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Abstract

An investigation has been made into the nonlinear aeroelastic behavior of

an airfoil system with free-play nonlinear stiffness in transonic flow. Com-

putational Fluid Dynamics (CFD) and Reduced Order Model (ROM) based

on Euler and Navier-Stokes equations are implemented to calculate unsteady

aerodynamic forces. Results show that the nonlinear aeroelastic system ex-

periences various bifurcations with increasing Mach number. Regular sub-

critical bifurcations are observed in low Mach number region. Subsequently,

complex Limit Cycle Oscillations (LCOs) and even non-periodic motions ap-

pear at specific airspeed regions. When the Mach number is increased above

the freeze Mach number, regular subcritical bifurcations occur again. Com-

parisons with inviscid solutions are used to identify and elaborate the effect

of viscosity with the help of aeroelastic analysis techniques, including root

locus, single degree of freedom flutter and aerodynamic influence coefficient
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(AIC). For low Mach numbers in the transonic regime, the viscosity has little

effect on the linear flutter characteristic because of limited influence on AIC,

but a remarkable impact on the nonlinear dynamic behavior due to the sensi-

tivity of the nonlinear structure. As the Mach number increases, the viscosity

becomes significantly important due to the existence of shock-boundary layer

interaction. It affects the unstable mechanism of linear flutter, impacts the

aerodynamic center and hence the snap-through phenomenon, influences the

AIC and consequently the nonlinear aeroelastic response. When the Mach

number is increased further, the shock wave dominates the air flow and the

viscosity is of minor importance.

Keywords: Free-play, Nonlinear aeroelastic response, Viscous flow,

Transonic flutter, Chaos

1. Introduction

The aroelastic behavior of airfoil systems in the transonic regime has at-

tracted researchers for decades. A common observation in the transonic flow

region is that the critical flutter speed is significantly reduced, a phenomenon

known as “transonic dip” [1]. Another feature is that the response typically

evolves into an LCO rather than a divergent response. The LCOs can be

induced by nonlinear aerodynamic effects such as shock wave in transonic

flow [2]. It is known that aerodynamic instabilities can occur in the bound-

ary layer of an airfoil that lead to flow separation, and the flow separation

and the shock-boundary layer interaction may enhance the nonlinear effect

of aerodynamics. In terms of the structure model, a conventional aeroelastic

analysis is usually based on the assumption of linear structure. In reality,

2



however, the structural system can be subject to nonlinear stiffness such as

free-play, hysteresis or cubic nonlinearity, which affects its aeroelastic behav-

ior [3]. So investigation of the dynamic response of aeroelastic system with

nonlinear stiffness in transonic flow is of particular interest.

As a high-fidelity technique to capture shock wave and flow separation,

CFD method has been widely applied to carry out the aeroelastic response of

the nonlinear structural model particularly in transonic air flow. Kousen and

Bendiksen [4] investigated the LCO of an aeroelastic airfoil with a free-play

nonlinearity in the pitching degree of freedom (DOF). In their study, the

bifurcation diagram was obtained by using time marching approach based

on Euler equations. The inviscid transonic aeroelastic behavior of an airfoil

with free-play nonlinearities in both pitching and plunging DOFs was ana-

lyzed by Kim and Lee [5], and LCOs and chaotic motions were observed in

specific ranges of Mach numbers. Based on Euler equations, Yang et al. [6]

investigated the LCO behaviors of an aeroelastic airfoil with free-play at dif-

ferent Mach numbers. An interesting chimney region on the flutter boundary

was presented and well explained. The aeroelastic response of a nonlinear

panel in transonic and low supersonic air flow was studied by Shishaeva et

al. [7]; substantial various nonlinear phenomenon including bifurcation, co-

existence of different limit cycles and non-periodic oscillations were observed

in accelerating or decelerating air flow conditions. A three-DOF aeroelastic

airfoil with a free-play in the control surface was investigated in transonic air

flow by means of Euler-based CFD, and higher-order spectra techniques [8]

and HilbertHuang Transform techniques [9] were applied to understand the

features and physical reasons of observed transition between different type
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of nonlinear aeroelastic responses.

The ROM method is applied in the problem studied here to reduce the

computational cost in CFD simulation. Using proper orthogonal decompo-

sition method and Euler solution, a three-DOF aeroelastic wing model with

free-play in control surface was implemented to study the transonic LCO

behavior by Dowell et al. [10]. The so-called chimney phenomenon was

observed in the flutter boundary. The LCOs of an aeroelastic airfoil with

structural nonlinearity in subsonic and transonic air flow were also obtained

by Munteanu et al. [11] using the ROM technique for a viscous solution.

This study indicates that the ROM approach can be used to estimate the

LCOs accurately and efficiently. An airfoil with piecewise nonlinearity was

investigated by Jones et al. [12] in both low speed incompressible flow and

transonic air flow based on the Euler equations, and the LCOs were rapidly

identified with good accuracy. It should be specially mentioned that a series

of interesting researches based on aerodynamic ROM technique were carried

out by Gao et al. [13, 14, 15], to explore the mechanism of frequency lock-in

phenomenon in transonic flutter and buffeting.

Previous work on the nonlinear dynamic behavior of an aeroelastic airfoil

with free-play in inviscid transonic flow has been carried out by the authors

[16]. It revealed the significant features of the responses over different flow

speed regions but at fixed transonic Mach number (Mach 0.87), which can

be summarized as:

• The aeroelastic responses with the amplitude near the free-play are

dominated by the single degree of freedom flutter mechanism, and snap-

through phenomenon is observed when the airspeed is low.

4



• The route to chaos is via period-doubling, which is primarily caused by

the free-play nonlinearity.

• The aeroelastic response is dominated by aerodynamic nonlinearity

when air velocity is around the linear flutter speed.

Here, we extend our previous study [16] to consider the dependence of the

nonlinear dynamic behavior of the aeroelastic system to Mach number, which

is rarely reported in the existing literature. So the first aim of the present

study is to exhibit the nonlinear dynamic evolution of the aeroelastic system

considering Mach number as a control parameter.

As mentioned above, most of the existing research activities on transonic

nonlinear flutter were carried out by using inviscid (Euler) solution methods.

Inviscid flow is normally assumed to simplify the aerodynamic solution, and

there are many practical aerodynamic applications where this assumption is

valid [17]. However, the fact is that the real air flow is always viscous in

nature. In addition, the numerical analysis on an aeroelastic airfoil of NACA

0012 [18] and AGARD 445.6 wing [19] has highlighted that the aerodynamic

viscosity has a significant impact on the transonic flutter characteristics. But

it remains unclear whether the assumption of inviscid flow affects the nonlin-

ear response of an aeroelastic system in transonic regime. Thus, the second

aim of the present study is to determine the effect of the aerodynamic viscos-

ity on the transonic linear and nonlinear aeroelastic behavior, and to assess

the suitability of inviscid flow to model the transonic unsteady aerodynamics

for aeroelastic problems.

Based on Euler equations and Navier-Stokes equations, the nonlinear dy-

namic behaviors of an aeroelastic airfoil with free-play over a wide range of

5



transonic Mach numbers are studied. With increasing Mach number, com-

plex LCOs and non-periodic motions occur over specific airspeed ranges.

Regular subcritical bifurcations are observed at low Mach numbers. As the

Mach number is increased higher than the freeze Mach number of the airfoil,

regular subcritical bifurcations happen again. By comparing the aeroelastic

behavior of inviscid and viscous solution, the effect of viscosity on aeroelastic

behavior is identified. It is found that the viscosity plays different roles at d-

ifferent Mach number ranges, and the suitability of inviscid solution depends

on the Mach number as well as the type of the aeroelastic problem.

This paper is organized as follows. In section 2, the governing equa-

tions of motion and technical methods are formulated. Mesh independence

study, time step convergence study and verification of numerical approaches

are performed in section 3. Section 4 and 5 present linear flutter solution

and nonlinear dynamic behaviors respectively, and the effect of viscosity is

discussed as well. Finally, conclusions are drawn in section 6.

2. Technical analysis

2.1. Governing equations for an aeroelastic airfoil

Figure 1 shows a sketch of an aeroelastic airfoil with plunging (h) and

pitching (α) DOFs. The elastic axis of the airfoil (E point) is located at a

distance of ab rear of the mid-chord point, the gravity center (G point) is

located at xab behind the elastic axis, and the aerodynamic center of the

airfoil is located at xacb after the mid-chord point, where b is the half-chord

length. The mass per unit span is m, the first moment of inertia about the

elastic axis is Sα = mxαb, and the moment of inertia about the elastic axis
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Figure 1: An aeroelastic airfoil in transonic air flow.

is Iα = mr2αb
2. The bending stiffness and torsion stiffness are modelled by

springs attached to the elastic axis. A linear spring is considered in plunging

DOF, and the plunging stiffness coefficient is Kh = mω2
h. While a free-play

nonlinearity is assumed in the pitching DOF, and the nonlinear structural

restoring moment can be described as

M(α) =



















Kα(α− δ) α ≥ δ

0 −δ < α < δ

Kα(α + δ) α ≤ −δ

(1)

where δ denotes the measurement of free-play, Kα = Iαω
2
α is the torsion

stiffness coefficient. To express the equations in matrix form in the following

parts of this section, Eq. (1) can also be rewritten as

M(α) = Kαα +Kα



















−δ α ≥ δ

−α −δ < α < δ

δ α ≤ −δ

= Kαα +Kαfnon (2)

Note that when δ = 0, fnon = 0 and the airfoil is reduced to a linear structural

model. Viscous damping is considered with the damping coefficients of Dh =

2ζhm in plunging and Dα = 2ζαIα in pitching.
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The governing equations of motion for the linear structure were derived

from the Lagrange equations according to Dowell et al. [20]. The nonlinear

structural restoring moment from the spring with free-play in pitching DOF

is considered in the present study. The nonlinear governing equations can be

expressed as






mḧ+ Sαα̈ +Dhḣ+Khh = −L

Sαḧ+ Iαα̈ +Dαα̇ +M(α) = Meα

(3)

where L = ρV 2bcl and Meα = 2ρV 2b2cm are the aerodynamic lift and mo-

ment about the elastic axis, respectively, cl is the lift coefficient, cm is the

aerodynamic moment coefficient, and ρ is the air density.

Introducing non-dimensional time τ = ωαt and mass ratio µ = m/πρb2,

Eq. (3) can be written as






h′′

b
+ xαα

′′ + 2ζh(
ωh

ωα
)h

′

b
+ (ωh

ωα
)2 h

b
= U2

πµ
(−cl)

xα
h′′

b
+ r2αα

′′ + 2ζαr
2
αα

′ + r2αα = U2

πµ
(2cm)− r2αfnon

(4)

where (·)′ = d(·)/dτ , (·)′′ = d2(·)/dτ 2, and U = V/bωα is the non-dimensional

airspeed. Subsequently, the governing equation can be written in matrix

form,

Mξ′′ +Dξ′ +Kξ =
U2

πµ
fa + Fnon (5)

where M =





1 xα

xα r2α



 is the mass matrix, D =





2ζh(
ωh

ωα
) 0

0 2ζαr
2
α





is the damping matrix, K =





(ωh

ωα
)2 0

0 r2α



 is the stiffness matrix, and

Fnon = {0 − r2αfnon}
T is the nonlinear term induced by the nonlinear

spring in pitching DOF. For this aeroelastic system, ξ = {h/b α}T and
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fa = {−cl 2cm}
T serve as the generalized displacements and the general-

ized aerodynamic forces, respectively. The generalized aerodynamic forces

corresponding to the generalized displacements in transonic air flow can be

obtained from full-scale CFD simulation or the aerodynamic ROM, which

are described in the following sections.

By defining the structural state vector xs = {ξ ξ′}T , the governing e-

quations of the aeroelastic system can be written as

x′

s = Asxs +
U2

πµ
Bsfa +BsFnon (6)

where As =





0 I

−M−1K −M−1D



, and Bs =





0

M−1



.

2.2. Time marching approach

2.2.1. Full-scale CFD simulation

As mentioned in section 1, the time marching approach based on CFD

technique is a high fidelity tool to calculate the aeroelastic response in tran-

sonic air flow. Nowadays many commercial software packages are capable of

conducting fluid-structure interaction simulations directly or via user-defined

functions. In the current investigation, Fluent is used to carry out the aeroe-

lastic response due to its high flexibility of using User-Defined Function (UD-

F) to incorporate with the structural model in CFD simulation.

Fluent is a general purpose CFD program, which can be used to model a

wide range of incompressible and compressible air flow. In the present study,

the pressure-based coupled algorithm is applied to solve the fluid governing e-

quations. In Fluent, a control-volume-based technique is employed to convert

the general scalar transport equation to an algebraic equation, which is solved
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by using a point implicit (Gauss-Seidel) linear equation solver in conjunction

with an algebraic multigrid (AMG) method. For dealing with viscous flow

problems, a classical one-equation turbulence model, the S-A model, is used

here. For spatial discretization, the second-order upwind scheme is utilized

to interpolate the convection terms. In terms of temporal discretization, a

technique called bounded second order implicit time integration is employed

in Fluent for real-time advancement.

The CFD simulation for viscous flow usually requires a high mesh resolu-

tion, which may limit the movement of the airfoil. A Radial Basis Functions

(RBF) interpolation for large mesh deformation [21] is implemented to en-

hance the capability of mesh deformation in ANSYS Fluent via user-defined

function (UDF). The RBF interpolation s(x), representing the displacement

of the CFD mesh [21, 22], can be expressed by a sum of basis functions

s(x) =

i=nb
∑

i=1

αiφ(∥x− xbi∥) (7)

where φ is the basis function, xbi is the center of the RBF describing the

displacement of the boundary nodes, nb is the number of boundary nodes,

∥ · ∥ is the norm biasing,

∥x− xi∥ =
√

(x− xi)2 + (y − yi)2/R (8)

where R is the support radius, and R = 10c is applied herein. Wendland’s

C2 function is implemented for the basis function

φ(∥x∥) =







(1− ∥x∥)4(4∥x∥+ 1) ∥x∥ < 1

0 ∥x∥ ≥ 1
(9)
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When the motion of nodes on boundary, i.e. db, is specified, coefficients

α = {α1, ..., αnb}
T can be obtained by the inverse of Eq. (7),

α = dbM
−1
b,b (10)

where Mb,b is an nb × nb matrix containing the evaluations of the basis

function φbibj = φ(∥xbi − xbj∥). Then the displacement of all remaining

nodes can be determined by Eq. (7).

2.2.2. Aerodynamic ROM in transonic flow

Among the numerous available methods, system identification is an ef-

fective and efficient technique to establish an aerodynamic ROM. Following

the suggestion from Refs. [23, 24], the autoregressive moving average (ARX)

model is used to establish the ROM of transonic aerodynamics in both in-

viscid and viscous air flow. The time domain equation for multi-input and

multi-output (MIMO) ARX model can be described as

fa(k) =
na
∑

i=1

Aifa(k − i) +
nb−1
∑

i=0

Biξ(k − i) (11)

The ARX model is easy to establish the ROM mathematically, because

the system response at any time step fa(k) is just a linear combination of

past inputs ξ(k − i) and outputs fa(k − i) of the model. With an assumed

model order consisting of na past outputs and nb inputs, the only task is to

identify the constant coefficient matrices Ai and Bi.

In the present study, a so-called “3211” signal used by Cowan et al. [23] is

utilized as the input of the CFD solve due to its ease of implementation and

broad frequency spectra. The least squares method is applied to fit the time
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history of the output of the CFD solver, i.e., fa, to carry out the unknown

coefficient matrices in Eq.(11).

One challenging problem of using an ARX model to build aerodynam-

ic ROM is to identify the model order, especially for transonic viscous air

flow due to its complicated unsteady characteristics. In theory, the order

of aerodynamic ROM could vary at different flow conditions, for instance,

Mach number and flow viscosity. In the present study, identifying the model

order is treated as a minimization problem of the flow condition, which can

be written in the general form of an optimization problem,

min
na=1...12
nb=1...12

J

where J = w∥cl,CFD − cl,ROM∥+ (1− w)∥cm,CFD − cm,ROM∥

where w is the weight factor, chosen from 0.2 to 0.4 herein.

This is a mixed variable, non-smooth and nonlinear problem, hence a

genetic algorithm (GA) can be implemented to search the most appropriate

order of ARX. With well-determined orders and corresponding coefficient

matrix, the discrete-time ARXmodel can be transformed into the continuous-

time form through the Tustin approximation [25].
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2.2.3. Aerodynamic interpolation technique

Applying the classical fourth-order Runge-Kutta (RK4) to Eq.(6) yields















































































xs,n+1 = xs,n + (k1 + 2k2 + 2k3 + k4)/6

k1 = ∆τ(Asxs,n +
U2

πµ
Bsfa(xs,n, τ) +BsFnon(xs,n))

k2 = ∆τ(As(xs,n + k1/2) +
U2

πµ
Bsfa(xs,n + k1/2, τ +∆τ/2)

+BsFnon(xs,n + k1/2))

k3 = ∆τ(As(xs,n + k2/2) +
U2

πµ
Bsfa(xs,n + k2/2, τ +∆τ/2)

+BsFnon(xs,n + k2/2))

k4 = ∆τ(As(xs,n + k3) +
U2

πµ
Bsfa(xs,n + k3, τ +∆τ)

+BsFnon(xs,n + k3)

(12)

As we know, the aerodynamic forces are determined by time and airfoil mo-

tion in time marching CFD simulations. Due to lack of the information of

displacement at time τ + ∆τ/2, it is impossible to carry out evaluations of

the generalized aerodynamic forces like fa(xs,n+k1/2, τ+∆τ/2) in Eq. (12).

However, it is reasonable to assume that the aerodynamic forces are contin-

uously changing over time. Therefore, theoretically speaking, it is feasible to

predict the aerodynamic forces by implementing an interpolation method of

fa but neglecting the influence of x and ki. An RK4 scheme with aerody-

namic interpolation technique can be derived from Eq. (12), which reduces
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to














































































xs,n+1 = xs,n + (k1 + 2k2 + 2k3 + k4)/6

k1 = ∆τ(Asxs,n +
U2

πµ
Bsfa(xs,n, τ) +BsFnon(xs,n))

k2 = ∆τ(As(xs,n + k1/2) +
U2

πµ
Bsfa(τ +∆τ/2)

+BsFnon(xs,n + k1/2))

k3 = ∆τ(As(xs,n + k2/2) +
U2

πµ
Bsfa(τ +∆τ/2)

+BsFnon(xs,n + k2/2))

k4 = ∆τ(As(xs,n + k3) +
U2

πµ
Bsfa(τ +∆τ)

+BsFnon(xs,n + k3)

(13)

where fa(τ + ∆τ/2) and fa(τ + ∆τ) can be obtained by using a second

order interpolation on the aerodynamic forces at previous time steps fa(τ),

fa(τ −∆τ) and fa(τ − 2∆τ)).

2.2.4. Henon method

The structural restoring moment for free-play Eq.(1) is a piecewise linear

function with three linear sub-domains divided by the discontinuity crossover

(±δ) of the integration step according to the location α(tn), as shown in Fig.

2. In order to switch the integration in different linear sub-domains pre-

cisely, the prediction for the crossover of the integration should be accurate.

The application of the classical fourth-order Runge-Kutta (RK4) method is

limited due to the numerical inaccuracy induced by the crossover of the in-

tegration step according to Ref. [26]. Dai et al. [26] also pointed out that

one effective method for accurately detecting the crossover is proposed by

Henon [27], herein called the Henon method, originally applied to construct

Poincaré maps.

The main idea of Henon method is described as follows [26, 27]. The
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Figure 2: Sketch of switch from different linear sub-domain in integration procedure

governing equation of the aeroelastic system, Eq.(6), can be rewritten as

d

dτ































x1

x2

...

xn































=































f1(x)

f2(x)
...

fn(x)































(14)

where x2 stands for the pitching motion α. As shown in Fig. 2, when the

integration is switching from one sub-domain to another one, i.e., pitching

motion crosses δ or −δ, exchange the dependent variable α with independent

variable τ , which will be shown below in detail. Since the distance between

previous location α(τn−1) and discontinuity crossover (δ or −δ) is known,

the response of the aeroelastic system can be integrated from its previous

location forward to the exact point of discontinuity within one step. Then
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time is reverted to τ , and the classical RK4 is then applied to integrate with

the new linear sub-domain until a next discontinuity is detected.

Detail of the steps of exchanging α with τ are described as follows. When

switching of the linear sub-domain takes place, exchange the dependent vari-

able α and independent variable τ , which is realized via first dividing each

of the equation of Eq. (14) by dx2/dτ = f2(x). And then replace the first

equation by dτ/dx2 = 1/f2(x). Consequently, a new system with x2 as the

independent variable is obtained.

d

dx2































x1

τ
...

xn































=































f1(x)/f2(x)

1/f2(x)
...

fn(x)/f2(x)































(15)

Note that the new system is used only for one integration step immediately

before α crosses δ or −δ.

In the following sections, RK4 with Henon method is applied to obtain

the nonlinear aeroelastic response as long as the free-play nonlinearity is

considered in the structural model.

2.3. Eigenvalue analysis for linear flutter solution

With well-determined orders of aerodynamic ROM by GA and corre-

sponding coefficient matrix, i.e. Ai and Bi, the discrete-time ARX model

can be transformed into the continuous-time form through Tustin approxi-

mation [25], which can be described in state-space form as







x′

a
= Aaxa +Baξ

fa = Caxa +Daξ
(16)
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where the aerodynamic state vector is

xa(k) = [fa(τ −∆τ) · · · fa(τ − na∆τ) ξ(τ −∆τ) · · ·

ξ(τ − (nb − 1)∆τ)]T (17)

Regardless the nonlinear structural term of Fnon in Eq. (6), introducing

x =
{

xT
s

xT
a

}T
and coupling the structural motion with the aerodynamic

ROM of Eq.(16), the governing equation for the aeroelastic system in state-

space form is obtained,

x′ = Ax =





As +
U2

πµ
BsDaCs

U2

πµ
BsCa

BaCs Aa



x (18)

Then, the linear non-dimensional flutter speed U and flutter frequency ratio

ω/ωα can be obtained by conventional stability analysis, i.e., solving the

eigenvalue of A in Eq. (18) at different air speeds.

2.4. Aerodynamic influence coefficient

To seek a better understanding of the unsteady characteristic of the aero-

dynamic model, the aerodynamic influence coefficient is employed in the

present study. Based on the authors’ previous work [6] [28], CFD or ROM

can be regarded as an implicit system with the generalized displacements as

inputs and the generalized aerodynamic forces as output. The aerodynamic

influence coefficient is the ratio of the first order harmonic component of the

complex output and the harmonic input.

According to the definition of aerodynamic influence coefficient, the input

of CFD or ROM, i.e. pitching or (plunging) motion of the airfoil, is taken as

a sinusoid function,

α(t) = α0 sin(ωt) (19)
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where α0 denotes the amplitude and ω is the frequency. The corresponding

output of the CFD solver or aerodynamic ROM, taking aerodynamic mo-

ment coefficient as example, is periodic which can be expanded by Fourier

series. Only the first order harmonic component of the aerodynamic moment

coefficient is retained, and it can be written as

cm(t) = (cm)c cos(ωt) + (cm)s sin(ωt) = (cm)cs sin(ωt+ ϕ) (20)

The coefficients (cm)c and (cm)s can be obtained by fitting the time history

of aerodynamic moment coefficient to the above equation. The aerodynamic

influence coefficient can be expressed as

Qmα =
2(cm)cs
α0

eiϕ =
2(cm)cs
α0

[cos(ϕ) + isin(ϕ)] = ℜ(Qmα) + iℑ(Qmα) (21)

The detailed process to build the aerodynamic influence coefficient can

be found in Ref. [28], and the generalized aerodynamic forces corresponding

to the airfoil motion can be written as






−cl

2cm







=





Qlh Qlα

Qmh Qmα











h
b

α







= Q







h
b

α







(22)

where Q is the aerodynamic influence coefficient matrix, which is related to

Mach number and reduced frequency k = ωb/V . It should be noted that the

amplitudes of motion, namely α0 and h0/b, should be set to be sufficiently

small in CFD calculations. In the aerodynamic ROM method, the steady lift

slope clα and aerodynamic moment coefficient slope cmα can be derived from

the real part of the aerodynamic influence coefficient of Qlα and Qmα when

the reduced frequency k of pitching motion is sufficiently small.
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Table 1: Grid parameters for the C-type structured mesh for inviscid flow simulation

Mesh no airfoil surface Radial points Wake

Mesh1 101 23 28

Mesh2 149 34 41

Mesh3 221 51 51

3. Computational validations

The aeroelastic airfoil studied here is taken from the work of Kousen and

Bendiksen [4], in which a free-play nonlinearity is assumed in the pitching

DOF. The airfoil of this model is NACA 64A010, and the relevant parameters

are xα = 0.2, r2α = 0.29, µ = 60, ωh/ωα = 0.34335, a = −0.2, δ = 1◦. The

computed Mach number is 0.87. Note that the viscous damping from the

structure is ignored in the original study.

3.1. Mesh independence study

Three computational grids for inviscid air flow simulation with different

mesh resolutions are generated to perform the mesh convergence analysis. A

C-type mesh is applied as shown in Fig. 3, and the outer boundary of the

computational domain extends to a distance of 50c from the airfoil as shown

in Fig. 4. Detailed grid parameters for these three computational meshes

are presented in Table 1.

CFD simulations of a NACA 64A010 airfoil with a sinusoid oscillating

motion for α0 = 1◦ and k = 0.1 at Mach 0.87 are carried out. The time

history of the unsteady aerodynamic coefficient for different meshes is shown

in Fig. 5. It can be seen that the amplitudes of cl and cm obtained by using
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Figure 3: Sketch of C-type CFD mesh

Table 2: Grid parameters for the C-type structured mesh for viscous flow simulation

Mesh no airfoil surface Radial points Wake

Mesh1 293 61 59

Mesh2 441 91 89

Mesh3 663 137 163

Mesh 1 are a little smaller than those obtained by using Mesh 2 and Mesh

3, but results obtained by using Mesh 2 and Mesh 3 agree well. Thus both

Mesh 2 and Mesh 3 are appropriate to calculate the unsteady aerodynamic

forces. By considering the computational costs, Mesh 2 with 7524 points is

applied in the following sections.

Other C-type meshes with a fine grid resolution are generated for CFD

simulation of viscous air flow. Similar to the mesh sensitivity assessment of

inviscid flow simulation, three meshes, whose parameters are listed in Table 2,

are generated. The outer boundary for the computational domain extends to

50c from the airfoil, and the first layer thickness of all these grids is 1×10−5c,

with 0 < y+ < 1 on the airfoil surface.

Figure 6 shows the time history of the aerodynamic coefficients for a sinu-
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(a) (b)

Figure 4: Computational grids of NACA 64A010 airfoil for inviscid air flow simulation:

(a) overall, (b) close-up.
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Figure 5: Comparison of aerodynamic coefficients of NACA 64A010 airfoil from different

meshes for inviscid air flow simulation (Mach 0.87, α0 = 1◦, k = 0.1 and a = −0.6): (a)

lift coefficient, (b) aerodynamic moment coefficient.

21



Time (s)

c
l

0 0.1 0.2 0.3 0.4 0.5 0.6
­0.1

­0.05

0

0.05

0.1 mesh 1

mesh 2

mesh 3

(a)

Time (s)

c
m

0 0.1 0.2 0.3 0.4 0.5 0.6
­0.03

­0.02

­0.01

0

0.01

0.02

0.03 mesh 1

mesh 2

mesh 3

(b)

Figure 6: Comparison of aerodynamic coefficients of NACA 64A010 airfoil from different

meshes for viscous air flow simulation (Mach 0.87, α0 = 1◦, k = 0.2 and a = −0.6): (a)

lift coefficient, (b) aerodynamic moment coefficient.

soid oscillating motion with α0 = 1◦ and k = 0.1 at Mach 0.87. Apparently,

both Mesh 2 and Mesh 3 meet the requirement for unsteady viscous flow sim-

ulations. Considering the computational costs, however, Mesh 2 with 55440

points is applied in the following sections. Note that based on the mesh

size, the computational cost for the viscous solution should be over 7 times

that of the inviscid solution. Thus, it can be time-consuming to obtain the

aeroelastic response by using full CFD simulation for the viscous solution,

indicating the necessity of adopting aerodynamic ROM technique in viscous

CFD simulation.

3.2. Time step convergence study

As noted in our previous study [16], the time-step size in time march-

ing approach with CFD technique has significant influence on the calculated

aeroelastic response, especially for the cases considering structural nonlin-
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Figure 7: Comparison of calculated time histories of pitching motion for linear structure

model in inviscid air flow at Mach 0.87 by using different time step size at U = 3.8.

earity in transonic air flow. Therefore, time step convergence studies are

conducted with a series of time-step sizes for the linear and nonlinear struc-

tural model in both inviscid and viscous air flow in this section.

Figure 7 shows the calculated aeroelastic response for linear structure in

inviscid air flow obtained by using different time-step sizes. It is found that

the aeroelastic system has a simple LCO at U = 3.8, and the differences

between calculated responses from different time steps are small.

Figure 8 shows the computed pitching responses of the aeroelastic model

with free-play nonlinearity in inviscid air flow. It is interesting to note that

time histories and phase plots of pitching DOF obtained by using different

time step size are almost the same. Thus, in terms of time step sensitivity,

the good agreements of aeroelastic response from ∆τ = 0.2 to ∆τ = 0.01

reveal the excellent robustness of the present approach. Those phenomena

are entirely different from those observed in our previous investigation [16],

in which Ansys-CFX solver was applied to calculate the nonlinear response.
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Figure 8: Comparison of calculated aeroelastic responses for nonlinear structure model in

inviscid air flow at Mach 0.87 by using different time step size at U = 1.8: (a) time history,

(b) phase plot.

Compared to Ansys-CFX solver, the main difference is the implementing

of aerodynamic force interpolation technique in the present approach. Our

results imply that applying aerodynamic force interpolation technique in the

time marching approach based on CFD can reduce the sensitivity to the time

step. In summary, the time-step size of ∆τ = 0.04 can be adopted in the

following simulations of inviscid flow.

In the same way, the time step independent study is performed for both

linear and nonlinear structural aeroelastic airfoil in viscous flow, as shown

in Fig. 9. For the case with the linear structure, the calculated aeroelastic

response converges to the same LCO with decreasing time-step size. The

responses of the nonlinear aeroelastic model are also insensitive to the time

step, which is coincident with the case of inviscid air flow. Hence a suitable

time step is ∆τ = 0.04 for both linear and nonlinear structural models, which

24



τ

α

0 50 100 150 200 250 300
­0.1

­0.05

0

0.05

0.1

0.15 ∆τ = 0.08

∆τ = 0.04

∆τ = 0.02

∆τ = 0.01

(a)

τ

α

0 50 100 150 200 250 300
­0.04

­0.02

0

0.02

0.04

0.06 ∆τ = 0.08

∆τ = 0.04

∆τ = 0.02

∆τ = 0.01

(b)

Figure 9: Comparison of calculated time histories of pitching motion in viscous air flow

at Mach 0.87 by using different time step size at: (a) U = 4 for linear model, (b) U = 1.8

for nonlinear model.

is applied in the following viscous CFD simulations.

3.3. Transonic flutter boundary for Isogai model

To conduct a detailed validation for the ROM method and high-fidelity

CFD simulation of the present study, a benchmark for transonic flutter pre-

diction, namely the Isogai wing model [1], is employed in the section. Its

parameters are a = −2.0, xα = 1.8, r2α = 3.48, ωh/ωα = 1.0, µ = 60.

The transonic flutter boundary of Isogai wing model has been widely

studied with an inviscid Euler solution. Depicting the flutter speed and

frequency versus Mach number, the flutter boundary is illustrated in Fig.

10. The results obtained by both the ROM method and the time marching

approach based on CFD are in good agreement with those obtained by using

time marching solutions [29, 30, 31] and the transonic frequency domain

method [28]. From Fig. 10(a), it can be seen that flutter speed in the
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Figure 10: Transonic flutter boundary of Isogai wing model: (a) flutter speed and (b)

flutter frequency for inviscid solution, (c) flutter speed and (d) flutter frequency for viscous

solution.
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transonic regime is obviously lower than those in the subsonic regime, which

is usually termed as “transonic dip”. Moreover, there are multiple values of

flutter speed between Mach 0.85 and 0.9, which forms the so called S shape

flutter boundary [32].

Only a few studies of Isogai wing model in viscous flow are available in

the existing literature. Aerodynamic ROM method and full-scale CFD sim-

ulations are utilized to obtain the flutter solution at different Mach numbers

as shown in Fig. 10 (c) and (d). Compared with the existing time marching

solutions [30, 31], reasonably good agreements are achieved demonstrating

the feasibility of the present methods. It is also found that the so-called S

shape flutter boundary observed in the inviscid computational results disap-

pears when aerodynamic viscosity is taken into account. Furthermore, it is

found that the significant difference of the flutter solution between Euler and

Navier-Stokes calculations occurs at 0.85 < Ma < 0.9.

4. Transonic flutter boundary

In order to obtain the linear flutter characteristic of the aeroelastic airfoil

in transonic airflow, a linear structure model is used in this section. In the

time marching approach based on CFD, the linear flutter characteristic is

obtained by observing the responses at a sequence of successive airspeed. In

the ROMmethod, the linear flutter solution can be obtain by either observing

the aeroelastic response or by eigenvalue analysis.

Figure 11 shows the plunging and pitching motion for inviscid solution

at Mach 0.87 obtained from time marching approach based on CFD and

aerodynamic ROMwith a series of airspeeds. As expected, damped, neutrally

27



τ

α

0 50 100 150 200 250 300
­0.04

­0.02

0

0.02

0.04

0.06

U = 3.72

U = 3.73

U = 3.74

(a)

τ

α

0 50 100 150 200 250 300
­0.04

­0.02

0

0.02

0.04

0.06

U
l
 = 3.75 

U
l
 = 3.755 

U
l
 = 3.76 

(b)

Figure 11: Aeroelastic response for linear structural model at Mach number 0.87 for

inviscid solution from: (a) full-scale CFD simulations and (b) aerodynamic ROM.

stable and divergent motion can be observed as the airspeed successively

increases. Hence, the non-dimensional flutter speed and flutter frequency

for the inviscid solution is U = 3.73 and ω/ωα = 0.746 obtained from the

full CFD simulation. From the ROM method, the flutter speed and flutter

frequency are U = 3.755 and ω/ωα = 0.755.

Similarly, the aeroelastic response for the viscous solution at different

airspeeds is presented in Fig. 12 from both the CFD simulation and the

aerodynamic ROM method. The critical flutter condition from the viscous

calculation is U = 3.9 and ω/ωα = 0.423 obtained from CFD simulation, and

U = 3.734 and ω/ωα = 0.406 from the aerodynamic ROM method.

Table 3 summarizes both the non-dimensional flutter speed and flutter

frequency ratio obtained by using the different methods for both inviscid and

viscous solution at Mach 0.87. Our results from Fluent UDF and ARX model

agree well with those obtained by the time marching approach [4] and the

Ansys-CFX solver [16]. The difference of the non-dimensional flutter speed
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Figure 12: Aeroelastic response for linear structural model at Mach number 0.87 for viscous

solution from: (a) full-scale CFD simulations and (b) aerodynamic ROM.

obtained by using ARX ROM and the time marching method with CFD

technique is small, and the flutter frequency ratios are almost the same.

Due to its high efficiency in aerodynamic modeling, the ARX ROM is es-

tablished over a wide range of Mach number from 0.6 to 0.95. The transonic

flutter boundary is achieved by depicting flutter speed and flutter frequency

versus Mach number, as shown in Fig. 13. The flutter boundary obtained by

full-scale CFD simulation is also presented in Fig. 13 to ensure the accuracy

of the flutter solution from the ARX ROM method, in which good agree-

ment is observed. The transonic flutter boundary based on Euler equations

obtained by Yang et al. [6] is also plotted for comparison.

From the comparison of transonic flutter boundary of the Isogai wing

model in Fig. 10 and the present model in Fig. 13, it is obvious that the

effect of flow viscosity on flutter characteristic is different for different Mach

number ranges. Regarding the present aeroelastic airfoil, the linear flutter

solution considering viscous effects are slightly different from those for the
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Table 3: Comparison of linear flutter speed and flutter frequency at Mach 0.87.

Inviscid air flow Viscous air flow

U ω/ωα U ω/ωα

Fluent UDF 3.73 0.746 3.9 0.423

ARX ROM 3.755 0.755 3.734 0.406

Ansys-CFX solver in [16] 3.95 0.861 3.938 -

ARMA ROM in [16] 3.78 0.831 3.911 -

Kousen and Bendiksen [4] nearly 4 - - -

inviscid results for Ma < 0.83 and Ma > 0.91. However, the flow viscosity

has a significant influence on the flutter characteristics, especially for flutter

frequency, for 0.84 < Ma < 0.9.

Similarly to Silva et al. [19], root locus analysis is employed to evalu-

ate aeroelastic behaviors for inviscid and viscous solutions at different Mach

number ranges. In the low Mach number range Ma < 0.83, no notable

discrepancy of the root locus from the ROM method between Euler and

Navier-Stokes based aerodynamics is observed, as shown in Fig. 14.

When the Mach number is increased to 0.84 < Ma < 0.9, the damping

and frequency of the aeroelastic response from the full-scale CFD are also

plotted to verify the root locus from the ROM method. A MATLAB-based

data post-procedure developed by Bennett and Desmarais [33] is applied to

analyze the aeroelastic transients for damping and frequency components.

A curve-fitting toolbox in MATLAB is employed to find the best curve fit

for the obtained aeroelastic response. From Fig. 15, it is evident that the

primary flutter mechanism obtained from the ROM method and the time
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Figure 13: Comparison of Flutter boundary obtained by inviscid and viscous solutions:

(a) flutter speed versus Mach number (b) flutter frequency versus Mach number.

marching approach based on CFD agrees very well. Furthermore, the root

locus derived from the Euler equations behaves significantly differently from

that for the Navier-Stokes result in this situation. The aeroelastic mode

crossing imaginary axis changes from the 2nd mode for the inviscid solution

to 1st mode for the viscous solution. The shift of unstable aeroelastic mode

leads to the remarkable flutter frequency difference between inviscid and

viscous solutions at this Mach range observed in Fig. 13.

As long as the flow is accelerated further to 0.91 < Ma < 0.95, the root

locus of the aeroelastic system derived from inviscid and viscous aerodynamic

models are almost the same, as displayed in Fig. 16. Thus, it is not surprising

that the flutter boundary matches well at the high Mach number no matter

whether the Euler or Navier-Stokes solver is implemented.

From the above root locus analysis, it can be seen that in the low and

high Mach number ranges, aerodynamic viscosity makes little difference to
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Figure 14: Aeroelastic root locus from ROM aerodynamics at: (a) Mach 0.6 and (b) Mach

0.83.
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Figure 15: Aeroelastic root locus from ROM aerodynamics and time marching approach

based on CFD at: (a) Mach 0.84 and (b) Mach 0.87.

32



Real (λ)

Im
ag

(λ
)

­0.25 ­0.2 ­0.15 ­0.1 ­0.05 0 0.05

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4 Inviscid: mode 1

Inviscid: mode 2

Viscous: mode 1

Viscous: mode 2

(a)

Real (λ)

Im
ag

(λ
)

­0.3 ­0.25 ­0.2 ­0.15 ­0.1 ­0.05 0 0.05

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4 Inviscid: mode 1

Inviscid: mode 2

Viscous: mode 1

Viscous: mode 2

(b)

Figure 16: Aeroelastic root locus from time marching approach based on CFD at: (a)

Mach 0.91 and (b) Mach 0.95.

the flutter solution. But in the special transonic Mach number range, the

effect of viscosity can change the unstable aeroelastic mode compared with

the inviscid solution. So these results show that the aerodynamic viscosity

can affect the unstable mechanism of flutter in transonic regime.

5. Nonlinear dynamic behaviors in transonic flow

5.1. Nonlinear aeroelastic response at Mach 0.87

To demonstrate the capability to obtain a nonlinear response from Fluent

UDF and the ARX model, the typical nonlinear responses are first presented.

These responses also show the fundamental nonlinear behavior of the present

model in inviscid air flow. Subsequently, the nonlinear behavior in viscous

air flow is shown to demonstrate the effects of aerodynamic viscosity.

Figure 17 shows several aeroelastic responses in inviscid airflow at dif-

ferent flow speeds obtained by using Fluent UDF and aerodynamic ROM
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method. Some representative and interesting phenomena, for example, a

snap-through phenomenon in Fig. 17 (a) (b), LCOs in Fig. 17 (e) (f) and

chaotic motion in Fig. 17 (c) (d), can be captured by both of the two ap-

proaches applied in the present study.

Representative phase plots in viscous air flow at different airspeeds are

obtained from aerodynamic ROM and CFD simulations as shown in Fig. 18.

Simple and complex LCOs can be observed, indicating bifurcation should

occur in this Mach number. The good agreement between these two methods

indicate the suitability of using aerodynamic ROM to obtain the nonlinear

response in transonic viscous air flow.

Figure 19 presents the bifurcation diagram from the ARX model based

on Euler solution, showing a double-period bifurcation towards chaos, which

agrees well with our previous analysis [16]. These agreements also suggest

the feasibility of using Fluent UDF and the ARX ROM method to calculate

the nonlinear aeroelastic responses in transonic flow.

Amongst the numerous comparisons of the nonlinear dynamic response

from the Euler and Navier-Stokes equations at Mach 0.87, two major dif-

ferences are summarized. The first is that the snap-through phenomenon

happening at a low-speed range in inviscid air flow is no longer observed in

the case of viscous flow. Taking the case of U = 0.4 displayed in Fig. 20 as

an example, a damped motion is observed when the Navier-Stokes equations

are applied. The other is that the flow speed region, in which the aeroelas-

tic airfoil exhibits chaotic motion, from viscous computational result is also

vastly different from that for the inviscid solution as shown in Fig. 19.
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Figure 17: Phase plots of nonlinear aeroelastic system at Mach number 0.87 in inviscid

air flow obtained by time marching approach based on: (a) CFD and (b) aerodynamic

ROM at U = 0.4, (c) CFD and (d) aerodynamic ROM at U = 1.455, (e) CFD and (f)

aerodynamic ROM at U = 1.678

35



α or h/b

α
’ 
o

r 
h

’/
b

­0.06 ­0.04 ­0.02 0 0.02 0.04 0.06

­0.03

­0.02

­0.01

0

0.01

0.02

0.03
h/b

α

(a)

 α or h/b

 α
’ 
o

r 
h

’/
b

­0.06 ­0.04 ­0.02 0 0.02 0.04 0.06

­0.03

­0.02

­0.01

0

0.01

0.02

0.03
h/b

α

(b)

α or h/b

α
’ 
o

r 
h

’/
b

­0.15 ­0.1 ­0.05 0 0.05 0.1 0.15

­0.06

­0.04

­0.02

0

0.02

0.04

0.06
h/b

α

(c)

 α or h/b

 α
’ 
o

r 
h

’/
b

­0.15 ­0.1 ­0.05 0 0.05 0.1 0.15

­0.06

­0.04

­0.02

0

0.02

0.04

0.06
h/b

α

(d)

α or h/b

α
’ 
o

r 
h

’/
b

­0.2 ­0.15 ­0.1 ­0.05 0 0.05 0.1 0.15 0.2

­0.1

­0.05

0

0.05

0.1
h/b

α

(e)

 α or h/b

 α
’ 
o

r 
h

’/
b

­0.2 ­0.15 ­0.1 ­0.05 0 0.05 0.1 0.15 0.2

­0.1

­0.05

0

0.05

0.1
h/b

α

(f)

Figure 18: Phase plots of nonlinear aeroelastic system at Mach number 0.87 in viscous air

flow obtained by time marching approach based on: (a) CFD and (b) aerodynamic ROM

at U/Ul = 0.5128, (c) CFD and (d) aerodynamic ROM at U/Ul = 0.6, (e) CFD and (f)

aerodynamic ROM at U/Ul = 0.7692.
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Figure 19: Comparison of bifurcation diagrams from inviscid and viscous solution at Mach

number 0.87 obtained by aerodynamic ROM method: (a) plunging and (b) pitching.
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Figure 20: Nonlinear response at Mach number 0.87 at U = 0.4 obtained by time marching

approach based on Navier-Stokes equations.
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5.2. Snap-through at different Mach numbers

It has been noticed that the snap-through phenomenon observed at low-

speed in the inviscid flow may quench when aerodynamic viscosity is taken

into account. It would be interesting to determine the Mach range in which

the snap-through emerges for the viscous solution and the physical explana-

tion of quenching of it in viscous flow. According to our previous study [16],

the snap-through phenomena is substantially caused by the Single Degree of

Freedom (SDOF) flutter and dual solution of SDOF aeroelastic system. So

the key point should focus on the appearance of SDOF flutter in the following

discussion.

According to Bendiksen [34, 35], with increasing Mach number, the Mach

number freeze phenomenon happens when shock waves on the upper and

lower surfaces reach the trailing edge of the airfoil. Meanwhile, the flow field

around the airfoil becomes essentially independent of the freestream Mach

number. It is easy to work out that the freeze Mach number for NACA

64A010 is 0.91 according to our previous paper [6].

Smilg [36] noted that the SDOF flutter occurs in subsonic incompress-

ible flow if the elastic axis of the airfoil is located at a point that is ahead

of the airfoil quarter-chord (i.e. the aerodynamic center for thin airfoil in

subsonic flow) but not too far ahead of the airfoil leading edge. Then Yang

et al. [6] extend this conclusion to a transonic case based on numerous CFD

calculations and flutter analysis. That is the SDOF flutter happens when

the aerodynamic center of the airfoil lies behind the elastic axis, and it stops

when the Mach number reaches the freeze Mach number.

Hence the relative locations of the aerodynamic center and elastic axis
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Figure 21: Aerodynamic center of NACA 64A010 at different Mach numbers: (a) overall,

(b) detailed at transonic region.

at different Mach numbers should be examined first. According to the thin

airfoil aerodynamic theory [17], the location of the aerodynamic center can

be determined by

xac = −2cmα/clα + a (23)

By using steady CFD analysis and the ROM method, we can obtain the

slope of the aerodynamic forces coefficient at different Mach numbers and

subsequently calculate the aerodynamic center of the airfoil. Fig. 21 presents

the aerodynamic center of NACA 64A010 at different Mach numbers. Good

agreement of the aerodynamic center from steady CFD and aerodynamic

ROM is observed, demonstrating good accuracy of the ROM method again.

It is evident that the aerodynamic center of the airfoil lies around the mid-

point of the airfoil (xac = −0.16) when the Mach number is greater than

Mach 0.91, i.e. the freeze Mach number.

From the location of the aerodynamic center and the necessary condition
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for the appearance of SDOF flutter, we can infer that SDOF flutter can occur

for 0.83 < Ma < 0.9 with inviscid aerodynamics for the present aeroelastic

model. In the case of viscous flow, the aerodynamic center obtained from

ROM method lies a little behind that from full-scale CFD as shown in Fig.

21 (b), the Mach number range for SDOF flutter obtained from these two

approaches may differ slightly. SDOF flutter can happen for 0.84 < Ma <

0.86 from ROM method, which is wider than that of 0.84 < Ma < 0.85

predicted by steady CFD.

Stability analysis from ROM method is used to verify the Mach number

range, where SDOF flutter occurs, predicted by the above condition. Only

the pitching DOF of Eq.(18) is retained, and governing equation of SDOF

aeroelastic system is obtained. From Yang et al. [6] and He et al. [37], it

is known that only the aerodynamic model, rather than the structural pa-

rameters of the aeroelastic airfoil, determines the existence of SDOF flutter.

Thus, the aeroelastic system with linear structural model is taken as the

example to illustrate the Mach number at which SDOF flutter may occur.

Fig. 22 shows the root locus of SDOF system at different Mach numbers.

For the Euler results as displayed in Fig. 22 (a), SDOF flutter happens for

0.83 < Ma < 0.9, which agrees well with Mach number ranges satisfying the

condition of SDOF flutter based on aerodynamic center. Together with Fig.

21 and Fig. 22 (b), it is easy to reach the same conclusion in the case of

viscous flow.

To further verify the Mach number region of SDOF flutter and snap-

through phenomenon, the time marching approach with full-scale CFD sim-

ulation and aerodynamic ROM are performed on the original two-DOF aeroe-
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Figure 22: Root locus of single degree of freedom aeroelastic system with pitching DOF

at different Mach numbers for : (a) inviscid solution, (b) viscous solution.

lastic system with free-play. As presented in Figs. 23 and 24, snap-through

phenomena are observed at the low-speed region with different Mach num-

bers, which compares well the Mach regions predicted by the condition of

SDOF flutter with respect to aerodynamic center and eigenvalue analysis of

SDOF system.

So it can be seen that the location of the aerodynamic center plays an

important role for SDOF flutter. The relative position between the aerody-

namic center and elastic axis determines the appearance of SDOF flutter and

snap-through before freeze Mach number. For the present NACA 64A010 air-

foil, the inviscid-based aerodynamics can only provide a good prediction of

the aerodynamic center for Ma < 0.83 and Ma > 0.91. However, the loca-

tion of aerodynamic center obtained by Euler and Navier-Stokes solutions for

0.84 < Ma < 0.9 is significantly different. It leads to the varying behavior

of the snap-through phenomenon for inviscid and viscous solutions. Thus,
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Figure 23: Aeroelastic response of pitching motion for inviscid solution at U = 0.4 of: (a)

Mach 0.82, (b) Mach 0.83, (c) Mach 0.9 and (d) Mach 0.91.
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Figure 24: Aeroelastic response of pitching motion for viscous solution at: (a)U = 0.4 of

Mach 0.83, (b) U = 0.4 of Mach 0.84, (c) U = 0.3 of Mach 0.85 and (d) U = 0.4 of Mach

0.86.
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the aerodynamic viscosity has a remarkable influence on the location of the

aerodynamic center in the transonic regime and hence on the snap-through

phenomenon.

5.3. Bifurcations at different Mach numbers and complex nonlinear motions

With the ROM built in the previous section, it is convenient to carry out

the nonlinear aeroelastic response at different airspeeds at different Mach

numbers. Firstly, the ROM method is verified by comparing the dynam-

ic responses for aeroelastic airfoil at low Mach number with a conventional

linear inviscid aerodynamic model. The Wagner’s functions method is em-

ployed for comparison in the present study, and the bifurcation diagram for

the aeroelastic model at Mach 0.6 in inviscid and viscous flow from ROM

and at Mach 0 from Wager’s function are presented in Fig. 25. Good agree-

ments are observed indicating the feasibility of present methods, and it also

demonstrates that only simple LCOs happen in low subsonic flow.

Figures 26 and 27 show the bifurcation diagrams at several typical Mach
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numbers for inviscid and viscous solutions, respectively. The nonlinear aeroe-

lastic system experiences various type of bifurcations when the Mach number

is changed. In the low Mach number region, regular subcritical bifurcation-

s are observed, and only simple LCOs are observed. With increasing Mach

number, complex LCOs and even non-periodic motions appear at specific air-

speed regions. As the Mach number is increased further, regular subcritical

bifurcations occur again, and only simple LCOs can be observed for different

airspeeds. It is interesting to note that for both inviscid and viscous compu-

tational results, the complex dynamic response stops above Mach 0.91, which

is the freeze Mach number. The Mach number range, at which complex non-

linear motion of the aeroelastic airfoil exists for inviscid aerodynamics, are

quite different from that for viscous air flow.

A birth process of chaotic motion corresponding to Mach number for the

Euler solution is observed. At low Mach number, conventional subcritical

bifurcation happens. An additional sub-branch of the bifurcation diagram

emerges at Mach 0.65, as shown in Fig. 26 (b). Since then the bifurcation

diagram of the present aeroelastic system becomes more and more complex

as Mach number increases, while the airspeed range in which chaotic motion

takes place widens as well. Typical period-doubling bifurcations can be seen

in the region of Mach 0.8 to 0.87; see Fig. 26 (d) and Fig. 19 (b). Then,

the airspeed region with chaotic motion dies out gradually from Mach 0.88

to Mach 0.9.

To overview the nonlinear dynamics behaviors based on Euler equations

crossing the transonic region, phase plots of pitching DOF at different Mach

number but at a fixed airspeed of U/Ul = 0.48 are shown in Fig. 28. It
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Figure 26: Bifurcation diagram obtained by aerodynamic ROM for inviscid solution: (a)

Mach 0.64, (b) Mach 0.65, (c) Mach 0.7, (d) Mach 0.8, (e) Mach 0.9 and (f) Mach 0.91.
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Figure 27: Bifurcation diagram obtained by aerodynamic ROM for viscous solution: (a)

Mach 0.7, (b) Mach 0.71, (c) Mach 0.8, (d) Mach 0.9, (e) Mach 0.91 and (e) Mach 0.95.
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can be observed that at a low Mach number region (below Mach 0.66), the

aeroelastic system oscillates in the same orbit as shown in Fig. 28 (a). With

increasing Mach number from Mach 0.69 to 0.75, a birth and growth process

of twists on phase portraits are observed in Fig. 28 (b). Subsequently, non-

periodic or chaotic motions are followed from Mach 0.78 to 0.8. A Poincaré

map and power spectra for pitching motion at Mach 0.8, as a representation

in chaos region, are used to identify chaotic motion, as shown in Fig. 29.

Then the aeroelastic airfoil return to period-2 LCOs, Fig. 28 (e), and to

simple LCO, Fig. 28 (f). It is interesting to note that for Ma > 0.91 as

shown in Fig. 28 (f), the system responds with the same simple LCO, similar

to the phenomenon in lower Mach number region. In summary, the present

aeroelastic system experiences simple LCO, complex LCO, non-periodical

oscillations, chaos, then back to complex LCO and simple LCO, when Mach

number increases.

The trajectory of the aeroelastic system for the viscous solution is more

complicated than that of the inviscid solution. In terms of various Mach

number, the birth or death process of chaotic motion obtained by the Navier-

Stokes equations is not as obvious as that from the Euler solution. The

complex bifurcation come forth suddenly when the Mach number is larger

than Mach 0.7, see Fig. 27 (a) and (b). Similarly, the chaotic region dies

out within a small Mach number increment from Mach 0.9 to Mach 0.91 as

shown in Fig. 27 (d) and (e).

Our detailed study in this section demonstrates that the Mach number

of air flow is one important bifurcation parameter which can trigger period-

doubling bifurcation and chaotic motion of the aeroelastic system. The oc-

48



α

α
’

­0.06 ­0.04 ­0.02 0 0.02 0.04 0.06

­0.03

­0.02

­0.01

0

0.01

0.02

0.03

Mach 0.6
Mach 0.62
Mach 0.64
Mach 0.66

(a)

α

α
’

­0.06 ­0.04 ­0.02 0 0.02 0.04 0.06

­0.03

­0.02

­0.01

0

0.01

0.02

0.03

Mach 0.69
Mach 0.7
Mach 0.71
Mach 0.72
Mach 0.73
Mach 0.74
Mach 0.75

Twist

(b)

α

α
’

­0.06 ­0.04 ­0.02 0 0.02 0.04 0.06

­0.03

­0.02

­0.01

0

0.01

0.02

0.03

Mach 0.76
Mach 0.78

(c)

α

α
’

­0.06 ­0.04 ­0.02 0 0.02 0.04 0.06

­0.03

­0.02

­0.01

0

0.01

0.02

0.03
Mach 0.8

(d)

α

α
’

­0.08 ­0.06 ­0.04 ­0.02 0 0.02 0.04 0.06

­0.06

­0.04

­0.02

0

0.02

0.04

0.06

Mach 0.82
Mach 0.83
Mach 0.84
Mach 0.85
Mach 0.86
Mach 0.87
Mach 0.88

(e)

α

α
’

­0.06 ­0.04 ­0.02 0 0.02 0.04 0.06

­0.03

­0.02

­0.01

0

0.01

0.02

0.03

Mach 0.9
Mach 0.91
Mach 0.92
Mach 0.93
Mach 0.94
Mach 0.95

(f)

Figure 28: Phase plots obtained by aerodynamic ROM based on Euler equations at U/Ul =

0.48 at: (a) 0.6 < Ma < 0.66, (b) 0.69 < Ma < 0.75, (c) Ma = 0.76 and 0.78, (d) Ma =

0.8, (e) 0.82 < Ma < 0.88 and (e) 0.9 < Ma < 0.95.
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Figure 29: Nonlinear dynamics of pitching motion based on Euler equations at U/Ul = 0.48

of Mach 0.8: (a) Poincaré map and (b) power spectra.

currence of complicated nonlinear aeroelastic phenomena tends to be much

more common in transonic air flow than in subsonic and supersonic airflow.

In this section much effort is required to identify the influence of viscosity

by comparing the aerodynamic influence coefficient derived from inviscid and

viscous solutions. Since the frequency of nonlinear dynamic response usually

distributes over a wide range, the AICs including Qlh, Qlα, Qmh and Qmα

from 0.0 to 0.6 are compared and analyzed in the following sections.

Based on our numerous calculations, it is found that only simple LCOs

happen for Ma < 0.64 and almost no difference of the bifurcation diagram

is observed between the Euler and Navier-Stokes solutions at the same Mach

number, see Fig. 25, Fig. 26 (a) and Fig. 27 (a). This is because AICs

over this Mach number range, as shown in Fig. 30, are almost the same.

Therefore, the viscosity has only minor importance in this scenario, and

both inviscid and viscous aerodynamic models are suitable for predicting
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flutter solution and nonlinear dynamic behavior. From the point of view of

aerodynamics, in this case the flow field around the airfoil is subsonic, and

the effect of aerodynamic viscosity is limited and negligible, which agrees

with the assumption of subsonic thin airfoil aerodynamic theory [17].

The most interesting scenario appears for 0.65 < Ma < 0.82, where nei-

ther strong shock nor severe flow separation exists around the airfoil. The

inviscid-based model is capable of achieving linear flutter characteristics (see

Fig. 13) and SDOF flutter solution (see Fig. 22). However, the bifurcation

diagrams obtained from Euler-derived aerodynamics can be quite different

from the Navier-Stokes solution. Taking Mach 0.7 as an example, a sub-

critical bifurcation is observed in viscous air flow and only simple LCOs are

observed as shown in Fig. 27 (a), while the aeroelastic system undergoes a

period doubling bifurcation for the inviscid solution as shown in 26 (c). We

know that the nonlinear aeroelastic response is sensitive to the system pa-

rameter, so a small change of the variable, like the aerodynamic coefficients

herein as shown in Fig. 31, can lead to a big difference of the nonlinear

response. Thus, it may be sufficiently precise to carry out the linear flutter

solution by using the inviscid aerodynamic model, while the viscous solution

is still necessary to capture the nonlinear dynamic behavior in this Mach

number range.

A significant effect of the aerodynamic viscosity can be observed for

0.83 < Ma < 0.9, in which strong shock wave and shock-boundary layer

interaction occur in the flow field as shown in Fig. 32. Comparing with

the pressure coefficient distribution shown in Fig. 32 (c), the inviscid solu-

tion tends to have a stronger shock that is close to the trailing edge. When
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Figure 30: Comparison of aerodynamic influence coefficients at Mach 0.6 between inviscid

and viscous solutions: (a) Qlh, (b) Qlα, (c) Qmh and (d) Qmα.
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Figure 31: Comparison of aerodynamic influence coefficients at Mach 0.7 between inviscid

and viscous solutions: (a) Qlh, (b) Qlα, (c) Qmh and (d) Qmα.
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the viscosity is taken into account, the shock strength is reduced and the

shock wave location is moved forward. As a result, the aerodynamic center

from the inviscid aerodynamics is greatly different from the viscous solution

as shown in Fig. 21. As to the unsteady characteristic of aerodynamics, a

wide variation of the AICs between the inviscid and viscous solutions are

observed in Fig. 33. Thus, both the shock wave and aerodynamic viscosi-

ty are important in this Mach number range. The viscous effect should be

taken into consideration in the numerical analysis to obtain the linear flutter

characteristic and nonlinear aeroelastic dynamic behavior.

It is interesting to find that when the Mach number is increased above

0.91, i.e. the freeze Mach number, no significant discrepancy of the bifurca-

tion diagram is observed between the inviscid and viscous solutions. A slight

difference of the AICs is observed as displayed in Fig. 35. At this moment,

the shock wave becomes detached from the trailing edge as shown in Fig.

34 (a) and (b), and the pressure coefficient distribution are almost the same

on the upper and lower surfaces of the airfoil as shown in Fig. 34 (c). It is

obvious that the shock wave dominates the flow in this Mach number range

and viscosity is of minor importance. So using the Euler equations is precise

enough to capture the steady and dynamic behavior of the aerodynamics.

It should be noted that although three different aeroelastic phenomena

are studied, namely the linear flutter characteristics, the snap-through phe-

nomenon and the nonlinear dynamic behavior, the physical source of these

are all the same. Different techniques, including root locus, SDOF flutter and

AIC, are applied to identify the effect of viscosity on different type of aeroe-

lastic phenomena and to elaborate how the viscosity impacts the aeroelastic
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Figure 32: Flow field of NACA 64A010 at Mach 0.86: (a) Mach number distribution

in inviscid air flow, (b) Mach number distribution in viscous air flow, (c) comparison of

pressure distribution.
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Figure 33: Comparison of aerodynamic influence coefficients at Mach 0.86 between inviscid

and viscous solutions: (a) Qlh, (b) Qlα, (c) Qmh and (d) Qmα.
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Figure 34: Flow field of NACA 64A010 at Mach 0.91: (a) Mach number distribution

in inviscid air flow, (b) Mach number distribution in viscous air flow, (c) comparison of

pressure distribution.
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Figure 35: Comparison of aerodynamic influence coefficients at Mach 0.91 between inviscid

and viscous solutions: (a) Qlh, (b) Qlα, (c) Qmh and (d) Qmα.

58



behaviors.

5.4. The effect of damping on the nonlinear dynamic behavior

To evaluate the effect of damping on the bifurcation behavior, the mod-

el at Mach 0.8 for inviscid solution is regarded as the baseline, in which a

double-period bifurcation is observed as shown in Fig. 26 (d). The aero-

dynamic ROM method is implemented to obtain the nonlinear dynamic re-

sponse considering damping due to its high efficiency. Fig. 36 displays the

bifurcation diagrams of pitching motion for different damping coefficients.

In the bifurcation diagram, a very large number of points occurs at a single

speed, indicating that the nonlinear motion could be non-periodic or chaotic

motion. With increasing damping coefficients ζh and ζα, the flutter speed

increases as expected, while the speed region for complicated response re-

duces. There is no longer complex motions when the damping coefficients

are sufficiently large as shown in Fig. 36 (b) and (c).

Next the effect of the damping on the snap-through phenomenon is ex-

amined. The nonlinear aeroelastic response at U = 0.3 of Mach 0.85 for the

viscous solution is taken as the baseline shown in Fig. 24 (c). Similarly, the

ROM method is adopted to obtain the response with damping. Fig. 37 shows

the phase plot from different damping coefficients, and it is observed that the

damping of the structure can delay the snap-through to LCOs. When the

damping is sufficiently large, the response becomes damped as shown in Fig.

37 (c).

59



U/U
l

E
x
tr

em
a

o
f

α

0.2 0.3 0.4 0.5 0.6 0.7 0.8

­0.1

­0.05

0

0.05

0.1

(a)

U/U
l

E
x
tr

em
a

o
f

α

0.2 0.3 0.4 0.5 0.6 0.7 0.8

­0.1

­0.05

0

0.05

0.1

(b)

U/U
l

E
x
tr

em
a

o
f

α

0.2 0.3 0.4 0.5 0.6 0.7 0.8

­0.1

­0.05

0

0.05

0.1

(c)

Figure 36: Effect of damping on the bifurcation diagram at Mach 0.8 based on Euler

solution: (a) ζh = ζα = 0.01, (b) ζh = ζα = 0.02 and (c) ζh = ζα = 0.03.
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Figure 37: Effect of damping on snap-through phenomenon at U = 0.3 of Mach 0.85 for

viscous flow simulation: (a) ζh = ζα = 0.01, (b) ζh = ζα = 0.02 and (c) ζh = ζα = 0.03.
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6. Conclusions

Based on the Euler and Navier-Stoke equations, the nonlinear behavior of

an aeroelastic airfoil with free-play in pitching DOF is studied in transonic air

low. Fluent is implemented to carry out the transonic unsteady aerodynamic

forces, and an RBF interpolation is applied to improve the capability of mesh

deformation in Fluent via UDF. An aerodynamic interpolation technique and

the Henon method are developed and applied in the time marching approach

to obtain the nonlinear aeroelastic response. To reduce the computational

cost, the ARX model is used to build an aerodynamic ROM for inviscid and

viscous solutions, and a GA is employed to identify the model order.

The nonlinear aeroelastic system experiences various bifurcations as the

Mach number increases. For low Mach numbers, regular subcritical bifur-

cations are observed. With increasing Mach number, complex LCOs and

even non-periodic motions appear at specific airspeed regions. As the Mach

number is increased higher than the freeze Mach number, regular subcriti-

cal bifurcations occur. Our detailed investigation demonstrates that Mach

number is a vital bifurcation parameter which can trigger the period-doubling

bifurcation and chaotic motion. Simulation in this paper shows that the com-

plicated nonlinear aeroelastic phenomenon tends to occur easily in transonic

air flow.

Comparisons with inviscid solutions are used to identify the effect of vis-

cosity on the linear flutter, snap-through phenomenon and nonlinear dynamic

behavior in transonic flow. The flow viscosity plays different roles at different

Mach number ranges, which can be summarized as

• When Mach number is less than 0.64, the flow field around the airfoil is
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subsonic, and the effect of aerodynamic viscosity is limited and negligi-

ble. The viscosity has little effect on the aeroelastic phenomena. Both

inviscid and viscous solution are suitable to simulate the aeroelastic

response.

• When the flow is increased to 0.65 < Ma < 0.82, the effect of viscosity

is multifarious on different type of aeroelastic phenomena. It has little

effect on linear flutter characteristics, due to its limited influence on

unsteady characteristics of the aerodynamics. But it has remarkable

impact on the nonlinear dynamic behavior because of sensitivity to

the system parameter in the nonlinear structure system. Thus, it is

sufficiently precise to carry out the linear flutter solution by using the

inviscid solution, while the viscous solution is still necessary to capture

the nonlinear dynamic behavior in this Mach number range.

• The aerodynamic viscosity is significantly important for 0.83 < Ma <

0.9, since strong shock wave and shock-boundary layer interaction oc-

cur in the flow field. It affects the unstable mechanism of flutter by

shifting the unsteady aeroelastic mode. It greatly affects on the loca-

tion of aerodynamic center and hence the snap-through phenomenon.

In addition, the viscosity also plays an important role on the unsteady

characteristic of aerodynamics, and also on the nonlinear aeroelastic

response. Thus, the viscous effect should be considered to obtain the

linear flutter characteristic and nonlinear aeroelastic dynamic behavior.

• When Mach number is above 0.91, the shock wave dominates the air

flow and the viscosity is of minor importance. Use of Euler equations
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enables the capture of the linear flutter and nonlinear dynamic charac-

teristics.
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