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More news this year about F G Fs and their roles in vertebrate
limb initiation; Wnt signalling is shown for the first time to be
another component of the signalling cascade involved in early
limb formation. Ectodermal compartments that control apical
ridge formation were previously described in chick embryos
and are now shown to exist in mouse embryos; Engrailed1 is
expressed in the ventral ectodermal compartment but
experiments in both chick and mouse show that it is not
responsible for compartment specification.
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Abbreviations
FGF fibroblast growth factor
Shh Sonic hedgehog

Introduction 
Considerable progress has been made in understanding
mechanisms that lead to limb initiation and answering
general questions about these structures, such as what
controls number, type and position. Classic transplantation
experiments in early chick embryos showed that regions of
the embryo are determined to form limbs long before
there are any signs of limb development. Furthermore,
these transplanted regions contain sufficient information
to generate a bud that can then go on to develop
autonomously into a limb. Here, we discuss recent work
that identifies new components of the FGF (fibroblast
growth factor) signalling cascade that initiates limb forma-
tion and controls establishment of the apical ectodermal
ridge — the signalling centre that mediates bud outgrowth
and patterning. We consider the role of FGF signals
produced by mesenchyme and ridge in early limb buds
and finally discuss work that explores how the apical
ectodermal ridge is positioned with respect to the dorso-
ventral axis of the body so that limbs grow out from the
sides. We review data from both chick and mouse embryos,
illustrating how information from these two model organ-
isms can be synthesised to arrive at general principles of
vertebrate limb development.

Limb initiation and apical ridge formation
FGFs comprise a family of growth factors that play key
roles at several different stages of limb development,
including initiation. Application of FGF to the flank of
chick embryos can trigger development of an additional

limb [1]. Fgf10 is expressed in mesenchyme of limb-
forming regions and is essential for limb formation [2,3].
FGF10 induces Fgf8 expression in overlying ectoderm,
which forms the apical ectodermal ridge and FGF8 in turn
maintains Fgf10 expression in mesenchyme (Figure 1a).
Fgf8 and other Fgfs continue to be expressed in the ridge
and beads soaked in FGFs can replace apical ridge
function in limb outgrowth and patterning [4]. This year,
ground-breaking work in chick embryos shows that Wnt
signals are upstream of FGFs in limb initiation and also
that Wnts intervene in the signalling loop between Fgf10
and Fgf8 [5••].

Local application of members of the Wnt family of growth
factors (or cells expressing retroviruses containing activated
β-catenin), like FGFs, have the spectacular property of
inducing additional limbs [5••]. Two Wnt family members
are reported to be expressed in limb-forming mes-
enchyme (Wnt2b in wing region and Wnt8c in leg).
Furthermore, when β-catenin-mediated signalling in
these regions is blocked by misexpressing axin, a negative
regulator of the canonical Wnt pathway, limb development
is impaired, thus pointing very clearly to a role for Wnt
signalling in normal limb initiation. The effects of Wnt
and β-catenin misexpression on expression of Fgf10 and
Fgf8 lead the authors to propose a model whereby these
respective Wnts maintain Fgf10 expression in the limb-
forming regions and thus lie upstream of FGFs in
initiating limb formation. 

The same paper [5••] also provides some evidence consis-
tent with the idea that Wnt signalling (Wnt3a this time)
intervenes in the signalling loop between FGF10 sig-
nalling in mesenchyme and FGF8 signalling in ridge.
Other work also suggests that induction of Fgf8 expression
by FGF10 may be indirect on the basis of timing [6,7•].
Thus the picture emerging is that FGF10 induces Wnt3a
expression in the ectoderm and then Wnt3a via β-catenin
activates Fgf8 expression, which then maintains Fgf10
expression in a feedback loop (Figure 1b). It should be
noted that Wnt3a transcripts cannot be detected in mouse
limb ectoderm. Nevertheless the phenotype of the
Lef1/Tcf1 double knockout mouse is consistent with Wnt
signalling being essential for ridge formation but presum-
ably another Wnt is involved [8].

This unanticipated participation of Wnts in both signalling
cascades leading to limb initiation and in regulation of Fgf
expression in ectoderm underlines the synergy and intri-
cate interactions between signalling pathways during
development. This particular combination of growth factor
signals has added significance because it has been reported
that expression of a chick spalt homologue, CSAL1, at least
in distal mesenchyme of later limb buds, is controlled by
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ridge-derived FGFs and Wnts [9•]. In this case, Wnts
acting through either β-catenin-dependent (Wnt3a) or
β-catenin-independent (Wnt7a) pathways are effective.
Very recent work on inner ear induction and early neural
patterning have also demonstrated interaction of FGF and
Wnt signalling pathways [10,11].

Signalling in early limb bud 
The importance of FGF signalling for early limb develop-
ment has been further tested in the past year by mouse
knockouts of FGF ligands and their receptors. A dramatic
phenotype was reported a few years ago in Fgf10 knock-
outs. Both forelimbs and hindlimbs are almost completely
absent [2,3] and, depending on genetic background, no
buds form at all or limb buds are initiated but do not grow
out. However, importantly, in both cases, the apical ecto-
dermal ridge does not form morphologically or molecularly
(Fgf8 is never expressed). A strikingly similar limb pheno-
type was observed more recently in the knockout of FGF
receptor 2-IIIb [12•], for which FGF10 had previously been
suggested to be the major ligand [13]. Mice deficient for
this particular receptor isoform show agenesis of limbs but,
surprisingly, Fgf8 expression is still induced, indicating
that FGF10 may act through a different receptor or recep-
tor isoform; but even though both Fgf10 and Fgf8 are
expressed, Shh (Sonic hedgehog), which also plays an essen-
tial role in maintaining outgrowth, is not. 

In the past year, Fgf8 has been knocked-out in the apical
ridge of mouse embryos with somewhat surprising results.
As Fgf8 null mice die before limbs develop, conditional
knockouts had to be made and this was done by two dif-
ferent groups using the Cre-LoxP system but with
different ridge promoters driving Cre [14••,15••].
Forelimbs are affected in one study because the RARβ2
promoter used to drive Cre is only active in forelimb
whereas hindlimbs are more affected in the other study
because the Msx2 promoter driving Cre is active at much
earlier stages in hindlimb compared to forelimb.
Conditional ablation of Fgf8 in apical ridge of developing
forelimbs [15••] or hindlimbs [14••] has substantial effects
on development. In both studies, morphological changes
are observed in skeletal structures along the entire proximo-
distal axis including upper part of forelimb/hindlimb
(humerus/femur), lower part (radius and ulna/tibia and
fibula) and digit region (fingers/toes). The upper part of
the limb is most severely affected and humerus/femur is
either very reduced or even absent. In the lower part of the
limb and digital region, anterior structures (but not poste-
rior) structures are missing. Thus, functional inactivation
of Fgf8 in the mouse ridge seems to have almost the
opposite effect to removing chick ridge, which leads to
truncated limbs lacking distal structures.

Three other FGFs are also expressed in the apical ridge
(Fgf4, Fgf9, Fgf19; Figure 2) and it is possible that some or
all of these FGFs could compensate for absence of Fgf8.
Indeed, limb development in Fgf4 conditional mutants is

normal, probably for this very reason [16,17]. These other
FGFs are expressed somewhat later than Fgf8 and in a
more posteriorly restricted domain (Figure 2). This differ-
ence in extent of expression along the antero-posterior axis
could go some way to explaining why posterior structures
such as ulna and posterior digits are ‘rescued’ in conditional
mutants whereas anterior structures are not. Similarly, the
fact that these other Fgfs are expressed at a later stage
in development could account for the ‘rescue’ of distal
structures but not proximal structures. 

The phenotype of these conditional Fgf8 knockout mice
is stimulating a new debate about the mechanism of pat-
terning along the proximo-distal axis. At present, the
widely accepted model is the progress zone model which
proposes that the length of time that cells spend in the
region of undifferentiated mesenchyme at the tip of the
limb bud determines whether they form proximal or
distal structures. Thus, cells become progressively ‘distal-
ized’ as limb buds grow out under the influence of the
apical ridge [18]. The authors of both papers suggest that
the progress zone model should be revisited because
removal of the ridge outgrowth signal, FGF8, in these
mice does not preferentially affect distal structures.
Interestingly, however, the phenotype of these Fgf8
mutant mice in which proximal structures are most affect-
ed is reminiscent of that of chick limb buds which have

Figure 1

Regulatory interactions during limb initiation. (a) F G F10 derived from
limb mesenchyme activates expression of Fgf8 in ectodermal cells of
the apical ridge. F G F8 maintains Fgf10 gene expression in a positive
feedback loop. (b) Model incorporating recent work. Wnt2b and
Wnt8c, acting via β-catenin, induce Fgf10 expression in limb
mesenchyme. F G F10 activates Wnt3a in apical ridge, which in
β-catenin dependent manner regulates Fgf8 expression. F G F8
maintains Fgf10 gene expression in a positive feedback loop.
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been irradiated and mesenchyme cells killed [19]. The
explanation advanced in this old work is that, in irradiated
wing buds, cells spend longer at the tip replacing the cells
that were killed and therefore, according to the progress
zone model, would form distal rather than proximal struc-
tures. In Fgf8 conditional mutants, there will be a lag
period before the other FGFs are expressed, in which
there is no FGF signalling to sustain mesenchyme cells in
the early limb bud and indeed transient cell death was
noted in one study [15••]. Therefore, we wonder if the
progress zone model should be discounted just yet on the
basis of this evidence alone. We will have to wait and see
what happens when several of the Fgfs expressed in the
ridge are knocked-out together. 

Compartmentalisation and ridge formation
One of the more surprising mechanisms for positioning
vertebrate limbs was discovered in chick embryos and is
based on compartmentalisation of ectoderm in both limb
and inter-limb regions with respect to the dorso-ventral
body axis [20,21]. This year, cell-lineage-restricted bound-
aries have been reported for the first time, in mouse
embryos, again in ectoderm along both sides of the body
where the thickened apical ridges of limb buds will form
[22••]. Furthermore an ‘invisible’ boundary along the sides
of mouse embryos is also revealed by applying FGF beads

which induce a stripe of Fgf8 expression [23]. The fact that
the apical ridge signalling centre arises at a compartment
boundary in mouse and chicks confirms an unexpected
parallel between vertebrate limb development and
insect development.

In chick embryos, ectoderm compartmentalisation is
revealed either by making chick–quail chimeras or by
labelling small groups of cells with DiI [20,21]. In the
work this year with mice, two different methods are used:
a sophisticated Cre–LoxP system to mark permanently
with LacZ those cells expressing at that time Engrailed 1,
a gene expressed in the ventral compartment; and injec-
tion of replication-incompetent retroviruses expressing
LacZ into the amniotic cavity of mouse embryos in utero
using ultrasound [22••]. 

Several consistent findings have emerged. All the stud-
ies in both chick and mouse agree that the boundary of
the ventral compartment lies at the mid-point of the api-
cal ridge (at least at early stages in ridge formation) and
that this ventral compartment corresponds precisely with
the domain of expression of the transcription factor
Engrailed 1 (Figure 3). In contrast, the reported extent of
the dorsal compartment differs. In chick–quail chimeras,
the dorsal compartment boundary abuts the ventral com-
partment boundary at ridge midpoint whereas in chick
DiI labelling studies, dorsal cells are found throughout
the ridge (Figure 3). In mice, a dorso-ventral compart-
ment boundary in mid-ridge is transient and disappears
at later stages. There also appears to be a second cell-lin-
eage restriction at the interface of dorsal ectoderm and
ridge which has not been detected in chick and is pre-
sent when the border in the middle of the apical ridge is
deleted (at E8.5). Later, there is a third cell lineage
restriction at the ventral apical ridge boundary [22••]. In
chick embryos, the expression domain of radical fringe
encompasses the dorsal ectoderm and entire ridge
[24,25]. This year, a rash of papers reported that fringe is
a glycosyltransferase [26–28] which modifies notch.
Interestingly, notch–delta signalling is known to be
important in ridge development [29]. 

The correspondence between the ventral cell lineage
restricted compartment and domain of Engrailed 1 expres-
sion has attracted attention with experiments in both
mouse and chick embryos to test its significance
[22••,30•]. It is already established that in the Engrailed
knock-out mouse the ridge is broad and flat instead of
thickened [31]. Furthermore, in chick embryos, ectopic
expression of Engrailed 1 had been found either to induce
additional ridges or to block ridge formation leading to the
suggestion that an Engrailed-negative/Engrailed-positive
boundary is necessary for proper ridge formation [24,32].
One possibility, therefore, is that Engrailed specifies the
ventral compartment. To test this hypothesis in mice,
Engrailed 1 expression was driven throughout the ridge
using the Msx2 promoter, thus producing ectopic

Figure 2

Expression of F G F family members in the apical ectodermal ridge. Fgf8
is the first F G F to be expressed; its expression extends throughout the
apical ectodermal ridge. Fgf4, Fgf9 and Fgf19 are expressed slightly
later and are restricted to more posterior regions in normal embryos.
Conditional ablation of Fgf8 in apical ridge of fore- and hindlimbs
results in an anterior expansion of Fgf4 gene expression. The presence
of other F G Fs during limb development may explain the phenotype in
these mice [14••,15••].
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Engrailed 1 with exquisite precision in dorsal ridge. When
the distribution of ventral cells was followed using the
indelible LacZ marker, however, the compartment
appears undisturbed [22••]. The same result was obtained
in chick embryos when Engrailed 1 was misexpressed in
ectoderm by a retroviral method followed by DiI labelling
to monitor the extent of both dorsal and ventral compart-
ments [30•]. Even though the ridge is absent and
Engrailed 1 is expressed ectopically, cell-lineage restric-
tions appear to remain intact. All of this taken together
suggests that Engrailed 1 does not specify the ventral com-
partment in either chick or mouse. The molecular
mechanism that defines these ectodermal compartments,
therefore, remains to be identified. 

Even though Engrailed 1 does not specify the ventral com-
partment, it clearly plays an important role in ridge
development although some features are still puzzling.
Recent work on mice shows that ectopic ridges form when
Engrailed 1 is misexpressed throughout the ridge at low
levels, however, no ridge forms when Engrailed 1 is misex-
pressed at high levels [22••]. Thus it appears that it is only
when a boundary of Engrailed 1 expression falls within the
presumptive ridge that ectopic ridges can be induced. One
possible explanation is that the ability of ectoderm cells to
form a ridge becomes restricted to cells already in the
ridge and that other non-ridge ectoderm cells are inhibited
from forming a ridge. Recently, there has been the intriguing
report in chick embryos that the transcription factor,
Cux1, which is expressed in non-ridge ectoderm next to
the ridge (and next to induced ectopic ridges) may do
just this and prevent non-ridge ectodermal cells from
forming ridge [33•]. This idea of ridges inhibiting formation
of other ridges could also explain why ectopic ridges,
which form when Engrailed-1-expressing ectoderm is
grafted to dorsal limb bud, seem to be composed of
Engrailed-expressing cells [34]. 

Conclusions
We have concentrated on specific issues about limb initiation
but it will be important to work out how these fit into the
wider picture. For example, we have discussed signals that
initiate limb development but a critical question is how
these signals are produced at the correct time and place in
vertebrate embryos. In addition, we have not discussed the
relationship of these signals with genes that encode ‘limb-
ness’ such as Tbx genes that appear to be responsible for
determining forelimb versus hindlimb [35–37]. Other tran-
scription factors, such as Snail, are also expressed in
limb-forming regions. Snail expression is induced rapidly
in response to FGF [7•], although its function needs to be
elucidated. Last, as with all repeated structures, we also
need to understand spacing and mechanisms that inhibit
limb formation in flank. 
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