$ íou. The details of this arrangement have been discussed by Murphy 41 n .17 , who envisaged three possibilities: (1) the whed is set so as to protrude through the side of the case; (2) the кavóviov has a width greater than the radius of the whed, and hence it serves as a framefor the whed; (3) the kavóviov holds the whed by means of a projecting bracket (as shown in Schmidt 371 Fig. 90a). The idea that the wheed is entirely or partly encased by the кavóviov as if by a frame (cf. note on X.1 [32.22-34.1]) must be closer to the truth than the other two possibilities, as also suggested by the manuscript diagrams. As can be seen in Fig. 9, the wheel on the right-hand side, unlike the remaining wheels, is placed into what appears to be its kavóvov (compare with Fig. 8a, see note on IX.1 [30.8-9]). This very arrangement is al so reproduced in perspective in Baldi 24 unnumbered Fig. As for the first possibility, it is not clear to me why the whed should stick out through the side. This, or a similar arrangement, would involve dislocating the whee, which is neither described nor implied anywhere in the text. There is, in any case, an inconsistency between Murphy's claim (41 n. 17) that the kavóvov moves in a dovetail on the side of the case (as illustrated in Murphy 20 Fig. 5) and her interpretation of the words
 emphasis; same understanding at X. 2 [34.8-9]). Прós is here followed by the dative, not by the accusative, and clearly indi cates proximity (LSJ s.v. B.1), as at VII. 3 [26.20] (mathematical usage: Mugler 1958: 26); cf. al so X. 1 [32.22].

Schmidt's к $\alpha \tau \alpha \beta \imath \alpha \zeta о \mu \varepsilon ́ v \varphi$ ($\kappa \alpha \tau \alpha \beta \imath \alpha \zeta$ онє́vov codd.) is no doubt correct. Cf. X.1 [34.1-2] $\tau \alpha ̀ ~ \delta \varepsilon ̀ ~ \kappa \alpha v o ́ v ı \alpha ~ \delta ı \alpha ̀ ~ \pi \varepsilon \lambda \varepsilon к i ́ v \omega v ~ к \alpha \tau \alpha \beta \alpha ı v \varepsilon ́ \tau \omega . ~ N o t e ~ t h e ~ v a r i a t i o ~$ between the verbs ка兀 $\alpha \beta \alpha i v \omega$ and $\kappa \alpha \tau \alpha \beta \curlywedge \beta \dot{́} \zeta \omega$.
$\mathbf{X . 2} 24.5-6]$ है $\sigma \tau \omega . . . \overline{\kappa \lambda \mu \nu}$. Schmidt's correction of the manuscript reading $\overline{\eta \theta}$ (cf. also $X .3$ [34.13]) is not trivial because $\bar{\eta} \bar{\theta}$ already denotes the axle of the main wheeds (Schmidt 371 n. 1): X. 1 [32.19-20]. Manuscript Ad al one transmits the nonsensical $\overline{\kappa \theta}$ (an error owing to confusion between η and κ). The letter $\bar{\kappa}$ designates one corner of the mortise $\overline{\kappa \lambda \mu \nu}$ and cannot be conjoined with $\bar{\theta}$.
 'joint', attested only here and at X. 2 [34.9]; cf. DGE s.v. A.II.2. This special ised meaning presumably developed from the basic passive meaning of 'to be enwrapped' (LSJ s.v. I; cf. also DGE s.v. A.I.1).

Pa transmits $\dot{\varepsilon} v \varepsilon i ́ \sigma \theta \omega$. This erroneous reading must have arisen from the omission of the penultimate syllable of ε veı $\lambda \varepsilon$ é $\sigma \theta \omega$. The verb ε vín $\mu \iota$ (which, in its basic sense, means ' send in[to]', LSJ s.v. 1) does not fit well within the context of the sentence. The only occurrence of the form ε veíc $\sigma \omega$ in Greek literature is Hp. Aff. Int. $48=7.288 .9$ Littré $\varepsilon \sigma \sigma \hat{\eta} \tau \alpha$ $\delta \grave{\varepsilon}$ $\varepsilon v \varepsilon i ́ \sigma \theta \omega$ [sc. ó voó́ ωv], but there the verb is used in a middle rather than a passive sense.
X. 2 [34.9] סv́o $\gamma o ́ \mu \varphi о$ каӨá $\pi \varepsilon \rho$ каvóvia. This comparison comes as a surprise, because the term каvóviov occurs throughout the chapter in reference to the barframes which make it possible to raise and lower the wheels. It seems to me, though, that kavóvia here should be understood in a more general sense as 'bars' - Murphy 19 goes astray in her rendering 'guidebars'; cf. note on X. 1 [32.22-34.1]. The reason for this is that the noun γ ó $\mu \varphi$ о c can indi cate any small object used to fasten components together, as transpires from a Cyrillian gloss in
 каì ỏ δ óv七єє γ ó $\mu \varphi ı$. The Hesychian gloss on the term is even more vague, although it only concerns woodwork (Hellmann 1992: 85 n .4): Hsch. $\gamma 806$ Latte
 ferent translations: ‘chiodi' (Baldi 23v), ‘cuneoli’ (Couture 252), ‘Bolzen’ (Schmidt 373). Among these, the most curious is that of Bal di. The term, in fact, does not ever seem to refer to a nail (cf. LSJ s.v. and Hellmann 1992: 84-6), despite Hsch. $\gamma 808$ Latte $\gamma о \mu \varphi \omega \tau$ ńpı $\alpha \cdot \hat{\eta} \lambda$ ol (for $\gamma о \mu \varphi \omega \tau$ и́pıv in the sense of 'tenon', cf. XXVII. 1 [98.5]). The Renaissance scholar, however, apparently understood that Hero adduced the comparison to clarify his reference to the two

रónبor - a procedure followed elsewhere in the text: II. 6 [10.6-8], XII. 2 [42.16-17], XXVII. 1 [98.5], XXVIII. 3 [100.18-19]; cf. XIII. 9 [50.10-11] and
 certainly represents a stylistic mannerism. Bal di's understanding of the comparison (later endorsed by Couture and Schmidt) largely hinged on his understanding of the word кavóviov (cf. note on X.1 [32.22-34.1]): ‘chiodi piani come rigoli' (my emphasis). This interpretation has two disadvantages. First, it does not take into account the γ ó μ poı's function as supports for the screw (cf. X. 2 [34.10]). If they were used to hold the screw, they were probably not too flat. Second, it rests on an erroneous interpretation of the word каvóviov, which often denotes simply anything bar-shaped (in Hero, too: LSJ s.v. I; for further references in Hero's Belopoeica, see, for example, Bel. 77.3, 77.5, 78.2). Given the semantic indeterminacy of the term γ ó $\mu \varphi о$, the most natural assumption is that
 fastening elements rather than their thickness. If this is the case, then we have to understand γ ó μ بoı as 'dowels' or 'pins' (Ginouvès-Martin 1985: 112), dismissing other possible shapes such as wedges ($\sigma \varphi \mathfrak{\eta} v \varepsilon \varsigma / c u n e o l i)$ or tenons.
X. 3 [34.16] $\delta \alpha \mu \mu \varepsilon \mu \eta \rho v \mu \varepsilon ́ v a$. LSJ s.v. $\delta ı \alpha \mu \eta \rho v ́ \omega$ cite the present occurrence as the only attestation of the verb $\delta i \alpha \mu \eta \rho v ́ o \mu \alpha »$ (erroneously recorded as active). The verb occurs three more times (XI. 11 [42.6], XVI. 3 [56.7], Bel. 108.9), or five more times if one counts the two occurrences in the fragments preserved by Pappus: Mech. Frag. 2.1 and 3.1= Papp. 1118.8-9 (deleted by Hultsch) and 1132.9 (middle). In most instances, the verb refers to the act of winding a cord (or its slackenings) into hanks. On one occasion (Bel. 108.9), Hero uses the verb to describe the process of threading the spring-cord through holes in the frame of a catapult.
X.3[34.16-17] $\dot{\alpha} \rho \mu \circ \sigma \tau \alpha ̀ . . . ~ \pi \lambda ı v \theta i ́ o v . ~ N o t e ~ t h e ~ v a r i a t i o ~ w i t h ~ X I . ~ 5 ~[38.5-6] . ~$

For the technical use of $\dot{\alpha} \rho \mu о \sigma \tau o ́ c, ~ c f . ~ D G E ~ s . v . ~ I .1, ~ c i t i n g ~ t h e ~ p r e s e n t ~ p a s-~$ sage and XVI. 1 [54.14] among others.
 pert builder. For a statement of (allegedly) exact proportionality, cf. XXIII. 1 [74.7-9].

XI [36.1-42.8] Other forms of motion

Hero now discusses three different configurations for snakelike motion, with only passing mention of the possibility of making the automaton travel along non-rectangular polygonal paths (XI.1). At their basic level, all three mechanisms share the idea of a differential drive to produce changes in direction. The first mechanism (XI.2-5) has the two front wheels independently mounted on hubs, and the rear (non-driving) wheel turning on pivots. The second mechanism (XI.7) is a modified - but probably unsuccessful - version of the previous configuration, featuring the addition of a third hub but with the rear axle now attached to the case and a cord connecting the hub to the counterweight. The third and last mechanism (XI.9-10), explicitly favoured for technical reasons (αi
 type of bearing with the $\kappa v \sigma \delta \alpha \xi$, and the single front axle with two independent axles. Both XI. 7 and XI. 10 have been conderned by the previous editor as interpolations (Schmidt LIII-IV). The incipit $\beta \dot{\varepsilon} \lambda \tau i o v ~ \delta \dot{\varepsilon} \kappa \alpha i$, etc. (XI.7) al one argues against interpolation, for it occurs, in a slightly modified form, in at least two other places (II. 5 and Spir. 202.9-10). The addition of the third hub does not contradict XI.8, because Hero does not express his preference for the second configuration. As regards XI.10, the idea that each axle receives two cords is clearly wrong. That Hero is employing single cords is suggested not by XI. 11 (as argued by Schmidt), but by his actual use of $\delta i \pi \lambda o ́ o c$ (cf. note on XI. $10 \alpha i \delta \dot{\varepsilon}$ $\pi \varepsilon \rho i . . . ~ \sigma \tau \rho \varepsilon ́ \varphi \varepsilon \varepsilon v)$. For further arguments against interpolation, see notes ad locc. Nor does it make sense to propose, as Murphy 42 n . 22 does, that, taken together, XI. 7 and XI. 10 describe an alternative to the first configuration. They indeed describe two different configurations with different bearings. The flow of the narrative is once again interrupted (XI.6; cf. IX.4-6) to incorporate more general information on the (empirical) meesurement of cords.
 variation of Opening E, makes it clear that he refers to an improvement of his
own devising, quite possibly one that he did not final ise In modern terminology, a 'rectilinear figure' is simply a polygon: cf. Euc. 1 Def. $19 \Sigma x \eta ́ \mu \alpha \tau \alpha$
 Giardina (2003: 299-300).
 axles fixed to the case (see Fig. 11a), even though Hero's counterposition ($\delta \mu \varepsilon ̀ v$ $\overline{\eta \theta} \ldots$ ó $\delta \dot{\varepsilon} \overline{\varepsilon \zeta}$ бvva $\alpha \rho \grave{\omega} \varsigma$ ह̈б $\tau \omega \tau \varrho ิ \pi \lambda \iota v \theta i ́ \varphi)$ suggests that $\overline{\eta \theta}$ was, in fact, intended to be detached from it. Were it not so, we could not understand the proposed change of XI. 7 [38.15-17], which, indeed, must have led to modifications of the original diagram. Previous editors and translators, notably Baldi 25^{r} unnumbered Fig., Schmidt 374 Fig. 91a and Murphy 21 Fig. 6, have placed whed $\overline{\kappa \lambda}$ within a frame in the middle of side $\overline{\gamma \delta}$, probably influenced by the wheed configuration for straight-line (Figs: 4a-b) and rectangular (Figs, 8ab) motions; see also my modern reconstruction (Fig. 11b) and note on XI.10 [40.18-19]. Hero's silence in this respect is not surprising, for only once does he mention the peculiar arrangement of the third, non-driving wheed: V. 4 [22.5-7]; but of. IX. 1 [30.7-8] with note ad loc.
 that the axle $\bar{\varepsilon}$, should be made as thick as the other axle. This, however, is not implied by the Greek text. The significance of Hero's words has to do with the necessity to reduce friction and to ensure smooth turning of the $\chi 0$ оvıíísৎ around the fixed axle $\overline{\varepsilon \zeta}$ (see generally Keenan-J ones-Ruffell-McGookin 2016: 177), as becomes apparent from the immediately following lines: XI. 2 [36.10-13]. On Hero's recurring insistence on the use of the lathe, cf. note on II. 3

 II. 8 [12.6-7].
 Schmidt on the basis of V. 3 [22.2-3] к α 文 $\alpha \dot{\tau} \tau \dot{\prime}$) to that of M ($\alpha \hat{v} \tau \alpha \mathrm{l}$). Schmidt printed the latter reading, although it is not clear whether he took it from \mathbf{M} or corrected it fromAGT (α vit α).
 scription of the axle whed arrangement (II. 7 [10.16-17]), but here the asyndeton between the two genitive absolutes shifts the focus from the mechanism by which motion is transmitted to the rapidity with which the individual movements succeed one another; for a similar use of asyndeton, cf. XI. 7 [38.24-40.1]; see also, for instance, E. Andr. $1154 \beta \alpha \dot{\alpha} \lambda \lambda \omega v \alpha \dot{\alpha} \alpha \dot{\sigma} \sigma \omega v$, with Allan (2009: 197). Murphy 20 rendered the second genitive absolute as a subordi nate clause ('as the strings are unwound'), thus obscuring the causal rel ationship between the fall of the counterweight and the unwinding of the cords. Other translators, such as Baldi 24v, Couture 253 and McCourt (2012: 195), correctly understood the syntax, but they all replaced the 'cords' with a single cord. Not only does this violate grammar, but it also contradicts XI. 3 [36.15].
XI. 5 [38.1-3] $\delta \varepsilon \eta \eta^{\prime} \sigma \varepsilon 1 . . . \varepsilon \dot{\varepsilon} v \varepsilon \chi \theta \hat{\eta} v \alpha 1$. In other words, the size of the slackening is determined based on the desired length of the trajectory of the automaton. There is no mention of how the turning angle could be regulated, but that must have depended mainly, but not only, on the wheed arrangement. For a description of the method used to measurelengths of cord, cf. XI.6 [38.7-12] with note ad Ioc.
XI. 6 [38.7-12] $\delta \varepsilon \eta ́ \sigma \varepsilon 1 . . . ~ \delta \omega \sigma \sigma \mu \varepsilon v$. For the rational e behind this process, cf. note on IX.4[32.1-2].

Beryman (2009: 142 n .165) sees a contrast here (al beit without giving the precise reference), as elsewhere (?), between what happens automatically (iò av̇тó $\mu \alpha \tau o v$) and what happens by trial ((éк $\pi \varepsilon i ́ p \alpha \varsigma)$. I cannot find such a contrast anywhere in Hero's corpus. What I do find is a contrast (either explicitly or implicitly articulated) between automatic processes and manually induced ($\tau \alpha i \overline{ }$, $\chi \varepsilon \rho \sigma$ ív or τ ṇ $\left.\chi \varepsilon \iota \rho^{\prime}\right)$ movements: in addition to the present passage, cf. XXIII. 3 [74.18-76.1], XXVII.3-4 [98.16-20], XXX. 4 [108.3-4], Spir. 186.9-12 and 198.12-200.1; cf. also XXIV.1 [82.5-8] (гоі̂ৎ $\delta \alpha \kappa \tau ט ́ \lambda о ィ \varsigma ~ v s ~ \alpha v ̇ \tau o ́ \mu \alpha \tau o v) . ~ I n ~ f a c t, ~$
 scribe the manual steps involved in the measuring process, as argued by Berryman, but, rather, to describe a systematic testing procedure. This emerges from a

etc.) and Ph. Bel. 50.14-29, where Philo gives an account of the discovery of the diameter of the hole that receives the spring of the catapult as the guiding principle in artillery construction. The emphasis placed there on the importance of $\pi \varepsilon i ̂ \rho \alpha ~ s e r v e s ~ t o ~ i n d i c a t e ~ t h a t ~ t h e ~ d i s c o v e r y ~ w o u l d ~ n o t ~ h a v e ~ b e e n ~ m a d e ~ w i t h o u t ~$ systematic empirical testing (Schiefsky 2015: 628-31; cf. also Ferrari 1985: 256). Hero likewise assigns an important role to practical testing. Repeated testing enables the practitioner to determine specific measurements (here, as at Spir. 288.2-3 $\pi \varepsilon$ ípạ oûv ε v́póv $\tau \varepsilon \varsigma ~ \tau \alpha ̀ ~ \mu \varepsilon ́ \tau \rho \alpha, ~ e t c.) ; ~ i t ~ p r o m o t e s ~ u n d e r s t a n d i n g ~ o f ~ h o w ~$
 $\kappa \alpha \tau \alpha ́ \lambda \lambda \lambda \lambda \frac{1}{\circ} \tau$ ò $\tau \rho \hat{\eta} \mu \alpha \tau \hat{1}$ MO $\sigma \omega \lambda \hat{\eta} v l$, etc.); it assists in calculating the speed ratio between a screw and a cogwheel (Dioptr. 298.6-9). Hero, however, goes further than assigning a heuristic status to $\pi \varepsilon i ̂ p \alpha$. Just as importantly, testing serves as a basis for comparing the poor performance of earlier automata with the superior performance of Hero's own models: XX.1 [64.4-7] каì $\gamma \grave{\alpha} \rho$ عঠ̉ко́ $\pi \omega$,

 [20.10-12]. That is to say, it provides the ultimate guarantee of the safety and effectiveness of the devices. It is in this light, too, that one should read Hero's concern about the potential failure of the mobile automaton: cf. II. 4 [8.11-12] and, moreominously, II. 11 [14.7-10].
 flect a failed attempt to improve the simpler arrangement of XI.2-5 [36.7-8.4]. While the addition of the third hub, as well as of the third cord (both deemed pointless by Schmidt LIII; cf. note on XI. 10 [42.2-3]), might be explained on the basis of the designer's desire to obtain more control over the third whed (Murphy 41 n .20), the slackenings of the cord have no purpose (Schmidt LIII). In fact, as noted by the Teubner editor, the whee $\overline{\kappa \lambda}$ has been presented as continuously rotating (XI. 3 [36.19-20], XI. 4 [36.22-3]; cf. XI. 5 [38.3-4]), which is al so consistent with XI. 7 [38.22-40.2]. Assuming that $\overline{\kappa \lambda}$ could beforced to stop turning because of the slackening of its cord, it would still have been dragged by either or both of the two other wheels. The words каì $\tau \alpha ̀ ~ \chi \alpha \lambda \alpha ́ \sigma \mu \alpha \tau \alpha ~ \check{~} \chi \chi 0 v \sigma \alpha v$ (see app. crit. ad loc.) seem therefore to have been interpolated in order to make
the arrangement of $\overline{\kappa \lambda}$ match exactly the arrangement of the main wheds $\overline{\pi \rho}$ and $\overline{\sigma \tau}$.

There is no reason to emend ε ह̀v to ov̀v, as hesitantly proposed by Schmidt in his app. crit. Schmidt did not adduce any evidence in support of his conjecture,
 The verb used here, however, is not $\varepsilon \pi \pi \iota \sigma \tau \varepsilon \varepsilon ́ \varphi \omega$ but $\pi \varepsilon \rho$ íкє $\mu \alpha$, which refers to the mounting of the whed. Cf. XI. 9 [40.12-14] غ́ко́ $\tau \varepsilon \rho \circ, ~[s c . \tau \hat{\omega} v \tau \rho о \chi \hat{\omega} v]$ $\kappa \varepsilon i ́ \sigma \theta \omega . . . \dot{\varepsilon} v \kappa \nu \omega \dot{\delta} \alpha \xi \imath v$.
XI. 7 [38.19-23] tǒ $\pi \omega \varsigma \dagger$... $\tau \rho 0 \chi 0$ v̂. I agree with Schmidt LIII that ö $\pi \omega \varsigma$ poses a serious linguistic problem, but disagree that it constitutes a strong argument for interpolation. He put a crux in front of it, but deemed it 'spurium' in his app. crit. This is somewhat curious, since he had al ready deleted the whole of XI. 7 (see also my app. crit. to каì $\tau \grave{\alpha} \chi \alpha \lambda \alpha \alpha^{\sigma} \mu \alpha \tau \alpha$ हैخ χ ovб αv). None of the proposed emendations is entirely convincing. Brinkmann suggested adding either $<\sigma \nu \mu \beta \hat{1}>$ or \ll oun $\sigma \omega \mu \varepsilon v>$ after ö $\pi \omega c$, but neither of these verbs is ever found as the main verb of a final ö $\pi \omega$ clause in Hero. Schmidt proposed doubtfully $\dot{\omega} \varsigma$ (= $\omega ̋ \sigma \tau \varepsilon$) in place of ő $\pi \omega \varsigma$, but Hero typically uses a consecutive $\dot{\omega} \varsigma$ to introduce shorter, syntactically less convoluted clauses; for instances of this usage, see Schmidt (1899b: 180-1) s.v. $\dot{\omega}$ ((but I. 1 [2.6] should be regarded as limitative) and Heiberg (1914: 273) s.v. $\dot{\omega}$. The presence of accusative and infinitive con-
 need a $\check{\sigma} \sigma \varepsilon$, but it is difficult to see how that would have been corrupted into ő $\pi \omega \varsigma$. I have placed ő $\pi \omega \varsigma$, between cruces and translated ad sensum (as previous translators did), taking the infinitives $\dot{\varepsilon} \sigma \tau \alpha \alpha_{v a}$ and $\sigma \tau \rho \varepsilon ́ \varphi \varepsilon \sigma \theta \alpha ı$ as the main verbs of thefinal clause.
 the sequence ớ $\mu \alpha \hat{\omega} v \tau \rho \iota \hat{\nu} \kappa \kappa v o v \mu \varepsilon ́ v \omega v \tau \rho о \chi \hat{\omega} v$ ('al ong with the three moving wheeds'), which does not make sense in the context. More importantly, the use of the genitive with ${ }_{\alpha} \mu \alpha$ is quite rare (cf. LSJ s.v. ö $\mu \alpha$ B.II). When Hero uses á $\mu \alpha$ prepositionally, he always employs the usual construction with the dative: see, for example, IV. 2 [18.13] and IX. 6 [32.14]. Previous translators misinterpreted the transmitted sequence as a genitive absolute, without paying attention
both to the prepositional value of $\ddot{\alpha} \mu \alpha$ and to the position of the participle $\kappa ı v o v \mu \varepsilon ́ v \omega v$. The transmitted text is best explained by supposing that кıvou μ र́vตv has at some point been misplaced. I have therefore transposed $\kappa ı v o u \mu \varepsilon ́ v \omega v$ and placed it after ${ }^{\prime} \mu \alpha$. Because of the transposition, ${ }_{\alpha} \mu \alpha$ now serves as an adverb modifying the genitive absolute кıvov $\mu \varepsilon$ v $\omega v \ldots \tau \rho о \chi \bar{\omega} v$, and the two genitive absolutes are asyndetically connected. Cf. XI. 3 [36.16-18] with note ad loc. For the sequence of movements, cf. also XI.4 [36.25-6].
 depends on the preceding öxpıc. Bal di 25° and Couture 254 treated it as a main verb, but probably only because of the complexity and length of the sentence. Brinkmann, conversely, construed it as dependent on the preceding ö $\pi \omega \varsigma$, with the effect of straining the syntax (even assuming that ö $\pi \omega c$ should govern another verb that is now missing: cf. noteon XI. 7 [38.19-23]).

For other examples of the phrase $\tau \grave{v} v$ ódòv $\varphi \varepsilon ́ \rho \varepsilon \sigma \theta \alpha ı$, cf. App. BC 5.14.142 and Gal. UP 3.580 and 653 Kühn.
XI. 8 [40.3-4] $\pi \varepsilon \rho ı к \varepsilon ́ \mu \varepsilon v a ı ~ \tau o i ̂ ̧ ~ a ̈ \xi o \sigma ı v . ~ T h e s e ~ w o r d s ~ w e r e ~ u n n e c e s s a r i l y ~ r e-~$ garded by Schmidt LIII as an interpolation resulting fromXI.7.
 bearing capacity of the χ оıvıкí\&ء,, see Kenan-J ones-Ruffell-McGookin (2016: 179).

Schmidt's addition of <iò> is necessary, because the infinitive of غ̇лiкє $\mu \alpha \downarrow$
 can be easily explai ned by haplography.
XI. 8 [40.6] $\dot{\alpha} \rho \varepsilon ́ \sigma \kappa \varepsilon ı . ~ A n ~ i d i o m ~ n o t ~ u s e d ~ e l ~ s e w h e r e ~ i n ~ t h e ~ t e x t ~(s e e ~ I n t r o d u c t i o n, ~$ pp. cxii-cxiii with n. 245).
XI. 8 [40.6-7] $\dot{\varepsilon} v \tau o i ̂, . . . ~ \sigma \tau \rho \varepsilon ́ \varphi \varepsilon \sigma \theta \alpha 1$. Hero's preference for the $\kappa v \omega \dot{\delta} \alpha \dot{\xi}$ type of bearing seems to be dictated by concems over friction (KeenanJ ones-Ruffell-McGookin 2016: 177).
 Schmidt, anticipated by Baldi 25°), the manuscripts have $\tau \rho o ́ \pi o v$ (adopted by Schmidt 378 and Murphy 22; see below), which does not make sense ('in the same way as the axle, etc.' ?). Other supplements and emendations have been proposed. Brinkmann emended τ ò $\pi \lambda ı v \theta$ iov to $\tau \hat{\varrho} \pi \lambda \nu v \theta i ́ \omega$ (made to depend on $\dot{\alpha} \rho \alpha \rho o ́ s$, which is harsh), but $\gamma \varepsilon \gamma o v \varepsilon ́ \tau \omega ~ \gamma \grave{\alpha} \rho$ demands the presence of a subject in
 [40.18-19] and XIII. 6 [48.3-4]. Schmidt put a crux before τ ò $\pi \lambda ı v \theta$ íov, while tentatively suggesting (app. crit. ad loc.), on the basis of XXIV. 5 [82.21-2] (εv

 his translation, al beit with persistent doubts [379 with n. 1]: ' Man mache aber (in der Weise wie die Achse mit den zwei Rädern) zwé Achsen'). These changes seem unwarranted. First, XXIV. 5 [82.21-2] provides a weak basis for emendation. Second, if we emend $\tau \rho o ́ \pi o v ~ t o ~ \tau o ́ \pi o v ~(a ~ c o m m o n ~ e n o u g h ~ s c r i b a l ~ e r r o r), ~$ the words $\kappa \alpha \theta^{\prime}$ ôv... ${ }^{\prime} \xi \omega v$, although incomplete, no longer appear misplaced. Later in the text (XI. 9 [40.12-14]), the two axles, such as can be seen in Figs. $\mathbf{1 4 a b}$, are described as being set between the $\delta \dot{\alpha} \pi \tau \eta \gamma \mu \alpha$ and the sides of the case. A transposition would therefore be pointless. Third, without the words $\kappa \alpha \theta^{\prime}$ ôv... $\alpha \prime \xi \omega v$, we would have no indication whatsoever of the position of the $\delta \alpha \alpha \pi \tau \eta \gamma \mu \alpha$, and it is not clear why an interpolator, and not Hero, would have thought fit to include the information. I adopt Hildebrandt's «'̇ χ ov>, anticipated by Baldi 25^{\vee} ('habbia'). This supplement, which has been adopted by Schmidt 379 in his translation ('Es habe nämlich der Kasten, etc.'), has two advantages: it gives a typically Heronian construction, and it is easy to explain palaeographically (iò $\pi \lambda ı v$ 'iov $\langle\bar{\varepsilon} \chi o v>\ldots$. $\bar{\varepsilon} \chi \omega v$). However, it still requires (as do all the other proposed emendations) the addition of a main verb within the relative clause $\kappa \alpha \theta$ ' őv... $\ddot{\alpha} \xi \omega v$. I have added $\langle\hat{\psi} v>$ after $\ddot{\alpha} \xi \omega v$, partly on the basis of a comparison with
 τ ó π ov ó obvíбкоц $\hat{\eta} v$. The past tense of the verb 'to be' (al ready supplied by Bal di 25^{v}) is needed, because the single axle which appears in the previous two configurations has now been replaced by two distinct axles. This verb form probably dropped out by partial homeoteleuton ($\varepsilon \not \chi \omega v$ 的 $\xi \omega v<\hat{\lambda} v>o ̋ \rho \theta 10 v$). I do not under-
stand why the variant reading $\gamma \varepsilon v \varepsilon ́ \sigma \theta \omega$ ($\left.\mathbf{A}^{p c} \mathbf{G}\right)$ for $\gamma \varepsilon \gamma o v \varepsilon$ ' $\tau \omega$ should be 'more logical' (Murphy 41 n .21). The form $\gamma \varepsilon v \varepsilon ́ \sigma \theta \omega$ is found elsewhere in Hero only once (Geom 250.20), whereas $\gamma \varepsilon \gamma$ оvét ω occurs several times: for occurrences in the Automata, cf. VII. 3 [28.1], X. 3 [34.17], XI. 10 [40.18], XIII. 6 [48.3] and XIX. 2 [62.1]; cf. also XI. 9 [40.11], quoted above Murphy 22 mistranslates here: 'Let a right-angled partition be attached in the same manner as the base to the axleholding the two wheeds'.
 LIII of being an interpolation. He claimed that ε と́к $\alpha \sigma \tau o v . . . \kappa v ต ́ \delta \alpha \xi ı v ~ r e p e a t s ~$ something that has al ready been said (he did not cite a specific passage, but he presumably had in mind XI. 8 [40.6-7] $\alpha \rho \varepsilon ́ \sigma \kappa \varepsilon 1 . . . \sigma \tau \rho \varepsilon ́ \varphi \varepsilon \sigma \theta \alpha ı) ~ a n d ~ t h a t ~$ $\beta \varepsilon \beta \eta \kappa \varepsilon ́ v \alpha 1 . . . \tau \rho \circ \chi \circ$ ѝц expresses something obvious. Schmidt's doubts seem ex-
 because, in the latter case, Hero's remark is intended to have wider appl icability.

Compare $\beta \varepsilon \beta \eta \kappa$ ќvaı. . $\tau \rho о \chi$ о̀े , with II. 7 [10.17-18].
XI. 10 [40.17-18] ai δ غ̀ $\pi \varepsilon \rho \grave{. . . ~} \sigma \tau \rho \varepsilon ́ \varphi \varepsilon ı v$. Schmidt LIII-LIV, followed by Olivieri (1901: 433) and Murphy 41 n. 22, understood the reference to 'double cords' (cf. al so XI. 10 [42.2-3]) to mean that each axle has two cords wound around it. In his opinion, this would contradict the Heronian principle that forward and backward motion is controlled by a single cord: cf. VI.1 [22.22-24.3] with note ad loc. A nother implication would be that since both front wheeds are in the centre of their respective axle ($\mu \varepsilon \sigma о \lambda \alpha \beta \varepsilon i v ~ \tau o ̀ v ~ \tau \rho o \chi o ̀ v ; ~ o n ~ S c h m i d t ' s ~ d o u b t f u l ~$ $\mu \varepsilon \sigma о \lambda \alpha \beta \varepsilon i v$, see below), they become closer to each other (compare Fig. 14a with Fig. 11a although in the former they appear disproportionately large) and so increase the chances of the automaton tipping over (Schmidt 381 n .2). This may be true, but it overlooks the fact that this particular arrangement is described as favouring the even rotation of the wheds (ε z '̂$\sigma o v ~ \sigma \tau \rho \varepsilon ́ \varphi \varepsilon ı v) . ~ U n l i k e ~$ previous scholars, I do not think that the use of the adjective $\delta i \pi \lambda$ óoc (here, as at XI. 10 [42.2]) refers to the presence of two cords. LSJ s.v. I. 1 give as basic meanings of $\delta i \pi \lambda$ óoc 'twofold', 'double', being properly used of 'cloaks and articles of dress' (hence 'doublefolded'). The only examples given of the proper sense of the word are from Homer (II. 4.133, 10.134, Od. 19.226) and Apollodorus of

Carystus (fr. 4), but this use is found as late as the Imperial period (Plu. Mar. 17.4; cf. Sor. Gyn. 4.8.14 and 4.12.3, of the posture of the foetus); cf. DGE s.v. A.1-2. That Hero (and not an interpol ator) is using the adjective in a similar way is shown by XXIII. 4 [76.5-7], where a single cord is said to have been double-
 $\tau \rho v ́ \pi \eta \mu \alpha)$. If the cords are double-wound, they each have three ends, two of which in the form of a loop. The axles can then each be inserted through these looped ends, each whed being contained in the middle of the axle between the said ends. It is thus clear that Hero did not intend to double the number of cords.

I have accepted Schmid's suggestion to read $\mu \varepsilon \sigma о \lambda \alpha \beta \varepsilon i v$ instead of $\mu \varepsilon ́ \sigma o v$ $\lambda \alpha \beta \varepsilon i v$. In his app. crit. Schmidt rightly pointed to XI. 10 [42.3] $\mu \varepsilon \sigma о \lambda \alpha \beta o v ̂ \sigma \alpha$ đòv $\tau \rho \sigma \chi o ́ v$. The verb $\mu \varepsilon \sigma о \lambda \alpha \beta \varepsilon \varepsilon \omega$ properly means 'take in the middle' (not recorded as such in LSJ s.v.; but cf. TGL s.v.), but it also means, according to LSJ s.v. I, 'seize', 'nip', 'interrupt', 'intercept'. Murphy 41 n. 22 equates $\mu \varepsilon ́ \sigma o v$ $\lambda \alpha \beta \varepsilon i v$ to $\mu \varepsilon \sigma 0 \lambda \alpha \beta 000 \sigma \alpha$, arguing that Hero uses these words to mean that the whee is in the middle of the axle. However, if we were to accept the manuscript
 position) as 'take the middlle of the whed'; but the cords are wrapped around the axles, not the wheels: II. 7 [10.14-15]. The expression $\mu \varepsilon \sigma о \lambda \alpha \beta o v ̂ \sigma \alpha$ tòv $\tau \rho \circ \chi o ́ v$, by contrast, can be understood to mean ' contai ning the wheed in the middle'. The closest parallel to this technical use of $\mu \varepsilon \sigma о \lambda \alpha \beta \dot{\varepsilon} \omega$ is the use of expressions de-
 (D.S. 11.26.8; cf. 1.3.3 ['having one's life cut short in the midst', LSJ s.v. I]) or simply $\mu \varepsilon \sigma о \lambda \alpha \beta \eta \theta \varepsilon i ̀, \ldots$ vi π ò $\tau \hat{\varsigma} \kappa \varepsilon \pi \rho \omega \mu \varepsilon ́ v \eta \varsigma$ (D.S. 16.1.5 and Plb. Fr. 184.2). The latter expression is aptly glossed by Suda $\mu 667$ as ε ह $\tau \uparrow \hat{\varphi} \mu \varepsilon \tau \alpha \xi \grave{v}$ [sc. β ị́] $\sigma v \sigma \chi \varepsilon \theta \varepsilon$ íc. So, $\mu \varepsilon \sigma о \lambda \alpha \beta \varepsilon i v ~ \tau o ̀ v ~ \tau \rho о \chi o ́ v ~ s e m s ~ t o ~ m e a n ~ \sigma v \sigma \chi \varepsilon i v ~ \tau o ̀ v ~ \tau \rho o \chi o ̀ v ~ \varepsilon ̉ v ~ \tau @ ̣ ~$

XI.10[40.18-19] $\gamma \varepsilon \gamma 0 v \varepsilon ́ t \omega ~ \delta \varepsilon ̀ . . . ~ к ı v o u ́ \mu \varepsilon v o c . ~ S c h m i d t ~ i s ~ r i g h t ~ t o ~ p r e f e r ~ G ' s ~ r e a d-~$
 duce the third item in a series of three. This may be qualified either as ह̌tع (e.g. V. 4 [22.5]) or as τ рítoc (eg. IX. 1 [30.6]).

Manuscript diagrams show this axle attached to the case (see Fig. 14a). However, the words то⿱㇒́тoı ó μ oí ς кıvov́ $\mu \varepsilon v o \varsigma$ only indicate that, just like the
two front axles, the rear axle is made to tum on pivots. Following in the footsteps of Baldi 25° unnumbered Fig. and Schmidt 378 Fig. 92a, and in analogy with the configurations for straight-line and rectangular motions, I have placed the rear axle and whed assembly within a frame (Fig. 14b). It is quite possible that the original diagram has at some point been modified under the influence of the diagram for the first configuration, which in turn had been modified under the influence of the second configuration (see note on XI. 2 [36.7-10]). (Note that the diagram for the second configuration is apparently now lost, and that the other two diagrams pertaining to snakelike motion are positioned next to each other in a number of manuscripts, including A.)
XI. 10 [40.19-42.1] \{є́ $\mu \pi \rho о \sigma \theta \varepsilon v \tau \tau 0 \hat{\tau} \pi \lambda ı \theta$ íov \}. These words have been previously mistranslated as 'at the front of the case'. In fact, when used prepositionally, ε ' $\mu \pi \rho \circ \sigma \theta \varepsilon v$ means 'in front of' rather than 'at the front of' (LSJ s.v. II). AIthough he did not make a clear distinction between these two meanings ('in dem vorderen... Teile des Kastens'/'vor dem Kasten'), Schmidt 381 with n. 1 did real ise that these words are inappropriate in the context. In his app. crit. he tent-
 which correctly places the axle 'at the back of the case'. However, there are at least two reasons for rejecting Schmidt's solution. First, Hero's use of the ad-

 π ivaкoс). In this case, it would be more difficult to explain the combined omission of $\varepsilon \dot{v} \tau \hat{\varrho}$ and $\mu \varepsilon ́ \rho \varepsilon \varepsilon$. Second, while scribal confusion between $\varepsilon \mu \mu \rho \rho \sigma \theta \varepsilon v$ and ő $\pi\llcorner\sigma \theta \varepsilon v$ is not uncommon (see, for instance, my app. crit. to XXIII. 2 [74.12]), the exact position of the axles is al ways left unspecified in the treatise (Introduction, p. ciii). It is, therefore, more likely that the words ${ }_{\varepsilon} \mu \pi \rho \circ \sigma \theta \varepsilon v ~ \tau o v ̂ ~ \pi \lambda ı v \theta$ íov were interpolated at a later stage. We can easily imagine a rather incompetent scribe trying to describe the diagram in front of him, where the third axle would presumably have been located on the right-hand side of the case (see Fig. 14a).
XI. 10 [42.1-2] $\% \sigma \tau \varepsilon . . . \pi \lambda ı v$ íov. Schmidt 381 n .2 found it strange that, with the addition of another axle ('Einrichtung der zweiten Achse' [my emphasis], no doubt referring to either of the front axles: XI. 9 [40.11]), the automaton travels
on three wheels (instead of four?). I do not see how the front axles could be made to carry more than two wheels, especially considering that the wheed s are now closer to each other than they were in the previous two configurations: of. note on XI. 10 [40.17-18]. Perhaps he meant to say that the rear axle should likewise carry two wheels (despite XI. 10 [42.3]?), but this remains on the level of speculation.
 with suspicion by Schmidt LIV, because, with the exception of XI. 7 [38.17-19], the third wheel is al ways dragged al ong by either or both of the front wheeds: of. XI. 3 [36.19-20] and XI. 4 [36.23]. This cord, however, presumably serves the purpose of giving more control over the rear wheed: cf. note on XI. 7 [38.15-19]. On the doubling of the cord, cf. note on XI. 10 [40.17-18].
XI. 10 [42.3] $\mu \varepsilon \sigma \sigma \lambda \alpha \beta o v ̂ \sigma \alpha$ тòv $\tau \rho \sigma \chi o ́ v$. On the meaning of this phrase, cf. note on XI.10 [40.17-18].

A few manuscripts ($\mathbf{A a}, \mathbf{B c}, \mathbf{O}, \mathbf{P b}, \mathbf{V d}$) have the corrupt $\mu \varepsilon \sigma \circ \sigma v \lambda \lambda \alpha \beta o \hat{\sigma} \sigma \alpha$ instead of $\mu \varepsilon \sigma о \lambda \alpha \beta$ ov̂ α. LSJ s.v. give as meanings of $\mu \varepsilon \sigma о \sigma v \lambda \lambda \alpha \beta \varepsilon ́ \omega$ ‘use one remedy alternately with another' (I) and 'to be intercepted' (II, passive voice), citing, respectively, Aë. $7.45=108.1$ Hirschberg and Alex. Aphr. Pr. $2.14=$ 58.12-13 Ideler. As regards the first example ($\mu \varepsilon \sigma о \sigma \cup \lambda \lambda \alpha \beta \varepsilon i ̂ v ~ \tau ı ~ \check{~ \varepsilon ́ \tau \varepsilon \rho o v), ~ w h i c h ~}$ Hirschberg (1899: 107) translates as 'etwas Fremdartiges einschieben', $\mu \varepsilon \sigma \circ \sigma v \lambda \lambda \alpha \beta \varepsilon i ̂ v$ is a variant reading for the better attested $\mu \varepsilon \sigma 0 \lambda \alpha \beta \varepsilon i ̂ v$ (printed by Olivieri 1950: 297; see app. crit. ad loc.). In any case, the sense demanded by the context seems to be that of 'interpose', 'interject'. The earliest and most common use of $\mu \varepsilon \sigma \sigma \sigma \nu \lambda \lambda \alpha \beta \varepsilon$ к ω is in grammar, where it denotes 'intervening' parts of speech: see, for instance, Hdn. Gr. GG 3.1 (484.6, 484.11, 484.13) and 3.2 (161.32), Ps.-Theodos. Gr. 97.19, 109.7 and 109.19 Göttling; for later references, see Bécares Botas s.v.

XII [42.9-44.14] Other movements. Lighting of the altar(s)
At this point, the discussion turns to movements that do not concern the locomotion of the automaton (XII-XVI), first among which is the lighting of the fire on either of the altars (XII.1). The device described (XII.2-4), consisting of a hearth over a sliding plate placed over a firegrate, is strikingly similar to that used to light Nauplius' torch in the stationary automaton (XXVIII.3-7). Silences surround the ignition of the fire, but comparison with XXVIII. 4 (ö $\tau \alpha v \lambda \sigma \chi v o s$
 during the initial setup of the automaton (Murphy 42 n .24).
XII. 1 [42.11-13] $\mathfrak{\eta} \pi \rho \omega \dot{\tau} \eta$ кivn $\sigma \iota, . . . \beta \omega \mu \hat{1}$. Brinkmann cast doubt on the authenticity of the term кívøгı, but he did not venture to emend it. In his app. crit. Schmidt hesitantly suggested emending to μ 亿́voors ('revelation'), citing as support Dioptr. $288.22 \tau \alpha{ }_{\alpha} . . . \sigma v \mu \beta \alpha i v o v \tau \alpha \mu \eta v \hat{\sigma} \sigma \alpha$. Indeed, the construction with $\pi \varepsilon \rho$ is strange, but not strange enough to prompt emendation. Hero uses the verb $\mu \eta v$ v́ ω ('reveal', 'indi cate') only once more (Dioptr. 298.16), but he never uses its corresponding noun. I have here followed Schmidt's translation of $\pi \varepsilon \rho$ í ('betrifft' [381]).
XII. 2 [42.17-18] $\pi \alpha \rho \alpha \kappa \tau$ òv... $\tau \rho$ v́тпи α. The comparison serves to illustrate the sliding of the plate, as al ready implied by Baldi 44 n. 22. A $\gamma \lambda \omega \sigma \sigma$ о́ко $о$ ov (also $\gamma \lambda \omega \sigma \sigma o ́ к о \mu о \varsigma)$ - or, less frequently, $\gamma \lambda \omega \sigma \sigma о к о \mu \varepsilon i ̂ o v ~ o r ~ \gamma \lambda \omega \sigma \sigma о к o ́ \mu н o v ~-~ i s ~ a ~$ 'case' or 'chest', which may be employed for different purposes; se Colace et al. (2001: 106-9). In his description of the water organ, Hero uses the term in a technical sense with reference to a series of 'compartments' (Spir. 196.5, 198.5, 198.13-14, 200.2, 200.5, 200.14); see LSJ s.v. $\gamma \lambda \omega \sigma \sigma о к о \mu \varepsilon i o v . ~ I n t e r e s t i n g l y, ~ t h e ~$ apertures of these compartments have sliding lids to close them (cf. Spir. 196.711). For a related use of the term, we must turn to medicine, where $\gamma \lambda \omega \sigma \sigma$ коко $о v$ - and not $\gamma \lambda \omega \sigma \sigma$ ќко $о \varsigma$, as with LSJ s.v. II - refers to a machine for setting broken bones (Gal. Meth. Med. 10.442 Kühn, Orib. 49.7, 49.21 [chest
 176-8). The chest of Nymphodorus is described as having $\pi \dot{\mu} \mu \alpha \tau \alpha \ldots \chi \alpha$ 人 $\rho v \tau$ тov

Apelis or Archimedes]); on surgical traction machines more generally, see Wilson (2008: 345-6).

The verbal adjective $\pi \alpha$ рaктós is not recorded by LSJ, but seems to be attested only here Both Baldi 26 and Couture 255 omitted translating it, wherees Schmidt 381 rendered it correctly ('das sich... verschieben lästr); Murphy 22, less correctly, has 'which can side' (my emphasis). For the formation of verbal adjectives in -тos, cf. KB 2.288-9. The verb $\pi \alpha \rho \alpha ́ \gamma \omega$, from which $\pi \alpha$ рактós is formed regularly, occurs in the Automata at XIX. 2 [62.2] (passive) and XIX. 3 [62.3], both refering to the act of sliding the $\kappa \lambda \varepsilon เ \theta$ piov (on which, see note on IX. 5 [32.8-9]). Cf. XII. 3 [44.1] ($\pi \alpha \rho \alpha \lambda \lambda \alpha \dot{\sigma} \sigma \sigma \omega)$. This use of the verb is consistent with the way it is used in the Pneumatica with respect to a weight that is shifted along a rod: Spir. 288.6, 294.13, 294.14, 294.20, 296.5. Cf. also the corresponding noun at XXVI.6[94.16] ($\pi \alpha, \rho \alpha \gamma \omega \gamma \mathfrak{n})$.
 the axle is vertical or horizontal. Schmidt LIV argued that a vetical ḋÉvóvov, such as is found in the manuscript diagrams (see Fig 15), would entail a considerably smaller altar (a vertical axle should be an $\ddot{\alpha} \xi \omega v$, according to his line of argument), and so made it horizontal (Schmidt Fig. 93b). This openly contradicts his claim that Hero most likely intended to describe the device for kindling the fire on the altar in a similar way to the mechanism of Nauplius' torch (XXVIII.3-7 [102.3-104.10]; Fig. 32), where, apparently, the axle is vertical. It seems to me that he has attached too much importance to the diminutive value of the term ágóviov ('kleine Achse', Schmidt 383). The size of the (vertical) axle will rather depend on the size of the altar. Murphy 42 n .23 wanted the altar to be square (and not rectangular, as in Fig. 15), with sides measuring onehalf to one palm ($3.85-7.71 \mathrm{~cm}$).
XII. 3 [42.21-2] غ̇к δ è tov̂... <***>. I accept Schmidt's doubfful suggestion to
 who mistakenly construes àmo $\delta \varepsilon \delta o ́ \sigma \theta \omega$ with $\dot{\varepsilon} v+$ dative). Cf. XII. 2 [42.18] $\dot{\varepsilon} \kappa ~ \delta \grave{\varepsilon}$
 Schmidt (app. crit. ad loc.) suggested a lacuna after $\dot{\alpha} \xi o v i ́ \varphi$, al beit without indicating its size. He seems to have thought that the lacuna should have contained
information on the winding of both the chain and the cord around the axle and, possibly, on the attachment between the two (Schmidt LIV). The chain and the cord, however, need not be connected to eech other (see further note on XII. 4 [44.8-9]). The most important piece of information missing, it seems to me, is the presence of some slack in the cord (cf. XII. 4 [44.13]). It is thus necessary to posit a lacuna somewhere in the sentence, but the word order suggests that
 XI. 4 [36.21-2] and XIII. 5 [46.20-1]. Positing a lacuna after àzovíov (or àzovị́) would probably imply that the noun $\sigma \pi$ óproc has been misplaced: cf. XVIII. 1
 ठغ̀ tov̂ $\chi \varepsilon \lambda \lambda \omega v \alpha$ íov $\sigma \pi \alpha ́ \rho \tau о \varsigma ~ દ ̇ \kappa \delta \varepsilon ध \varepsilon i ̂ \sigma \alpha) . ~$
XII. 3 [44.1-2] тn̂c áүкvìnc... τ víov. Schmidt was rather confused by these words. In his app. crit. he suggested either transposing them after XII.3 [42.22] ($\mu \varepsilon \tau \alpha$ ̀ iǹv π оррzíav) or deleting them altogether, but not without noting the almost
 However, in his Anmerkungen (Schmidt LIV), he speculated that Hero might be refering, just as he does at XXVIII. 7 [104.10] (cf. δ in Fig. 32), to a knob on the d́góviov (as opposed to that found on the $\dot{\varepsilon} \xi \varepsilon \lambda i ́ k \tau \rho \alpha$: se Schmidt 383 n. 2). An obvious objection to the latter interpretation is that, if a cord falls off its knob, the transmission of movement is interupted (cf. note on II. 9 [12.14-15]). What follows, XII.3-4 [44.3-11], describes instead the operation of the firestarting mechanism. Likewise, I am reluctant to believe that these words were interpolated, mainly for stylistic reesons (in addition to the passage quoted, cf. V. 5 [22.19-20]). A transposition would certainly contribute to bringing order into the text, but it does not accord with the way information is arranged (see Introduction, p. cxvii).
 diately follows. See note on I.1 [2.7-8].
 $\lambda \alpha \mu \pi \tau \mathfrak{n} \rho$ suspended in air (see Fig. 15), which is clearly absurd. The grate must have been provided with one or more supporting legs. Hero does not give any
information about how to light the fire or to keep the flame burning before the sliding of the lid, a fact paralleled later on at XXVIII.3-6[102.3-4.4]. In his description of the mechanism of Nauplius' torch, he insists that the flame must remain hidden until it is convenient to light the torch: XXVIII. 5 [102.20-2]. There is no reason to suppose that the same is not true here. Murphy 42 n .23 rightly pointed out that, in order to keep the fire from being exstinguished too soon, the al tar should not be airtight.

The term $\lambda \alpha \mu \pi \tau n ́ \rho$ occurs only once more in Hero (XXVIII. 6 [104.3]), but, as the context makes clear, with a different meaning ('lantem', LSJ s.v. 2).

M has the obviously incorrect $\dot{\tau} \pi о к \varepsilon i \sigma \theta \omega$. This variant reading probably arose under the influence of XII.3 [44.3]. Cf. also the immediately preceding ธัлокєцє́vๆv.
 comes from the direction of the chain (as shown in Fig. 15), understanding éк loosely. Cf. XVI. 3 [56.5] and XIX. 3 [62.5-6]. This is al so suggested by the similar description of the mechanism of Nauplius' torch: cf. XXVIII. 7 [104.7-10].
 Compare, in addition to XIX. 3 [62.5-6], XXVI. 8 [96.9]; but cf. XXVIII. 7 [104.10]. Conversely, Schmidt (app. crit ad loc.) tentatively proposed adding < $\varepsilon \kappa \delta \varepsilon \theta \varepsilon i ̂ \sigma \alpha>$ after $\sigma \pi \alpha ́ \rho \tau о \varsigma$, a supplement which, in spite of the doubts raised in the Anmerkungen (Schmidt LIV; cf. note on XII. 3 [42.21-2]), he adopted in his translation: ‘die an das Kettchen gebundene Schnur' (Schmidt 1899a: 383 with n. 3). It would, however, have been more correct if <<кঠعӨغio $\alpha>$ - or even $<\dot{\varepsilon} \kappa \delta \varepsilon \delta \varepsilon \mu \varepsilon ́ v \eta \geqslant$, cf. XIX. 4 [62.14] - had been put before $\sigma \pi \alpha ́ \rho \tau о \varsigma . ~ S i m i l a r l y, ~ b u t ~$ without any supplement, Murphy 22: 'the cord stretched from the chain' ($\mathfrak{\eta} . .$. $\tau \alpha \theta \varepsilon i ̂ \sigma \alpha \sigma \pi \alpha ́ \rho \tau o \varsigma ?$?). Baldi 26 , followed by Couture 255-6, has the cord pulling on the chai n : ‘la catenella g, h, k, tirata dalla [ínó?] corda’.
 mentioned in connection with the kindling of the fire, a fact that has escaped the attention of previous scholars. For the suggestion that such reference dropped
out of the text, cf. note on XII. 3 [42.21-2]. In the case of the other altar, a greater slack is needed to activate the device at the appropriate time; cf. V.5 [18.15-16].
 by Baldi $26^{\text {V }}$ ('dopo'), is attractive but unnecessary, since the reading of the ma-
 second series of movements constituting the apotheosis of Dionysus (cf. synopsis on III-IV). This is not implausible, considering that the reader has been invited to focus his or her imagination ($\tau \grave{\alpha} \delta^{\prime} \alpha \hat{\tau} \tau \grave{\alpha} \dot{\varepsilon} \pi ı v o \varepsilon i ́ \sigma \theta \omega$, XII. 4 [44.11]) on the second al tar. For the scribal confusion between катó and $\mu \varepsilon \tau \alpha$, see app. crit. to V. 3 [22.2].

XIII.1-7 [44.15-48.13] Pouring of liquids

Milk and wine are conveyed through a hidden piping system leading from a double reservoir placed within the upper part of the shrine's roof to two vertical columns, which are fitted one inside the other underneath Dionysus. The flow is regulated by a tap ($\kappa \lambda \varepsilon i ́)$ which, unlike extant specimens of the Roman period, admits two pi pes. Details of the operation of the tap are discussed in the notes ad locc. Prou 170 n .157 argued that since the liquids are poured twice ($\pi \alpha \dot{\alpha} \lambda ı v \delta \dot{\varepsilon} . .$. γ ó $\lambda \alpha$, XIII.5; cf. IV. 1 and 3), the holes in the thyrsus and the cup should be closed between the first and the second libation. Considering that the system works thanks to the principle of communicating vessels (as ackwnowledged by Prou 170), it would probably have been enough to turn off the tap.
XIII. 2 [44.17-18] $\dot{v} \pi$ ò... $\sigma \omega \lambda \grave{\eta} v$. Murphy 42 n .25 maintains that the pipe is no longer than one palm (7.71 cm), a measure which she equates to the sum of the thickness of the shrine's platform ($\kappa \alpha \tau \alpha ́ \sigma \tau \rho \omega \mu \alpha$), the shrine's floor and the base of Dionysus (cf. XIII. 3 [46.1]). Hero, however, does not provide any measures for these elements. Manuscript diagrams show the pipe as extending all the way down to the automaton's base (see Fig. 16). This is clearly impossible, because it does not leave much room for other components, such as the $\sigma \dot{\rho} \rho \gamma \xi$ and, possibly, the wheel and axle assembly. The pipe could not extend down beyond the architrave ($̇ \pi \iota \sigma \tau \dot{\prime} \lambda_{10}$, cf. notes on III.1 [16.2-4]), and had to pass through the
stylobate (XVI.1 [54.11]), as illustrated in Baldi 27V unnumbered Fig. and Schmidt 387 Fig. 94a.

Schmidt suggested adding <<ov́т \gg after $\sigma \cup \mu \varphi$ иńs, comparing XIII. 3 [46.1-2] ó $\delta \varepsilon ̀ ~ \sigma v \mu \varphi v \eta ̀ \varsigma ~ \tau о v ́ \tau \varrho ~[i . e ~ \tau @ ~ \Delta ı o v v ́ \sigma \varrho] ~ \sigma \omega \lambda \eta ́ v . ~ T h i s ~ s u p p l e m e n t ~ i s ~ a t-~$ tractive, since $\sigma u \mu \varphi v \eta$ и́s seems to require a dative (se LSJ s.v. II.2). It is also

 ioíá кєí $\mu \varepsilon v o v$. Cf. al so Dioptr. 194.9 and 246.15.
XIII. 2 [44.19-21] દ̇к $\delta \check{~ c ̀ ~ \tau o v ́ \tau \omega v . . . ~ \sigma к v ́ \varphi o v . ~ U n l i k e ~ p r e v i o u s ~ e d i t o r s, ~ I ~ a d o p t ~ G ’ s ~}$ reading $\alpha, v \alpha \tau \varepsilon i ́ v o v \tau \alpha 1$, which \mathbf{A} and \mathbf{T} correct supra lineam to $\alpha, v \alpha \tau \varepsilon i ́ v o v \tau \alpha, \operatorname{per}-$ haps under the influence of the following φ ह́pov $\alpha \alpha$ (but cf. also XIII. 3 [46.2-3]). A finite verb is needed to make the sentence complete, as also shown by previous translations. $\varphi \varepsilon ́ \rho o v \tau \alpha$ (AG) is obviously a better reading than $\sigma v \mu \varphi \varepsilon ́ \rho о \nu \tau \alpha$ (MT). Cf. XIII. 3 [46.7], XIII.4 [46.12], XIII.6[48.4] and XIII.7 [48.12].
XIII. 3 [46.2-4] $\tau \alpha ̀ ~ \delta \varepsilon ̀ . . . ~ \sigma \kappa v ́ \varphi o v . ~ I ~ d e e m ~ i t ~ u n n e c e s s a r y ~ t o ~ a d d ~<p \varepsilon ́ \rho o v \tau \alpha>~ a f t e r ~$ $\overline{\varepsilon \theta}$, as tentatively suggested by Schmidt (app. crit. ad loc.) on the basis of the previous occurrence of the participle (XIII. 2 [44.20]). The sentence makes good sense in its present form, if we suppose $\dot{\alpha} v \alpha \tau \varepsilon i ́ v o v \tau \alpha$ to be understood. In contrast to XIII. 2 [44.19-20], the verb $\dot{\alpha} v \alpha \tau \varepsilon$ ivo here is not immedi atel y foll owed by a prepositional phrase introduced by ε ic.
 denotes the 'stone' of a stone-fruit (I.1), but it may also refer to other (semi)round objects, such as a pine ‘nut' (I.2), a 'grain of frankincense' (III.a), a 'heed of a probe' (IV.1) and a 'gem' (V; cf. Prêtre 1997b: 372 with n. 4). Here it seems to denote a ‘knob’ (so also Murphy 23; cf. XXVI. 2 [90.18] $\pi v \rho \eta v i \delta i \alpha)$ resting on the summit of the roof (cf. note on III. 2 [16.8-10]; Fig. 16). Most translations render the termincorrectly, as if it were $\pi v \rho \gamma i ́ o v: ~ ‘ c u p o l a ' ~(B a l d i ~ 26 `), ~ ' ~ c o n c a m-~$ eratus apex' (Couture 256), ‘Dach’ (Schmidt 385).

Murphy 42 n .26 makes two points here. The first is that the $\pi \nu \rho \eta ์ v$ probably serves either as an ornament or as a base for the Nike. The second is that the
container $\overline{v \xi}$, along with the axle $\overline{5}, \bar{\xi}$ and the pulley $\bar{\eta}$ (cf. XIII. 7 [48.15-17]), is actually placed inside the roof. The $\pi v \rho \eta ́ v$ is not simply ornamental. Not only does it serve as a support for the Nike (XIII.7 [48.14]), but it also holds the container $\overline{v \xi}$ ($\varepsilon v \tau o ̀ s ~ \delta \grave{\varepsilon} \tau 0 v i \tau o v . . . \overline{v \xi})$. The axle,$\overline{\zeta, \zeta}$ is described as passing through the knob (how else could it be attached to the Nike?), and certainly extended down
 of the axle, cf. XIII. 8 [50.4-5]. No information is given on the location of the pulley, but nothing suggests that it should be placed inside the knob.

Most manuscript diagrams show a rectangul ar support at the top of the roof, and labe the whole roof (containing all the above-mentioned elements) $\kappa \lambda \mu$ (see Fig. 16). Similarly, but with a round projection supporting the Nike, Schmidt 386 Fig. 94a and Murphy 24 Fig. 7. Bal di 27^{v} unnumbered Fig., by contrast, has the Nikedirectly resting on the apex of the roof.

 after $\dot{\alpha} \gamma \gamma \varepsilon$ íov. The lacuna must have contained the main verb. In his app. crit. Schmidt doubtfully proposed two supplements, $<\kappa \alpha \theta \varepsilon i \sigma \theta \omega>$ and $\langle\rho \varepsilon \rho \varepsilon ́ \tau \omega\rangle$, citing in support of the latter XIII. 3 [46.7] and XIII. 6 [48.4]. <p\& ε ét $\omega>$ is better than $\left.<\alpha \alpha \theta \varepsilon \varepsilon^{\prime} \sigma \theta \omega\right\rangle$, because in the Automata the verb к α 自 $\eta \mu$ n never refers to pipes, a usage otherwise common in the Pneumatica (see, for instance, Spir. 72.14-74.1, 74.6 and 104.2). However, <рє ε ќт $>$ involves the deletion of каì $\varphi \varepsilon ́ \rho \omega v$, which would result in ó μ oí ω с being misplaced. Hildebrandt's ката甲єрє́ $\tau \omega$ for каì $\varphi \varepsilon ́ \rho \omega v$ does not strike me as a very plausible emendation. While it has the advantage of eliminating the lacuna, it is difficult to explain palaeographically. Furthermore, the verb катарќронаи, as used in the treatise, refers not to pipes bearing downwards, but to falling bodies; see note on V. 5 [22.16-17]. Perhaps we could fill the lacuna with <<'б $\tau \omega\rangle$, limiting ourselves to

XIII. $4[46.14] \overline{\mathrm{ov}}$. Perhaps emend to $\overline{\mathrm{vo}}$. Cf. XIII. 3 [46.6].
 which explains Hero's reference to what has already been said ($\hat{\omega} \varsigma$ ع'p $\eta \tau \alpha u$, XIII. 5 [46.19]). Bal di 26 , Couture 256 and Schmidt 385 mistook $\tau \grave{\alpha}$ î $\gamma \rho \dot{\alpha}$ as the subject and translated the verb as if it were passive. Murphy 23, by contrast, has the correct rendering. Hero always uses $\sigma \tau \varepsilon \gamma \omega$ in the sense of 'keep in', 'hold' (Geom 414.14, Spir. 62.7, 78.13, 102.6 and 294.1). For the verb in this sense, seeLSJ s.v. B.I.
 from Roman times), see Krezzschmer (1960). Se also, more recently, Hodge (1981: 489-91; 1992: 322-6), who emphasises the distinction between two kinds of taps: 'di scharge taps' and 'stopcocks'. Hero’s tap is a stopcock, as it is used to regulate the flow of liquids rather than to dispense them through an outtet spout. An ancient tap, regardless of its function, usual ly consisted of a cylindrical plug (also called key) perforated by a horizontal hole (or pair of holes) and rotating inside a cylindrical housing (Fig. 17). Hero's stopcock was presumably perforated with two pairs of holes, each admitting one of the conveying pipes (cf. XIII.3-4 [46.6-13]). This is illustrated, al beit in a very rudimentary fashion, on the lower right-hand side of Fig. 16. For a modern reconstruction, see Fig. 18
 dochically signifies the whole device ('tap' or 'stopcock'). It al so occurs at Spir. 124.16, the only occurrence of this meaning given in LSJ s.v. II.2. Elsewhere Hero uses the derivative $\kappa \lambda \varepsilon$ ıoíov (Drachmann 1948: 50; cf. LSJ s.v. I.2): Spir. $122.14,190.18,212.16,266.24,268.10,268.16,274.10$ and 274.18 . The synecdochic extension of meaning can still be seen in It. 'chiave' (Baldi 27r, with Manni 1980: 178-9, 195) and Lat. 'clavis' (Couture 256). The equival ent French term has been used by Prou 170, but he appears to have understood it in its proper sense: '[u]ne clef', к $\lambda \varepsilon i \varsigma, ~[s i c], ~ a d a p t e ́ e ~ a ̀ ~ u n e ~ d o u i l l e ~ o b t u r a t r i c e, ~$ ė π ıóviov'. Schmidt 385 and Murphy 23 have, respectively, 'Verschluss' (but cf. ‘Hahn', Schmidt LV) and 'valve’ (or 'bolt'[?]). The word è $\pi \iota \tau o ́ v ı o v, ~ w h i c h ~ p r e ~-~$ vious translators have misunderstood to mean 'tap'/‘'stopcock' (cf. al so Soubiran 1969: 304; Argoud-Guillaumin 1997: 150 n .19), signifies the 'plug' or 'key' of a tap ('clef cylindrique', E. Saglio in DS 2.711 s.v. Epistomium). It originally denotes a 'tuning peg' or 'key', and has been extended to apply to the handle of
either a tap (here) or $\sigma \mu \eta \rho \rho \sigma \mu \alpha$ (Spir. 250.16-17, 250.25, 252.3 and 252.8; of. Vitr. 9.8.11). Hero also uses it for the handle of a syringe (Spir. 254.2 and 254.8); see LSJ s.v. II.1; Puchstein (1907: 203); Drachmann (1948: 50, 60). The term seems to occur in the sense of 'tap' only at Ps.-Hero, Spir. 146.18-19 $\kappa \lambda \varepsilon ı \delta i ́ o v . .$. iò к $\alpha \lambda о$ ú $\mu \varepsilon v o v ~ \pi \alpha \rho \alpha ̀ ~ \tau o i ̂ \varsigma ~ \pi о \lambda \lambda o i ̂ \varsigma ~ \varepsilon ̇ \pi \imath \tau o ́ v ı o v . ~ T h i s ~ l o o s e r, ~ p o p u l a r ~$ sense is commonly attested in Latin (epitonium: Varro, RR 3.5.16, Vitr. 10.8.3, 10.8.5, 10.8.11, Seneca, Ep. 86.6 and Ulp. Dig. 19.1.17.8). On this term, as opposed to the incorrect epistomium, cf. Cagnat (1894). Bal di 44^{\vee} n. 24 glossed his translation ('gal letto', with Manni 1980: 178-9, 199) with the word 'epistomio'. This has been taken to mean that his exemplar had the word ė $\pi 1 \sigma \tau o ́ \mu ı v v(M a n n i$ 1980: 178 n . 3, cited by Micheli 2005: 253 n . 24). I have found no such reading in the manuscripts. This alternative form was coined in the Renaissance (Puchstein 1907: 203, quoted by Drachmann 1948: 60), probably by analogy with epistomium

I accept Brinkmann's suggestion (endorsed by Schmidt LV and Olivieri 1901: 433) to read λ (in $\overline{\mathrm{C}}$) instead of τ. Cf. also XIII. 6 [48.7]. $\bar{\tau}$, in fact, al ready denotes a hole. Schmidt LV observed that in earlier manuscripts λ was written as \wedge (more or less pointed) and that the latter form could easily be corrupted into tau. His basic point is right, but it overlooks the fact that the symbol for 900 (sampi or $\pi \alpha \rho \alpha \kappa$ virø $\mu \alpha$) could also occur in the form T (among others). On the various forms of sampi/ж $\alpha \rho \alpha \kappa$ ü̈б $\mu \alpha$, see especially Foat (1905; 1906); for a more complete bibliography, seeSol dati (2006: 209-10 n. 4).

 suggesting in his app. crit. emendation to the genitive case), but rather as hyp-
 from the context, but perhaps the words $\langle i$ $\tau \alpha \theta \varepsilon i ̄ \sigma \alpha$ (AGT have $\sigma \pi \alpha ́ \rho \tau о с$ instead of the correct $\sigma \pi \alpha ́ \rho \tau \tau v)$. Cf. XII.4[44.14].

This cord must have turned the tap 90 degrees (either clockwise or anticlockwise) in order to align the holes in the plug with the conveying pipes (cf. previous note). Another 90-degree turn (in either direction) would have been enough to shut off the tap; se Hodge (1981: 490 n. 24; 1992: 324). This means either that four different cords were used to rotate the plug 360 degrees in the
same direction or that the stopcock was turned on and off (with a 180-degree arc of rotation) by two cords, each pulling in a different direction. The mention of another cord drawing the ènıtóviov in the opposite direction ($\varepsilon i \varsigma ~ \tau \alpha ̀ ~ \varepsilon ̌ \tau \varepsilon \rho \alpha ~ \mu \varepsilon ́ \rho \eta) ~$ suggests the latter: XIII. 6 [48.8-10]. There, perhaps, we should read кג ε íct α in place of α voíyst α. Seefurther notead loc.

Manuscript diagrams show no cord wrapped around the é $\pi \tau \tau$ óviov (see Fig. 16). Schmidt 387 Fig. 94a and Murphy 24 Fig. 7 have only one cord. Baldi 27 v unnumbered Fig., more correctly, has two. Murphy added next to her diagram: ‘This cord goes to a counterweight (probably MB): Hero doesn't explain' (see
 strong indication that the cord was attached to the main counterweight rather than to $\stackrel{\beta}{\mu}$ (XIII. 8 [50.9]). SeeSchmidt (1903: 275-6).
XIII. 5 [46.23-48.1] $\pi \alpha \alpha_{\imath v} \delta \delta \dot{\varepsilon} . . . \gamma \alpha \alpha^{\lambda} \alpha$. I take the first $\pi \alpha^{\prime} \lambda_{v v}$ to refer to the content of the main clause ($\delta \varepsilon i ̂ \ldots \gamma \dot{\alpha} \lambda \alpha$). I am tempted to delete the second $\pi \dot{\alpha} \lambda ı v$, but perhaps the repetition is merely emphatic. Bal di 27 r, Couture 256 and Murphy 23 understood the first $\pi \alpha ́ \lambda ı v$ as modifying the genitive absolute ε é $\pi \downarrow \tau \rho \alpha \varphi \varepsilon ́ v \tau o$, $\tau 0 \hat{} \Delta$ ıovóбov, which erroneously places the second libation after the second rotation of Dionysus. That would probably require a different word order
 order?). Schmidt 389 ('dagegen') curiously assigned an adversative value to the first $\pi \alpha ́ \lambda ı v$.
XIII. 5 [48.1-2] $\sigma \tau \rho \varepsilon ́ \varphi \varepsilon \sigma \theta \alpha 1 . . . ~ † \dot{\eta} \mu \imath \kappa v \kappa \lambda i ́ o v \pi \varepsilon \rho \imath \varphi \varepsilon ́ \rho \varepsilon ı \alpha \dagger . ~ I ~ h e r e ~ f o l l o w ~ t h e ~ p u n c-~$ tuation of AGT (M, too, punctuates heavily after ov̈ $\omega \varsigma$). Schmidt 386, followed by Murphy 23, placed a full stop after $\pi \varepsilon \rho \iota \varphi$ ह́ $\varepsilon ı \alpha$, but did not punctuate after the adverb. The opening words, however, seem to have been intended to precede an explanation (cf. XII. 2 [42.14], XIII. 2 [44.17], XIII. 7 [48.13-14], XIV. 1 [50.17-18], XV. 2 [52.9], XVI.1 [54.9-10], XVII.1 [56.12-13], XIX. 2 [60.18-19], XXII. 3 [70.19], XXV. 4 [86.15], XXX. 5 [108.14]; cf. also XXVI. 1 [90.10] and XXVIII. 2 [100.11]). We can therefore dismiss Schmidt's doubtful suggestion
 the accusative $\pi \varepsilon \rho \iota \varphi \varepsilon ́ \rho \varepsilon ı \alpha v$ is govemed by $\sigma \tau \rho \varepsilon ́ \varphi \varepsilon \tau \alpha l$ (for comparable examples, cf. LSJ S.V. $\sigma \tau \rho \varepsilon ́ \varphi \omega$ I.2). Brinkmann's conjecture ov̂̃oc [i.e. Δ ıóvvбoৎ] for oṽ $\tau \omega$,
is not very convincing either. All previous translators, except Murphy 23, understood the corrupt $\sigma \tau \rho \varepsilon \dot{\varphi \varepsilon \sigma \theta \alpha ı}$ as referring to the rotation of Dionysus rather than that of the stopcock (but see Murphy 42 n .27 , where she acknowledges the ambiguity of the text). A reference to the latter - or, more correctly, to the ėnitóviov - would fit better within the context, not least because the rotation of Dionysus is discussed later on (XIII.7-9 [48.13-50.14]). A more serious difficulty lies in
 no syntactic connection to the immediate context. Second, they might equally apply to the first rotation of Dionysus (cf. XIII.5 [46.23]) and to the overall rotation of the énıróviov (cf. note on XIII.5 [46.20-3]). Baldi 27r, followed by Couture 256, unintelligibly construed $\pi \varepsilon \rho เ \varphi \varepsilon ́ \rho \varepsilon ı \alpha$ as the subject of the following $\gamma \varepsilon \gamma o v \varepsilon ́ \tau \omega$ (‘[s]i faccia la periferia, ò circonferenza, d’un mezo circolo per diametro à i fori, t , s^{\prime}), which, among other things, leaves ε ह́ $\tau \varepsilon \rho \alpha ~ \tau \rho \eta ́ \mu \alpha \tau \alpha$ standing alone (XIII. 6 [48.3-4]). I have put these words between cruces, wondering whether they represent a marginal scholium that was incorporated into the main text and was originally intended to elucidate the rotation of either Dionysus or the $\varepsilon \pi \pi \tau$ óviov. As regards $\sigma \tau \rho \varepsilon ́ \varphi \varepsilon \sigma \theta \alpha ı ~ \delta \grave{\varepsilon}$ ovit$\tau \varsigma$, a finite verb is certainly needed. Schmidt's $\sigma \tau \rho \varepsilon ́ \varphi \varepsilon \tau \alpha \iota ~ i s ~ a t t r a c t i v e ~ i n ~ i t s e l f, ~ b u t ~ p e r h a p s ~ i t ~ w o u l d ~ b e ~ b e t t e r ~ t o ~$
 غ̇ $\pi \iota \tau$ óvıov>oűt $>$?). In addition to XIII. 7 [48.13-14], cf. XIII. 5 [46.22].
XIII. 6 [48.3] $\gamma \varepsilon \gamma<v \varepsilon ́ \tau \omega$. This reading is preferable to $\gamma \varepsilon v \varepsilon ́ \sigma \theta \omega$, although the latter is handed down by the best manuscripts ($\mathbf{A}^{\mathbf{a x}}$ reads $\gamma \varepsilon \gamma$ оvé $\tau \omega$); see note on XI. 9 [40.8-9].

In his app. crit. Schmidt hesitantly suggested adding either < $\delta \dot{\varepsilon}>$ or $<0 \hat{v}\rangle$ after the imperative. A connective particle would indeed be very welcome. The omission of $\delta \grave{\varepsilon}$ would be easy to explain ($\sigma \tau \rho \varepsilon ́ \varphi \varepsilon \sigma \theta \alpha ı ~ \delta \grave{\varepsilon}$ ov̌ $\tau \omega \varsigma \ldots \gamma \varepsilon \gamma \circ$ vét \ldots $\langle\delta \dot{\varepsilon}\rangle$), all the more so if the words $\dot{\eta} \mu \kappa и к \lambda i ́ o v ~ \pi \varepsilon \rho ı \varphi \varepsilon ́ \rho \varepsilon ı \alpha ~ h a d ~ b e e n ~ a d d e d ~ a t ~ a ~$ later stage (cf. previous note). However, $4 \dot{\alpha} \rho>$ would seem to fit better in the context. Cf. XI.8-9 [40.7-8] (π ои́бou
 sequence $\gamma \varepsilon \gamma 0 v \varepsilon ́ \tau \omega ~ \gamma \alpha ́ \rho$ in Hero. The tachygraphic sign for $\gamma \alpha ́ \rho-i n ~ i t s ~ s i m p l e s t ~$ form, Γ cut across by a left oblique stroke (Allen 1889: PI. III nos. 1-2; Gardthausen 1913: 336) - could just as easily have been omitted.
 $\beta \alpha ́ \rho \eta$. This reading does not make sense because no weights have been mentioned in the preceding context. Schmidt puts a crux before $\beta \alpha \alpha^{\rho} \eta$, but translates his doubtful emendation $\mu \varepsilon$ ́p (cf. al ready Baldi's 'parte', 27r), which he supports by citing XIII. 8 [50.3] દ̇ $\pi \grave{\imath} \tau \alpha ̀ \alpha v ̉ \tau \alpha ̀ . . . ~ \mu \varepsilon ́ p \eta ~(o f ~ t h e ~ r o t a t i o n ~ o f ~ D i o n y s u s ~ a n d ~$ Nike). This conjecture not only fits perfectly well into the context (we would indeed expect a reference to the direction of the cord: cf. note on XIII. 5 [46.20-3]), but is also palaeographically plausible The corruption probably arose from the common confusion between minuscule μ and β.

Schmidt hastily deleted the words α voí $\gamma \varepsilon \tau \alpha 1 . . . \dagger \beta \dot{\alpha} \rho \eta$ as an interpolation. In his opinion (LVI), Hero's own principles demand the use of only one cord. While it is true that a single cord controls forward and backward motion (cf. VI.1 [22.22-24.3] with note ad loc), it is not clear how the ह̇лıtóviov could be rotated - back and forth? - by fewer than two cords. In order to allow repeated operation of the stopcock, the cords presumably had some slack to them. Using fewer than two cords would have meant a cord of excessive length. What is striking here is not so much the reference to a second cord, but rather the reference to the opening of the stopcock. Hero never mentions how the stopcock is closed. If two cords were indeed used, each one pulling in a different direction, one would expect a reference to the cl osure of the stopcock. One cannot help but wonder whether an original $\kappa \lambda \varepsilon i ́ \varepsilon \tau \alpha ı$ was at some point replaced by $\alpha \mathfrak{\alpha}$ possibly under the influence of $\alpha v o w \theta \eta \dot{\eta} \sigma \varepsilon \tau \alpha$ in the preceding line.

XIII.7-9 [48.13-50.15] Rotation of Dionysus and Nike

 The inner column underneath Dionysus is connected, by means of a hidden cord (каi... к $\rho v \pi \tau \varepsilon \sigma \theta \omega$, XIII.9), to an axle that lets the Nike rotate (XIII.7). The column rotates 180 degrees twice (as suggested by XIII. 8 ö $\tau \omega \varsigma . . . \theta$ ө́б $\sigma v ;$ cf. synopsis on III-IV), the movement being imparted by a falling weight, which is released by a trigger ($\sigma \chi \alpha \sigma \tau \eta \rho i ́ \alpha$) of the kind used in catapults (XIII.9). Hero does not say whether the second rotation occurs in the same direction, which, however, is implied in the use of the verb $\dot{\alpha} \pi о \kappa \alpha \theta i \sigma \tau \alpha \mu \alpha \iota ~(X I I I .8) . ~ P r o u ~ 169 ~$ imagined an intermittently rotating shaft extending from the base of the automaton to the figures of Dionysus and Nike (how so?) and provided with a bob-bin to change the direction of turning. This arrangement is nowhere described in the text.
 [46.4-6].
 manuscripts, including a It appears to be a conjecture in manuscript Aa (' $\sigma \pi \alpha ̀ \rho \tau о \varsigma[s i c] ~ f . '), ~ a n d ~ i s ~ r e p l a c e d ~ b y ~ t h e ~ w o r d s ~ \alpha ~ \alpha \gamma \gamma v ́ \lambda \eta ~[i . e . ~ \alpha ~ \gamma \gamma к v ́ \lambda \eta ?] ~ \sigma \pi \alpha ́ \rho \tau о v ~$ in the margin of \mathbf{M} (second hand). If this word originated as a scribal conjecture (a very plausible one indeed) intended to fill a gap, one might wonder whether the original reading was $\alpha \not \lambda v \sigma ı$, instead. Hero's later reference to 'another chain' to be wound around pipe $\overline{\gamma \delta}$, XIII. 8 [50.7], is somewhat perplexing. In this regard, Baldi 44^{\vee} n. 25 noted that there is no reason to expect a chain rather than a cord, all the more so because no chain has been mentioned in the preceding context. He went on to suggest that perhaps Hero has in mind the chain used to slide the plate inside the altar (XII. 2 [42.18], XII. 4 [44.9]). This is certainly a possibility. But why would Hero use a cord and a chain instead of two cords or two chains? The verb $\pi \varepsilon \rho ı \varepsilon \lambda \varepsilon ́ \omega$ is used ninetimes by Hero in connection with cords (in the Automata only), whereas it refers only once to the winding of a chain (XXVIII. 7 [104.8]).
XIII. 7 [48.18-19] tò í $\pi \varepsilon \rho \varepsilon$ é χ ov $\tau 0 \hat{v} \overline{\gamma \delta} \sigma \omega \lambda \hat{\eta} v o c$. For the substantivised participle of $\dot{i} \pi \varepsilon \rho \varepsilon \dot{\chi} \chi \omega$ with a subjective genitive, cf. XXIV. 3 [82.6] (غ̇лíov other mechanical writers, Ph. Bel. 66.15-16, 72.25-6 and 72.30-1. XXVI. 4
 instances, seLSJ s.v. II.1).

Note the variatio with XIII. 8 [50.8] (í $\pi \varepsilon \rho \circ \chi$ ń).
XIII. 8 [50.3-4] દ̇ $\pi i . . . ~ \alpha u ̋ \tau \omega ิ v . ~ T h i s ~ i s ~ r e n d e r e d ~ p o s s i b l e ~ b y ~ t h e ~ u s e ~ o f ~ p u l l e y s ~, ~ \bar{\eta}$ and $\bar{\theta}$. Cf. XIII. 7 [48.16-19].
XIII. 8 [50.4-5] ’̛oos $\delta \varepsilon$... $\sigma \omega \lambda \hat{\eta} v ı$. $\alpha \xi \xi v$ here seems to designate the shaft of the axle rather than the entire axle (see al ready Schmidt 389). Manuscript di agrams
show something like an $\bar{\varepsilon} \xi \varepsilon \lambda i ́ \kappa \tau \rho \alpha$ around the centre of axle $\overline{\bar{\zeta}, \bar{\zeta}}$ (se Fig. 16). This seems to be intended to make the diameter of the axle shaft equal to the diameter of the pipe, and so produce equal rotations (cf. note on II. 10 [12.18-19]). For the same purpose, Murphy 24 Fig. 7, explicitly following Schmidt 387 Fig. 24a, added a drum at the base of the axle This already appears in Baldi 27^{v} unnumbered Fig., and might have originally been based on the manuscript illustration.
XIII. 8 [50.5-6] ö $\pi \omega \varsigma . . . \theta$ ச́бıv. The verb $\dot{\alpha} \pi о \kappa \alpha \tau \alpha \sigma \tau \alpha \theta \hat{\omega} \sigma ı v$ is mistranslated by Baldi 28 ('si fermino') and Couture 257 ('conquiescant'). Here it implies that the figures of Dionysus and Nike complete their rotation ('come back full circle', Murphy 23; my emphasis); see note on I. 2 [2.13-14]. Schmidt 389 ('in ihre frühere Stellung zurückkehren') is therefore right to take θ źбw as referring to the original position of the figures. Baldi 28 ', less appropriately, has 'postura' ($\sigma \tau \alpha ́ \sigma \iota \varsigma ?$ see LSJ s.v. B.a.2). Similarly, but more generally, Couture 257 ('positu'). Murphy 23 slips into overinterpretation ('relative position'). I am tempted to restore here: $\mu \eta \delta \varepsilon \dot{\varepsilon} v \pi \alpha \rho \alpha \lambda \lambda \alpha ́ \sigma \sigma o v \tau \varepsilon \varsigma \kappa \alpha \tau \alpha ̀ \tau \eta ̀ v<\dot{\xi} \dot{\alpha} \rho \chi \eta ̂ \varsigma>\theta \varepsilon ́ \sigma \omega v$. In addition to I. 2 [2.13-14] and the passages cited in the note ad loc., cf. Metr. 94.16-17

XIII. $8[50.9$] $\tau \grave{\mathrm{B}} \stackrel{\beta}{\mu}$. On the secondary counterweight, see note on II. 6 [10.8-10].
XIII. 9 [50.10-11] ó $\delta \dot{\varepsilon} . . . \gamma_{i v \varepsilon \tau \alpha 1 . ~ T h e ~ w o r d s ~}^{\kappa \alpha \theta \alpha ́ \pi \varepsilon \rho . . . ~} \gamma$ ívetal have been strangely understood by Schmidt LVI as a reference to Hero's own Belopoeica. In his opinion, they apply only to the $\sigma \chi \alpha \sigma \tau n \rho i ́ \alpha$ ('trigger'), and not to the $\chi \varepsilon$ í ρ (' claw'). This is somewhat curious, given that the claw is an integral part of the trigger mechanism of a torsion engine. The whole mechanism is first attested in
 illustrated in Fig. 19. The claw, which was used to draw the bowstring, could either have two prongs (as in the $\gamma \alpha \sigma \tau \rho \alpha \varphi \varepsilon ́ \tau \eta \varsigma)$ or only one, depending on the type of engine (euthytone or palintone, cf. Bel. 110.11-111.6; on the distinction between these two types of engines, see Marsden 1969: 20-3; 1971: 44-5 n. 5
with Fig. 1; see also, more recently, Schiefsky 2005: 254). In palintones or stone-throwers, the bowstring was plaited into a ring (крíкос) at its middle point, and the prong of the claw was fitted into it (Marsden 1969: 32). Schmidt LVI cast doubt on whether the χ zí ρ would have worked correctly here, but what he had in mind was a two-pronged claw: 'zweier handartig gebogenen Stifte' (391). I am inclined to think that here, as in the case of palintones, Hero adopts a onepronged claw to be fitted into theкрíкос (Fig. 20).

It is unnecessary to emend $\kappa \alpha \tau \varepsilon \chi \varepsilon ́ \tau \omega$ to $\kappa \alpha \tau \varepsilon \chi \varepsilon ́ \sigma \theta \omega$ or even $\kappa \alpha \tau \varepsilon ́ \chi \varepsilon \tau \alpha 1$, as suggested by Brinkmann. The weight is retained by the ring, just as at XV. 3 [54.2] the boards used to rel ease the garlands are held in place by a rotating hook (غ̇лıбтрєл兀@̣ ко́ракı калє́ $\chi \eta \tau \alpha ı$). The claw will have disengaged from the ring upon the release of the trigger, allowing the weight to fall down (XIII. 9 [50.12-13]). Here previous translators, except Schmidt 389, render катєұச́tю as if it were passive See especially Murphy 23 ('Let a ring... be controlled'; my emphasis).
XIII. 9 [50.12] dánó. In Hellenistic Greek the preposition is commonly used to denote agency; see LSJ s.v. A.III. 4 and, more recently, Bortone (2010: 185 with n. 28). Thus we need not emend to $\mathbf{v} \pi$ ó, as tentatively suggested by Schmidt (app. crit. ad loc.). Cf. Spir. 152.6-7 ($\left.\alpha \varphi^{\prime} \varepsilon \in \kappa \alpha ́ \sigma \tau o v ~ \varepsilon ̇ \mu ~ \beta \lambda \eta \theta \varepsilon i ́ c\right), ~ a l r e a d y ~ c i t e d ~ b y ~$ the Teubner editor. For the confusion between $\dot{\alpha} \pi$ ó and $\dot{v} \pi$ ó, see app. crit. to XIV.1[50.21]. Cf. also XXII.6[72.17].

XIV [50.16-52.6] Sound of kettledrums and cymbals
The device discussed here is comparable to that described at XX. 4 ($\beta \rho o v \tau \varepsilon i ̂ v$), except that the latter does not include a cymbal (Murphy 42 n .32). The basic form of the device is simply a container holding lead balls which are released to hit the instruments (XIV.1-2 $\dot{\varepsilon} v \tau \hat{\eta} \ldots \dot{\alpha} \pi \sigma \tau \varepsilon \lambda \varepsilon ́ \sigma \varepsilon \varepsilon)$. There follows a modified version of the device, with balls being distributed into two compartments. The opening of the description (XIV. $2 \delta \dot{v} v \alpha \tau \alpha l . . . \pi o l \eta$ 位 αl) seems to suggest that this second version represents an improvement made by Hero. Se Introduction, p. cxii.
 and IV. 3 [18.19-20] (үó $о \varsigma), ~ b u t ~ h e r e ~ t h e ~ w o r d ~ o r d e r ~ i s ~ r e v e r s e d . ~ T h e ~ t e r m ~$ кто́тos usually denotes an abrupt noise, likethunder (A. Pr. 923; S. OC 1463) or the shutting of a gate (Aen. Tact. 20.4), and is only rarely used of musical instrument sound. LSJ s.v. record only one instance of this use: B. Fr. 3.9 Jebb $=1.75$ Irigoin ($\left.\sigma \alpha \lambda \pi^{\prime} \gamma \gamma \omega v \kappa \tau \dot{\pi} \pi о \varsigma\right)$; but cf. also Ath. 8.361e ($\tau \nu \mu \pi \alpha ́ v \omega v \kappa \tau \dot{\prime} \pi \sigma \varsigma$) and Cyr. Al. in Isaiam 1.3.11-12 =PG 70.149D (of the lyre).
XIV. 1 [50.18-20] $\dot{\varepsilon} v \tau \underline{̂} . . . \pi v \theta \mu \varepsilon ́ v a$. Murphy 42 n .31 suggests that the container is placed inside one of the supporting columns rather than in the base unit, essentially because, in her opinion, it seems al most as if the balls are made to drop out of the bottom of the base (cf. XIV. 1 [50.20-1]). There are two problems with this suggestion. First, it openly contradicts Hero's words, and it is not clear why the term β áбıৎ should betaken to mean 'pedestal' (Murphy 23 and 43 n .38) and not simply 'base'. Second, it is based on a mistaken interpretation of the noun $\pi v \theta \mu \eta{ }^{\prime} v$, which in all likelihood refers to the bottom of the $\dot{\alpha} \gamma \gamma \varepsilon$ iov rather than to the bottom of the base Cf. XX. 4 [66.11-12]. Perhaps we should imagine a container divided into a number of levels, so that the balls may roll downwards from the top.

G's reading $\kappa \alpha \tau \alpha \beta \alpha ́ \sigma \varepsilon 1$ for $\kappa \alpha ́ \tau \omega ~ \beta \alpha ́ \sigma \varepsilon ı ~ i s ~ f a v o u r e d, ~ a l ~ b e i t ~ t e n t a t i v e l y, ~ b y ~$ Schmidt, who in his app. crit., after comparing XVII.1 [56.11] (ка́ $\tau \omega$ ß́́бєळऽ),
 since the latter passage refers to a vault's 'declivity' (LSJ s.v. к $\alpha \tau \alpha ́ \beta \alpha \sigma ı, ~ 4) . ~$ Neither this nor any other meaning of к $\alpha \tau \alpha \dot{\beta} \alpha \sigma \iota$, would be appropriate in the present context. In the Dioptra Hero frequently uses the term to denote a 'backsight' reading (see Schöne 1903: 339 s.v. ка兀аß $\alpha \sigma \varepsilon \omega \varsigma$), a meaning not registered by LSJ s.v.
XIV.1 [50.21-2] к $\lambda \varepsilon \imath \theta$ píov... $\delta \varepsilon \varepsilon ́ n . ~ O n ~ t h e ~ к \lambda \varepsilon ı \theta$ píov mechanism, see note on IX. 5 [32.8-9].

AG's α 人voryó $\mu \varepsilon v o v$ is certainly genuine. The reading of the ed. princ. ($\dot{\alpha} \pi \alpha \gamma$ ó $\mu \varepsilon v o v$) most likely represents an attempt to correct the corrupt text

wrong, but also unnecessary, because the slide opens more than once (őtav δ ह́n). Prou 171 n . 159 mistakenly reads α रvó $\gamma \mu \varepsilon v o v ~ f o r ~ d ̀ v o r y o ́ \mu \varepsilon v o v ~ b o t h ~ i n ~ t h e ~ m a n u-~$ scripts (i.e. Pb, Peand Pg) and in the ed. princ. (cf. the marginal devory, cetainly intended to correct $\dot{\alpha} \pi \alpha \gamma o ́ \mu \varepsilon v o v)$.

Instead of $\tau \hat{c} \varsigma ~ \sigma \pi \alpha ́ p \tau o v, ~ o n e ~ w o u l d ~ r a t h e r ~ e x p e c t ~ o \pi \alpha ́ p \tau o v ~ \tau ı v o ́ s, ~ a s ~ t h i s ~ c o r d ~$ has not been previously mentioned. Cf. esp. XIX. 4 [62.11-12] oлápros tic
 presence of the article (overlooked by Baldi 28 and Murphy 24) points to a now-missing diagram Similarly, XVI.3[56.1].
 positioned at an angle in order to allow the balls to bounce onto it: cf. XIV. 2 [52.2].
XIV. 2 [52.5] «kai> Schmidt's supplement is needed to coordinate the two con-

XIV. 2 [52.5-6] $\tau \alpha ̀ ~ \mu غ ̀ v . . . ~ \alpha ́ v o x \theta e ́ v \tau o c . ~ T h i s ~ m o d i f i e d ~ v e r s i o n ~ o f ~ t h e ~ d e v i c e ~ r e ~-~$ quires a different arrangement of the instruments, each of which must now be positioned in correspondence with one of the containe's compartments. Contrast XIV. 1 [50.22-3]. According to Prou 171, each $\chi \omega \rho \alpha$ is provided with its own
 This presumably means that the partition is placed in such a way as to divide the hole into two equal portions, and that, after the opening of the slide, the two sets of balls are relessed at the same time rather than sequentially. The implication seems to be that ether the hol e is made bigger (but cf. XIV.1 [50.20-1] $\tau р \tilde{\mu} \mu \alpha . .$.

XV [52.7-54.7] Descending garlands
As a traditional religious symbol (DS 4.1258 s.v. Serta), the garlands accentuate the sacred character of the display. Weighted garlands, woven together into a rectangular wreath ($\pi \lambda \varepsilon ́ \gamma \mu \alpha \dot{\varepsilon} \kappa ~ \sigma \tau \varepsilon \varphi \alpha ́ v \omega v \tau \varepsilon \tau \rho \alpha \gamma \omega v \omega v$, XV.2), are released from double parapets at the top of the supporting columns. On each side (Prou 171), a hook is tumed inwards by means of a cord, allowing a hinged trapdoor to swing open and thus release the wreath (XV.3-4).
XV. 1 [52.7] $\pi \varepsilon \rho \iota \sigma \tau \dot{\jmath} \lambda ı o v$. An extremely rare term, found elsewhere only at IG 112. 199 A 108 (Delos, 274 BCE); restored at IG 42.1.112.32-3 (Epidauros, fourth/third century BCE) and AJA 9 (1905) 307.34 (Sinope). Note the variatio with XV. 2 [52.10] ($\tau \varepsilon \tau \rho \alpha ́ \sigma \tau v \lambda o v) . ~ O n ~ t h e ~ n e e d ~ t o ~ d i s t i n g u i s h ~ b e t w e e n ~ ' c o l o n-~$ nade' and 'peristyle', see Ginouvès (1992: 59 n. 2).
XV. 2 [52.9] yivetaı $\delta \varepsilon ̀ ~ o v ̋ ́ \tau \omega c . ~ I t ~ i s ~ u n n e c e s s a r y ~ t o ~ a d d ~<\kappa \alpha i ̀ ~ \tau o v ̂ \tau o>~ a f t e r ~ \delta \varepsilon ́, ~ a s ~$ tentatively suggested by Schmidt in his app. crit. In support of this, he compared the expressions γ ívetal oûv кגì тov̂to oṽ $\tau \omega \varsigma$ (XIII. 2 [44.17] and XVII. 1
 [50.17-18]). But cf. γ ívetaı oûv oű ω ¢ (XII.1 [42.14] and XXV.4 [86.15]).
XV. 2 [52.9] $\theta \omega \rho$ 人́кıov. Se Rance (2009: 96). The term seems to be used to refer both to the individual parapets that run around the top of the (architrave of the) peristyle (here, as at XV. 2 [52.10], [52.11] and [52.15], XV. 3 [52.18]) and to the structure resulting from the combination of these (XV. 2 [52.16], XV. 3 [52.19], [52.22] and [54.1] [supplemented], XVI. 3 [54.22]). Cf. note on XV. 2 [52.14-16]. It also recurs in Book Two, where it refers to the shielded cavity ($\theta \omega$ ра́кıov кoî̀ov, XXIII. 2 [74.11]) containing the door-closing mechanism (Fig. 28); see Schmidt 417 n. 2.
XV. 2 [52.10-11] ${ }^{\text {é } \chi o v . . . ~} \overline{\varepsilon \zeta n \theta}$. As shown in Fig. 21a (plan view). For a side elevation, see Fig. 21b (partly drawing on Schmidt 390 Fig. 95a).
XV. 2 [52.12-13] $\pi \lambda \varepsilon ́ \gamma \mu \alpha$ غ̇к $\sigma \tau \varepsilon \varphi \alpha ́ v \omega v \tau \varepsilon \tau \rho \alpha \gamma \omega ́ v \omega v$. The unusual shape of the $\sigma \tau \varepsilon \in \rho v o u$ is explained by the fact that the wreath is fitted between the (rectangu-
lar) parapets; cf. XV. 2 [52.14-15]. The interweaving of rectangular garlands will result in a rectangular wreath; hence there is no reason to suspect $\tau \varepsilon \tau \rho \alpha \gamma \omega$ v ωv († $\tau \varepsilon \tau \rho \alpha \gamma \omega v \omega v$ Schmidt) and to adopt the editor's proposed $\tau \varepsilon \tau \rho \alpha ́ \gamma \omega v o v$. In any case, the adjective refers to the shape of the garlands, not to their number ('four', Murphy 25; cf. 'a garland on four sides', Roby 2016: 146). Manuscripts are unanimous (or nearly so) in transmitting $\pi \lambda \varepsilon ́ \gamma \mu \alpha$ (see app. crit. ad loc.). This pre sumably means that Baldi's $\pi \eta{ }^{\prime} \gamma \mu \alpha$ ($45^{r} n .28$) is due to a misreading or correction of the text.
XV. 2 [52.14] عv̉ $\alpha \rho \mu o ́ \sigma \tau \omega \varsigma$. Adverb modifying $\gamma \varepsilon v \eta \theta \varepsilon$. v. It occurs only here in the mechanical corpus, whereas there are no occurrences of the corresponding adjective. Schmidt's suggested $\varepsilon v ̉ \alpha \rho \mu o ́ \sigma \tau \varphi$ is therefore arbitrary.
XV. 2 [52.14-16] $\tau 0$ v̂то... $\theta \omega \rho$ ккíov. The wreath - or, more precisely, each of its sides - has to be fol ded together ($\pi \tau v \gamma \varepsilon$ v) in order to fit into the interstitial space between the parapets. For a similar use of $\pi \tau v \sigma \sigma \omega$, cf. Spir. 180.6. It is not clear whether тov $\theta \omega \rho \alpha \kappa$ iov refers to the inner or to the outer parapet. Perhaps what is meant is the (ceiling of the) whole structure (inner side: XV. 3 [52.21-2]; underside: XVI. 3 [54.21-2]; cf. XV. 3 [54.1] [supplemented]). This may motivate the contrast between the plural $\theta \omega \rho \alpha ́ к ı o ~ a n d ~ t h e ~ s i n g u l a r ~ \theta \omega \rho \alpha ́ к ı o v . ~ C f . ~ a l s o ~ X V . ~ 3 ~$ [52.18-19].
 [52.20-1].
 ('cover like a lid', 'cap') is attested only twice (Hp. Loc. Hom $47=6.344 .10$ Littré; Arist Cael. 294b15). A part from the Automata, it occurs six times in Hero's corpus, al ways with reference to the covering, or capping, of holes (Spir. 102.5; cf. غ̀ $\pi ı \pi \omega \mu \alpha ́ v v v \mu \alpha ı: ~ S p i r . ~ 132.6 ; ~ ‘ p r e ́ s e n t ~ i s o l e ́ ~ d ’ a p p a r e n c e ~ f a u s s e m e n t ~$ archaïque', Chantraine, DELG s.v. $\pi \hat{\omega} \mu \alpha$ [1]) and hollow parts (box: Spir. 192.19; pipes: Dioptr. 196.16, Spir. 20.15, 184.2 and 254.2). The only other occurrence of the verb in the treatise, XV. 3 [54.1] (passive), appears to refer to the act of covering the underside of the $\theta \omega \rho$ 人́кiov (taken as the whole structure).

Se note ad loc. For ह̇ $\pi i ́ \pi \omega \mu \alpha$, cf. Dioptr. 300.27 (overlooked by Hammer-Jensen 1910: 502).
XV. 3 [52.21-2] غ̇к $\tau \hat{\varsigma}$... μ и́poc. The use of the article before the numeral (LSJ s.v. عi, 1.c) implies an opposition between the inner and the outer side of the parapet. For a more explicit example of this usage, cf. XVI. 2 [54.18] (cord end).
XV. 3 [52.22] $\sigma \tau \rho о \varphi \omega \mu \alpha ́ \tau ı \alpha ~ \varepsilon u ̋ \lambda \nu \tau \alpha$. The term $\sigma \tau \rho о \varphi \omega \mu \alpha ́ \tau \iota o v$ is very rare, occurring only here and twice in the Pneumatica (Spir. 78.9 and 78.15; cf. Ps.-Hero, Spir. 78.26 and 78.31). Elsewhere (Bel. 89.1 and 89.2), Hero prefers the base noun to describe a removable hinge ($\sigma \tau \rho o ́ \varphi \omega \mu \alpha$ à $\varphi \alpha \rho \varepsilon \tau$ óv); se LSJ s.v. I; Marsden (1971: 27). Differently, Hellmann (1992: 391 n. 3), who proposes, albeit hesitantly, another meaning: 'gaine de goujon' ('pin sheath'). Schmidt 79 n . 3 suggested that Hero's $\sigma \tau \rho о \varphi \omega \mu \alpha ́ \tau \iota \alpha$ were bone hinges, such as those found in Pompeii (on these, see Allison 2006: 30). For zű $\lambda v \tau$ tos as 'easily moveable', of. Spir. 204.9 (pin). In a negative sense: XXVI.3 [92.4-5] $\lambda i ́ \alpha v$ عő $\lambda v \tau \alpha$ [sc. $\kappa \alpha v o ́ v ı \alpha] . . . \dot{\omega} \varsigma ~ \sigma \tau \rho \varepsilon ́ \varphi \varepsilon \sigma \theta \alpha ı$.
 whose omission is easily explained palaeographically ($\tau 0 \hat{0} \theta \omega \rho \alpha$ кiov... < тò $\theta \omega \rho \alpha \alpha_{\kappa} \omega v>$). The subject of $\dot{\varepsilon} \pi i \pi \omega \mu \alpha \sigma \theta \hat{़}$ is otherwise ambiguous. In view of غ̇ $\pi ı \pi \omega \mu \alpha \alpha_{\sigma} \alpha ı$ tò $\pi \lambda \varepsilon$ ह́ $\mu \alpha$ one would rather expect the subject to be 'the wreath', but not infrequently Hero makes use of the verb with reference to hollow objects comparable to the $\theta \omega \rho$ 人́кוov. See note on XV. 3 [52.19-20]. Most translations take $\tau \dot{\alpha} \sigma \alpha v^{\prime} \delta 1 \alpha$ (XV. 3 [52.20-1]) as the unexpressed subject of the verb (Baldi 28v; Schmidt 393; Murphy 26). غ̇ $\pi 1 \pi \omega \mu \alpha ́ \zeta \omega$, however, does not signify the act of 'closing' or 'shutting'; rather, it signifies the act of 'covering' or 'capping'. In other words, the subject cannot be 'the boards', because the verb is used passively. Couture's 'clausae remaneant [sc. assulae]' (259) does not correspond to ő $\tau \alpha v$ ह̇ $\pi ı \pi \omega \mu \alpha \sigma \theta \hat{\text { ñ }}$ (omitted in translation), as implied by Murphy 42 n. 34, but to $\kappa \alpha \tau \varepsilon ́ \chi \eta \tau \alpha ı$ (cf. Bal di 's 'accioche riserrate rimangano chiuse').
 the parapet; see note on XV. 3 [52.21-2]. The hook, or 'raven' (кóра६), must
therefore have been positioned on the same side of the parapet as the hinges, but protruding towards the outside (Fig. 21b). In Schmidt 390 Figs. 95a-b, the hook protrudes beyond parapet $\overline{\varepsilon \zeta \eta \bar{\theta}}$ and thus opens outwards. Instead, Hero invites us to imagine the opposite arrangement. The term кópo ξ recurs in Bel. 79.10-11 (twice), where it describes the pawl (or 'clicker', катак $\lambda \varepsilon i ́)$ which engages, on each side of a bow stock, the teeth of a ratchet (ко́ракєৎ бьঠпроиิৎ in Bito 50.8). See Marsden (1971: 46 n .14), who suggests that each pawl is straight rather than hooked. On кópą more generally, see Whitehead-Blyth (2004: 88-9), on Ath. Mech. 10.12. For $̇$ ह̇ $\pi \iota \tau \rho \varepsilon \pi \tau$ ós as 'rotating', cf. Spir. 134.7-8 ($\sigma \tau o ́ \mu \ldots v$) and 148.2 ($\tau \rho 0 \chi 0$)́).

It is unnecessary to add <av̉zó $\mu \alpha \tau \alpha>$ after $\mu \eta$, as tentatively suggested by Schmidt in his app. crit. The absence of independent movement of the boards has al ready been emphasised: XV. 3 [52.20-1]. A better suggestion would in any
 $\alpha{ }_{\alpha}$ оóy $\varepsilon \sigma \theta \alpha$.

 is wound around the hook from the other side', Murphy 26). The phrase ε к $\delta \delta \grave{\varepsilon} . .$. ко́ракоз should be understood in connection with XV. 3 [54.1] (ε к то̂̂ $\dot{\varepsilon} \tau \varepsilon ́ \rho o v ~$ $\mu \varepsilon ́ \rho o u c)$, which refers to the outer side of the parapet (see previous note). Hence, the 'other side' corresponds here to the opposite (inner) side, with ék denoting the direction of the cord. Quite differently, Bal di 28^{\vee}, who translates the phrase
 $\pi \varepsilon \rho ı \tau i \theta \varepsilon \tau \alpha ı$ with ε è $\pi \iota \tau i \theta \varepsilon \tau \alpha ı$, an obviously incorrect reading. Cf. esp. XXIII. 7
 [98.20-1].
XV.4[54.4-5] $\tau \alpha \theta \varepsilon i ́ \sigma \eta \varsigma . . . \varepsilon$ é $\pi \iota \sigma \tau \rho \alpha \varphi \varepsilon ́ v \tau o \varsigma . ~ N o t e ~ c h i a s m u s . ~$.
XV. 4 [54.6] $\beta \alpha_{\rho} \hat{v}_{\lambda} \lambda_{1} \alpha \mu_{0} \lambda_{1} \beta \hat{\alpha}$. Possibly, conical weights. The term $\beta \alpha \rho v^{\lambda} \lambda_{1}{ }_{10 v}$ is first attested here and in the Pneumatica (Spir. 180.4 and 218.3; both in the singular), albeit without any reference to shape. It reappears in later sources, such as Synesius (Ep. 15.8) and Elias (in Cat. 117.10-11; in Porph. 21.32). In both
authors, it refers to a cone-shaped weight, be it the balancing weight of a hydrometer (Synesius) or the bob of a plumb-line (Elias); see Lampe (1948). For $\beta \alpha \rho u ́ \lambda \lambda 1 o v$ as plumb-bob, cf. also Theon AI. in Ptol. 516.5 ($\beta \alpha \rho \tilde{\prime} \lambda \lambda_{1}$ ov $\mu \mathrm{o}$ и́ $\beta \delta$ гvov кшvıкóv) and 525.2.

XVI [54.8-56.10] Dancing Bacchantes

The Bacchantes, six in number (cf. к $\alpha \tau \alpha ̀ ~ \delta \grave{\varepsilon} ~ \kappa i ́ o v \alpha . . . ~ В \alpha ́ к \chi \eta, ~ I I I .4), ~ a r e ~ p o s i t i o n e d ~$
 XVI.1). The ring is connected to the main counterweight by means of a drummed axle, which turns together with a pulley (XVI.2-3), increasing the distance rotated. Hero later proposes a similar, although slightly more complicated mechanism to lengthen the distance travelled by the automaton (XVIII.1-2). Schmidt 395 n . 1 does not rule out the possibility that the Bacchantes might also be made to rotate around their own axis, and suggests the use of friction wheels to make this happen (394 Fig. 96a). This clearly goes beyond Hero's intentions (Drachmann 1963a: 197). For a detailed study of the dance of the Bacchantes in Ancient Greece, see Lawler (1927).
XVI.1 [54.8-9] Tò λ oınòv... каıpóv. For $\delta \grave{\varepsilon} \delta \eta ́$, occurring only here in Hero, see Denniston, GP 259. Here δ ท́ seems to be used to stress the addition made by $\delta \varepsilon$. Differently, Schmidt 393 ('nun noch') and Murphy 26 ('now'), who take the particle in its proper temporal sense (LSJ s.v.). Both Baldi 29 r and Couture 259 omit translating it.

There is no need to accept Schmidt's suggested χ opsúбovol. The present tense (रopev́ovar) has a generalising force, as in other introductory passages of Book One: XII. 1 [42.11-13], XIII. 1 [44.15-16], XV. 1 [52.7] and XVII. 1 [56.11-12]. One also finds the present in other modal adverbial clauses: V. 2
 vôv غ̇pô̂ $\mu \varepsilon v)$. But cf. the similar passage of XXX.1 [106.4-6].
XVI.1 [54.11-12] $\sigma \tau \nu \lambda \circ \beta \alpha ́ \tau \eta v . . . ~ к \alpha \tau \alpha ̀ ~ \tau o ̀ ~ v ̌ \psi o \varsigma . ~ O n ~ \sigma \tau v \lambda o \beta \alpha ́ \tau \eta \varsigma, ~ s e e ~ G i n o u v e ̀ s ~$ (1992: 15-6); Hellmann (1992: 396). The term is curiously translated as ‘columnarium' (= pulvinar? see Forcellini s.v. columnarium 3) by Couture 259. Murphy 26 has 'foundation', which rather invites us to think of a 'foundation
platform' (see Ginouvès 1992: 11 with n. 29). In his app. crit. Schmidt daringly, if tentatively, suggested emending дò ưчоऽ to кро́тацоv. This emendation does not appear to me to be supported by the passages cited by the editor, namely
 stood as referring to the elevation of the stylobate (see Baldi $45^{r} \mathrm{n}$. 29). For a similar use, see, for instance, Bito 55.9 (of a tower).
XVI.1 [54.13-14] $\pi \varepsilon \rho i . . . \overline{\varepsilon \zeta \eta \theta \kappa \lambda \mu v}$. The termítvc, here does not simply denote a ‘rim' (cf. Spir. 310.9 and 310.11, of cylindrical vessels), as implied by Baldi 29 r ('giro’) and Murphy 26 ('felloe'), but a ‘Ring’ (Schmidt 395; cf. ‘ring', Drachmann 1963a: 197) or 'orbiculum' (Couture 259). The latter sense (not registered by LSJ S.v.) draws directly upon the mathematical sense of the word, which Hero (Geom 374.22-4; cf. Metr. 68.21-3) defines as the space contained between the circurferences of two concentric circles (the so-called 'annulus'; seeCODM s.v.). Cf. al so Metr. 70.4 and 160.1.

Fig. 22a shows three concentric circles, each apparently denoted by four letters (from outside inwards: $\varepsilon \zeta \eta \theta, \kappa \lambda \mu \nu$ and $\alpha \beta \gamma \delta$). As correctly pointed out by Schmidt LVI, the arrangement of the letters is wrong. According to the Teubner editor, two possibilities may be envisaged: (1) the inner circle ($\alpha \beta \gamma \delta$) corresponds to the stylobate, and hence $\varepsilon \zeta \eta \theta \kappa \lambda \mu v$ are in the wrong place; (2) the inner circle indicates either the space delimited by the shrine's columns or the base of Dionysus, and hence $\alpha \beta \gamma \delta$ (but not $\varepsilon \zeta \eta \theta \kappa \lambda \mu v$) are in the wrong place. The main problem with either of these possibilities is that the two sets of letters $\varepsilon \lessdot \eta \theta$ and $\kappa \lambda \mu \nu$ are taken to refer to the circumference of the outer circle (but see Schmidt 394 Fig. 96b), whereas they each denote (and wrongly so) distinct circles. If the outer circle corresponds to the i'tuc ($\varepsilon \zeta \eta \theta \kappa \lambda \mu v)$, as the different ink suggests, $\kappa \lambda \mu \nu$ are misplaced too. I have therefore taken the middle circle to refer to the stylobate ($\overline{\alpha \beta \gamma \delta}$) and the inner circle to the base of the shrine (Fig. 22b). Murphy 25 Fig. 8 has five circles, but it is not al ways clear which element they correspond to (from outside inwards: ‘outer rim of platform' [unlabelled], $\varepsilon \zeta \eta \theta \kappa \lambda \mu \nu$, $\alpha \beta \gamma \delta$, 'roof of shrine' [unlabelled], apex of the cupola [?]).
XVI. 2 [54.16-17] $\dot{\varepsilon} v \tau \varepsilon \tau о \rho v \varepsilon v ์ \sigma \theta \omega$. This is the only occurrence of the verb with the meaning 'turn on the lathe', and the only one known to LSJ s.v. In other in-
stances, especial ly late ones (see DGE s.v. 2), $̇$ ह̇v τ opvév ω refers to chiselling and engraving: se, for instance, Apollon. Soph. s.v. $\lambda \alpha \alpha^{\omega} \omega$; Lucianus, Adv. Indoctum 8.19; Ath. Epit. 2.2.62.23 Peppink. Once used figuratively (DGE s.v. 3): Evagr. Schol. ad Eulog. $30=$ PG 79.1133B ($\lambda v ́ \pi \alpha \varsigma ~ \varepsilon ̇ v \tau o \rho v \varepsilon v ́ o v \sigma ı v) . ~ E l s e w h e r e ~ H e r o ~$ prefers the uncompounded form: XXVI. 7 [94.20] and [96.2], Dioptr. 314.7 (all in the perfect passive); cf. Ph. Bel. 77.21 (aorist passive) andAth. Mech. 23.7.
 tov̂ $\sigma \omega \lambda \hat{\eta} v o c$, were rightly deleted by Schmidt as a repetition from the following line. Murphy 42 n . 35 hesitantly suggests that the phrase is being used for emphasis, apparently without realising that the position of the cord is specified by $\dot{\varepsilon} v \hat{\varrho}$ [i.e. $\sigma \omega \lambda \hat{\eta} v \mathrm{l}$]. The verb $\dot{\varepsilon} \gamma \kappa о \mu i ́ \zeta \omega$ literally means 'lull to sleep' (AP 7.260.5, Carph.). LSJ s.v. cite only the present passage for ε غ́үкоцí̌ ω used metaphorically; but cf. Ps.-Chrys. Hom in Luc. 8.5 =PG 61.771 tòv $\gamma \varepsilon \omega \rho \gamma o ̀ v . .$. t̀̀v $\delta \rho \varepsilon \pi \alpha ́ v \eta v \tau \uparrow ̣ ̂ ~ \sigma \kappa \eta v n ุ ~ \varepsilon ่ \gamma к о \not \mu i ́ \sigma \alpha v \tau \alpha ~(D G E ~ s . v . ~ 2) . ~ N o t e ~ t h e ~ s t y l i s t i c ~ c o n t r a s t ~$ betwen $\varepsilon \gamma \kappa \varepsilon к о ц \mu i ́ \sigma \theta \omega$ and the following кєкрои́ $\theta \omega$.
XVI. 2 [54.18] $\hat{\eta} \varsigma ~ \dot{\eta} \mu \dot{\varepsilon} v \mu i ́ \alpha \dot{\alpha} \rho \chi \grave{\eta}$. On this use of the article, see note on XV. 3 [52.21-2]. For the 'other end', cf. XVI. 3 [54.21].
 XXIII. 4 [76.8].
XVI. 3 [56.1] $\dot{\varepsilon} v \tau \uparrow ̣ ~ \tau v \mu \pi \alpha ́ v ต . ~ S e e ~ n o t e ~ o n ~ X I V . ~ 1 ~[50.21-2] . ~ B o t h ~ S c h m i d t ~ 395 ~$ ('in einer Welle') and Murphy 26 ('on a drum') have preferred indeterminacy. Baldi 29 ('nel Timpano') has the correct translation. Schmidt's proposed correction ($\varepsilon v \tau \varphi$) is awkward, since theAttic form of $\tau \iota v i ́$ is never found in Hero.
XVI. 3 [56.1-2] $\hat{\varrho} . .$. . $\sigma \rho \varepsilon \varphi$ ó $\mu \varepsilon v o \varsigma$. Prou 169 maintains that the dance of the Bacchantes is achieved by the same axle that turns the Nike and Dionysus (following his reconstruction; cf. synopsis on XIII.7-8). This is clearly impossible, because Nike's axle is located not under the parapet, but within the roof of the shrine; cf. note on XIII.3 [46.4-6].

The correct reading must be the adverb cù $\lambda v i \tau \omega \varsigma$ (AGM) rather than the adjective ε v̋ivtos (\mathbf{T}). The adverb, in fact, is frequently used to describe the smooth rotation of an axle; see note on II.8 [12.6-7]. M urphy 26 seems to misinterpret the meaning of $\varepsilon v ่ \lambda u ́ \tau \omega \varsigma$ ('an axle with enough room to turn freely'; my emphasis), for she stresses (42 n .36) that the axle should not rotate independently of the drum. Hence, she suggests that Hero means that the axle is turning on pivots which are fitted into something else. Although pivots are certainly used (cf. XI. 8 [40.6-7]), there is no explicit indication in the text of how the axle is made to rotate.
XVI. 3 [56.3-5] $\sigma 0 \mu ß \eta ́ \sigma \varepsilon \tau \alpha \imath ~ o v ̉ v . . . ~ \sigma \pi \alpha ́ \rho \tau o v . ~ A ~ s i m p l e ~ t r a n s m i s s i o n ~ s y s t e m ~(' e i n-~$ fache Übersetzung', Schmidt LVII; se also Fig. 23). Cf. XVIII. 2 [58.18-21] (involving a double axle arrangement).
XVI. 3 [56.6] סìc $\alpha v ̉ \tau \alpha ̀ \varsigma ~ \delta \varepsilon i ̂ ~ \chi o p \varepsilon v ̂ \sigma \alpha . . ~ C f . ~ I V . ~ 2 ~[18.9-10] ~(f i r s t ~ d a n c e) ~ a n d ~ I V . ~ 3 ~$ [18.18-19] (second dance).
XVII.1-2 [56.11-58.2] Concealing the cords Hero fills in some gaps, providing information on how to keep the cords orderly and out of sight. A partition divides the $\sigma \dot{\rho} \imath \gamma \xi$ into two unequal parts (XVII.1; Fig. 24), the larger part containing the millet, the smaller part concealing the cords (XVII.2). A cursory observation on the height of the $\sigma \dot{\rho} \rho t \xi \xi$ ($\varepsilon \pi \varepsilon i . .$. $\mu \eta \chi \alpha v \eta$ í $\alpha \sigma \theta \alpha l$, XVII.2) provides a smooth transition to the discussion of modifications for increasing the range of motion (XVII.3-XIX).
 XVII. 1 [56.15] and XIX. 1 [60.12]. For $\sigma \tau$ ' $\mu \alpha$ as mouth of a tube, cf. Spir. 20.14
 let' or 'entrance': LSJ s.v. II. 2 (citing no Heronian instances); especially compare Spir. 280.4 (of a flask) with AP 6.251.6 ő $\lambda \pi \eta \varsigma . . . \sigma \tau$ ó $\mu \alpha \tau \iota$ (Phil.).

 reversing Spir. 306.1-2). The correction $\sigma \tau \varepsilon v o ́ \tau \alpha \tau o v ~ i s ~ S c h m i d t ' s . ~ T h e ~ m a n u-~$
script reading $\sigma \tau \varepsilon \gamma v o ́ \tau \alpha \tau \sigma v$ (' watertight') cannot be right because, as the text that follows makes clear, the cords are made to pass through the space delimited by the partition. A similar confusion between $\sigma \tau \varepsilon v o ́ s$ and $\sigma \tau \varepsilon \gamma v o c_{c}$ occurs at XXVII. 1 [98.5] (see app. crit ad Ioc.). For $\alpha \pi о \lambda \alpha \mu \beta \alpha ́ v \omega$ in the sense of 'fix', ‘secure’, cf. DGE s.v. III.3, citing ID 504 A 11 ($\alpha \pi о \lambda \alpha \beta \grave{v} \chi \alpha ́ \lambda ı \kappa ı ~ \alpha ̉ \rho \alpha \rho o ́ \tau \omega \varsigma), ~$ XXIII. 5 [76.12] and XXV. 4 [86.21] (erroneously cited as 25.5); cf. also XXIII. 4 [76.7].

Manuscript diagrams show the partition, al ong with the mouth of the tube, as seen from above (Fig. 24a). So, Bal di 30 unnumbered Fig., but with ' C^{\prime} ($=\gamma$) and ' d ' ($=\delta$) inverted. For the sake of clarity ('um der Deutlichkeit willen') Schmidt 397 Fig. 97 with n . 1 preferred a side view (α, γ and ζ are ambiguously placed at the bottom of the tube, whereas δ and ε should not be aligned with β).
XVII. 2 [56.18-19] αi סè... ávevexӨńбovtal. I follow Schmidt in adopting M's $\dot{\alpha} v \varepsilon v \varepsilon \chi \theta \mathfrak{\eta} \sigma o v \tau \alpha 1$, which must be the genuine reading. Cf. XVII. 2 [56.22] (α i
 $\dot{\varepsilon} v \varepsilon \chi \theta \dot{\eta} \sigma o v \tau \alpha u$ for AGT's $\alpha v \varepsilon \chi \theta \dot{\eta} \sigma o v \tau \alpha ı$ is unnecessary.
XVII. 2 [56.22-58.1] $\pi о \lambda \lambda \hat{\omega} v . . . \dot{v} \pi \alpha \rho \chi o v ́ \sigma \eta \varsigma . ~ N o t e ~ t h e ~ v a r i a t i o ~ b e t w e e n ~$ $\gamma ı v o \mu \varepsilon ́ v \omega v$ and $\dot{\tau} \pi \alpha \rho \chi о v ́ \sigma \eta \varsigma$ and the partial chiastic arrangement.

Without textual support, Brinkmann's emendation $\mu \varepsilon \gamma \alpha \dot{\alpha} \lambda \eta$ c for $\pi 0 \lambda \lambda \eta \bar{\eta}$ is implausible both palaeographically and stylistically. The use of the adjective π o λ v́s to describe the length of journey (π орвí α) is common enough and early enough (for instance, PI. R. 614e2, Arist. Ph. 220b30, Cleom. Cael. $1.4=19.37-$ 8 Todd). Cf. XVII. 3 [58.4] and XVIII. 2 [58.23].
XVII. 2 [58.1-2] $\alpha{ }^{\alpha} v \alpha \gamma^{\prime} \kappa \eta . . . \mu \eta \chi \alpha v \eta{ }^{\prime} \sigma \alpha \sigma \theta \alpha 1$. AGT's $\mu \eta$ has been rightly deleted by Schmidt. M's $\mu \varepsilon ̀ v$ would here be out of place. Hero's concem is genuine, given that the height of the σ ט́ $\rho \gamma \xi$ determines the distance descended by the counterweight (Olivieri 1901: 431).

With $\delta \varepsilon i ̂ . . . \mu \eta \chi \alpha v \eta ́ \sigma \alpha \sigma \theta \alpha \iota ~ c f . ~ X X V I .6 ~[94.17] ~ \delta \varepsilon i ̂ ~ \pi \rho о \mu \eta \chi \alpha v \eta ́ \sigma \alpha \sigma \theta \alpha ı ~ \tau \alpha v ̂ \tau \alpha$ (occurring in identical sentence position). Schmidt 397 misinterprets here: 'Daher ist noch folgende Hilfsvomichtung zu machen'. On the other hand, Murphy 26 ('and you must make it so') is too bland. More appropriately, Baldi 30r
(' bisogna in questo modo ancora aiutarsi con l'ingegno') and Couture 260 ('hic quoque arte utendum').
XVII.3-XVIII [58.3-60.9] Increasing the range (I). Potentially unsuccessful modifications
Three methods are proposed for increasing the distance covered by the automaton (XVII.3-XVIII.2). The first two methods involve either bigger wheels (Hero's preferred choice) or a smaller axle (XVII.3). Hero does not elaborate, perhaps because of problems arising from changes in the ratio between the axle and the wheds. The third method, applicable also to any other mechanism (кגi... ε ह̇ $\tau \tau \varepsilon \lambda \varepsilon i \sigma \theta \alpha \iota, ~ X V I I I .3)$, is nothing more than a transmission system (Fig. 25) in which an added drum amplifies the rotation of the whed axle (Olivieri 1901: 431; cf. XVI.2-3). This is theoretically possible, but practically unlikely. A heavier, hence bigger, counterweight (cf. XVIII.3) would in fact take up too much space in the $\sigma \dot{\rho} \rho l y \xi$. The section closes with an example illustrating how mechanical transmission can be used to increase the range of other movements (i.e. rotation of Dionysus, XVIII.4).
 one turn of the axle corresponds to one turn of the wheeds. So, for each tum of the axle, the automaton travels a distance equal to the circumference of the wheels: XVII. 3 [58.5-7]. The tacit implication is that, if the wheels' diameter is increased, the height of the base must be increased too.
 $\mu \eta ̂ \kappa о \varsigma \pi \alpha \rho \varepsilon ́ \chi \varepsilon เ v$. If one reduces the diameter of the axle, the wheels will tum faster, thus increasing the overall distance travelled. This option is not without di sadvantages; seefollowing note.
XVII. 3 [58.5-8] ö $\pi \alpha \xi$... π oıєiv. These lines have been suspected by Schmidt LVI-II of being an interpolation, primarily on the grounds that δ เò... π rotiv contradicts the alternative of XVII. 3 [58.3-5]. However, as pointed out by Olivieri (1901: 433), there is no contradiction, but rather a continuation of the argument in favour of the enlargement of the wheels. Admittedly, Hero does not bring his
argument to an end nor does he explain why he prefers the former option to the latter. Perhaps we should assume a lacuna after $\pi \varepsilon \rho 1 \varphi \varepsilon ́ \rho \varepsilon i \alpha$, in which Hero illustrated the benefits of enlarging the wheels (avitov́c, indeed, lacks a clear antecedent). Be that as it may, the second option does have some disadvantages. First, a thinner axle means less space for the cord slackenings and, consequently, a lower capacity to programme movements (see McCourt 2012: 196). Second, as the speed of the rotation is increased (see previous note), the automaton becomes more unstable eand prone to tipping over.

With $\tau \eta \lambda_{1} \kappa \alpha$ v́тŋท... $\pi \varepsilon \rho \iota \varphi \varepsilon ́ \rho \varepsilon 1 \alpha$ of. the phrasing at XVIII. 2 [58.19-20] тобоиิтоv... $\pi \varepsilon \rho \iota \varphi \varepsilon ́ \rho \varepsilon เ \alpha$ (noted by SchmidtLVII).
XVIII. 1 [58.10] $\tau 0 \hat{0} \sigma 0 \mu \varphi v o v ̂ \varsigma ~ \alpha v ̉ \tau \hat{̣} ~ \tau \rho o \chi o v ̂ . ~ S c h m i d t ' s ~ e m e n d a t i o n ~(~ \alpha v ̉ \tau \hat{̣) ~ i s ~}$ easy enough, because the whed rotates together with the axle: XVIII. 2 [58.22-3]. Most manuscripts, including a have α v̇tov̂, a reading which probably arose under the influence of thefollowing $\tau \rho \circ \chi o \hat{v}$.
XVIII. 1 [58.15-17] ε éк $\delta \dot{\varepsilon} . . . \lambda \varepsilon \varepsilon \varepsilon^{\prime} \alpha v . ~ T h e ~ f i r s t ~ p a r t ~ o f ~ t h e ~ s e n t e n c e ~ i s ~ e l l i p t i c a l, ~$ since the participle ε हो $\pi \varepsilon \lambda \eta \eta \theta \varepsilon i \sigma \alpha$ lacks a prepositional complement: either $\pi \varepsilon \rho i$
 á ${ }^{\prime}$ ova (as implied by Schmidt's ' wickle sie darauf' [399]). I am inclined to favour the first interpretation. Cf. XVIII.1 [58.13-14]. Couture 261 ('ad aequipondium .. deducatur et alligetur') misconstrues the syntax, associating غ̇ $\pi \varepsilon ı \lambda \eta \theta \varepsilon i ̂ \sigma \alpha$ with $\dot{\alpha} \pi \mathrm{o} \delta \varepsilon \delta o ́ \sigma \theta \omega$. Murphy 27 ('Attach the other cord. . to the counterweight') omits the participle al together.

For a similar ellipsis, cf. XXIV.4[82.13-14].
XVIII. 2 [58.18-20] $\sigma v \mu \beta \eta_{\sigma} \varepsilon \tau \alpha 1 . . . \pi \varepsilon \rho ı \varepsilon ́ \rho \varepsilon ı \alpha$. Hero gives prominence to the rotation of the axle, which both serves as a measure of the emptying of the
 of the drum (as clearly emerges from the clause that follows; cf. also XVIII. 1 [58.12-13]). Schmidt's emendation $\sigma \tau \rho \alpha \varphi \varepsilon ́ v \tau o \varsigma ~ g i v e s ~ a ~ m o r e ~ p r e c i s e ~ s e n s e ~ t h a n ~$ $\sigma \tau \rho \varepsilon ́ \varphi o v \tau o c$. As noted in the editor's app. crit., this emendation has been sugges-
 atio in the word order). Two manuscripts (Ea, Lb) have $\dot{\alpha} \pi о \sigma \tau \rho \alpha \varphi \varepsilon ́ v \tau o \varsigma, ~ w h i c h ~$
most probably resulted from the conflation of $\ddot{\alpha} \pi \alpha \xi$ (omitted in both manuscripts) and the corrected (or original?) reading $\sigma \tau \rho \alpha \varphi \varepsilon ́ v \tau o \varsigma$.
XVIII. 2 [58.20-1] $\tau \grave{v} v \delta \varepsilon ̇ . . . ~ \tau u ́ \mu \pi \alpha v o v . ~ I ~ a d o p t ~ S c h m i d t ' s ~ p r o p o s e d ~ e m e n d a t i o n ~$ $\dot{\varepsilon} \pi \varepsilon \varepsilon \lambda \varepsilon i \sigma \theta \alpha 1$ for AG's $\dot{\varepsilon} \pi \varepsilon 1 \lambda \hat{\eta} \sigma \alpha 1$, a reading which, if retained, would require $\tau \eta ̀ v . . . \sigma \pi \alpha \dot{\alpha} \tau$ rov to become the direct object and τ ò... $\tau \hat{\mu} \mu \pi \alpha v o v$ the subject: so Murphy 27 ('the drum $\mathrm{H} \Theta$... will wind the cord from axle AB once'). This can hardly be correct, given the correlation with the preceding clause (ỏ λ íoov $\mu \varepsilon ̀ v$ $\mu \varepsilon ́ \rho о с . . . \tau \grave{\imath} v \delta \varepsilon ̀ . . . \sigma \pi \alpha ́ \rho \tau o v)$. Schmidt (app. crit. ad loc.) also tentatively suggested adding <<ic> after غ̇ $\pi \varepsilon i \lambda \varepsilon i \sigma \theta \alpha ı$, and indeed, despite his Greek text (̇̇ $\varepsilon \varepsilon i \lambda \eta ̄ \sigma \alpha ı$), translated accordingly ('die Schnur... sich einmal auf die Welle $\eta \theta$

 been omitted (غ̇ $\pi \varepsilon 1 \lambda \varepsilon i ̂ \sigma \theta \alpha 1<\dot{\varepsilon} \pi i>)$. Some manuscripts (Ad, Ac, Barb. gr. 261 and Ld) have the incorrect reading $\dot{\alpha} \pi \varepsilon \iota \lambda \hat{\eta} \sigma \alpha 1$, which implies that the drum rotates in the opposite direction. Baldi $30^{\nu}-31^{r}$ appears to retain $\varepsilon ่ \pi \varepsilon \lambda \hat{\lambda} \sigma \alpha 1$, but mistranslates it: ‘la corda. . . circonda una volta sola il Timpano'.
 rivo ${ }^{\prime}$ al. So Schmidt 399 ('ergiebt siche eine bedeutende Länge der Fahrt'). In a copulative sense: Bal di 31 ('sia molto lungo il viaggio', my emphasis) and Couture 261 ('sit longius iter'). Murphy 27 translates much more freely: 'the motion will cover a longer distance'.
XVIII. 3 [60.1-2] μ हí̧ovoc... кıveîбӨal. Hero relies here on the allegedly Archimedean principle of concentric circles (Mech. 2.7; cf. Papp. 1068.19-23; Drachmann 1963a: 61-3; Knorr 1982: 90-2), by which, following in the footsteps of Philo's lost book on levers (Мох $1 \uparrow \kappa \alpha ́, ~ c f . ~ P h . ~ B e l . ~ 59.11-12) ~ a n d ~ P s .-~-~$ Aristotle's Mechanica, he elsewhere (Mech. 2.8-20; cf. Mech. 2.1) explains, or attempts to explain, how each of the five powers (but particularly the windlass and the lever; see following note) can move a large weight with a small force (Schiefsky 2008: 22-32; Laird 2015: 290-301, contra, argues that only the windlass and the lever are reduced to concentric circles, and that the pulley, the wedge, and the screw are explained by another principle, which he calls the prin-
ciple of dividing and sharing the load). The reference to bigger and smaller circles (not 'wheels', Murphy 27) is a reference to the drum $\overline{\eta \theta}$ and the axle $\overline{\varepsilon \zeta}$, (see Schmidt 399 n .2 ; the generalising plural also appears twice at XVIII. 4 [60.7-8]). Unlike in the case of concentric circles, the moving power is applied (by means of a pulley) to the circumference of the smaller circle. Since the ratio between force and weight is the inverse of the ratio of the distances from the centre (Mech. 2.7; cf. [Arist.] Mech. 850b1-2; Schmidt 399-401 n. 3), a greater force is required to turn the drum, thereby overcoming the resistance of the wheed and axle assembly. On the basis of Dioptr. 312.20-22, where the principle is used to account for the operation of the baroulcos or 'weightlifter' (see the discussion in Berryman 2009: 136), Schmidt (app. crit ad loc.) tentatively suggested adding <ót $\tau v \pi \varepsilon \rho i ̀ ~ \tau o ̀ ~ \alpha u ̉ \tau o ̀ ~ \kappa \varepsilon ́ v \tau \rho o v ~ к \nu \lambda i ́ \omega v \tau \alpha l>a f t e r ~ \kappa ı v \varepsilon i ̂ \sigma \theta \alpha ı . ~ T h i s ~ s u p-~$ plement is unnecessary, because it is obvious that $\overline{\eta \theta}$ and $\overline{\varepsilon \zeta}$, rotate about a common axis passing through their centre: that is to say, it is obvious that they can be reduced to concentric circles.

Perhaps emend $\pi \rho \circ \sigma \delta \varepsilon i \tau \alpha ı$ to $\pi \rho \circ \sigma \delta \varepsilon i ̂$ (Schmidt dub. in app. crit). The impersonal middle $\pi \rho \circ \sigma \delta \varepsilon i \tau \alpha 1$ is significantly less frequent than its active counterpart: LSJ s.V. $\pi \rho \circ \sigma \delta \varepsilon ́ \omega$ (B) II. 2 (not noting the present passage; add Ps.-Aristeas, Ep. ad Philocr. 11.5). But seKG 1.396 (Schmidt in his app. crit. refers to ‘Kühner Gr. II 255', but this seems erroneous, for neither the first nor the second nor the third edition contains relevant information on that page).
XVIII. 3 [60.3] $\tau \alpha v ิ \tau \alpha . .$. éctı. Or, perhaps better, 'by means of the principles of leverage' ($\mu \mathrm{o} \lambda \lambda 1 \kappa \hat{\omega} v$, Brinkmann), as understood by Baldi 31r ('ragioni del vette') and, more drastically, Couture 261 ('tractatum de vecte'). By all appearances, Hero intends to clarify his reference to bigger and smaller circles. For the reduction of the lever to the principle of concentric circles and, ultimately, to the balance, cf. Hero, Mech. 2.8 (seemingly drawing on [Arist] Mech. 850a30850b9). When reduced to concentric circles, the arms of the lever correspond to the distances from the centre (i.e here the radii of the drum $\bar{\eta} \bar{\theta}$ and the axle $\overline{\varepsilon \zeta}$); see Schmidt LVII, 399-401 n. 3 and, more generally, previous note. The reading of AGT, μ ох $\lambda i \not \omega v$, is certainly better than M's кох $\lambda i \not \omega v$ (Baldi 45 r n . 30 already corrected the latter reading, which he claimed to have found in his exemplar). While the screw bears little (Shiefsky 2008: 28, 30-1) or no (Laird 2015: 300)
similarity to concentric circles, $\mu \mathrm{o} \mathrm{\chi} \mathrm{\lambda í} \mathrm{\omega v}$ fits much better into Hero's explanatory agenda for mechani cal phenomena; see Schiefsky (2008: 23), who finds a paralIe between Hero, Mech. 2.1 and [Arist] Mech. 848a11-14 $\tau \alpha ̀ \mu \varepsilon ̀ v ~ o u ̂ v ~ \pi \varepsilon \rho i ̀ ~ \tau o ̀ v ~$
 $\delta^{\prime}{ }^{\alpha} \lambda \lambda \alpha \pi \alpha ́ v \tau \alpha \sigma \chi \varepsilon \delta o ̀ v ~ \tau \alpha ̀ ~ \pi \varepsilon \rho i ̀ ~ \tau \alpha ̀ \varsigma ~ \kappa ı v \eta ́ \sigma \varepsilon ı \varsigma ~ \tau \alpha ̀ \varsigma ~ \mu \eta \chi \alpha v ı \kappa \alpha ̀ \varsigma ~ \varepsilon i \varsigma ~ \tau o ̀ v ~ \mu о \chi \lambda o ́ v . ~$

It is unnecessary either to transpose $\delta \grave{\eta}$ after $\gamma \alpha \dot{\alpha} \rho$ (Schmidt dub. in app. crit.)

 istic of Hero), se Denniston, GP 244. In the manuscripts $\mathbf{A b}, \mathbf{A c}$ and $\mathbf{B b}$, a space of varying size is left blank between кох $\lambda i ́ \omega v$ and $\delta \grave{\eta}$ ($\delta \check{\text { E }} \mathbf{B b}$). This is probably just a mistake, for in two cases the scribe drew a line between the words either across ($\mathbf{A c}$) or below ($\mathbf{A b}$) the space.
XVIII. 3 [60.3-5] каì.. . غ̇ $\pi 1 \tau \varepsilon \lambda \varepsilon i ̂ \sigma \theta \alpha 1$. If Hero is keeping up the anal ogy with concentric circles, as it seems, then the $\mu \kappa \kappa \rho \alpha ̀ ~ \delta i \alpha \sigma \tau \eta \prime \mu \alpha \tau \alpha$ are 'small radii' (Murphy 27; cf. LSJ s.v. $\delta 1 \alpha ́ \sigma \tau \eta \mu \alpha$ I.1.b and Hero, Deff. 27), and not simply 'short distances' ('kleine Entfernungen', Schmidt 401) or, even worse, ‘small lengths' of cord ('piccioli spatij, cioè di corda', Baldi 31r). $\mu \varepsilon \gamma \alpha \dot{\alpha} \lambda \alpha c$ ov̋ $\alpha \alpha$, clearly refers to the duration of movements (Schmidt 401); Murphy 27 ambiguously translates 'on a large scale'.
XVIII.4[60.6-9] દ̇ $\alpha v \gamma \grave{\alpha} \rho . . . ~ v i \pi \varepsilon \delta \varepsilon i \xi \alpha \mu \varepsilon v$. This passage has been unjustly suspected (Schmidt LVII-III; endorsed by Brinkmann and Oliviei 1901: 433) as an interpolation. Schmidt's main reasons are as follows. First, the apparatus for the rotation of Dionysus (XIII.7-9 [48.13-50.14]) is an unsuitable example of mechani cal transmission, in that Dionysus rotates only 180 degrees (twice); the dance of the Bacchantes would have been a much more fitting example (cf. XVI. 3 [54.21-56.6]). Second, μ кі̧́оvaৎ кv́кдоис presupposes a repeated transmission (i.e. a higher number of rotations), and the singular $\tau \hat{\varrho} \mu \varepsilon \varepsilon_{i}^{\prime}, o v i$ is awkward. Third, the phrase $\dot{\eta} \delta \grave{\varepsilon}$ عic $\tau \grave{\eta} v ~ \lambda \varepsilon \varepsilon^{\prime} \alpha v$, unaccompanied as it is either by $\dot{\alpha} \pi \mathrm{o} \delta 1 \delta \mathrm{o} \mu \varepsilon ́ v \eta$ (as at XIX. 3 [62.6]) or $\dot{\alpha} \pi \mathrm{o} \delta \varepsilon \delta \delta \mu \varepsilon \varepsilon^{v} \eta$ (as at XXVI. 8 [96.9]), is harsh. Fourth, غ̇òv γ óp (as used here?) is otherwise unfamiliar to Hero. As to the first point, it is true that, unlike the Bacchantes' dance, the mechanism for turing Dionysus does not involve a transmission system which lengthens the dis-
tance rotated. However, Hero might be developing, al beit still in an embryonic form, an alternate system that al lows Dionysus (and the Nike?) to complete one or more full rotations either before or after (or both before and after) the second altar has lit. Brinkmann's deletion of tov̂ Δ ıovv́бov (disliked by Olivieri) is, therefore, not only unnecessary but also undesi rable As far as $\mu \varepsilon$ દíఢоvac ки́к λ оия, is concerned, the plural should not be taken as indicating a repeated transmission
 drum; cf. XVIII. 3 [60.1-2] with note ad loc. Thus, $\tau \hat{\varphi} \mu \varepsilon_{i}$ íovi could be a mere slip of the pen for τ ois $\mu \varepsilon$ ícoor. If so, it requires neither to be emended to the plural (as proposed by Schmidt in the Anmerkungen; but see already Baldi 31r) nor to be supplemented by <ки́к $\lambda \omega>$ (as hesitantly proposed by Schmidt in his
 do find comparable expressions for cords coming from ($\varepsilon \kappa$ к) a certain direction (XII.4 [44.8-9] and XVI.3 [56.5]) or passing around ($\pi \varepsilon \rho$ í) a certain instrument (XVI. 3 [56.3-4]). In any case, it is clear that there are two cords - one going from Dionysus' pipe (o'pravov) to the drum and another going from the drum's axle to the counterweight (in anal ogy with XVIII.1 [58.12-17]; cf. Figs. 25ab) rather than only one, as wanted by Murphy 27 ('for if the cord moving the apparatus of Dionysus is wound around greater circles, it must then go, etc.', my emphasis). Last but not least, દ̇òv $\gamma \alpha ́ \rho$ is not at all uncommon in Hero: VIII. 1 [28.4], Deff. 83.1, Dioptr. 252.11 and 272.21, Mech. Frag. 2.35 =Papp. 1034.14, Metr. 6.14 (supplemented), 74.6, 74.26, 86.4, 94.1-2, 138.20 and Spir. 4.17; cf. Mech. Frag. 3.1 = Papp. 1130.18-19 (ε àv $\mu \varepsilon ̀ v ~ \gamma \alpha ̀ \rho . . . ~ \dot{\varepsilon} \alpha ̀ v ~ \delta \dot{\varepsilon})$. Unlike these other passages, here éòv $\gamma \alpha ́ \rho(' w e n n ~ z . B . ', ~ S c h m i d t ~ 401 ; ~ m y ~ e m p h a s i s) ~ i n t r o d u c e s ~ a ~$ protasis without apodosis, where γ á ρ establishes a logical connection with the previous sentence; for comparable examples with combinations such as $\dot{\varrho} \varsigma \gamma \alpha \rho$,
 quoted by Schmidt in his app. crit. ('Vahlen Aristot. poet. p. 1283'). So, while Schmidt's suggested deletion of $\gamma \dot{\alpha} \rho$ disrupts the logical coherence of the text, the apodosis can be easily supplied from the context ('this happens', where the pronoun more correctly refers to the idea in the previous sentence rather than to XVIII.1-2 [58.9-23], as in Baldi 31r and Couture 261). On incomplete conditional sentences, see generally Goodwin (1889: 179 n. 482) and KG 2.484-5.

XIX [60.10-62.20] Increasing the range (II). Two-counterweight system Hero provides only a sketchy ('summarisch', Schmidt LVIII; cf. Schmidt 1903: 278) account of his two-counterweight system. The $\sigma \dot{\rho} \rho \imath \xi$, and not the whole case ('cassettone a due spartimenti', Olivieri 1901: 432), is divided into two parts (Fig 26), each containing a counterweight (XIX.1). One counterweight brings about forward and backward motion, the other all the remaining movements (XIX.2; cf. XIX.3-5). A more complex mechanism (involving, among other things, a greater number of cords) has been devised by Querfurth (Schmidt LVIII-IX with Figs. 99b and 99c; unduly criticised by Olivieri 1901: 431). For further discussion, including rebuttal of Olivieri's view that the chapter is interpolated, cf. Introduction, pp. cxiii-CXV.
XIX. 1 [60.10] غ̇ π лло whole corpus of Greek literature. For èmıторєv́oual, cf. XIX. 4 [62.11]. The change from $\pi о \rho \varepsilon$ í $\alpha / \pi о \rho \varepsilon$ v́o $\mu \alpha$ is probably only stylistic.
 surely right. Cf. II. 8 [12.3-4], XII. 1 [42.10-11] and XVIII. 3 [60.3-4]. The words $\tau \hat{\varsigma} \varsigma \pi$ орвía , may easily have dropped out owing to the proximity of $\dot{\varepsilon} \pi ı \pi o \rho \varepsilon i ́ \alpha$ and α до $\pi о \rho \varepsilon$ с́́ .
 noun $\delta 1 \alpha, \varphi \rho \alpha \gamma \mu \alpha$, which is frequently used by Hero in the Pneumatica: see, for instance, Spir. 102.24-104.1, 112.16-17 and 116.14-118.1 (plural). The verb $\delta ı \alpha \varphi \rho \alpha ́ \sigma \sigma o \mu \alpha 1$, occurring only here in the Automata, is generally employed by Hero (only in the Pneumatica) to refer to horizontal partitioning; but cf. Spir. 152.9-13 (vertical partitioning). Just as in the case of the single partitioning (XVII. 1 [56.15-16]), manuscript diagrams show a plan view of the σ ט́pı ξ (Fig. 26a). So Baldi 31^{v} unnumbered Fig. and Schmidt 402 Fig. 99a. For a side view, see Schmidt LVIII and 403 Fig. 99b (including more details than are warranted by thetext).
XIX. 1 [60.14-16] $ั \sigma \tau \varepsilon . . . ~ \lambda \varepsilon i ́ \alpha c . ~ P e r h a p s ~ w e ~ s h o u l d ~ e m e n d ~ \kappa \alpha ́ \tau \omega ~ t o ~ \kappa \alpha ́ \tau \omega \theta \varepsilon v ~(c f . ~$ XVII. 2 [56.19] and [56.22]). The omission of $-\theta \varepsilon v$ might have arisen from over-
sight (εv being often abbreviated as L or \angle and written above the line: Allen 1889: 14 and PI. IV; Gardthausen 1913: 337). Translators have been inattentive here, for they either rendered the adverb as if it were кó $\tau \omega \theta \varepsilon v$ (' da basso', Bal di 31r; ‘ab imo', Couture 261; 'von unten', Schmidt 401) or omitted it altogether (Murphy 27). The plural $\tau \grave{\alpha} \varsigma \lambda$ عíac is curiously translated by Murphy 27 as 'the counterweight.
XIX. 2 [60.20-62.1] $\dot{\varepsilon} v \tau \underline{\imath} \overline{\eta \theta \gamma \delta}$. Here, too, there must have been millet seeds. If Hero does not specify, it is probably becausehe wants to avoid repetition.
 cords (one that opens it, another one that closes it, and yet another one that opens it), whereas hole $\bar{\lambda}$'s slide has only one cord attached (it need not be closed once the millet has run out). Murphy 43 n. 42 makes (somewhat tentatively) two points. First, the opening of each slide is controlled reciprocally by either counterweight. Second, $\bar{\kappa}$'s slide is closed either at the same time $\bar{\lambda}$ is opened (by means of one and the same cord) or after $\bar{\lambda}$ is opened, by means of a cord pulled tight under the impulse of the second counterweight. The first point seems right, except that $\bar{\kappa}$'s slide is first opened manually: XIX. 3 [62.3-4]; cf. IX. 5 [32.10-12]. As for the second point, $\bar{\lambda}$'s slide is opened during forward motion (XIX. 4 [62.11-12]), which means that $\bar{\kappa}$ must be closed at a later time. It is not entirely clear how $\bar{\kappa}$'s slide is closed, but XIX. 4 [62.14-15] strongly suggests that it is pulled shut by the cord connected to the second counterweight (or, possibly, by another cord branching off it); seefurther note on XIX. 4 [62.15].

On $\pi \alpha \rho \alpha ́ \gamma \omega$, see note on XII. 2 [42.17-18].
XIX. 3 [62.3] $\pi \alpha \rho \alpha \xi^{\prime} \mu \varepsilon v$. This is no doubt the correct reading, and is supported by all manuscripts. Cf. XIX. 2 [62.2]. In the margin of manuscript F we find the tentative emendation $\pi \rho \circ \sigma$ '́ ξ ou εv (' bring to' or 'upon'), which does not fit into the present context.
 dorsed by Murphy 43 n .41) is Schmidt's, and has been anticipated by Baldi 31r (' non'). The pleonasmópù̀v $\lambda \alpha \beta$ òv... кıvn θ ṇ is emphatic and is unparalled else
where. But cf. Ph. Quod deterius potiori insidiari soleat 127.5 ó vốs,
 ition $0 \pi \varepsilon$ ќp (rightly deleted by Schmidt) seems to be an intrusive gloss explaining the position of the counterweight. Baldi 31r ('le carrucole di sopra') translates $\tau \rho \circ \chi \hat{\omega} v$ as if it were $\tau \rho \circ \chi i \lambda \omega v$ (Couture 262 follows suit, but changes the plural to the singular). Such rendering is best explained as an attempt to make sense of the corrupt reading iv $\pi \rho \tau \rho \frac{\chi \omega ิ v, ~ t r a n s m i t t e d ~ i n ~}{\mathbf{M}}$ and other manuscripts.
XIX. 3 [62.7-9] $\chi \rho o ́ v o \varsigma . . . ~ \chi o ́ \lambda \lambda \alpha \sigma \mu \alpha$. The equival ence between the periods of (apparent) inactivity of the automaton and the length of cord slacks is first formuIated here. This formulation, however, is foreshadowed in the idea that the cord slacks should be made proportional to the distances travelled by the automaton: X.3 [34.16-17] and XI. 5 [38.4-5]; cf. XI.5 [38.1-3] with note ad loc.

For $\dot{\alpha} \pi \sigma \sigma \tau \alpha ́ v \tau \omega v \dot{\eta} \mu \varrho ิ \nu$, cf. IV. 1 [18.2] (supplemented).
XIX. 4 [62.11] غ̇лıлорєvoúvovov. Cf. note on XIX. 1 [60.10]. AG's reading is preferable to M's π о $\rho \varepsilon v o \mu \varepsilon ́ v o v$. The omission of ε ह̇ı- probably arose because of its similarity with the preceding étı. Cf. also XIX.4[62.13] (π о $\rho \varepsilon v o \mu \varepsilon ́ v o v)$.
XIX. 4 [62.11-12] $̇$ ė $\pi \sigma \pi \alpha ́ \sigma \varepsilon \tau \alpha 1 . . . ~ \alpha v ̉ \tau o ́ . ~ F o r ~ t h e ~ p h r a s i n g, ~ c f . ~ X I X .5 ~[62.18-19] . ~$.
XIX. 4 [62.15] $\tau \iota \varsigma . . . ~ \kappa \lambda \varepsilon i \theta$ píov. I take the verb $\dot{\varepsilon} \pi ı \sigma \pi \alpha ́ \sigma \varepsilon \tau \alpha ı$ to mean, as both Baldi 31 ('si ritirerà') and Couture 262 ('retrahetur') did (note passive sense), that $\vec{\kappa}$'s slide is closed, rather than opened ('will... open', Murphy 27), by the cord (Schmidt 403, more neutrally, has 'zieht... an', but he clearly believes that this cord causes the slide to close: see Schmidt LX and 403 n .1). $\vec{\kappa} \mathrm{s}$ slide is opened twice, once in order to make the automaton move forward (XIX. 3

 $\alpha v ̉ \tau o ́)$. Its second opening, therefore, occurs after, not during, the completion of the other movements (cf. XIX. 5 [62.16-18]). Its closure, on the other hand, brings the automaton to a halt before the sequence of movements begins: XIX. 5

the verb к $\lambda \varepsilon$ í $\sigma \varepsilon ı$ has dropped out after каì ($̇ \pi ı \sigma \pi \alpha ́ \sigma \varepsilon \tau \alpha ı ~ к \alpha i ̀ ~<к \lambda \varepsilon i ́ \sigma \varepsilon ı>~ \tau o ̀ . . . ~$

 different cord ($\dot{\varepsilon} \tau \dot{\varepsilon} \rho \alpha$ $\sigma \pi \alpha ́ \rho \tau о с)$) from the one used for closing $\vec{\kappa} s$ slide So, Schmidt 405 with n .1 ('eine andere Schnur'). Both Baldi 31 (' 1 'altra corda, che è attaccata al chiusoio k ') and Murphy 27 ('the other cord') use the definite article insteed. Baldi is probably refering, albeit erroneously, to the cord by which $\vec{\kappa} s$ slide is initially opened (not explicitly mentioned in the present context, and pulled manually; see note on XIX. 2 [62.1-2]). Murphy, on the other hand, seems to be refering to the cord used for closing $\bar{\kappa} s$ slide (XIX. 4 [62.14]), since she recognises here that the latter is opened by the action of the second counterweight (Murphy 43 n .42). This would explain why she misinterprets
 note

APPENDIX 1. CONCORDANCE OF EDITIONS

The following is a concordance between the present edition and the editions by Thévenot, Prou and Schmidt. Thévenot is cited by page and line number. References to Prou and Schmidt are by chapter, section, page and line number (given in square brackets). If the section is omitted, the reference is to the entire chapter. Prou's sections are indicated by Greek numerals.

Grillo	Thévenot	Prou	Schmidt
I [2.3-6.8]	$243.10-244.38$	-	I [338.3-342.10]
II [6.9-14.16]	$244.39-246.25$	-	II [342.11-348.25]
III [14.17-16.22]	$246.26-247.2$	-	III [350.1-352.4]
IV [18.1-20.7]	$247.2-31$	-	IV [352.5-354.9]
V [20.8-22.20]	$247.32-248.14$	-	V [354.10-358.5]
VI [22.21-26.5]	$248.15-249.12$	-	VI [358.6-362.3]
VII [26.6-28.3]	$249.13-250.2$	-	VII [362.4-364.7]
VIII [28.4-30.2]	$250.3-26$	-	VIII [364.8-29]
IX [30.3-32.18]	$250.27-251.39$	-	IX-X.1 [366.1-
		-	X.1-4 [368.26]
X [32.19-34.24]	$251.39-252.20$	-	$372.16]$
XI [36.1-42.8]	$252.21-255.11$	-	XI [372.17-
			XII [380.11]
XII [42.9-44.14]	$255.12-256.7$	-	$382.19]$
XIII [44.15-	$256.8-257.29$	-	XIII [382.20-
$50.15]$		-	XIV [388.15]
XIV [50.16-52.6]	$257.30-258.17$		$390.6]$
XV [52.7-54.7]	$258.18-259.11$	-	XV [390.7-
XVI [54.8-56.10]	$259.12-260.7$		XVI [392.23-23-
			$396.7]$

XVII [56.11-58.8]	260.8-29	-	$\begin{gathered} \text { XVII [396.8- } \\ 398.2] \\ \hline \end{gathered}$
XVIII [58.9-60.9]	260.30-261.25	-	XVIII [398.3- $400.13]$
$\begin{gathered} \text { XIX [60.10- } \\ 62.20] \\ \hline \end{gathered}$	261.26-262.29	-	$\begin{gathered} \text { XIX [400.14- } \\ 404.3] \\ \hline \end{gathered}$
XX [64.2-68.4]	263.2-264.2	I [206.7-210.3]	$\begin{gathered} \text { XX-XXI. } 1 \\ {[404.5-410.8]} \end{gathered}$
XXI [68.5-70.3]	264.3-23	$\begin{gathered} \text { II. } \bar{\alpha}-\bar{\gamma}[210.5- \\ 212.3] \end{gathered}$	$\begin{gathered} \text { XXI.1-2 [410.8- } \\ 412.2] \end{gathered}$
XXII [70.4-74.4]	$\begin{gathered} \text { 264.24-265.23, } \\ 266.28-9 \end{gathered}$	$\begin{gathered} \text { II. } \bar{\delta} \text {-III [212.4- } \\ 215.8], \mathrm{V} . \bar{\alpha} \\ {[220.4]} \\ \hline \end{gathered}$	$\begin{gathered} \text { XXII [412.3- } \\ 414.23] \end{gathered}$
$\begin{gathered} \text { XXIII [74.5- } \\ 78.19] \end{gathered}$	266.29-268.18	$\begin{gathered} \mathrm{V} . \bar{\beta}-\bar{\varsigma}[220.5- \\ 225.3] \end{gathered}$	$\begin{gathered} \text { XXIII [416.1- } \\ 420.21] \end{gathered}$
$\begin{gathered} \text { XXIV [80.1- } \\ 84.10] \\ \hline \end{gathered}$	265.23-266.23	IV [216.2-12]	$\begin{gathered} \text { XXIV [422.1- } \\ 426.3] \\ \hline \end{gathered}$
XXV [84.11-90.5]	$\begin{gathered} 266.24-6,268.19- \\ 269.14 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V} . \bar{\alpha} \text { [220.2-3], VI. } \\ & \bar{\alpha}-\bar{\gamma}[225.5-229.1] \end{aligned}$	$\begin{gathered} \text { XXV [426.4- } \\ 430.22] \\ \hline \end{gathered}$
$\begin{gathered} \hline \text { XXVI [90.6- } \\ 96.15] \end{gathered}$	269.14-270.32	$\begin{gathered} \text { VI. } \bar{\gamma}-\mathrm{VII} . \bar{\varepsilon}[229.1- \\ 235.11] \end{gathered}$	$\begin{gathered} \text { XXVI [430.23- } \\ 436.19] \end{gathered}$
$\begin{gathered} \text { XXVII [98.1- } \\ 100.4] \\ \hline \end{gathered}$	271.1-25	$\begin{gathered} \text { VII. } \bar{\varepsilon} \text {-VIII } \\ {[235.12-238.4]} \end{gathered}$	$\begin{gathered} \text { XXVII [438.1- } \\ 440.3] \\ \hline \end{gathered}$
$\begin{gathered} \text { XXVIII [100.5- } \\ 104.13] \end{gathered}$	271.26-272.46	IX [238.6-243.2]	$\begin{gathered} \text { XXVIII [440.4- } \\ \text { 446.11] } \end{gathered}$
$\begin{gathered} \text { XXIX [104.14- } \\ 106.3] \end{gathered}$	272.47-273.9	$\begin{gathered} \mathrm{X} . \bar{\alpha}-\bar{\beta}[243.4- \\ 244.3] \end{gathered}$	$\begin{gathered} \text { XXIX [446.12- } \\ 25] \end{gathered}$
$\begin{gathered} \text { XXX [106.4- } \\ 110.15] \\ \hline \end{gathered}$	273.9-274.32	$\begin{gathered} \text { X. } \bar{\gamma} \text {-XI [244.4- } \\ 248.6] \\ \hline \end{gathered}$	$\begin{gathered} \text { XXX [448.1- } \\ 452.12] \\ \hline \end{gathered}$

APPENDIX 2. ADDENDA ET CORRIGENDA TO SCHMIDT

The following table lists the errors, oversights and omissions made by Schmidt in his apparatus criticus and not noted in the list of addenda et corrigenda appended to the first volume of his edition ('Berichtigungen', pp. 513-14). All references are made to the page and line number in Schmidt's edition. The consensus codicum a here comprises only \mathbf{A}, G and T .

App. crit. ad p.	ERRATA	ADDENDA ET CORRIGENDA
340.16	$\sigma \kappa \varepsilon \rho \pi \alpha \rho v i \zeta o v \tau \alpha$ a	a in AG corrige, adde
340.17		ex $\dot{\alpha} \varphi$ ט́pe¢ corr. dele
342.17	$\dot{\alpha} \pi \omega \theta \omega \dot{\alpha} \downarrow \nu \tau \varepsilon \varsigma \mathrm{T}$	$\dot{\alpha} \pi \omega \theta \omega ́ \sigma \alpha v \tau \varepsilon \varsigma$ in $\dot{\alpha} \pi \circ \theta \omega ́ \sigma \alpha \nu \tau \varepsilon \varsigma$ corrige
344.7	$\pi \alpha ́ v \tau \alpha \mathrm{AG}: \pi \alpha ́ v \tau \eta \mathrm{M}: \pi \alpha ́ v \tau \imath$ T : del. R. Schoene	$\pi \alpha ́ v \tau \alpha \mathrm{AG}: \pi \alpha ́ v \tau \eta \mathrm{M}: \pi \alpha ́ v \tau 1$ T refer ad $344.7 \pi \alpha \alpha^{v} \tau \alpha$ (secunda iteratione)
344.21	$\pi \alpha \rho \varepsilon \nu \tau \varepsilon \tau \alpha \mu \varepsilon ́ v \eta \nu \mathrm{AG}$	A dele, adde $\pi \alpha \rho \varepsilon v \tau \varepsilon \tau \tau \alpha \mu \varepsilon ́ v \eta \nu \mathrm{~A}^{\mathrm{pc}}$: $\pi \alpha \rho \varepsilon \nu \tau \alpha \tau \tau \alpha \mu \varepsilon ́ v \eta \nu \mathrm{~A}^{\mathrm{ac}}$
344.21	oủ $\delta \varepsilon v i ̀ ~ i ́ ~ \delta \varepsilon i ̂ ~(o u ̉ \delta \varepsilon v i ̀ ~ e x ~$ ov̉ $\delta \varepsilon v o ̀ \varsigma ~ c o r r) ~ G$.	$\mathfrak{\imath}$ ¢عı̂ in $\mathfrak{i \ell \varepsilon ı ̂}$ corrige
354.11	$\dot{\alpha} \pi$ лоорвía¢ T	corrige
354.15 (vide etiam Supplementum 111)	عvөzíac A_{1}	
356.11	(?), G	(?) dele, A ante T transpone
358.6		refer ad 358.7 ๆ
362.3	$\pi \varepsilon \rho ı \kappa \varepsilon \mu \varepsilon ́ v \eta$ Leid. Vulc. 4 :	$\pi \varepsilon \rho ⿺ 𠃊 \varepsilon \mu \varepsilon ́ v \eta$ dele, Leid. Vulc.

	$\pi \varepsilon \rho ⿺ 𠃊 \varepsilon \mu$ ¢́v η v a	4 post a transpone
376.4		corrige
376．14－16		ő $\theta \varepsilon v$ in $\eta \mathfrak{\eta} \rho \xi \alpha ́ \mu \varepsilon \theta \alpha$ corrige （sed vide Supplementum 113）
376.15	$\underline{\varepsilon} \mathrm{v}$ a	a in AT corrige
382.2	$\dot{\alpha} \pi \mathrm{o}$ б $\varepsilon \delta$ o $\mu \varepsilon ́ v o v \mathrm{G}$ ： $\dot{\alpha} \pi \mathrm{o} \delta \varepsilon \delta \circ \mu \varepsilon ́ v \omega v \mathrm{~A}(?)$	（？）dele，A ante G transpone
382.2	£̇vıò T	
384.1	$\alpha \dot{\alpha} v \alpha \tau \varepsilon i ́ v o v \tau \alpha$ Amg． GT_{2} ： $\dot{\alpha} v \alpha \tau \varepsilon i ́ v \tau o v \tau \alpha ı ~ \mathrm{~A}_{1} \mathrm{~T}_{1}$	G inter A_{1} et T_{1} transpone
384.4	$\tau р \cup ́ \pi \eta \mu \alpha \tau \downarrow$ T	$\tau \rho$ и́ $\pi \eta \mu \alpha \tau \iota$ in $\tau \rho \dot{\pi} \pi \eta \mu \alpha \tau \iota$ corrige
384.8	ó om．G	refer ad $384.7{ }^{\text {o }}$
388.14	$\kappa \rho \cup \pi \tau \varepsilon ์ \sigma \theta \omega \mathrm{M}: \kappa \rho ı \pi \tau \varepsilon ์ \sigma \theta \omega \mathrm{a}$	a in $\mathrm{AG}^{\mathrm{ac}} \mathrm{T}$ corrige，adde G^{pc} post M
388.23		$\delta \varepsilon \eta \chi^{\prime \prime \varepsilon ı}$ in $\delta \varepsilon$ ท́бn corrige
400.10	$\dot{\alpha} \pi \mathrm{o} \delta i \delta \delta \omega \tau \alpha l$ codd．	codd．in AGT corrige（alii codices $\dot{\alpha} \pi \mathrm{o} \delta i ́ \delta \omega \tau \alpha » ~ h a b e n t$,
404.11	β оvдó $\mu \varepsilon \theta \alpha \mathrm{AT}$ ：$\beta о \nu \lambda \omega ́ \mu \varepsilon \theta \alpha$ G	β оv $\omega \dot{\mu} \mu \varepsilon \theta \alpha$ dele，G inter A et T transpone
410.5	$\pi \alpha \rho \alpha \tau_{i ́ \theta} \boldsymbol{\eta} \tau \alpha \iota$ codd．	codd．in $\mathrm{AG}^{\mathrm{pssl}}$ corrige（alii codices $\pi \alpha \rho \alpha \tau i ́ \theta \eta \tau \alpha ı$ habent， alii $\left.\pi \alpha \rho \alpha \tau_{i} \theta \varepsilon \tau \alpha \mathrm{l}\right)$
410.20	ŋ̀ AT ：Kaì G	кaì G dele，AT in a corrige
414.8	ai vn̂દ¢ om． T_{1} ：add． T_{2}	refer ad 414.7 人i v \downarrow ¢¢
414.9	$\pi \alpha \rho \varepsilon к о \lambda ט ́ \mu \beta \omega v$ ठغ̀ \mathbf{a}	a in $\mathrm{A}^{\mathrm{pc}} \mathrm{M}$ corrige，adde $\pi \alpha \rho \varepsilon к о \lambda u ́ \mu \beta o v \delta \varepsilon ̀ \mathrm{~A}^{\mathrm{ac}} \mathrm{G}$
416.2		G post A transpone
420.1		人i μ ¢́vtoo in каì ai μ ćvtor

		corrige
422.1	Kaì $\tau \alpha \hat{\tau} \tau \alpha \mu \varepsilon ̀ v$ oûv inserit R． Schoene 1．1．p． 74	ov̂v dele，adde Kaì $\tau \alpha \hat{\tau} \tau \alpha \mu \varepsilon ̀ v$ ov̂v inserui
424.21		scripsi in Prou corrige
426.4	f．$\mu \varepsilon ̇ v<o u ̂ v>$	oủv iam Prou（sed verbum non inventum est in codicibus a Prou adhibitis）
428．7－8	v̇đò ко́t ω a ：correxi	ט̀локо́ $\omega \omega$ iam Prou（verbum ex $\mathrm{Pd}, \mathrm{Pe}, \mathrm{Pg}$ et Ph depromptum，sed non notatur）
430.16		G in $\mathrm{G}^{\text {ac }}$ corrige，inter A et T adde G^{pc}
430.23	oûv om．A	post A adde G
430.24	$\mu \eta \delta \varepsilon ̀ v ~ \varepsilon ̇ \mu \varphi \alpha i ́ v \varepsilon \sigma \theta \alpha ı ~ P r o u ~$	Prou in M．Egger corrige （vide Prou 230 n．a）
432.10	$\pi \rho о к \varepsilon i ́ \mu \varepsilon \varepsilon \alpha ~ \mathrm{GM}$	M dele，adde ：лробкє́ц́ $\varepsilon v \alpha$ M
432.22	v̇лобт $\frac{1}{\varphi} \varphi 0 \vee \tau \alpha ¢$ Prou	
434.19	ov̂t	ồ $\tau \omega \varsigma \mathrm{G}$ in oṽ $\tau \omega \varsigma \mathrm{G}^{\text {ac }}$ ：ồ $\hat{\text { on }}$ G^{pc} corrige
436.1	ह̌ठ $\tau \omega$ ¢ γ 人̀ GT_{2} ：om． AT_{1}	A dele（ $\gamma \alpha$ 人 tantum omittit A ）
438.11		$<\delta \grave{\varepsilon}>$ dele
440.15	кגì om．G	om．dele，каì in Ėк corrige
442.1	દ̇ $\pi \imath^{*} \mu \grave{~} \kappa \varepsilon \mu \varepsilon ́ v \eta$ ed．Paris．， ＇＊f．ṭ̂＇in margine	ท̣̂ in प़̂ corrige
442.13		кßю́т $\rho о v$ in кィ $\beta \omega \tau \eta \rho i ́ o v ~ v e l ~$ $\kappa ३ \omega \tau \varepsilon ́ \rho o v ~ c o r r i g e ~(d e ~$ superscripto compendio $\tau \rho$ vide Bast 1811：792）
448.2	ő $\tau \varepsilon$ Brinkm．et Prou ：ǒ $\tau \varepsilon$ a	a in GM corrige，ante Brinkm．adde A

450.7		corrige
452.10	f. $\tau 0 \ldots \mathrm{\tau} \tau \omega \mathrm{v}$	videtur referendum ad 452.11 тои́ $\tau \omega$

APPENDIX 3. STEMMATA CODICVM

Stemma 1

XIII s.

XV s.

XVI s .

XVII s.

XVIII s.

Stemma 2

IV s .

XIII s.

XV s

XVI s.

XVII s.

Stemma 3

XV s .

APPENDIX 4. FIGURES

Fig. 1 Hero's mobile automaton.
Courtesy of Dr. Duncan Keenan-Jones. Image modified by the author.

Fig. 2 Drive mechanism of Hero's mobile automaton.
Courtesy of Arch. Riccardo Ravecca. Image modified by the author.

Fig. 3 Bearing arrangement of the axle of Hero's mobile automaton.

Fig. 4 Configuration for straight-line motion (plan view): (a) manuscript diagram (A, f. 198v); (b) modern reconstruction.
a

b

c

Fig. 5 Bobbin and cord arrangement for straight-line motion: (a) forward; (b) forward and backward; (c) forward and backward with pause.
a

b

Fig. 6 Side elevation of case and tube: (a) manuscript diagram (A, f. 198v); (b) modern reconstruction (courtesy of Arch. Riccardo Ravecca).

Fig. 7 Circular motion: (a) manuscript diagram (A, f. 199'); (b) modern reconstruction.
a

* Wheels $\overline{\pi \rho}, \overline{\sigma \tau}$ and $\bar{v} \bar{\varphi}$ correspond, respectively, to $\overline{\alpha \beta}, \overline{\gamma \delta}$ and $\overline{\varepsilon \zeta}$ as first introduced in X.1. Axle $\overline{\xi_{0}}$ corresponds to $\overline{\eta \theta}$, whereas the axle of wheel $\bar{v} \bar{\varphi} / \varepsilon \zeta$, is later labelled $\overline{\xi_{0}}$ (cf. Fig. 10).

Fig. 8 Configuration for rectangular motion (plan view): (a) manuscript diagram (A, f. 199 ${ }^{\text {v }}$); (b) modern reconstruction.

Fig. 9 Configuration for rectangular motion (side view).
A, f. 200^{r}.

Fig. 10 Mechanism for raising and lowering wheel $\overline{\varepsilon \zeta} / / \bar{\varphi} \bar{\varphi}$.

Fig. 11 First configuration for snake-like motion (plan view): (a) manuscript diagram (A, $201{ }^{1}$); (b) modern reconstruction, with rear wheel encased in a frame as in putative archetype.

Fig. 12 Wheel $\overline{\pi \rho}$ mounted on hub (left) and close-up of hub with cord wound around it (right).

Fig. 13 Second configuration for snake-like motion (plan view).

Fig. 14 Third configuration for snake-like motion (plan view): (a) manuscript diagram (A, f. $201{ }^{1}$), (b) modern reconstruction, with rear wheel encased in a frame as in putative archetype.

Fig. 15 Kindling altar of Dionysus (front view).
A, f. $201^{\text {r }}$.

Fig. 16 Piping system for libation of milk and wine (front view).
A, f. $202^{\text {r }}$.

Fig. 17 Modern gas tap (left) vs ancient water tap (right). Reprinted from Kretzschmer (1960: 91 Fig. 25).

Fig. 18 Hero's double-piped tap.
Courtesy of Dr. Duncan Keenan-Jones. Image modified by the author.

Fig. 19 Trigger mechanism for Hero's belly-bow ($\gamma \alpha \sigma \tau \rho \alpha \varphi \varepsilon ́ \tau \eta \varsigma)$.
Reprinted from Marsden (1971: 48 Fig. 4).

Fig. 20 Trigger mechanism for weight $\stackrel{\beta}{\mu}$.
Courtesy of Dr. Duncan Keenan-Jones. Image modified by the author.

Fig. 21 Parapet(s) for descending garlands: (a) manuscript diagram (plan view; A, f. 202^{V}); (b) modern reconstruction (side view).

Fig. 22 Stylobate, ring (ítuc) and base of the shrine (plan view):
(a) manuscript diagram (A, f. 203'); (b) modern reconstruction, with letters corrected as in putative archetype (clipart courtesy FCIT; image modified by the author).

Fig. 23 Transmission system for dancing Bacchantes.

b

Fig. 24 Single σ ט́pı̧६: (a) manuscript diagram (plan view; A, f. 203); (b) modern reconstruction.

Fig. 25 Transmission system for extending the range of the mobile automaton: (a) manuscript diagram (side view; A, f. 230 ${ }^{\text {v }}$; (b) modern reconstruction.

b

Fig. 26 Double σ ט́pıそ६: (a) manuscript diagram (plan view; A, f. 203v); (b) modern reconstruction.

Fig. 27 Bottom of double $\sigma \hat{\rho} \rho \imath \xi$, with slides (front view).
2. BOOK TWO. MANUSCRIPT DIAGRAMS

Fig. 28 Door mechanism for Hero's stationary automaton (front view).
A, f. $206^{\text {r }}$.

Fig. 29 Starwheel and $\dot{v} \sigma \pi \lambda \hat{\prime} \gamma \gamma$ ıov assembly for moving arms (side view).
A, f. 205^{r}.

Fig. 30 Papyrus scroll for sailing ships (front view).
A, f. 207^{r}.

Fig. 31 Axle and pulley assembly for plunging dolphin (plan view).
A, f. 207^{r}.

Fig. 32 Mechanism for Nauplius' torch (front view). A, f. $208^{\text {r }}$.

APPENDIX 5. SOME CONSIDERATIONS ON MASIÀ (2015)

In the following section, I outline the main argument of Masià's fairly recent article "On dating Hero of Alexandria", AHES 69.3 (2015) 231-255, and I discuss its implications for the question of Hero's date. I then summarise the main problems that I have identified with this article. For the sake of clarity, I have divided my account into sections, and I am grateful to Enrico Bellazzecca, PhD candidate in Social Sciences at the Yunus Centre for Social Business and Health, Glasgow Caledonian University, for helping me with the statistical analysis in Masià's article (see section (C) below). A detailed evaluation of, and engagement with, Masià's arguments are essential not only owing to the recent date of publication of his article but also because it is, I would argue, less reliable than it has been thought to be so far.

Masià discusses the evidential value of the eclipse mentioned in Dioptr. ch. 35 for the purposes of dating Hero. Masià's main argument is that the eclipse of Dioptr. ch. 35 was invented as an example and, therefore, that it cannot be used to determine Hero's life. He does not exclude the possibility that the eclipse data were derived from actual observation, astronomical records (whether reworked or not) and/or invention (any combination of these is possible, according to Masià), but stresses that there are no arguments supporting the thesis that Hero observed the eclipse. ${ }^{1}$ The implication of Masià's argument, which is evident throughout his discussion, is that we do not actually know with any certainty Hero's date. He (p. 246) refers the reader to AcerbiVitrac's (2014) edition of Hero's Metrica for a discussion of the other (internal) pieces of evidence on Hero's date and accepts two possible intervals within which Hero lived, that is, to use his own words, a maximal interval (200 BCE 350 CE) and a minimal but quite plausible interval ($50 \mathrm{BCE}-200 \mathrm{CE}$).

Masià's article is problematic on many levels. After a brief introduction, Masià (1) discusses how time was expressed in ancient Greek (esp. in Greek astronomy) and how we refer to ancient dates (pp. 233-40), (2) gives a (questionable) interpretation of Dioptr. ch. 35, along with some information on

[^139]actual eclipses that (in his view) fit his interpretation (pp. 240-46) and, finally, (3) derives from the interpretation of the text a 'simple probabilistic model', ${ }^{2}$ which he uses to calculate the probability that an eclipse happened under the conditions given by the text and in a period of time coinciding with the suggested timeframes for Hero's life (pp. 246-52). He then concludes his discussion by choosing a particular combination of 'parameters' ${ }^{3}$ as the most plausible (however, he does not justify his choice of this combination) and by saying that what he has adopted is not a 'confirmative methodology' (pp. 25254). He expressly states (p. 253) that he does not wish to refute or confirm any particular hypothesis and that he is just presenting 'facts' and assessing them, in some cases associating them with some probabilities.

I have identified a number of problems with this argument, which I summarise in the following sections: (A) interpretation of Dioptr. ch. 35; (B) (calculation) errors and inconsistencies; (C) statistical analysis.
(A) Interpretation of Dioptr. ch. 35. The main problems here concern the constitution and translation of the text.
(1) Masià discusses the restitution of the article in the following

 first supplement but rejects the second, essentially because 'it is surprising that in a document with so few article restitutions [i.e. the Dioptra], there are two such errors so close' (p.241). ${ }^{5} \mathrm{He}$ argues that in both cases the reference is to an indeterminate eclipse in view of the fact that the whole passage is formulated in mathematical style and that the second supplement is unnecessary. ${ }^{6}$

[^140](2) Masià says that in the passage there is an 'articulation' - does he mean alternation? - of the verbs 'to observe' ($\tau \eta \rho \varepsilon i ̂ v)$ and 'to find' ($\varepsilon \dot{\sim} \rho i ́ \sigma \kappa \varepsilon ा v)$, and that in sentence (b) the phrase 'in the records' must be added to emphasise such articulation (he translates thus: 'let an eclipse be found <in the records> this one, in the stated regions: in Alexandria in the fifth hour of the night, and the same one in the third hour in Rome'). The reason for his supplement is that 'the sentence "to find an eclipse in the stated regions" sounds a bit strange in Greek, and it is much more reasonable to repeat the complement of the same verb where the verb last appeared' (p. 242 n .31 , with no further explanation). This understanding of the text leads Masià to suppose that Hero found the eclipse data in an astronomical record (p. 242), which contrasts with his main line of argument. Another, perhaps more significant, problem has to do with Masià's adherence to the Greek text. It is unclear whether Masià adheres closely to the text (and hence to the eclipse data given in the text) or not, although he seems to end up preferring a looser interpretation. His looser interpretation does not take into account the eclipse data for Rome, but he does not substantiate this choice. Furthermore, it is the looser interpretation, not the stricter one, that is adopted in the probabilistic analysis, and Masià (p. 245 n .43) states that in the probabilistic section of his paper he will assess statistically the consequences of this interpretation, even if he has not found any indication to support it. Why, then, choose such an interpretation?
(B) (Calculation) errors and inconsistencies. I have found throughout Masià's article a number of errors, inaccuracies and inconsistencies. There are two main inconsistencies. First, in his interpretation of the text the author chooses the 2013 times of the sunset to calculate the beginning of the night, whereas in his probabilistic analysis he chooses the 2012 times. ${ }^{7}$ Second, the author's attitude towards margins of error is inconsistent. For example, he seems to tolerate the fact that the time difference between Alexandria and Rome as inferred from the text is a 'raw approximation' (that is, between one and three

[^141]hours, following his calculations), but he does not accept similar margins of error in the case of the correspondence between the eclipse data from the text and the actual eclipse of 13 March $62 \mathrm{CE}^{8}{ }^{8}$ What is more important, however, is that the author's calculations for the eclipse data given in the text seem to be incorrect. He states (p. 243) that '[i]f we assume that the night starts at 18:07 in Alexandria and at 18:14 in Rome, and calculate the exact nocturnal hours, an eclipse observed between 22:09 and 22:17 in Alexandria would be observed between 21:09 and 21:17 in Rome. In Alexandria, this is the fifth nocturnal hour, whereas in Rome this is the third nocturnal hour'. If I understand the argument here correctly, the intervals given do not correspond to whole nocturnal hours, ${ }^{9}$ and hence Masià's claim that the time of the eclipse of 62 CE as observed in Alexandria at 22:39 does not fit the interval he has given is pointless. ${ }^{10}$ More generally, the fundamental problem seems to be that, if we do not know the time of the sunset in Alexandria and in Rome on 13 March 62 CE, we cannot say whether and to what extent the eclipse of 62 CE does not fit Hero's data. Masià (p. 244 n. 39) remarks that 'our ignorance of the exact time of sunset in Alexandria and Rome on that day introduces uncertainties that cannot be estimated (my emphasis). What, then, is the point of his study?
(C) Statistical analysis. In addition to the fact that the 'key criterion' (KC) for associating a triad (nocturnal hour, day, month) to an eclipse that actually happened within the chosen timeframes for Hero's life is derived from a

[^142]loose interpretation of the text (see above under (A)), ${ }^{11}$ I have identified the following problems. The author does not specify:
(1) the statistical model(s) that has/have been used - 'simple probabilistic model/framework' could mean anything; ${ }^{12}$
(2) the estimators, that is, how the data have been treated and how the model(s) fits/fit the data;
(3) what the data distribution looks like (this is important because it affects the type of analysis that can be carried out; if the data distribution is not normal, the data should be either normalised or modelled through other techniques that deal with non-normal distribution in order to draw statistical inferences); ${ }^{13}$
(4) the robustness checks, that is, how the author has validated his analysis and findings.

There are also problems with the parameters. First of all, the so-called parameters 'scenario' and 'framework' are not parameters. ${ }^{14}$ The scenario is

[^143]nothing more than a scenario (this applies, by extension, to frameworks 1 and 2). Second, the author (p. 248) states that the eclipse of 62 CE is unique over a long period of time. As a result, he imposes the following restriction: ‘[i]n the triad's hour, the eclipse must be unique among all registered eclipses'. He calls this restriction 'uniqueness'. It is unclear what this parameter means. Additional problems include: (1) why does the author not take into account the year during which an eclipse has occurred? (reason not explained); (2) non-zero intersection seems to mean that the data must be significantly different from zero (cf. above, n. 11), but the author does not say whether the parameter estimates are negative or positive. ${ }^{15}$ Overall, it is not clear how we should interpret Tables 1-4 (pp. 249-51). Did the author employ F statistics in combination with P values to determine the goodness of fit of his model(s)? ${ }^{16}$ If he did, we still do not know the statistical significance of his results because we are given neither the P values nor the standard errors relating to the parameters. ${ }^{17}$ I would hazard the guess that the author has simply calculated the probability that something has happened (that is, in this particular case, the probability that a randomly chosen triad fits an actually occurred eclipse) but without telling us whether the data fit his model(s).

For all of these reasons, it is difficult to determine whether Masià's analysis has real statistical value.

In my detailed assessment of Masià's article, I have shown that there are several problems with his argument. The purpose and methodology of his study are unclear, and there are many inaccuracies, inconsistencies and errors in his treatment of the eclipse question. His interpretation of Dioptr. ch. 35 leaves much to be desired, leaving us to wonder how an actual eclipse record can be considered the result of invention. ${ }^{18}$

[^144]
APPENDIX 6. INDEX TERMINORVM TECHNICORVM

This index gathers together (a) technical terms (or occasionally phrases), (b) particular occurrences of terms used in a technical sense, and (c) terms which are reminiscent of a technical usage. Terms belonging to category (c) are indicated with a superscript asterisk. Technical terminology here comprises specialised words used in the domains of mechanics, mathematics, philosophy, art criticism, architecture and construction, and the guiding principles for the identification of such terms are monoreferentiality and referential precision (see generally Gotti 2008: 33-7). Some exceptions to these principles include terms which are quite generic but whose specialised meaning can be inferred from the context (for instance $\kappa \alpha v o ́ v ı o v)$. I have deliberately avoided arranging terms into categories according to disciplines because it is often not possible to make a firm distinction between mechanical and architectural terms. References give the page and line numbers of the present edition. Emendations, additions and deletions are indicated by the use of italics.
${ }^{\alpha} \gamma \kappa v i \lambda \eta$ ('loop' of cord) 12.14, 22.5, 22.9, 22.19-20, 44.2, 46.20, 54.3, 78.7, 78.9, 78.11, 86.20, 88.5, 88.7, 88.14; see also $\dot{\alpha} \gamma к \nu \lambda i ̂ v \alpha 1, \quad \dot{\alpha} \gamma к \nu \lambda$ óo $\mu \alpha$, $\dot{\alpha} \pi \alpha \gamma \kappa \nu \lambda o ́ \omega \quad$ and $\pi \rho о \sigma \alpha \gamma к \nu \lambda о ́ о \mu \alpha ı$
$\alpha \quad \gamma \kappa v \lambda i ̂ v \alpha l(' l o o p s '$ of cord) 78.8; see also $\quad \dot{\alpha} \gamma \kappa \dot{\prime} \lambda \eta, \quad \dot{\alpha} \gamma \kappa v \lambda o ́ o \mu \alpha 1$, ג̇ $\pi \alpha \gamma к \nu \lambda o ́ \omega ~ a n d ~$ $\pi \rho о \sigma \alpha \gamma к \nu \lambda о ́ о \mu \alpha ı$
$\alpha \gamma \kappa v \lambda o ́ o \mu \alpha 1$ ('to be looped', of cord)
84.8; see also $\alpha \gamma к ט ́ \lambda \eta$, $\dot{\alpha} \gamma \kappa \nu \lambda i v \alpha 1, \quad \dot{\alpha} \pi \alpha \gamma к \nu \lambda o ́ \omega$ and $\pi \rho о \sigma \alpha \gamma к \cup \lambda о ́ о \mu \alpha$ ৷
ג̇ ε tóc ('pediment') 100.18

ब̀ $\pi \alpha \gamma к \cup \lambda o ́ \omega$ ('make a loop in' a cord) 98.20-21; see also
 and $\pi \rho о \sigma \alpha \gamma к \nu \lambda o ́ o \mu \alpha ı$
$\dot{\alpha} \pi \mathrm{o} \delta i \delta \omega \mu$ ('attach'; Med., 'pass', 'extend') 22.14, 24.3, 24.14, 36.16, 38.19, 42.18, 42.21, 46.21, 48.17, 50.9, 54.21, 56.3, 56.12, 56.20, 58.14, 58.16, 60.7, 60.16, 62.6, 84.4, 88.11, 94.7, 96.7, 96.9, 100.1
 50.5
$\dot{\alpha} \pi о \lambda \alpha \mu \beta \alpha ́ v \omega$ ('secure') 76.7-8, 76.12, 86.21
$\dot{\alpha} \pi о \pi о \rho \varepsilon i ́ \alpha ~(' b a c k w a r d ~ m o t i o n ’ ~ o f ~$ mobile automaton）20．9， 20．14，22．22，24．8，24．10，30．7， $42.9,60.10,60.18,62.19$ ；see also π орвí́
β व́бıя（＇base’ of cone）28．4， 28.8
$\beta \varepsilon \beta \eta \kappa \omega ́ \varsigma ~(' s t a n d i n g '$ ，of cone） 28.12
$\boldsymbol{\gamma} \boldsymbol{\gamma} \gamma \lambda \nu \mu$ ос（＇hinge＇） 64.17
үо́ $\mu \varphi$ ои（＇dowels’） 34.9
бонююти́рıа（＇tenons＇）98．5；see also غ̇кколи́
$\delta \iota \alpha ́ \theta \varepsilon \sigma \iota \varsigma \quad$（＇arrangement＇， ＇disposition＇of figures）2．19， 4．4，4．6，70．10，80．5； （mechanical＇arrangement＇， ＇configuration＇）6．4，64．12
бıо́ $\mu \varepsilon \tau \rho о \varsigma$（‘diameter’）26．9，26．16； see also ка兀ò δ ó́ $\mu \varepsilon \tau \rho о v$
$\delta 1 \alpha \mu \eta \rho v^{\circ} \mu \alpha 1$（＇to be arranged in hanks＇，of cord）34．16，42．6， 56.7
$\delta 1 \alpha ́ \pi \eta \gamma \mu \alpha$（＇partition＇）40．9，40．13； see also $\delta \alpha \alpha ́ \varphi \rho \alpha \gamma \mu \alpha$
סıappıvá ω（＇file down＇）88．3；see also $\pi \varepsilon \rho\llcorner\rho \rho ı v \varepsilon ́ \omega$
$\delta 1 \alpha \sigma \tau \eta \prime \mu \alpha \tau \alpha$（＇radii＇of circle） 60.5
$\delta ı \alpha ́ \varphi \rho \alpha \gamma \mu \alpha$（＇partition＇）46．6，52．3， 56．15－16，60．13，60．15；see also $\delta \iota \alpha ́ \pi \eta \gamma \mu \alpha$ and $\delta ı \alpha \varphi \rho \alpha ́ \sigma \sigma о \mu \alpha ı$ $\delta ı \alpha \varphi \rho \alpha ́ \sigma \sigma о \mu \alpha l$（＇to be partitioned＇） 60．12－13；see also $\delta \iota \alpha ́ \varphi \rho \alpha \gamma \mu \alpha$
 be bisected＇）26．15，28．13－15； see also $\delta \chi \chi$ то $\mu i ́ \alpha$
$\delta_{\text {бото }}$ í α（＇point of bisection＇） 26．10；see also δ＇́ $\chi \alpha$ т $\varepsilon \mu v o \mu \alpha ı$ غ̇кß人́д $\lambda \lambda$ о $\mu \alpha ı$（＇to be generated＇，of geom．figure） 28.14
غ̇кколй（＇notch＇，＇mortise＇）34．6， 98．12－13，98．18，106．8，106．11， 106．13－14，106．18，108．3－4；see also $\gamma о \mu \varphi \omega \tau$ и́ 1α
ع̌ $\lambda ı \xi$（＇thread＇of screw） 34.11
$\dot{\varepsilon} \mu \pi v \varepsilon \lambda i ́ \delta \varepsilon \varsigma$（＇sockets＇）8．6；see also $\varepsilon \varepsilon \mu \pi v \varepsilon \lambda i ́ \delta i \alpha$ and $\pi v \varepsilon \lambda i ́ \varphi$
$\dot{\varepsilon} \mu \pi v \varepsilon \lambda i ́ \delta 1 \alpha$（＇sockets＇）32．21，32．22－ 34．1，40．10，90．19；see also $\varepsilon ̇ \mu \pi \nu \varepsilon \lambda i ́ \delta \varepsilon \varsigma$ and $\pi \nu \varepsilon \lambda i ́ \varsigma$
غ̀v $v i \lambda \varepsilon ́ o \mu \alpha ı$（＇to be screwed on＇） 34．8， 34.9
ह̇vย́ $\rho \gamma \varepsilon 1 \alpha$（＇actualisation＇）6．7；cf． 4.20 （＇mechanism＇，＇action＇）

ह̀v $\tau \varepsilon \tau \alpha \mu \varepsilon ́ v o \varsigma^{*}$（＇stretched＇，of surface） 16.9
غ̇v τ opvev́o $\mu \alpha$（＇to be turned on the lathe＇）54．16－17；see also हैvторvoৎ，тєторvєv $\mu \varepsilon ́ v o \varsigma ~ a n d ~$ то́pvos
हैv \quad topvos（＇turned on the lathe＇） 90．19；see also દ̇v七opvev́o $\mu \alpha 1$ ， $\tau \varepsilon \tau о \rho \vee \varepsilon \cup \mu \varepsilon ́ v o \varsigma ~ a n d ~ \tau о ́ \rho v o \varsigma ~$
$\dot{\varepsilon} \xi \alpha \rho \tau ט \omega^{*}$（＇string＇，of automaton） 10．1－2
$\dot{\varepsilon} \xi \varepsilon \lambda i ́ \kappa \tau \rho \alpha$（＇bobbin＇，lit．＇unwinder＇） $22.2, ~ 22.10-10, ~ 22.17, ~ 24.1$, 24．3，24．14，26．2－3，26．21， 94．20，96．6，100．13－14， 102.2
غ̇ $\pi \iota \zeta \varepsilon u ́ \gamma v v \mu \alpha ı$（＇to be joined＇，of lines） 26.11
غ̇лıкро́тпбル（＇prevalence＇） 30.1
غ̇ $\pi i ́ \pi \varepsilon \delta o \varsigma ~(' p l a n e ’) ~ 28.4, ~ 28.12, ~$ 28.14

غ̇лıлорєía（＇forward motion’，of mobile automaton）60．10， 60．17；see also π орвí́
غ̇лıóvıov（＇plug＇，of stopcock） 46．19，46．22，48．9；see also $\kappa \lambda \varepsilon$ кí，
$\varepsilon v ่ \theta \varepsilon i \alpha \alpha$（＇straight line＇，of geom． figure）60．14；cf．20．13，20．18， 36．19，36．27，38．5， 40.2
عט̉Өо́ $\boldsymbol{\rho} \alpha \mu \mu$ оя（＇rectilinear＇，of figure） 36.3
ŋ̀ દ̇к тov̂ кદ́vтроv（＇radius＇of circle） 28．5；see also кย́vтро⿱
$\dot{\eta} \mu \kappa$ ќк λ_{\imath} о（＇semicircle＇）28．16－17， 28．18，28．20，28．21， 48.1
$\dot{\eta} \mu \iota$ тóviov（＇half－spring＇of catapult） 10.8
$\theta \omega \rho \alpha ́ \kappa ı v$（＇parapet＇，in mobile automaton）52．9，52．10，52．11， 52．15，52．16，52．18，52．19， 52．22，54．22；（＇enclosure＇，in stationary automaton）74．11， 74．16，98．4，98．6，98．18，100．4， 104．23－24， 106.13
iбó $\lambda \lambda \varepsilon v \rho \circ \varsigma$（＇equilateral＇） 90.15
íборролє́ ω（＇to be in equilibrium＇） 26．19；see also i̋бóрротоя
iббо́рротоя（＇in equilibrium＇）28．13； see also íборролє́ ω
íбобкєди́я（＇isosceles＇，of cones） 28.10
īðđápıov（＇joint’）104．22， 106.2
＇̌tuc＇（＇ring＇）54．14，56．5， 56.10
Kavóviov（＇bar－frame＇） $34.1^{\text {bis }}, 34.3$ ， 34．5，34．7，34．9，34．13， 34.18
ка兀ั̀ δ＇人́ $\mu \varepsilon \tau \rho o v$（＇diametrically opposite＇） 48.3
$\kappa \varepsilon \varphi \alpha \lambda \alpha i ́ l(' c a p i t a l s ’) ~ 16.2$ ；see also $\kappa \varepsilon \varphi \dot{\alpha} \lambda ı \alpha$
$\kappa \varepsilon \varphi \alpha ́ \lambda 1 \alpha$（＇capitals’）16．2；see also $\kappa \varepsilon \varphi \alpha \lambda \alpha i ́$
кย́vтроv（＇centre’ of circle）26．8， 28．5，28．6；see also $\mathfrak{\eta}$ દ̇к $\tau 0 \hat{0}$ кย́vтрои
$\kappa \lambda \varepsilon 1 \theta$ píov（＇slide’）32．8，32．12， 32．14，50．21，52．6，62．1，62．4， 62．12，62．15， 62.19
$\kappa \lambda \varepsilon i ́ \zeta$（＇tap＇，＇stopcock＇）46．18，48．9； see also ėmıóvıov
$\kappa \nu \omega ́ \delta \alpha \xi$（＇pivot＇for wheel）8．5， 20．19，26．19，32．21，34．19， 36．7－8，40．7，40．11，40．14， 40．15－16，42．8，48．16，58．11； see also χ оıvıкі́，
ко́ра६（＇hook＇）54．2，54．3， 54.4

коричи́（＇vertex’ of cone）28．6， 28．8，28．11，28．20－21，28．21， 28.24

кох入ías（＇screw＇）34．10，34．11， 34．12，34．15， 34.20

ки́клоৎ（＇circle＇）12．19，26．7，28．2， 28．5，28．7，28．8，28．10，28．18， 60．2，60．7；cf．20．15， 26.6
 16．6－7

кヘิvoc（＇cone＇）28．4，28．6，28．8， $28.10,28.12$
$\lambda \varepsilon i ́ \alpha ~(' c o u n t e r w e i g h t ') ~ 10.10, ~ 12.1, ~$ $12.6,12.11,12.16,14.6,24.3$ ， $24.4,24.15,26.4,32.3,32.6$ ， 36．16，36．17，36．24，38．19， 42．21，42．22，46．21，56．3， 56．11，56．14，56．20，58．17， 60．1，60．7，60．16，60．17，62．7， 62．14，76．2，78．3，78．7，78．18， $82.7, \quad 82.15, \quad 82.19, \quad 82.20$ ， $84.5^{\text {bis }}, ~ 88.12, ~ 94.15,96.9$ ， $96.12,100.2,104.10$ ；see also $\sigma \eta ́ \kappa \omega \mu \alpha$
$\mu \varepsilon \sigma о \lambda \alpha \beta \varepsilon \varepsilon^{\omega}$（＇take in the middle＇，of wheel）40．18， 42.3
$\mu \eta \rho v ́ \mu \alpha \tau \alpha$（＇hanks＇of cord）14．4， $24.20,38.4,38.7-8$ ；see also $\mu \eta \rho v \mu \alpha ́ \tau i o v$ and $\mu \eta ́ \rho v \sigma \mu \alpha$
$\mu \eta \rho v \mu \alpha ́ \tau i o v$（＇hank＇of cord） 24.12
$\mu \eta ́ \rho v \sigma \mu \alpha$（＇hank＇of cord） 36.24
$\mu \mathrm{o} \lambda \underline{\beta} \beta \delta ı v$（＇lead weight＇） 108.2

ỏ $\rho \theta$ oróvıos（＇rectangular＇，of parallelogram）20．17，30．3， 36.2 ỏ 0 Ó́s（＇perpendicular＇）26．9，26．15， 28．14，66．1；see also $\pi \rho$ ò, ỏ $\rho \theta$ ás
$\pi \alpha \rho \alpha \lambda \lambda \eta \lambda o ́ \gamma \rho \alpha \mu \mu о v$
（＇parallelogram＇）20．16－17， $30.3,30.19,30.21-22,30.24$ ， 36.2
$\pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda o \varsigma$（＇parallel＇，of line） 26.13
$\pi \alpha \rho \alpha \sigma \tau \alpha ́ \varsigma \quad$（＇pilaster＇）90．13； （＇doorjamb＇）94．3；see also $\pi \alpha \rho \alpha \sigma \tau \alpha ́ \delta ı \nu$
$\pi \alpha \rho \alpha \sigma \tau \alpha ́ \delta ı v$（＇doorjamb＇） 94.6
$\pi \alpha \rho \alpha \chi \alpha \lambda \alpha \sigma \mu \alpha ́ \tau i o v$（＇slack＇of cord） 78．15；see also $\chi \alpha ́ \lambda \alpha \sigma \mu \alpha$ and $\chi \alpha \lambda \alpha \sigma \mu \alpha ́ \tau 10 v$
$\pi \varepsilon \lambda \varepsilon \kappa i ̂ v o \varsigma$（＇dovetail＇）34．1， 34.4
$\pi \varepsilon \rho \imath \rho \rho \imath \varepsilon$ と́ ω（＇file down＇）98．8；see also $\delta ı \alpha \rho \rho ı \alpha ́ \omega$
$\pi \varepsilon \rho \iota \sigma \tau v\rangle \lambda 10 v$（＇peristyle＇） 52.7
$\pi \varepsilon \rho \iota \varphi \varepsilon ́ \rho \varepsilon \iota \alpha$（＇arc＇of semicircle） 48．1－2， 54.16
$\pi \lambda \varepsilon u \rho \alpha ́ \quad$（＇side＇of cone［i．e． generatrix］）28．6，28．13，28．14； cf．22．6，30．19， 30.22
$\pi \lambda \mathrm{v} \theta$ iov（＇case＇of mobile automaton）10．19，12．3，14．5， 20．15，20．19，20．21，22．8， 22．13，22．19，24．5，24．8－9，24．9， 24．17，26．1，26．2，26．7，26．13， $26.19,28.3,30.4,30.5,30.16$ ，
$30.20, \quad 30.22, \quad 30.24, \quad 32.4$, 32.11, 32.13, 32.15, 32.16-17, $32.22,34.2,34.5,34.8,34.17$, 34.24, 36.1, 36.6, 36.9, 36.19, 36.26, 36.27, 38.2, 38.6, 38.10, 38.13, 38.16, 38.20, 38.23, 40.2, 40.5, 40.8, 40.13-14, 42.1, 42.2, 42.6-7, 42.9-10, 44.8, 56.23, 58.6, 62.3, 62.5, 62.8, 62.10, 62.16, 62.18; ('frame' of stationary automaton) 74.7, 74.10, 74.11, 86.4, 86.9, 86.16, 88.3, 92.3, 98.3, 102.7-8, 106.9
$\pi o \rho \varepsilon i ́ \alpha$ ('forward motion', 'journey’ of mobile automaton) 12.3-4, $20.8,20.13,22.21,26.6,30.3$, 30.7, 30.16, 32.1, 34.24, 36.3, 42.7, 42.9, 42.11, 42.22, 44.22, 56.23, 58.3, 58.23-24, 60.4, $60.9,60.11,110.12$; see also غ่ $\pi 1 \pi \sigma \rho \varepsilon i ́ \alpha$
$\pi \rho о \sigma \alpha \gamma к v \lambda о ́ o \mu \alpha$ ('to be looped', 'fastened with a loop', of cord) 10.13-14, 12.4-5, 14.8; see also
 and $\alpha \pi \alpha \gamma к \nu \lambda o ́ \omega$
$\pi \rho o ̀ \varsigma ~ o ̉ \rho \theta \alpha ́ \varsigma ~(' p e r p e n d i c u l a r l y ', ~ ' a t ~$ right angles') 22.12, 100.3, 100.4 ; see also ỏ ρ Өó ς
$\pi \rho о \omega \sigma \mu$ ó ς ('forward propulsion') 30.1
$\pi \tau \varepsilon \rho \gamma^{\gamma} \alpha$ ('wings') 102.1
$\pi v \varepsilon \lambda i ́ \varsigma$ ('socket') $8.25,20.20$; see also $\dot{\varepsilon} \mu \pi v \varepsilon \lambda i ́ \delta \varepsilon \varsigma$ and $\dot{\varepsilon} \mu \pi v \varepsilon \lambda i ́ \delta i \alpha$ $\pi v \rho \gamma i ́ o v ~(' s m a l l ~ c u p o l a ’) ~ 16.8-9, ~$ 18.13

б $\alpha \mu$ и́к $\alpha \iota$ ('sambucas’ [sc. musical instruments]) 106.12
$\sigma \eta ́ \kappa \omega \mu \alpha$ ('counterbalance’) 104.22; see also $\lambda \varepsilon$ cía
 26.20, 28.9
$\sigma \pi \varepsilon ı$ íov ('base-moulding') 16.1
$\sigma \tau \alpha$ óv ('stationary (automaton)') $2.16, ~ 4.20, ~ 6.7, ~ 12.10, ~ 20.4$, 64.1, 64.7; see also $̛$ Ü $\pi \alpha \gamma 0$ v
$\sigma \tau \rho о \gamma \gamma \nu \lambda о ́ \gamma \lambda v \varphi \rho \varsigma$ ('with rounded carvings') 90.4
$\sigma \tau \rho о \varphi \varepsilon i ̂ \varsigma ~(d o o r ~ ' p i v o t s ') ~ 74.13$, 74.17, 74.18, 76.3, 76.4, 76.5, 76.15, 90.11, 98.4
$\sigma \tau \rho о \varphi \omega \mu \alpha ́ \tau 1 \alpha$ ('hinges') 52.22
бтv ${ }^{\circ} \beta \alpha ́ \tau \eta \varsigma \quad(' s t y l o b a t e ’) ~ 54.11$, 54.14
$\sigma v ́ \rho ı \gamma \xi$ ('tube') 12.6, 12.8, 12.11, $22.12, \quad 22.14,22.15,22.16$, 26.2, 26.3, 32.4, 32.5, 32.7, 36.16, 56.14, 56.15, 58.1, 58.16-17, 58.19, 60.12, 60.13, $60.17,60.20,76.2,78.6$
$\sigma v \sigma \mu \eta \rho$ í̧oual ('to be fitted tightly together') 8.8, 46.8
$\sigma \varphi^{\prime} \gamma \mu \alpha$ ('jamming') 8.11
$\sigma \chi \alpha \sigma \tau \eta \rho i ́ \alpha ~(' t r i g g e r ’) ~ 50.11, ~ 50.12 ;$ see also $\chi \varepsilon i ́ \rho$

тєторvєэ μ ќvos ('turned on the lathe') $94.20,96.2$; see also غ̇vторvєv́oual, हैvтopvoৎ and тópvos
$\tau \varepsilon \tau \rho \alpha ́ \sigma \tau v \lambda$ ov ('tetrastyle') 52.10
тópvos ('lathe') 36.9, 36.12; see also غ̇vторvєv́o $\mu \alpha 1$, हैvторvoৎ and тєториєөиє́vоя
трí $\lambda \lambda \cup \varphi о$ ('triglyphs') 100.12
тюохíخос ('pulley') 22.13-14, 48.17, 48.18, 50.8, 54.21, 56.21, 58.16, 98.21-100.1

тט́خoc (wooden 'block') 34.8, 34.11, 34.13
ü $\pi \alpha \gamma o v$ ('mobile (automaton)') $2.15,4.22,6.3,6.17-18,10.8-9$, 10.18, 12.8, 20.4, 64.2, 68.5, 70.3; see also $\sigma \tau \alpha \tau$ óv
í $\pi \varepsilon \rho \theta$ ópıov ('lintel') 94.7; see also

ט́ $\pi \varepsilon ́ \rho \theta$ opov ('lintel') 90.3, 106.1819, 106.19; see also ט́ $\pi \varepsilon \rho \theta$ ópıov i π oб αv í̊iov ('underside of board') 108.6

ט́бл λ ń $\gamma \gamma \ldots \mathrm{ov}$ (hysplēngion [sc. 'bar']) 82.13, 82.14, 82.17, 82.18, 94.21; see also $\begin{gathered} \\ \\ \pi \\ \lambda\end{gathered} \gamma \xi$

ṽø $\pi \lambda \eta \gamma \xi$ (hysplēnx [sc. 'trigger board']) $10.6^{\text {bis }}, 10.9,12.1$, 12.3; (= hysplēngion) 82.16, 84.6; see also $\dot{0} \sigma \pi \lambda$ и́ $\gamma \gamma$ ıv
$\chi \alpha ́ \lambda \alpha \sigma \mu \alpha$ ('slack' of cord) 14.3, 14.4, 14.6, 32.2, 34.16, 34.21,
36.21-22, 36.24, 38.1, 38.12, 38.18-19, 38.21, 38.24-40.1, 42.5, 44.12, 46.20, 56.6-7, 56.8, $62.9, \quad 62.14 ;$ see also $\pi \alpha \rho \alpha \chi \alpha \lambda \alpha \sigma \mu \alpha ́ \tau ו \circ v$ and $\chi \alpha \lambda \alpha \sigma \mu \alpha ́ \tau \iota \nu$
$\chi \alpha \lambda \alpha \sigma \mu \alpha ́ \tau \iota o v$ ('slack' of cord) 32.15, 62.7; see also $\pi \alpha \rho \alpha \chi \alpha \lambda \alpha \sigma \mu \alpha ́ \tau \iota o v$ and $\chi \dot{\alpha} \lambda \alpha \sigma \mu \alpha$
хєíp ('claw') 50.10; see also $\sigma \chi \alpha \sigma \tau n \rho i ́ \alpha$
дoıviкís ('collar') 8.7; (wheel 'hub') 36.10, 36.13, 36.15, 36.18, 36.24, 38.15, 38.17, 38.22, 40.3; see also кv$\oplus \delta \alpha \xi$

BIBLIOGRAPHIC ABBREVIATIONS

Acerbi-Vitrac 2014 = F. A.-B. V. (eds.), Metrica. Héron d’Alexandrie. Introduction, text critique, traduction française et notes de commentaire, Pisa/Rome 2014.

Affò 1783 = I. A., Vita di Monsignore Bernardino Baldi da Urbino primo abate di Guastalla, Parma 1783.

Alcock 1993 = S.E. A., Graecia Capta. The Landscapes of Roman Greece, Cambridge 1993.

Alexander 1993 = L. A., The Preface to Luke's Gospel. Literary Convention and Social Context in Luke 1.1-4 and Acts 1.1, Cambridge 1993.

Allan 2009 = R. J., "Towards a Typology of the Narrative Modes in Ancient Greek: Text Types and Narrative Structure in Euripidean Messenger Speeches", in S.J. Bakker and G. Wakker (eds.), Discourse Cohesion in Ancient Greek, Leiden 2009, 171-203.

Allen 1889 = T.W. A., Notes on Abbreviations in Greek Manuscripts, Oxford 1889.

Allison 2006 = P.M. A., The Insula of the Menander at Pompeii, III. The Finds, a Contextual Study, Oxford 2006.

Ambuel 2007 = D. A., Image and Paradigm in Plato's Sophist, Las Vegas, NV 2007.

Anderson 1997 = J.C. A., Roman Architecture and Society, Baltimore/London 1997.

Arata 2014 = F.P. A., "La navigabilis fossa di Nerone", MEFRA 126.1 (2014), http://journals.openedition.org/mefra/2114. Accessed 04/11/2018.

Arnott 1962 = G. A., Greek Scenic Conventions in the Fifth Century B.C., Oxford 1962.

Argoud-Guillaumin 1997 = G. A.-J.-Y. G. (eds.), Les Pneumatiques d'Héron d’Alexandrie, Saint-Étienne 1997.

Artés Hernández 2014 = J.A. A.H., "Sobre el concepto de $\sigma \tau \alpha ́ \sigma ı \varsigma ~ e n ~$ Hermógenes", Myrtia 29 (2014) 181-199.

Asper 2001 = M. A., "Dionysios (Heron, Def. 14.3) und die Datierung Herons von Alexandria", Hermes 129.1 (2001) 135-137.

Bachet de Méziriac 1621 = C.G. B.d.M., Diophanti Alexandrini Arithmeticorum libri sex et de numeris multangulis liber unus, Paris 1621.

Baldwin 1978 = B. B., "Trimalchio's Domestic Staff", Acta Classica 21 (1978) 87-97.

Bast 1811 = F.G. B., "Commentatio palaeographica", in G.H. Schaefer, Gregorii Corinthii de dialectis linguae graecae, Leipzig 1811, 703-861.

Bastianini-Long 1992 = G. B.-A.A. L., "Hierocles. 1. Elementa moralia", in Corpus dei papiri filosofici greci e latini. Testi e lessico nei papiri di cultura greca e latina, I.1.2, Florence 1992, 268-451.

Beacham 2013 = R. B., "Heron of Alexandria's 'Toy Theatre' Automaton: Reality, Allusion and Illusion", in K. Reilly (ed.), Theatre, Performance and Analogue Technology. Historical Interfaces and Intermedialities, London 2013.

Beare 1964 = W. B., The Roman Stage. A Short History of Latin Drama in the Time of the Republic, London $1964^{3}\left(1950{ }^{1}\right)$.

Belardi 2005 = W. B., "Origine e sviluppi della nozione linguistica di 'macchina'", in M. Veneziani (ed.), Machina. XI Colloquio internazionale. Roma, 8-10 gennaio 2004, Florence 2005, 19-60.

Berardi-Lisi-Micalella 2009 = E. B.-F.L. L.-D. M. (eds.), Poikilia. Variazioni sul tema, Acireale/Rome 2009.

Berryman 2002 = S. B., "Galen and the Mechanical Philosophy", Apeiron 35.3 (2002) 235-253.

Berryman 2003 = S. B., "Ancient Automata and Mechanical Explanation", Phronesis 48.4 (2003) 344-369.

Berryman 2007 = S. B., "The Imitation of Life in Ancient Greek Philosophy", in J. Riskin (ed.), Genesis Redux. Essays in the History and Philosophy of Artificial Life, Chicago/London 2007, 35-45

Berryman 2009 = S. B., The Mechanical Hypothesis in Ancient Greek Natural Philosophy, New York 2009.

Berryman 2011 = S. B., "The Evidence for Strato in Hero of Alexandria’s Pneumatics", in M.-L. Desclos and W.W. Fortenbaugh (eds.), Strato of Lampsacus, London/New York 2011, 277-292.

Bevegni 2014 = C. B., "Osservazioni sul motivo della poikilia nella letteratura miscellanea greca di età imperiale e bizantina", Paideia 69 (2014) 317331.

Bieber 1961 = M. B., The History of the Greek and Roman Theater, Princeton, NJ 1961^{2} (19391).

Biehl 1970 = W. B. (ed.), Euripides. Troades, Leipzig 1970.
Bliquez-Rodgers 1998 = J.L. B.-P. R., "KYA OOL at Aristophanes Pax 538-42, Lysistrata 443-44, and [Aristotle] Problems 890B7-38", CPh 93.3 (1998) 236-241.

Bonneau 1993 = D. B., Le régime administratif de l'eau du Nil dans l'Égypte grecque, romaine et byzantine, Leiden/New York/Köln 1993.

Bortone 2010 = P. B., Greek Prepositions. From Antiquity to the Present, Oxford 2010.

Brioso Sánchez 2006 = M. B.S., "Sobre la maquinaria teatral en la Atenas clásica: el દ̀ккv́к $\lambda \eta \mu$ ", Habis 37 (2006) 67-85.

Brumbaugh 1966 = R.S. B., Ancient Greek Gadgets and Machines, Westport, Conn. 1966.

Bur 2016 = T. B., Mechanical Miracles: Automata in Ancient Greek Religion, Diss. Sydney 2016.

Cagnat 1894 = R. C., "Epitonium ou Epistomium?", RPh 18.2 (1894) 170-171.

Callebat 2003 = L. C. (ed.), Vitruve. De l'Architecture. Livre X, with the collaboration of P. Fleury, Paris 2003.

Cambiano 1994 = G. C., "Automaton", StudStor 35 (1994): 613-633.
Cambiano 2011 = G. C., "Manuale 'tecnico' e manuale 'scientifico': i casi di Euclide e di Erone", in A. Roselli-R. Velardi (eds.), L'insegnamento delle technai nelle culture antiche. Atti del convegno, Ercolano, 23-24 marzo 2009, Pisa 2011, 23-36.

Campbell 2003 = D.B. C., Greek and Roman Siege Engines, 399BC to AD363, Oxford 2003.

Caroli 1999 = M. C., "Eufemismi greci di superstizione", in F. De Martino and A. H. Sommerstein (eds.), Studi sull'eufemismo, Bari 1999, 39-69.

Caroli 2007 = M. C., Il titolo iniziale nel rotolo librario greco-egizio, Bari 2007.
Carra de Vaux 1902 = B.B. C.d.V., Le livre des appareils pneumatiques et des machines hydrauliques par Philon de Byzance, Paris 1902.

Catalogue 1853 = Catalogue of the Manuscripts at Ashburnham Place, part 1, London 1853.

Cerboni Baiardi 2006 = G. C.B., Atti del Seminario di studi su Berardino Baldi urbinate (1553-1617), Urbino 2006.

Chaniotis 2011 = A. C., "Greek Festivals and Contests: Definition and General Characteristics", in Thesaurus Cultus et Rituum Antiquorum 7 (2011) 443.

Chantraine 1955 = P. C., "Les noms de la gauche en grec", CRAI 99.3 (1955) 374-377.

Chantraine 1956 = P. C., "Les mots designant la gauche en grec ancien", in H. Kronasser (ed.), MNHMHE XAPIN. Gedenkschrift Paul Kretschmer. 2. Mai 1866 - 9. März 1956, I, Vienna (1956), 61-69.

Chitham 2005 = R. C., The Classical Orders of Architecture, Amsterdam 2005² (London 19891).

Chondros et al. 2013 = T.G. C. et al., "'Deus-Ex-Machina' Reconstruction in the Athens Theater of Dionysus", Mechanism and Machine Theory 67 (2013) 172-191.

Commandino $1588=$ F. C. (trans.), Collectio Mathematica, Pisa 1588.
Csapo-Slater 1994 = E. C.-W.J. S., The Context of Ancient Drama, Ann Arbor 1994.
 2003.

Cuomo 2000 = S. C., Pappus of Alexandria and the Mathematics of Late Antiquity, Cambridge 2000.

Cuomo 2001 = S. C., Ancient Mathematics, London/New York 2001.
Cuomo 2002 = S. C., "The Machine and the City: Hero of Alexandria's Belopoeica", in C. J. Tuplin and T. E. Rihll (eds.), Science and Mathematics in Ancient Greek Culture, Oxford 2002, 165-177.

De Groot 2016 = J. D.G., "Motion and Energy", in G.L. Irby-Massie (ed.), A Companion to Science, Technology, and Medicine in Ancient Greece and Rome, I, Chichester/Hoboken, NJ (2016) 43-59.

Denard 2007 = H. D., "Lost Theatre and Performance Traditions in Greece and Italy", in M. McDonald-J.M. Walton (eds.), The Cambridge Companion to Greek and Roman Theatre, Cambridge (2007) 139-160.

Destrée-Murray 2015 = P. D.-P. M. (eds.), A Companion to Ancient Aesthetics, Malden, MA 2015.

Detienne-Vernant 1974 = M. D.-J.-P. V., Les ruses de l'intelligence. La mètis des Grecs, Paris 1974.

Devillers 1995 = O. D., "Tacite, les sources et les impératifs de la narration: le récit de la mort d'Agrippine (Annales XIV, 1'13)", Latomus 54.2 (1995) 324-345.

Diels $1893=$ H. D., "Über das physikalische System des Straton", Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin (1893) 101-127.

Dinsmoor 1950 = W.B. D., The Architecture of Ancient Greece. An Account of Its Historic Development, Batsford $1950^{3}\left(1927^{1}\right)$.

Dougherty 2011 = C. D., Introduction to Econometrics, Oxford $2011^{4}\left(1992^{1}\right)$.
Drachmann 1932 = A.G. D., Ancient Oil Mills and Presses, Copenhagen 1932.
Drachmann 1948 = A.G. D., Ktesibios, Philon and Heron. A Study in Ancient Pneumatics, Copenhagen 1948.

Drachmann 1963a = A.G. D., The Mechanical Technology of Greek and Roman Antiquity, Copenhagen 1963.

Drachmann 1963b = A.G. D., "Fragments from Archimedes in Hero's Mechanics", Centaurus 8 (1963) 91-146.

Drachmann 1972 = A.G. D., "Greek and Roman Artillery: Technical Treatises by E.W. Marsden", Technology and Culture 13.3 (1972) 487-494.

Dubischar 2015 = M. D., "Typology of Philological Writings", in Montanari-Matthaios-Rengakos (2015: 545-599).

Enos 2013 = R.L. E., "Finding the 'Good' in Nero: The Emperor as Performer and Patron of Rhetorical Contests", in M.R. Lamb (ed.), Contest(ed) Writing: Re-Conceptualizing Literacy Competitions, Newcastle 2015, 3952.

Evans 1954 = C.F. E., "I Will Go Before You into Galilee", The Journal of Theological Studies 5 (1954) 3-18.

Facal-González 1982 = J.L. F.-A. G., Repertorium Litterarum Graecarum ex Codicibus, Papyris, Epigraphis, with the collaboration of T.F. Brunner-L. Berkowitz-K. Squitter and the Staff of the TLG (Irvine, California), Madrid 1982.

Fayant 2014 = M.-C. F., Hymnes orphiques, Paris 2014.

Federspiel 1992 = M. F., 'Sur la locution $\dot{\varepsilon} \varphi$ ' ov $/ \hat{\varepsilon} \varphi$ ' $\hat{\varrho}$ servant à désigner des êtres géometriques par des lettres. Avec des remarques sur l'art de traduire et sur la langue mathématique d'Hippocrate de Chio", in J.-Y. Guillaumin (ed.), Mathématiques dans l'antiquité, Saint-Étienne 1992, 9-25.

Federspiel 1995 = M. F., "Sur l'opposition défini/indéfini dans la langue des mathématiques grecques", LEC63 (1995) 249-293.

Ferrari 1985 = G.A. F., "Meccanica 'allargata'", in G. Giannantoni-M. Vegetti (eds.), La scienza ellenistica. Atti delle tre giornate di studio tenutesi a Pavia dal 14 al 16 aprile 1982, Naples 1985, 225-296.

Ferriello-Gatto-Gatto 2016 = G. F.-M. G.-R. G., The Baroulkos and the Mechanics of Heron, Florence 2016.

Floridi 2007 = L. F. (ed.), Stratone di Sardi. Epigrammi, Alessandria 2007.
Floridi 2014 = L. F. (ed.), Lucillio, Epigrammi, Berlin 2014.
Foat 1905 = F.W.G. F., "Tsade and Sampi", JHS 25 (1905) 338-365.
Foat 1906 = F.W.G. F., "Fresh Evidence for T", JHS 26 (1906) 286-287.
Formigé 1921 = J. F., "Note sur les machines des décors mobiles dans les théâtres antiques", BSAF (1921) 190-195.

Fragaki 2012 = H. F., "Automates et statues merveilleuses dans l'Alexandrie antique", $J S(2012)$ 29-67.

Francis 1995 = J.A. F., Subversive Virtue. Ascetism and Authority in the Second-Century Pagan World, University Park, PA 1995.

Fraser 1972 = P.M. F., Ptolemaic Alexandria, I-II, Oxford 1972.
Frederiksen 2000 = R. F., "Typology of the Greek Theatre Building in Late Classical and Hellenistic Times", in S. Isager-I. Nielsen (eds.), Proceedings of the Danish Institute at Athens III, Athens 2000, 135-175.

Fredouille 1997 = J.C. F., "Hésitations titrologique et interprétation des œuvres", in Fredouille et al. (1997: 385-396).

Fredouille et al. 1997 = J.C. F. et al., Titres et articulations du texte dans les œuvres antiques. Actes du Colloque International de Chantilly, 13-15 décembre 1994, Paris 1997.

Galli Calderini 1984 = I.G. G.C., "Gli epigrammi di Edilo. Interpretazione e esegesi", Atti della Accademia Pontaniana 33 (1984) 79-118.

Gandz 1940 = S. G., "Heron's Date. A New terminus ante quem (+ 150)", Isis 32.2 (1940) 263-266.

Gardthausen 1913 = V. G., Griechische Palaeographie, II. Die Schrift, Unterschriften und Chronologie im Altertum und im byzantinischen Mittelalter, Leipzig $1913^{2}\left(1879{ }^{1}\right)$.

Garlan $1973=$ Y. G., "Cités, armées et stratégie à l'époque hellénistique d'après l'oeuvre de Philon de Byzance", Historia 22 (1973) 16-33.

Garlan 1974 = Y. G., Recherches de poliorcétique grecque, Athens 1974.
Giardina 2003 = G.R. G. (ed.), Erone di Alessandria. Le radici filosoficomatematiche della tecnologia applicata. Definitiones: testo, traduzione e commento, Catania 2003.

Ginouvès-Martin 1985 = R. G.-R.M., Dictionnaire méthodique de l'architecture grecque et romaine, I. Matériaux, techniques de construction, techniques et formes du décor, Rome 1985.

Ginouvès 1992 = R. G., Dictionnaire méthodique de l’architecture grecque et romaine, II. Éléments constructifs: supports, couvertures, aménagements intérieurs, Rome 1992.

Goodwin 1889 = W.W. G., Syntax of the Moods and Tenses of the Greek Verb. Rewritten and enlarged, London 1889.

Gotti 2008 = M. G., Investigating Specialized Discourse, Bern $2008^{2}\left(2003^{1}\right)$.
Grand-Clément 2015 = A. G.-C., "Poikilia", in Destrée-Murray (2015: 406421).

Granger 1934 = F. G. (ed.), Vitruvius. On Architecture, II. Books VI-X, Cambridge, MA 1934.

Grynaeus 1540 = S. G. (ed.), Procli Diadochi Hypotyposis astronomicarum positionum, Basel 1540.

Gros 2010 = P. G., "La notion d'ornamentum de Vitruve à Alberti", Perspective 1 (2010) 130-136

Gutzwiller 2005 = K. G., "Greek Epigram in the Roman Empire: Martial's Forgotten Rivals by G. Nisbet", BMCRev (2005.01.19), http://bmcr.brynmawr.edu/2005/2005-01-19. Accessed 04/11/2018.
Haase 1847a = F. H., "Philon", Allgemeine Encyclopädie der Wissenschaften und Kunste 23 (1847) 428-435.

Haase 1847b = F. H., De militarium scriptorum Graecorum et Latinorum omnium editione instituenda narratio, Berlin 1847.

Halliwell 2002 = S. H., The Aesthetics of Mimesis. Ancient Texts and Modern Problems, Princeton/Oxford 2002.

Halma $1820=$ N. H. (ed.), Hypothèses et époques des planètes de C. Ptolémée et Hypotyposes de Proclus Diadochus, Paris 1820.

Hammer-Jensen $1910=\quad$ I. H.-J., "Die Druckwerke Herons von Alexandria", Neue Jahrbücher für das klassische Altertum, Geschichte und Deutsche Literatur 25 (1910) 413-427, 480-503.

Harris 1974 = H.A. H., "Lubrication in Antiquity", G\&R 21.1 (1974) 32-36.
Härdle-Simar 2015 = W.K. H.-L. S., Applied Multivariate Statistical Analysis, Berlin/Heidelberg $2015^{4}\left(2003^{1}\right)$.

Heath 1897 = T.L. H., The Works of Archimedes, Cambridge.
Heath 1956 = T.L. H. (trans.), The Thirteen Books of Euclid's Elements, Translated from the Text of Heiberg with Introduction and Commentary, I. Introduction and Books I, II, New York 1956^{2} (Cambridge 1908¹).

Heiberg 1914 = J.L. H. (ed.), Heronis Alexandrini opera quae supersunt omnia, V. Heronis quae feruntur Stereometrica et De Mensuris, Leipzig 1914.

Hellmann 1992 = M.-C. H., Recherches sur le vocabulaire de l'architecture Grecque, d'après les inscriptions de Délos, Athens 1992.

Hirschberg 1899 = J. H. (ed.), Die Augenheilkunde des Aëtius aus Amida. Griechisch und Deutsch, Leipzig 1899.

Hodge 1981 = A.T. H., "Vitruvius, Lead Pipes and Lead Poisoning", AJA 85.4 (1981) 486-891.

Hodge 1992 = A.T. H., Roman Aqueducts \& Water Supply, London 1992.
Holmes-Fischer 2015 = B. H-K.-D. F. (eds.), The Frontiers of Ancient Science. Essays in Honor of Heinrich von Staden, Berlin/Boston, MA 2015.

Holtz 1997 = L. H., "Titre et incipit", in Fredouille et al. (1997: 469-489).
Horsfall 1981 = N. H., "Some Problems of Titulature in Roman Literary History", BICS 28 (1981) 103-114.

Horsfall 1989 = N. H., "'The Uses of Literacy' and the Cena Trimalchionis", $G \& R 36$ (1989) 74-89 (part 1) and 194-209 (part 2).

Horst-Dieter 2003 = B. H.-D., "Bronteion", BNP2 (2003) 786.
Huffman 2005 = C. H., Archytas of Tarentum. Pythagorean, Philosopher and Mathematician King, Cambridge 2005.

Hultsch 1877 = F. H., "De Heronis Mechanicorum reliquiis in Pappi collectione servatis", in Commentationes philologae in honorem Theodori Mommseni scripserunt amici, Berlin 1877, 114-123.

Hultsch 1882 = F. H., Griechische und römische Metrologie, Berlin 1882^{2} (1862 ${ }^{1}$).

Hunziger 2015 = C. H., "Wonder", in Destrée-Murray (2015: 422-437).
Huss 1997 = B. H., "In Xenophontis 'Symposium' observatiunculae criticae", ICS 22 (1997) 43-50.

Huss 1999 = B. H., Xenophons Symposium: ein Kommentar, Stuttgart 1999.
Hutchinson 2013 = G.O. H., "Genre and Super-Genre", in T.D. Papanghelis-S.J. Harrison-S. Frangoulidis (eds.), Generic Interfaces in Latin Literature: Encounters, Interactions and Transformations, Berlin 2013, 19-34.

IAU Resolutions $2000=I A U$ Resolutions Adopted $<$ by> the $24^{\text {th }}$ General Assembly (Manchester August 2000), http://syrte.obspm.fr/IAU_resolutions/Resol-UAI.htm, 2000. Accessed on 06/11/2019.

Iriarte 2000 = A. I., "Pseudo-Heron's cheiroballistra. A(nother) Reconstruction: I. Theoretics", JRMES 11 (2000) 47-75.

Johnston-Horsley 2011 = I. J.-G.H.R. H. (ed.), Galen. Method of Medicine, II. Books 5-9, Cambridge, MA 2011.

Jones 2001 = A. J., "Pseudo-Ptolemy De Speculis", Sciamus 2 (2001) 145-186.
Jones 2014 = N.B. J., "Ancient Painted Panels. Terminology and Appearance", Mnemosyne 67.2 (2014) 295-304.

Jory 1986 = E.J. J., "Continuity and Change in the Roman Theatre", in J.H. Betts-J.T. Hooker-J.R. Green (eds.), Studies in Honour of T.B.L. Webster, I, Bristol 1986, 143-152.

Kavoulaki 1999 = A. K., "Processional Performance and the Democratic Polis", in S. Goldhill-R. Osborne, Performance Culture and Athenian Democracy, Cambridge 1999, 293-320.

Keenan-Jones-Ruffell-McGookin 2016 = D. K.-J.-I. R.-E. M., "Taking a Bearing on Hero's Anti-Crane and Its Un-Windlass: the Relationship between Hero of Alexandria's Mobile Automaton and Greco-Roman Construction Machinery, Artillery and Water-Lifting Machines", in J. Delaine-S. Camporale-A. Pizzo (eds.), Arqueología de la Construcción V. Man-made Materials, Engineering and Infrastructure. Proceedings of the $5^{\text {th }}$ International Workshop on the Archaeology of Roman Construction, Oxford, April 11-12, 2015, Madrid 2016, 167-184.

Kenney 1970 = E.J. K., "That Incomparable Poem the 'Ille Ego'?", CR 20.3 (1970) 290.

Keyser 1988 = P. K., "Suetonius Nero 41.2 and the Date of Heron Mechanicus of Alexandria", CPh 83.2 (1988) 218-220.

Keyser 1994 = P.T. K., "The Use of Artillery by Philip II and Alexander the Great", AncW 25.1 (1994) 27-59.

Klein 1968 = J. K., Greek Mathematical Thought and the Origin of Algebra, Engl. trans. by E. Brann, with an Appendix containing Vieta's Introduction to the Analytical Art trans. by J.W. Smith New York 1968 (Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik B III/1, 1934, 18-105 [part 1]; B III/2, 1936 [part 2]).

Knorr 1982 = W.R. K., Ancient Sources of the Medieval Tradition of Mechanics. Greek, Arabic and Latin Studies of the Balance, Florence 1982.

Knorr 1993 = W.R. K., "Arithmêtikê stoicheiôsis: On Diophantus and Hero of Alexandria", HM 20 (1993) 180-192.

Koetsier-Kerle 2016 = T. K.-H. K., "The Automaton Nysa: Mechanism Design in Alexandria in the 3rd Century BC", in F. Sorge-G. Genchi (eds.), Essays on the History of Mechanical Engineering, Dordrecht/New York 2016, 347-366.

Kosmetatou 2004 = E. K., "Z $\omega 1 \delta 1 \alpha$ in the Delian Inventory Lists", Mnemosyne s. 4, 57.4 (2004) 481-484.

Krafft 1973 = F. K., "Kunst und Natur. Die Heronische Frage und die Technik in der Klassischen Antike", $A \& A 19$ (1973) 1-19.

Kretzschmer 1960 = F. K., "La robinetterie romaine", RAE 11 (1960) 89-113.
Laird 2015 = W.R. L., "Heron of Alexandria and the Principles of Mechanics", in Holmes-Fischer (2015: 289-305).

Lampe 1948 = G.W.H. L., "BAPYAAION (SYNESIUS, Ep. 15)", CR 62.3/4 (1948) 114-115.

Landels 1978 = J.G. L., Engineering in the Ancient World, London 1978.
Laudenbach 2015 = B. L. (ed.), Strabon. Geographie. Livre XVII, $I^{\text {re }}$ partie. L'Égypte et l'Éthiopie nilotique, Paris 2015.

Lawler 1927 = L.B. L., "The Maenads: A Contribution to the Study of the Dance in Ancient Greece", MAAR 6 (1927) 69-112.

Lefas $2000=$ P. L., "On the Fundamental Terms of Vitruvius' Architectural Theory", BICS 44 (2000) 179-197.

Lendle 1983 = O. L., Texte und Untersuchungen zum technischen Bereich der antiken Poliorketik, Wiesbaden 1983.

Le Roy 1973 = C. L.R., "La naissance d'Apollon et les palmiers déliens", $B C H$ Suppl. 1 (1973) 263-286.

Levi 1925 = D. L., "Iscrizione metrica cretese sul culto degli eroi", RFIC 53 (1925) 208-215.

Lewis 1997 = M.J.T. L., Millstone and Hammer. The Origins of Water Power, Hull 1997.

Lewis 2001a = M.J.T. L. (trans.), "Hero of Alexandria: Dioptra", in Id., Surveying Instruments of Greece and Rome, Cambridge 2001, 259-286.

Lewis 2001b = M.J.T. L., "Railways in the Greek and Roman World", in A. Guy-J. Rees (eds.), Early Railways. A selection of Papers from the First International Early Railways Conference, London 2001, 8-19.

Libri 1841 = G. L., Histoire des sciences mathématiques en Italie, depuis la renaissance des lettres, IV, Paris 1841.

Lobeck 1837 = C.A. L., Paralipomena grammaticae Graecae, I. Dissertationes de praeceptis euphonicis, de nominibus monosyllabis, de adjectivis immobilibus, de substantivorum I. declinationis paragoge ionica, Leipzig 1837.

Locker 1932, $1933=$ E. L., "Die Bildung der griechischen Kurz- und Kosenamen", Glotta 21 (1932) 136-152 (part 1); id. 22 (1933) 46-100 (part 2).
Lolos 2003 = Y. L., "Greek Roads: A Commentary on the Ancient Terms", Glotta 79 (2003) 137-174.
Magnin 1852 = M.C. M., Histoire des marionettes en Europe, Paris 1852.

Maiuri 1945 = A. M., La Cena di Trimalchione di Petronio Arbitro. Saggio, testo e commento, Naples 1945.

Mango 1950 = C.A. M., "Byzantine Brick Stamps", AJA 54.1 (1950) 19-27.
Manni 1980 = P. M., "La terminologia della meccanica applicata nel cinquecento e nei primi decenni del seicento", Studi di Lessicografia Italiana 2 (1980) 139-213.

Mansfeld 1998 = J. M., Prolegomena Mathematica. From Apollonius of Perga to Late Neoplatonism, Leiden/Boston/Cologne 1998.

Marsden 1969 = E.W. M., Greek and Roman Artillery. Historical Development, Oxford 1969.

Marsden 1971 = E.W. M., Greek and Roman Artillery. Technical Treatises, Oxford 1971.

Marshall 2003 = C.W. M., "Sophocles' Nauplius and Heron of Alexandria's Mechanical Theatre", in A.H. Sommerstein (ed.), Shards from Kolonos: Studies in Sophoclean Fragments, Bari 2003, 261-279.

Martin 1854 = T.H. M., Recherches sur la vie et les ouvrages d'Héron d'Alexandrie, disciple de Ctésibius, et sur tous les ouvrages mathématiques grecs, conservés ou perdus, publiés ou inédits, qui ont été attribués à un auteur nommé Héron, Paris 1854.

Masià 2015 = R. M., "On Dating Hero of Alexandria", AHES 69.3 (2015) 231255.

Matthaios 2015 = S. M., "Greek Scholarship in the Imperial Era and Late Antiquity", in Montanari-Matthaios-Rengakos (2015: 184-296).

Mayerson 2001 = P. M., "Radish Oil: a Phenomenon in Roman Egypt", BASP 38 (2001) 109-117.

Mayerson $2002=$ P. M., "Qualitative Distinctions for ε é $\lambda \alpha \iota \circ$ (Oil) and $\psi \omega \mu i ́ o v$ (Bread)", BASP 39 (2002) 101-109.

McCourt 2012 = F. M., "An Examination of the Mechanisms of Movement in Heron of Alexandria's On Automaton-Making", in T. Koetsier-M.

Ceccarelli (eds.), Explorations in the History of Machines and Mechanisms, Dordrecht 2012, 185-198.

Meerwaldt 1921 = J.D. M., "De Trimalchionis, Ctesibii, Platonis automatis", Mnemosyne 49.4 (1921) 406-426.

Meiggs 1982 = R. M., Trees and Timber in the Ancient Mediterranean World, Oxford 1982.

Meißner 1999 = B. M., Die technologische Fachliteratur der Antike. Struktur, Überlieferung und Wirkung technischen Wissens in der Antike (ca. 400 v. Chr.-ca. 500 n. Chr.), Berlin 1999.

Micalella 2009 = D. M., "Varietà e variazione. Poikilia nella poetica e nella retorica aristotelica", in Berardi-Lisi-Micalella (2009: 239-272).

Micheli 1998 = G. M., "Il concetto di automa nella cultura greca dalle origini al sec. IV a.C.", RSF53.3 (1998) 421-462.

Micheli 2005 = G. M., "La traduzione degli Automata di Erone", in Nenci (2005: 247-268).

Miller 2001 = S.G. M., Excavations at Nemea II. The Early Hellenistic Stadium, with contributions by R.C. Knapp and D. Chamberlain, Berkeley, CA 2001.

Mitchell 2007 = M.M. M., "Origen, Celsus and Lucian on the 'Dénouement of the Drama' of the Gospels", in D.E. Aune-R.D. Young (eds.), Reading Religions in the Ancient World, Leiden 2007, 215-236.

Montanari-Matthaios-Rengakos 2015 = F. M.-S. M.-A. R. (eds.), Brill's Companion to Ancient Greek Scholarship, I. History, Disciplinary Profiles, Leiden/Boston 2015.

Montfaucon 1739 = B.d.M., Bibliotheca bibliothecarum manuscriptorum nova, I, Paris 1739.

Movia 1991 = G. M., Apparenze, essere e verita. Commentario storicofilosofico al "Sofista" di Platone, Milan 1991.

Murgatroyd 2008 = P. M., "Tacitus on the Death of Octavia", $G \& R$, s. 2, 55.2 (2008) 263-273.

Nachmanson 1941 = E. N., Der griechische Buchtitel, Gothenburg 1941.
NASA $2016=$ NASA Eclipse Web Site, http://eclipse.gsfc.nasa.gov/eclipse.html, last update on 27 August 2016. Accessed on 06/11/2019.

Nenci $2005=$ E. N. (ed.), Bernardino Baldi (1553-1617) studioso rinascimentale: poesia, storia, linguistica, meccanica, architettura. Atti del Convegno di studi di Milano (19-21 novembre 2003), Milan 2005.

Netz 1999 = R. N., The Shaping of Deduction in Greek Mathematics, Cambridge 1999.

Netz 2004a $=$ R. N., The Transformation of Mathematics in the Early Mediterranean World: from Problems to Equations, Cambridge 2004.

Netz 2004b = R. N. (trans.), The Works of Archimedes, I. The Two Books On the Sphere and the Cylinder, New York 2004.

Netz et al. 2011 = R. N. et al., The Archimedes Palimpsest, I-II, Cambridge 2011.

Neugebauer 1938 = O. N., "Über eine Methode zur Distanzbestimmung Alexandria-Rom bei Heron", Det Kongelige Danske Videnskabernes Selskab 26.2 (1938) 3-26.

Neugebauer 1969 = O. N., The Exact Sciences in Antiquity, New York 1969^{2} (Providence, RI 1957^{1}).

Neugebauer 1975 = O. N., A History of Ancient Mathematical Astronomy, Berlin/Heidelberg/New York 1975.

Newiger 1990 = H.-J. N., "Ekkyklema und Mechané in der Inszenierung des griechischen Dramas", WJA 16 (1990) 33-42.

Nightingale 2001 = A.W. N., "On Wandering and Wondering: Theôria in Greek Philosophy and Culture", Arion 9.2 (2001) 23-58.

Nightingale 2004 = A.W. N., Spectacles of Truth in Classical Greek Philosophy, Cambridge 2004.

Nriagu 1983 = J.O. N., Lead and Lead Poisoning in Antiquity, New York/London 1983.

Nussbaum 1976 = M.C. N., "The Text of Aristotle's De Motu Animalium", HSPh 80 (1976) 111-159.

Nussbaum 1978 = M.C. N. (ed.), Aristotle's De Motu Animalium. Text with Translation, Commentary, and Interpretive Essays, Princeton, NJ 1978.

Oleson 1984 = J.P. O. (ed.), Greek and Roman Mechanical Water-Lifting Devices: the History of a Technology, Toronto 1984.

Oleson 2008 = J.P. O., The Oxford Handbook of Engineering and Technology in the Classical World, Oxford/New York 2008.

Oliver 1951 = R.P. O., "The First Medicean MS of Tacitus and the Titulature of Ancient Books", TAPA 82 (1951) 232-261.

Olivieri 1901 = A. O., "Il teatro automatico di Erone d'Alessandria", RFIC 29 (1901) 424-435.

Olivieri $1950=$ A. O. (ed.), Aetii Amideni Libri Medicinales V-VIII, Berlin 1950.

Olson 2007 = S.D. O. (ed.), Athenaeus. The Learned Banqueters, II. Books 3.106e-5, Cambridge, MA 2007.

Olson 2009 = S.D. O. (ed.), Athenaeus. The Learned Banqueters, V. Books 10.420e-11, Cambridge, MA 2009.

Orinsky-Neugebauer-Drachmann 1941 = K. O.-O. N.-A.G. D., "Philon von Bysanz", RE 20.1 (1941) 53-54.

Orlandos 1968 = A.K. O., Les matériaux de construction et la technique architecturale des anciens grecs, French trans. by V. Hadjimichali-K. Laumonier, II, Paris 1968.

Pace 2008 = C. P., "Tragedia, $\epsilon \kappa \pi \lambda \eta \xi \iota \varsigma$ e $\dot{\alpha} \pi \alpha ́ \tau \eta ~ n e l l ’ a n o n i m a ~ V i t a ~ d i ~ E s c h i l o ", ~$ SemRom 11.2 (2008) 229-254.

Panayotakis 1995 = C. P., Theatrum Arbitri. Theatrical Elements in the Satyrica of Petronius, Leiden/New York 1995.

Panayotakis 2010 = C. P. (ed.), Decimus Laberius. The Fragments, Cambridge 2010.

Pauwels 1980 = F. P., Biomechanics of the Locomotor Apparatus. Contributions on the Functional Anatomy of the Locomotor Apparatus, Engl. trans. by P. Maquet-R. Furlong, Berlin/Heidelberg/New York 1980^{2} (Berlin 1965^{1}).

Penny Small 2013 = J. P.S., "Skenographia in Brief", in G.W.M. Harrison-V. Liapis (eds.), Performance in Greek and Roman Theatre, Leiden/Boston 2013, 111-128.

Pepe 2013 = C. P., The Genres of Rhetorical Speeches in Greek and Roman Antiquity, Leiden/Boston 2013.

Petersen 1910 = W. P., Greek Diminutives in -ION. A Study in Semantics, Weimar 1910.

Pollitt 1974 = J.J. P., The Ancient View of Greek Art: Criticism, History, and Terminology, New Haven/London 1974.

Prager 1974 = F.D. P. (ed.), Philo of Byzantium. Pneumatica, Wiesbaden 1974.
Preus 1983 = A. P., "Comments on Professor Kerferd's Paper. Possible Stoic Methods of Impulses", in W.W. Fortenbaugh (ed.), On Stoic and Peripathetic Ethics. The Work of Arius Didymus, New Brunswick, NJ 1983, 99-106.

Prêtre 1997 a $=$ C. P., "Imitation et miniature. Étude de quelques suffixes dans le vocabulaire délien de la parure", $B C H 121$ (1997) 673-680.

Prêtre 1997b = C. P., "Un collier délien", REA 99.3/4 (1997) 371-376.
Pritchett 1956 = W.K. P., "The Attic Stelai: Part II", Hesperia 25 (1956) 178317.

Prou 1877 = V. P. (ed.), "La Chirobaliste d’Héron d’Alexandrie", Notices et extraits des manuscrits de la Bibliothèque nationale et autres bibliothèques 26.2 (1877) 1-319.

Puchstein 1907 = O. P., "Epistomion", RE 6.1 (1907) 203.
Raïos 2000 = D. R., "Le date d'Héron d'Alexandrie: témoignages internes et cadre historico-culturel", in G. Argoud-J.-Y. Guillaumin (eds.), Autour de la Dioptre d'Héron d'Alexandrie, Saint-Étienne 2000, 19-36.

Rambaldi 1999 = S. R., "Note sul lessico architettonico di Vitruvio e la tradizione greca di Ermogene", $R d A 23$ (1999) 72-81 with figs. 1-3.

Rance 2009 = P. R., "Hannibal, Elephants and Turrets in Suda $\Theta 438$ [Polybius Fr. 162^{B}] - an Unidentified Fragment of Diodorus", $C Q 59.1$ (2009) 91111.

Rance 2016 = P. R., "Philo of Byzantium (Active ca. 200)", in S.E. Phang et al. (eds.), Conflict in Ancient Greece and Rome. The Definitive Political, Social, and Military Encyclopedia, I, Santa Barbara, CA 2016, 443-444.

Rankin 1960 = H.D. R., "'Opows in a Fragment of Thales", Glotta 39.1/2 (1960) 73-76.

Rehm 1937 = A. R., "Antike Automobile", Philologus 92 (1937) 317-330.
Rehm-Schramm $1929=$ A. R.-E. S. (eds.), Bitons Bau von Belagerungsmaschinen und Geschützen. Griechisch und deutsch, München 1929.

Reinhardt 1930 = L. R., De Heronis Alexandrini dictione quaestiones selectae, Diss. Borna 1930.

Relazione 1884 = Relazione alla Camera dei Deputati e Disegno di legge per l'acquisto di codici appartenenti alla Biblioteca Ashburnham descritti nell'annesso Catalogo, Rome 1884.

Rice 1983 = E.E. R., The Grand Procession of Ptolemy Philadelphus, Oxford 1983.

Rinaudo 2009 = M. R., "Sviluppi semantici e ambiti d’uso di π o七кínoç e derivati, da Omero ad Aristotele", in Berardi-Lisi-Micalella (2009: 25-63).

Robinson 2011 = B.A. R., Histories of Peirene. A Corinthian Fountain in Three Millennia, Princeton 2011.

Roby 2016 = C. R., Technical Ekphrasis in Greek and Roman Science and Literature. The Written Machine between Alexandria and Rome, Cambridge 2016.

Roby 2017 = C. R., "Framing Technologies in Hero and Ptolemy", in V. PlattM. Squire (eds.), The Frame in Classical Art. A Cultural History, Cambridge 2017, 514-543.

Rose 1975 = P.L. R., The Italian Renaissance of Mathematics. Studies on Humanists and Mathematicians from Petrarch to Galileo, Geneva 1975.

Rosen 1983 = S. R., Plato's Sophist. The Dream of Original and Image, New Haven, CT/London 1983.

Rossi-Pagano-Russo 2010 = C. R.-S. P.-F. R., "Ancient Motors for Siege Towers", in S.A. Paipetis-M. Ceccarelli (eds.), The Genius of Archimedes - 23 Centuries of Influence on Mathematics, Science and Engineering. Proceedings of an International Conference held at Syracuse, Italy, June 810, 2010, Dordrecht/New York 2010, 149-162.

Ruffell 2016 = I. R., "Greek Mechanical Texts", http://bl.uk/greek-manuscripts/articles/greek-mechanical-texts, 2016. Accessed 24/11/2018.

Ruffell forthcoming $1=$ I. R., "Not Yet the Cyborg: The Limits of Wonder in Ancient Automata", in G. Kazantzidis-M. Gerolemou (edd.), The Body as Machine in Antiquity: Towards an Early History of Iatromechanics, Cambridge, forthcoming.

Ruffell forthcoming 2 I I. R., Constructing Ancient Automata, forthcoming.
Rutherford 2000 = I. R., "Theoria and Darśan: Pilgrimage and Vision in Greece and India", $C Q 50.1$ (2000) 133-146.

Sakalis 1972 = D. S., Die Datierung Herons von Alexandrien, Diss. Köln 1972.
Saliou 1992 = C. S., "Les quatre fils de Polémocratès (P. Dura 19). Texte et archéologie", Syria 69.1/2 (1992) 65-100.

Saliou $2004=$ C. S., "De la brique à l'agora, de Tégée à Selgè: $\pi \lambda ı v \theta \varepsilon i ̂ o v$,

Sandy 1989 = D.B. S., The Production and Use of Vegetable Oils in Ptolemaic Egypt, Atlanta 1989.

Sambursky 1962 = S. S., The Physical World of Late Antiquity, New York 1962.

Schiefsky 2005 = M.J. S., "Technical Terminology in Greco-Roman Treatises on Artillery Construction", in T. Fögen (ed.), Antike Fachtexte. Ancient Technical Texts, Berlin/New York 2005, 253-270.

Schiefsky 2008 = M.J. S., "Theory and Practice in Heron's Mechanics", in W.R. Laird-S. Roux (eds.), Mechanics and Natural Philosophy Before the Scientific Revolution, Dordrecht 2008, 15-49.

Schiefsky 2015 = M.J. S., "Technē and Method in Ancient Artillery Construction: the Belopoeica of Philo of Byzantium", in Holmes-Fischer (2015: 615-651).

Schironi 2010 = F. S., "Technical Languages: Science and Medicine", in E.J. Bakker (ed.), A Companion to the Ancient Greek Language, Chichester/Malden, MA 2010, 338-353.

Schmidt 1900 = W. S. (ed.), "Heronis Alexandrinis Mechanicorum Fragmenta", in L. Nix-W. Schmidt (eds.), Heronis Alexandrini opera quae supersunt omnia, II. Mechanica et Catoptrica, Stuttgart 1900, 255-299.

Schmidt 1903 = W. S., "Zu Herons Automatentheater", Hermes 38 (1903) 274279.

Schmidt 1904 = W. S., "Aus der antiken Mechanik", Neue Jahrbücher für das Klassische Altertum, Geschichte und Deutsche Literatur und für Pädagogik 13 (1904) 329-351.

Schmitz 2000 = T.A. S., "Plausibility in the Greek Orators", AJPh 121.1 (2000) 47-77.

Schneider 1801 = J.G. S., Anmerkungen und Erläuterungen über die Eclogas Physicas, Jena/Leipzig 1801.

Schöne 1891 = R. S., "Zu Hyginus und Hero", Jahrbuch des Kaiserlich Deutschen Archäologischen Instituts 5 (1891 [1890]) 73-77.

Schöne 1903 = H. S. (ed.), Heronis Alexandrini opera quae supersunt omnia, III. Rationes dimetiendi et commentatio dioptrica, Leipzig 1903.

Schürmann 1991 = A. S., Griechische Mechanik und antike Gesellschaft, Stuttgart 1991.

Schürmann 2002 = A. S., "Pneumatics on Stage in Pompeii: Ancient Automatic Devices and their Social Context', in J. Renn-G. Castagnetti (eds.), Homo Faber. Studies on Nature, Technology and Science at the Time of Pompeii, Rome 2002, 33-56.

Schürmann 2005 = A. S. (ed.), Geschichte der Mathematik und der Naturwissenschaften in der Antike, III. Physik/Mechanik, Stuttgart 2005.

Seelhorst 1992 = M. S., "Popular Mechanics. 90 Years", Popular Mechanics 169.2 (1992) 83-90, 94-96, 98-100, 102-106, 108.

Sidoli 2011 = N. S., "Heron of Alexandria’s Date", Centaurus 53 (2011) 55-61.
Siekiera 2009 = A. S., "L'ingegno e la maniera di Bernardino Baldi", in F.P. Di Teodoro (ed.), Saggi di letteratura architettonica da Vitruvio a Winkelmann, I, Florence 2009, 299-312.

Siekiera 2010 = A. S., Bernardino Baldi. Descrittione del Palazzo ducale d'Urbino, Alessandria 2010.

Slawisch-Wilkinson 2018 = A. S.-T.C. W., "Processions, Propaganda, and Pixels: Reconstructing the Sacred Way Between Miletos and Didyma", AJA 122.1 (2018) 101-143.

Smith 1975 = M.S. S. (ed.), Petronii Arbitri Cena Trimalchionis, Oxford 1975.
 papiri", APF 52.2 (2006) 209-217.

Soubiran 1969 = J. S. (ed.), Vitruve. De l'Architecture. Livre IX, Paris 1969.

Steele 2000 = J.M. S., "A Re-analysis of the Eclipse Observations in Ptolemy's Almagest", Centaurus 42 (2000) 89-108.

Stieber 2006 = M. S., "The Wheel Simile in Bacchae, Another Turn", Mnemosyne, s. 4, 59.4 (2006) 585-592.

Sturz 1820 = F.W. S. (ed.), Orionis Thebani Etymologicon, Leipzig 1820.
Susemihl 1841 = F. S., Geschichte der griechischen Litteratur in der Alexandrinerzeit, I, Leipzig 1891.

Sykutris 1933 = J. S., Die Briefe des Sokrates und der Sokratiker, Paderborn 1933.

Taplin 1977 = O. T., The Stagecraft of Aeschylus. The Dramatic Use of Exits and Entrances in Greek Tragedy, Oxford 1977.

Tarrant 1976 = R.J. T. (ed.), Seneca. Agamemnon. Edited with a Commentary, Cambridge 1976.

Theodoridis 1976 = C. T. (ed.), Die Fragmente des Grammatikers Philoxenos, Berlin/New York 1976.

Thompson 1912 = E.M. T., An Introduction to Greek and Latin Palaeography, Oxford 1912.

Tittel 1912 = K. T., "Heron (5)", RE 8.1 (1912) 992-1080.
Toppi 1678 = N. T., Biblioteca Napoletana, et apparato a gli huomini illustri in lettere di Napoli, e del Regno delle famiglie, terre, città, e religioni, che sono nello stesso regno, Naples 1678.

Tybjerg 2003 = K. T., "Wonder-making and Philosophical Wonder in Hero of Alexandria", Studies in History and Philosophy of Science 34 (2003) 443466.

Tybjerg 2004 = K. T., "Hero of Alexandria's Mechanical Geometry", Apeiron 37.4 (2004) 29-56.

Tybjerg $2005=\mathrm{K}$. T., "Hero of Alexandria's Mechanical Treatises: between Theory and Practice", in Schürmann (2005: 204-226).

Tybjerg 2008 = K. T., "Philōn of Buzantion ($240-200$ BCE)", in P.T. KeyserG.L. Irby-Massie (eds.), The Encyclopedia of Ancient Natural Scientists, London/New York 2008, 654-656.

Turner 1987 = E.G. T, Greek Manuscripts of the Ancient World, London 1987^{2} (Oxford 1971¹).

Twyman 1970 = M. T., Printing 1770-1970. An Illustrated History of Its Development and Uses in England, London 1970.

Vahlen 1885 = I. V. (ed.), Aristotelis De Arte Poetica Liber, Leipzig 1885.
Valavanis 1999 = P. V., Hysplex. The Starting Mechanism in Ancient Stadia. A Contribution to Ancient Greek Technology, Engl. trans. and with an Appendix by S.G. Miller, Berkeley, CA 1999.

Vallois 1913 = R. V., "Les π ívaкєऽ déliens", in C. Picard (ed.), Mélanges Holleaux: recueil de mémoires concernant l'antiquité grecque offert à Mauric Holleaux en souvenir de ses années de direction à l’École Française d'Athènes (1904-1912), Paris 1913, 89-99.

Van Liefferinge 2000 = C. V.L., "Auditions et conférences à Delphes", AC 69 (2000) 149-164.

Varghese 2007 = P.C. V., Building Construction, New Delhi 2007.
Verhasselt 2015 = G. V., "The Hypotheses of Euripides and Sophocles by ‘Dicaearchus'", GRBS 55 (2015) 608-636.

Villa 1767 = A.T. V., Addizioni e correzioni di Angelo Teodoro Villa milanese alla Biblioteca degli Volgarizzatori del segretario Filippo Argelati bolognese, V [= IV/2], Milan 1767.

Vincent 1858 = A.J.H. V., "Extraits des manuscrits relatifs a la géométrie pratique des Grecs", Notices et extraits des manuscrits de la Bibliothèque impériale et autres bibliothèques 19.2 (1858) 157-431.

Vitrac 2009 = B. V., "Mécanique et Mathématiques à Alexandrie: le cas de Héron", Oriens-Occidens 7 (2009) 155-199.

Viviers 2014 = D. V., "Quand le divin se meut. Mobilité des statues et construction du divin", in S. Estienne et al. (eds.), Figures de dieux. Construire le divin en images, Rennes 2014, 27-38.
von Staden 1998 = H. v.S., "Andréas de Caryste et Philon de Byzance: médecine et mécanique à Alexandrie", in G. Argoud-J.-Y. Guillaumin (eds.), Sciences exactes et sciences appliquées à Alexandrie, Saint-Étienne 1998, 147-172.

Webb 2009 = R. W., Ekphrasis, Imagination and Persuasion in Ancient Rhetorical Theory and Practice, Ashgate 2009.

Weil 1882 = H. W., "Les théâtres d'automates en Grèce au IIe siècle avant l'ère chrétienne d'après les Av́roнатотоикка́ d'Héron d'Alexandrie, par M. Victor Prou, ingénieur civil", $J S(1882)$ 416-424.

Welch 2007 = K.E. W., The Roman Amphitheatre. From Its Origins to the Colosseum, Cambridge 2007.

Weller $1999=$ J.A. W., "Roman Traction Systems", http://humanist.de/rome/rts/index.html, 1999. Accessed 07/09/2017.

Werner 1997 = W. W., "The Largest Ship Trackway in Ancient Times: the Diolkos of the Isthmus of Corinth, Greece, and Early Attempts to Build a Canal", IJNA 26.2 (1997) 98-119.

Wescher 1867 = C. W. (ed.), Poliorcétique des grecs, Paris.
Whitehead 2010 = D. W. (ed.), Apollodorus Mechanicus, Siege Matters (Подıоркптьќ人). Translated with Introduction and Commentary, Stuttgart 2010.

Whitehead 2016 = D. W. (ed.), Philo Mechanicus: On Sieges. Translated with Introduction and Commentary, Stuttgart 2016.

Whitehead-Blyth 2004 = D. W.-P.H. B. (eds.), Athenaeus Mechanicus, On Machines (Пغрi $\mu \eta \chi \alpha v \eta \mu \alpha ́ \tau \omega v)$, Stuttgart 2004.

Wikander 2008 = Ö. W., "Gadgets and Scientific Instruments", in Oleson (2008: 785-799).

Wilkins 1995 = A. W., "Reconstructing the Cheiroballistra", JRMES 6 (1995) 5-59.

Wilson 2002 = A.I. W., "Machines, Power and the Ancient Economy", JRS 92 (2002) 1-32.

Wilson 2008 = A.I. W., "Machines in Greek and Roman Technology", in Oleson (2008: 337-366).

Wright 2005 = G.R.H. W., Ancient Building Technology, II. 1 Materials, Leiden/Boston.

Zanetti-Bongiovanni 1740 = A.M. Z.-A. B., Graeca D. Marci Bibliotheca codicum manu scriptorum per titulos digesta, Venice 1740.

Zimmerman 2000 = M. Z. (ed.), Apuleius Madaurensis Metamorphoses. Book X. Text, Introduction and Commentary, Groningen 2000.

[^0]: ${ }^{1}$ Schöne (1891: 77).
 ${ }^{2}$ Cambiano (2011).
 ${ }^{3}$ McCourt (2012). On the relationship between the mobile automaton and construction machinery, artillery and water-lifting machines, see Keenan-Jones-Ruffell-McGookin (2016).
 ${ }^{4}$ Marshall (2003) and Beacham (2013).
 ${ }^{5}$ The most notable exception is the exchange on interpolations between Olivieri (1901) and Schmidt (1903).

[^1]: ${ }^{6}$ This will be added at the stage of revising the thesis for publication. The need for an apparatus fontium depends on the fact that some manuscripts are fragmentary.
 ${ }^{7}$ Reasons of word-count and time prevented me from writing a commentary on Book Two. This is of course not to say that the text of Book Two has not been studied. See my remarks in Introduction, §6.1. I intend to produce a full commentary when preparing the thesis for publication.

[^2]: ${ }^{1}$ As noted by Whitehead (2016: $9 \mathrm{n} .{ }^{*}$), LSJ erroneously abbreviate all of Philo's extant works as 'Bel.'.

[^3]: ${ }^{2}$ Some of Haase's and R. Schöne's emendations were in turn cited by Schmidt from the so-called 'schedae Schoenianae' (on which, see Schmidt, Supplementum 12 n. 2), which I have been unable to locate (for these emendations, see below).

[^4]: ${ }^{1}$ The geographical location is inferred from the epi thet'A $\lambda \varepsilon \xi \alpha \nu \delta \rho \varepsilon v ́ c$. For the evidence and discussion, see Giardina (2003: 6-7 nn. 5-6). See also below, §4.
 ${ }^{2}$ On Hero's erudite profile, see Vitrac (2009: esp. 191-5).
 ${ }^{3}$ For a full account of Hero's works, seeGiardina (2003: 31-74), who distinguishes between 'mathematical works' and 'technological works', the latter being further subdi vided into 'technol ogico-theoretical' and 'technologico-practical' . As Giardina (2003: 34) herself notes, her classification is based on modem epistemological assumptions. SeVitrac (2009: 156) for some cautionary remarks about the inadequacy of application of the distinction between mathematical and technical to the ancient situation.
 ${ }^{4}$ The Pneumatica was intended as a sequel to a four-volume work on water-clocks (Spir. 2.12-15), of which only scanty fragments are preserved in Pappus' commentary on Ptolemy's Almagest and Proclus' Hypotyposis. Thesefragments have been edited by Schmidt (below, §2.1). On the title of this work, see below, n. 108.
 ${ }^{5}$ I do not includein my study the fragmentary treatise attributed to Hero and commonly known as Chei roballistra, sincethe general scholarly consensus regards it as spurious. The Heroni an authorship has been accepted by Prou (1877) and Marsden (1971: 206-33), who both edited, translated and commented on the work. For a more recent edition, translation and discussion, seWilkins (1995). The most recent reconstruction of the cheirobal listra, a hand-held arrow-shooter, has been proffered by Iriarte (2000), who al so carefully discusses previous reconstructions.
 ${ }^{6}$ The De Mensuris, Geometrica and Stereometrica underwent alterations at the hands of later writers, but it is difficult to di stinguish between original and interpolated material. Likewise, in Byzantine times the Definitions was augmented with material from other sources, but in this case it is easier to draw a line of demarcation (Deff. 1-132 vs 133-8). There has been some debate about the authenticity of this work (Giardina 2003: 83-4), which has cul minated in Knorr's (1993) suggestion that its author was the mathematician Diophantus of Alexandria, traditionally dated to the mid-to-late third century CE (but see Knorr 1993: 184-5, 187 for the suggestion that he lived either in the early-mid third century or in the first century CE; as noted by Klein 1968: 248, a first-century CE date was first proposed by Bachet 1621 in his Epistola ad Lectorem). The grounds for this attribution are as follows: (1) both the Definitions and Diophantus' Arithmetic are dedi cated to a Dionysius; (2) the prefaces to these treatises show similarities in content and style Neither (1) nor (2) proves conclusively that Diophantus wrote the Definitions both because Dionysius was a very common name (in either case he is addressed with a different titte) and because both authors represent to a certain extent a common 'Oriental' Hellenistic tradition; see Neugebauer (1969: 178-9). The similarities between the prefaces

[^5]: suggest to me a relation of direct dependence between the two. On the addressee of the Definitions, see, more recently, Asper (2001), who proposes to identify him with the firstcentury CE grammarian Dionysius of Alexandria (Suda δ 1173; Matthaios 2015: 226, with further bibliography).
 ${ }^{7}$ The Catoptrica, which was previously attributed to Ptolemy, is preserved in a - probably abridged - Latin translation by William of Moerbecke For a recent edition and English translation, seeJ ones (2001), who (pp. 150-51) raises doubts about the authorship.
 ${ }^{8}$ The Mechanica survives inA rabic translation, as well as in fragments preserved in Pappus' Mathematical Collection. The Baroul cos, which was originally a separate work, has been transmitted as part of both the Mechanica (Mech. 1.1) and the Dioptra (ch. 37); se Drachmann (1963a: 22-32).
 ${ }^{9}$ For a summary of themain positions, see Giardina (2003: 8-25). These chronol ogical limits were set by the fact that Hero cites several times Archimedes and is cited by Pappus.
 ${ }^{10}$ In a recent article, Masia (2015) argued that the eclipse has no evidential value for the purposes of dating Hero. The problems associated with Masiäs argument are discussed in

 ## Appencix 5.

 ${ }^{11}$ Neugebauer (1975: 846) amplifies this point, suggesting alternatively that Hero might have appeal ed to his own memory. Sidoli (2011: 60) defines nomographic methods as 'some tradition of using techniques of ancient geometry to produce line segments or arc lengths on an instrument in such a way that they could then be meesured by an analog measuring tool'.

[^6]: ${ }^{12}$ These three claims are quoted, al most unal tered, from Sidoli (2011: 55).
 ${ }^{13}$ The same mistake has been made by Vitrac (2009: 155).
 ${ }^{14}$ This has already been noted by Keyser (1988: 218 with n. 5).
 ${ }^{15}$ In subsequent studies, Neugebauer (1969: 178; 1975: 846) decisively opted for the former altemative.
 ${ }^{16}$ Drachmann (1963a: 140) finds it likely that the screw-cutter, a device for cutting female screw threads, was Hero's own invention.
 ${ }^{17}$ Schmidt XIX, XXII-III. Keyser (1988: 218) cautions that Schmidt's argument is valid only if the screw-cutter was published for the first time in the Mechanica (which would indeed be the case had Hero invented it; see above, n. 16) and if Pliny had found out about it only through published works.

[^7]: ${ }^{18}$ The galeagra was a wooden bin used for holding the olive pul p. Hero describes two versions of it; see Drachmann (1963a: 122-6).
 ${ }^{19}$ Drachmann's argument is summarised in Drachmann (1948: 75). Sidoli (2011: 59 n. 2) is aware of Schmidt's and Drachmann's arguments.
 ${ }^{20}$ Keyse's argument has been accepted by Raï os (2000: 35) and Giardina (2003: 27-8).
 ${ }^{21}$ Krafft (1973: 16), cited by Asper (2001: 136 n. 14).
 ${ }^{22}$ On Ctesibius, seefurther below, §5.3.
 ${ }^{23}$ On Philo, sefurther below, $\S \S 2$ and 5.3.

[^8]: ${ }^{24}$ For the differences between Ctesibius' and Hero's water-organs, see Drachmann (1948: 7-9). Keyser (1988: 219) is inclined to think that, in addition to using horn for the val ve-springs instead of iron, Hero introduced several improvements in techni cal details.
 ${ }^{25}$ On the former, seeA rata (2014); on the latter, seeWerner (1997: 114-16).
 ${ }^{26}$ Pace Raïos (2000: 30-1 with nn. 54-6), who refers to Dioptr. 204.25-8 (hypsometric differences), 234.19 (height of a ditch) and 238.3-4 (digging of a tunnel). On tunneds, see also Dioptr. chh. 16 and 20.
 ${ }^{27}$ For the tentative suggestion that the A utomata was publ ished posthumously, seebelow, §5.7.

[^9]: ${ }^{28}$ Hegel ochus was famous for having mispronounced E. Or. 279 in the first performance of thetragedy in 408 BCE. Theepisode is famously ridiculed by Ar. Ra. 303-4; for a di scussion of Hegelochus' error and other testimonia, see Csapo-Slater (1994: 267-8).
 ${ }^{29}$ For Nero's philhellenic agenda behind the event, see Enos (2013: 47); contra, for instance, Alcock (1993: 16).
 ${ }^{30}$ Floridi (2014: 357-8).
 ${ }^{31}$ Gutzwiller (2005); cf. also Floridi (2014: 78-9), with references. The most common interpretation is that the address $\delta \varepsilon$ б́ $\pi о \tau \alpha$ K $\alpha i \sigma \alpha \rho$ in AP 11.185.1 refers to Vespasian rather than to Nero; see Floridi (2014: 357).
 ${ }^{32}$ Gutzwiller (2005), whose position has been endorsed by Floridi (2014: 358).

[^10]: ${ }^{33}$ Marshall (2003: 263 with n. 9) feed s that the treatise postdates more strictly technical works such as the Dioptra, and hence he tentatively suggests an early Flavian date.
 ${ }^{34}$ On such distuption, and on the attempts to restore the original chapter order, see below, §3.2, and esp. nn. 84 and 86 .

[^11]: ${ }^{35}$ The arrangement of Philo's Mechanical Collection was first elaborated by Haase (1847a) and later by Orinsky-Neugebauer-Drachmann (1941). These reconstructions, which are mainly based on the presence of cross-references in the extant portions of the work, agree on the order of the books. Curiously, Whitehead (2016: 20-1) does not mention either of these reconstructions, but he (p .21 n . 19) does refer to Garlan (1973: 16-18; 1974: 283-4) for the controversies concerning the order of books 5-9. Although there is some variation in thetitles of individual books, most notably in thetitle of book 6 (below, n. 123), the generally accepted arrangement is as follows (asterisked titles are not attested in Philo): 1. Ei $\sigma \alpha \gamma \omega \gamma \eta$ 亿, 2. Moх $\downarrow \iota \kappa \alpha ́, 3$.

 Book 5 is preserved in Arabic translation (translated into French and English, respectively, by Carra deVaux 1902 and Prager 1974) and in a partial Latin translation of another (lost) Arabic version (fully translated into German by Schmidt: see bed ow, §2.1; for a selective English translation, see Prager 1974: 79-91, 127-233). Further references in Rance (2016). On the subjectmatter of book 6, see bel ow, n. 126.
 [50.21]; $\dot{\varepsilon} v$, XXVI. 2 [90.14]), but of course it is debatable whether Thévenot (or either of the other two editors) took all of them from the manuscripts. In at least two cases (V.2 [20.14] and XXVI. 2 [90.14]), they may be due to conjectural emendation. See, by contrast, the erroneous

[^12]: ${ }^{37}$ See Haase (1847b: esp. 9-10). In addition to the Automata, Haase planned to publish (vol. 3) the following Heronian or pseudo-Heronian works: Baroul cos, Belopoeica, Cheroballistra and Dioptra.
 ${ }^{38}$ Of these, hefully inspected (Ae), Pa, Pc, Pe, Ph and partially collated Mb, Pf and Pg. Schmidt's account (Supplementum, 138) is not only incomplete but also incorrect: in addition to oritting $\mathbf{M b}$, it includes Peamong the partially collated manuscripts.
 ${ }^{39}$ Murphy 8 is wrong in claiming that Prou's edition was republ ished as a book in 1884. Both COPAC and Google Books records suggest instead that it is the original edition that was publ ished as a separate volume.

[^13]: ${ }^{40}$ This theory has not been taken into account in the present study because it requires advanced mathematical skills which I do not possess.
 ${ }^{41}$ Se al ready Schmidt, Supplementum 139, who cites as examples of Prou's misunderstanding of the Heronian principles his emendations of the text of II.2 [6.14-15] and VI.1 [22.22-24.3]. In addition to my observations on these passages, seemy Comm on XIV. 2 [52.5-6] and XVI.3 [56.1-2], as well as my synopses on XIII.1-7 [44.15-48.13] and XIII.7-9 [48.13-50.15].
 ${ }^{42}$ An opinion already held by Schmidt, Supplementum 139.

 ${ }^{44}$ Only internal members of the university are eligible to borrow the item, but anyone can consult it in loco. I thank I. Kirsch, librarian of the Philologische Bibliothek of theFreieUniversität Berlin, for the information (personal communication, J anuary 7, 2019).
 ${ }^{45}$ In the present edition, I refer to Prou's 1884 reprint. Unfortunatel y, because I also refer to Weil's 1882 review of Prou's original edition, this creates an inconvenient anachronism.

[^14]: ${ }^{46}$ Se Schmidt, Supplementum 12 n. 2.
 ${ }^{47}$ On the text layout of previous editions, see below, $\S 5.1$.

[^15]: ${ }^{48}$ All these errors are collected in Appendix 2
 ${ }^{49}$ For the history of half-tone technology, see eg. Twyman (1970: 31-2).
 ${ }^{50}$ Recent years have seen a surge of interest in Bal di's life and works: see Nenci (2005), Cerboni Baiardi (2006) and Siekiera (2009; 2010).
 ${ }^{51}$ Baldi's translation has been recently studied by Micheli (2005). This article contains much val uable information on Bal di's situation within the Renai ssance and the scholarship of the time, but is not unproblematic, especial ly in rel ation to its treatment of Bal di's endnotes.

[^16]: ${ }^{52}$ Baldi mentions this in his Vita di HeroneAlessandrino (Ambrosianus D 332 inf., f. $107{ }^{7}$).
 ${ }^{53}$ For the date of the translation's completion, see the colophon at p. 41v. Prou 121 erroneously cites the year 1569.
 ${ }^{54}$ D'Auria was particularly famous for his Latin translations of Autolycus of Pitane, Euclid and Theodosius of Bithynia, all published in Rome in the years 1587-1591 (Prou 121-2). For further biographical information, see Toppi (1678: 145).
 ${ }^{55}$ Unfortunately, this translation became available to me too late (February 7, 2019) to be fully incorporated into the present edition. The col ophon at the end of the manuscript (f. 241 ${ }^{\vee}$) indi cates that D'A uria's exemplar was a Vaticanus.
 ${ }^{56} \mathrm{~A}$ caveat is in order here. This translation was first catal ogued under the erroneous title Due libri d'HeroneAlessandrino, delle machine da se operante (cf. no. 1525 in Catal ogue 1853, unpaged), which was later corrected to Due libri di HeroneAlessandrino, del la machina da se operante (Relazione 1884, avail able online at http://www.bmlonline.it/la-biblioteca/catal oghi/fondo-ashbumham-catal ogo). Micheli (2005: 248), who seems to have consulted the manuscript, has Due libri di HeroneAlessandrino delle machine da se operanti. I myself do not know the correct form of the title because, unfortunately, I have been unable to examine the manuscript. The form cited by Micheli is certainly the most plausible, for it is consistent with the title of Baldi's original translation.
 ${ }^{57}$ The approximate date of thetranslation suggests itself from Bal di's statement that he had retranslated the Automata and (once again) dedi cated his translation to Contarini (Laur. Ashb. 1525, f. $2^{\text {r? }}$), cited in Micheli 2005: 248).
 ${ }^{58}$ Schol ars have been divided into several camps: those who regard Baldi's 1589 and 1601 translations as identical (G. Mazzucchelli, cited inAffò 1783: 168-9; Martin 1854: 40; Micheli 2005: 249), and hence claim that the only difference between the two is in the frontispiece; those who find no significant differences between them (Schmidt, Supplementum 140 n . 2); and those who consider them to be completly or significantly different fromeach other (P. Paitoni, cited in Villa 1767: 481 n. (I); Affò 1783: 169). I have selectivel y collated the two translations against each other, and have only very rarely found minor stylistic differences. For this reeson, and

[^17]: ${ }^{63}$ See al ready Schmidt, Supplementum 141, who supported his view by citing Baldi's translation (40') of XXVIII.1 [100.9-10]: ‘si vederanno le navi, secondo che s’è detto' (his exemplar probably had φ aívov $\tau \alpha ı$ in place of ov̉ paívov $\tau \alpha ı$, as in M). TheTeubner editor (Supplementum 140-1) was inclined to accept Prou's suggestion (214 n . d) that Baldi's exemplar was the same as that used by D'Auria (on which, see above, n. 55; more precisely, Schmidt suggested that the only plausible candi date is $\mathbf{V b}$, a manuscript which I have not been able to consult). Prou explai ned the shared error of Baldi's and D'A uria's translations of XXII.4 [72.6]
 corruption, however, is utterly implausible on palaeographical grounds. Both translators seem to have corrected óxaí ω (not ó oxí ωv, as with Micheli 2005: 251 n .18), which appears in M and other manuscripts, to ò $\chi \dot{\varepsilon} \omega v$ (ò $\chi \dot{\varepsilon} \omega v<o \dot{o} \alpha i ́ \omega v<\dot{\alpha} \chi \alpha \iota \hat{\omega} v$). The reading presupposed by their translations does not seem enough to posit a common exemplar. More recently, Micheli (2005: 251 n .18) has argued that Bal di based his translation on $\mathbf{A b}$, a manuscript which he unwarrantedly believes to have belonged to Pinelli. But, as Micheli (2005: 248-9) himself acknowl edges, Bal di's first exemplar rather bel onged to Commandino; se above.
 ${ }^{64}$ In addition to the passages cited above (n. 63), see the following translations (the readings given in brackets occur in M): ‘accomodata di maniera’ (18'; $\dot{\alpha} \rho \mu о \sigma \tau \grave{\eta} \dot{\omega} \varsigma, ~ I I .8[12.6]) ;$

 XXX.1 [106.4]). Cf. al so thefollowing readings cited by Bal di: $\theta \varepsilon \rho$ ícov $\tau \alpha$ (42^ n. 8; I.5 [4.12]); $\delta ı \varepsilon \varphi \varepsilon \lambda \eta \tau \hat{v} / \delta \iota \varepsilon \varphi \lambda \eta \tau \omega ิ v$ (43r n. 10; II. 2 [6.16]); кок $\lambda^{\prime} \omega v$ (45r n. 28; XVIII.3 [60.3]). None of the manuscripts that I have consulted appears to have been Bal di's exemplar because they do not contain the following readings which the scholar claims to have found in the Greek text: $\delta 1 \alpha \pi \varepsilon$ -
 12; XXVI. 7 [96.2]); бо́кю $\mu \alpha$ (47v n. 20; XXIX.2 [104.22]).
 ${ }^{65}$ Unfortunately, I have not been able to consult this translation, which, according to Micheli (2005: 249 n .15), covers only Book One. The manuscript (whose date is 1551-1600) al so contains an Ital ian translation (presumably by the same hand) of Hero's Pneumatica (Degli effetti dei venti. In volgare, ff. 1r-50r).

[^18]: ${ }^{66}$ Calques and shared omissions occurring in Couture's translation of Bоok One, too many to list here, are cited where appropriate in the Commentary. The following list gives examples of (a) calques and (b) shared omissions in Couture's translation of Book Two (as far as (a) is concerned, Baldi's translations appear first, followed by Coutures): (a) XXVI. 7 [94.20] "sia un naspo' (38)/'sit modiolus' (270), XXX. 2 [106.12] ‘omamenti da capo delle donne' (41r)/'ad capitis omamentummulieres' (273) and [106.14] 'giovanetto'(41r)/' adolescentem' (273), XXX. 6 [110.1] 'se altra cosa gli si vedevicina' (41')/'si quid aliud in propinquo videbatur' (274); (b)

 ${ }^{67}$ See also the criticisms in Schmidt, Supplementum 139.

[^19]: ${ }^{68}$ Examples of this phenomenon in Schmidt's translation of Book One will befound in the Commentary. For further examples pertaining to Book Two, cf. Schmidt 411 (suggested
 XXII. 6 [72.20]; claimed), 435 (Schmidt's suggested addition of <rìv $\mu \grave{\varepsilon} v>$ or Prou's addition of $\langle\dot{\beta} \lambda \lambda \eta v \mu \bar{\varepsilon} v>$, XXVI. 5 [94.6]; unclaimed), 439 (no fewer than seven emendations, of which six are claimed and one unclaimed, XXVI.7-9 [94.19-96.13]), 443 (Schmidt's suggested addition of
 R. Schönés conjecture ह̇nxpósíal, XXVIII. 3 [102.1]; unclaimed) and 453 (Schmidt's suggested addition of «ті̧̂ $\mu \hat{\prime} \theta$ oıc \geqslant, XXX. 7 [110.15]; unclaimed but enclosed in parentheses).

[^20]: ${ }^{69}$ The most notable omissions are Olivieri (1901) and Schmidt (1903); Weil (1882) is cited once, but has been taken into account only marginall ly and superficially.

[^21]: ${ }^{70}$ For reasons of space, and for the sake of legibility, the vast majority of references in this section to indi vidual readings and portions of text cite page and line numbers only.
 ${ }^{71}$ Schmidt, Supplementum 56 n . 1 cites Montfaucon's (1739: 677) reference to three more manuscripts of the work, once in the possession of I. Voss in York (numbered 2256, 2312 and 2323). He suggested that since he knew of four Vossian manuscripts in Leiden, two of which contai ned the Automata (i.e. Lc and Ld), Montfaucon might have simply made a mistake. A nother possibility is that the manuscripts were al ready lost in Schmidt's time I have been unable to trace these three manuscripts.
 ${ }^{72}$ I follow Schmidt's dating of the manuscript, which was confirmed through personal communication with D. Riccoboni. Scholars before him had argued for a twelfth-century date (Zanetti-Bongiovanni 1740: 278) or even a fourteenth- or fifteenth-century date (Haase); see Schmidt, Supplementum 3 with n. 4.
 ${ }^{73}$ Thelast folio of the manuscript (f. 21) is erroneously indi cated as 18 in Schmidt, Supplementum 7.
 ${ }^{74}$ F. Porticelli, special collections librarian, Biblioteca Nazional e Uni versitaria di Torino, personal communication, June 30, 2015.
 ${ }^{75}$ To these should beadded Ha and Hb. Although Schmidt, Supplementum 10 knew of the existence of these manuscripts, he was not aware of the fact that, in addition to the Pneumatica, they both transmit the Automata.

[^22]: ${ }^{76}$ Although I do not follow this system, in my list I have included Schmidt's numbers within square brackes to enable the reader to compare my discussion of the tradition with his earlier discussion. Note, however, that alt hough Schmidt al so adopted his numbering system for A, G, M and T, these are consistently refered to by sigla throughout his discussion.
 ${ }^{77}$ Because most manuscripts of the Automata al so contain the Pneumatica, the vast maj ority of such descriptions are scattered throughout the first chapter of Schmidt's Supplementum ("Der Handschriftiche Bestand der Pneumatik", esp. pp. 1-39), where he adopts a different numbering system. This can easily create confusion for the modern reade.

[^23]: ${ }^{78}$ According to Schöne(1891: 73 n. 2), this manuscript, which was still available to Haase (see above, §2.1), was lost before the time of his writing. Unfortunately, I have been unable to trace the manuscript I have used round brackets to indi cate that the manuscript is lost

[^24]: ${ }^{79}$ Schmidt, Supplementum 54 rightly cites this manuscript as probably having thetitle

 ${ }^{80} \mathrm{He}$ collated samples ('Proben') of Ta whereas he inspected Bb more extensively ('an mehreren Stellen') than Aa and Ma Asfor Md, he only says that it was not fully collated. Se Schmidt, Supplementum 14, 24, 56, 117.
 ${ }^{81}$ Pd is not mentioned among the manuscripts Haase intended to use for his edition, but Schmidt is explicit that the scholar undertook an extensive collation of the manuscript (Supplementum 31).

[^25]: ${ }^{82}$ Strangely, his account of the tradition does not include discussion of Pg although the manuscript had in fact been collated by Haase and Prou. Also, hedid not mention Ma Pd, Pf, Ta among the manuscripts that were more or less known to him (seeSupplementum 112 and 115). These discrepancies must probably have depended on the amount of information available to him
 ${ }^{83}$ These three manuscripts first cameto my attention after my primary supervisor leamed about them (see Ruffell 2016). Because of thetight timescal efor the completion of the thesis, and because other in situ coll ations had yet to be carried out, it was decided to postpone coll ating Bd Ha and Hbuntil I should be able to revise the thesis for publication (Prof. Costas Panayotakis, personal communication, June 14, 2017).

[^26]: ${ }^{84} \mathrm{All}$ of the completemanuscripts that I have consulted (including Bd, Haand $\mathbf{H b}$) have the following textual sequence: XXII.1-6[70.4-74.3] Oi $\mu \varepsilon ̀ v ~ o u ̂ v . . . ~ \mu v ̂ \theta o \varsigma ~+~ X X I V .1-X X V .1 ~$

 signal led in most manuscripts either with ov̉к हैб with $\lambda \varepsilon \varepsilon_{i}^{\prime} \varepsilon \varepsilon$ (as in M), which appear (usually in the margin) where the repetition of XXII. 6 [74.1-3] $\tau \hat{\varrho} \pi i ́ v \alpha \kappa ı . . . \mu \hat{v} \theta$ os occurs. The editores principes (and before them Bal di 46 n . 5) took the marginal $\lambda \varepsilon$ ínєı to indi cate a lacuna in the text (printed by Thévenot 266.25-6). Prou 133-7, who recognised the editors' mistake (or, rather, the scribe's mistake), argued that the repeated lines were the result of scribal interpolation (he considered the words $\tau \hat{\varrho} \pi i$ iv $\alpha \kappa \imath$ as belonging to the beginning of ch. XXV) and filled what he apparently thought was a different lacuna as

 [84.11-12] (Prou 133 n .45 erroneously states that oûv is found in PbPdPgPh the word is nowhere found in the manuscripts). Prou's supplement does not restore the coherence of the text because it leaves the chapter order unal tered (ch. XXIV describes the first scene of the Nauplius play and must follow ch. XXIII, which describes how the doors of the π iva ξ are opened and closed automatically). Schmidt's text is based on Schöne's (1891: 74 n . 2) restoration of the original chapter order. Instead, I follow Weil's (1882) reconstruction, which, as we have seen in §2.1 above, was al together overlooked by Schmidt. The difference between Weil's and Schöne's reconstructions lies in whether or not the words $\tau \hat{\varrho} \pi i ́ v \alpha \kappa ı$ are considered as repeated from the end of ch. XXII. My endorsement of Weil's reconstruction is based on stylistic grounds. The

 [84.11-12]; cf. also XXIV. 1 [80.1], where, however, the opening words have been supplied. The
 repetition of τ @̣ $\pi i v \alpha \kappa$. Neither Schmidt nor I consulted all available manuscripts, but I find it

[^27]: ${ }^{88}$ See Schmidt 336 (Conspectus Notarum).
 ${ }^{89}$ In the stemmata, I use dashed lines to indicate contamination.

[^28]: ${ }^{90}$ According to Prou 132, Pdand Ph seem to be apographs of Pa This cannot be because Pdand Ph share no substantial errors with $\mathbf{P a}$

[^29]: ${ }^{91}$ Schmidt, Supplementum 117 strangely cites the first two readings among the conjectural improvements of La His app. crit. to 6.6 [=342.8 Schmidt], on the other hand, records only Bb and La

[^30]: ${ }^{92}$ A cursory look at Schmidt's account of the tradition tends to confirm that, among the manuscripts that I have not collated, those bearing the ol dest form of the title belong in the β branch ((Ae), Mc, Md) and those bearing thetitle Пгрi $\alpha v i \tau o \mu \alpha \tau о \pi о ו \eta \tau \iota \kappa \omega ิ v$ belong in the γ branch ($\mathbf{R}, \mathbf{V b}$, and possibly also Vc). Casual inspection suggests that the same holds true, respectively, of $\mathbf{B d}$ (β branch) and Haand $\mathbf{H b}(\gamma$ branch).

[^31]: ${ }^{93}$ Schmidt 339 translates the titl e freely as 'DieA utomatentheater', although he al so offers two more literal translations: 'DerAutomatenbau' (339n. 1) and, keeping closer to the original, 'die KunstAutomaten zu bauen' (Supplementum 54). Murphy 11 has ' On AutomatonMaking', and refers to the Greek titlee ther as Peri automatopoietikes or (quite illogically) as Automatopoietikes
 ${ }^{94}$ But see above, n. 79.
 ${ }^{95}$ Its transliterated nominative form ('Automatopoetica', LSJ s.v. Hero) has gained favour among classical scholars; see.g. Mango (1950: 23 n. 42), Sambursky (1962: 177 n. 44), Tarrant (1976: 275), Facal-González (1982: 179), Cuomo (2002: 166 n. 4), Beryman (2007: 44 n. 19), Mitchell (2007: 226) and DeGroot (2016: 56). Although LSJ cite thetitle as $\tau \alpha ̀ \alpha v ̉(\tau o \mu \alpha \tau о \pi о п-~$
 §3.1 above about Schmidt's listing of the manuscripts).

[^32]: ${ }^{96}$ Manuscripts Ea and Pc have，respectively，Tov̂ $\alpha v ̉ \tau o v ̂$ and＂Hpovoc $\tau 0 \hat{\alpha} \alpha v ̉ \tau o v ̂ . ~ T h e s e ~$ readings can be explained by thefact that in both manuscripts the text of the Automata is immediately preceded by Hero＇s Pneumatica．
 ${ }^{97}$ See especial ly the discussions in Horsfall（1981）and Fredouille（1997）．
 ${ }^{98}$ Tittel（1912：1049），contra，argues that both titles deviate from standard titulature of mathematical and technical works，which usual ly requires the nominative pl ural neuter．Murphy 8 n .1 follows suit，stating that＇neither title is consistent with the forms of other titles of technical works，such as Heron＇s Belopoiika＇．This needs correction．The ol dest attested title is partly consistent with other Heronian titles（se below）．On the characteristic openness of $\Pi \varepsilon \rho i^{-}$ writings，see Dubischar（2015：565）．
 nominative plural neuter forms ending either in－ıка́（Пvєv $\mu \alpha \tau \kappa \alpha$ ）or in－лоӥкќ（Вєдолоӥ̈к α ，
 Ph．Bel． 49.2 and 49．3．Philo，however，uses the termóp $\gamma \alpha$ оолоӥка́ not as a title but only as an al ternative designation for artillery－construction：vôv $\delta \dot{\varepsilon} \kappa \alpha \theta \eta ́ \kappa \varepsilon ı ~ \lambda \varepsilon ́ \gamma \varepsilon ı v, ~ \kappa \alpha \theta o ́ \tau \imath ~ \varepsilon ̇ \xi ~ \alpha ̉ \rho \chi \eta ิ \varsigma ~$
 Ph．Bel．49．2－4．

 100 The term α v̇то $\alpha \tau$ олопптıки is unattested outside the Automata．

[^33]: ${ }^{101}$ This heading is omitted in Ab, Ad Bb, Ha, M, Mb and Pd Prou 132 erroneously maintains that only four of the Paris manuscripts ($\mathbf{P b} \mathbf{P e}, \mathbf{P f}, \mathbf{P g}$) divide the treatise into two

 editio princeps has no heading, whereas Prou and Schmidt have, respectively, Пধpi t $\hat{\omega} v$ $\sigma \tau \alpha \tau \hat{\omega} v$

 ${ }^{102}$ Tybjerg (2005: 206) and Wikander (2008: 788) curiously adopt transliterations of А д̀тонатотоіїќ́.
 ${ }^{103}$ The oxytoneform α v̉rouato automatopotus, is likewise unattested, and its accented last syl able violates the rules for the accentuation of verbal adjectives in -toc (on which, see KB 1.538-9).
 ${ }^{104}$ Wescher (1867: 71 unnumbered n.) refers to the term $\alpha \dot{v}$ тoнатотой α, al ong with $\beta \varepsilon \lambda_{0}$ -
 attestation of the term

[^34]:

 бıтолоӥко́с/бıтолоџт兀ко́с.
 ${ }^{106}$ Papp. 1024.24-1026.2.

[^35]: ${ }^{107}$ Schmidt, Supplementum 54 n. 1 takes the words α v̇то $\mu \alpha ́ \tau о \iota \varsigma ~ к \alpha i ̀ ~ \zeta ~ v \gamma i ́ o ı ц ~ a s ~ a n ~$ inaccurate quotation of thetitle. But see below, n. 108.
 entertai nment devices such as statuettes bal anced on pins (Martin 1854: 42 with n . 3), is mentioned nowhere else. By contrast, Hero's treatise on water-clocks ("Yס $\rho \iota \alpha$ or, following
 Papp. in Ptol. 89.5). Martin (1854: 42 with n. 5) cites a third form of thetitle (Пع ${ }^{\text {(}}$ i v $\delta \rho о \sigma к о-~$
 Hypotyposis but in the edition of the same work by Grynaeus (1540: 42). Thetitle of the work

 ${ }^{109}$ Archimedes' treatise is so titled ('A $\rho \chi \mu$ ŋ́סovৎ 'O $\chi о v \mu \varepsilon ́ v \omega v$) in the so-cal led Archimedes Palimpsest (on which, see Netz et al. 2011); cf. al so Hero, Spir. 24.11-12 ($\dot{\alpha} \pi \varepsilon \delta \varepsilon$ í $\chi \theta \eta \gamma \grave{\alpha} \rho$ 'A $\rho \chi$ l-

 ${ }^{110}$ Beryman (2009: 60 n .21), for instance draws attention to the paralle between

 $\delta 1 \dot{\alpha} \pi v \hat{\omega} v \varphi 1 \lambda \sigma \tau \varepsilon \chi v o v ̂ \sigma \alpha$ (Procl. in Euc. 41.8-9).
 ${ }^{111}$ Hultsch (1877: 119) had al ready recognised that the two classifications were drawn from a similar or identical source.
 ${ }^{112}$ Hultsch (1877: 123 n .12) considers Pappus' definition of mechanics (Syn. 1022.8-13) to have been repeated verbatimfrom Hero's Mechanica. SeCuomo (2000: 105) for the tentative suggestion that this definition derives from some work by Ptolemy.

[^36]: ${ }^{113}$ That the references to ancient works in Pappus' passage have been added by a later interpolator is suggested by the use of the simple dative. In other, similar cases, Pappus employs $\dot{\varepsilon} v+$ dative: Syn. 54.31-56.1, 270.20-1, 270.31-272.1, 272.2, 298.3, 312.7, 312.20-1, 360.19-20, 410.22-3, 1026.9, 1060.5-6, 1064.8, 1068.3, 1068.19-21, 1106.13-14, 1114.5-6, 1130.7.
 ${ }^{114}$ Contra, Cuomo (2000: 105) and Vitrac (2009: 167 and 174 n .41), who assume direct dependence of Pappus upon Hero.
 ${ }^{115}$ See above, n. 108. A nother mechani cal treatise has a comparable title, A thenaeus Mechanicus' Пع $\boldsymbol{\mu} \mu \eta \chi \alpha v \eta \mu \alpha ́ \tau \omega v$.
 ${ }^{116}$ Tumer (1987: 13): ‘ $[\mathrm{t}]$ he habit of putting a title at the end is carried over into the codex form'; see also Holtz (1997: 479). For a recent discussion of initial and end-titles in papyri, se Caroli (2007: 52-60).
 ${ }^{117}$ The inclusion of Hero's name could betaken as an argument agai nst my proposal . However, we can envisage at least three scenarios: (1) only the title of the work was lost, either entirely or in part; (2) the wholetitle was lost, but the scribe supplying the information was al ready acquai nted with the work; (3) the whol etitle or part of it was lost after the treatise had been transcribed into codex form, but the authorship was deduced from the fact that the manuscript contained other Heronian works.
 ${ }^{118}$ SeeCic. Att. 4.4a, 4.5 and 4.8, with Oliver (1951: 243) and Holt (1997: 472 n. with 12). For a comprehensive discussion of external titles, see Caroli (2007: 23-52).
 ${ }^{119}$ See Nachmanson (1941: 37, 49-50); Kenney (1970); Holt (1997: 470, 474-77).

[^37]: ${ }^{120}$ See above, nn. 98-9.
 ${ }^{121}$ Prou 132 (al beit without substantiation). It is unclear to me why he prefers the (corrupted) form $\Pi \varepsilon \rho i ̀ ~ \tau \omega ̂ v ~ \sigma \tau \alpha \tau \omega ̂ v ~ \alpha v ̉ \tau o \mu \alpha ́ \tau \omega v ~(a b o v e, ~ n . ~ 101) . ~$
 ${ }^{122}$ Murphy 8 n . 1. See also Schmidt 404, who prints this heading in a smaller type than that employed for the main title

[^38]: ${ }^{123}$ The title of Philo's now-lost book 6 has been reconstructed by Orinsky-NeugebauerDrachmann (1941: 53) as Avं $\tau о \mu \alpha \tau о \pi о \imath \eta \tau ı \kappa \alpha ́ ~(c f . ~ a l ~ s o ~ ' A u t o m a t o p o e t i c a ' ~, ~ H a a s e ~ 1847 a: ~ 432) . ~$ Some modem schol ars prefer Аं兀тонатолоӥ̈ќ́ (in its transliterated form), although without providing any explanation (Lewis 1997: 86; Tybjerg 2008: 654; Beacham 2013: 21; KoetsierKerle 2016: 354; Rance 2016: 444; Whitehead 2016: 21).
 ${ }^{124}$ For groundbreaking work in this area, see Roby (2016).
 ${ }^{125}$ For di scussion of the different genres included under the umbrella of technical ekphrasis, see Roby (2016: 26-42). On 'supergenre', see Hutchinson (2013).
 ${ }^{126}$ The content of book 6 of Philo's Mechanical Collection was first inferred from Hero's comments about Philo being his source (XX. 1 [64.8-10]; Haase 1847a: 432), and it has been commonly accepted that it represents the work mentioned by Philo himself in ch. 3 of his Pneumatica, called De arbitriis mirabilibus (On Marvellous Opinions) in the Latin version (Spir. 462.26-7). Carra de Vaux (1902: 37) disputed the content of the book and suggested emending the corresponding Arabic text to read On Marvellous Instruments (Des instruments merveilleux). A comparison with the classification of sciences in Avicenna's Treatise on Wisdom (resâ 'il fi 'I-hikmet) led himto argue that the book dealt with water-organs. This argument has not gained favour among classicists, and al though Carra deVaux may beright to think that ' opinions' does not make much sense, I cannot see why the reconstructed title cannot refer to automata.

[^39]: ${ }^{127}$ See Roby (2016: 266-8 and, more generally, 86-9).
 ${ }^{128}$ The di vision into books goes back to Hero himself (I.8 [6.3] and [6.7]). It is partly retained in one of the manuscripts, $\mathbf{P h}$, where the second book is numbered in the margin (above, n. 101).
 ${ }^{129}$ I owe this point to Prof. Isabel Ruffell. For α vitó $\mu \alpha \tau$ ç, cf. Spir. 70.10 and 198.17; for «ט̉тo $\mu \alpha ́ \tau \omega \varsigma$, cf. Dioptr. 202.28, Spir. 90.13 (quoted below), 174.2, 180.12, 182.1-2. On Hero's concept of α v̇тó $\mu \alpha \tau$ о, cf. Comm on 1.2 [2.10-11].

[^40]: ${ }^{130}$ The only exceptions are chh. X and XXI, which are made to begin, respectively, with

 ${ }^{131}$ Schmidt is silent about the first three editorial interventions. Ch. XXIX was first marked off by Haase (noted by Schmidt in his app. crit. ad loc.).
 ${ }^{132}$ This series omits number 15 , while also including number 7 twice (i.e chh. XII and XIII, al though in the latter case the number seems to have been added by a later hand). The marginal number 13 is placed next to XXIV. 2 [80.14] rather than at the beginning of the chapter. The following chapters are not numbered: VIII, XV, XX, XXI, XXII, XXIII, XXIV, XXVI.
 ${ }^{133}$ In this regard, see Bal di 46 [erroneously numbered 45] n. 5, cited by Prou 135 with n. 49.

[^41]: ${ }^{134}$ In a recent article, Tybjerg (2003) has argued that Hero deploys wonder to strengthen the epistemological claims of mechanics, but this misses the point of the text. For di scussion, see Comm ad loc.
 ${ }^{135}$ Keenan-J ones-Ruffell-McGookin (2016: 168). See al so Roby (2016: 267).
 (1977: 442-3); Newiger (1990: 34-9); Csapo-Slater (1994: 270-3); and, most recently, Brioso Sánchez (2006).

[^42]: ${ }^{137}$ Drachmann (1963a: 197). The absence of gearing can probably be explai ned on technical grounds, such as problems related to wear and excessive heaviness (Murphy 40 n . 6). The first attested example of gearing is found in Ctesibius' water-clock (rack and pinion), on which see below, §5.3. Later examples include the famousAntikythera mechanism(second century BCE), a device used to cal culate astronomical positions, Vitruvius' mention of wheels engaging each other at right angles in water-mills (DeArch. 10.5.2) and Hero's use of different types of gearing in the dioptra (cf. esp. Dioptr. ch. 3), in the hodometer (Dioptr. ch. 34), and in the baroul cos, which Iatter would al low (al beit probably only theoretically) a weight of 1000 tal ents to be lifted with a power of fivetal ents (above, n. 8). For discussion and further references, see Drachmann (1963a: 200-3).
 ${ }^{138}$ I borrow the descriptive phrase of Prou 138 ('Apothéose de Bacchus').

[^43]: ${ }^{139}$ Some movements are presented as occurring ' (as many times) as we may choose' (X. 3 [30.23], XI. 11 [42.7]). Similar expressions are very frequent in the treatise and seemto emphasise the mechanical (or scenic) adaptability of the devices.
 ${ }^{140}$ Much the same arrangement can be seen in two Pompeian frescoes, known respectively as 'Bacchus and Silenus' (Temple of Apollo, VII, vii, A; MANN, inv. no. 9269) and 'Bacchus and Vesuvius' (House of theCentennial, IX, viii, 6; MANN, inv. no. 112286). This iconography probably serves to characterise Dionysus as an almighty god who can unlock the secrets of the universe. I shall explore this in a forthcoming article, provisionally entitted "Unlocking the Secrets of the Universe: Hero, Aut. 3-4 and AP 14.24".
 ${ }^{141}$ See, however, XXIII.1 [74.7-9], where headvises that the boards forming the frame ($\pi \lambda \imath v \theta$ íov) of the $\pi i v \alpha \xi$ should be onesixth as wide as their length. Marshall (2003: 261) suggests that perhaps the box is ' over a metre wide'.

[^44]: ${ }^{142}$ This view has been forcefully held by Marshall (2003: 263), although he did not el aborate further. But see below, n. 144.
 ${ }^{143}$ On the main sources for this myth, and on the connections between the automaton's narrative and Sophocles' fragmentary Nauplius Pyrkaeus, see Marshall (2003). Although I cannot here examine the relationship of the automaton to tragic drama, I must neverthel ess mention the position taken by Weil (1882: 417-8). He contended that only the fourth scene may have been inspired by Sophocles' play, while also attributing the first and the second to Hero. I find his position pessimistic and his attribution unconvincing because it ignores the Philonian origin of the material. The question certainly deserves to be studied in greater detail, particularly in light of the existence of Roman tragic evidence (Pac.Trag. inc. 45 Ribbeck =Cic. Div. 1.14.24).
 ${ }^{144}$ M arshall (2003: 275 n .40) has suggested that the Nauplius automaton represents an expansion of a threescene pre-Philonian model on the basis that the third scene follows closely on the second in the same way the fifth follows closely on the fourth. For a brief description of the individual scenes, see bel ow.
 ${ }^{145}$ Brumbaugh (1966: 124) misreads $\Delta \alpha v \alpha \hat{\omega} v(X X I I .3[70.22])$ as $\Delta \alpha v \alpha \ddot{̈} \delta \hat{\omega} v$ ('Danaïds'), and hence takes these figures to represent ' nymphs' (pp. 54, 114, 124; cf. 'busy shi pbuilding girls', p. 126). The manuscripts have no such variant reading here.

[^45]: ${ }^{146}$ I follow here the reconstruction by Ruffell (forthcoming 1) rather than that by Querfurth (in Schmidt LXIII-VIII), which is overdetai led and not entirely reliable.

[^46]: ${ }^{147}$ Most manuscripts have the marginal note $\lambda \varepsilon i ́ \pi \varepsilon ı$ at the end of the text. This note has received different interpretations. Prou 248 n . f seems to have taken it as referring to alacuna occurring before $\delta 1 \alpha \lambda \lambda \alpha \alpha_{\sigma \sigma o v \tau \alpha}$, which hefilled with the word $\mu \hat{\mu} \theta$ orc. In his edition, Schmidt (app. crit. to 452.12) apparently took it as referring to the incomplete state of thetext ('[u]nvollständig’, Schmidt 452 n .3), but dismissed it as false (see al ready Baldi $47^{\wedge} \mathrm{n} .22$), Olivier (1901: 431) wrongly regarded it as indicating a big lacuna in Book OnE (seefurther below, §5.6.2). In his rebuttal of this view, Schmidt (1903: 277 with n. 1) presented two alternatives: (1) it refers to a lacuna at the very end of the treatise; (2) it refers to a lacuna which contained the complement of $\delta 1 \alpha \lambda \lambda \alpha^{\prime} \sigma \sigma o v \tau \alpha 1$ (in his edition he printed a lacuna before the verb and suggested adding qoîc μ úधoıç). I am decidedly inclined to take it as refering to the treatise's lacunose ending rather than to the (apparently) incomplete state of the text (on which, see bel ow, n. 255). It is hard to decide whether to place the lacuna before or after $\delta 1 \alpha \lambda \lambda \alpha \sigma_{\sigma} \sigma v \tau \alpha u$ (XXX. 7 [110.14-15]) because the weight of textual evidence does not favour either position (complement before: Spir. 10.16-17; complement after: Mech. Frag. 2.1 = Papp. 1116.12). UnlikeSchmidt, I have opted for thelatter option. If $\delta 1 \alpha \lambda \lambda$ d́ббovtaı occupied the very end of the folio (possibly a verso), the concluding word(s) of thetreatise could have easily been lost. The words added in the
 $\delta ı \alpha \varepsilon \gamma \rho \alpha \mu \mu \varepsilon ́ v \propto v$ т $\rho \dot{\text { órovc ('according to the many dissimilar ways of the things described [?]'). }}$
 ${ }^{148}$ I will not consider late antiquity both because the evidence for this period is particularly difficult and because it is not directly rel evant to establishing a context for Hero's automata.

[^47]: ${ }^{149}$ Berryman (2009: 24-8), who singles out the moving statues of Daedal us (PI. Men. 97d4-e5; cf. Euthphr. 11b9-d1) as the best candi dates for mechanical automata. In my view, she pushes her argument to an extreme. The fact that mechanics did not devel op until the fourth century BCE does not mean that later authors could not look upon mythi cal automata as precursors of existing models, as exemplified, for instance, by Arist. Pol. 1235b34-1254a1. For other mythical automata, see, among others, Cambiano (1994: 624).
 ${ }^{150}$ For full discussion, see Huffman (2005: 572-7), who observes that the dove is unlikely to have been freeflying.
 ${ }^{151}$ This suggestion has been accepted by Schürmann (1991: 175). See al so Schürmann (2002: 36).

[^48]: ${ }^{152}$ Berryman (2009: 96) speculates that A rchytas' device was in fact either a catapult (?) or, more probably, a catapult projectile because, whereas Gellius refers to it as simulacrum columbæe ('representation of a dove'), his source simply calls it $\pi \varepsilon \rho$ рб $\tau \varepsilon \rho \alpha$ ((dove'), possibly appeal ing to the rather widespread use of animal names in describing machines and their parts (on which, see esp. von Staden 1998, as well as the use in the Automata of the terms ко $\chi \lambda$ ías and кópaE, indi cading respectively a 'screw' and a 'hook': chh. X and XV, respectively). This is extremdy unlikely for at leest two reasons. First, mechanical writers never use the verbs volare or $\pi \dot{\varepsilon}$ гouaı (which arefound in Gellius' account) to refer to the hurling of a projectile Second, al though the precise mechanism of the device remains conjectural, thereis no parallel for the combination of air and counterweight in artillery technology. For Ctesibius' air-powered catapult, see below, §5.6.
 ${ }^{153}$ See Beryman (2009: 95), citing Keyser (1994: 31). The connection between automata, artillery and Dionysius I is investigated by Ruffell (forthcoming 2), on whose work I base the discussion which follows.
 ${ }^{154}$ On the date of the Socratic Epistles, seeSykutris (1933: 106-22).
 ${ }^{155}$ Rehm (1937: 330), endorsed by Ruffell (forthcoming 2).

[^49]: ${ }^{156}$ Berryman (2009: 72-3); cf. al so Cambiano (1994: 628-9). Particularly relevant in this connection are[A rist.] Mu. 398b13-16 and Gal. Foet. Form 4.688-9 Kühn.
 ${ }^{157}$ For discussion of thetext-critical problems, see Nussbaum (1976: 146-52). For consideration of the passage in connection with Micheli's (2005) argument that A ristotle's automata were powered by a v̋ $\pi \lambda \eta \eta \xi$, sec Comm. on II.6 [10.4-8].
 ${ }^{158}$ A suggestion made by Ruffell (forthcoming 2) and al ready found in nuce in Nussbaum (1976: 150). The 'interlinking pegs' in Nussbaum's reconstruction depend on an emendation of
 $\tau \omega ิ v ~ \xi v ́ \lambda \omega v$. In commenting on this passage, Philoponus (in GA 77.16-17) talks of pieces of wood transmitting motion to one another 'through some mechanism' ($\delta \grave{\alpha} \tau \imath v o \varsigma ~ \mu \eta \chi \alpha v \eta َ \varsigma)$, which, as noted by Ruffell (forthcoming 1), admits of several different reconstructions.
 ${ }^{159}$ A gai n, the text is rather problematic. Most manuscripts describe the cart as ö $\pi \varepsilon \rho$ ó $\chi o v$ -
 ö $\pi \varepsilon \rho$ ó ơov́ $\mu \varepsilon v o v)$. The most commonly accepted emendation is ó $\gamma \grave{\alpha} \rho$ ó $\chi \circ$ v́ $\mu \varepsilon v o \varsigma$, which makes avìò the object of кıvєî. Ruffell (forthcoming 2) suggests an ingenious emendation of α vitò to aivò on the basis of the reflexive use of кıvé ω inAristotle's discussion of how something can be «ט̇токívтос (Ph. 258a-15), which makes the cart automatic. This slight emendation is very tempting, especially in view of the evidence from the pseudo-Socratic epistle discussed above. But it seems to me thatA Aristotle implies a contrast between the initial impetus of motion ($\kappa 1 v \varepsilon i ̂)$ and the subsequent steering of the device (кıv\&it α). Seffurther below.

[^50]: ${ }^{160}$ See Ruffell (forthcoming 2). For the tentative suggestion that кú $\lambda ı v \delta \rho o \varsigma$ here refers to a children's toy, see Nussbaum (1978: 348).
 ${ }^{161}$ On the question of Ctesibius' date, seeDrachmann (1948: 1-3). Ctesi bius may not have been originally fromAlexandria, for Ath. Mech. 29.9 call s himó 'Aбкрทvóc (Fraser 1972: 2.6223 n .445). But the ethnic is conjectural (cf. Wescher 1867: 29) and unattested outside this passage and Hero Byz. 263.1, as noted by Whitehead-Blyth (2004: 142). The ethnic of Boeotian Ascra is 'Aoкраîos, and Vitr. 9.8.2 refers to Ctesibius as Alexandrinus. Whitehead-Blyth (2004: 142) speculate that the obscure ethnic provides an indi cation that Ctesibius' family migrated to Alexandria from rural Boeotia, unless another otherwise unknown Ascra (or Ascre) is meant.
 (1972: 2.619 n. 421).

 163 Vitr. 9.8.4 and 10.7.4, with Oleson (1984: 125) and Callebat (2003: 168-170). For singing birds and drinking animals, seebelow. Granger (1934: $313 \mathrm{nn} .1-2$) unintelligibly connects the term angubatae in Vitr. 10.7.4 with the automatic owl appearing in Spir. ch. 1.16 (erroneously cited as I.91), on which see bel ow. The meaning of this hapax is uncertain, but it seems to refer to the kind of figure described in Ph. Spir. ch. 36 (Drachmann 1948: 70; cf. Cal lebat 2003: 169), today commonl y cal led 'Cartesian diver'. Hero's owl, at any rate, is made to turn rather than walk, as presupposed by Granger's (1934: 313) translation of theterm ('wal king automata').

[^51]: ${ }^{164}$ Ath. 11.497d-e = Hedyl. HE 1843-1852. Thetext is particularly corrupt. For full discussion, se Galli Calderini (1984: 87-91), with ample bibliography.
 ${ }^{165}$ See Schürmann (1991: 164-70); Wikander (2008: 790); and, most recently, Bur (2016: 7, 130). For (sympotic) drinking-horns, cf. Ph. Spir. ch. 16; Hero, Spir. chh. 1.18, 2.13, 2.28. Bur (2016: 130) rightly notes, al beit without citing any source, that Hero's use of the term кратń provides an indi cation of the sympotic context of such devices. The term occurs 30 times in Hero's Pneumatica (Spir. chh. 1.14, 1.19-20, 2.12, 2.31, 2.34-5).
 ${ }^{166}$ For 'temple automata', seeSchürmann (1991: 224-34). Se also, most recently, Bur (2016: 127-87), who, however, includes in this category not only devices specifically flagged for use in temples - such as, for instance, Hero's holy water dispenser (Spir. ch. 1.21) or the socalled α óviotrípıov ('ritual purifier', Spir. ch. 2.32) - but al so devices which are reesonably thought to have been used in private houses. Seebel ow.
 ${ }^{167}$ Fraser (1972: 1.412-3) mentions two other examples: Eratosthenes' dedi catory epigram on the duplication of the cube (Eutoc. inArch. Sph. CyI. III 96.10-27 Heiberg-Stamatis = Powell, Coll. Alex. fr. 35) and Archimedes inscribed tombstone (Cic. Tusc. 5.64-6).
 ${ }^{168}$ See Fraser (1972: 1.319, 426) and Fragaki (2012: 30), with further bibliography.

[^52]: ${ }^{169}$ Fraser (1972: 1.413). Rice (1982: 63) is more cautious about identifying the dedi cator with Ctesibius, al though she does not explain.
 ${ }^{170}$ Fraser (1972: 1.413), endorsed by Rice (1982: 63).
 ${ }^{171}$ On the propagandistic intent of the poem, see Galli Calderini (1984: 89).
 ${ }^{172}$ Compare the expression Hero uses at I. 6 [4.18] $\mu \eta \delta \varepsilon v o ̀ s ~ \pi \rho o \sigma ı o ́ v \tau o \varsigma . ~$
 ${ }^{173}$ Rice (1983: 59) notes that, because the liquid is not specified, the statue was probably only positioned to suggest the action. Contra(rightly, in my opinion), Ruffell (forthcoming 2), who observes that the procession involves a large amount of fluids.

[^53]: ${ }^{174}$ For similar reconstructions, see Lewis (1997: 84-5) and, most recently, Koetsier-Kerle (2016: 354-5).
 ${ }^{175}$ Lewis (1997: 94) on Plin. Nat. 18.97, cited by Wilson (2002: 16).
 ${ }^{176}$ Ruffell (forthcoming 1), citing as a paradigmatic examplech. XXIII of the present treatise.
 ${ }^{177}$ SeeRice(1983: 67), citing Fraser (1972: 1.202).
 ${ }^{178}$ For criticism of Schramm's reconstruction, see Marsden (1971: 89) and, morefully, Lendle (1983: 49-53) and Campbll (2003: 12-13).

[^54]: ${ }^{179}$ For a full discussion, I refer the reader to Ruffell (forthcoming 2). I am not particularly interested here in the strictly techni cal side of things. Bito's passage deal ing with the internal mechanisms of the $\varepsilon \lambda \lambda \varepsilon ́ \pi o \lambda 1 \varsigma$ is al so textually problematic (cf. esp. Bito 55.4-5).
 ${ }^{180}$ So Ruffell (forthcoming 2).
 ${ }^{181}$ Note, however, that the quotation of Demochares' text known to us through the indirect tradition contains the variant reading $\dot{\alpha} \pi \mathrm{o} \pi \tau$ v́ ωv ('spitting out'; Suda σ 352).
 ${ }^{182}$ Suet. Nero 34.2-4. Other sources: Tac. Ann. 14.1-13 and D.C. Epit. 61.12-13. Although the three accounts differ significantly in detail, they are likely to have been derived at least in part from a common source (se Devillers 1995).
 ${ }^{183}$ Suet. Nero 34.2. Tac. Ann. 14.5 has a collapsing, lead-weighted ceiling, which does not seem to be automatic; see Ruffell (forthcoming 2).

[^55]: ${ }^{184}$ Exactly how the ship would have di sassembled itself remains unclear, but Tacitus' account is slightly more accurate (Ann. 14.3): ergo navem posse componi docet [sc. Anicetus] cuius parsipso in mari per artem solutaeffunderet ignaram [sc. Agrippinam].

[^56]: ${ }^{185}$ It is difficult to say whether Dio's account is more historical ly reliable than Tacitus'. What seems certain, however, is that Tacitus' amplification of Anicetus' role was due not only to his being the prefect of the fleet at Misenum but al so, and more especially, to the similarities with the Tacitean account of the death of Octavia (Ann. 14.60-4), in whichAnicetus also played a significant role (Ann. 14.62); seeDevillers (1995: 327-8, 330-1), with bibliography. On Tacitus' account of Octavia's death, see, more recently, Murgatroyd (2008).
 ${ }^{186}$ The comparison between theA puleius passage and the Senecan Epistles has been noted by Zimmerman (2000: 367, 403, 405); see al so Denard (2007: 154). For the widespread use of saffron in theatres, Zimmerman (2000: 403) al so refers to Lucr. 2.416, Hor. Ep. 2.1.79-80 (crocus used metonymycally for 'stage') and Ov. Ars 1.103.

[^57]: ${ }^{187}$ See Raïos (2000: 26), citing Maiuri (1945: 151) and Smith (1975: 53). Bal dwin (1978: 87 n .3), on the other hand, is undecided between a sundial and a clepsydra. Meerwal dt (1921: 407-10), apparently endorsed by Raïos (2000: 26-7), proposed to interpret the participle subornatus as instructus ('equi pped') and the phrase horologi um . . et bucinatorem. . subomatum as horol ogium bucinatore subornatum, which makes Trimal chio's trumpeter an automatic piece of apparatus (contra, Panayotakis 1995: 57 n. 13). The text makes sense as it stands, and Meerwal dt's interpretation strains the syntax. Raïos (2000: 26) wrongly attributes to Merwal dt the claim that, in its remai ining occurrences in the Satyricon (21.2, 36.2, 40.5), subornatus means either ' dressed in' or 'decorated with'. Cf. Meerwal dt (1921: 408): ‘[u]t his locis [sc. citatis], ita I. I. mea quidem sententia proprio, non translato, sensuest accipiendumsubomare' (my emphasis).
 ${ }^{188}$ Similar movable ceilings were rather common in upper-class Roman dining-rooms; see Sen. Ep. 90.15; Suet. Nero 31.2; Val. Max. 9.1.5; Macr. S. 3.13.8; Panayotakis (1995: 90); Raïos (2000: 21-2, 24).
 ${ }^{189}$ Meerwaldt (1921: 411), cited by Räos (2000: 28).

[^58]: ${ }^{190}$ This reconstruction has been accepted by Raïos (2000: 28).

[^59]: ${ }^{191}$ Philo: Spir. ch. 60 (owl and birds); Hero: Spir chh. 1.15 (blackcap), 2.4-5.
 ${ }^{192}$ Philo: Spir. ch. 59 (Pan and the dragon); Hero: Spir . chh. 1.29-31.
 ${ }^{193}$ Bur (2016: 152, 162). Schürmann (2002: 41) notes that Pan and the dragon (Spir. ch. 59) is the only Philonian device which makes use of continuously running water; it is al so the only one explicitly flagged for use in temples (Schürmann 1991: 223 n . 2). For running water (or

 ${ }^{194}$ On which, se Robinson (2011: 198-200).

[^60]: ${ }^{195}$ The rest of her discussion takes the form of a critical description of Hero's treatise (Schürmann 1991: 190-201).
 ${ }^{196}$ In the same article, she al so discusses the mobil e automaton (Schürmann 2002: 45-6), al beit without any direct reference to its context of use
 ${ }^{197}$ Schürmann's argument is el aborated by Beacham (2013: 33) in relation to Hero's mode.

[^61]: ${ }^{198}$ Prou evidently had in mind an Eastern type of theatre, such as the theatres at Ephesus and Miletus (on which, seeDinsmoor 1950: 306).

[^62]: ${ }^{199}$ But see the caveat on the processional use of the automaton below.
 ${ }^{200}$ Hero seems to be refering to a stone slab-paved surface (Comm. on II.1[6.9-13]). Frederiksen (2000: 148) associates the orchestra's lack of architectural importance in the Hellenistic period with the few attempts that were made to provide the orchestra with a stone surface (eg. theatre at Priene), further noting that " [t]here are difficulties in interpreting the "smoothed rock" orchestrai found in not a few theatres (eg. Argos 2, K orinthos II and Boiotian Orchomenos); whether they were normally covered by a layer of sand or beaten earth is naturally impossible to know. Traces of such layers have been found at for example Morgantina and Solous' (for these theatres, see his A ppendix at pp. 169-173). For the transition from wood to stone in the Roman amphitheatres of the Republican period, seeWelch (2007: 91-4).
 ${ }^{201}$ See Kavoulaki (1999: 295), who cites thefamous example of the cult regulation of the Molpoi conceming a procession from Miletus to the sanctuary of A pollo in Didyma (LSAM 50 =Milet. 1.3.133, on which see now Slawisch-Wilkinson 2018); see al so Chaniotis (2011: 28). There is no mention of moments of repose inA thenaeus' text, although, according to Rice (1983: 77-8), the mixing of wine with water and its subsequent distribution to the guests in the stadium described atAth. 200b probably occurred during one such interval. For a similar station in the procession of theAthenian Dionysia of 309/308 BCE, seeX. Eq. Mag. 3.2, erroneously cited by Bur (2016: 102 n. 5) as X. Eq. 3.2.

[^63]: ${ }^{202}$ A point made to me by Prof. Isabd Ruffell.
 ${ }^{203}$ Viviers (2014: 32), followed by Bur (2016: 78). Rice(1983: 35) suggests that a temporary al tar may have been set up for the occasion.

[^64]: ${ }^{204}$ A mong the examples she cites (Schümann 2002: 37) areX. Symp. 4.55 (vعv
 Xenophon uses the term metaphorically to describe a troupe of performance; see Huss (1997: 44; 1999: 302). I take these references from Ruffell (forthcoming 2).
 ${ }^{205}$ See Schürmann (2002: 41 with n. 34), citing Ph. Spir. chh. 40-2 and 46. The stationary automaton is supported by a wooden pillar (кıóvıov そú $\left.{ }^{2} \imath v o v, ~ X X I .1 ~[68.8] ; ~ c f . ~ I .3 ~[2.17-18]\right) . ~$.

[^65]: ${ }^{206}$ Vitr. 6.5.6; cf. Hor. Sat. 2.8.20-24 (specifying the names and position of the guests at Nasidienus' party), with Schürmann (2002: 37 n. 13).
 ${ }^{207}$ See ory (1986: 150 n. 2). A wide range of private entertainments (eg. Atellan farce, mime, comedy, story-telling, acrobatics) is attested in the sources, and is best exemplified by the broad applicability of the term acroama (Petr. Sat. 53.12, 78.5); se Horsfall (1989: 79-80, 87 nn. 53 and 61), with further references.
 ${ }^{208}$ See Marshall (2003: 263). A triangular pediment covers the central part of the board hiding the mechanisms, and Hero notes the resemblance with a shrine; al though this may have a religious significance, its primary function is to create a rational and coherent whole (ö $\pi \omega \varsigma \delta \varepsilon ̀ ~ \mu \eta$)
 [100.18-19]).

[^66]: ${ }^{209}$ The device used for producing thunder in the theatre was called $\beta \rho o v \tau \varepsilon i ̂ o v$ and (if we are to trust our sources, which are late and not reporting from their own experience) differed from the one described by Hero. It consisted either of a leather sack filled with pebbles which was made to collide with a bronze plate (Poll. 4.130; Schol. vet. Ar. Nub. 292b al pha) or of an iron container in which stones were shaken (Schol. vet. Ar. Nub. 292b beta); see Horst-Dieter (2003). Hero's testimony is significant because it attests to a thi rd type of device. In my Commentary (synopsis on XIV), I have therefore used the term $\beta \rho o v \tau \varepsilon i o v ~ t o ~ r e f e r ~ t o ~ i t . ~$.
 ${ }^{210}$ See below, §5.6. On the $\mu \eta \chi \alpha v \eta$, seeAmott (1962: 72-8) and Newiger (1990: 34-9). A recent reconstruction of the device can be found in Chondros et al . (2013).
 ${ }^{211}$ Beacham (2013: 31), with bibliography.
 ${ }^{212}$ Beacham (2013: 30). On the scaena versilis and scaena ductilis, cf. Serv. Georg. 3.24, with Beare (1964: 284, 300); see al so Bieber (1961: 74-5).

[^67]: ${ }^{213}$ Contra, Prou 139 and Berryman (2009: 140), who argue for a detail ed approach.
 ${ }^{214}$ See Schmidt (1903: 276). Murphy 4 al so cites the absence of dimensions for the intemal moving parts of the mobile automaton, including ' the volume (not to mention the exact location) of the tube contai ning the millet seeds'. The tube, however, is not a moving element, and its position is specified at V. 5 [22.12-13]: $\pi \rho o ̀ s ~ o ̉ \rho \theta \grave{\alpha} \varsigma ~ \kappa \alpha \tau \grave{\alpha} \mu \varepsilon ́ \sigma o v ~ \tau o ̀ ~ \pi \lambda ı v \theta i ́ o v . ~ O n ~$ dimensions, see already above, §5.2.
 ${ }^{215}$ So Roby (2016: 267).

[^68]: ${ }^{216}$ A gradual, sequential approach can be seen most obviously in the description of the mobile automaton, the different configurations of which are ultimately based on the same basic model. See further below, §§5.6-7.
 ${ }^{217}$ Contra, Marshall (2003: 267), who maintains that the tone of the treatise 'is really not so far removed from suggested hobby projects for boys found in Popular Mechanics over the past century'. I am not as familiar with this magazine as I probably should be However, those familiar with it will certainly know that its mission was (and still is) to maketechnol ogical topics readily comprehensible to the general public (one of its mottoes being 'Written so you can understand it'); see Seel horst (1992: 83). This does not seem to be the case for the Automata, as my discussion below will show.
 ${ }^{218}$ This brings BOOK One closer to the other Heronian mechanical works, including the Belopoeica. Roby (2016: 223 with n. 117) claims that Hero's grammatical constructions and elements of his vocabulary such as thi rd-person imperatives are characteristic of mathematical prose, an assertion she bases on a 'full corpus counts/author' information avail ablefrom the TLG for the verbs of these forms used by Hero. On Hero's geometrised descriptions of his devices, see Tybjerg (2004: 46-51); see al so Cuomo (2001: 163-4).
 ${ }^{219}$ On which, se Roby (2016: 210-16).
 ${ }^{220}$ SeeCambiano (2011: 34-5). I count a total of 50 first-person singulars in Book Two, including Schmidt's supplement at XXIV. 2 [82.2]. 23 occurrences are in the present tense, 2 in the future, and 25 in the aorist. Similarly, BOOK Two contains 15 occurrences of the participle agreeing with the first-person singular subject, all of which are in the aorist tense and include my supplement at XXIII. 5 [76.13]. In Воок One, the first-person singular is replaced by the firstperson plural, be it ' collaborative' or 'editorial'. For the 'editorial we', see the prefaces to both books. On the use of different verb forms in technical texts, see generally Roby (2016: 201-9), with further bibliography.

[^69]: ${ }^{221}$ On this passage, see generally A nderson (1997: 5-8), and note especially Vitr. 1.1.7 itemqui Ctesibii autArchimedis et ceterorum, qui eiusdem generis praecepta conscripserunt, leget, sentire non poterit, nisi his rebus a phil osophis erit institutus.
 ${ }^{222}$ The passage has been noted as an example of Hero's flai r for geometrical explanation by Cuomo (2001: 164 with n. 39).
 ${ }^{223}$ On diagrams, see further below, §6.5. Explicit references to diagrams are found exclusively in Book Two ($\gamma \rho \alpha ́ \varphi 0 \mu \alpha$: XXIII.1 [74.5], XXIV. 2 [80.15]; íтоүра́ $\varphi о \mu \alpha$: XXVII. 2 [98.12]), although the use of letter label s is a clear pointer to the role of illustrations.
 ${ }^{224}$ Special ised words occurring in BOOK ONE are discussed in the appropriate places in the Commentary. For an index of technical terms, see Appendix 6.
 ${ }^{225}$ Keenan-J ones-Ruffell-McGookin (2016: 182). Seefurther below, §5.6.1 and Comm on II. 3 [8.5-7].
 ${ }^{226}$ Unless perhaps we place a lacuna after XVIII. 3 [58.7] $\pi \varepsilon \rho เ \varphi \varepsilon ́ \rho \varepsilon ı \alpha$.

[^70]: ${ }^{227}$ Hero's insistence on the concealment of cords is a paradigmatic example (XIII. 9 [50.14-15], XVII.1 [56.11-12], XVII.2 [56.21-22], XXX.4 [108.5-6]), but there are many other examples: XIII. 7 [48.11-13], XXIII. 2 [74.11-12], XXVI. 5 [94.2-4], XXVIII.1[100.12-17], XXX.6[110.4-6]; cf. XV. 2 [52.14] and XXVIII. 5 [102.21-22].
 ${ }^{228}$ A pointI elaborate in my discussion of Hero's notion of токкı λ ía (Comm. on I. 1 [2.4-5]); cf. also Comm. on I. 5 [4.12-14].
 ${ }^{229}$ On the close dependence of Hero's Belopoeica on Ctesibius' lost writings, seeM arsden (1969: 3).

[^71]: ${ }^{230}$ These experimental models, the former of which was greatly improved by Philo (cf. Bel. 67.28-68.1), are described at Ph. Bel. 69.31-72.4 and 77.9-78.22, respectively; for discussion, se Marsden (1969: 5-7, 41, 168) and, more recently, Schiefsky (2015: 640-9).
 ${ }^{231}$ See Drachmann (1948: 80-1, 100, 126). Fraser (1972: 1.431 with n. 450), contra, finds it likely that Ctesi bius' lost works on pneumatics served as a source not only for Philo but al so for Hero (an opinion misattributed to Diels 1893: 110 n. 3). According to Diels (1893: 106-7), Hero would have reworked Philo's Pneumatica, which in turn depended on Ctesibius; see Drachmann (1948: 90-1), who is inclined to assign to Ctesi bius, rather than to Strato of Lampsacus, the experiments supporting the latter's view of the void in the introduction to Hero's Pneumatica.
 ${ }^{232}$ This passage appears almost verbatim in Simp. in Ph. 693.11-18, quoting Strato.
 ${ }^{233}$ I cannot discuss here Diels' (1893) untenable attribution of the introduction of the Pneumatica to Strato, but instead refer the reader to the recent contributions of Beryman (2009: 166-70; 2011). For Hero's reference to Archimedes' Floating Bodies, see above, n. 109.
 ${ }^{234}$ Drachmann (1963b).
 ${ }^{235}$ That Philo drew on Ctesibius is presumed by Ruffell (2016).

[^72]: ${ }^{236}$ A pparently, Hero was ableto consult several 'copies' (бuvtáy $\mu \alpha \tau \alpha$, XX. 3 [66.5]) of Philo's work; seeFerrari (1985: 266) and, more dubiously, Cambiano (2011: 26). For another (non-claimed) Heronian improvement, see below, §5.6.3.
 ${ }^{237}$ Along somewhat similar lines, Cambiano (2011: 25) misleadingly argues that the novelty lies primarily in the account Hero gives of contemporary state-of-the-art technol ogy. His argument fails to take into account the extent to which Hero depends on Philo, who receives high praise for his achievements (XX. 5 [66.19-22]). Tybjerg (2005: 210-13), by contrast, seems to extend my claim to Hero's original ity tout court, al though she draws inconsistent and contradi ctory concl usions. A detail ed treatment of Tybjerg's argument fall s outside the scope of the present discussion, and I must confine myself to a few remarks on the Automata; see below, n. 238.
 ${ }^{238}$ In commenting on this passage, Tybjerg (2005: 211) infers that the novelty of Hero's presentation relies on his ability to compare and correct preexisting material, which in tur leads her to interpret the adjective kavórepoc (XX.1 [64.8]) as refering not only to the technical inventions described in the book but also to the account itself. There are at least two problems here. First, there is no firmevidence that any of the devices presented in Book Two is Hero's own invention. Second, Tybjerg's inference is incorrect, based as it is on an erroneous translation of the participle $\tau \alpha ̀ ~ \pi \alpha p \alpha \theta \varepsilon \omega \rho \eta \theta$ év α, which should be understood as ' what has been overlooked' ('le cose trascurate', Baldi 32 ' cf. Schmidt 407) rather than as 'comparisons' (Murphy 28). Indeed, Hero does not compare different devices, but he makes improvements and additions.

[^73]: ${ }^{239}$ See above, §5.2.
 ${ }^{240}$ I borrow the concept of 'mechanisms of movement' from McCourt (2012: 187), who uses it as a reference to the mechani cal configurations adopted for moving the automaton locally from placeto place.
 ${ }^{241}$ McCourt (2012: 193) erroneously calls the latter 'rectilinear movement', adding that the automaton travels al ong the sides of a 'rectilinear form'. Hero unmistakably refers not to any
 γ ǿviov). On rectilinear figures, see Comm on XI.1 [36.1-3].

[^74]: ${ }^{242}$ Pace Cambiano (2011: 33), who takes the whol e section to refer to snake like motion.
 ${ }^{243}$ Other possible variations are"Eбтı $\delta \grave{\varepsilon}$ кגì $\alpha \not \lambda \lambda \omega c$, etc. (Spir. 140.7 and 178.27), K $\alpha \grave{~}$ $\alpha \not \lambda \lambda \omega c$, etc. (Spir. 218.13) and δ źov, etc. (Spir. 148.6 and 302.10). I take the last two references from Drachmann (1948: 83).

[^75]: ${ }^{244}$ My interest in such implications led meto adopt a looser criterion for classifying occurrences of OpENING A. For this reason, I have included occurrences that do not introduce descriptions of instruments or configurations.

[^76]: ${ }^{245}$ SeeWhitehead-Blyth (2004: 36). I cannot agree with these scholars that Hero and Athenaeus use the 'sameidiom' ('I am in favour', p. 38). As al ready noted by Whitehead-Blyth (2004: 38 n .93), Hero uses the impersonal form $\dot{\alpha} \rho \varepsilon ́ \sigma \kappa \varepsilon ı ~ o n l y ~ o n c e ~ e l s e w h e r e ~(S p i r . ~ 4.11), ~$ where, however, it refers to the 'general ised agreement' among ancient physicists on the composition of air; on the impersonal use of the verb, see generally LSJ s.v. ג́ $\rho \varepsilon ́ \sigma \kappa \omega$ s.v. IV.

[^77]: ${ }^{246}$ A belief held by Schmidt (1903: 278).

[^78]: ${ }^{247}$ For details conceming the impractical ity of these modifications, seesynopsis on XVII.3-XVIII.
 ${ }^{248}$ I cannot infer from Hero's words that the chest is open on the back side ('nach hinten').

[^79]: ${ }^{249}$ At least according to Prou's reconstruction; but cf. al so Schmidt 444 Fig. 107b. The peg is instead missing in Murphy 37 Fig. 13.
 ${ }^{250}$ Schmidt 445 n . 1 does not betray the slightest awareness of the problematic nature of his conjecture, which he supports by citing XIX. 2 [62.1]. That the ignitability of wood represented a concem for the scholar is confirmed by the fact that he suggests, as an alternative to a $\kappa \lambda \varepsilon 1 \theta$ píov, a ‘Klappe aus bronze'. On Hero’s $\kappa \lambda \varepsilon 1 \theta$ píov, mai nly designating the lock mechanism of the σ ט́pı₹, seComm on IX.5 [32.8-9].
 ${ }^{251}$ This, too, apparently contradicts the claim that the chest is ' wide open'.

[^80]: ${ }^{252}$ Drachmann (1948: 80) regards the first description (Spir. 304.10-3) either as something copied from some book or as notes taken directly from the device, al though he later (p. 131) opts for the latter option; the second description (Spir. 310.3-316.13), on the other hand, seems to have been intended for publication.
 ${ }^{253}$ Sound of thunder (XX.4 [66.10-18]); appearance of Athena (XXIX.1-2
 [104.19-106.3]); disappearance of Ajax (XXX.1-6[106.7-110.10]). Se above, §5.6.

[^81]: ${ }^{254}$ A similar, but less clear-cut, bipartite structure occurs in ch. XXVII. It is not until the end of ch. XXVIII that the components of Nauplius' torch are mapped onto points in the diagram (XXVIII. 7 [104.11-13]; cf. Fig. 25). I have two reasons for del eting these words: (1) the mention of knobs is out of place (see al ready Schmidt 447 n .1); (2) the neuter article is repeatedly used with non-neuter nouns.
 ${ }^{255}$ A distinction must be made between incompleteness of the text and incomplete authorial editing. The fact that Hero failed to completehis revisions, for reasons unknown to us, does not necessarily imply that he considered the work to be incomplete I regard the Automata as complete in its intemal structure, and take the references to content not found anywhere in the text as dueeither to incomplete revision or to textual lacunae.

[^82]: ${ }^{256}$ In the former case, the sign is most probably intended to indi cate the place where the text resumes its normal order. The tilted obel us ($\%$) found in the same place in the lower margin of \mathbf{A} seems to serve the same purpose, for a similar sign occurs at the beginning of the reiterated passage from XXII.6; see above, n. 84.
 ${ }^{257}$ For instance, abbreviations and ligatures have been expanded, and the shape of pi, which in some manuscripts is real ised in cursive as ϖ, has been rendered $a s \pi$.
 ${ }^{258}$ This adverb is attested elsewhere only thrice in the Delian inscriptions: IG 11.2.161 A 45, 165.22 and 23 ; cf. 163A fr. af 51 (к $\alpha \tau \alpha ́ \pi \rho о \sigma \theta \varepsilon$); LeRoy (1973: 278 n. 54).

[^83]: ${ }^{259}$ See, most relevantly, Locker (1932; 1933) and Prêtre (1997a).

[^84]: ${ }^{260}$ Translating these two occurrences of the termas a diminutive would suggest that the figures of Athena and Ajax possess a figurine of some sort.
 ${ }^{261}$ Whileit is not possible here to discuss in detail Hero's use of (diminutive) suffixation, nor to assign suffixed words to individual categories, it is worth noting that, according to LSJ s.W., thefollowing terms are used as diminutives in the Automata: (1) d $\rho \mu \varepsilon ́ v i \alpha,(2) \dot{\alpha} \sigma \tau \varepsilon \rho i ́ \sigma \kappa о$,
 $\mu \eta \rho v \mu \alpha ́ \tau \iota o v,(10) \pi \alpha v \theta \eta \rho i ́ \sigma \kappa о \varsigma,(11) \pi \varepsilon \rho o ́ v ı v$ and (12) $\tau \rho o ́ \chi ı v$. The entries for at least nos. (2), (3), (5), (6), (7), (8), (9), (10) and (11) should be corrected. A part from $\tau \rho \frac{\chi}{\chi} \downarrow \circ v$ and $\zeta \oplus \dot{\delta} \circ \mathrm{ov}$, the terms that bear a diminutive sense in the treatise are $\dot{\alpha} \lambda \nu \sigma \varepsilon i ́ \delta ı v, ~ \beta \alpha \rho \dot{\prime} \lambda \lambda ı o v, ~ \theta \nu \rho i ́, ~ к i \beta \omega \tau \alpha ́ \rho ı v$, $\sigma \pi \varepsilon \iota \rho$ ío and $\sigma \varphi \alpha \iota$ íov. Hellmann (1992: 378) cites the diminutive $\dot{\pi} \pi \sigma \pi \pi \varepsilon \iota \rho^{\delta} \iota \frac{}{}$ as occurring at III.1, but she is clearly mistaken. To the best of my knowledge, the term is nowhere attested.

[^85]: ${ }^{262}$ Cf. the similar practice as regards points and lines in Netz's translation of Archimedes' On the Sphere and the Cylinder (Netz 2004b: 7).

[^86]: ${ }^{263}$ For exceptions, see below, n. 267. Bal di and Couture generally seem to take the verb as copulative (\approx option (b^{2})), although such expressions as 'Sia una cassetta a,b,c,d’ (Baldi 20r) and ‘Sit. . . arcula $\alpha \beta \gamma \delta^{\prime}$ (Couture 247) are inherently ambiguous. Schmidt opts for option (b¹), whereas Murphy vacillates between options (a) (with or without comma) and (b^{3}).
 ${ }^{264}$ Netz's di scussion is erroneously cited by Roby (2016: 175 n. 83) as Netz (1999: 243).
 ${ }^{265}$ The exceptions to this general rule are found in cases where the geometrical entities are determined either as representative of a class of elements ('Règle lla') or in relation to their geometrical construction ('Règlellb'). For an example of the former, see XXIV. 2 [80.14], where $\dot{\eta} \chi \varepsilon i \rho \dot{\eta} \overline{\alpha \beta}$ can be understood as a representative instantiation of the hands and arms of the Greek sailors. For an example of the latter, seVII.1 [26.11], where the expression $\varepsilon \in \pi \varepsilon \zeta \varepsilon v ́ \chi \theta \omega-$ $\sigma \alpha v \alpha i \overline{\delta \varepsilon}, \overline{\delta \zeta}$ stands for * $\dot{\pi} \varepsilon \zeta \varepsilon \dot{\prime} \chi \theta \omega \sigma \alpha \nu \alpha i \overline{\delta \varepsilon}, \overline{\delta \zeta} \varepsilon v \dot{\theta} \theta \varepsilon i \alpha ı$ (or, simply, $\gamma \rho \alpha \mu \mu \alpha i ́)$ rather than for
 preceding context). On similar elliptical expressions, see below.
 ${ }^{266}$ See al so his earlier and less detailed discussion in Federspiel (1992: 15-17).
 ${ }^{267}$ The main exceptions here are XVI.1 [54.13] and XVIII.1 [58.12]. In the former case, the object has been introduced in the immedi ately preceding context. In the latter case, stylistic and syntactic constraints prevent the verb from being translated as existential, and I very much
 Federspiel's (1995: 267) interpretation of the relative pronoun in the comparable A pollonian
 appurtenance depending on an understood (existential) हैб $\tau \omega$ rather than as a complement of the noun коричй is unnecessarily convoluted.

[^87]: ${ }^{268}$ This is Federspiel's 'Règle Ic', and is amply demonstrated by the scholar in Federspie (1995: 281-5).

[^88]:
 av̉тонатотои́ $\tau \omega v$ Dindorf; de titulis vide Introductionem, pp. Ixiv-Ixxi
 $\pi \rho o ́ \tau \varepsilon \rho o v ~ A T \quad 5$ lacunam statui secutus Schmidt, qui verba ex Spir. 2.7-10 $\dot{\alpha} v \alpha \gamma \kappa \alpha i ̂ o v . . . \varepsilon$ eí $\theta \varepsilon ́ \sigma \theta \alpha ı$ dub. suppl. in app. crit., obl. Olivieri 6 бvve $\lambda o ́ v \tau ı$

 Schmidt in app. crit. 17 in om. M 19 <paivetal> Schmidt dub. in app.
 $\sigma \mu \varepsilon ́ v \omega v$ M $T^{p c s}$: $\delta \varepsilon \varepsilon \sigma \kappa \varepsilon v \alpha \mu \varepsilon ́ v \omega v ~ A ~ T a c: ~ \delta \varepsilon \varepsilon \sigma \kappa \varepsilon v \alpha \sigma \mu \varepsilon ́ v \alpha ~ G ~$

[^89]: H. Schöne $4 \pi \alpha ́ \lambda \imath v ~ \alpha u ̉ \tau o \mu o ́ t \omega c ~ h u c ~ t r a n s p o s u i ~: ~ p o s t ~ \tau \hat{v} v ~ \theta u \rho \hat{v}$ (3) a 8 < $u \check{\tau} \eta>$ Schmidt dub. in app. crit. $\dot{\alpha} \pi \alpha \rho \tau i ́ \zeta \varepsilon ı$ R. Schöne : $\dot{\alpha} \pi \alpha \rho \tau i ́ \zeta o v \sigma \alpha$ a

[^90]:

 $\delta \iota \varepsilon \varphi \eta \lambda \varepsilon \tau \omega ิ v$ vel $\delta \iota \varepsilon \varphi \eta \lambda \eta \tau \omega \hat{v}$ codex a Baldi adhibitus: $\delta \varepsilon \varepsilon \varphi \eta \lambda o \tau \omega ิ v$ (sic) Baldi

[^91]:

 prob. Schmidt $\tau \rho o ́ \pi o v ~ a ~: ~ \tau o ́ \pi o v ~ B r i n k m a n n ~ \pi o ́ v \tau ~\left(\alpha{ }^{2} \mathrm{~A}^{\Phi \rho} \mathrm{G}: \pi \alpha ́ v \tau \eta \mathrm{M}\right.$:

 $\lambda o ́ v \tau \varepsilon \varsigma$ H. Schöne : $\lambda \alpha \beta$ óv $\tau \varepsilon$ a : $\pi \varepsilon \rho ı \beta \alpha \lambda o ́ v \tau \varepsilon \varsigma ~ S c h m i d t$ dub. in app. crit.

 T $\pi \lambda \varepsilon$ íova A G: $\pi \lambda \varepsilon$ íov M T

[^92]:
 H. Schöne $2 \pi \alpha \rho \varepsilon \kappa \tau \varepsilon \tau \alpha \mu \varepsilon ́ v \eta \nu$ Schmidt: $\pi \alpha \rho \varepsilon \nu \tau \varepsilon \tau \alpha \mu \varepsilon ́ v \eta \nu \mathrm{G}: \pi \alpha \rho \varepsilon v \tau \varepsilon \tau \tau \alpha \mu \varepsilon ́-$ $\nu \eta \nu \mathrm{A}^{\mathrm{pc}}: \pi \alpha \rho \varepsilon \nu \tau \alpha \tau \tau \alpha \mu \varepsilon ́ v \eta \nu \mathrm{~A}^{a c}: \pi \alpha \rho \varepsilon \nu \tau \varepsilon \tau \alpha \mu \varepsilon ́ v o \nu \mathrm{M}: \pi \alpha \rho \varepsilon \nu \tau \varepsilon \tau \tau \alpha \mu \varepsilon ́ v o \nu \mathrm{~T}$ 4 oủ $\delta \varepsilon v i ̀ ~ \delta \varepsilon i ̂ ~ G p c(u t ~ v i d e u r) ~: ~ o u ̉ \delta \varepsilon v i ̈ ̈ ~ \delta \varepsilon i ̂ ~ A: ~ o v ̉ \delta \varepsilon v o ̀ s ~ i ̂ ~ \delta \varepsilon i ̂ ~ G a c ~: ~ o u ̉ \delta \varepsilon v o ̀ s ~ \delta \varepsilon i ̂ ~ M ~$

 om M 13-14 $\pi \rho \circ \sigma \eta \gamma к \nu \lambda \omega \mu \varepsilon ́ v \eta \nu$ Brinkmann : $\pi \rho \circ \sigma \eta \lambda \omega \mu \varepsilon ́ v \eta \nu$ a $15 \pi \varepsilon \rho 1-$

[^93]:

[^94]:

 R. Schöne $\kappa \alpha \tau \varepsilon ́ \sigma \tau \rho \omega \tau \alpha \iota \sigma \alpha v i ́ \delta ı \alpha$ A GM: $\kappa \alpha \tau \varepsilon ́ \sigma \tau \rho \omega \tau \alpha ı \sigma{ }^{\alpha \nu} T$ (î̀ıu addito in mg.)

 $\delta \omega v$ del. Schmidt dub. in app. crit. 20 кíova <゙ккбтоv>R. Schöne

[^95]:

 Diels : $\pi \varepsilon \rho \grave{̀}$ ко́к $\kappa \varrho$ a 9 -10 $\pi \varepsilon \rho ı \varepsilon \lambda \varepsilon v ́ \sigma о v \tau \alpha ı ~ A G: \pi \varepsilon \rho ı \varepsilon \lambda \alpha ́ \sigma o v \tau \alpha ı ~ T: \pi \varepsilon \rho ı \varepsilon-$
 hunc locum suspectum habuerunt viri docti : $\sigma \tau \alpha \theta \varepsilon ́ v \tau \omega v<\tau \omega ิ \nu\lceil\omega \delta i ́ \omega v$ к $\alpha i ̀$
 $\tau \omega ิ v$ グ $\chi \omega v$ Brinkmann : $\sigma \tau \alpha \theta \varepsilon ı \sigma \hat{v} \tau \omega ิ v \beta \alpha \kappa \chi \omega ิ v$ Schmidt dub. in app. crit. : an

 ג̀v α ю

[^96]: $2 \gamma \alpha ̀ \rho \gamma \varepsilon v \eta \theta \varepsilon ́ v \tau \omega v \mathrm{GMT}: \gamma \grave{\rho} \rho$ (sic) $\gamma \varepsilon \gamma \varepsilon v \eta \theta \varepsilon \dot{\varepsilon} v \tau \omega \nu \mathrm{~A}$ (post $\gamma \varepsilon$ duabus litteis erais)

 $\tau \varepsilon \mathbf{a} 15 \dot{\omega} \varsigma$ del. Hildebrandt < Schmidt dub. in app. crit. ко́кдоv A GT : ко́кдоv M 16 ov̉ A G : каì M

 A GT

[^97]:

[^98]: $1 \pi \varepsilon \rho ı \tau \varepsilon \theta \varepsilon i ̂ \sigma \alpha$ A G M T²mg : $\tau \varepsilon \theta \varepsilon i ̂ \sigma \alpha \mathrm{~T}^{1}: \pi \varepsilon \rho \imath \tau \varepsilon \theta \varepsilon i ̂ \sigma \alpha<\alpha \hat{\alpha} \lambda \lambda \eta$ Prou, obl.
 $\sigma \varepsilon 1>$ Schmidt dub. in app. crit. 3-4 $\alpha \pi$ о $\delta \varepsilon \delta o ́ \sigma \theta \omega \ldots \kappa \alpha \tau \alpha \varphi \varepsilon \rho о \mu \varepsilon ́ v \eta$ om. $\mathrm{T}^{1 \text { (pro }}$
 4 бvvєұоиє́vov A GM: [***] T : $\sigma v \gamma \kappa \varepsilon \kappa о \imath \omega \omega \mu \varepsilon ́ v o v ~ S c h m i d t ~ d u b . ~ i n ~ a p p . ~$

 Schmidt $\quad \mu \eta \rho v \mu \alpha ́ \tau \iota v \mathbf{a}: \mu \eta \rho v \mu \alpha ́ \tau \iota \alpha$ Schmidt dub. in app. crit. $13 \pi \rho o \sigma-$ ко $\lambda \lambda \dot{\sigma} \sigma \alpha \tau \varepsilon \varsigma$ AbAcBbLaLcLdR²TaTbmg : $\pi \rho о \sigma \kappa о \lambda и ́ \sigma \alpha v \tau \varepsilon \varsigma ~ A ~ G T e d . ~$ princ. : $\pi \rho о \sigma \kappa о \lambda \alpha ́ \sigma \alpha v \tau \varepsilon \varsigma ~ M ~: ~ \pi \rho о \sigma \kappa \omega \lambda v ́ \sigma \alpha v \tau \varepsilon \varsigma ~ P r o u ~ \dot{~} \pi \varepsilon ı \lambda \eta ́ \sigma o \mu \varepsilon v$ del. Brinkmann : om. Pa 15 an кגì <ỡ $\tau \varsigma>$? 16-20 દ̇ $\alpha v . . . \pi \rho о \alpha \iota \rho ́ \mu \varepsilon \theta \alpha$ interpolata esse cens. Schmidt, obl. Olivieri 17 iò AGT : iòv M
 Brinkmann, $\delta \varepsilon ̀ ~ d e l e v i ~: ~ \delta \alpha \mu o ́ v \omega v ~ a ~ \chi \rho o ́ v o v \varsigma ~ a: ~ \chi о \rho o v ̀ \varsigma ~ S c h m i d t ~ d u b . ~ i n ~ a p p . ~$ crit

[^99]: vov F : correxi tòv Schmidt: iǹv a $\overline{\mathrm{G}} \mathrm{AGT}: \bar{\rho} \mathrm{M} \quad 7$ ó Schmidt dub. in

 $: \overline{\eta \kappa \theta} \mathrm{Ph}^{m g}: \overline{\theta \eta \kappa}$ Schmidt dub. in app. crit. 14 iǹv $\overline{v \xi}<\tau \lambda \varepsilon v \rho \alpha ̀ v>S c h m i d t$ dub. in app. crit. $\mathbf{1 5}$ тov̂ $\overline{\text { o }} \mathbf{a}$: τ ô̂ $\bar{\sigma}$ Aa : $\tau \hat{\varsigma} \varsigma \overline{\delta o}$ Schmidt dub. in app. crit.

 20 an $\{\sigma \eta \mu \varepsilon$ ícı $\}$? $21 \dot{\eta}^{1}$ om M

[^100]:

 ópí̧ov ıı>Schmidt dub. in app. crit. $13 \gamma \grave{\alpha} \rho$ om. M T $14 \dot{\varepsilon} \kappa \beta \alpha \lambda \lambda$ о $\mu \varepsilon ́ v o v ~ A ~$
 Schmidt dub. in app. crit. $20 \tau \hat{v^{1}}{ }^{1}$ om. M T $\tau \hat{v^{2}}{ }^{2}$ delevi : suspectum
 A MT : кıvov μ évov G

[^101]: $1 \pi \rho o \omega \sigma \mu o ̀ v ~ A T: \pi \rho o \omega \rho \iota \sigma \mu o ̀ v ~ G M^{1}: \pi \rho o o \rho ı \sigma \mu o ̀ v M^{2 s 1} \quad 6$ тov̀s ed. princ. : tòv a 7 ๆ̊ M : om. AGT 9 тov̀s ed. princ. : tòv \mathbf{a} lacunam statui

 13-14 к $\alpha \tau \alpha \beta \beta \alpha ́ \sigma \omega \mu \varepsilon \nu ~ G M: ~ \kappa \alpha \tau \alpha \beta \eta \beta \alpha ́ \sigma \omega \mu \varepsilon v ~ A: ~ к \alpha \tau \alpha \beta ı \beta \alpha ́ \sigma \alpha \mu \varepsilon v ~ T ~ 15 ~ \overline{\eta \theta}$

 $\pi \alpha \rho \alpha \lambda \lambda \eta \lambda о \gamma \rho \alpha \dot{\alpha} \mu \mu о v$ Schmidt dub. in app. crit.

[^102]: 1 uovà ς PbVd: $\mu o ́ v a c, ~ a ~: ~ \mu o ́ v o v ~ A b B b L a L c L d ~ 1-2 ~ \tau \varepsilon \ldots k a i ̀ ~ d e l . ~$

 textu: غ̇к $\delta \varepsilon \theta \dot{v} v \tau \iota$ <̇v>Brinkmann 11 ov̉ delevi $\lambda \varepsilon \lambda \eta \theta o ́ \tau \omega c ~ A G T: \lambda \varepsilon \lambda \eta-$

[^103]: $\pi \varepsilon \lambda \varepsilon \kappa i v \omega v$ A G M ${ }^{\text {pss }} \mathrm{T}: \delta \grave{\alpha} \pi \varepsilon \lambda \varepsilon \kappa i v \omega \mathrm{M}^{x}$: $\delta 1 \alpha \pi \varepsilon \lambda \varepsilon \kappa i ́ v \omega$ AdPh : $\delta 1 \alpha \pi \varepsilon \lambda \varepsilon ́ \kappa ı v o v$

 Schmidt : $\overline{\eta \theta} \mathbf{a}: \overline{\kappa \theta} \mathrm{Ad} \quad \overline{\kappa \lambda \mu \nu} \mathrm{Vd}$ (secanda iteratione) : $\overline{\lambda \kappa} \bar{\mu} \bar{a} \quad \tau \rho o x i ́ v=\mathbf{a}$: corr.

 $16 \delta ı \mu \varepsilon \mu \eta \rho \nu \mu \varepsilon ́ v \alpha$ Ta : $\delta ı \mu \varepsilon \varepsilon \mu \eta \rho \eta \mu \varepsilon ́ v \alpha$ A GT : $\delta \iota \mu \varepsilon \mu \varepsilon \rho \iota \sigma \mu \varepsilon ́ v \alpha$ M $20 \pi \alpha ́ \chi \varepsilon-$
 Schmidt

[^104]:
 T: îooı A G 15-16 $\pi \varepsilon \rho \varepsilon \varepsilon \lambda \eta \theta \varepsilon i ̂ \sigma \alpha G: \pi \varepsilon \rho ı \varepsilon \lambda \eta \theta \hat{\eta} \sigma \alpha \mathrm{~A}: \pi \varepsilon \rho \varepsilon \varepsilon \lambda \eta \varphi \theta \varepsilon \hat{\sigma} \alpha \mathrm{M}$

 $27 \tau \grave{c} \varsigma$ A M T : $\tau \grave{\nu}$ G

[^105]:

 tıov... $\pi \lambda \imath v \theta$ íov del. Schmidt ε èv A MT : om G : oùv Schmidt dub. in app.
 delevi secutus Schmidt, qui suspecta habuit ista verba (sed vide ad 38.15-40.2
 $T^{p c}$: cruces posui secutus Schmidt ('ő $\pi \omega \varsigma$ spurium'; vide commentarium ad
 $\mu \varepsilon v>$ Brinkmann 21 бп入ovótı A GM: $\tau \rho о \chi$ ติv G $24 \tau \hat{c}$ om M T

[^106]:

 Hildebrandt $8-9 \kappa \alpha \theta^{\prime}$ ôv.... ä́s. ω aut delere (recepto $\left.\tau р о ́ \pi o v\right)$ aut transponere

 aủtov̂ M 17-42.3 ai.... тpoxóv de. Schmidt, prob. Olivieri tov̀c $\mathrm{A}^{\Phi} \mathrm{M}$:

[^107]: a $\delta i \pi \lambda \hat{\eta} A^{p c} G M T: \delta i \pi \lambda o i ̂ A^{\infty} \quad 3 \mu \varepsilon \sigma o \lambda \alpha \beta o v ิ \sigma \alpha$ a : $\mu \varepsilon \sigma о \sigma v \lambda \lambda \alpha \beta o v ิ \sigma \alpha A a$

 post hoc verbum lacunam dub. statuit Schmidt in app. crit $\dot{\alpha} \pi \mathrm{o} \delta \varepsilon \delta o ́ \sigma \theta \omega \mathrm{~A}$

[^108]:

 $\mathrm{G}: \delta \grave{\Sigma} \mathrm{M}:\left[{ }^{* * *}\right] \mathrm{T} \quad 13 \kappa \alpha \tau \alpha ̀ \mathrm{AGM}:\left[{ }^{[* *}\right] \mathrm{T}: \mu \varepsilon \tau \grave{\alpha}$ Brinkmann $\tau \alpha ̀ \varsigma \mathrm{Acp} \mathrm{M}$

 סv́o graviter interpunx. A GT et ed. princ., leviter Schmidt : non interpunx.

[^109]:
 interpunx. a leviter ed. princ. : non interpunx. Schmidt $\mathbf{1 - 2} \dot{\eta} \mu \kappa к к \lambda$ íov $\pi \varepsilon \rho \iota \varphi \varepsilon ́ \rho \varepsilon ı \alpha$ inter cruces posuii $\quad \mathbf{1 - 2} \dagger \pi \varepsilon \rho \iota \varphi$ ह́ $\varepsilon ı \alpha$ Schmidt, quii $\pi \varepsilon \rho \iota \varphi \varepsilon ́ \rho \varepsilon ı \alpha \nu$ dub. coni. in app. crit. 2 post $\pi \varepsilon \rho ı \varphi \varepsilon ́ \rho \varepsilon ı \alpha$ non interpunx. A G T et ed. princ. : graviter interpunx. M et Schmidt $3 \gamma \varepsilon \gamma \circ v_{\varepsilon ́ \tau \omega} A^{x} M T^{x}: \gamma \varepsilon \gamma o v \varepsilon ́ \theta \omega T^{p c s}$: $\gamma \varepsilon v \varepsilon ́ \sigma \theta \omega \mathrm{~A}^{\mathrm{pc}} \mathrm{G}: \gamma \varepsilon \gamma 0 \mathrm{v} \varepsilon \varepsilon^{\tau} \omega$ < $\delta \dot{\varepsilon}>$ vel <oủv> Schmidt dub. in app. crit: an
 Schmidt in adn. crit. et Olivieri : $\overline{\mathrm{q}} \mathrm{A} \mathrm{G}: \overline{\mathrm{G}} \mathrm{S}$ M T : ¢, T Schmidt $\mathbf{8}$ ó $\tau \varepsilon$ ó

 [***] T $\quad 17 \pi \varepsilon \rho \varepsilon \varepsilon \lambda \lambda \eta \theta \varepsilon i ̂ \sigma \alpha$ A G : $\pi \varepsilon \rho \varepsilon \varepsilon \lambda \lambda \eta \varphi \theta \varepsilon i ̂ \sigma \alpha$ M : $\pi \varepsilon \rho 1 \varepsilon \lambda \eta \eta^{[* * *] ~ T ~}$

 om M^{1} каì $\mathrm{M}^{2 s}:$ om $\mathrm{AGM}^{1} \top \quad \bar{\theta} \mathrm{AG}: \bar{\theta} \mathrm{M}^{1}$

[^110]:

 M : [***] ${ }^{[* \omega} \mathrm{T}: \kappa \alpha \tau \varepsilon \chi \varepsilon ́ \sigma \theta \omega$ vel $\kappa \alpha \tau \varepsilon ́ \chi \varepsilon \tau \alpha » ~ B r i n k m a n n ~ 12 ~ \alpha ́ \pi o ́ ~ a: ~ i ́ \pi o ́ ~$

 (sic) Prou, qui etiam àvoryó $\mu \varepsilon$ vov coni. ónò A GM ${ }^{2 s}$: à π ò M^{1} : [***] T

[^111]: 5 «кגi>Schmidt 9 бغ̀ <<<ì tov̂to>Schmidt dub. in app. crit $\quad 9-10 \theta \omega \rho \alpha ́-$
 Schmidt, qui $\tau \varepsilon \tau \rho \alpha ́ \gamma \varphi v o v$ dub. coni. in app. crit. 14 عv̉ap $\mu o ́ \sigma \tau \omega \varsigma ~ A{ }^{c \rho} G M$:

 $\sigma \tau \rho о \varphi \omega \mu \alpha ́ \tau \iota \alpha \mathrm{~A}$

[^112]: 1 <九ò $\theta \omega \rho \alpha ́ \kappa ı v>$ supplevi 2 к $\alpha \tau \varepsilon ́ \chi \varepsilon \tau \alpha l ~ a: ~ c o r r . ~ H a a s e ~ \mu \grave{~<\alpha u ̉ \tau o ́ \mu \alpha \tau \alpha>~}$

 Schmidt dub. in app. crit. $\mathbf{1 0} \dot{\text { ó}}^{2}$ om. MT $\mathbf{1 1 - 1 2}$ тò ưчоя \mathbf{a} : кро́тароv Schmidt dub. in app. crit $\mathbf{1 3}$ ovitoc om M T ó A G : ò̀ MT tov̂tov $A^{p c}$

 $\tau \varepsilon \tau \circ \rho v \varepsilon v \varepsilon ́ \sigma \theta \omega$ a : corr. Haase 18 عic... $\sigma \omega \lambda \hat{\eta} v o \varsigma$ del. Schmidt $\hat{\jmath} \varsigma$ A G M :
 غ̇лєıдєí $\theta \omega \mathrm{M}$

[^113]:

 T 17 б $\tau \varepsilon v o ́ \tau \alpha \tau o v ~ S c h m i d t: ~ \sigma \tau \varepsilon \gamma v o ́ \tau \alpha \tau o v ~ a ~ 19 ~ \alpha ̉ v \varepsilon v \varepsilon \chi \theta \not ́ \sigma o v \tau \alpha ı ~ M ~: ~ \alpha ̉ v \varepsilon-~$
 [***]T: $\mu \varepsilon \gamma \dot{\alpha} \lambda \eta \varsigma$ Brinkmann

[^114]: T 5-8 ${ }^{\prime \prime} \pi \alpha \xi \ldots \pi$.. 1 кiv delenda dub. cens. Schmidt, obl. Olivieri 7 post $\pi \varepsilon \rho \iota \varphi$ ह́p ε lacunam suspicor 9 каì om M T 10 тov̂ ${ }^{1}$ A GM : бои̂ T

[^115]: $\mathbf{1} \pi \rho \circ \sigma \delta \varepsilon i ̂ \tau \alpha \iota \mathbf{a}$: $\pi \rho \circ \sigma \delta \varepsilon i ̂ ~ S c h m i d t ~ d u b . ~ i n ~ a p p . ~ c r i t . ~ 2 ~ к ı v \varepsilon i ̂ \sigma \theta \alpha ı, ~<o ́ \tau \alpha v ~ \pi \varepsilon \rho i ̀ ~$

 $\mu о \chi \lambda ı \kappa \hat{v} \delta \tilde{\eta} \lambda \alpha ́$ ह́ $\sigma \tau \iota ~ B r i n k m a n n ~ \delta \eta ̀ ~ p o s t ~ \gamma \alpha ̀ \rho ~ t r a n s p . ~ d u b . ~ S c h m i d t ~ i n ~ a p p . ~$
 et Olivieri $\quad \gamma \grave{\alpha} \rho \mathrm{A}^{c p} \mathrm{G}$: om $\mathrm{M}:\left[{ }^{* * *}\right] \mathrm{T}$: delendum dub. cens. Schmidt (sed vide notam praecedentem) ì om M T tov̂ δ ovv́óov del. Brinkmann
 $\mu \varepsilon i ́ \zeta o v ı \lll ́ \kappa \lambda \omega>$ Schmidt dub. in app. crit. : тoîc $\mu \varepsilon i ́ \zeta o \sigma ı$ Schmidt in adn. crit. 10-62.20 totum hoc caput interpolatum cens. Olivieri ì om. M $11<\tau \hat{\varsigma} \varsigma \pi$ орвíac> Schmidt $\quad \mathbf{1 2 - 1 3} \delta 1 \alpha \pi \varepsilon \varphi \rho \alpha \gamma \mu \varepsilon ́ v o v ~ A ~ G: ~ \delta 1 \alpha \pi \varepsilon \varphi \rho \alpha \gamma \mu \varepsilon ́ v \omega v$

[^116]:

[^117]: $1 \pi \varepsilon p i ̀ ~ \sigma \tau \alpha \tau \varrho ิ v$ av̉rohátev A G (hunc titulum ex Philoni Byzantino promptum esse suspicor, nisi hoc loco interpol atum fuerit; vide Introductionem, pp. Ixx-

 ante kaıórçóv leviter interpunx. A G et Haase, graviter Prou ≈ 1 A GM: [***] T: $\delta \delta$ ह̀ ve $\tau \varepsilon$ Prou ante кoil leviter interpunxi, graviter Schmidt: non interpunx. A G M, Haase et Prou 9 4uà λ ov> Susemihl dub. et Dids
 $11<\dot{\rho}>$ Schmidt dub. in app. crit. $\tau \hat{v} \mathrm{~A} \mathrm{G}$: кcì MT : aut delere aut in $\alpha \hat{v} \tau \bar{\varphi}$

 $\mathrm{M}^{\infty}:\left[{ }^{* * *}\right]_{\omega} \mathrm{T} \quad 19$ ö $\sigma \pi \varepsilon \rho$ suspectum habuit Schmidt, qui tamen post hoc verbum lacunam suspicatus est «iyep θ ह̀v>supplevi

[^118]:

 Schmidt dub. in app. crit. $\quad \mathbf{5} \dot{\eta}<{ }^{* * *>\pi \text { оínбıৎ Schmidt, qui < } \tau \hat{\omega} v \sigma \tau \alpha \tau \omega ิ v>~}$

 $\{\tau \grave{\alpha}\}$? $13 \tau \alpha v ิ \tau \alpha$ Weil : $\tau \alpha ̀ \alpha v ̉ \tau \alpha ̀ ~ a: ~<\tau \alpha ́ v \tau \alpha>\tau \alpha \hat{v} \tau \alpha$ Schmidt dub. in app.

 Weil $\quad 17 \tau \hat{\tau} v$ om G $\quad 18 \pi \rho о \theta \eta \sigma o ́ \mu \varepsilon \theta \alpha A^{c p} G^{c p} \mathrm{M}: \pi \alpha \rho \alpha \theta \eta \sigma o ́ \mu \varepsilon \theta \alpha$

[^119]: $1 \pi \varepsilon \rho \grave{\mathrm{i}} \mathrm{M}: \pi \alpha \rho \alpha ̀ \mathrm{~A} \mathrm{G} \mathrm{:} \pi \alpha \rho^{\prime} \mathrm{T} \quad 2$ lacunam statuit Schmidt secutus H. Schöne,
 dub. in app. crit. : nullam lacunam agnovit R. Schöne : an <ौદ́yદıv tov̂ סo-

 delendum? < $\dot{\varepsilon}>\tau \rho i ́ \tau \eta v$ Schmidt dub. in app. crit $\langle\delta \dot{\varepsilon}>\operatorname{Prou} 15 \dot{\eta} \mu \hat{\alpha}$,
 кท́v a

[^120]: ఢov $\tau \alpha>$ Schmidt dub. in app. crit. 3 «каi>R. Schöne $\pi о \lambda o ́ v ~ A ~ G: ~ \pi о \lambda \lambda и ́ v ~$

 interpunx. A G M et cett edd. 11 dè huc transposuí cum Schmidt (dub. in

 interpunx. Schmidt 13 ка兀ò Haase : каі̀ a 14 к $\lambda \varepsilon \iota \sigma \theta$ ह́vтоц Prou : к $\lambda \varepsilon \iota-$

 Prou: vinò a 19 post ह̇ $\varphi \alpha$ ívšo graviter interpunx. A GM, leviter ed. princ. et Prou 20 post $\begin{array}{r} \\ \chi o ́ \mu \varepsilon v o c, ~ l e v i t e r ~ i n t e r p u n x . ~ W e i l, ~ g r a v i t e r ~ e d d . ~: ~ n o n ~\end{array}$ interpunx. A G M $\quad \mu \eta \chi \alpha v \grave{~ P r o u ~ e t ~ R . ~ S c h o ̈ n e, ~ r e c . ~ W e i l ~: ~} \mu \eta \chi \alpha v \hat{c}$ A GM :
 R. Schöne kaì del. Weil post ε ह̇ ξ íp $\theta \eta$ non interpunx. M et Prou : graviter interpunx. A G, leviter ed. princ. \& Schmidt

[^121]: 3 «uùrónucov> Schmidt secutus Haæse (huc transposito ex post γ iviviau) 6 «rìv>Schmidt dub. in app. crit. $\quad 7 \delta a ̈ v(=\delta \grave{\eta} a ̈ v)$ Brinkmann : $\delta \check{c}$ àv a: δ '

 <ưvvo> tú ${ }^{\prime}$ ov Schmidt dub. in app. crit. $\pi \rho \hat{\rho} \tau 0 v \mathrm{Bb}: \hat{\alpha}^{v} \mathrm{~Tb}: \bar{\alpha} \mathbf{a} \quad \bar{\varepsilon} \varphi$, Brinkmann : èmi a: π epi Schmidt dub. in app. crit. <où>Brinkmann tò A GM : tòv Schmidt dub. in app. crit. 11 éxouévnv Schmidt dub. in app. crit. : Ėoouévnv a : ह̇̃ouévnv Prou тòv $^{2} \mathrm{~A}^{\mathrm{cP}} \mathrm{M}$: iò $\mathrm{G} \quad 13 \tau \varepsilon$ de. Schmidt 13-14 ধ̌бтı...жарако́д入пииа delevi cum Schmidt (dub. in app. crit.), prob.
 in app. crit $15-16 \pi \rho о б к о \lambda \lambda \hat{\omega} \mathrm{~A}$ G: проко $\lambda \lambda \hat{\omega} \mathrm{T}: \pi \rho о б к о \lambda \omega \hat{\omega}$ M $16 \tau \alpha-$

[^122]: 1 caput distinx. Schmidt <Tav̂t $\mu \grave{\varepsilon} v$ ov̂v> Schmidt: $\varangle \kappa \alpha \grave{~} \tau \alpha v ̂ \tau \alpha \mu \varepsilon ̀ v>$
 Weil 2 cruces posui secutus Weil : fort. transposito in $\mu \mathrm{ivv}$ post $\langle\delta \dot{\varepsilon}>$ totus

 interpunx. A G M ed. princ. et Prou : leviter interpunx. Schmidt $\pi \omega \varsigma \mathbf{a}: \pi \hat{\omega} \varsigma$ AcLbLdOTaVd post $\pi \omega ̂ \varsigma$ lacunam statuit Schmidt, qui <éø $\tau>$ vd < $\delta v v \alpha-$ тóv ह̇oтı>dub. suppl. in app. crit. 3 post $\tau \varepsilon \kappa \tau \alpha i ́ v o v \tau \alpha$ leviter interpunx. G et
 AcAd : $\pi \varepsilon \rho \varepsilon \varepsilon \mu \varphi \alpha v i ́ \sigma \alpha ı ~ A G T$: $\pi \varepsilon \rho i ̀ ~ \varepsilon ̇ \mu \varphi \alpha v i ́ \sigma \alpha \varsigma ~ M ~: ~ \pi \varepsilon \rho i ̀ . . . ~ \varepsilon ̇ \mu \varphi \alpha v i ́ \sigma \alpha ı ~$ Brinkmann : $\pi \rho о \sigma \varepsilon \mu \varphi \alpha v_{i ́ \sigma \alpha ı}$ Schmidt dub. in app. crit. : $\pi \alpha \rho \varepsilon \mu \varphi \alpha v_{i ́ \sigma \alpha ı}$ Haase $\delta \varepsilon i ̂ ~ W e i l ~: ~ \delta \varepsilon ̀ ~ A ~ G M, ~ q u o ~ s e r v a t o ~ l a c u n a m ~ p o s t ~ h o c ~ v e r b u m ~ s t a t u i t ~ S c h m i d t ~: ~$ $\delta \check{\varepsilon}$ < $\delta \varepsilon i>$ Schmidt dub. in app. crit. $\quad \mathbf{6} \pi \theta \alpha v \omega \tau \alpha ́ \tau \alpha \varsigma$ McOPbTaVd : $\pi \varepsilon \imath \theta \alpha-$

 $\rho \varepsilon>{ }^{\circ}$ I Schmidt dub. in app. crit. post $\sigma \omega ́ \mu \alpha \sigma$ l leviter interpunx. A G et Prou : non interpunx. M ed. princ. et Schmidt post àphévia non interpunx. A G M et ed. princ. : leviter interpunx. Schmidt et Prou 14 غ̇три́лn $\sigma \alpha$ A GMpc:

 ท๊ $\rho \alpha \sigma \mu о \sigma \alpha$ T

[^123]: dub. in app. crit. 3 post $\delta \varepsilon$ fort. lacuna statuenda, in qua <iǹv $\chi \varepsilon i ̂ p \alpha>$ vel
 scripsi secutus Schmidt, quii <òv>post кa兀ò dub. suppl. in app. crit. : $\tau 0 \hat{\mathrm{~A}}$ GM, quo servato $<\omega$ oíou> post hoc verbum dub. suppl. Schmidt in app.

 app. crit. 17-18 кат $\quad \beta \alpha \rho \eta^{\sigma} \sigma \omega \mu \varepsilon v ~ T b ~: ~ к \alpha ́ \tau \omega ~ \beta \alpha \rho \eta ́ \sigma \omega \mu \varepsilon v ~ A ~ G ~ M ~$

[^124]:

 $\mu \eta \kappa \varepsilon ́ \tau \iota \lessdot \prec о \nu \lambda \omega ́ \mu \varepsilon \theta \alpha>\quad \dagger \mu \eta \kappa \varepsilon ́ \tau \iota$ Schmidt $10 \dot{\alpha} \pi о \sigma \chi \alpha \sigma \theta \varepsilon i ̂ \sigma \alpha$ om. T cruces

 : $\lambda \varepsilon$ íneı M^{mg} (de ordine capitum vide ad 74.3) <ov̉v>Prou $\tau \varepsilon \kappa \tau 0 v \varepsilon v ́ o v \tau \alpha$,

 $\chi \rho \eta ́ \sigma \alpha \nu \tau \varepsilon \varsigma G M^{a c}$

[^125]:

 T $\quad 8-9$ кр $\alpha \tau \eta ́ \sigma \omega \mu \varepsilon v A^{c p} G M^{\propto}: \kappa \alpha \tau \alpha \theta \hat{\omega} \mu \varepsilon v$ Schmidt dub. in app. crit. 10 post $\dot{\alpha} \varphi \hat{\omega} \mu \varepsilon \varepsilon$ graviter interpunx. A G M ed. princ. et Prou, leviter Schmidt

 Schmidt dub. in app. crit: : $\pi \rho \circ \tau$ ह́ ρ A GM 15 oủv \ll ov̂to> Schmidt dub.

 $\pi \rho \circ \varepsilon ́ \chi \eta$ Schmidt dub. in app. crit. 21 ह̇ $\pi \ldots o v \rho \omega$ A G: غ̇лì oő $\rho \omega$ M

[^126]: 1 к $\alpha \tau^{\prime}$ A G Mcp : an $\pi \alpha \rho^{\prime}$? $\quad 2 \tau \rho v \pi \hat{\omega}$ Prou: $\tau \rho v \pi \hat{\alpha} v A^{a c} G: \tau \rho v \pi \stackrel{\rightharpoonup}{\omega} A^{p c}($ ut videtur) : $\tau \rho \dot{\pi} \pi \eta \mu \alpha$ T : om. M $\quad \pi \alpha \rho \alpha ̀ ~ A ~ G M ~: ~ a n ~ к \alpha \tau \alpha ̀ ? ~ 3 ~ \delta ı \alpha \rho \rho ı v \hat{? ~ P r o u: ~} \delta ı \alpha \rho ı \hat{\omega}$ A GM ${ }^{\alpha c}$ T : $\delta \iota \alpha \kappa \rho ı v \hat{\omega} M^{p c s} \quad 4$ ö $\pi \omega \varsigma \pi \lambda \varepsilon \varepsilon^{i} \omega$ inter cruces posui $\dagger \pi \lambda \varepsilon \varepsilon^{i} \omega$ Schmidt, qui $\lambda \varepsilon 1 \omega \hat{\omega}$ dub. coni. in app. crit. : $\lambda \varepsilon \varepsilon_{i ́ \omega \tau \alpha l}$ (sic) ed. princ. (dub. in mg.) : an < غ̇лі̀ $\pi \lambda \varepsilon i ̂ \sigma \tau o v>\lambda \varepsilon \uparrow \omega \tau \alpha l$ vel sim? : post $\pi \lambda \varepsilon$ हí ω non interpunx. Prou lacunam statui $\pi \varepsilon \rho$ ì тov̂тo $A^{p c} G M: \pi \varepsilon \rho i ̀ ~ \tau o v ́ \tau o v ~ A^{\alpha}: \dagger \pi \varepsilon \rho i ̀ ~ \tau o v ̂ \tau o ~ S c h m i d t, ~ q u i i ~ \pi \alpha \rho \alpha ̀ ~$

 tantum $\pi \varepsilon \rho i ́ \sigma \varphi \gamma \xi \beta_{\imath}$ dub. coni. in app. crit. post $\alpha \gamma \kappa v i \lambda \eta \nu$ graviter interpunx. Prou, leviter ed. princ. < $\delta \varepsilon i ̂ ~ \delta \varepsilon ̀>~ \kappa \alpha i ̀ ~ P r o u ~ 5-7 ~ \delta ı \alpha ̀ ~ \tau \rho v \pi n \mu \alpha \tau i ́ o u . . . ~ \delta ~ o ̀ ̀ ~ o m . ~$
 vıov post каì (5) transponenda dub. cens. Schmidt, mutato $\pi \varepsilon \rho o ́ v ı v$ in $\pi \varepsilon \rho o ́-$ $v \eta v \quad \delta \iota \omega \sigma \alpha \varsigma$ delendum dub. cens. Schmidt $\quad 9-10 \pi$ тivaкı বধєүрациє́v $\alpha>$
 $\sigma \alpha ı$ vel tantum ěкколабаı Schmidt dub. in app. crit. $\mathbf{1 1} \dot{\alpha} \pi о \delta \varepsilon \delta o \mu \varepsilon ́ v \eta v A^{c p}$
 $\pi \tau o v \tau \alpha$ Schmidt dub. in app. crit: : غ̀ $\pi \kappa \kappa \alpha \lambda v \pi \tau o ́ \mu \varepsilon v \alpha$ A GM 13 кגil 1 om G
 (mutato $\lambda \alpha \beta$ óv (14) in $\lambda \alpha \beta \varepsilon i ̂$) Schmidt dub. in app. crit. $14 \lambda \alpha \beta$ óv A GT : $\lambda \alpha \beta \omega \nu \mathrm{M}$

[^127]: бєाv $\mathrm{A}^{\mathrm{Cp}} \mathrm{M}$: $\alpha v \tau \iota \varphi \rho \alpha ́ \sigma \sigma o v \mathrm{G}:\langle\delta \varepsilon i ̂>~ \alpha ̀ v \tau \iota \varphi \rho \alpha ́ \sigma \sigma \varepsilon ı v ~ v e l ~ t a n t u m ~ \alpha ̀ v \tau i ́ \varphi \rho \alpha \sigma \sigma \varepsilon ~$ Schmidt dub. in app. crit $\quad \sigma \alpha v_{i ́ \sigma i v ~} \mathrm{~A}^{\mathrm{P}} \mathrm{GM}$: $\sigma \alpha v i \delta i ́ \varphi$ Schmidt dub. in app.
 delevi cum Schmidt (dub. in app. crit.) $\dot{\varepsilon} v \mathbf{a}$: $\dot{\varepsilon} \pi^{\prime}$ Prou 4 <к $\alpha \dot{\alpha} \pi \varepsilon \rho>$

 $\pi \rho o ́ \sigma \theta \varepsilon v \mathrm{~A}$ GM 13 î $\delta i ́ \omega \varsigma \mathrm{~A}^{c p} G$: ỉíov M oîov $\pi \alpha \rho \alpha \sigma \tau \alpha ́ \delta \omega v \mathrm{~A}^{(\omega v}{ }^{\text {cp })} \mathrm{GM}$: oí $\alpha \pi \alpha \rho \alpha \sigma \tau \alpha ́ \delta \iota \alpha$ Prou : an delenda ut glossema? 14 ह̀v AbAcF LdPe ${ }^{\text {pcs }}$: غ̀к

 $\pi \rho о \sigma \kappa \varepsilon \dot{\mu} \mu \varepsilon \alpha$ A ${ }^{\text {cp }}$: : $\pi \rho о к \varepsilon ́ ́ \mu \varepsilon v \alpha ~ G ~$

[^128]: 1 lacunam statuii secutus Schmidt, qui < $\varangle \alpha$ к $\kappa \alpha v o ́ v i \alpha ~ e ̌ \sigma \tau \omega>$ dub. suppl. in app.
 transposui : post $\pi \lambda ı v \theta$ íov A GM $4 \delta \omega \sigma \theta$ п́ $\sigma \varepsilon \tau \alpha \iota$ Schmidt dub. in app. crit:

 a : transp. Schmidt
 $\tau \omega v$ Schmidt in textu : dं $\pi о \tau \varepsilon \mu v o ́ v \tau \alpha \varsigma$ (sic) Prou $8-9 \tau \hat{v}$ ỏ $\mu \varphi \alpha \lambda \hat{\omega} v A^{\text {accp }}$

 Schmidt, prob. Olivieri 15 <oű<>Schmidt dub. in app. crit. 16 ह̇ryíonc A

 коऽ>? 16-17 $\pi \varepsilon \pi \lambda \eta \rho \omega \kappa \varepsilon ́ v \alpha ı ~ A ~ G ~ M ~: ~ \pi \varepsilon \pi \lambda п р ю ́ к п ̣ ~ P r o u ~ 17 ~ \tau \varepsilon ~ A ~ G M ~: ~ \sigma \varepsilon ~$ Schmidt dub. in app. crit. ante каì graviter interpunx. Prou

[^129]: videtur $3 \pi \alpha \rho \alpha \sigma \tau \alpha ́ \delta \alpha ~ \mathrm{AGT}^{\propto}: \pi \alpha \rho \alpha \sigma \tau \alpha ́ \delta ı \alpha \mathrm{M}: \pi \alpha \rho \alpha \sigma \tau \alpha ́ \delta ı v \mathrm{~T}^{p c s 1} \kappa \varepsilon$ -

 <iǹv $\mu \varepsilon ̀ v>$ Schmidt dub. in app. crit. : <***>Schmidt in textu 9 oủкoûv A

 Prou غ̇лı $\quad \tau \rho \varepsilon \varphi \varepsilon ́ \sigma \theta \omega \lll<\alpha v \omega े v>$ Schmidt dub. in app. crit. $\mathbf{1 3} \hat{\alpha} v$ om M

 G 19-20 an тò ví $\varepsilon \rho \alpha \alpha_{v \omega} \mu \varepsilon ́ \rho o c ~ a n t e ~ \tau o v ̂ ~ \kappa \alpha v o ́ v o c ~ t r a n s p o n e n d a ? ~ 20 ~ \varepsilon ̇ \xi \varepsilon \lambda i ́-~$
 app. crit, lacunam statuens $\pi \rho o ̀ \varsigma ~ \mathbf{a}$: $\pi \alpha \rho \grave{~ S c h m i d t ~ d u b . ~ i n ~ a p p . ~ c r i t . ~}$

[^130]: $1 \pi \alpha \rho \alpha \tau_{i} \theta \eta \mu \mathrm{~s}$ Schmidt dub. in app. crit. : $\pi \varepsilon \rho ı \tau i \nexists \eta \mu \mathrm{~A}$ GM $\mathbf{2}$ ante $\kappa \alpha \tau \grave{\alpha}$
 quo recepto <к $\alpha \tau \alpha ̀ ~ \tau o ̀>~ a n t e ~ к \alpha \tau \alpha ̀ ~ d u b . ~ s u p p l . ~ S c h m i d t ~ i n ~ a p p . ~ c r i t . ~: ~ к \rho o ́ \tau \alpha \varphi o v ~$ codex a Baldi adhibitus μ ह́poc delevi ut glossema lacunosum (i.e. <eic tò

 4-5 боцриท̂ $\dot{\text { ¢ ut glossema ad } \pi \rho о \sigma \alpha \rho \alpha \rho o ́ t \alpha ~ d e l e v i ~ c u m ~ S c h m i d t ~(d u b . ~ i n ~}$
 $5<\epsilon \hat{>}>$ Schmidt dub. in app. crit. $6 \overline{\eta \bar{\zeta}} \mathrm{~A}, \mathrm{M}: \overline{\varepsilon \zeta} \mathrm{G}:$ an $\overline{\zeta \eta}$? 7 cruces posui secutus Schmidt, qui $\mathfrak{\eta} v ~ d u b . ~ c o n i . ~ i n ~ a p p . ~ c r i t . ~: ~ a n ~ \varepsilon i ́ s ~ \tau o ̀ ~ \tau o ́ \mu \pi \alpha v o v ? ~$ Iacunam statuit Schmidt, qui <\&is tò $\tau \cup ́ \mu \pi \alpha v o v ~ \tau o ̀ ~ \overline{\theta \kappa},>$ dub. suppl. in app. crit.

 suppl. in app. crit. \quad tòv $A^{C P} G: \tau \widehat{M} M \quad \bar{\mu} A G: \overline{\mu G} M T \quad 9$ tìv $\lambda \varepsilon_{i ́ \alpha v} A^{C P} G$

 T $\dot{\alpha} \pi \varepsilon ı \lambda \eta \theta$ ń $\sigma \varepsilon \tau \alpha ı$ Schmidt dub. in app. crit: : غ̇ $\pi \varepsilon i \lambda \eta \theta \eta \dot{\sigma} \sigma \varepsilon \tau \alpha ı$ A GM, quo

 Schmidt dub. in app. crit \ll $\sigma \tau \omega>$ Schmidt dub. in app. crit, lacunam statuens ó scripsi : iò A GM $\overline{\mathrm{og}}$ Schmidt dub. in app. crit. : $\bar{\xi} \mathrm{Tb}: \overline{\mathrm{v} \xi} \mathbf{a}$

[^131]:

 7 кат $\alpha \alpha \beta \beta \grave{v} \mathbf{a}$: кגì $\lambda \alpha \beta \omega े v$ Schmidt dub. in app. crit. $\sigma \alpha v i \grave{\delta} \alpha$ A GT : $\sigma \alpha v i ́-$

 G: oiônpoôv M ante кaì graviter interpunx. A GM et ed. princ. : non interpurx. Prou et Schmidt lacunam stauit Schmidt, qui «६ं $\mu \pi \varepsilon \pi n \gamma v i \hat{a} v>$

 12 трóxıv Schmidt dub. in app. crit. 13 <<́ $\sigma \tau \omega>$ Schmidt dub. in app. crit.

 Schmidt γ ह́vntaı A GM : an γ ívntal?

[^132]: dub. in app. crit. 3 lacunam statuit Schmidt, quii <ó $\tau \rho o ́ \chi ı \lambda o \varsigma>($ sic) dub.

 interpungens $19 \pi \rho о \sigma \tau i \theta \varepsilon \tau \alpha \iota ~ G M: \pi \rho o ̀ s ~ \tau i ́ \theta \varepsilon \tau \alpha ı ~ A: ~ \pi \rho о \sigma \tau i ́ \theta \eta \tau \alpha ı ~ P r o u ~$

[^133]:

 toc leviter interpunx. A G et Prou : non interpunx. M ed. princ. et Schmidt
 20 عv̀ $\theta \hat{v} \varsigma<\tau \alpha \hat{\tau} \tau \alpha>$ Schmidt dub. in app. crit $\quad 23-4$ aut кaì $\gamma \alpha ̀ \rho . . . \varphi \lambda o ́ \gamma \alpha$ delere aut ह̀mıov́pıov in $\kappa \lambda \varepsilon ו \theta \rho$ íov mutare dub. proposuit Schmidt in app. crit.

[^134]: $4 \pi \varepsilon \rho o ́ v \eta \nu$ A GM : $\pi \varepsilon \rho o ́ v \alpha c$ Schmidt dub. in app. crit. 5 孔икрòv> à $\pi \varepsilon ́ \chi o v$

 del. Schmidt dub. in app. crit. 14 caput distinx. Haase $\pi \cup \rho o ̀ ̧ ~ A ~ G M ~: ~$
 $17 \gamma \varepsilon \gamma \rho \alpha \mu \mu \varepsilon ́ v \eta$ R. Schöne : $\kappa \alpha \tau \alpha \gamma \varepsilon \gamma \rho \alpha \mu \mu \varepsilon ́ v \eta$ A GM v $\quad \bar{\omega} v \mathbf{a}: v \varepsilon \hat{v} v$ Prou
 $\sigma \chi \alpha \sigma \theta \varepsilon i ́ \sigma n \varsigma$ Schmidt dub. in app. crit : $\dot{\alpha} \pi о \sigma \pi \alpha \sigma \theta \varepsilon i ́ \sigma n \varsigma ~ A ~ G ~ M ~$

[^135]: 2 ő $\pi \iota \sigma \theta \varepsilon v \mathbf{a}: ~ \varepsilon ้ \mu \pi \rho о \sigma \theta \varepsilon v$ Schmidt secutus R. Schöne $3 \dot{\alpha} \theta \eta v \alpha ̂ G^{p c} 4$ caput distinx. Schmidt $\quad \hat{\eta} \mu i ̂ \nu A^{c p} G: \dot{\varepsilon} \mu$ оì $M: \hat{\eta} \mu \varepsilon ̀ v T \quad$ ő $\tau \varepsilon A$: ő $\tau \varepsilon G M \quad 7$ ह̋ $\delta \alpha-$

 $9<\varepsilon \varepsilon>$ Schmidt dub. in app. crit. 12 б $\alpha \mu \beta$ и́к α Prou: ${ }_{\alpha} \mu \beta v \kappa \alpha \varsigma \mathbf{a A} a^{a c} \mathrm{Ph}^{\text {(in }}$

 $\tau \varepsilon \tau \alpha \mu \varepsilon ́ v \alpha 1$ R. Schöne : $\tau \varepsilon \tau \alpha \gamma \mu \varepsilon ́ v \alpha 1 \mathbf{a} 15$ бv́o Schmidt: $\bar{\beta} \mathrm{Ph}^{(d u b}$. in mg.) : $\bar{\alpha} \mathbf{a}$ $16 \tau \alpha ́ \sigma \imath v$ R. Schöne : $\sigma \tau \alpha ́ \sigma ı v$ a 17 غ̇ $\gamma \varepsilon \rho \theta \varepsilon ̀ v A^{c p} G M: \dot{\varepsilon} \rho \gamma \alpha \sigma \theta \check{\varepsilon} v$ Prou $\delta \grave{\varepsilon}$
 $\mu \varepsilon ́ \rho o v \varsigma>\tau o v ̂$ vं $\pi \varepsilon \rho \theta$ v́ ρ ov Schmidt dub. in app. crit. 20 lacunamstatui ante $\tau \rho v \pi \eta \theta \varepsilon ̀ v$ leviter interpunx. Prou 20-108.1 $\pi \varepsilon \rho ı \lambda \mu \beta \alpha ́ v \varepsilon 1 \mathbf{a}: \pi \varepsilon \rho \imath \alpha \mu \beta \alpha ́ v \varepsilon ı v$ Prou

[^136]:

 dub. suppl. in app. crit. 7 каì $\lambda \varepsilon ю o v ̂ \tau \alpha ı ~ o m . ~ T ~ 1 ~: ~ a d d . ~ T ² ~ 8 ~ i ́ \pi о \gamma \rho \alpha ́ \varphi \varepsilon \tau \alpha i ́ ~ A ~$

[^137]:

 <ораиа $\hat{\eta}^{\prime}>$ Schmidt dub. in app. crit. 3 †őィoovv Schmidt ante каì non

 12 ail om M 14 post ö́t lacunam statuit Schmidt secutus Prou, qui «uv́-
 oovtaı plerique codices $\lambda \varepsilon$ eícı in margine habent : λ ciffet Ab m, sed in textu
 add. : TE \mathcal{O} E PbVd 15 lacunamstatui

[^138]:

[^139]: ${ }^{1}$ Masià (2015: 244, 252). He does not, however, cite any arguments supporting the thesis that Hero did not observe the eclipse.

[^140]: ${ }^{2}$ The meaning of this phrase is unclear to me.
 ${ }^{3}$ On the problems involved in the use of this term, see section (C) below.
 ${ }^{4}$ The last part of the sentence is corrupt in the manuscripts: $\delta \dot{\varepsilon} \dot{\varepsilon} v \alpha v \tau \eta \varsigma ~ v o \kappa \tau о \varsigma, ~ \omega \rho \alpha \varsigma$, $\tau \rho \varepsilon i ̂ \varsigma$.
 है $\chi \lambda \varepsilon \tau \psi \tau \varsigma)$ is correct, which is equally perplexing.
 ${ }^{6}$ In another footnote (pp. 241-2 n. 29), he gives a number of examples of the neutralisation of the semantic opposition 'definite/indefinite' in Greek mathematics, but the passages that he cites are not parallel passages.

[^141]: ${ }^{7}$ Both choices contrast with his statement that 'the nocturnal hour of a particular place should be deduced from the UTC time zone, the hour of the sunset in this place on that particular night and the duration of that night' (p. 235); what immediately follows is unclear: '[t]he hour of the sunset must be exact and not related to the time zone' (my emphasis).

[^142]: ${ }^{8}$ As Masià (p. 234 n .9) notes, the eclipse is sometimes recorded as having occurred on 14 March. This depends on the use of the Terrestrial Dynamical Time (TDT or TD) or Terrestrial Time (TT), a modern astronomical standard first introduced in 1976 for time measurements of astronomical observations made from the surface of the Earth. TT does not take into account the irregularities in the rotation of the Earth and can be used, among other things, to calculate the so-called TD of Greatest Eclipse, namely, 'the instant when the center of the Moon passes closest to the axis of the Earth's umbral shadow' (NASA 2016). On TT, see IAU Resolutions (2000) s.v. Resolution B1.9.
 ${ }^{9}$ Masià (p. 243 n. 37) observes that on March 13 nocturnal hours are almost one hour long.
 ${ }^{10}$ Masià takes the time of the eclipse as observed in Alexandria from the NASA tables (NASA 2016). It is important to note that $22: 39-22: 17=00: 22$. As Masià himself reminds us (p. 239 n. 23), the mean error in the eclipse observations made by Greek astronomers and recorded in Ptolemy's Almagest is $-00: 23$ hours. See esp. Ptol. Alm. $4.6=314.16-315.12$ Heiberg, with Steele (2000: 103-4).

[^143]: ${ }^{11}$ The key criterion appears to be that ' $[\mathrm{t}]$ he triad must have a nonzero intersection with the period from the beginning to the end of the eclipse' (p. 247). Masià does not explain what a 'non-zero intersection' is, but presumably means that the data must be significantly different from zero. Since the exact day of the eclipse of 62 CE cannot be inferred from Dioptra ch. 35 with any degree of accuracy (the eclipse is said to have occurred 10 days before the vernal equinox, but we do not know when Hero or his source started counting the days), Masià accepts a margin of error of one day. This introduces an 'extended key criterion' (EKC), which Masià (p. 248) defines as follows: [t]he triad must fit some instant between the beginning and the end of an eclipse that actually happened, or of an eclipse that actually happened exactly 1 day before or exactly 1 day after'. He performs his calculations according to both criteria.
 ${ }^{12}$ Did he employ, for instance, linear regressions, vector autoregressive models or hierarchical models? On econometric modelling, see Dougherty (2011: 83-530).
 ${ }^{13}$ Normalisation (i.e. scaling of variables) is risky because it may yield spurious data, but nonetheless it is an acceptable practice depending on the nature of the data. See HärdleSimar (2015: 135-7).
 ${ }^{14}$ For Masià (p. 248), the 'scenario' is '[t]he length of the time interval, measured in years, in which Hero's life span is entirely included'. He identifies two scenarios, a maximal scenario $(-200,+350)$ and a minimal scenario $(-50,+200)$, which correspond, respectively, to the maximal interval and the minimal interval mentioned above. Each scenario admits of two 'frameworks', namely 'the intervals within which the observed eclipses are recorded' (p. 248). The first framework, which is associated with KC, 'exactly matches the scenario', whereas the second framework 'extends the lower limit of the scenario [i.e. applies EKC], including the possibility that the eclipse could be drawn from an almanac' (p. 248). It is unclear to me how the framework differs from the scenario.

[^144]: ${ }^{15}$ This allows one to know how the variables are associated.
 ${ }^{16} \mathrm{~F}$ statistics are critical values that inform acceptance or rejection of a null hypothesis in statistical inferences. P values indicate the probability that inferential results have (not) occurred by chance. On these indicators, see Dougherty (2011: 145-8).
 ${ }^{17}$ The standard errors indicate the extent to which the estimators deviate from a standard deviation.
 ${ }^{18}$ The reader who wishes to look deeper into the eclipse question may refer to AcerbiVitrac's (2014: 18-21, 103-115) recent edition and discussion of Dioptr. ch. 35 (with further bibliography).

