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Expression of Avian prickle Genes During
Early Development and Organogenesis
Oliver Cooper,† Dylan Sweetman, Laura Wagstaff,‡ and Andrea Münsterberg*

Chicken homologues of prickle-1 (pk-1) and prickle-2 (pk-2) were isolated to gain insight into the extent of
planar cell polarity signaling during avian embryogenesis. Bioinformatics analyses demonstrated
homology and showed that pk-1 and pk-2 exhibited conserved synteny with ADAMTS20 and ADAMTS9,
GON-related zinc metalloproteases. Expression of pk-1 and pk-2 was established during embryogenesis and
early organogenesis, using in situ hybridization and sections of chicken embryos. At early stages, pk-1 was
expressed in Hensen’s node, primitive streak, ventral neural tube, and foregut. In older embryos, pk-1
transcripts were detected in dorsolateral epithelial somites, dorsomedial lip of dermomyotomes, and
differentiating myotomes. Furthermore, pk-1 expression was seen in lateral body folds, limb buds, and
ventral metencephalon. pk-2 was expressed in Hensen’s node and neural ectoderm at early stages. In older
embryos, pk-2 expression was restricted to ventromedial epithelial somites, except in the most recently
formed somite pair, and limb bud mesenchyme. Developmental Dynamics 237:1442–1448, 2008.
© 2008 Wiley-Liss, Inc.
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INTRODUCTION

During invertebrate development, dif-
fusible ligands are interpreted by pla-
nar cell polarity (PCP) signaling to co-
ordinate morphogenetic events. In
Drosophila, PCP establishes the plane
of cell orientation in the developing
cuticle, eye, and wing by means of the
distal and proximal subcellular local-
ization of several key proteins, includ-
ing prickle (pk; Lawrence et al., 2007;
Seifert and Mlodzik, 2007). In the
primitive chordate, Ciona savignyi, Pk
regulates cell intercalation of noto-
chord cells (Jiang et al., 2005). Verte-
brate Pk homologues coordinate the
morphogenetic events of convergent

extension movements and cell orienta-
tion in the inner ear (Carreira-Bar-
bosa et al., 2003; Veeman et al., 2003;
Deans et al., 2007). Tissue responses
to pk-mediated PCP signals are
caused by a combination of polarized
cytoskeletal and cell adhesion rear-
rangements by means of the activities
of Jun kinase, members of the Rho
family of small GTPases, and calcium
signaling (Classen et al., 2005; Gibson
et al., 2006; Shimada et al., 2006; Le-
cuit and Lenne, 2007; Slusarski and
Pelegri, 2007).

The complete extent of PCP signal-
ing during vertebrate development is
not well understood. Furthermore,

while pk function has been well char-
acterized in the context of PCP sig-
nals, it is becoming clear that pk ho-
mologues have functions beyond
establishing PCP. For example, pk-1
antagonizes Wnt/�-catenin signals in
vitro by targeting Dsh for degradation
(Veeman et al., 2003; Chan et al.,
2006). In addition, recent in vivo stud-
ies have identified pk-1 as a regulator
of notch activity. In the Drosophila
eye, PCP signals form a feedback loop
that regulates Notch and Delta signal-
ing (Cooper and Bray, 1999; Fanto
and Mlodzik, 1999). The pk mutant,
pkpk/sple ectopically activates notch ac-
tivity in the Drosophila eye (Strutt,
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2002), and pk homologues facilitate
the nuclear translocation of charlatan/
NRSF/REST, a repressor of the Notch
ligand, Delta (Shimojo and Hersh,
2003; Shimojo and Hersh, 2006;
Tsuda et al., 2006).

During the first 4 days of chicken
development, the embryo undergoes
extensive remodeling, both during
the establishment of the three germ
layers (ectoderm, mesoderm and
endoderm) and during tissue forma-
tion. To investigate the possible ex-
tent of prickle function in PCP and
other signaling pathways, we exam-
ined the expression patterns of the
chicken pk homologues, pk-1 and pk-2
during this period of embryogenesis.

RESULTS AND DISCUSSION

Comparison of Chicken pk-1
and pk-2 Proteins

Polymerase chain reaction (PCR)
primers were designed, using the En-
semblGenomeBrowser(www.ensembl.
org), to amplify the predicted coding
sequences for the chicken homologues
of pk-1 and pk-2 (see the Experimen-
tal Procedures section). While Dro-
sophila pk is alternatively spliced to
produce pk, pkM, and sple isoforms

(Gubb et al., 1999), there is currently
no evidence from Northern blots or
expressed sequence tag databases
that vertebrate pk-1 or pk-2 are alter-
natively spliced (Deans et al., 2007).
Based on the predicted protein se-
quences, chicken pk-1 and pk-2 encode
828 amino acid and 832 amino acid
proteins, respectively. Phylogenetic
analyses revealed strong sequence
similarities of chicken pk-1 with hu-
man (88%) and zebrafish (64.3%) ho-
mologues. Similarly, chicken pk-2 had
strong sequence similarity with hu-
man (85.5%) and zebrafish (56.5%) ho-
mologues. In addition, our phyloge-
netic analyses indicated that the
identities of mouse pk-1 and pk-2 were
interchanged and this was adjusted
(Fig. 1; Table 1; Katoh and Katoh,
2003).

Structural analyses showed that
chicken pk-1 and pk-2 proteins are
composed of an N-terminal PET do-
main, three central LIM domains, and
a C-terminal PKH domain. The LIM
motifs (Lin-11 Isl-1 Mec-3; InterPro
accession IPR001781) are cysteine-
rich, contain zinc-binding protein do-
mains and commonly mediate pro-
tein–protein interactions (Michelsen
et al., 1993; Dawid et al., 1998; Gubb

et al., 1999). Emerging evidence sug-
gests that the LIM motif is a hallmark
of proteins that associate with both
the actin cytoskeleton and the tran-
scriptional machinery (Kadrmas and
Beckerle, 2004). The N-terminal PET
domain combines with the three LIM
domains during interactions with
other proteins (Gubb et al., 1999). The
PKH domain contains a CaaX-motif
prenylation site that determines pro-
tein–protein and protein–membrane
interactions (Desnoyers and Seabra,
1998; Maurer-Stroh et al., 2003). Bio-
chemical and mutagenesis studies of
PRICKLE1 and Drosophila pk have
demonstrated that this CaaX motif is
a farnesylation that regulates nucle-
ar/nuclear membrane localization
(Shimojo and Hersh, 2003, 2006; Vee-
man et al., 2003). To further charac-
terize the amino acid sequence of
chicken pk-1, we used a transmem-
brane topology prediction method
(MEMSAT3, http://bioinf.cs.ucl.ac.uk/
psipred/) (Jones et al., 1994). The
method predicted a transmembrane
helical domain between 801 and 818
amino acids of chicken pk-1, adjacent
to the CaaX motif within the PKH do-
main. The prediction of a transmem-
brane helical domain at the C-termi-

Fig. 1. Comparison of pk-1 and pk-2 homologues. A: Alignment of the predicted amino acid sequence for the chicken pk-1 and pk-2 genes. PET (red),
LIM (green), and PKH (blue) domains are indicated with consensus matches (black shade) for chick and human homologues of pk-1 and pk-2. B: A
phylogenetic tree shows the degree of similarity of pk-1 and pk-2 human (hs), mouse (m), chicken (c), and zebrafish (zf) orthologues.
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nus of chicken pk-1 suggests that the
protein can function as an integral
protein. Four other C-terminal do-
mains of PRICKLE1 regulate protein
localization (Shimojo and Hersh,
2006). We used bioinformatics to con-
firm that these domains were con-
served in chicken pk-1 and pk-2
(www.psort.org) (Zhou et al., 2004;
Xue et al., 2005). In addition, chicken
pk-1 contained three predicted nu-
clear localization signals (NLS) and a
cyclic AMP-dependent protein kinase
A (PKA) phosphorylation site, which
were conserved with PRICKLE1.
However, chicken pk-2 contained only
one predicted NLS domain, which was
shared by chicken pk-1 and PRICK-
LE1. Moreover, a leucine zipper pat-
tern adjacent to the final LIM domain
was predicted in chicken pk-2. When

taken together, bioinformatic analy-
ses of chicken pk-1 and pk-2 indicate
that the N-termini bind to protein tar-
gets, while the C-termini regulate the
localization of the putative protein
complex.

Genomic Organization of
Chicken pk-1 and pk-2

To characterize the chicken pk homo-
logues further, the genomic organiza-
tion of these two genes was examined.
Chicken pk-1 was located on contig
6.521 of chromosome 1 and was syn-
tenic with q12 of human chromosome
12 (PRICKLE1) and D3 of mouse chro-
mosome 6 (Prickle1). Similarly,
chicken pk-2 was located on contig
16.44 of chromosome 12 and syntenic
with p14.1 of human chromosome 3

(PRICKLE2) and F1 of mouse chromo-
some 15 (Prickle2).

Of interest, chicken pk-1 and pk-2
shared similar PET/LIM domains and
synteny with chicken testin (ENS-
GALG00000009398; NP_989954.1)
and chicken dyxin/LMCD1 (ENS-
GALG00000008349). Testin associ-
ates with the cytoskeleton, whereas
dyxin acts as a transcriptional cofac-
tor. Neither protein contains a PKH
domain (Katoh and Katoh, 2003;
Drusco et al., 2005; Rath et al., 2005).
Immediately upstream of pk-1 and
pk-2 in the chicken genome were AD-
AMTS20 and ADAMTS9. ADAMTS
enzymes are secreted zinc metallopro-
teases that digest extracellular matrix
substrates, and ADAMTS20 and AD-
AMTS9 are highly conserved GON-re-
lated enzymes (Somerville et al., 2003;

TABLE 1. Protein and cDNA Sequence Accession Numbers for prickle-1 and prickle-2

Gene Species Protein Accession NCBI and Ensembl cDNA Accession NCBI and Ensembl

Prickle-1 Gallus
gallus ENSGALP00000015542 ENSGALG00000009556

Prickle-1 Homo NP_694571.1 NM_153026
sapiens ENSP00000345064 ENSG00000139174

Prickle-1 Mus AAI17894 BC117893
(Predicted) musculus ENSMUSP00000049204 ENSMUSG00000030020
Prickle-1 Danio NP_899185 NM_183342.2

rerio ENSDARP00000059513 ENSDARG00000040649
Prickle-2 Gallus

gallus ENSGALP00000011832 ENSGALG00000007332
Prickle-2 Homo NP_942559.1 NM_198859

sapiens ENSP00000295902 ENSG00000163637
Prickle-2 Mus AAI45755 NM_001033217.1

musculus ENSMUSP00000032093 ENSMUSG00000030020
Prickle-2 Danio NP_899186.1 NM_183343

rerio ENSDARP00000054743 ENSDARG00000037593

Fig. 2. Expression of pk-1 in stage XII and Hamburger and Hamilton stage (HH) 3–HH20 chick embryos. Stages are indicated in each panel. A–F: Stage
XII to HH9 whole-mount embryos. C�–E��: Paraffin sections through the embryos shown in C–E, the approximate levels of sections are indicated by
a black, horizontal line; white arrowheads indicate Hensen’s node (C�,E��), primitive streak (C�,E�), or notochord (D�,E�); black arrowheads indicate
neuroectoderm (C�,D�,E��) and floor plate (D�,E�); asterisk indicates foregut (E�). G–J: Transverse sections (10 �m) through the embryo in F. Black lines
in F indicate the level of the corresponding sections. K: Dorsal view of a HH17 embryo. L–O: Transverse sections (10 �m) through the embryo in K.
Black lines in (K) indicate the level of the corresponding sections. M,O: Higher magnification of the regions indicated in L,N by a black box. Arrow in
M indicates dorsomedial lip (dml) of the dermomyotome. Arrow in O indicates the floor plate (fp). P: Lateral view of a HH20 embryo. Q: Transverse
section through the forelimb of an HH20 embryo. R: Frontal section through the trunk of a HH20 embryo. White lines in P indicate the level of the
corresponding sections. ao, dorsal aorta; dm, dermomyotome; dml, dorsomedial lip; ds, dorsal epithelial somite; fg, foregut endoderm; flb, forelimb
bud; fp, floor plate; Hn, Hensen’s node; lpm, lateral plate mesoderm; lbf, lateral body fold; my, myotome; me, mesencephalon; nc, notochord; nf, neural
fold; np, neural plate; nt, neural tube; sc, sclerotome; so, somite. Scale bars � 100 �m.

Fig. 3. Expression of pk-2 in Hamburger and Hamilton stage (HH) 3–HH20 chick embryos. HH stages are indicated in each panel. A–E: Stage XII and
HH4 to HH11 whole-mount embryos. B�–D�: Paraffin sections of embryos shown in B–D, the approximate levels of sections are indicated by a black,
horizontal line, white arrowheads indicate Hensen’s node (B�,C�,D�) or the primitive streak (B�); black arrowheads indicate neuroectoderm (C�,D�,B�,C�).
F–I: Transverse sections (10 �m) through the embryo in E. The black lines in E indicate the level of the corresponding section. J,K: Lateral views of
HH16 and HH20 chick embryos. L–N: Higher magnification views of the forelimb, tail bud, and hindlimb buds of an HH20 embryo. O: Transverse
section through the forelimb bud of an HH20 embryo. Scale bars � 100 �m. aer, apical ectodermal ridge; fl, forelimb; hl, hindlimb; vs, ventral somite;
all other abbreviations as in Figure 1.
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Porter et al., 2005). The genomic orga-
nization of pk and ADAMTS homo-
logues was conserved from Caeno-
rhabditis elegans to Human. For
example, GON-1, the C. elegans ortho-
logue of ADAMTS9 and ADAMTS20,
was found to be syntenic with the C.
elegans pk orthologue, ZK381.5. This
remarkably conserved genomic envi-
ronment raises the intriguing possibil-
ity that this cluster of genes is coordi-
nately regulated during development
by common regulatory elements (Sproul
et al., 2005; Fraser and Bickmore,
2007).

Pk-1 Expression in Chicken
Embryos

Whole-mount in situ hybridization
(WISH) was used to examine the ex-
pression of pk-1 and pk-2 transcripts
in prestreak and Hamburger and
Hamilton stage (HH) 3–HH20 chicken
embryos. Probe-specific expression of
pk-1 mRNA was observed in the area
opaca of prestreak embryos (Fig. 2A)
and in the primitive streak of HH3
chick embryos (Fig. 2B). Sections of
HH3 embryos confirmed the presence
of pk-1 transcripts in the streak and
overlying epiblast (Fig. 2B�). Expres-
sion continued in the primitive streak
from HH4–HH10 (Fig. 2C,C�,C�,D,
D�,E,E��,F) and was detected in the
posterior part of Hensen’s node at
HH4 (Fig. 2C,C�) and Hensen’s node
from stage HH5 to HH10 (Fig.
2D,E,E��,F,J). From HH5, expression
was detected in the midline of the neu-
ral plate (floor plate) and the underly-
ing head process (notochord; Fig.
2D,D�,E,E�). At HH10, expression was
still present in the floor plate and un-
derlying notochord, particularly in the
hindbrain region and the anterior
neural tube (Fig. 2F,G). Expression
was also detected in the foregut
endoderm at HH8 and HH10 (Fig.
2E�,G). Weak expression was ob-
served in the somitocoel (Fig. 2H). In
caudal regions of the embryo, the neu-
ral plate, Hensen’s node, and the ad-
jacent paraxial and lateral plate me-
soderm expressed high levels of pk-1
mRNA (Fig. 2F,I,J). At HH17, pk-1
mRNA was expressed in emerging
limb buds, and in somites (Fig. 2K–O).
In epithelial somites, pk-1 mRNA was
enriched dorsally (Fig. 2N,O), and in
differentiating somites, pk-1 tran-

scripts became restricted to the dorso-
medial lip of the dermomyotome (Fig.
2L,M). The dorsomedial lip has been
characterized as a morphogenetic cen-
ter, through which epaxial myotome
precursors migrate from the dermo-
myotome by direct ingression and bi-
directional extension (Gros et al.,
2004). It is therefore interesting to
note that the somitic expression of
pk-1 was strikingly similar to chicken
flamingo-1, another PCP signaling
component (Formstone and Mason,
2005). Although some nonspecific
trapping of dye was detected in head
tissues, specific signal for pk-1 tran-
scripts was robustly detected in a
striped pattern across the trunk with
strong expression in the limb buds at
HH20 (Fig. 2P). Sections revealed
that pk-1 was expressed in the epaxial
and hypaxial myotomes and through-
out the limb bud mesenchyme and lat-
eral body folds (Fig. 2Q). Furthermore,
pk-1 was expressed in the ventral me-
tencephalon and in tissue surrounding
the aorta (Fig. 2R), similar to zebrafish
(Carreira-Barbosa et al., 2003).

Pk-2 Expression in Chicken
Embryos

Chicken pk-2 transcripts were first de-
tected at HH4 in the developing neu-
ral plate and Hensen’s node (Fig.
3B,B�,B�). Expression continued from
HH5 to HH7 in Hensen’s node and in
neural ectoderm where it was re-
stricted to the midline (Fig.
3C,C�,C�,D,D�,D�). At HH11, robust
pk-2 expression was seen in somites
(Fig. 3E,G,H) and weak pk-2 mRNA
levels were detected in the floor plate
of the neural tube in later embryos
(HH11; Fig. 3F). In somites, pk-2
mRNA was observed in the ventrome-
dial domain of epithelial somites,
where cells undergo an epithelial to
mesenchymal transition to form the
sclerotome (Fig. 3G,H). In epithelial
somites, pk-1 and pk-2 mRNAs were
localized in nonoverlapping domains
(Figs. 2N,O, 3H). pk-2 mRNA was ab-
sent in the most recently formed
somite pair (Fig. 3I). At later stages,
pk-2 expression was observed in re-
cently formed somites, but not in the
youngest somite pair (Fig. 3J). At
these older stages, some nonspecific
staining was observed in the head tis-
sues due to trapping of the substrates

(Fig. 3J,K). At HH20, pk-2 was ex-
pressed in distal limb bud mesen-
chyme and the most recently formed
somites in the tail bud (Fig. 3K–O).

The expression of chicken prickle
genes is similar to the expression de-
scribed in pregastrulation and gastru-
lation stage mouse embyros (Cromp-
ton et al., 2007). Both mouse and chick
pk-1 were expressed in the primitive
streak and mesoderm tissues. How-
ever, in addition, pk-1 was expressed
in the early neural plate. During gas-
trulation, pk-2 was expressed in the
node and Hensen’s node in mouse and
chick, respectively. The striking, mu-
tually exclusive expression of verte-
brate prickle homologues in dorsal
and ventral regions of epithelial
somites, in differentiating myoblasts
of the myotome (pk-1), and in the mes-
enchyme of developing limb buds
(pk-1 and pk-2) is described here for
the first time. Of interest, PCP signal-
ing has not previously been implicated
in epithelial somites or limb bud mes-
enchyme. In contrast, both pk-1 and
pk-2 show overlapping expression
with components of canonical Wnt sig-
naling, which have been shown to be
expressed in the primitive streak
(Tcf-1, �-catenin and Lef-1), the neu-
ral plate (Tcf-3), the dorsomedial epi-
thelial somites and myotome (�-cate-
nin and Lef-1), and the limb bud
mesenchyme (�-catenin and Tcf-3;
Schmidt et al., 2004). It will therefore
be interesting to characterize further
the importance of vertebrate prickle
genes in PCP signaling, as antago-
nists of canonical Wnt signaling (Vee-
man et al., 2003; Chan et al., 2006), as
well as in other alternative signaling
pathways, such as the Notch pathway.

EXPERIMENTAL
PROCEDURES

Cloning of Chicken Prickle
Homologues

Chicken pk-1 and pk-2 fragments were
amplified by PCR from cDNA prepared
from stage 8–14 chicken embryos using
standard molecular biology protocols
(Münsterberg and Lassar, 1995). Prim-
ers were designed using predicted
prickle sequences derived from the En-
sembl Genome Browser (www.ensembl.
org). See Table 1 for accession numbers.
Prickle-1 primer sequences were
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prickle-1-BamHI (forward, 5�-GGATC-
CATGGAGCCCAAAGCTAAC-3�) and
prickle-1-NotI (reverse, 5�-GCGGC-
CGCTCAAGCGTAATCTGGAACATC-
GTATGGGTAAGAAATTATGCAAT-
TTTTC-3�), including hemagglutinin
tag. Prickle-2 primer sequences were
prickle-2 XbaI (forward, 5�-TCTAGAA
TGCCCCTGGAGATGGAG-3�) and
prickle-2-NotI (reverse, 5�GCGGCCG-
CTCAAGCGTAATCTGGAACATCG-
TATGGGTAGGATATGATACAGT-
TTG-3�), including hemagglutinin tag.
PCR products were cloned into
pGEM-T (Promega) and sequenced.
The accession numbers for protein
and cDNA sequences for various spe-
cies were obtained from NCBI (http://
www.ncbi.nlm.nih.gov/) and Ensembl
(http://www.ensembl.org/index.html).

WISH and Paraffin Sections

Fertilized eggs were incubated at
37°C until the desired stage of devel-
opment was reached (Hamburger and
Hamilton, 1951). The embryos were
collected into DEPC-treated phos-
phate buffered saline, fixed overnight
at 4°C in 4% paraformaldehyde, dehy-
drated through ascending grades of
PTW/methanol washes, and stored in
methanol at �20°C. Antisense digoxi-
genin-labeled riboprobes correspond-
ing to the full-length coding sequence
for chicken pk-1 and pk-2 were synthe-
sized using linearized pGEM-T plas-
mid using T7 and SP6 RNA poly-
merases (Promega), and WISH was
performed as previously described
(Smith et al., 2005). After in situ hy-
bridization, the embryos were fixed in
4% paraformaldehyde overnight and
photographed. For paraffin sectioning,
embryos were dehydrated through as-
cending grades of ethanol and cleared
in xylene. The embryos were incubated
in paraffin wax at 65°C overnight and
embedded, and 10-�m sections were
cut, collected on TESPA-coated slides,
dewaxed, and coverslipped with Entel-
lan (Merck, Germany).
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