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Satisficing Data Envelopment Analysis: A Bayesian approach  

for peer mining in the banking sector 

 

 

Abstract 

Over the past few decades, the banking sectors in Latin America have undergone rapid structural 

changes to improve the efficiency and resilience of their financial systems. The up-to-date 

literature shows that all the research studies conducted to analyze the above-mentioned 

efficiency are based on a deterministic data envelopment analysis (DEA) model or econometric 

frontier approach. Nevertheless, the deterministic DEA model suffers from a possible lack of 

statistical power, especially in a small sample. As such, the current research paper develops the 

technique of satisficing DEA to examine the still less explored case of Peru. We propose a 

Satisficing DEA model applied to 14 banks operating in Peru to evaluate the bank-level 

efficiency under a stochastic environment, which is free from any theoretical distributional 

assumption. The proposed model does not only report the bank efficiency, but also proposes a 

new framework for peer mining based on the Bayesian analysis and potential improvements with 

the bias-corrected and accelerated confidence interval. Our study is the first of its kind in the 

literature to perform a peer analysis based on a probabilistic approach. 

 

Keywords: data envelopment analysis; satisficing DEA; mathematical programming; banking; 

peer mining; Bayesian predictive analytics. 
 

 

 

 

 

 

 

 

 

 

 



 

1. Introduction 

Data envelopment analysis (DEA), regarded today as one of the excellent management 

science tools to measure the productive efficiency of a set of entities (known as decision-making 

units or DMUs), can be traced back to the works of Debreu (1951), Shephard (1953), and Farrell 

(1957). There are two well-known DEA models: (a) the CCR model, which assumes constant 

returns-to-scale and was introduced by Charnes, Cooper, and Rhodes in 1978, and (b) the BCC 

model, which assumes variable returns-to-scale and was introduced by Banker, Charnes, and 

Cooper in 1984. Furthermore, there are two possible radial orientations: (a) input orientation 

(seeking to reduce the level of inputs while maintaining the same level of outputs) and output 

orientation (seeking to increase the level of outputs while maintaining the same level of inputs).   

DEA employs the well-known notion of Pareto efficiency, which specifies that a given DMU 

is not efficient in producing its outputs from given amounts of inputs, if it can be shown that 

some other DMU or combination of DMUs can produce more of some output without producing 

less of any other output and without employing more of any input (Udhayakumar, Charles, & 

Kumar, 2011). Thanks to these unique characteristics, the recent years have seen a great variety 

of DEA applications in various fields, providing guidelines to support decisions worldwide. 

According to a recent survey (Liu et al., 2013), banking ranks as number one, followed by 

healthcare, agriculture and farming, transportation, and education. For further discussion 

regarding DEA extensions and applications, the interested reader is referred to the studies by 

Banker, Charnes, and Cooper (1984), Banker et al. (1989), Charnes and Cooper (1985), and 

Seiford and Thrall (1990).  

DEA is a nonparametric approach, in the sense that the functional form of the production 

frontier is not required; moreover, it can easily accommodate the cases where the DMUs are 

involved in producing multiple outputs with the help of multiple inputs. By means of employing 

linear programming techniques, DEA floats a piecewise linear surface to rest on top of the 

observations (Seiford & Thrall, 1990). In its early stage of development, the DEA approach has 

been subject to criticism because of its sensitivity to data (Wen, 2015) and lack of statistical 

properties (Greene, 1993; Schmidt, 1985).  As a result, a key to the success of the DEA modeling 

is the accurate measurement of both inputs and outputs; nevertheless, in real situations, such as 

in the banking system, this can be difficult because inputs and outputs may be either volatile or 



too complex to measure. In regard to its statistical properties, “DEA allows only for one-sided 

deviations from the production frontier due to possible DMU inefficiency. It does not provide for 

possible errors in model specification or measurement, which may result in deviations on either 

side of the production frontier” (Banker, 1986, p. 1). 

Thus, in a new research strand, some pioneering works have tried to tackle the issues of data 

variation in DEA and the lack of statistical properties with the aid of stochastic modeling. In 

particular, Wen (2015) and Sengupta (1982) proposed a generalization of the DEA stochastic 

modeling by applying the expected value to the stochastic inputs and outputs. Banker (1993) laid 

the statistical foundation for DEA by showing that, under certain conditions, the DEA estimators 

are also maximum likelihood estimators. Other works, e.g., Olesen and Petersen (1995), Banker 

(1986), Cooper, Huang, and Li (1996), Cooper et al. (1998), and Land, Lovell, and Thore (1993) 

tried to address the stochastic variations in the data by introducing chance-constrained 

programming (CCP), developed by Charnes and Cooper (1963) and Kall (1976). Additional 

stochastic DEA approaches can be found in Horace and Schmidt (1996), Gong and Sickles 

(1992), Simar (1996), Simar and Wilson (1998), and Grosskopf (1996). Olesen and Petersen 

(2016) have recently provided a review of Stochastic Data Envelopment Analysis, in which they 

extend the DEA framework in three different directions: (a) extensions in which DEA is able to 

handle deviations from the deterministic frontier as random variables; (b) extensions in which 

DEA is able to handle random noise in the form of measurement errors or specification errors; 

and (c) extensions in which DEA is able to handle the Production Possibility Set (PPS) as 

random. 

In CCP, it is assumed that the efficiency of a DMU is stochastic and that the observation is 

an occurrence of a random phenomenon. CCP makes it possible to replace deterministic 

elements such as “efficient” and “inefficient” with stochastic ones, such as “probably efficient” 

and “probably inefficient” or “sufficiently efficient” with associated probabilities, thus allowing 

inferences about the DMUs’ performance. Other alternatives include the “E-model” of CCP to 

derive an “expected value” approach and the “P-model” of CCP to obtain the “most probable” 

occurrences (Wen, 2015). 

In order to explore how stochastic data variations in inputs and outputs affect the weighting 

scheme for efficiency measurement, Sengupta (1987) reformulated the DEA model into a 

deterministic equivalent. The randomness of the inputs is incorporated in his model, by means of 



allowing a certain degree of dispersion of the inputs around their central location. In 1995, 

Olesen and Petersen used CCP to develop a model for efficiency evaluation in the presence of an 

unknown amount of noise in the data, which they further applied to evaluate the research 

activities in the economics departments at Danish universities. Retzlaff-Roberts and Morey 

(1993) applied the goal programming approach to study the allocative efficiency and developed a 

stochastic allocative DEA model, which is suited for multiple and non-commensurate inputs and 

outputs; they showed how the use of bounds allowed the identification of the significantly 

inefficient units. CCP was also employed by the LLT model (Land, Lovell, & Thore, 1993) and 

the OP model (Olesen & Petersen, 1995) to derive efficient frontiers that allow a part of the 

observed input-output combinations to be located on the wrong side of the frontiers. Cooper et 

al. (2004) classified these two models as “E-models” using marginal chance constraints. The 

interested reader is further referred to Cooper et al. (2002, 2004) for other contributions to E-

model formulations of marginal chance-constrained DEA (CCDEA). It was Olesen (2006) who 

brought together the LLT model and the OP model to propose a merged model that combined the 

attractive features of each of the two models. In their respective P-model of CCP, Cooper et al. 

(1998), Li (1998), and Bruni et al. (2009) utilized joint chance constraints to extend the notion of 

stochastic efficiency to a measure called “α-stochastic efficiency”. 

Applications of CCDEA can be appreciated in the following studies: Sueyoshi (2000) applied 

the stochastic DEA approach to the restructuring strategy of a Japanese petroleum firm; Chen 

(2002) applied both CCDEA and stochastic frontier analysis (SFA) to estimate the technical 

efficiency indices in the Taiwanese banking sector; Yang and Wen (2005) applied the CCP 

approach to a transmission system expansion planning; Talluri, Narasimhan, and Nair (2006) 

proposed a CCDEA approach for vendor selection; Agpak and Gokcen (2007) applied CCP to a 

stochastic line balancing problem; Yang et al. (2007) applied CCP to investigate the reactive 

power planning; finally, Bhattacharya (2009) applied a chance-constrained goal programming 

model to an advertising planning problem. 

It is to be highlighted that the CCDEA approaches discussed above suffer from a major 

drawback in the sense that they do not incorporate the idea of “Satisficing”, a concept whose 

origin can be traced back in the literature on psychology, where Simon (1957) used the term as 

an alternative to the assumption of “optimizing” behavior. It was the study by Cooper, Huang, 



and Li (1996) the one that incorporated the concept of “satisficing” into DEA, which translated 

into the development of a satisficing DEA model. 

In this paper, we propose a satisficing DEA model to measure the bank-level efficiency 

under a stochastic environment, which is free from any theoretical distributional assumption. The 

proposed model is applied to the Peruvian banking sector to measure the efficiency of 14 banks. 

By applying a simulation technique, the efficiency distribution and the reference set (peers) of 

each bank with their respective probabilities are obtained. Moreover, we improve upon Tsolas 

and Charles (2015) by proposing a new framework for peer mining based on the Bayesian 

analysis and potential improvements. This is a contribution to the literature, given that our 

Bayesian-based criterion is not included in the family of already stochastic DEA classification 

procedures (Wen, 2015), such as the expected ranking criterion that is based on the optimization 

of expected value, the optimistic ranking criterion that is based on the maximization of the CCP 

objective function, the maximal chance ranking criterion that is based on the maximization of the 

dependent chance programming (DCP) (Liu, 1997) objective function, and Hurwicz’s (1951) 

ranking criterion. Furthermore, to the best of our knowledge, our study is the first of its kind in 

the literature to perform a peer analysis based on a probabilistic approach. In this sense, the 

proposed Bayesian approach for peer mining constitutes the main contribution of the paper. 

 

2. Latin America and Peru: An overview 
 
2.1 Institutional background of the Latin American and Peruvian banking sector 

Over the past few decades, many Latin American countries have undergone significant and 

rapid institutional and structural changes; among these, the financial liberalization has 

established itself as a multifaceted process and brought important changes to the banking sectors. 

Banks are critical to the proper functioning of an economy by means of intermediating funds at 

all levels of the economic activity. Furthermore, as developing countries, in general, count with 

shallow mechanisms of finance, it is not too bold to say that banks represent the backbone of 

their respective economies. This is also the case of Latin America, in general, and of Peru, in 

particular. 

As Beim and Calomiris (2001) elegantly stated, financial liberalization is a mixture of the 

following types of “constraint relaxation”: “i. Elimination of interest rate controls, ii. Lessening 



of bank reserve requirements, iii. Reduction of government interference in banks’ lending 

decisions, iv. Privatization of nationalized banks, v. Introduction of foreign bank competition, 

and vi. Facilitation and encouragement of capital inflows” (p. 119). 

Fundamentally, the liberalization wave in Latin America has brought more drastic changes in 

terms of opening up entry points for foreign banks, consolidation of banks through mergers and 

acquisitions, and the reduction of the government control over the interest rate regulation. It is in 

this context that most countries in Latin America privatized aggressively, leading to a fall in the 

average state ownership of banks from 55% to 40% between 1985 and 1995. The countries that 

privatized the most were Chile, Ecuador, and Peru, who moved from levels of state ownership 

that were above or near 90%, to levels below 40% (below 30% and 20% in the cases of Peru and 

Chile, respectively) (Charles et al., 2011). One of the most important aspects of the liberalization 

process was the deterioration of the barriers of entry, which permitted the access to the market of 

new commercial banks and other types of financial agents, leading to a growing importance of 

the multinational banks (MNBs) over time. If in 1995, the MNBs accounted for less than a 

quarter of the assets in the financial systems in many Latin American countries, by the end of 

2001, foreign banks controlled more than 50% of the same (Micco & Panizza, 2004). 

Furthermore, the consolidation of the banking sector through mergers and acquisitions and the 

increased bank concentration led to a decline in the number of banks by approx. 33% between 

the years 2001 and 2005. 

In the case of Peru, specifically, the 1990s brought market-oriented measures, such as 

reductions of the fiscal imbalance, imposition of new taxes, elimination of restrictions and 

lowering of tariff rates, the introduction of a managed float as the new foreign exchange rate, and 

the privatization of state-owned enterprises, among others. As for the banking system, the 

changes executed implied that “foreign banks would receive equal treatment with domestic 

capital, private banks would be placed on equal footing with banks owned by the public sector, 

risk diversification would be required among bank loan portfolios and banks would be allowed to 

operate nationally” (Quispe-Agnoli & McQuerry, 2001, p. 10). Regarding the number of banks 

in Peru, this has decreased drastically from 25 in 1998 to 16 in 2000 and further to 12 in 2005.  

According to the Superintendencia de Banca, Seguros y AFP (SBS), the regulator of the 

Peruvian banking sector and insurance companies, it is today that almost 50% of all the deposits 

in Peru are captured by foreign banks. Furthermore, MNBs pose a significant threat to the 



domestic banks, given that the former hold a scale advantage in terms of a high return on 

technological investment, low marginal cost, and worldwide know-how and best practices. All of 

these aspects call for domestic banks to become more efficient. 

 

2.2 Literature on Latin American and Peruvian banking efficiency  

The assessment of bank efficiency is imperative, as it allows practitioners and policy-makers 

alike to examine a series of aspects, such as: the impact of ownership structure on banking 

efficiency (Tzeremes, 2015), the relationship between bank size and efficiency (Chen, 2002), the 

impact of market structure on banking efficiency (Fu & Heffernan, 2007), and the effect of 

deregulation on banking efficiency (Jaffry, Ghulam, & Cox, 2013), among others. In the 

aftermath of liberalization, restructuring, and deregulation of financial markets around the world, 

a number of studies have been undertaken in both developed and developing countries, to 

measure the efficiency of the financial system and, in particular, of the banks, using either 

parametric (e.g., stochastic frontier analysis) or non-parametric (e.g., data envelopment analysis) 

approaches.  However, studies dedicated to analyzing the efficiency of Latin American countries 

in particular are very limited and, in the case of Peru, they are almost nonexistent. In a survey 

paper by Fethi and Pasiouras (2010), it was observed that 52.4% of the studies focused on banks 

in Asia, followed by 32.9% in Europe, 8.7% in the USA, 5.4% in Australia, and 0.67% in Africa. 

It is to be noted that none of the studies in the list above addressed the banks in the Latin 

American countries.  

Among the few studies we found to have been dedicated to studying the efficiency 

measurement in selected Latin American countries, we mention those concerning Mexico 

(Guerrero & Negrin, 2005; León, 1999; and Taylor et al., 1997), Chile (Fuentes & Vergara, 

2007), Brazil (Staub, da Silva e Souza, & Tabak, 2010), and Argentina (Charles, Peretto, & 

Gherman, 2016). Some of the existing studies (Carvallo & Kasman, 2005; Chortareas, 

Girardone, & Garza-Garcia, 2010; Forster & Shaffer, 2005; and Rivas, Ozuna, & Policastro, 

2006) focused on evaluating the efficiency of the Latin American banks by pulling the samples 

across a set of countries. Rivas, Ozuna, and Policastro (2006) investigated the effects of the use 

of derivatives on the bank efficiency in Brazil, Chile, and Mexico and found that bank efficiency 

was positively associated with the bank size and that the regulatory and the institutional 

constraints negatively affected the efficiency of Latin American banks. Carvallo and Kasman 



(2005) used a stochastic frontier approach on a sample of 481 banks in 16 Latin American 

countries to estimate cost inefficiencies and scale and scope economies and found that very small 

and very large banks tended to be more inefficient when compared to medium-sized banks. 

Chortareas, Girardone, and Garza-Garcia (2010) used the DEA technique for a sample of over 

2,500 banks in nine Latin American countries to investigate “whether banks earn supernormal 

profits because they are exercising market power or as a result of achieving higher efficiency 

levels” (p. 321) and found evidence that efficiency (particularly, the scale efficiency), along with 

capital ratios and bank size, seemed to be the main driving forces of the increased profitability 

for most of the Latin American banks. Finally, Forster and Shaffer (2005) found a robust 

association between bank efficiency and absolute size, but not between bank efficiency and 

relative size. 

With regards to Peru, it is the study by Charles et al. (2011) the one that made the first 

serious attempt to analyze the efficiency of the banking sector. In their study, the authors applied 

the DEA technique to evaluate the efficiency of the Peruvian banks for the period 2000 to 2009 

and benchmarked the existing Peruvian banks based on their super-efficiency scores over time. 

The results showed an increasing trend in technical efficiency during the period under study, 

revealing a positive indication of the success of the reform process that resulted in an increase in 

the share of foreign banks and in the consolidation and privatization of the Peruvian banking 

sector. Furthermore, MNBs were observed to perform better than the domestic banks in terms of 

technical efficiency throughout the entire period, except for the year 2007.  

It is to be noted that all of the above-mentioned studies regarding the efficiency measurement 

in the Latin American countries, are based on a deterministic DEA model or econometric frontier 

approach. As mentioned previously, however, and especially in small samples, the deterministic 

DEA model counts with the disadvantage of a possible lack of statistical power; as Post (2007) 

stated, the data can ‘speak for themselves’ only if the sample comprises many efficient empirical 

observations for a wide range of production vectors. The DEA by construction fixes “the frontier 

in the relevant space and encompasses all the sample observations. Thus, a small subset of the 

data supports the frontier, making it more prone to sampling, outlier, and statistical noise 

problems, which may distort the measurement of efficiency” (Miller, Clauretie, & Springer, 

2005, p. 3). Though the econometric approach to measure the efficiency takes into account the 

statistical noise in the data, the incomplete knowledge of the statistical properties of the estimates 



and the restrictiveness of the reference technology affect the bias of the estimates. Grosskopf 

(1986) pointed out that both the level of restrictiveness of the reference technologies and the 

choice of error structure will, in general, affect the magnitude of the resulting efficiency 

measures.  

The present study employs the technique of satisficing DEA to examine the still less explored 

case of the Peruvian banking sector. From a methodological point of view, when there is no 

uncertainty in the inputs and outputs of the DMUs, a deterministic DEA can be used to analyze 

the efficiencies of the DMUs. However, as Chebil, Abbas, and Frija (2013) explained, in many 

situations, the inputs or outputs of the DMUs are random variables, “so technical efficiency 

conclusions based upon a deterministic DEA can be misleading because of the high sensitivity of 

the efficiency scores to the realized levels of inputs or outputs” (p. 2). Stochastic DEA (SDEA) 

methods which incorporate the stochastic variation in inputs or outputs have, therefore, been 

designed to deal with this problem. In such a case, one can address the issue of stochastic 

variation by employing a P-model CCDEA that will be handy to extract the efficiency of banks 

with various predetermined confidence levels, so as to make meaningful managerial decisions. 

Although in most of the cases the SDEA model is designed under the normality assumption, in 

our case, we exempt such an assumption and use the empirical distribution of the data. 

The rest of the paper is organized as follows. The theoretical background, wherein the 

detailed computational procedures for stochastic efficiency are described, is presented next. 

Subsequently, the approach in the selection of inputs and outputs is explained, followed by the 

presentation of the results of the empirical analysis and the associated relevant discussion. The 

last section concludes the paper.  

 

3. Formulation of the stochastic DEA model  

DEA aims to identify the most efficient DMU among all DMUs and to estimate the relative 

efficiency of the DMUs. Consider a set of n banks, each consuming different amounts of a vector 

of inputs,  to produce a vector of outputs , wherein the 

superscript T represents the transpose. The DMU to be evaluated is termed DMU0 and its input-

output vector is denoted as .  

( )1 2

T

j j j mjx x ,x ,...,x= ( )1 2

T

j j j mjy y , y ,..., y=

( )0 0x , y



The input-oriented Banker-Charnes-Cooper (BCC) model, in line with Banker, Charnes, and 

Cooper (1984), can be defined as follows: 

 

(1) 

where the contraction factor  exceeds unity,  Efficiency is the reciprocal of the 

contraction factor f , i.e., 1  (= )/ f j . Here,  represents the structural variable. Ignoring the 

constraint  in model (1) results in the basic Charnes-Cooper-Rhodes (CCR) model.  

Charnes and Cooper (1959) were the first to propose CCP to measure the efficiency in the 

case of uncertainty, analyzing the cases of the possibility of violated constraints. To 

accommodate the stochastic variation, we modify our constraint equations in model (1) and add 

the mechanism of the chance-constrained formulation introduced by Land, Lovell, and Thore 

(1993). Thus, the corresponding chance-constrained efficiency measure is calculated in line with 

CCR as: 
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set as best performers. We assume that the inputs and outputs are stochastically independent; as 

such, the performance of one bank is independent of that of another bank. In order to extend the 

potential uses of the DEA models to cases where 100% efficiency can be replaced by aspiration 

levels of performance, Cooper, Huang, and Li (1996) incorporated Simon’s (1957) satisficing 

concept into the DEA models with chance constraints. In line with Udhayakumar, Charles, and 

Kumar (2011) and with the support of the above literature, the P-model CCDEA with 

“Satisficing” concept can be defined in model (2) as follows: 

 

 

(3) 

 

where “Prob” and “~” are as defined above and one can interpret  as an aspiration level 

either imposed by an outside authority or adopted by an individual for some activity 

(Udhayakumar, Charles, & Kumar, 2011). It is to be noted that in model (3) the aspiration level 

is imposed only to the objective function and not at the constraint level, which means that the 

aspiration level at the constraint level is fixed at 100%.  

 

Definition 3.1: If  DMU0 is called stochastically efficient if and only if  

Definition 3.2: If  DMU0 is called satisficing efficient if and only if  

3.1 Stochastic simulation 

The process is based on the stochastic simulation approach proposed by Rubinstein (1981), 

following the steps i) to iv):  

i) The process starts by considering the following input constraints in model (3): 
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= -å  Then, the above constraint (4) can be represented as:  

( )Prob 0  1 2ii iI x , , i , ,...,ml aé ù£ ³ =ë û                                                                                             (5) 

where  ( )1 2i i i inx x ,x ,...,x=  is the amount of inputs that the random vector utilized and 

( )1 2 n, ,...,l l l l= is the vector of structural variables. Each ijx  has an empirical distribution derived 

from the existing data set.  

ii) Based on these empirical distributions, for each ix  the R independent random vectors are 

generated as follows: 

( ) ( ) ( ) ( )( )1 2  1 2  1 2
r r r r
i i i inx x ,x ,...,x , r , ,...,R; i , ,...,m.= = =                                                                                   (6) 

Let ( )  1 2iR' R , i , ,...,m£ =  be the number of times the following relation satisfies: 

( ) 0  1 2iiI x , , i , ,...,ml= £ =                                                                                                                 (7) 

Then, by the definition of the chance constraint, (7) and, hence, (5) hold if:  

 1 2i iR R , i , ,...m.³ =a                                                                                                                        (8) 

iii) Repeat steps i) to ii) for the output constraints. 

iv) Repeat steps i) to ii) for the stochastic objective constraint. 

3.2 Monte Carlo Simulation Algorithm 

The algorithm starts by producing randomly generated artificial data from the data set. The 

next step consists in running the P-model CCDEA using data produced in the first step, to 

compute the objective function value of the model and the structural variables, f  and l  

respectively, for a sufficiently large number of runs, say N. Finally, through the derivation of a 

series of stochastic and statistical metrics for each DMU, the probability of being efficient at 

least at the given aspiration level, the probability of being in the reference set, and the potential 



improvement through the input reduction are computed. The following Figure 1 depicts the flow 

of the Monte Carlo simulation algorithm and the computation of the relevant metrics. 

 

  
Fig. 1. Monte Carlo Simulation.  

 

 

 



The steps i) to iv) of the simulation algorithm are described in detail below:  

i) Produce artificial data by means of a random generator in accordance with the empirical 

distribution of each stochastic variable derived, respectively, from the data set. 

ii)  Obtain the efficiency score by solving the P-model CCDEA with “satisficing” concept 

(system (3)) for every realization given by step (i). 

iii) Repeat steps i) to ii) and record 1  (= )  / ,f j l  for a sufficiently large number of N runs. 

iv) Let 1 2 N, ,...,j j j  be the efficiency score for N runs. Then, the following statistical metrics are 

derived:   
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The potential improvement (%) for the ith input for the kth realization of DMU0 is 
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3.3. Simple Bayes peer mining  

 A naive Bayes classifier is a simple probabilistic classifier based on applying Bayes’ 

theorem, which is one of the most efficient and effective inductive learning algorithms for 

machine learning and data mining.  

One common rule is to pick the hypothesis that is most probable; this is known as the 

maximum a posteriori or MAP decision rule. In our case, the simple Bayes peer classifier selects 

the three most likely largest-order statistics 
3LOSp (posterior probabilities) given that the DMU of 

interest is inefficient ( I ), which eventually provides three peers for every DMU under study. 

The three largest-order statistics ( 3Los ) a posteriori hypotheses are: 

3 3LOS

P(I )P( )
arg Los ,

P(I )P( )p
p

p p
p

p pQ
Q

Î
Î

=
å

                                                                   (17) 

where Q is the space of possible hypotheses,p - DMU of non-interest is a peer, P( )p  is the 

prior probability of ,p and P(I )p is the likelihood probability of .p  Note that, without loss of 

generality, one can ignore the denominator part (known as evidence), which is effectively 

constant for all the cases and does not affect the 3arg Los .
pÎQ

 It is sufficient to optimize the 

numerator part.    

3.4 The bias-corrected and accelerated confidence interval  

Let the sequence { }j be the efficient scores of the DMU of interest obtained from system 

(3). Let the bootstrap draw samples from the empirical distribution of it to replicate statistics, say 

{ }j  to obtain its sampling distribution. Since these distributions are skewed and also j  is often 

consistent but, nevertheless, biased in finite samples, the bias-corrected and accelerated (BCa) 

method could be a better approach to obtain the confidence intervals when compared to the 

residual or the percentile or bias-corrected methods. BCa has better asymptotic properties than 

the classical ones based on a normality assumption (Efron, 1987).  



The BCa confidence intervals are obtained based on the assumption that there is a 

monotonic transformationF such that 2
0( ) ( ) (-z ),D N ,j j d dF F

é ùF -F ¾¾®ë û where 0z  is a bias constant, 

d  is the constant standard error of ( ),jF  dF is equal to unit plus ( ),a jF  and a is an acceleration 

parameter. It is to be noted that the variance of ( )jF  is dependent on ,j  which is not the case in 

the bias-corrected method.      

4. Selection of inputs/outputs  

One of the very first steps in carrying out DEA consists in the determination of inputs and 

outputs. It is generally acknowledged that in the banking sector literature, there is no 

comprehensive theory regarding the proper definition of inputs and outputs, what exactly 

constitutes inputs and outputs, or how these could be measured (Casu & Girargone, 2002; Fethi 

& Pasiouras, 2010; Sathye, 2003). However, two main approaches have been advanced in this 

regard: the “intermediation approach” and the “production approach” (Humphrey, 1985), with 

the recommendation that the former should be used when assessing the performance of whole 

banks, while the latter should be used when estimating the performance of bank branches. It is to 

be noted that in the intermediation approach, banks are seen as financial intermediaries that use 

the volume of financial liabilities (mostly deposits) as inputs, to produce loans and other means 

of financing, as outputs; while in the production approach, both loans and deposits are treated as 

outputs, with a view that deposits also provide liquidity, safekeeping, and payments services to 

depositors (Berger & Humphrey, 1997).		

To select inputs and outputs, the current study employs the intermediation approach with a 

restricted choice of variables. For further details regarding the justification behind using the 

intermediation approach, the reader is referred to Charles and Kumar (2012), Kumar and Charles 

(2011), and Kumar, Charles, and Mishra (2016). DEA is sensitive to variable selection, i.e., as 

the number of variables increases, the ability to discriminate among the DMUs decreases; or 

otherwise stated, the more variables added, the greater becomes the chance that some inefficient 

unit will dominate the added dimension and become efficient (Smith, 1997). 

In this context, the choice of inputs and outputs is guided by the existing literature and the 

data availability for the Peruvian banking sector. The present study considers two outputs: total 

loans (y1) and other earning assets (OEA) (y2).  The output titled total loans is measured as the 



sum of all the loan accounts intermediated by the banks, and the output titled OEA (y2) is 

measured as the sum of the total securities (treasury bills, government bonds, and other 

securities), deposits with banks, and equity investments.  

The above two outputs are obtained from two inputs, namely, total costs (x1) and total 

deposits (x2). The input total costs is measured as the sum of the total interest expenses and non-

interest expenses, including personal expenses. The non-interest expenses include service 

charges and commissions, expenses of general management affairs, salaries, and other expenses, 

together with health insurance and securities portfolios. Some researchers (e.g., Kao & Liu, 

2004; Ram Mohan & Ray, 2004; Sathye, 2003; and Zhao, Casu, & Ferrari, 2008) treated the 

interest expenses and non-interest expenses as two different inputs. Nevertheless, when there is a 

high number of variables relative to the number of observations, a dimensionality problem 

emerges, i.e., more units tend to be wrongly identified as efficient; and when too many 

constraints are specified, the observations tend to become incomparable (Zhao, Casu, & Ferrari, 

2008). Thus, to tackle the above, and in line with Casu and Molyneux (2003), Charles and 

Kumar (2012), Kumar and Charles (2011), Sealey and Lindley (1977), and Udhayakumar, 

Charles, and Kumar (2011), we have treated both these expenses as a single input. The second 

input, namely total deposits, is measured as the sum of the demand and savings deposits held by 

the bank and the non-bank depositors. 

It is to be noted that in order to have adequate numbers of degrees of freedom (i.e., adequate 

discriminatory power for the DEA model), there are several studies in the literature on DEA 

which have provided methodologies to find a relation between the number of DMUs and the 

number of inputs and outputs. For example, Golany and Roll (1989) and Homburg (2001) 

suggested that the number of DMUs should be at least twice the number of inputs and outputs; 

Nunamaker (1985), Banker et al. (1989), Friedman and Sinuany-Stern (1998), Raab and Lichty 

(2002), and Cooper, Seiford, and Tone (2007) recommended that the number of DMUs should 

be at least three times the number of inputs and outputs; and Dyson (2001) suggested that the 

number of DMUs should be at least twice the product of the number of inputs and the number of 

outputs. In this study, we employ two inputs and two outputs, therefore, a minimum sample size 

ranging between 8 and 12 was required. It is to be noted, however, that while larger data sets 

may provide certain advantages, a recent study by Cook, Tone, and Zhu (2014) pointed out that, 

whereas in statistical regression analysis, sample size is a vital issue – as it tries to estimate the 



average behavior of a set of DMUs –, when used as a benchmarking tool, DEA focuses on the 

performance of each DMU, and as such, the sample size or the number of DMUs being evaluated 

may be immaterial. 

The data on inputs and outputs have been obtained from the official public website of the 

governmental institution that is responsible for the regulation and supervision of the Peruvian 

financial system, i.e., the Superintendencia de Banca, Seguros, y AFP (or SBS). The sample 

considered for the present study consists of the 14 banks existing in the sector, with the mention 

that the banks which left the market during the period of study are ignored.  

 

5. Empirical findings 

5.1. Stochastic efficiency 

The summary of the stochastic efficiency of the banks under analysis is reported in Table 1. 

It can be observed that the average stochastic efficiency scores vary from a minimum of 0.380 

(with a coefficient of variation of 0.572) in the case of Banco Azteca to a maximum of 0.889 

(with a coefficient of variation of 0.216) in the case of Banco Santander Peru. The results reveal 

that Banco Santander Peru is the best performing bank, followed by Banco Continental BBVA, 

Scotiabank Peru, Banco de Credito, and Citibank Peru, while, at the other end, the least 

performing bank is Banco Azteca, followed by Banco Ripley, Banco de Comercio, HSBC Bank 

Peru, and Banco Falabella.  

The columns under each of the four aspiration levels ( ), namely 1.00, 0.99, 0.95, and 0.90, 

indicate the probability of a bank being efficient at the given aspiration level. The results depict 

one interesting phenomenon, which is that regardless of the aspiration level, the probabilities of 

the different banks being efficient do not fluctuate enough to significantly reposition the DMUs 

relative to the efficient frontier. As such, it can be observed that at every aspiration level, the 

bank with the highest probability of being efficient is Banco Santander Peru, followed by Banco 

Continental BBVA, and Mibanco; on the other hand, the bank with the lowest probability of 

being efficient is by far Banco Azteca, followed closely by Banco Ripley, Banco Falabella, and 

Banco de Comercio. Furthermore, the results suggest that as the aspiration level increases the 

probability of most DMUs being efficient decreases gradually. 

 

b



Table 1  
Summary of the stochastic efficiency of the banks in Peru. 

Note: SD = Standard Deviation; CV = Coefficient of Variation.  

Figure 2 depicts the range of the stochastic efficiency scores for each bank, at 99% level of 

confidence.	

	

Fig. 2. Range of the stochastic efficiency at 99% Bca confidence interval. 
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stochastic 
efficiency 

Rank SD CV 
1.00 0.99 0.95 0.90 

1 Banco Continental BBVA 0.44 0.45 0.49 0.55 0.811 2 0.232 0.286 
2 Banco de Comercio 0.14 0.14 0.18 0.21 0.578 12 0.274 0.474 
3 Banco de Credito 0.33 0.34 0.37 0.41 0.755 4 0.247 0.327 
4 Banco Financiero 0.26 0.27 0.30 0.40 0.712 6 0.256 0.359 
5 Banco Interamericano de Finanzas 0.34 0.34 0.36 0.38 0.707 7 0.277 0.392 
6 Citibank Peru 0.21 0.21 0.26 0.29 0.715 5 0.225 0.315 
7 Interbank 0.35 0.35 0.36 0.37 0.686 8 0.286 0.417 
8 Mibanco 0.40 0.40 0.42 0.47 0.670 9 0.341 0.509 
9 Scotiabank Peru 0.27 0.29 0.33 0.36 0.773 3 0.204 0.264 

10 HSBC Bank Peru 0.26 0.26 0.27 0.28 0.579 11 0.338 0.585 
11 Banco Falabella 0.10 0.10 0.11 0.16 0.606 10 0.241 0.398 
12 Banco Santander Peru 0.67 0.67 0.68 0.69 0.889 1 0.192 0.216 
13 Banco Ripley 0.09 0.10 0.11 0.14 0.551 13 0.259 0.470 
14 Banco Azteca 0.01 0.01 0.02 0.02 0.380 14 0.217 0.572 



 

The results are supported by the findings of the study conducted by Charles et al. (2011), in 

which, under a deterministic DEA framework, the authors classified the Peruvian inefficient 

banks into 4 groups. The classification located Banco Azteca and Banco de Comercio in category 

I, namely, the category of the most inefficient banks, during the years 2008 and 2009, and 

situated Banco Santander Peru and Banco Interamericano de Finanzas in 2008 and Banco 

Financiero and Scotiabank Peru in 2009 in category IV, i.e., the category of the marginally 

inefficient banks. 

Furthermore, for a better understanding and visualization of the results, Figure 3 depicts 

graphically the aspiration levels provided in Table 1. The rank of the DMUs is also presented, 

based on the average stochastic efficiency. 

 

Fig. 3. The banks at different aspiration levels. 
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5.2. Reference set 

Table 2 reports the probabilities of a bank being in the reference set (peers) for other banks 

in the sample. It can be observed that, for example, the three most probable peers for Banco 

Continental BBVA are Banco Santander Peru, Interbank, and Banco de Credito, with their 

respective probabilities of 0.2589, 0.1518, and 0.1339. Similarly, the three most probable peers 

for Banco de Comercio are Banco Santander Peru, Banco Continental BBVA, and Banco de 

Credito, with their respective probabilities of 0.1713, 0.1160, and 0.0994.  

Furthermore, it can be noted that Banco Santander Peru is the peer for 11 banks out of the 

14 banks under study, with the highest probability of being the peer for 10 banks. It is followed 

by Mibanco, which is the peer for seven banks, with the highest probability of being the peer for 

three banks. The next two banks which are prominently the peers for the inefficient banks are 

Banco de Credito and Banco Continental BBVA; these are, respectively, the peers for seven and 

six out of the 14 banks. It can also be observed that Banco de Comercio, Banco Financiero, 

Citibank Peru, Scotiabank Peru, Banco Falabella, Banco Ripley, and Banco Azteca never 

become peers for any of the inefficient banks, which are occupying the first three positions.  

Table 2 
Reference set: Bayesian-based peer mining. 
  Peer Probability 
DMU  DMU of Interest Being Inefficient 1 2 3 1 2 3 
1 Banco Continental BBVA 12 7 3 0.2589 0.1518 0.1339 
2 Banco de Comercio 12 1 3 0.1713 0.1160 0.0994 
3 Banco de Credito 12 1 7 0.2074 0.1704 0.1185 
4 Banco Financiero 12 1 3 0.1722 0.1325 0.1126 
5 Banco Interamericano de Finanzas 12 1 8 0.1654 0.1417 0.1260 
6 Citibank Peru 12 8 3 0.1677 0.1317 0.1257 
7 Interbank 12 8 3 0.1880 0.1203 0.1203 
8 Mibanco 12 7 5 0.1509 0.1415 0.1226 
9 Scotiabank Peru 12 3 1 0.2781 0.1523 0.1258 
10 HSBC Bank Peru 12 8 5 0.1556 0.1407 0.1407 
11 Banco Falabella 8 5 10 0.2089 0.1203 0.1203 
12 Banco Santander Peru 7 1 3 0.1930 0.1930 0.1579 
13 Banco Ripley 8 10 5 0.2095 0.1284 0.1216 
14 Banco Azteca 8 12 5 0.1845 0.1012 0.0952 

 



The following Figure 3 graphically depicts the information contained in Table 2, wherein the 

size of the circles is associated with the posterior probabilities listed in Table 2.  

 

 

Fig. 4. Bayesian-based peer mining.  

 

 



5.3. Potential improvements of inputs and outputs 

DEA establishes a group of DMUs considered as best practice for each inefficient DMU and 

further computes the amount of potential improvements to be made to inputs and outputs. The 

below Table 3 reports the average potential improvements (PI) for the inputs and outputs for 

each bank under study, along with a BCa confidence interval of 99%. 

It is well noted that Banco Santander Peru attained the first position at every aspiration level 

(Table 1); however, it is to be noted that at the 100% aspiration level, it has only 67% chance to 

be efficient; this means that it has 33% chance to be inefficient. The average stochastic efficiency 

is 88.9%, with a standard deviation of 0.192. In order to overcome the chances of inefficiency, 

Banco Santander Peru should increase its total loans and OEA, on average, by 35.42% and 

14.05%, respectively (Table 3). Nevertheless, the target should be made to the upper limit of 

96.38% for total loans and 26.96% for OEA, respectively, so as to sustain in the banking sector 

as the top most efficient bank. At the same time, the reduction of inputs is advised at 1.05% for 

total costs and 7.32% for total deposits.  

Based on the same Table 3, the least performing banks, i.e., Banco Ripley and Banco Azteca, 

need to improve drastically by means of reducing their total costs by 38.99% and 52.25%, 

respectively, as well as by increasing their total loans, on average, by 123.74% and 293.31%, 

and their OEA by 410.51% and 309.65%, respectively. 

Banco Interamericano de Finanzas, Mibanco, and Banco Ripley need to develop very strong 

strategies to improve their OEA drastically (see column UL under OEA in Table 3), in order to 

increase their chances of being efficient. If the strategies are not well planned, the said banks 

may be disappearing from the Peruvian banking sector, just like HSBC Bank Peru did. 

Total loans always play a vital role in the banking sector. Findings reveal that Banco de 

Comercio and Banco Azteca need to enhance substantially their loaning scheme when compared 

with any other bank among the banks under analysis.  

A similar line of thought can be followed to analyze the rest of the banks, based on Table 3. 

 



Table 3  

The BCa CI of 99% for the inputs and outputs. 

DMU Name of the bank  
Costs 

 

Deposits 

 

Loans 

 

OEA 

PI LL UL PI LL UL PI LL UL PI LL UL 

1 Banco Continental BBVA 0.00 0.00 -0.85 -1.84 0.00 -5.41 55.37 27.93 103.02 38.13 18.36 67.60 
2 Banco de Comercio -4.23 0.00 -7.96 -0.03 0.00 -1.38 142.13 95.03 493.40 193.33 126.56 307.08 
3 Banco de Credito -0.18 0.00 -2.85 -2.62 0.00 -7.09 102.00 47.19 286.03 107.11 39.98 271.32 
4 Banco Financiero -8.29 0.00 -13.01 -0.34 0.00 -3.98 66.33 42.56 94.32 79.92 47.79 148.28 

5 Banco Interamericano de 
Finanzas -0.94 0.00 -3.23 -1.21 0.00 -3.88 65.69 41.58 106.45 226.97 114.86 581.31 

6 Citibank Peru -4.38 0.00 -7.92 -0.21 0.00 -2.55 68.50 47.11 95.86 90.50 49.42 190.64 
7 Interbank -1.54 0.00 -4.17 -0.23 0.00 -1.89 113.26 65.46 200.79 99.37 57.42 174.16 
8 Mibanco -12.27 0.00 -18.85 -0.28 0.00 -2.53 166.15 80.17 282.42 390.80 148.57 862.22 
9 Scotiabank Peru -0.60 0.00 -2.26 -2.46 0.00 -6.66 63.54 41.27 90.75 36.69 25.73 50.40 

10 HSBC Bank Peru -1.89 0.00 -5.61 -2.91 0.00 -7.95 178.94 98.77 394.13 389.67 286.58 502.69 
11 Banco Falabella -23.27 0.00 -30.61 0.00 0.00 0.00 93.55 67.55 136.06 321.75 218.92 438.31 
12 Banco Santander Peru 0.00 0.00 -1.05 -3.07 0.00 -7.32 35.42 9.74 96.38 14.05 4.79 26.96 
13 Banco Ripley -31.41 0.00 -38.99 0.00 0.00 0.00 123.74 91.15 165.55 410.51 293.63 557.25 
14 Banco Azteca -44.74 0.00 -52.25 0.00 0.00 0.00 293.31 216.65 407.16 309.65 204.36 457.38 

 

6. Conclusion 

The bank-level benchmarking by means of employing efficient frontier estimation methods, 

such as DEA, is used to monitor performance. The conventional DEA requires deterministic 

values, but in reality, observations are stochastic in nature and the deterministic estimated 

measures of efficiency might be distorted because of the variation in the data. The failure to 

capture the variations in the data might penalize some banks on their performance scores, while 

others might be rewarded for operating in favorable environments.  

There is a plethora of approaches that can be adopted to obtain the efficiency under an 

uncertain environment. Our idea was to model through a satisficing DEA approach, which has 

few advantages, among which the most notable ones are: (a) the modeling is free from any 

distributional assumptions, (b) it allows to develop customized performance models that best 

reflect the bank management’s business aspirations, and (c) it allows the modelers to perform the 

reference set analysis based on the Bayesian approach. 

Hence, the current paper proposes a satisficing DEA model applied to 14 banks operating in 

Peru to evaluate the bank-level efficiency under a stochastic environment, which as mentioned, 

is free from any theoretical distributional assumptions. Unlike the conventional DEA model, 



which provides the results with certainty, the proposed model provides the efficiency scores, 

peer information, and potential improvements of each DMU under the probabilistic approach, 

with four aspiration levels. It is to be noted that an aspiration level is linked to probabilities. As 

mentioned above, satisficing DEA allows the bank management to develop customized 

performance models that best reflect their business aspirations. This is very important because 

the bank management, in making their (risky) choices, focus on reaching alternative specific 

outcomes, i.e, the aspiration levels. In this sense, the four aspiration levels provided in this study 

can serve as potential ones that may be adopted by the sampled banks. In the presence of an 

aspiration level in DEA, the researcher should investigate whether the probabilities of the 

different DMUs being efficient fluctuate enough to significantly reposition the DMUs relative to 

the efficient frontier. 

The findings reveal the positioning of the individual banks on the market in the DEA context. 

In the light of the results of the study, Banco Santander Peru is observed as the best performing 

bank as it has the highest probability of being efficient and, moreover, it could be the reference 

point for most of the other banks in the sample.	The potential improvement in the bank outputs is 

considerable, whereas, in the case of inputs, banks should concentrate mainly on the cost 

reduction.  

A future scope of the present study would be to integrate the bank management’s perspective 

into the study of banking efficiency as a post-efficiency qualitative analysis so as to get 

additional insights; this could be done via focus groups or in-depth interviews. We will also 

investigate further the idea to present an orientation-free DEA satisficing model. 
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