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Abstract 26 

Evidence suggests many marine bacteria are cosmopolitan, with widespread but sparse strains 27 

poised to seed abundant populations upon conducive growth conditions. However, studies 28 

supporting this “microbial seed bank” hypothesis have analyzed taxonomic marker genes rather 29 

than whole genomes/metagenomes, leaving open the possibility that disparate ocean regions 30 

harbor endemic gene content. The Red Sea is isolated geographically from the rest of the ocean 31 

and has a combination of high irradiance, high temperature, and high salinity that is unique 32 

among the ocean; we therefore asked whether it harbors endemic gene content. We sequenced 33 

and assembled single-cell genomes of 21 SAR11 (subclades Ia, Ib, Id, II) and 5 Prochlorococcus 34 

(ecotype HLII) cells from the Red Sea and combined them with globally-sourced reference 35 

genomes to cluster genes into ortholog groups (OGs). Ordination of OG composition could 36 

distinguish clades, including phylogenetically cryptic Prochlorococcus ecotypes LLII and LLIII. 37 

Compared with reference genomes, 1% of Prochlorococcus and 17% of SAR11 OGs were 38 

unique to the Red Sea genomes (RS-OGs). Most (83%) RS-OGs had no annotated function, but 39 

65% of RS-OGs were expressed in diel Red Sea metatranscriptomes, suggesting they could be 40 

functional. Searching Tara Oceans metagenomes, RS-OGs were as likely to be found as non-RS-41 

OGs; nevertheless, Red Sea and other warm samples could be distinguished from cooler samples 42 

using the relative abundances of OGs. The results suggest that the prevalence of OGs in these 43 

surface ocean bacteria is largely cosmopolitan, with differences in population metagenomes 44 

manifested by differences in relative abundance rather than complete presence–absence of OGs. 45 

Importance 46 

Studies have shown that as we sequence seawater from a selected environment deeper and 47 

deeper, we approach finding every bacterial taxon known for the ocean as a whole. However, 48 

such studies have focused on taxonomic marker genes rather than on whole genomes, raising the 49 

possibility that the lack of endemism results from the method of investigation. We took a 50 

geographically isolated water body, the Red Sea, and sequenced single cells from it. We 51 

compared those single-cell genomes to available genomes from around the ocean, and to ocean-52 

spanning metagenomes. We showed that gene ortholog groups found in Red Sea genomes but 53 

not in other genomes are nevertheless common across global ocean metagenomes. These results 54 

 on M
ay 5, 2019 by guest

http://aem
.asm

.org/
D

ow
nloaded from

 

http://aem.asm.org/


 3 

suggest that Baas Becking’s hypothesis “everything is everywhere, but the environment selects” 55 

also applies to gene ortholog groups. This widely dispersed functional diversity may give 56 

oceanic microbial communities the functional capacity to respond rapidly to changing 57 

conditions. 58 

Introduction 59 

Marine bacteria thrive throughout the surface ocean despite low nutrients, high irradiation, and 60 

other physicochemical stressors. Adaptations enabling survival can be at the level of 61 

transcriptional, translational, and other methods of cellular regulation that occur at time-scales of 62 

minutes to hours (1, 2). Alternatively, microbial genomes can evolve new functions on the scale 63 

of thousands to millions of generations (3, 4). Evolution via horizontal gene transfer enables the 64 

introduction of entirely new functionality (gene gain) as well as genome streamlining (gene loss) 65 

for more efficient resource (e.g., nitrogen, phosphorus) allocation (5). Therefore, it is expected 66 

that the genomes of marine bacteria will display differences in gene content correlated with the 67 

physicochemical environment in which they live. Indeed, both individual genomes (cultured and 68 

single-cell genomes) (6–10) and community genomes (metagenomes) (11, 12) show that bacteria 69 

in the oligotrophic (nutrient-poor) surface ocean carry streamlined genomes finely tuned to their 70 

environments. 71 

Examples of adaptive gene presence–absence patterns are seen in the most numerous groups of 72 

bacteria in the oligotrophic tropical and sub-tropical surface ocean, the photoautotrophic 73 

picocyanobacteria Prochlorococcus and Synechococcus and the chemoheterotrophic 74 

Alphaproteobacteria SAR11 clade (Candidatus Pelagibacter ubique). Genomes of these genera 75 

are smaller than their relatives in less nutrient-poor environments (6, 8), suggestive of genome 76 

streamlining to conserve resources used for genome replication (3). Consistent with genome 77 

streamlining, the genes maintained in Prochlorococcus and SAR11 genomes are correlated with 78 

physical features in parts of the water column in which they are found, for example, genes for 79 

acquisition of nitrite and nitrate in genomes found where those compounds are available (3, 8). 80 

Examples revealed through comparative community genomics include an enrichment of 81 

phosphorus acquisition gene ortholog groups in the Atlantic relative to the Pacific Ocean (11, 13) 82 
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and an enrichment in osmolyte oxidation gene ortholog groups in the Mediterranean and Red 83 

Seas relative to the Atlantic and Pacific Oceans (12). 84 

The Red Sea is an attractive environment for the study of genomic adaptations. Geographically, 85 

the Red Sea is largely isolated from the rest of the World Ocean, with only a small sill (the Bab 86 

el Mandeb) connecting it to the Indian Ocean (14). Among surface waters catalogued in the 87 

World Ocean Database, the Red Sea lies at the high end of the global temperature distribution 88 

and is higher than any other sea in the global salinity distribution (Fig. S1). The Red Sea, 89 

straddling the Tropic of Cancer, experiences year-round high irradiance, and cloud cover across 90 

North Africa and the Arabian Peninsula is among the lowest on the planet (NASA Aqua satellite 91 

MODIS sensor). The Red Sea is also oligotrophic, with production thought to be limited by 92 

nitrogen (15). 93 

Evidence of genomic adaptation to high light and high salinity in the Red Sea has been revealed 94 

through comparative metagenomics, showing increased relative abundance of known gene 95 

ortholog groups in Prochlorococcus and SAR11 (12). Relative to the North Pacific, Sargasso 96 

Sea, and Mediterranean Sea, the Red Sea Prochlorococcus population had increased frequencies 97 

of high-light stress and DNA repair gene ortholog groups (12), the latter likely an adaptation to 98 

UV-induced DNA damage. Relative to these same seas, the SAR11 population had increased 99 

frequencies of gene ortholog groups for osmolyte degradation (12); osmolytes are important 100 

molecules for surviving high salinity in many organisms. Across 45 metagenomes along 101 

latitudinal and depth gradients from the surface to 500 m in the Red Sea, temperature explained 102 

more variation in gene ortholog groups than any other environmental parameter, and the relative 103 

abundance of gene ortholog groups linked to high irradiance, high salinity, and low nutrients 104 

were correlated with those parameters (16). 105 

The above-mentioned patterns observed in comparative metagenomics studies were all based on 106 

relative abundance of known gene ortholog groups, dependent on a reference genome database 107 

with no representatives from the Red Sea. Therefore, the question remains if there are gene 108 

functions in the Prochlorococcus and SAR11 populations in the Red Sea not found in any other 109 

Prochlorococcus and SAR11 populations in the ocean. Because of its relative geographic 110 

isolation, we might expect the Red Sea to be genetically isolated, with endemic genomic 111 

adaptations to its unique combination of high solar irradiance, high temperature, high salinity, 112 
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and low nutrient levels. Newly identified gene ortholog groups could be informative for 113 

understanding microbial adaptation and mechanisms of stress tolerance, and have potential 114 

biotechnological applications. 115 

The question of whether there are genetic functions found in only one sea of the global ocean 116 

speaks to theoretical questions of microbial biogeography as well. A prevailing idea in microbial 117 

ecology is that most microbial species are found at a given site provided the conditions are 118 

conducive for their growth. This is known as the Baas Becking hypothesis: “Everything is 119 

everywhere, but the environment selects” (17). Among microbial taxa found in seawater, there is 120 

growing evidence for a cosmopolitan distribution of these taxa throughout the global ocean (18, 121 

19). Support for the “microbial seed bank” hypothesis has come from deep sequencing of ocean 122 

samples, revealing for example that nearly all 16S rRNA operational taxonomic units (OTUs) 123 

from a deep-sea hydrothermal vent can be found in the open ocean (19), and that we approach 124 

identifying all OTUs in the ocean as sequencing effort increases for a single marine sample (18). 125 

Despite this evidence supporting a cosmopolitan distribution of OTUs throughout the ocean, 126 

these amplicon sequences (16S rRNA OTUs) are only taxonomic proxies and do not represent 127 

the extensive gene-level diversity in microbial genomes. Even if such marker gene sequences are 128 

omnipresent across the ocean, genome evolution and diversification, e.g., via horizontal gene 129 

transfer, could be occurring that generates gene-level adaptations that are endemic to particular 130 

locations. Are microbial gene ortholog groups, defined at the level of genus (SAR11 or 131 

Prochlorococcus), as widely distributed as microbial 16S rRNA gene sequences? 132 

Here, to investigate microbial genomic diversity in SAR11 and Prochlorococcus, including 133 

possible endemic adaptation in Red Sea populations, we have sequenced single-cell amplified 134 

genomes (SAGs) from the Red Sea and compared their gene ortholog group (OG) content to 135 

genomes and metagenomes from around the World Ocean. We have quantified expression of 136 

OGs in metatranscriptomes from the Red Sea collected over two consecutive 24-hour day–night 137 

cycles. This effort has resulted in 21 SAR11 SAGs, including the first genomes from subclades 138 

Ib and Id, and 5 Prochlorococcus SAGs. Using these Red Sea SAGs and the OGs they contain as 139 

queries for genomic and metagenomic analyses, we have analyzed globally-sourced genomes 140 

and metagenomes to investigate the extent to which OGs from surface-ocean Prochlorococcus 141 

and SAR11 are distributed across the World Ocean. 142 
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Materials and Methods 143 

Sample collection 144 

A single seawater sample (100 mL) was collected in a polycarbonate bottle from the surface 145 

(depth of 0 m) of an open-ocean site in the east-central Red Sea (19.75 °N, 40.05 °E), near the 146 

Farasan Banks region, on June 15, 2010. The sample was preserved with dimethyl sulfoxide (5% 147 

final concentration), flash frozen in liquid nitrogen, and stored at –80 °C. 148 

Seawater samples for metatranscriptomics were taken March 3–5, 2013, from an open-ocean site 149 

in the Red Sea (Kebrit Deep, 24.7244 °N, 36.2785 °E). To obtain broad coverage of the water 150 

column by both time of day and water depth, one sample per depth was collected every 4 h over 151 

a 48-h period at four depths: surface (10 m), below the mixed layer (40 m; bottom of mixed layer 152 

was 35 m), chlorophyll maximum (75 m), and oxygen minimum zone (420 m). For each 153 

timepoint and depth, 1 L seawater was filtered using a peristaltic pump with two in-line filters in 154 

series: a 1.6-µm GF/A pre-filter (Whatman), then a 0.22-µm Sterivex filter (Millipore). 155 

RNAlater (QIAGEN) was added immediately to fill the dead space of the Sterivex filter, which 156 

was then flash frozen in liquid nitrogen and stored at –80 °C. 157 

Nucleic acid extraction and amplification 158 

Single bacterioplankton cells in the preserved samples were flow-sorted, whole-genome 159 

amplified (MDA, multiple displacement amplification), and PCR-screened at the Bigelow 160 

Laboratory Single Cell Genomics Center (SCGC, Boothbay Harbor, ME, USA), following 161 

previously described protocols (20), with SYTO-13 nucleic acid stain used to stain cells for 162 

flow-sorting. SAG identification was carried out with SCGC protocol S-102 for bacteria using 163 

16S rRNA primers 27F and 907R (21, 22). A total of 21 and 5 cells were identified from 16S 164 

PCR screening and subjected to a second round of MDA before sequencing. The 16S rRNA gene 165 

sequences are available from the European Nucleotide Archive with accession numbers 166 

LN850141–LN850161. 167 

The RNA extraction protocol for metatranscriptomics was adapted from (23–25). After expelling 168 

RNAlater from the Sterivex filter, 2 mL lysozyme solution (1 mg/mL in lysis buffer: 40 mM 169 

EDTA, 50 mM Tris pH 8.3, 0.73 M sucrose) was added, then filter incubated at 37 °C with 170 
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rotation for 45 min. Proteinase K solution (50 µL at 20 mg/mL, QIAGEN/5PRIME) and SDS 171 

solution (100 µL at 20%) were added, then filter incubated at 55 °C with rotation for 2 h. Lysate 172 

was expelled to a separate tube; meanwhile, 1 mL lysis buffer was added to the filter to wash at 173 

55 °C for 15 min. The two lysates were pooled, to which was added 1.5 mL absolute ethanol. 174 

RNA was then extracted from this solution using the RNeasy Protect Bacteria Midi Kit 175 

(QIAGEN). RNA was eluted with two volumes of RNase-free water. RNA sample was 176 

concentrated using a speed vacuum, from 250 µL to 60 µL. To this volume we added DNase (1 177 

µL Ambion TURBO DNA-free, 6 µL 10x buffer, 60 µL RNA) and incubated at 37 °C for 30 178 

min. This solution was purified using the RNeasy MinElute Cleanup Kit (QIAGEN) and eluted 179 

with RNase-free water. Final yield was 1–2 ng total RNA. Total RNA was amplified using the 180 

C&E Version ExpressArt Bacterial mRNA Amplification Nano Kit, which preferentially 181 

amplifies mRNA (independent of poly-A tail) and selects against rRNAs. A single round of 182 

amplification was performed on 2–4 ng of total RNA which yielded about 10 µg final amplified 183 

RNA. 184 

Nucleic acid sequencing 185 

For single-cell genome sequencing, genomic library preparation with Illumina TruSeq and 186 

sequencing with Illumina GAIIx and Illumina HiSeq 2000 was done at the KAUST Bioscience 187 

Core Laboratory, generating paired 105-bp reads. The assembled contigs (assembly methods 188 

below) are available from NCBI with accession numbers PRJEB9287 (BioProject) and 189 

SAMEA3368552–SAMEA3368577 (BioSample), and can also be visualized in Integrated 190 

Microbial Genomes system (26) under accession numbers 2630968236, 2630968238–191 

2630968254, 2630968277–2630968281, and 2630968285–2630968287. 192 

For metatranscriptomics, sequence data were processed as described in (27). Amplified RNA 193 

was used to construct sequencing libraries using the TruSeq Stranded RNA LT Sample Prep Kit 194 

(Illumina) according to the manufacturer’s protocol. Libraries were paired-end sequenced with 195 

the Illumina HiSeq 2000 platform (2 × 100 bp). Raw RNA sequences have been deposited in 196 

NCBI GenBank with Bioproject number PRJNA289956. Low-quality reads and sequencing 197 

adapters were removed using Trimmomatic v0.32 (28). Sequence reads shorter than 50 bp were 198 

discarded. Bowtie 2 v2.2.4 (29) was used to identify and remove PhiX contamination sequences. 199 

The remaining sequences were error-corrected using the BayesHammer algorithm (30) 200 
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implemented in the SPAdes v3.5.0 (31), followed by removal of putative ribosomal RNA 201 

(rRNA) gene transcripts with SortMeRNA v2.0 (32). 202 

Genome assembly and annotation 203 

De novo assemblies were generated using CLC Genomics Workbench 4.9. The genomes were 204 

assembled independently and, unless otherwise specified, the following applies to all of the 205 

SAGs. The reads were first imported and quality trimmed with a limit of 0.01. They were then 206 

assembled using CLC’s de novo assembler with a word size (k-mer) of 64 and with the min/max 207 

of the insert size set to 100/1000 bp. Only those contigs greater than 200 bp in length were 208 

included in downstream analyses. The reads were mapped to the consensus sequence of the 209 

assembled contigs using CLC’s default parameters but with the length fraction set to 1.0 and the 210 

similarity set to 0.95. 211 

Assembled SAG contigs were ordered and oriented relative to SAR11 HTCC1062 212 

(NC_007205.1) or Prochlorococcus MIT 9202 (NZ_DS999537) using ABACAS 1.3.1 (33). The 213 

ordered sequences were then imported into GAP4 (34) and additional joins were made between 214 

overlapping contigs if conserved synteny supported the arrangement. To identify and remove 215 

possible contaminating sequences from the assemblies, each contig was retained only if it met 216 

one or both of the following criteria: (i) the contig was binned into a bin annotated as SAR11 or 217 

Prochlorococcus using Metawatt 3.5 (35), using the “medium” bin level, with a minimum bin 218 

size of 50 kbp and minimum contig size of 500 bp; (ii) the contig had a top-10 BLASTN hit 219 

against GenBank nt, with E-value <1e–5, to SAR11 or Prochlorococcus. 220 

Prediction of gene open reading frames (ORFs) and functional annotation of SAGs was 221 

performed by the RAST web service (36) with FIGfam Release 59. 222 

Ortholog group clustering 223 

Predicted proteins from SAGs were clustered with proteins from published cultured and SAG 224 

genomes (supplemental file 1) into ortholog groups (OGs) using OrthoMCL 2.0 (37). OrthoMCL 225 

configuration settings were as follows: percentMatchCutoff=50, evalueExponentCutoff=–5. This 226 

yielded 5272 SAR11 OGs and 10439 Prochlorococcus OGs. After OrthoMCL clustering, OGs 227 

were assigned as core and non-core based on copy number in the non-Red Sea, cultured (non-228 
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SAG) genomes: core OGs are those found at least once in each of the non-Red Sea, cultured 229 

genomes, and non-core OGs are those not found in at least one of the non-Red Sea, cultured 230 

genomes. Among SAR11, there were 683 core OGs and 4589 non-core OGs. Among 231 

Prochlorococcus, there were 1152 core OGs and 9287 non-core OGs. Protein sequence 232 

identifiers and FASTA sequences for each OG have been archived at https://zenodo.org with 233 

DOI 10.5281/zenodo.2634561. 234 

Estimation of genome completeness 235 

Completeness of SAGs was assessed using two methods. First, completeness was assessed using 236 

single-copy ‘core’ OGs, i.e., those OGs found once and only once in each complete genome 237 

based on the OrthoMCL clusters (analyzed separately for SAR11 and Prochlorococcus). 238 

Completeness was calculated as the number of core orthologs present in each SAG out of 649 239 

SAR11 or 1144 Prochlorococcus single-copy core OGs. Second, genome completeness of the 240 

SAGs was assessed using CheckM 1.0.13 (38) using the lineage-specific workflow (lineage_wf) 241 

with database file checkm_data_2015_01_16.tar.gz downloaded from 242 

https://data.ace.uq.edu.au/public/CheckM_databases; CheckM was also used to estimate genome 243 

redundancy (called “contamination” in CheckM). For comparison, CheckM completeness and 244 

redundancy were calculated for the reference genomes used in this study (Table S1). 245 

Genome taxonomy and phylogenetics 246 

A total of 89 SAR11 and 96 Prochlorococcus shared single-copy orthologous genes were 247 

identified using the GET_HOMOLOGUES software (39). Amino acid sequences translated from 248 

gene sequences were aligned using the MAFFT software (40). These alignments were 249 

concatenated, sites with gaps were deleted, and the concatenated data were partitioned using the 250 

PartitionFinder software (41) to account for variations of evolutionary processes among gene 251 

families. With the Bayesian information criterion (BIC) statistic, a 16-partition framework was 252 

chosen to optimally describe the variability, in which the LG rate matrix with Gamma 253 

distribution of rate variation (LG+G) was selected for 15 partitions and the VT rate matrix with 254 

Gamma distribution of rate variation (VT+G) was selected for the remaining partition. This 255 

partition model was used in the maximum-likelihood phylogenomic construction using the 256 

RAxML software (42). 257 

 on M
ay 5, 2019 by guest

http://aem
.asm

.org/
D

ow
nloaded from

 

http://aem.asm.org/


 10 

Ordination of SAGs and genomes using k-mer composition and ortholog 258 

composition 259 

SAGs and reference genomes (Table S1) were analyzed using principal components analysis 260 

(PCA) of nucleotide composition and OG composition. Nucleotide composition of the SAGs and 261 

reference genomes (SAR11 and Prochlorococcus scaffolds >200 kbp from Integrated Microbial 262 

Genomes, https://img.jgi.doe.gov) was determined as 6-nucleotide words or k-mers (6-mers). k-263 

mer frequencies were calculated using Jellyfish 2.2.5; the main command used was jellyfish 264 

count –m 6 –t 8 –s 1M. This resulted in a table of 6-mer frequencies in the SAGs and genomes, 265 

one table each for SAR11 and Prochlorococcus. OG composition was derived from tables of 266 

OrthoMCL clusters, which—as the SAGs had variable levels of completeness and gene counts 267 

(Table 1)—were subsampled so that all genomes had the same number of gene counts in the 268 

table. The number of OG counts subsampled was chosen to balance the number of OG counts 269 

with the number of genomes retained (less complete SAGs were excluded): the OG composition 270 

tables (with counts of 5272 unique SAR11 OGs and 10439 unique Prochlorococcus OGs) were 271 

subsampled down to 800 gene counts per SAR11 SAG (keeping 12 of 21 SAGs) and 1400 gene 272 

counts per Prochlorococcus genome (keeping 5 of 5 SAGs). Prior to PCA, a pseudo-count of 1 273 

was added to k-mer and OG count tables to account for zero values; k-mer counts were then 274 

converted to relative abundances for each genome (unnecessary for OG counts because of the 275 

subsampling procedure); k-mer relative abundances were then standardized to z-scores (not done 276 

for OG counts because this reduced the resolving power of PCA). PCA was then performed 277 

using the Scikit-Learn function sklearn.decomposition.PCA (43). 278 

Mapping of metatranscriptomic reads to OGs 279 

The quality-filtered mRNA reads from the 52 samples were mapped against the SAGs using 280 

Bowtie 2 (29) with default settings. Each read mapping above the threshold was assigned to 281 

exactly one gene in a SAG contig. The resultant read counts were normalized based on the 282 

FPKM metric (fragments per kilobase of gene per million mapped reads). Per-sample FPKM 283 

counts for each gene were then summed by OGs, resulting in per-sample FPKM counts for each 284 

OG. For downstream analysis, counts were converted to a simple presence–absence measure: if 285 

 on M
ay 5, 2019 by guest

http://aem
.asm

.org/
D

ow
nloaded from

 

http://aem.asm.org/


 11 

any gene belonging to the OG had one or more mapped transcript, that OG was marked as 286 

present in that sample. 287 

Detection and rarefaction analysis of OGs in Tara Oceans metagenomes 288 

A set of 139 prokaryote-enriched Tara Oceans metagenomic gene files (44) was downloaded 289 

from the European Nucleotide Archive (https://www.ebi.ac.uk/ena, ERZ096909–ERZ097150). 290 

Each file contains nucleotide sequences for genes predicted on Tara Oceans metagenomic 291 

contigs that were assembled from shotgun sequencing reads from individual Tara Oceans 292 

samples. The prokaryote fraction was 0.22–1.6 µm for stations 004–052 and 0.22–3 µm for 293 

stations 056–152; the environmental features of the samples were indicated as “SRF” (surface), 294 

“MIX” (mixed layer), “DCM” (deep chlorophyll maximum), and “MES” (mesopelagic zone). 295 

The metagenomic gene sequences were queried against a database of translated proteins from the 296 

SAGs and genomes with DIAMOND 0.8.26 (45) using the program blastx with parameters –p 40 297 

–k 25 –e 1e–3. The top hit (SAG or genome protein sequence) for each Tara gene sequence (E-298 

value < 1e–5) was retained. E-value cutoffs of 1e–10 and 1e–15 were also tested, which showed 299 

the same trends as E-value < 1e–5 but with fewer total OGs identified. Counts of the number of 300 

times each protein was a top hit were then summed across each OG. This resulted in a table of 301 

OGs by samples where each OG was either present (at least one constituent protein was a top hit 302 

at least once) or absent in each sample. These presence–absence tables (one for SAR11, one for 303 

Prochlorococcus) were used to generate rarefaction curves: samples were added one-by-one 304 

randomly (1000 permutations), and the cumulative number of OGs found was recorded. 305 

Ordination of Tara Oceans metagenomes by OG composition 306 

OG counts (total, not presence–absence) in Tara Oceans surface (SRF) sample metagenomes 307 

were used for ordination using PCA. Prior to PCA, a pseudo-count of 1 was added to OG count 308 

tables to account for zero values; counts were then converted to relative abundances for each 309 

metagenome; OGs with an average relative abundance across all metagenomes less than 0.0001 310 

(0.01%) were removed; relative abundances were then standardized to z-scores. PCA was then 311 

performed using the Scikit-Learn function sklearn.decomposition.PCA (43). 312 
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World Ocean temperature and salinity data 313 

Surface temperature and salinity data (WOD13_ALL_SUR_OBS) from the World Ocean 314 

Database 2013 (https://www.nodc.noaa.gov/OC5/WOD13/) were downloaded from the Research 315 

Data Archive at the National Center for Atmospheric Research 316 

(https://rda.ucar.edu/datasets/ds285.0/). 317 

Results and Discussion 318 

Single-cell genome properties and taxonomic classification 319 

Following collection of surface seawater from the east-central Red Sea, flow sorting, and 320 

amplification, we sequenced and assembled 21 SAR11 and 5 Prochlorococcus single-cell 321 

amplified genomes (SAGs). These SAGs represent reference genomes in an ocean region with 322 

sparse coverage: only one cultured Prochlorococcus genome (27) and two cultured SAR11 323 

genomes (46) are currently available from the Red Sea. The SAR11 SAGs also represent 324 

genomes from clades without other sequenced representatives: two SAGs from subclade Ib and 325 

three SAGs from subclade IId (Fig. 1). 326 

To account for and remove any possible contaminating DNA sequences, assembled contigs were 327 

retained only if they were part of a SAR11 or Prochlorococcus Metawatt bin or if they had a top-328 

10 BLASTN hit to a Prochlorococcus or SAR11 genome (methods). In Metawatt, assignment to 329 

bins is based on tetranucleotide frequency, and the average taxonomy of the bin is determined by 330 

BLAST of 500-bp fragments of all the contigs against a prokaryotic database (35). A contig 331 

matching the tetranucleotide frequency of a SAR11 or Prochlorococcus bin could be retained 332 

even if it contained contradictory or missing taxonomic information. However, to check if our 333 

secondary, BLASTN-based assignment process could be biased against short contigs, which 334 

might lack a neighboring anchor gene, we analyzed the distribution of contig lengths between 335 

retained and removed contigs for each SAG. We found that in most cases (20 of 26 SAGs) the 336 

median sizes of retained and removed contigs were not different (Fig. S2); in 6 SAGs the 337 

retained contigs were larger than the removed contigs (Mann–Whitney U, p < 0.05, two-tailed). 338 

Genome size and completeness was greater for Prochlorococcus SAGs than SAR11 SAGs. Size 339 

of Prochlorococcus SAGs ranged from from 1.28–1.46 Mbp in 85–221 contigs, containing 340 
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1428–1710 genes; SAR11 SAGs ranged from 0.29–1.14 Mbp in 55–157 contigs, containing 341 

342–1199 genes (Table 1). Completeness was calculated by two methods: fraction of single-copy 342 

core genes observed and CheckM completeness score; genome redundancy was calculated by 343 

CheckM. Completeness of Prochlorococcus SAGs ranged from 85.9–90.3% core completeness 344 

and 70.7–78.7% CheckM completeness; SAR11 SAGs ranged from 20.3–90.0% core 345 

completeness and 19.1–76.7% CheckM completeness (Table 1). Genome redundancy of 346 

Prochlorococcus SAGs ranged from 0.1–1.0%, and of SAR11 SAGs ranged from 0.0–1.4% 347 

(Table 1). Plotting the number of single-copy core genes as a function of total contig size (Fig. 348 

S3) showed a strong correlation between total contig size and number of single-copy core genes; 349 

this analysis illustrates the greater completeness of the Prochlorococcus SAGs relative to the 350 

SAR11 SAGs. 351 

Taxonomic assignment of SAGs to clades was done by comparing SAGs against reference 352 

genomes using several methods. Phylogenetic analysis was done on concatenated proteins (89 353 

SAR11 and 96 Prochlorococcus shared single-copy orthologous genes) using the maximum 354 

likelihood method (methods). Nucleotide composition (G+C content and k-mer composition) 355 

was calculated and compared to reference genomes. Ordination using principal components 356 

analysis (PCA) of k-mer composition and OG composition (presence–absence of each OG in 357 

each genome) was used to visualize SAGs in relation to known clades of SAR11 and 358 

Prochlorococcus. 359 

Phylogenetic analysis of concatenated proteins (Fig. 1) revealed that Prochlorococcus SAGs 360 

were all ecotype HLII (5/5). Surveys of the Red Sea using 16S–23S rRNA internal transcribed 361 

spacer (ITS) amplicon sequencing (47), rpoC1 gene amplicon sequencing (48), and 362 

metagenomic sequencing (12) have each shown that HLII is the dominant Prochlorococcus 363 

ecotype in the surface Red Sea. This pattern is consistent with temperature-driven ecotype 364 

distribution patterns of Prochlorococcus, where ecotype HLII is predominant in warm/tropical 365 

surface waters (and has a higher thermal tolerance in culture) and ecotype HLI is predominant in 366 

cool/subtropical surface waters (49). SAR11 SAGs were predominantly subclade Ia (13/21), with 367 

the remainder subclades Ib (2/21), Id (3/21), and II (3/21). Placement of the SAR11 SAGs in 368 

these respective clades is supported by a previous phylogenetic analysis of 16S rRNA gene 369 

sequences that included these SAGs (10). Surveys using amplicon sequencing of the 16S rRNA 370 
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gene (50) and metagenomic sequencing (12) have both shown that SAR11 subclade Ia dominates 371 

the surface Red Sea. Subclade distributions in the 16S survey (50) approximately matched the 372 

distribution of the SAG subclades here, suggesting that the SAGs may approximate the natural 373 

SAR11 population. 374 

DNA G+C content of the Prochlorococcus SAGs ranged from 31.0–31.4% (Table 1), which is 375 

typical of genomes of Prochlorococcus ecotype HLII (51). G+C content of the SAR11 SAGs 376 

was lower, ranging from 27.8–30.5% (Table 1). We have previously shown, using the SAR11 377 

SAGs and other SAR11 genomes, that the ratio of nonsynonymous to synonymous nucleotide 378 

mutations and other genomic evidence in SAR11 genomes is consistent with selection for low 379 

nitrogen driving the low G+C content in marine SAR11 (10). 380 

Ordination by PCA of genome properties provided visualization and in some cases improved 381 

resolution of genome taxonomy relative to tree-based methods. For nucleotide composition 382 

analysis, six-nucleotide words (6-mers) were chosen to balance computational time and 383 

information content. The distribution of all 4096 possible 6-mers across the genomes was subject 384 

to dimensionality reduction using PCA and plotted as the first two principal components (PCs). 385 

The first PC explains 27% and 67% of the variation, respectively, for the SAR11 genomes (Fig. 386 

2a) and the Prochlorococcus genomes (Fig. 2b). The PCA plots show wider spread in the SAR11 387 

genomes than in the Prochlorococcus genomes; both cluster by clade, but the Prochlorococcus 388 

genomes are more tightly clustered, with three main clusters (Fig. 2b): HLI nested within HLII 389 

and near HLIII/IV (lower-left), then LLI (middle-left) next-closest followed by LLII and LLIII 390 

(upper-left), and then LLIV distant from the others and more disperse (lower-right). 391 

Ordination by PCA of OG composition was done following subsampling of OG counts down to 392 

800 gene counts per SAR11 genome and 1400 gene counts per Prochlorococcus genome 393 

(methods). This had the effect of dropping 9 SAR11 SAGs, but it allowed the genomes to have 394 

even depth of coverage for PCA calculation. PCA ordination revealed patterns of OG 395 

composition of SAR11 genomes (Fig. 2c) and Prochlorococcus genomes (Fig. 2d). PC1 and PC2 396 

each explained 6–9% of the variation for both sets of genomes. For SAR11, ordination of OG 397 

composition clustered by clade approximately as well as 6-mer composition. For 398 

Prochlorococcus, PCA of OG composition provided good separation of the low-light ecotypes 399 
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(LLI, LLII, LLIII, and LLIV), whereas the high-light ecotypes HLI and HLII formed a single 400 

cluster with HLIII/IV nearby. 401 

Of particular interest to investigations of the low-light adapted Prochlorococcus ecotypes, we 402 

note that OG composition clearly distinguished between genomes of ecotypes LLII and LLIII. It 403 

has previously been observed that phylogenetic analysis (ITS region) (52, 53) does not resolve 404 

ecotypes LLII and LLIII (identified as high B/A II and III by (54)). Similarly, our analysis of 6-405 

mer composition also could not resolve these two low-light ecotypes. Our method of “OG 406 

ordination”, however, did distinguish these ecotypes. Thus OG distributions can be a helpful tool 407 

to assign genomes to ecotypes that are indistinguishable by other taxonomic or phylogenetic 408 

methods. The rich genotypic information provided by OG distribution patterns, combined with 409 

an ordination method like PCA, could be applied to other microbial groups for taxonomic 410 

classification of closely related genomes. 411 

Gene clustering and identification of Red-Sea-associated ortholog groups 412 

The SAGs described here come from an undersampled region of the ocean (the Red Sea) and in 413 

part from undersampled clades of marine bacteria (SAR11 subclades Ib, Id, and II), and therefore 414 

provide the opportunity to identify OGs specific for these clades or possibly endemic to this 415 

ocean region. To investigate these patterns, we combined the Red Sea SAGs with available 416 

cultured genomes and SAGs (separately for Prochlorococcus and SAR11), clustered genes into 417 

OGs using a Markov clustering algorithm (OrthoMCL, methods), and identified those OGs 418 

found only in the Red Sea SAGs and/or only in certain clades. 419 

We identified 878 SAR11 OGs and 96 Prochlorococcus Red-Sea-associated OGs (RS-OGs), that 420 

is, OGs not found (in this analysis) in genomes from other parts of the ocean (supplemental file 421 

1). These totals represent 16.7% of all (19.1% of non-core) SAR11 OGs and 0.9% of all (1.0% of 422 

non-core) Prochlorococcus OGs. Many of the RS-OGs were found only in a single clade: 96 in 423 

Prochlorococcus ecotype HLII, 484 in SAR11 subclade Ia, 101 in SAR11 subclade Ib, 101 in 424 

SAR11 subclade Id, and 132 in SAR11 subclade II. The numerous clade-specific OGs present 425 

targets for understanding ecotype-specific physiology. 426 

The first pattern of note was that there were more RS-OGs in the SAR11 SAGs than in the 427 

Prochlorococcus SAGs. This reflects the large contribution of our SAR11 SAGs to the 428 
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sequenced SAR11 pangenome: the number of SAR11 Red Sea SAGs (=21) was nearly as many 429 

as the number of SAR11 reference genomes (=26). In contrast, the number of Prochlorococcus 430 

Red Sea SAGs (=5) was only 3% of the number of Prochlorococcus reference genomes (=140). 431 

Emphasizing the effect of the genome reference database on estimates of OG endemicity, after 432 

new Prochlorococcus genomes (9, 52) were added to the clustering, the number of RS-OGs 433 

dropped from 1192 to 96 (Fig. S4). Another explanation for the greater number of new SAR11 434 

OGs is that the SAR11 SAGs span previously unsampled or undersampled clades: 334 of the 878 435 

Red-Sea-associated SAR11 OGs were found in only one of subclade Ib, Id, or II. Furthermore, 436 

SAR11 is a broader phylogenetic group, based on 16S rRNA diversity, than Prochlorococcus 437 

(55), and therefore its pangenome may be expected to be larger. In summary, we suspect that the 438 

large number of new SAR11 OGs (=878), in general, more likely reflects the current dearth of 439 

sequence data for SAR11 rather than a significant degree of endemism due to isolation and/or 440 

selection. 441 

The second pattern we examined was inspired by our question about possible endemic gene 442 

content in the Red Sea: based on the geographic isolation of the Red Sea and its unique 443 

combination of physicochemical conditions (simultaneously high irradiance, high salinity, high 444 

temperature, and low nutrients), do genomes isolated from the Red Sea exhibit endemic OG 445 

content encoding adaptive functions for this environment? The answer that emerged to this 446 

question is that there were some indications of possible endemic adaptations to the Red Sea; 447 

however, there were no new pathways identifiable, most of the OGs with annotated functions 448 

were found in only one or two SAGs, and the majority of OGs encoded hypothetical proteins 449 

with no assigned function. 450 

The majority of RS-OGs were hypothetical proteins: 82% (723 of 878) for SAR11 and 91% (87 451 

of 96) for Prochlorococcus. It was difficult to infer possible adaptive functions for OGs with no 452 

predicted functions; however, these OGs may be referenced later when new approaches for 453 

annotating conserved hypotheticals are developed. The remaining non-hypothetical OGs (155 454 

SAR11, 9 Prochlorococcus), i.e., those with predicted functions, are listed in Table S2. While 455 

we could not detect a widespread signature of adaptation to the Red Sea environment—i.e., RS-456 

OGs with annotated functions represented across multiple SAGs—below we highlight a few 457 
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sparsely represented RS-OGs that may have adaptive functionality in the Red Sea environment, 458 

some with possible biotechnological potential. 459 

Among Prochlorococcus SAGs, none of the 9 non-hypothetical RS-OGs (Table S2) were found 460 

in more than one SAG. One OG (proch20425) found in SCGC AAA795-M23 encodes UvrABC 461 

system protein B, responsible for repair of DNA damage. We could posit that this enzyme is 462 

found preferentially in the Red Sea because of the year-round high irradiance, which increases 463 

the rate of DNA damage in cells. 464 

Among SAR11 SAGs, there were 21 non-hypothetical RS-OGs found in two or more SAGs and 465 

another 134 found in only one SAG (Table S2). These OGs show links to high light adaptation, 466 

motility, and nitrogen and phosphorus assimilation. One OG (pelag14710, found in one SAG) 467 

encodes a photolyase enzyme that repairs damaged DNA caused by exposure to ultraviolet light. 468 

Pyrophosphatase (pelag15064, found in one SAG) is involved in the hydrolysis of inorganic 469 

pyrophosphate into two orthophosphates and may have a role in phosphorus utilization. 470 

Allantoinase (pelag15247) and urease accessory protein UreF (pelag14490) are each found in 471 

one SAR11 SAG. These enzymes involved in phosphorus and nitrogen metabolism may provide 472 

an adaptive advantage in the Red Sea, which exhibits co-limitation to both elements and may be 473 

relatively more nitrogen-limited (12, 15). Several of the SAR11 RS-OGs encode enzymes with 474 

biotechnological relevance. DNA polymerase I (pelag12679, pelag14776, pelag14807) from this 475 

higher temperature environment could have heat-resistant properties, for example, marginal 476 

thermostability conferred by amino acid substitutions (56). 477 

After the major analyses had been completed for this study, two SAR11 genomes (46) and one 478 

Prochlorococcus genome (27) derived from cultivated strains were sequenced, and four 479 

Prochlorococcus genomes were assembled from metagenomes (57). Of the SAR11 genomes, 480 

one was assigned to subclade Ia and the other to subclade Ib (46). Of note, the subclade Ia 481 

genome (RS39) contained several OGs also found among the Red-Sea-associated SAR11 OGs: 482 

3-oxoacyl-acyl-carrier-protein synthase, ABC branched amino acid transporter, 483 

arylsulfotransferase, formate dehydrogenases, glycosyl transferases, methyltransferases, sialic 484 

acid synthase, sucrose synthase, sulfotransferases, and a type II restriction–modification system. 485 

Several of these functions may play roles in one-carbon and sugar metabolism by SAR11 in the 486 

Red Sea (46). The Prochlorococcus genome was assigned to the HLII ecotype and notably 487 
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contained a pathway for biosynthesis of the osmolyte (compatible solute) glucosylglycerol (27). 488 

This pathway represents a possible adaptation to the higher salinity of the Red Sea. However, the 489 

three genes in this pathway were not found among the Red-Sea-associated Prochlorococcus 490 

OGs, nor were they found elsewhere among the retained or removed contigs from the Red Sea 491 

SAGs (BLASTN). 492 

Expression of ortholog groups in the Red Sea water column 493 

To further test the idea that there could be OGs of ecological importance endemic to the Red Sea, 494 

we analyzed metatranscriptomes from the Red Sea. Any OGs with functional roles would be 495 

expected to be expressed in the Red Sea water column. We collected seawater and filtered the 496 

prokaryotic fraction from a station in the central Red Sea over a broad temporal and depth range: 497 

samples were collected at four depths and 13 timepoints over a 48-hour period. We extracted and 498 

sequenced RNA from these samples and mapped the reads to the Red Sea SAGs. 499 

We found that around two-thirds of RS-OGs were expressed in one or more sample: 64% for 500 

SAR11 (Fig. 3b), 66% for Prochlorococcus (Fig. 3d). This was more than the fraction of non-501 

RS-OGs expressed: 32% for SAR11 (Fig. 3a), 20% for Prochlorococcus (Fig. 3c). We were 502 

curious if the high fraction of non-RS-OGs that were unexpressed was due to many of these OG 503 

being singletons (OGs having only one member). To the contrary, heatmaps of OG size 504 

vs. number of metatranscriptomes in which the OG was found (Fig. 3, inset) do not show a high 505 

density of singleton OGs having no expression in non-RS-OGs, and rather the trend toward 506 

singletons is more common in RS-OGs. 507 

Of OGs expressed in at least one sample, non-RS-OGs (Fig. 3a,c) tended to be expressed in more 508 

samples than RS-OGs (Fig. 3b,d). This is consistent with many of the non-RS-OGs being core 509 

genes, many of which are housekeeping genes that are often constitutively expressed. Overall, 510 

the expression patterns indicate that the majority of RS-OGs are transcribed to messenger RNA, 511 

consistent with the synthesis of functional gene products. 512 

Distribution of ortholog groups across the global ocean 513 

The analysis to this point has focused on the distribution of OGs among cultured and single-cell 514 

genomes and their expression in the Red Sea water column. A set of OGs has been found that is 515 
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exclusive to Red Sea genomes (to date), and a majority of them are expressed in the water 516 

column. However, we cannot rule out the possibility that these OGs appear endemic only 517 

because more genomes are not available from around the World Ocean. If we extended our 518 

search to global marine metagenomes, instead of just genomes, would we in fact find these 519 

putative endemic OGs in other seas? 520 

To investigate the possibility that, contrary to our original hypothesis, there may be few truly 521 

endemic OGs in the Red Sea microbial community, we analyzed metagenomes collected from 522 

across the global ocean by the Tara Oceans expedition. We searched for SAR11 and 523 

Prochlorococcus OGs in 139 prokaryote-fraction metagenomes from the Tara Oceans expedition 524 

(44), which come from several depths in the water column: surface, mixed layer, deep 525 

chlorophyll maximum, and mesopelagic zone. We queried the dataset to determine what fraction 526 

of all OGs and what fraction of RS-OGs could be found outside the Red Sea. If RS-OGs 527 

represent endemic gene content of the Red Sea, we would expect to find them absent from 528 

metagenomes from other regions. Our approach was complementary to a recent study that 529 

analyzed the global metapangenome of Prochloroccocus in the Tara metagenomes, showing the 530 

distributions of gene clusters (OGs) with strain-level resolution across the Tara samples (58). In 531 

the work here, we employed rarefaction and ordination techniques, with a particular focus on 532 

RS-OGs. 533 

The presence or absence of SAR11 and Prochlorococcus orthologs in Tara Oceans prokaryote-534 

fraction metagenomes (supplemental files 7 and 8) was plotted as rarefaction curves (Fig. 4). 535 

Tara Oceans metagenomes were added randomly one by one, and the fraction of SAR11 and 536 

Prochlorococcus OGs found was tallied and plotted. The rarefaction curves show the average ± 537 

standard deviation of 1000 permutations. They also show the best-case (and worst-case) 538 

scenarios, that is, the fraction of OGs found if each new metagenome adds the most (or fewest) 539 

new OGs. Between 70–85% of OGs could be found in one or more Tara Oceans metagenome 540 

(Fig. 4), and in the best-case scenarios it took at most ten metagenomes to find 90% of these OGs 541 

(Table S3). The percentage of OGs not found (15–30%) was independent of whether they were 542 

‘Red-Sea-associated’ or not. This result combined with the rarefaction analysis suggests these 543 

OGs would be unlikely to be found in the Tara samples with deeper sequencing. It is possible 544 
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that some OGs may be rare and/or divergent enough to be undetectable with the current 545 

methodological approach. 546 

Across the 139 Tara Oceans prokaryote-fraction metagenomes, we found 84.9% (4475/5272) of 547 

all SAR11 OGs in one or more metagenomes (leaving 15.1% not found; Fig. 4a) and 72.2% 548 

(7537/10439) of all Prochlorococcus OGs in one or more metagenome (leaving 27.8% not 549 

found; Fig. 4c). In the best-case scenarios, it took only 5 metagenomes to find 90% of the 550 

‘found’ SAR11 OGs and 50 metagenomes to find 99%; it took only 10 metagenomes to find 551 

90% of the ‘found’ Prochlorococcus OGs and 60 metagenomes to find 99% (Table S3). The 552 

fractions of OGs found were similar for RS-OGs, where 81.2% (713/878) of SAR11 OGs were 553 

found (leaving 18.8% not found; Fig. 4b) and 69.8% (67/96) of Prochlorococcus OGs were 554 

found (leaving 30.2% not found; Fig. 4d). That is, RS-OGs were about as likely to be found 555 

across the World Ocean as non-RS-OGs. For both SAR11 (Fig. S5a) and Prochlorococcus (Fig. 556 

S5b), considering the number of Tara metagenomes in which each OG was found, RS-OGs were 557 

less likely to be found in a large fraction of metagenomes, relative to all OGs. This is not 558 

surprising: the set of non-RS-OGs contains all of the core OGs, which would be expected to be 559 

found in most if not all samples. 560 

To evaluate whether Tara Red Sea metagenomes contained any RS-OGs not already found in the 561 

non-Red Sea metagenomes, we tested scenarios where the Red Sea metagenomes were added 562 

last in the rarefaction analysis. There was no change in the mean curve of cumulative SAR11 563 

OGs found when the six Tara Red Sea metagenomes were added last (Fig. 4b): all of the SAR11 564 

RS-OGs could be found without examining the Red Sea metagenomes. In contrast, there were 565 

five Prochlorococcus RS-OGs that were added to the cumulative total when the Tara Red Sea 566 

metagenomes were added last (Fig. 4d). These five OGs, all with unknown function, represent a 567 

small fraction of the total Prochlorococcus pangenome (10439 OGs total). Given the available 568 

genomes, this study may have uncovered a small set of OGs (Table S2) that possibly reflect gene 569 

content endemic to or generally associated with Red Sea environmental conditions, and this 570 

marks an area for further research. In light of this metagenomic analysis, however, it appears that 571 

the putative RS-OGs provide a relatively minor contribution to the whole and that these new 572 

SAR11 and Prochlorococcus genomes from the Red Sea generally reflect global pangenomes. 573 
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Finally, we were curious if OG composition as a whole could show the Red Sea metagenomes to 574 

be different from the other metagenomes, despite the lack of evidence of endemic OGs. More 575 

generally, could the relative abundance of OGs across Tara be used to distinguish populations of 576 

Prochlorococcus and SAR11? 577 

We used the tables of OG counts in the 63 Tara surface (SRF) prokaryote-fraction metagenomes 578 

to do PCA ordination on the Tara metagenomes (Fig. 5; top OGs driving separation among the 579 

metagenomes provided in Table S4). SAR11 OG composition (Fig. 5a) was not obviously 580 

structured by temperature differences in the temperate and tropical ranges, though Red Sea 581 

samples clustered together, and polar samples were separate from the others. Prochlorococcus 582 

OG composition (Fig. 5b), however, was structured by temperature differences in the temperate 583 

and tropical ranges. The four Red Sea samples were split, with two samples clustering with the 584 

warm samples and two samples with the cooler samples. These Red Sea samples are positioned 585 

where they would be expected based on temperature: the two southern samples (latitude: 18.4 586 

°N, 22.0 °N) were warmer (temperature: 27.6 °C, 27.3 °C) and clustered with other 587 

warm/tropical samples (left side of PC1 in Fig. 5b); the two northern samples (latitude: 23.36 °N, 588 

27.16 °N) were cooler (temperature: 25.8 °C, 25.1 °C) and clustered closer to the cool/temperate 589 

samples (right side of PC1 in Fig. 5b). Note these temperatures are lower than average Red Sea 590 

surface waters because the Tara Red Sea samples were collected in winter (January); by contrast, 591 

the Red Sea samples in the World Ocean Database (see above) were collected in spring (April). 592 

Given that temperature tolerances generally lack known genetic markers (59), these data suggest 593 

an area for future investigation. 594 

In summary, the analysis of Prochlorococcus and SAR11 OGs in Tara Oceans metagenomes 595 

shows that (i) most “Red-Sea-associated” OGs are actually widely distributed across the World 596 

Ocean, not endemic to the Red Sea; and (ii) OG distribution patterns as a whole, taking relative 597 

abundance into account, place the Red Sea on a continuum with other seas, with patterns 598 

explained by environmental factors including temperature. Supporting this idea, differences in 599 

the relative abundance of OGs—with physicochemical properties covarying with OG 600 

functions—have been observed among the North Pacific, Sargasso Sea, Mediterranean Sea, and 601 

Red Sea in previous comparative metagenomics studies (11, 12). Despite the Red Sea existing at 602 

the periphery of multiple physicochemical parameters in the World Ocean, its distinctiveness 603 
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may best be revealed by the relative abundance of OGs rather than in the wholesale presence or 604 

absence of OGs. In addition to this general pattern, this effort also identified a small set of 605 

putative and non-hypothetical proteins that warrant further ecological and biotechnological 606 

study. 607 

Conclusions and future directions 608 

Here we analyzed SAR11 and Prochlorococcus SAGs from an undersampled ocean region, the 609 

Red Sea. This single-cell sequencing effort included SAR11 SAGs from undersampled clades 610 

and provided the first genomes from SAR11 subclades 1b and 1d. Our analysis of these genomes 611 

provided significant contributions to the reference databases of these organisms, adding 878 new 612 

ortholog groups to the SAR11 pangenome and 96 new ortholog groups to the Prochlorococcus 613 

pangenome. We described a new method called “OG ordination” that uses PCA of ortholog 614 

group composition to resolve phylogenetic differences in closely related genomes and used it to 615 

distinguish Prochlorococcus ecotypes LLII and LLIII in our samples. 616 

How marine microbes are able to respond to a changing ocean will be critical to understanding 617 

the future biosphere of planet Earth. At the population and community levels, the cosmopolitan 618 

distribution of genetic functions may confer an advantage, enabling marine microbial 619 

populations and communities, as a whole, to rapidly respond and adapt to changing ocean 620 

conditions. Here we generally considered the Baas Becking hypothesis (“Everything is 621 

everywhere, but the environment selects”) from the perspective of gene ortholog groups (“Every 622 

OG is everywhere, but the environment selects”). The overall data analysis lends support to the 623 

Baas Becking hypothesis as applied to OGs. We described a small set of OGs that may be related 624 

to Red Sea environmental conditions and that mark areas for further investigation. However, the 625 

overall analysis was not consistent with endemism as a primary feature. Instead, we found Red 626 

Sea OGs to be nearly as prevalent across global ocean metagenomes as in Red Sea 627 

metagenomes. This view was supported by analysis of OG relative abundance rather than 628 

absolute presence–absence of OGs. Perhaps OGs may be present but undetectable in a region, 629 

and they become detectable after OG frequencies increase in response to environmental 630 

conditions (via the growth of cells containing those OGs). Therefore, genomic adaptations in a 631 

given ocean region may not simply reflect the presence of OGs unique to a region, but rather the 632 

relative abundance of generally cosmopolitan OGs. 633 
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Figure Legends 638 

Figure 1. Maximum-likelihood proteomic trees for single-cell genomes from this study (bold), 639 

plus a representative set of cultured genomes. Trees were built from concatenated alignments of 640 

(a) 89 SAR11 and (b) 96 Prochlorococcus single-copy orthologous genes. Bootstrap values are 641 

indicated at the nodes (solid circles ≥80% and open circles ≥50%). Scale bar equals 0.1 change 642 

per site. The Red Sea SAR11 SAGs cluster with subclades Ia, Ib, Id, and II. The Red Sea 643 

Prochlorococcus SAGs all cluster with ecotype HLII.  644 

Figure 2. PCA ordination of SAGs and genomes based on (a, b) hexanucleotide (6-mer) 645 

composition and (c, d) ortholog group (OG) composition. Genomes are colored by clade; single-646 

cell genomes from the Red Sea (this study) are circled in black. OG counts, prior to PCA 647 

ordination, were subsampled to 800 (SAR11) or 1400 (Prochlorococcus). While both nucleotide 648 

composition and OG composition cluster genomes into discrete groups by clade, OG 649 

composition differentiate clades more clearly, as exemplified by the separation of 650 

Prochlorococcus clades LLII and LLIII (panel d).  651 

Figure 3. Expression of SAG ortholog groups (OGs) in Red Sea metatranscriptomes. The 52 652 

metatranscriptomes span a broad range of the water column at a station in the central Red Sea: 653 

four depths and 13 timepoints over a 48-hour period (every 4 hours). Histograms show the 654 

number of metatranscriptomes found in (a) SAR11 non-RS-OGs, (b) SAR11 RS-OGs, (c) 655 

Prochlorococcus non-RS-OGs, and (d) Prochlorococcus RS-OGs. Heatmaps (inset) show the 656 

density of OGs based on OG size (number of total copies across the SAGs) and the number of 657 

metatranscriptomes an OG is found in. RS-OGs were more likely than other OGs to be expressed 658 

in one or more samples, and non-RS-OGs that were expressed were more likely to be expressed 659 

in a high number of samples.  660 
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Figure 4. Rarefaction analysis showing the proportion of (a, c) all OGs and (b, d) RS-OGs of 661 

SAR11 and Prochlorococcus observed in Tara Oceans metagenome samples. Curves show the 662 

cumulative number of OGs observed in Tara Oceans samples (e-value < 1e-5) as more samples 663 

are added. Yellow lines show the average ± standard deviation of 1000 permutations of 664 

randomly added samples. Blue lines show the “best-case scenario” (each sample added is that 665 

with the most number of new OGs observed) and “worst-case scenario” (each sample added is 666 

that with the fewest number of new OGs observed). Red lines show the mean of 1000 667 

permutations of randomly added samples but with Red Sea samples (031_SRF_0.22-1.6, 668 

032_DCM_0.22-1.6, 032_SRF_0.22-1.6, 033_SRF_0.22-1.6, 034_DCM_0.22-1.6, 669 

034_SRF_0.22-1.6) added last. As more Tara metagenome samples are added to the analysis, the 670 

number of new OGs identified approaches a plateau where new samples do not reveal many new 671 

OGs. The same is true with RS-OGs, even when samples from the Red Sea are added last, with 672 

the exception of 5 Prochlorococcus OGs (proch20367, proch20368, proch20390, proch20423, 673 

and proch20438).  674 

Figure 5. Principal components analysis of Tara Oceans surface samples by the abundance of 675 

(a) SAR11 and (b) Prochlorococcus OGs. The ordination shows the similarity of Tara Oceans 676 

samples to each other along the first two principal components. Samples are colored by Tara 677 

temperature categories: ‘polar’ samples (<10 °C) are dark blue, ‘temperate’ samples (10–20 °C) 678 

are light blue, ‘tropical’ samples (>20 °C) are orange, and Red Sea ‘tropical’ samples are orange 679 

with black edges. Red Sea samples and Tara samples generally show more separation based on 680 

temperature when ordinated by Prochlorococcus OG composition than by SAR11 OG 681 

composition.  682 
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Table 1. Genomic features of Prochlorococcus and SAR11 single-cell genomes. Single cells were isolated from a surface sample 

from the Eastern Red Sea (19.75 °N, 40.05 °E). Prochlorococcus clades are ecotypes; SAR11 clades are subclades. Completeness is 

reported as the fraction of 1144 Prochlorococcus or 649 SAR11 single-copy core OGs found in each SAG; completeness is also 

reported as the percent of bacterial single-copy core OGs present as determined by CheckM. Redundancy of bacterial single-copy core 

OGs is defined as the “contamination” parameter from the CheckM software. 
 

Genus SAG ref. no. Clade Contigs 

Assembled  

size (bp) Genes 

Single-copy  

core genes 

Completeness  

(core, %) 

Completeness  

(CheckM, %) 

Redundancy 

(CheckM, %) 

G+C  

(%) 

Prochlorococcus SCGC AAA795-F05 HLII 136 1,418,374 1632 1033 90.2 78.6 0.27 31.4 

Prochlorococcus SCGC AAA795-I06 HLII 120 1,388,767 1604 981 85.9 77.5 0.10 31.1 

Prochlorococcus SCGC AAA795-I15 HLII 221 1,282,941 1428 989 86.6 70.7 0.97 31.3 

Prochlorococcus SCGC AAA795-J16 HLII 85 1,463,721 1691 1033 90.3 78.7 0.52 31.0 

Prochlorococcus SCGC AAA795-M23 HLII 93 1,443,989 1710 1012 88.7 74.6 0.34 31.2 

SAR11 SCGC AAA795-A08 Ia 61 374,567 384 158 24.3 24.5 0.00 28.3 

SAR11 SCGC AAA795-A20 Ia 63 1,140,609 1199 584 90.0 76.7 0.00 29.1 

SAR11 SCGC AAA795-B16 Ib 95 551,717 600 331 51.0 34.7 0.06 29.4 

SAR11 SCGC AAA795-C09 Ia 82 667,038 734 390 60.1 44.6 0.88 28.4 

SAR11 SCGC AAA795-C10 Ia 55 477,445 503 213 32.8 34.9 0.23 29.3 

SAR11 SCGC AAA795-D22 Ia 68 1,010,421 1082 555 85.5 69.9 0.60 28.8 

SAR11 SCGC AAA795-E07 II 101 681,366 737 418 64.4 56.9 1.37 29.7 

SAR11 SCGC AAA795-E22 Ib 63 801,227 820 417 64.3 47.6 0.34 29.0 

SAR11 SCGC AAA795-F16 Ib 74 945,491 1017 509 78.4 65.9 0.00 29.1 

SAR11 SCGC AAA795-G15 II 62 294,337 342 132 20.3 19.1 0.46 30.5 

SAR11 SCGC AAA795-J21 Ia 77 872,902 954 404 62.2 51.5 0.70 29.1 

SAR11 SCGC AAA795-K18 Ia 114 731,292 782 314 48.4 48.7 0.70 29.9 

SAR11 SCGC AAA795-L23 Ia 150 834,822 910 489 75.3 54.4 0.60 27.8 

SAR11 SCGC AAA795-M18 Ib 61 1,050,527 1072 456 70.3 58.9 1.41 29.2 

SAR11 SCGC AAA795-M22 Ib 80 860,157 921 515 79.4 64.2 0.13 29.4 

SAR11 SCGC AAA795-N08 Ia 157 575,315 622 272 41.9 33.3 0.55 29.1 

SAR11 SCGC AAA795-N17 II 94 611,592 620 361 55.6 38.0 0.42 29.5 

SAR11 SCGC AAA795-O19 Ia 62 804,609 862 379 58.4 54.2 0.04 29.1 

SAR11 SCGC AAA795-O20 Ia 62 1,009,143 1074 526 81.0 69.0 0.04 29.0 

SAR11 SCGC AAA795-P11 Ia 127 977,727 1021 485 74.7 52.4 1.32 29.2 

SAR11 SCGC AAA797-I19 Ia 77 1,016,895 1071 468 72.1 66.4 0.59 29.2 
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