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Abstract: With the increasing speed of computers, complexity of applications and large scale of applications, many of 

today’s distributed systems exchange data at a high rate. It is important to provide error detection capabilities to such 

applications that provide critical functionality. Significant prior work has been done in software implemented error detection 

achieved through a fault tolerance system separate from the application system. However, the high rate of data coupled with 

complex detection can cause the capacity of the fault tolerance system to be exhausted resulting in low detection accuracy. 

This is particularly the case when the detection is done against rules based on state that has been generated in the system. We 

present a new stateful detection mechanism which is based on observing messages exchanged between the protocol 

participants, deducing the application state from them, and matching against anomaly based rules. We have previously shown 

the capacity constraint of the detection framework called the Monitor. Here we extend the Monitor framework to incorporate 

a sampling approach which adjusts the rate of messages to be verified by sampling the incoming application stream of 

messages. The adjustment is such that the breakdown in the Monitor capacity is avoided. The cost of processing each 

message increases because the application state is no longer accurately known at the Monitor. However, the overall detection 

cost is reduced due to the lower rate of messages processed. We show that even with sampling, the Monitor is able to track 

the possible state of the protocol entity and provide stateful detection. We implement the approach and apply it to a reliable 

multicast protocol called TRAM. We demonstrate the gains of the approach by comparing the latency and accuracy of fault 

detection to the baseline Monitor system. 
Keywords:  Distributed system, error detection, stateful detection, high data rate, sampling.   

 

1 Introduction 

The proliferation of high bandwidth applications and the increase in the number of consumers of distributed 

applications have caused them to operate at increasingly high data rates. Many of these distributed systems form 

parts of critical infrastructures, with real-time requirements. Hence it is imperative to provide error detection 

functionality to the applications. Error detection can broadly be classified as stateless detection and stateful 

detection. In the former, detection is done on individual messages by matching certain characteristics of the 

message, such as the length of the payload of the message. A more powerful approach for error detection is the 

stateful approach, in which the error detection system builds up state related to the application by aggregating 

multiple messages. The rules are then based on the state, thus on aggregated information rather than instantaneous 

information. Stateful detection is looked upon as a powerful mechanism for building dependable distributed 

systems [19][20]. The stateful detection models can be specified using various formalisms, such as, State 

Transition Diagrams, PetriNets or UML.  Though the merits of stateful detection seem to be well accepted, 

scaling a stateful detection system with increasing application entities or data rate is a challenge. This is due to the 

increased processing load of tracking application state and rule matching based on the state. This problem has 
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been documented for stateful firewalls that are matching rules on state spread across multiple, possibly distant, 

messages [19]. The stateful error detection system has to be designed without increasing the footprint of the 

system. Thus throwing hardware or memory at the problem is not enough because the application system also 

scales up and demands more from the detection system.  

In our earlier work on developing an error detection system, we developed the Monitor system ([1], [7]) which 

provides detection by only observing the messages exchanged between the protocol entities (PEs). The Monitor is 

said to verify a set of PEs when it is monitoring them. The Monitor is provided a representation of the protocol 

behavior (using a state transition diagram i.e., STD) of the PEs being verified along with a set of stateful anomaly 

based rules. The Monitor uses an observer model whereby it does not have any information about the internal 

state of the PEs. The Monitor performs two primary tasks on observing a message. First, it performs the state 

transition corresponding to the PE based on the observed message. Note that the state of the PE estimated by the 

Monitor may differ from the real state of the entity since not all messages related to state changes are necessarily 

observable at the Monitor. Second, it performs rule matching for the rules associated with the particular state and 

message combination. We observe that the Monitor has a breaking point in terms of the incoming message rate or 

the number of entities that it can verify beyond which the accuracy and latency of its detection suffer [7]. The 

drop in accuracy or rise in latency is very sharp beyond the breaking point. We observe through a test-bed 

experiment that as the incoming packet rate into a single Monitor is increased beyond 100 pkt/s, the Monitor 

system breaks down on a standard Linux box. In other words, its latency becomes exceedingly high and accuracy 

of detection tends to zero. This effect is shown in Figure 1. This breakdown is caused by the processing capacity 

at the Monitor being exhausted. Hence, messages see long waiting times and on the buffer becoming full, the 

messages also get dropped.  Thus, for reasonable operation, the Monitor can only support data rates below the 

breaking point.  

In the current work, we devise a stateful detection approach which scales with the increasing data rate of 

applications, or equivalently, the number of PEs being verified. We observe that in order to make stateful 

detection feasible; firstly the processing of each message must be made extremely efficient and secondly the 

system must reduce the total processing workload (e.g., by selectively dropping incoming messages). The amount 

of work at the Monitor per unit time can be conceived as the rate of messages being processed for detection × the 
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amount of work performed for each message. Our approach optimizes both these terms. The goal is to provide an 

error detection system for high throughput distributed streams and correspondingly push the knee to the right 

(Figure 1). Existing detection systems like [15][16] which aim at handling high data rate provide detection of 

changes in high rate streams using mean and higher order moments. This approach cannot capture the richness in 

the error detection rules that is needed for specifying verifiable behavior. 
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Figure 1: Latency variation with increasing inter-

packet delay. The graph depicts the breaking of the 

Monitor system at an incoming rate of 100 pkt/s.  

As a first aspect, we minimize the processing cost of an 

individual incoming message into the Monitor. We do 

this by using multistage hash tables for look ups when a 

state transition needs to be performed at the Monitor. 

We observe that for realistic systems, multiple rules will 

be active concurrently. The rules take the form of 

verifying values of some state variables or 

counts of messages (events) lying within a range.  There exists significant overlap in the state variables or counts 

being referred to in the rules. Since processing for an incoming message most often involves updating these 

counts, we optimize this operation by compact representation of the state variables. 

In the second aspect, we optimize the incoming message rate the Monitor has to process. We set a threshold for 

the incoming rate guided by the breaking point of the Monitor. Sampling the incoming stream to reduce the rate 

of messages is a logical start. However, since the Monitor provides stateful detection, dropping messages can 

cause the Monitor to lose track of the PE’s current state with resultant decrease in accuracy of rule matching. This 

phenomenon is called state non-determinism, whereby to the Monitor it is non-deterministic which state the PE is 

in. In our approach the Monitor tracks the set of possible states the application could have reached given that a 

sequence of messages is dropped. The Monitor aggressively pre-computes information about the states for 

possible sequences of messages to reduce the cost of computing the non-deterministic state set. While the cost of 

processing each (sampled) message now increases over the baseline case, through careful design the Monitor’s 

total amount of work is reduced by reducing the rate of messages that it needs to process. The sampling is made 

adaptive to tolerate fluctuations in the message rate generated by the PEs. Also, the sampling scheme necessitates 

changes in the rules to prevent false detections due to the sampling.  
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We implement the two aspects of efficient stateful detection in the Monitor and use it to detect errors in a 

reliable multicast protocol called TRAM[4]. TRAM provides a motivating application since it is at the core of 

many e-learning applications which feed high bandwidth streams to a large set of receivers. We inject errors into 

the TRAM PEs and compare the accuracy and latency to the baseline system. The sharp decrease in performance 

beyond the breaking point is no longer observed; in fact, a sharp breaking point is completely eliminated and a 

gradual decrease in performance with increasing message rates is observed instead.  

Section 2 provides a background on the existing Monitor approach and identifies changes for an approach which 

can work in high data rate applications. In section 3 we describe the new stateful approach. Section 4 and 5 

provide details on the application and experimental results respectively. Related research is discussed in section 6 

followed by conclusions in section 7.  

2 Background 

2.1 Black-box Detection through Monitor 

Previously we developed a detection framework in terms of hierarchical Monitor(s) based on black-box 

semantics [1][7]. The Monitor system consists of a hierarchy of Local, Intermediate and Global monitors.  The 

Local Monitor, abbreviated later as the Monitor, is in charge of verifying the behavior of a set of PEs. It is given 

as input the reduced STDs of these PEs. The STD is reduced because internal transitions are not visible to the 

Monitor and hence not included. At runtime, it observes the external message interactions between the PEs that it 

is verifying and it deduces the current state of the PE from it. The Local Monitor also matches the PE’s behavior 

against a set of rules. The combination of current state and incoming event determines the set of rules to be 

matched. The Intermediate Monitor gathers information from several local Monitors, each verifying a set of PEs.  

 

 

Figure 2: Monitor verifying message interactions 

between PEs. 

The Global Monitor verifies some global properties of 

the protocol. Message capturing by the Monitor can be 

through passive monitoring of traffic or using active 

forwarding support from the PEs. We will refer to this 

initial version of the Monitor described in [1][7] as 

Monitor-Baseline.  
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2.2 Rule Base 

2.2.1 Creation of Rules 

The rules used by the Monitor are anomaly based rules since the potential universe of PE misbehavior is too 

large to be enumerated. The rule base provided by the system administrator comes from two sources: formal 

protocol specifications and QoS specifications. The first class of rules is derived from a complete state transition 

diagram (STD) specification of the protocol while the second class is specified by the system administrator based 

on the application requirements.  
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Figure 3: An example State Transition Diagram for 

a TRAM receiver. 

The running protocol we use as example is the TRAM 

[4] protocol for reliable multicast of data from a single 

sender to multiple receivers through intermediate 

routing nodes called the repair head (RH). In TRAM, 

the receiver Acks correct data packets and sends 

Nacks for missing data packets to the RH above. The 

receiver maintains a counter for the number of Nacks 

sent, and if it crosses a threshold, receiver begins to 

rejoin a different RH assuming the old RH has failed. 

 

The STD in Figure 3 shows an example STD for a receiver receiving data from the sender/RH. Under correct 

operation, the receiver will oscillate between states S0 and S4, getting data and sending ACKs. Rules can be 

derived from the STD using the states, events, state variables and time of transitions. Each state has a set of state 

variables. Events may cause transitions between states. In our context, events are messages sent and received.  In 

Figure 3, the receiver moves from state S4 to state S5 if it sends a Nack because no data packet is received. Hence 

a rule can be derived if for all t ∈ (ti, ti+a), S4 Λ ¬D ⇒ ¬S4.; where ti is time when S4  becomes the present state 

and a is a constant.  Here predicate D implies data packet received. Subsequent Nacks will cause the state to 

remain at S5 but a local state counter will be incremented. Eventually if the number of Nacks is greater than Nmax, 

then the Monitor should see a Head Bind message indicating a change of affiliation to a different RH. Thus the 

rule becomes |Nacks| ≥ Nmax ⇒ Head Bind. Hence rules can be derived from the STD specifications. The 
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system administrator may add rules specifying QoS conditions that the application should meet, e.g., a minimum 

data rate that must be met at each receiver. In addition, the system administrator may augment the rule base with 

rules to catch manifestations of any protocol vulnerability. 

We have a formally defined syntax for rules in the system. The syntax represents a balance between 

expressibility of the rules and efficient matching of the rules at runtime. Rules are of two kinds – combinatorial 

and temporal. Combinatorial rules are expected to be valid for the entire period of execution of the system, except 

for transient periods of protocol instability.  

2.2.2 Temporal Rules 

The rule base for Monitor-Baseline is specified using a broad class of rules which captures a majority of 

protocol behavior (see [1][7]). The exact format of the rules is presented in Appendix (B) and is identical to that 

presented in [1][7]. Monitor-Baseline has five broad categories of temporal rules (R1-R5) with each one designed 

to provide verification of state changes, verify event counts in specific states, causal dependence, and combination 

of these conditions for PEs. Examples of rules based on Figure 3 are as follows:  

− R4 S4 E11 30 500 5000 S4 E2 1 8 4000 7000: (Rule of type 4) If a receiver gets 1 to 30 Data messages in 

4000 ms then it should send at least 1 Ack response within the next 3000ms.   

− R3 S5 E15 0 10 5000: (Rule of type 3) Restrict the number of Acks to 10 within 5000ms.  

The complete set of rules used in our experiments is presented in Appendix (A).  

In Monitor-Baseline, every time a new rule is instantiated local variables are created for that rule. As messages 

are received the local variables for all the active rules are updated. For example, if two rules of type III are active 

which are verifying the same state variable Vi then each rule will be holding a local copy of Vi. Every receipt of a 

message corresponding to the state variable Vi causes two local variables to be updated.   

 

3 Scalable Stateful Detection 

In developing a suitable approach for stateful detection we carefully study the tasks performed by Monitor-

Baseline for error detection. Thus, the main steps on the receipt of a message are: 1) perform the state transition; 

2) instantiate any rule corresponding to the state and event combination. Upon expiry of the time specified in a 

rule, the Monitor checks the value of the variable(s) mentioned in the rule to verify that they lie in the permissible 

range. It is observed for Monitor-Baseline that as the number of incoming messages increases, the latency of 
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detection breaks down beyond a threshold. We attribute this problem quite intuitively to two root causes – 1) High 

cost of processing per message, and 2) High rate of incoming messages. We target both these causes and solutions 

to them are described respectively in Sections 3.1 and 3.2.  

3.1 Making Rule Matching Efficient 

In the modified approach, henceforth called Monitor-HT (for Hash Table, due to its widespread use in the 

redesign), we perform several modifications to Monitor-Baseline data structure to achieve efficient per message 

processing. Figure 4(b) depicts the logical organization of multi-level hashtables used in Monitor-HT. These 

hashtables are organized by carefully observing the processing path a message takes after being received by 

Monitor-Baseline. We designed the data structure consisting of multi-level hashtables to provide constant order 

look-up. The STDs of the PEs are organized as multi-level hashtables to provide constant order lookup. PE 

address is used in PESTD table to obtain the STD for that PE. The STD table is indexed using a state si which 

provides a list of events possible in that state (again organized as a hashtable). In the Event table each event ID 

maps to an event object, which contains information like event ID, event Name and rules pertinent to that event. 

The entire redesign using multiple hash tables makes the processing of an incoming message efficient at the 

expense of higher memory overhead. 

Event HTPE addr Event HTPE addr

key Object

Event CountEvent ID Event CountEvent ID

PEEvent Table EventCount Table   

STDPE addr STDPE addr

key Object

EventsState EventsState

PESTD Table STD Table

Event 

Objects

Event ID Event 

Objects

Event ID

Event Table  
(a) (b) 

Figure 4: Data Structure used in Monitor-HT for (a) Storing Incoming Event Counts; (b) Storing the STDs. 

The first column represents the key of the hash table.  
Next, in Monitor-Baseline, for every rule instantiation, its own copy of state variables is created. When a 

message arrives, active rules that depend on the message (through a state variable) are searched and every rule’s 

local copy of the state variable is updated. This process is expensive because for every message, a long list is 

traversed. We observe that there exists significant sharing of state variables between the different rules and this 

makes the design of separate copy for each active rule inefficient. As an example, consider that multiple rules are 

tracking the data rate around different events, say within 5 seconds of a Nack being sent. All the rules would be 

counting the number of data messages (the state variable) received over different time intervals.  
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Monitor-HT removes the above-mentioned source of inefficiency by having a central store of the state variables. 

Monitor-HT keeps a hashtable to store the updates for a given message (see EventCount table in Figure 4(a)). 

We use a multi-level hashtable where PEEvent indexes all the PEs in the system and the EventCount table 

contains all the events corresponding to the given PE. The incoming messages can be thought of as a tuple as (ai, 

ei), where ai is the PE address (IP address or some logical address) and ei is the event ID. The value ai is used to 

look up PEEvent table for the events. The ei is used to index in EventCount table and increment the event count 

for ei (currently all increments are by a value of 1). Because of this organization every unique PE × Event ID 

symbol is only incremented once.  

Regarding the rule matching procedure, instead of having every active rule use local variables, every rule 

instance reads the value of the associated state variable from the hashtable. When a new rule is created it reads the 

value of the current event count from the EventCount table to see the current value of the state variable 

referenced in the rule, call it vinit. Later, at the time of rule matching, the Monitor-HT again reads the value of the 

state variable, call it vfinal. Thus, the EventCount table is read from the rule instances only twice, and written by a 

separate thread which handles the incoming messages from the PEs. The advantage of Monitor-HT over Monitor-

Baseline, quantified in the experiments, is dominated by the effect of this design choice. 

3.2 Handling high rate streams: Sampling  

Even with the modifications made in Monitor-HT, a constant amount of work is performed for every incoming 

message. In the next optimization, not all messages are processed; instead messages are sampled and only the 

sample set is processed.  This version is called Monitor-Sampling, or Monitor-S.  Sampling raises a few obvious 

questions: 

• How and what sampling approach should be taken? 

• How are the rules modified due to sampling? 

• How does Monitor-S track the PE’s STD in the presence of sampling? 

The first two questions are answered in Section 3.2.1 and the third one in Section 3.2.2.  

3.2.1 Design of Sampling 

We propose uniform sampling approach which is agnostic to the kind of messages coming in. This prevents 

Monitor-S from having to deduce the type of the incoming message before deciding to drop it or keep it. This 
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would have imposed the per message processing overhead on Monitor-S and defeated the purpose of the design. 

With sampling, the corresponding parameters in the detection rules have to be re-adjusted for matching. Assume 

that the Monitor gives a desired latency and accuracy of matching for an incoming rate of upto Rth. Any rate R > 

Rth the Monitor chooses to drop the messages uniformly with a rate of 1 in every R /(R - Rth) messages. Figure 5 

illustrates the behavior of Monitor which switches from Monitor-HT to Monitor-S because sampling kicks in after 

Rth. Since the messages being processed by Monitor-S are a sample of the entire set of messages, the rules 

originally specified by the system administrator are not valid on the sampled stream.  

Once a new sampling rate is chosen based on the incoming traffic rate, the rules are also modified. We keep the 

rule type the same but the constants get scaled according to the sampling rate. This is necessary because rules are 

defined according the normal operation of the PEs but because of sampling, Monitor-S is viewing an alternate 

sampled view of the operation of PEs. If the incoming rate is R and the threshold rate is Rth then the constants in 

the rules must be scaled by a factor of Rth/R. For example:  if a rule states “receive 10 Acks in 100 sec” then 

because of sampling the rule is modified to “receive 10.(Rth / R) Acks in 100 sec”.  This rate will be changed as 

and when the incoming rate is changed. We measure the incoming rate over non-overlapping time windows of 

length ∆ by counting the number of incoming messages in the window. At each rate computation, the new rate is 

compared with Rth and if it exceeds Rth then a new sampling rate is determined based on this new incoming 

message rate. To reduce the overhead of rate computation ∆ is kept higher than the time period over which a rule 

is matched.  

Rth

Incoming Rate at the Monitor 

No Sampling Sampling

Rth

Incoming Rate at the Monitor 

No Sampling Sampling

 
Figure 5: Change in Monitor’s algorithm beyond 

a threshold rate of packet (Rth).  

3.2.2 STD Transition with Sampling 

If all incoming messages are not processed, this 

will cause the Monitor-S to lose track of the current 

state of the PE.

We modify the approach of STD transitioning at Monitor-S such that instead of tracking the current state, 

Monitor-S keeps a state vector S
r

 which contains all the possible states the given PE can be in S
r

 = {S1, S2….SK}. 

The reason for having multiple possible states is that Monitor-S does not know which of several possible paths the 

PE has taken given a start state Sstart. 
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S4S2

e1

e2

e3

e4

e1

e1 e2

e5

e5

e1

State Transition Diagram (STD)

S1

S3

S4S2

Directed Graph

S1

S3

S4S2

Directed Graph
 

(a)       (b) 

Figure 6: A sample STD which is converted to a directed graph by removing the event labels.  

As a result of sampling, instead of knowing exactly which state the PE is in, Monitor-S will know a possible set 

of states the PE is in (based on the transition edges outgoing from the current state). For example: In Figure 6(a) if 

the current state is S1 and a packet is dropped then the next possible state is one of {S2, S3, S4}. To determine this 

set, Monitor-S pre-computes the possible states which can be reached in steps of size 1, 2, 3 and so on. Each set of 

these states form the state vector S
r

 if 1, 2, 3 and so on messages are dropped. In other words if a single message 

is dropped starting from the start state Sstart, then S
r

1 will consist of all the states Si such that Si has an incoming 

edge from Sstart in the graph. S
r

i vector starting from state Sstart gives the state vector if i packets are dropped.  Now 

given the rate of sampling one can transform one state vector S
r

1 to another state vector S
r

2.  Let us say S
r

0 = {Si | i 

∈ (1, g); g is the number of nodes in the initial state vector} be the initial state vector. If Monitor-S dropped one 

message then the new state vector S
r

1 = {Sj | Si � Sj is reachable using a single edge AND Si ∈ S
r

0}. Similarly if 2 

messages are dropped then S
r

2=   {Sm | Sj � Sm  is reachable using a single edge AND Sj ∈ S
r

1}.  

The state vectors ( S
r

1 and S
r

2) are created offline because the STD is already known to Monitor-S. Figure 7(a) 

illustrates for the STD in Figure 6, a tree structure for maintaining the state vectors after different numbers of 

messages are dropped. Nodes at the depth h form the state vector S
r

h and represents the states after h messages are 

dropped starting from S1. At runtime, Monitor-S tracks how many messages are dropped and looks up the 

appropriate state vector.  

3.2.3 Error Detection with Sampling 

Figure 7 (b) represents the flow of detection in Monitor-S when sampling is taking place. If the incoming rate is 

below Rth then no sampling occurs and Monitor-S simply runs as Monitor-HT. During sampling, the state 

transition is performed between various state vectors S
r

 which have been computed offline. When a message is 
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sampled, all detection rules corresponding to that event ID and states in the current S
r

 are instantiated for 

matching. When messages are being dropped, the size of the state vector (| S
r

|) increases. Once a message is 

sampled, the state vector is pruned since the message may not be valid for all the states in the state vector. 

Consider that the state vector is S
r a-

 just before sampling and S
r a+

 just after sampling message M. Then S
r a+

 = {Si| 

Si∈ S
r a- 

and
 
M is a valid message in state

 
Si according to the PE’s STD}. Qualitatively, the sampling scheme will 

be beneficial only if the pruning in the size of the state vector is significant compared to the growth due to 

message drops. For example: let S
r

 initially consists of {S1, S2, S3} and the sampled message be e2. Then from 

Figure 6 we can see that only S2 and S3 can have a valid event e2 and therefore the state vector becomes {S2, S3}.   

This ambiguity about which state the PE is in and the design of using the entire state vector may give rise to 

false alarms since Monitor-S may match some rules that are not applicable to the actual state the PE is in. 

S1

S4S3
S2

S1 S2 S3 Sj

f = depth / 

sampling rate

Example State Vectors at a depth

S1

S4S3
S2

S1 S2 S3 Sj

f = depth / 

sampling rate

Example State Vectors at a depth   

1. Input Rules and STD for the PEs for detection by Monitor-S 
2. Construct the State Vectors offline 

3. Run the Monitor and start verifying the PEs
4. If Rincoming < Rth operate in Monitor-HT mode else operate 

as Monitor-S
5. If sampling, then perform state transition using the state 

vectors 
6. For every sampled message instantiate rules for all states 

in the state vector

 
(a)       (b) 

Figure 7: Example tree formed by traversing the outgoing edges from each node in Figure 6. Union of 

nodes present at depth h represent the nodes in set S
r

h if h messages are dropped starting with S1. (b) Flow 

of detection in Monitor-S.  

 

Computing the state vectors offline imposes a memory requirement on the system. If we assume that at most τ 

messages will be dropped by Monitor-S then the offline computation should have state vectors upto S
r

τ. The total 

number of states in this state vector tree is given by k(k
τ
-1)/(k-1) assuming a k-regular structure of connectivity 

between the states. Thus the space required to store these state vectors is proportional to k(k
τ
-1)/(k-1). However 

the total number of states in the STD also imposes a cap on the size of the state vectors and prevents further 

increase in | S
r

|. If there exists a ω s. t. k
ω
> N (total states in STD), then space required to store the state vectors is 

proportional to k(k
ω-1

-1)/(k-1)+(τ-ω+1)N. The exact memory required is dependent on the data structure used to 

store these state vectors. Bit vector representation for storing them is an efficient option to reduce the overall 

memory used.  
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4 Experimental Setup 

4.1 Application: TRAM 

We demonstrate the use of the Monitor on the running example protocol ― a reliable multicast protocol called 

TRAM [6]. TRAM is a tree based reliable multicast protocol consisting of a single sender, multiple repair heads 

(RH), and receivers. Data is multicast by the sender to the receivers with an RH being responsible for local repairs 

of lost messages. The reliability guarantee implies that a continuous media stream is to be received by each 

receiver in spite of failures of some intermediate nodes and links. An Ack message is sent by a receiver after 

every Ack window worth of messages has been received, or an Ack interval timer goes off. The RHs aggregate 

Acks from all its members and send an aggregate Ack up to the higher level to avoid the problem of Ack 

implosion (see Figure 3).    

The multicast tree is formed via sender sending Head Advertisement messages and new nodes joining using 

the Head Bind message (see Figure 8(a)). Nodes ensure liveness of other neighbor nodes by periodically sending 

Hello messages as depicted in the STD shown in Figure 8(b). 
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(a)        (b)  

Figure 8: Example State Transition Diagrams (STDs); (a) TRAM sender adding new receivers in TRAM; 

(b) TRAM entities (sender, receiver, RH) sending liveness messages (Hello).  

The detection approach is provided with a rule base for detection which is derived from the STDs (shown in 

Figure 8). Some example of rules are as follows: R4 S4 E11 30 500 5000 S4 E2 1 8 4000 7000: If a Data message 

is seen then the Monitor must see an Ack message following it; T R4 S1 E9 1 2 1000 S1 E8 1 2 2000 3000: If the 

entity is in state S1  then it the Monitor should observe one or more Head Bind messages followed by Accept 

message; T R3 S0 E14 10 30 5000: The number of Hello message within a time window should be bounded to 

prevent Hello flooding. A complete list of rules used in our experiments is provided in the Appendix (A). It is 

evident from the set of rules that several of them verify the message count for the same message type (such as, 
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Data, Hello, Ack). Therefore the redesign of Monitor-HT of keeping only a shared writable copy of the state 

variables is likely to be beneficial.  

4.2 Emulator 

In order to be able to study the performance of the 

Monitor under high data rate conditions, we emulate the 

TRAM protocol [4][6]. This is necessary because 

operating multicast protocol across Purdue’s shared 

wide area network at a high data rate causes multiple 

switches to crash.  The extra beacon messages sent out 

for advertising the multicast channel causes an overload 

of the LAN switches leading them to crash. In order to 

avoid this problem and to have the ability to perform 

experiments in a controlled environment, we emulate 

the topology of TRAM depicted in Figure 9. The 

emulated messages following the STDs in Figure 8 are 

forwarded to the Monitor.  
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Figure 9: Physical Topology of the TRAM emulator 

and the Monitor in the experiments 

4.3 Fault Injection 

We perform fault injection in the header of the emulated TRAM messages to induce failures. We choose the 

header since the current detection mechanism only examines the header. In general a PE to inject is chosen 

(sender, RH or receiver) and faults are injected for a burst length. We use a burst length of 500ms and inject the 

burst length of faults after every 5 minutes during each experimental run. For these experiments we inject only the 

sender with faults because of high probability of error propagation down the multicast tree. A burst length is 

chosen since TRAM is robust to isolated faults and to mimic faults close to reality. The rules in the rule base 

typically run over a window of messages and are likely to not get violate because of an isolated faulty message. 

The burst can cause multiple rules to be instantiated simultaneously for each of sender, RH and receiver. Note that 

the emulated faults are not simply message errors, but may be symptomatic of protocol faults in the PEs. Errors in 

message transmission can indeed be detected by checksum computed on the header but these protocol errors 
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cannot. We perform random injection where a header field is chosen randomly and changed to a random value, 

valid or invalid w.r.t. the protocol. If the injected value is not valid, then the message is dropped without 

processing.  An alternate mode of error injection used in our earlier work [1] is directed injection whereby 

messages are transformed to a valid protocol value. Experimentally, we find that the performance of Monitor-HT 

and Monitor-S relative to Monitor-Baseline is not affected by this choice.  

 

5 Experiments and Results 

Experiments are performed on the topology shown in Figure 9. The Monitor system and the TRAM emulator are 

executed on separate desktop PCs with a 2.4GHz processor and 1GB RAM. We use TRAM sender and receiver 

(Figure 9) as the PEs being verified by the Monitor in all the experiments. We measure the accuracy and latency 

of detection procedure for the Monitor. Accuracy is defined as (1-missed detections). We characterize the fault 

injections which affect the PEs but are undetected by the Monitor as missed detections. A PE is said to be affected 

if it crashes or raises an exception. False detections are defined as the errors which are flagged by the Monitor but 

do not affect the TRAM entities. Latency is measured as the time from the instantiation of a rule to the time when 

the rule matching is completed, subtracting the time for which the rule is dormant. For example, if a rule states 

“Observe 32 data messages in 5 sec” then 5 sec is the time during which the there is no Monitor-related 

processing. This time needs to be subtracted since it is not an index of the Monitor’s performance; rather it is a 

feature of the rule itself.  The value of ∆ in our experiments is set to 30 seconds.  

5.1 Accuracy and Latency Results 

We vary the incoming data rate for the Monitor by varying the inter-packet delay from the sender. The emulator 

sends packets at a low rate of 20 pkt/s for the first 30 seconds and then increases it to the required rate. Each 

experiment run lasts for 20 minutes. Every latency and accuracy value is averaged over at least 60 data points. 

The experiment is repeated for three different systems i.e., Monitor-Baseline, Monitor-HT, and Monitor-S. Every 

packet is forwarded to the Monitor from the TRAM PEs. The rate of packets is varied between 10 pkt/s and 500 

pkt/s. Figure 10(a) shows the variation of accuracy with packet rate. The 95% confidence interval is plotted for 

Monitor-S and is seen to be very small indicating that the variance in the results is small. We can see that with an 

improved data structure Monitor-HT’s knee, i.e., the breaking point, occurs around 125 pkt/s compared to 100 

pkt/s for Monitor-Baseline. Let us denote the breaking point for the incoming message rate as Rbp. The 
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improvement of 25% is due to the sharing of the state variables and the efficient hash table lookup. The false 

alarms vary between 0-6% for both Monitor-HT and Monitor-Baseline. For extremely high packet rates, Monitor-

HT and Monitor-Baseline have a drop in false alarms because the number of rule matches itself is reduced.  
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Figure 10: Variation of (a) Accuracy and (b) Latency with increasing rate of packets.  

 We can see that beyond 125 pkt/s even with efficient per packet processing, the accuracy drops below 40% 

because of the increased rate of incoming messages which causes the processing capacity of Monitor-HT to be 

exhausted. In comparison, with sampling, the accuracy drops gradually as the Monitor-S drops increasingly more 

packets with increasing data rate to maintain the rate below Rbp. We can observe from Figure 10(a) that with 

increasing packet rate Monitor-S has a small decrease in accuracy but it still maintains accuracy at approximately 

70% compared to Monitor-HT’s 16% accuracy. Monitor-S has a marginal increase in the rate of false alarms due 

to the knowing of the state vector rather than the precise state. The false alarms vary between 0-9%. At high data 

rates we observe lower false alarm rates for Monitor-S compared to low data rates.  

An example of a rule which does not get violated due to sampling resulting in loss of accuracy is R1 S0 E1 1000 

S8 1500 2500. This rule verifies that for a TRAM PE (sender, receiver) the state has successfully changed to S8 

from S1 after receiving E1 (Hello message). At high data rates if a large number of packets is getting dropped, it 

happens that S
r

 still contains state S8 causing this rule not be violated and hence decreasing the accuracy.  

The latency plot in Figure 10(b) provides a similar picture. The breaking points for Monitor-Baseline and 

Monitor-HT are the same as in the accuracy plot – 100 pkt/s and 125 pkt/s respectively. For Monitor-S, we can 

see a small jump in latency around 65 pkt/s (Rth in this experiment) because the algorithm switches to sampling 

and the probability of dropping a packet increases (being zero previously). This results in a higher overhead for 
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processing each packet and the attendant marginal increase in latency. The processing done by Monitor-S is 

proportional to | S
r

| times the number of detection invocations. Increasing data rate causes higher | S
r

| leading to 

higher latency of rule matching. However, the growth of | S
r

| slows down with increasing packet rate causing the 

latency to saturate. We observe that even at high packet rates Monitor-S maintains a low latency of rule matching 

(~200ms) because of effective adjustment to the sampling rate reducing the rate of packets that are processed. 

This provides an 83.3% decrease in latency compared to the latency of 1200ms for Monitor-Baseline.  

For a fixed Rth, as the data rate is increased, the size of the state vector (| S
r

|) increases but it saturates at higher 

packet rates. The processing for the rule matching is directly proportional to | S
r

|. Also, as the data rate is increased 

beyond Rth, the number of rule invocations of Monitor-S stays constant. The latency is proportional to the total 

work done by Monitor-S, which is given by: processing for the rule matching × number of rule invocations of 

Monitor-S. Therefore, initially when the data rate is increased beyond Rth, the latency increases, but beyond a 

point, it saturates.  

5.2 Effects of Varying Rth 
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Figure 11: Effect of Rth on the (a) Accuracy and (b) Latency.  
Figure 11(a) depicts the behavior of accuracy and latency for different values of Rth in Monitor-S. Recollect that 

when the incoming message rate goes above Rth, the Monitor switches to the sampling mode. For all cases the 

accuracy is almost the same at high data rates and low data rates. Let us consider a single curve (say Rth = 50 

pkt/s). For data rates below 50 pkt/s there is no sampling and since this threshold is much below the breaking 

point (125 pkt/s from Section 5.1) the latency remains quite low (~65ms). As the data rate increases beyond 50 

pkt/s, sampling starts and with increasing data rate an increasing number of packets is dropped. Difference in 

characteristics of the curve around Rth provides the system administrator a useful tuning parameter to choose a 
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suitable latency value for the requirements of the distributed application. Clearly picking Rth > Rbp is unsuitable 

due to the spike in latency (see the 140 pkt/s curve). It is tempting to choose Rth as close to Rbp as possible (notice 

the delayed increase in latency for Rth = 100 pkt/s compared to Rth = 50 pkt/s). However, in practice the breaking 

point cannot be exactly determined since it depends on the kinds of messages (and hence, the kinds of rules) that 

are coming into the Monitor. Thus the system administrator has to choose a Rth suitably below Rbp. For our 

experimental setup, if a latency of less than 100 ms is desired for data rates up to 100 pkt/s, then Rth of 100 pkt/s is 

an appropriate choice.   

When Rth is 140 pkt/s, i.e., greater than the breaking point (125 pkt/s), it causes a heavy load and higher latency 

of matching for the region (125 pkt/s, 140 pkt/s). But as the run of experiment continues, sampling starts and this 

brings down the average latency to just over 300ms. The jump in the latency is because the incoming rate is close 

to the Rth because of which the Monitor switches between sampling and non-sampling modes. However in the 

non-sampling mode, since incoming rate is greater than Rbp Monitor-S incurs a high latency. This oscillation 

between the modes happens when the rate is close to Rth which explains the high latency (275-330 ms) around the 

incoming message rate of Rth.  

5.3 Variation of State Vector Size (| S
r
|) 

As described before, the amount of processing done by Monitor-S is dependent on size of state vector i.e., | S
r

|. 

We investigate the variation of | S
r

| with time in an experimental run. In this experiment we keep the Rth fixed at 65 

pkt/s and run the emulator to provide an incoming rate of 250 pkt/s. This experiment is targeted at bringing out 

the dynamics of Monitor-S when the incoming message rate is higher than the breaking point, forcing sampling to 

kick in. For this configuration, approximately one in four packets is sampled. Figure 12 shows the variation of | S
r

| 

with time. We measure the size of state vector once every 2 packets. Instead of displaying the entire run of 20 

minutes, we pick a representative 100 contiguous samples of | S
r

|. We can see the large fluctuations of | S
r

| due to 

the sampling. We can see that | S
r

| grows to as large as 10, multiple times during the experimental run. The number 

of rules which get instantiated for each packet is proportional to | S
r

|. However the rules get instantiated after a 

message is sampled. When a message is sampled, it will likely cause | S
r

| to decrease because all the states in S
r

 do 

not have the message as a valid message in that state. Thus the rule instantiations take place at the troughs and not 
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at the peaks of the plot in Figure 12. We can see that in Region 1, | S
r

| drops in steps from 9 to 6 and finally to 1. 

The drop in | S
r

| is because of the unique possibility of the sampled event in only some of the states.

0

2

4

6

8

10

12

0 20 40 60 80 100 120

Time (seconds)

S
ta

te
 V

e
c

to
r 

S
iz

e

Rate = 250pkt/s

Rth = 65pkt/sRegion 1

Region 2

 
Figure 12: Variation of State size S

r
 in a sample run. 

| S
r

| can also remain the same if the dropped event 

corresponds to some self-loops. This explains the small 

plateaus in Region 2. In Region 2, | S
r

| increases from 1 

to 3 because of a message drop. It stays at 3 even with 

further message drops and then reduces to 1 with a 

newly sampled message.  

6 Related Research 

Change Detection in Networking: Recently there is an increased effort in finding changes in high throughput 

network streams.  Scalability is an important challenge in such environments. Authors in [16] propose a sketch 

based approach. Sketch is a set of hash tables which provides probabilistic guarantees vs a single hashtable which 

provides 100% accuracy(assuming no collisions)[18] . The authors build a forecast model for the streams based 

on the observed data in the Sketch. Differences in the forecasted values and actual stream values are flagged as 

errors and reported. In [14][15] authors extend the sketch based approach of [16] providing reversibility to 

identify the streams which have changed. Authors in [15] provide an efficient reversible-hashing scheme to 

quickly identify the streams which have significantly changed. The paper also generalizes the approach provided 

in [14]. In all of the above approaches the central idea is to obtain a statistical model of the stream. The new 

incoming values of the stream at matched against this statistical model to find errors.  In comparison, the 

sampling approach presented in this paper aims to maintain a closer application state. Detection provided by the 

Monitor is at a much different granularity as compared to approaches in [14][15]. Monitor provides a much finer 

detection granularity. Statistical properties like mean and variance used in [14] do not account for spikes which 

Monitor-S handles effectively. Authors in [17] provide an efficient way of performing sampling to obtain φ-

quantile approximation of the incoming stream but the paper does not address fault detection.  

Stateful Detection: The issue of stateful detection has received attention from the security community due to the 

prevalence of attacks that are spread over multiple packets necessitating intrusion detection systems (IDS) to build 
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state over multiple packets and provide stateful detection. The popular IDS Snort has an IP fragmentation-

reassembly module which assembles fragmented IP packets. Also, for TCP packets, it has a stream4 reassembly 

module that can aggregate TCP packets within the same TCP session (like a FTP session) into a conglomerate 

pseudo packet. After this, the same pattern-matching algorithm is employed on the pseudo packet. However, this 

is still a restricted form of state aggregation. The WebSTAT system [20] provides stateful intrusion detection for 

web servers. It builds on STAT which supports the modeling of multi-step, complex attacks in terms of states and 

transitions. WebSTAT operates on multiple event streams, and is able to correlate both network-level and 

operating system-level events with entries contained in server logs. Our previous work on VoIP IDS, called 

SciDive [19], we built a stateful detection engine for VoIP with state being spread across multiple signaling 

packets (SIP packets) or data packets (RTP packets) or across the two protocols. All this work is targeted at 

specific protocols and its state aggregation and matching are therefore restricted to the domain. 

Detection in Distributed Systems: Previous approaches of detection in distributed systems have varied from 

heartbeats, watchdog etc [8]-[10].   There is previous work [11][12] that has approached the problem of detection 

and diagnosis in distributed applications modeled as communicating finite state machines. The designs have 

looked at a restricted set of errors (such as, livelocks) or depended on alerts from the PEs themselves. A detection 

approach using event graphs is proposed in [13], where the only property being verified is whether the number of 

usages of a resource, executions of a critical section, or some other event globally lies within an acceptable range. 

Similar observer-observed framework is also presented in [3]. These approaches have focused on accuracy of 

fault detection and not scalability.  

7 Conclusion 

In this paper we presented a novel approach of performing stateful detection in high data rate scenarios. We 

extend an existing detection approach Monitor-Baseline by identifying in-efficiencies in the rule matching process 

of Monitor and proposing a sampling approach to reduce incoming packets. We modify the data structure to 

produce Monitor-HT which leverages the commonality of messages in rules being matched for detection. 

Monitor-S uses a novel approach to incorporate sampling of the incoming stream while performing suitable 

modifications to the detection rules. We measure the performance of Monitor-S and Monitor-HT against Monitor-

Baseline on a multicast protocol TRAM. The efficiency of the new data structure causes Monitor-HT to break at 
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125pkt/s as compared to 100pkt/s in Monitor-Baseline. Monitor-S outperforms Monitor-Baseline via achieving a 

much higher accuracy with lower latency of rule matching at extremely high packet rates (500pkt/s). We are 

currently working on providing theoretical guarantees on the new sampling approach.   
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Appendix 
 

(A) Rule Base 

T R4 S4 E11 30 500 5000 S4 E2 1 8 4000 7000: The rule has a precondition to check data packets 

(E11) arrival within 5000msec. This causes the post condition that at least one ack(E2) (between 1 
and 8) must be sent. 

T R3 S5 E13 0 2 5000: This rule ensures that the number of re-affiliation packets (E13) is no more 
than 2 within 5000ms in state S7. 

T R3 S5 E15 0 10 5000: Restrict the Nacks (E15). 

T R4 S0 E11 2 50 500 S4 E2 1 2 5000 7000: 
T R4 S5 E13 2 500 5000 S6 E9 1 4 4000 9000

T R3 S0 E1 10 30 5000: This rule of type 3 checks for the hello packet(E1) rate. The E1 message 
count should be between 10 and 30 for the next 5000 msec.

T R4 S0 E1 1 2 1000 S8 E14 1 2 2000 3000: Hello messages should be followed with Hello replies

T R3 S0 E14 10 30 5000:
T R1 S0 E1 1000 S8 1500 2500:

T R1 S0 E10 1000 S8 1000 3500:
T R2 S0 E10 50: This rule verifies that state of the receiver changes from S0 once Head Adv is 

received
T R4 S0 E10 1 4 1000 S1 E9 1 2 2000 3000: Head Adv. messages should be followed by Head Bind
T R4 S0 E10 1 4 1000 S3 E8 1 2 3000 4000: Head Adv. messages should be eventually followed by 
Accept message

T R4 S1 E9 1 2 1000 S1 E8 1 2 2000 3000: 

T R3 S1 E9 1 10 5000:
T R3 S2 E8 1 2 10000:

 
 
(B) Rule Types in Monitor  

 

1.Type I: (ST=Sp) = true for T∈∈∈∈(tN, tN+k) ⇒⇒⇒⇒ (ST=Sq) = true for T∈∈∈∈(tI, tI+b), where T

represents the global time at the Monitor, tI > tN, and k, b≥ 0. The above rule represents the 
fact that if for some time interval k starting at tN, a node is in state Sp i.e., the state predicate 
ST=Sp is true, then it will cause the system to be in another state Sq for some time b starting 

from time tI. The time tN is when state changes to Sp, irrespective of which event causes the 

transition. This rule is defined completely in terms of states of the entity and no events or 

state variable. 
2.Type II: St is the state predicate of an object at global time T : St ≠ St+∆, if event Ei

takes place at t, the state St will not remain constant for ∆ time units from t.  

3.Type III: L ≤ |Vt| ≤ U  ; t∈∈∈∈( ti,ti+k); The state variable Vt in a particular state SI will have its 
count bounded by L and U over a time window of k starting at time ti when the defined event 

corresponding to the rule first occurs. 
4.Type IV: ∀∀∀∀t∈∈∈∈(ti,ti +k), L ≤ |Vt| ≤ U ⇒⇒⇒⇒ L’ ≤ |Bq| ≤ U’ , ∀∀∀∀q∈∈∈∈(tn, tn+b); tN > ti ; If a state variable 
Vt has a bounded count from above and below over a time window k, it will cause another 
state variable Bq to be bounded for a time window b starting from tn. This rule is in fact the 

master rule and the three previous rule types are special cases of it. But we still need the first 

three rule types because matching this class of rule entails matching more variables, which 
increases the latency of detection. 

5.Type V: If s = Si ∀∀∀∀t∈∈∈∈(ti,ti +k) ⇒⇒⇒⇒ s≠ Si ∀∀∀∀t∈∈∈∈(tN, tN+a) ; tN > ti

This rule prevents a state transition back in state Si within some time of first arriving at Si.  
 

 

(C) Messages in TRAM 
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join a group when 
group formation is 
started by receiver.

Receiver, 
RH(Sender)

Member 
Solicitation

E2 
(E15)

Aggregate 
Acknowledgement 
sent by the receiver 
to the repair head.

Receiver, 
Repair 
Head(Sender)

Ack Packet 
(Nack Packet)

E7, E8Acceptance or 
Rejection message 
sent by the repair 
head to the seeking 
receiver.

Repair 
Head(Sender), 
Receiver(RH)

Accept/Reject

E9Receiver sends a 
request to join group 
in the form of Head 
Bind

Receiver, 
Repair 
Head(Sender)

Head Bind

E11Multicast Data sent 
from head to group 
members

Sender(RH), 
Receivers(RH)

Data

E10Repair Heads send 
advertisement of the 
channel

Sender(RH), 
Receivers

Head Adv.

Event 
ID

Interpretation(Source, 
Destination)

Message 
Name
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