
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

5-11-2007

Stateful Detection in High Throughput Distributed
Systems
Gunjan Khanna
Purdue University, gkhanna@purdue.edu

Ignacio Laguna
Purdue University, ilaguna@purdue.edu

Fahad Arshad
Purdue University, faarshad@purdue.edu

Saurabh Bagchi
Purdue University, sbagchi@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Khanna, Gunjan; Laguna, Ignacio; Arshad, Fahad; and Bagchi, Saurabh, "Stateful Detection in High Throughput Distributed Systems"
(2007). ECE Technical Reports. Paper 356.
http://docs.lib.purdue.edu/ecetr/356

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages

1

Stateful Detection in High Throughput Distributed Systems

Gunjan Khanna, Ignacio Laguna, Fahad Arshad, Saurabh Bagchi

Dependable Computing Systems Lab

School of Electrical and Computer Engineering, Purdue University.

Email: {gkhanna, ilaguna, faarshad, sbagchi}@purdue.edu

Abstract: With the increasing speed of computers, complexity of applications and large scale of applications, many of

today’s distributed systems exchange data at a high rate. It is important to provide error detection capabilities to such

applications that provide critical functionality. Significant prior work has been done in software implemented error detection

achieved through a fault tolerance system separate from the application system. However, the high rate of data coupled with

complex detection can cause the capacity of the fault tolerance system to be exhausted resulting in low detection accuracy.

This is particularly the case when the detection is done against rules based on state that has been generated in the system. We

present a new stateful detection mechanism which is based on observing messages exchanged between the protocol

participants, deducing the application state from them, and matching against anomaly based rules. We have previously shown

the capacity constraint of the detection framework called the Monitor. Here we extend the Monitor framework to incorporate

a sampling approach which adjusts the rate of messages to be verified by sampling the incoming application stream of

messages. The adjustment is such that the breakdown in the Monitor capacity is avoided. The cost of processing each

message increases because the application state is no longer accurately known at the Monitor. However, the overall detection

cost is reduced due to the lower rate of messages processed. We show that even with sampling, the Monitor is able to track

the possible state of the protocol entity and provide stateful detection. We implement the approach and apply it to a reliable

multicast protocol called TRAM. We demonstrate the gains of the approach by comparing the latency and accuracy of fault

detection to the baseline Monitor system.
Keywords: Distributed system, error detection, stateful detection, high data rate, sampling.

1 Introduction

The proliferation of high bandwidth applications and the increase in the number of consumers of distributed

applications have caused them to operate at increasingly high data rates. Many of these distributed systems form

parts of critical infrastructures, with real-time requirements. Hence it is imperative to provide error detection

functionality to the applications. Error detection can broadly be classified as stateless detection and stateful

detection. In the former, detection is done on individual messages by matching certain characteristics of the

message, such as the length of the payload of the message. A more powerful approach for error detection is the

stateful approach, in which the error detection system builds up state related to the application by aggregating

multiple messages. The rules are then based on the state, thus on aggregated information rather than instantaneous

information. Stateful detection is looked upon as a powerful mechanism for building dependable distributed

systems [19][20]. The stateful detection models can be specified using various formalisms, such as, State

Transition Diagrams, PetriNets or UML. Though the merits of stateful detection seem to be well accepted,

scaling a stateful detection system with increasing application entities or data rate is a challenge. This is due to the

increased processing load of tracking application state and rule matching based on the state. This problem has

2

been documented for stateful firewalls that are matching rules on state spread across multiple, possibly distant,

messages [19]. The stateful error detection system has to be designed without increasing the footprint of the

system. Thus throwing hardware or memory at the problem is not enough because the application system also

scales up and demands more from the detection system.

In our earlier work on developing an error detection system, we developed the Monitor system ([1], [7]) which

provides detection by only observing the messages exchanged between the protocol entities (PEs). The Monitor is

said to verify a set of PEs when it is monitoring them. The Monitor is provided a representation of the protocol

behavior (using a state transition diagram i.e., STD) of the PEs being verified along with a set of stateful anomaly

based rules. The Monitor uses an observer model whereby it does not have any information about the internal

state of the PEs. The Monitor performs two primary tasks on observing a message. First, it performs the state

transition corresponding to the PE based on the observed message. Note that the state of the PE estimated by the

Monitor may differ from the real state of the entity since not all messages related to state changes are necessarily

observable at the Monitor. Second, it performs rule matching for the rules associated with the particular state and

message combination. We observe that the Monitor has a breaking point in terms of the incoming message rate or

the number of entities that it can verify beyond which the accuracy and latency of its detection suffer [7]. The

drop in accuracy or rise in latency is very sharp beyond the breaking point. We observe through a test-bed

experiment that as the incoming packet rate into a single Monitor is increased beyond 100 pkt/s, the Monitor

system breaks down on a standard Linux box. In other words, its latency becomes exceedingly high and accuracy

of detection tends to zero. This effect is shown in Figure 1. This breakdown is caused by the processing capacity

at the Monitor being exhausted. Hence, messages see long waiting times and on the buffer becoming full, the

messages also get dropped. Thus, for reasonable operation, the Monitor can only support data rates below the

breaking point.

In the current work, we devise a stateful detection approach which scales with the increasing data rate of

applications, or equivalently, the number of PEs being verified. We observe that in order to make stateful

detection feasible; firstly the processing of each message must be made extremely efficient and secondly the

system must reduce the total processing workload (e.g., by selectively dropping incoming messages). The amount

of work at the Monitor per unit time can be conceived as the rate of messages being processed for detection × the

3

amount of work performed for each message. Our approach optimizes both these terms. The goal is to provide an

error detection system for high throughput distributed streams and correspondingly push the knee to the right

(Figure 1). Existing detection systems like [15][16] which aim at handling high data rate provide detection of

changes in high rate streams using mean and higher order moments. This approach cannot capture the richness in

the error detection rules that is needed for specifying verifiable behavior.

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500

Rate of Packets (pkt/s)

L
a

te
n

c
y

 (
m

s
)

Figure 1: Latency variation with increasing inter-

packet delay. The graph depicts the breaking of the

Monitor system at an incoming rate of 100 pkt/s.

As a first aspect, we minimize the processing cost of an

individual incoming message into the Monitor. We do

this by using multistage hash tables for look ups when a

state transition needs to be performed at the Monitor.

We observe that for realistic systems, multiple rules will

be active concurrently. The rules take the form of

verifying values of some state variables or

counts of messages (events) lying within a range. There exists significant overlap in the state variables or counts

being referred to in the rules. Since processing for an incoming message most often involves updating these

counts, we optimize this operation by compact representation of the state variables.

In the second aspect, we optimize the incoming message rate the Monitor has to process. We set a threshold for

the incoming rate guided by the breaking point of the Monitor. Sampling the incoming stream to reduce the rate

of messages is a logical start. However, since the Monitor provides stateful detection, dropping messages can

cause the Monitor to lose track of the PE’s current state with resultant decrease in accuracy of rule matching. This

phenomenon is called state non-determinism, whereby to the Monitor it is non-deterministic which state the PE is

in. In our approach the Monitor tracks the set of possible states the application could have reached given that a

sequence of messages is dropped. The Monitor aggressively pre-computes information about the states for

possible sequences of messages to reduce the cost of computing the non-deterministic state set. While the cost of

processing each (sampled) message now increases over the baseline case, through careful design the Monitor’s

total amount of work is reduced by reducing the rate of messages that it needs to process. The sampling is made

adaptive to tolerate fluctuations in the message rate generated by the PEs. Also, the sampling scheme necessitates

changes in the rules to prevent false detections due to the sampling.

4

We implement the two aspects of efficient stateful detection in the Monitor and use it to detect errors in a

reliable multicast protocol called TRAM[4]. TRAM provides a motivating application since it is at the core of

many e-learning applications which feed high bandwidth streams to a large set of receivers. We inject errors into

the TRAM PEs and compare the accuracy and latency to the baseline system. The sharp decrease in performance

beyond the breaking point is no longer observed; in fact, a sharp breaking point is completely eliminated and a

gradual decrease in performance with increasing message rates is observed instead.

Section 2 provides a background on the existing Monitor approach and identifies changes for an approach which

can work in high data rate applications. In section 3 we describe the new stateful approach. Section 4 and 5

provide details on the application and experimental results respectively. Related research is discussed in section 6

followed by conclusions in section 7.

2 Background

2.1 Black-box Detection through Monitor

Previously we developed a detection framework in terms of hierarchical Monitor(s) based on black-box

semantics [1][7]. The Monitor system consists of a hierarchy of Local, Intermediate and Global monitors. The

Local Monitor, abbreviated later as the Monitor, is in charge of verifying the behavior of a set of PEs. It is given

as input the reduced STDs of these PEs. The STD is reduced because internal transitions are not visible to the

Monitor and hence not included. At runtime, it observes the external message interactions between the PEs that it

is verifying and it deduces the current state of the PE from it. The Local Monitor also matches the PE’s behavior

against a set of rules. The combination of current state and incoming event determines the set of rules to be

matched. The Intermediate Monitor gathers information from several local Monitors, each verifying a set of PEs.

Figure 2: Monitor verifying message interactions

between PEs.

The Global Monitor verifies some global properties of

the protocol. Message capturing by the Monitor can be

through passive monitoring of traffic or using active

forwarding support from the PEs. We will refer to this

initial version of the Monitor described in [1][7] as

Monitor-Baseline.

5

2.2 Rule Base

2.2.1 Creation of Rules

The rules used by the Monitor are anomaly based rules since the potential universe of PE misbehavior is too

large to be enumerated. The rule base provided by the system administrator comes from two sources: formal

protocol specifications and QoS specifications. The first class of rules is derived from a complete state transition

diagram (STD) specification of the protocol while the second class is specified by the system administrator based

on the application requirements.

s*0

s4

Data

s5

NAck

Ack

Data

NAck

Re-affiliation

s6

Head Bind

s7

Accept /

Reject

s*0

s4

Data

s5

NAck

Ack

Data

NAck

Re-affiliation

s6

Head Bind

s7

Accept /

Reject

Figure 3: An example State Transition Diagram for

a TRAM receiver.

The running protocol we use as example is the TRAM

[4] protocol for reliable multicast of data from a single

sender to multiple receivers through intermediate

routing nodes called the repair head (RH). In TRAM,

the receiver Acks correct data packets and sends

Nacks for missing data packets to the RH above. The

receiver maintains a counter for the number of Nacks

sent, and if it crosses a threshold, receiver begins to

rejoin a different RH assuming the old RH has failed.

The STD in Figure 3 shows an example STD for a receiver receiving data from the sender/RH. Under correct

operation, the receiver will oscillate between states S0 and S4, getting data and sending ACKs. Rules can be

derived from the STD using the states, events, state variables and time of transitions. Each state has a set of state

variables. Events may cause transitions between states. In our context, events are messages sent and received. In

Figure 3, the receiver moves from state S4 to state S5 if it sends a Nack because no data packet is received. Hence

a rule can be derived if for all t ∈ (ti, ti+a), S4 Λ ¬D ⇒ ¬S4.; where ti is time when S4 becomes the present state

and a is a constant. Here predicate D implies data packet received. Subsequent Nacks will cause the state to

remain at S5 but a local state counter will be incremented. Eventually if the number of Nacks is greater than Nmax,

then the Monitor should see a Head Bind message indicating a change of affiliation to a different RH. Thus the

rule becomes |Nacks| ≥ Nmax ⇒ Head Bind. Hence rules can be derived from the STD specifications. The

6

system administrator may add rules specifying QoS conditions that the application should meet, e.g., a minimum

data rate that must be met at each receiver. In addition, the system administrator may augment the rule base with

rules to catch manifestations of any protocol vulnerability.

We have a formally defined syntax for rules in the system. The syntax represents a balance between

expressibility of the rules and efficient matching of the rules at runtime. Rules are of two kinds – combinatorial

and temporal. Combinatorial rules are expected to be valid for the entire period of execution of the system, except

for transient periods of protocol instability.

2.2.2 Temporal Rules

The rule base for Monitor-Baseline is specified using a broad class of rules which captures a majority of

protocol behavior (see [1][7]). The exact format of the rules is presented in Appendix (B) and is identical to that

presented in [1][7]. Monitor-Baseline has five broad categories of temporal rules (R1-R5) with each one designed

to provide verification of state changes, verify event counts in specific states, causal dependence, and combination

of these conditions for PEs. Examples of rules based on Figure 3 are as follows:

− R4 S4 E11 30 500 5000 S4 E2 1 8 4000 7000: (Rule of type 4) If a receiver gets 1 to 30 Data messages in

4000 ms then it should send at least 1 Ack response within the next 3000ms.

− R3 S5 E15 0 10 5000: (Rule of type 3) Restrict the number of Acks to 10 within 5000ms.

The complete set of rules used in our experiments is presented in Appendix (A).

In Monitor-Baseline, every time a new rule is instantiated local variables are created for that rule. As messages

are received the local variables for all the active rules are updated. For example, if two rules of type III are active

which are verifying the same state variable Vi then each rule will be holding a local copy of Vi. Every receipt of a

message corresponding to the state variable Vi causes two local variables to be updated.

3 Scalable Stateful Detection

In developing a suitable approach for stateful detection we carefully study the tasks performed by Monitor-

Baseline for error detection. Thus, the main steps on the receipt of a message are: 1) perform the state transition;

2) instantiate any rule corresponding to the state and event combination. Upon expiry of the time specified in a

rule, the Monitor checks the value of the variable(s) mentioned in the rule to verify that they lie in the permissible

range. It is observed for Monitor-Baseline that as the number of incoming messages increases, the latency of

7

detection breaks down beyond a threshold. We attribute this problem quite intuitively to two root causes – 1) High

cost of processing per message, and 2) High rate of incoming messages. We target both these causes and solutions

to them are described respectively in Sections 3.1 and 3.2.

3.1 Making Rule Matching Efficient

In the modified approach, henceforth called Monitor-HT (for Hash Table, due to its widespread use in the

redesign), we perform several modifications to Monitor-Baseline data structure to achieve efficient per message

processing. Figure 4(b) depicts the logical organization of multi-level hashtables used in Monitor-HT. These

hashtables are organized by carefully observing the processing path a message takes after being received by

Monitor-Baseline. We designed the data structure consisting of multi-level hashtables to provide constant order

look-up. The STDs of the PEs are organized as multi-level hashtables to provide constant order lookup. PE

address is used in PESTD table to obtain the STD for that PE. The STD table is indexed using a state si which

provides a list of events possible in that state (again organized as a hashtable). In the Event table each event ID

maps to an event object, which contains information like event ID, event Name and rules pertinent to that event.

The entire redesign using multiple hash tables makes the processing of an incoming message efficient at the

expense of higher memory overhead.

Event HTPE addr Event HTPE addr

key Object

Event CountEvent ID Event CountEvent ID

PEEvent Table EventCount Table

STDPE addr STDPE addr

key Object

EventsState EventsState

PESTD Table STD Table

Event

Objects

Event ID Event

Objects

Event ID

Event Table
(a) (b)

Figure 4: Data Structure used in Monitor-HT for (a) Storing Incoming Event Counts; (b) Storing the STDs.

The first column represents the key of the hash table.
Next, in Monitor-Baseline, for every rule instantiation, its own copy of state variables is created. When a

message arrives, active rules that depend on the message (through a state variable) are searched and every rule’s

local copy of the state variable is updated. This process is expensive because for every message, a long list is

traversed. We observe that there exists significant sharing of state variables between the different rules and this

makes the design of separate copy for each active rule inefficient. As an example, consider that multiple rules are

tracking the data rate around different events, say within 5 seconds of a Nack being sent. All the rules would be

counting the number of data messages (the state variable) received over different time intervals.

8

Monitor-HT removes the above-mentioned source of inefficiency by having a central store of the state variables.

Monitor-HT keeps a hashtable to store the updates for a given message (see EventCount table in Figure 4(a)).

We use a multi-level hashtable where PEEvent indexes all the PEs in the system and the EventCount table

contains all the events corresponding to the given PE. The incoming messages can be thought of as a tuple as (ai,

ei), where ai is the PE address (IP address or some logical address) and ei is the event ID. The value ai is used to

look up PEEvent table for the events. The ei is used to index in EventCount table and increment the event count

for ei (currently all increments are by a value of 1). Because of this organization every unique PE × Event ID

symbol is only incremented once.

Regarding the rule matching procedure, instead of having every active rule use local variables, every rule

instance reads the value of the associated state variable from the hashtable. When a new rule is created it reads the

value of the current event count from the EventCount table to see the current value of the state variable

referenced in the rule, call it vinit. Later, at the time of rule matching, the Monitor-HT again reads the value of the

state variable, call it vfinal. Thus, the EventCount table is read from the rule instances only twice, and written by a

separate thread which handles the incoming messages from the PEs. The advantage of Monitor-HT over Monitor-

Baseline, quantified in the experiments, is dominated by the effect of this design choice.

3.2 Handling high rate streams: Sampling

Even with the modifications made in Monitor-HT, a constant amount of work is performed for every incoming

message. In the next optimization, not all messages are processed; instead messages are sampled and only the

sample set is processed. This version is called Monitor-Sampling, or Monitor-S. Sampling raises a few obvious

questions:

• How and what sampling approach should be taken?

• How are the rules modified due to sampling?

• How does Monitor-S track the PE’s STD in the presence of sampling?

The first two questions are answered in Section 3.2.1 and the third one in Section 3.2.2.

3.2.1 Design of Sampling

We propose uniform sampling approach which is agnostic to the kind of messages coming in. This prevents

Monitor-S from having to deduce the type of the incoming message before deciding to drop it or keep it. This

9

would have imposed the per message processing overhead on Monitor-S and defeated the purpose of the design.

With sampling, the corresponding parameters in the detection rules have to be re-adjusted for matching. Assume

that the Monitor gives a desired latency and accuracy of matching for an incoming rate of upto Rth. Any rate R >

Rth the Monitor chooses to drop the messages uniformly with a rate of 1 in every R /(R - Rth) messages. Figure 5

illustrates the behavior of Monitor which switches from Monitor-HT to Monitor-S because sampling kicks in after

Rth. Since the messages being processed by Monitor-S are a sample of the entire set of messages, the rules

originally specified by the system administrator are not valid on the sampled stream.

Once a new sampling rate is chosen based on the incoming traffic rate, the rules are also modified. We keep the

rule type the same but the constants get scaled according to the sampling rate. This is necessary because rules are

defined according the normal operation of the PEs but because of sampling, Monitor-S is viewing an alternate

sampled view of the operation of PEs. If the incoming rate is R and the threshold rate is Rth then the constants in

the rules must be scaled by a factor of Rth/R. For example: if a rule states “receive 10 Acks in 100 sec” then

because of sampling the rule is modified to “receive 10.(Rth / R) Acks in 100 sec”. This rate will be changed as

and when the incoming rate is changed. We measure the incoming rate over non-overlapping time windows of

length ∆ by counting the number of incoming messages in the window. At each rate computation, the new rate is

compared with Rth and if it exceeds Rth then a new sampling rate is determined based on this new incoming

message rate. To reduce the overhead of rate computation ∆ is kept higher than the time period over which a rule

is matched.

Rth

Incoming Rate at the Monitor

No Sampling Sampling

Rth

Incoming Rate at the Monitor

No Sampling Sampling

Figure 5: Change in Monitor’s algorithm beyond

a threshold rate of packet (Rth).

3.2.2 STD Transition with Sampling

If all incoming messages are not processed, this

will cause the Monitor-S to lose track of the current

state of the PE.

We modify the approach of STD transitioning at Monitor-S such that instead of tracking the current state,

Monitor-S keeps a state vector S
r

 which contains all the possible states the given PE can be in S
r

 = {S1, S2….SK}.

The reason for having multiple possible states is that Monitor-S does not know which of several possible paths the

PE has taken given a start state Sstart.

10

S1

S3

S4S2

e1

e2

e3

e4

e1

e1 e2

e5

e5

e1

State Transition Diagram (STD)

S1

S3

S4S2

Directed Graph

S1

S3

S4S2

Directed Graph

(a) (b)

Figure 6: A sample STD which is converted to a directed graph by removing the event labels.

As a result of sampling, instead of knowing exactly which state the PE is in, Monitor-S will know a possible set

of states the PE is in (based on the transition edges outgoing from the current state). For example: In Figure 6(a) if

the current state is S1 and a packet is dropped then the next possible state is one of {S2, S3, S4}. To determine this

set, Monitor-S pre-computes the possible states which can be reached in steps of size 1, 2, 3 and so on. Each set of

these states form the state vector S
r

 if 1, 2, 3 and so on messages are dropped. In other words if a single message

is dropped starting from the start state Sstart, then S
r

1 will consist of all the states Si such that Si has an incoming

edge from Sstart in the graph. S
r

i vector starting from state Sstart gives the state vector if i packets are dropped. Now

given the rate of sampling one can transform one state vector S
r

1 to another state vector S
r

2. Let us say S
r

0 = {Si | i

∈ (1, g); g is the number of nodes in the initial state vector} be the initial state vector. If Monitor-S dropped one

message then the new state vector S
r

1 = {Sj | Si � Sj is reachable using a single edge AND Si ∈ S
r

0}. Similarly if 2

messages are dropped then S
r

2= {Sm | Sj � Sm is reachable using a single edge AND Sj ∈ S
r

1}.

The state vectors (S
r

1 and S
r

2) are created offline because the STD is already known to Monitor-S. Figure 7(a)

illustrates for the STD in Figure 6, a tree structure for maintaining the state vectors after different numbers of

messages are dropped. Nodes at the depth h form the state vector S
r

h and represents the states after h messages are

dropped starting from S1. At runtime, Monitor-S tracks how many messages are dropped and looks up the

appropriate state vector.

3.2.3 Error Detection with Sampling

Figure 7 (b) represents the flow of detection in Monitor-S when sampling is taking place. If the incoming rate is

below Rth then no sampling occurs and Monitor-S simply runs as Monitor-HT. During sampling, the state

transition is performed between various state vectors S
r

 which have been computed offline. When a message is

11

sampled, all detection rules corresponding to that event ID and states in the current S
r

 are instantiated for

matching. When messages are being dropped, the size of the state vector (| S
r

|) increases. Once a message is

sampled, the state vector is pruned since the message may not be valid for all the states in the state vector.

Consider that the state vector is S
r a-

 just before sampling and S
r a+

 just after sampling message M. Then S
r a+

 = {Si|

Si∈ S
r a-

and

M is a valid message in state

Si according to the PE’s STD}. Qualitatively, the sampling scheme will

be beneficial only if the pruning in the size of the state vector is significant compared to the growth due to

message drops. For example: let S
r

 initially consists of {S1, S2, S3} and the sampled message be e2. Then from

Figure 6 we can see that only S2 and S3 can have a valid event e2 and therefore the state vector becomes {S2, S3}.

This ambiguity about which state the PE is in and the design of using the entire state vector may give rise to

false alarms since Monitor-S may match some rules that are not applicable to the actual state the PE is in.

S1

S4S3
S2

S1 S2 S3 Sj

f = depth /

sampling rate

Example State Vectors at a depth

S1

S4S3
S2

S1 S2 S3 Sj

f = depth /

sampling rate

Example State Vectors at a depth

1. Input Rules and STD for the PEs for detection by Monitor-S
2. Construct the State Vectors offline

3. Run the Monitor and start verifying the PEs
4. If Rincoming < Rth operate in Monitor-HT mode else operate

as Monitor-S
5. If sampling, then perform state transition using the state

vectors
6. For every sampled message instantiate rules for all states

in the state vector

(a) (b)

Figure 7: Example tree formed by traversing the outgoing edges from each node in Figure 6. Union of

nodes present at depth h represent the nodes in set S
r

h if h messages are dropped starting with S1. (b) Flow

of detection in Monitor-S.

Computing the state vectors offline imposes a memory requirement on the system. If we assume that at most τ

messages will be dropped by Monitor-S then the offline computation should have state vectors upto S
r

τ. The total

number of states in this state vector tree is given by k(k
τ
-1)/(k-1) assuming a k-regular structure of connectivity

between the states. Thus the space required to store these state vectors is proportional to k(k
τ
-1)/(k-1). However

the total number of states in the STD also imposes a cap on the size of the state vectors and prevents further

increase in | S
r

|. If there exists a ω s. t. k
ω
> N (total states in STD), then space required to store the state vectors is

proportional to k(k
ω-1

-1)/(k-1)+(τ-ω+1)N. The exact memory required is dependent on the data structure used to

store these state vectors. Bit vector representation for storing them is an efficient option to reduce the overall

memory used.

12

4 Experimental Setup

4.1 Application: TRAM

We demonstrate the use of the Monitor on the running example protocol ― a reliable multicast protocol called

TRAM [6]. TRAM is a tree based reliable multicast protocol consisting of a single sender, multiple repair heads

(RH), and receivers. Data is multicast by the sender to the receivers with an RH being responsible for local repairs

of lost messages. The reliability guarantee implies that a continuous media stream is to be received by each

receiver in spite of failures of some intermediate nodes and links. An Ack message is sent by a receiver after

every Ack window worth of messages has been received, or an Ack interval timer goes off. The RHs aggregate

Acks from all its members and send an aggregate Ack up to the higher level to avoid the problem of Ack

implosion (see Figure 3).

The multicast tree is formed via sender sending Head Advertisement messages and new nodes joining using

the Head Bind message (see Figure 8(a)). Nodes ensure liveness of other neighbor nodes by periodically sending

Hello messages as depicted in the STD shown in Figure 8(b).

s*0

s1

Head
Adv

s2

TimeOut

Resends
Head

Adv

s3

Head

Bind

Accept /

Reject

TimeOut

s*0

s1

Head
Adv

s2

TimeOut

Resends
Head

Adv

s3

Head

Bind

Accept /

Reject

TimeOut

 `

s*0

s8

Hello

s9

TimeOut

HelloReply

Resend

Hello

Drop the

PE

s*0

s8

Hello

s9

TimeOut

HelloReply

Resend

Hello

Drop the

PE

(a) (b)

Figure 8: Example State Transition Diagrams (STDs); (a) TRAM sender adding new receivers in TRAM;

(b) TRAM entities (sender, receiver, RH) sending liveness messages (Hello).

The detection approach is provided with a rule base for detection which is derived from the STDs (shown in

Figure 8). Some example of rules are as follows: R4 S4 E11 30 500 5000 S4 E2 1 8 4000 7000: If a Data message

is seen then the Monitor must see an Ack message following it; T R4 S1 E9 1 2 1000 S1 E8 1 2 2000 3000: If the

entity is in state S1 then it the Monitor should observe one or more Head Bind messages followed by Accept

message; T R3 S0 E14 10 30 5000: The number of Hello message within a time window should be bounded to

prevent Hello flooding. A complete list of rules used in our experiments is provided in the Appendix (A). It is

evident from the set of rules that several of them verify the message count for the same message type (such as,

13

Data, Hello, Ack). Therefore the redesign of Monitor-HT of keeping only a shared writable copy of the state

variables is likely to be beneficial.

4.2 Emulator

In order to be able to study the performance of the

Monitor under high data rate conditions, we emulate the

TRAM protocol [4][6]. This is necessary because

operating multicast protocol across Purdue’s shared

wide area network at a high data rate causes multiple

switches to crash. The extra beacon messages sent out

for advertising the multicast channel causes an overload

of the LAN switches leading them to crash. In order to

avoid this problem and to have the ability to perform

experiments in a controlled environment, we emulate

the topology of TRAM depicted in Figure 9. The

emulated messages following the STDs in Figure 8 are

forwarded to the Monitor.

r2

r3

RH

S

r1

RH

………

LM

GMmin.ecn.purdue.edu

dcsl-lab

Packet
Forwarding

Figure 9: Physical Topology of the TRAM emulator

and the Monitor in the experiments

4.3 Fault Injection

We perform fault injection in the header of the emulated TRAM messages to induce failures. We choose the

header since the current detection mechanism only examines the header. In general a PE to inject is chosen

(sender, RH or receiver) and faults are injected for a burst length. We use a burst length of 500ms and inject the

burst length of faults after every 5 minutes during each experimental run. For these experiments we inject only the

sender with faults because of high probability of error propagation down the multicast tree. A burst length is

chosen since TRAM is robust to isolated faults and to mimic faults close to reality. The rules in the rule base

typically run over a window of messages and are likely to not get violate because of an isolated faulty message.

The burst can cause multiple rules to be instantiated simultaneously for each of sender, RH and receiver. Note that

the emulated faults are not simply message errors, but may be symptomatic of protocol faults in the PEs. Errors in

message transmission can indeed be detected by checksum computed on the header but these protocol errors

14

cannot. We perform random injection where a header field is chosen randomly and changed to a random value,

valid or invalid w.r.t. the protocol. If the injected value is not valid, then the message is dropped without

processing. An alternate mode of error injection used in our earlier work [1] is directed injection whereby

messages are transformed to a valid protocol value. Experimentally, we find that the performance of Monitor-HT

and Monitor-S relative to Monitor-Baseline is not affected by this choice.

5 Experiments and Results

Experiments are performed on the topology shown in Figure 9. The Monitor system and the TRAM emulator are

executed on separate desktop PCs with a 2.4GHz processor and 1GB RAM. We use TRAM sender and receiver

(Figure 9) as the PEs being verified by the Monitor in all the experiments. We measure the accuracy and latency

of detection procedure for the Monitor. Accuracy is defined as (1-missed detections). We characterize the fault

injections which affect the PEs but are undetected by the Monitor as missed detections. A PE is said to be affected

if it crashes or raises an exception. False detections are defined as the errors which are flagged by the Monitor but

do not affect the TRAM entities. Latency is measured as the time from the instantiation of a rule to the time when

the rule matching is completed, subtracting the time for which the rule is dormant. For example, if a rule states

“Observe 32 data messages in 5 sec” then 5 sec is the time during which the there is no Monitor-related

processing. This time needs to be subtracted since it is not an index of the Monitor’s performance; rather it is a

feature of the rule itself. The value of ∆ in our experiments is set to 30 seconds.

5.1 Accuracy and Latency Results

We vary the incoming data rate for the Monitor by varying the inter-packet delay from the sender. The emulator

sends packets at a low rate of 20 pkt/s for the first 30 seconds and then increases it to the required rate. Each

experiment run lasts for 20 minutes. Every latency and accuracy value is averaged over at least 60 data points.

The experiment is repeated for three different systems i.e., Monitor-Baseline, Monitor-HT, and Monitor-S. Every

packet is forwarded to the Monitor from the TRAM PEs. The rate of packets is varied between 10 pkt/s and 500

pkt/s. Figure 10(a) shows the variation of accuracy with packet rate. The 95% confidence interval is plotted for

Monitor-S and is seen to be very small indicating that the variance in the results is small. We can see that with an

improved data structure Monitor-HT’s knee, i.e., the breaking point, occurs around 125 pkt/s compared to 100

pkt/s for Monitor-Baseline. Let us denote the breaking point for the incoming message rate as Rbp. The

15

improvement of 25% is due to the sharing of the state variables and the efficient hash table lookup. The false

alarms vary between 0-6% for both Monitor-HT and Monitor-Baseline. For extremely high packet rates, Monitor-

HT and Monitor-Baseline have a drop in false alarms because the number of rule matches itself is reduced.

0

20

40

60

80

100

0 100 200 300 400 500

Rate of Incoming Packets (pkt/s)

A
c

c
u

ra
c

y
 (

%
)

Monitor(Baseline)

Monitor-HT

Monitor-S

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500

Rate of Packets (pkt/s)

L
a

te
n

c
y

 (
m

s
)

Monitor (Baseline)

Monitor-HT

Monitor-S

Rth = 65 pkt/s

for Monitor-S

(a) (b)

Figure 10: Variation of (a) Accuracy and (b) Latency with increasing rate of packets.

 We can see that beyond 125 pkt/s even with efficient per packet processing, the accuracy drops below 40%

because of the increased rate of incoming messages which causes the processing capacity of Monitor-HT to be

exhausted. In comparison, with sampling, the accuracy drops gradually as the Monitor-S drops increasingly more

packets with increasing data rate to maintain the rate below Rbp. We can observe from Figure 10(a) that with

increasing packet rate Monitor-S has a small decrease in accuracy but it still maintains accuracy at approximately

70% compared to Monitor-HT’s 16% accuracy. Monitor-S has a marginal increase in the rate of false alarms due

to the knowing of the state vector rather than the precise state. The false alarms vary between 0-9%. At high data

rates we observe lower false alarm rates for Monitor-S compared to low data rates.

An example of a rule which does not get violated due to sampling resulting in loss of accuracy is R1 S0 E1 1000

S8 1500 2500. This rule verifies that for a TRAM PE (sender, receiver) the state has successfully changed to S8

from S1 after receiving E1 (Hello message). At high data rates if a large number of packets is getting dropped, it

happens that S
r

 still contains state S8 causing this rule not be violated and hence decreasing the accuracy.

The latency plot in Figure 10(b) provides a similar picture. The breaking points for Monitor-Baseline and

Monitor-HT are the same as in the accuracy plot – 100 pkt/s and 125 pkt/s respectively. For Monitor-S, we can

see a small jump in latency around 65 pkt/s (Rth in this experiment) because the algorithm switches to sampling

and the probability of dropping a packet increases (being zero previously). This results in a higher overhead for

16

processing each packet and the attendant marginal increase in latency. The processing done by Monitor-S is

proportional to | S
r

| times the number of detection invocations. Increasing data rate causes higher | S
r

| leading to

higher latency of rule matching. However, the growth of | S
r

| slows down with increasing packet rate causing the

latency to saturate. We observe that even at high packet rates Monitor-S maintains a low latency of rule matching

(~200ms) because of effective adjustment to the sampling rate reducing the rate of packets that are processed.

This provides an 83.3% decrease in latency compared to the latency of 1200ms for Monitor-Baseline.

For a fixed Rth, as the data rate is increased, the size of the state vector (| S
r

|) increases but it saturates at higher

packet rates. The processing for the rule matching is directly proportional to | S
r

|. Also, as the data rate is increased

beyond Rth, the number of rule invocations of Monitor-S stays constant. The latency is proportional to the total

work done by Monitor-S, which is given by: processing for the rule matching × number of rule invocations of

Monitor-S. Therefore, initially when the data rate is increased beyond Rth, the latency increases, but beyond a

point, it saturates.

5.2 Effects of Varying Rth

0

20

40

60

80

100

0 100 200 300 400 500 600

Rate of Packets (pkt/s)

A
c

c
u

ra
c

y
 (

%
)

50 pkt/s

65 pkt/s

100 pkt/s

0

100

200

300

400

0 100 200 300 400 500 600

Rate of Packets (pkt/s)

L
a

te
n

c
y

 (
m

s
)

50 pkt/s

65 pkt/s

100 pkt/s

140 pkt/s

(a) (b)

Figure 11: Effect of Rth on the (a) Accuracy and (b) Latency.
Figure 11(a) depicts the behavior of accuracy and latency for different values of Rth in Monitor-S. Recollect that

when the incoming message rate goes above Rth, the Monitor switches to the sampling mode. For all cases the

accuracy is almost the same at high data rates and low data rates. Let us consider a single curve (say Rth = 50

pkt/s). For data rates below 50 pkt/s there is no sampling and since this threshold is much below the breaking

point (125 pkt/s from Section 5.1) the latency remains quite low (~65ms). As the data rate increases beyond 50

pkt/s, sampling starts and with increasing data rate an increasing number of packets is dropped. Difference in

characteristics of the curve around Rth provides the system administrator a useful tuning parameter to choose a

17

suitable latency value for the requirements of the distributed application. Clearly picking Rth > Rbp is unsuitable

due to the spike in latency (see the 140 pkt/s curve). It is tempting to choose Rth as close to Rbp as possible (notice

the delayed increase in latency for Rth = 100 pkt/s compared to Rth = 50 pkt/s). However, in practice the breaking

point cannot be exactly determined since it depends on the kinds of messages (and hence, the kinds of rules) that

are coming into the Monitor. Thus the system administrator has to choose a Rth suitably below Rbp. For our

experimental setup, if a latency of less than 100 ms is desired for data rates up to 100 pkt/s, then Rth of 100 pkt/s is

an appropriate choice.

When Rth is 140 pkt/s, i.e., greater than the breaking point (125 pkt/s), it causes a heavy load and higher latency

of matching for the region (125 pkt/s, 140 pkt/s). But as the run of experiment continues, sampling starts and this

brings down the average latency to just over 300ms. The jump in the latency is because the incoming rate is close

to the Rth because of which the Monitor switches between sampling and non-sampling modes. However in the

non-sampling mode, since incoming rate is greater than Rbp Monitor-S incurs a high latency. This oscillation

between the modes happens when the rate is close to Rth which explains the high latency (275-330 ms) around the

incoming message rate of Rth.

5.3 Variation of State Vector Size (| S
r
|)

As described before, the amount of processing done by Monitor-S is dependent on size of state vector i.e., | S
r

|.

We investigate the variation of | S
r

| with time in an experimental run. In this experiment we keep the Rth fixed at 65

pkt/s and run the emulator to provide an incoming rate of 250 pkt/s. This experiment is targeted at bringing out

the dynamics of Monitor-S when the incoming message rate is higher than the breaking point, forcing sampling to

kick in. For this configuration, approximately one in four packets is sampled. Figure 12 shows the variation of | S
r

|

with time. We measure the size of state vector once every 2 packets. Instead of displaying the entire run of 20

minutes, we pick a representative 100 contiguous samples of | S
r

|. We can see the large fluctuations of | S
r

| due to

the sampling. We can see that | S
r

| grows to as large as 10, multiple times during the experimental run. The number

of rules which get instantiated for each packet is proportional to | S
r

|. However the rules get instantiated after a

message is sampled. When a message is sampled, it will likely cause | S
r

| to decrease because all the states in S
r

 do

not have the message as a valid message in that state. Thus the rule instantiations take place at the troughs and not

18

at the peaks of the plot in Figure 12. We can see that in Region 1, | S
r

| drops in steps from 9 to 6 and finally to 1.

The drop in | S
r

| is because of the unique possibility of the sampled event in only some of the states.

0

2

4

6

8

10

12

0 20 40 60 80 100 120

Time (seconds)

S
ta

te
 V

e
c

to
r

S
iz

e

Rate = 250pkt/s

Rth = 65pkt/sRegion 1

Region 2

Figure 12: Variation of State size S

r
 in a sample run.

| S
r

| can also remain the same if the dropped event

corresponds to some self-loops. This explains the small

plateaus in Region 2. In Region 2, | S
r

| increases from 1

to 3 because of a message drop. It stays at 3 even with

further message drops and then reduces to 1 with a

newly sampled message.

6 Related Research

Change Detection in Networking: Recently there is an increased effort in finding changes in high throughput

network streams. Scalability is an important challenge in such environments. Authors in [16] propose a sketch

based approach. Sketch is a set of hash tables which provides probabilistic guarantees vs a single hashtable which

provides 100% accuracy(assuming no collisions)[18] . The authors build a forecast model for the streams based

on the observed data in the Sketch. Differences in the forecasted values and actual stream values are flagged as

errors and reported. In [14][15] authors extend the sketch based approach of [16] providing reversibility to

identify the streams which have changed. Authors in [15] provide an efficient reversible-hashing scheme to

quickly identify the streams which have significantly changed. The paper also generalizes the approach provided

in [14]. In all of the above approaches the central idea is to obtain a statistical model of the stream. The new

incoming values of the stream at matched against this statistical model to find errors. In comparison, the

sampling approach presented in this paper aims to maintain a closer application state. Detection provided by the

Monitor is at a much different granularity as compared to approaches in [14][15]. Monitor provides a much finer

detection granularity. Statistical properties like mean and variance used in [14] do not account for spikes which

Monitor-S handles effectively. Authors in [17] provide an efficient way of performing sampling to obtain φ-

quantile approximation of the incoming stream but the paper does not address fault detection.

Stateful Detection: The issue of stateful detection has received attention from the security community due to the

prevalence of attacks that are spread over multiple packets necessitating intrusion detection systems (IDS) to build

19

state over multiple packets and provide stateful detection. The popular IDS Snort has an IP fragmentation-

reassembly module which assembles fragmented IP packets. Also, for TCP packets, it has a stream4 reassembly

module that can aggregate TCP packets within the same TCP session (like a FTP session) into a conglomerate

pseudo packet. After this, the same pattern-matching algorithm is employed on the pseudo packet. However, this

is still a restricted form of state aggregation. The WebSTAT system [20] provides stateful intrusion detection for

web servers. It builds on STAT which supports the modeling of multi-step, complex attacks in terms of states and

transitions. WebSTAT operates on multiple event streams, and is able to correlate both network-level and

operating system-level events with entries contained in server logs. Our previous work on VoIP IDS, called

SciDive [19], we built a stateful detection engine for VoIP with state being spread across multiple signaling

packets (SIP packets) or data packets (RTP packets) or across the two protocols. All this work is targeted at

specific protocols and its state aggregation and matching are therefore restricted to the domain.

Detection in Distributed Systems: Previous approaches of detection in distributed systems have varied from

heartbeats, watchdog etc [8]-[10]. There is previous work [11][12] that has approached the problem of detection

and diagnosis in distributed applications modeled as communicating finite state machines. The designs have

looked at a restricted set of errors (such as, livelocks) or depended on alerts from the PEs themselves. A detection

approach using event graphs is proposed in [13], where the only property being verified is whether the number of

usages of a resource, executions of a critical section, or some other event globally lies within an acceptable range.

Similar observer-observed framework is also presented in [3]. These approaches have focused on accuracy of

fault detection and not scalability.

7 Conclusion

In this paper we presented a novel approach of performing stateful detection in high data rate scenarios. We

extend an existing detection approach Monitor-Baseline by identifying in-efficiencies in the rule matching process

of Monitor and proposing a sampling approach to reduce incoming packets. We modify the data structure to

produce Monitor-HT which leverages the commonality of messages in rules being matched for detection.

Monitor-S uses a novel approach to incorporate sampling of the incoming stream while performing suitable

modifications to the detection rules. We measure the performance of Monitor-S and Monitor-HT against Monitor-

Baseline on a multicast protocol TRAM. The efficiency of the new data structure causes Monitor-HT to break at

20

125pkt/s as compared to 100pkt/s in Monitor-Baseline. Monitor-S outperforms Monitor-Baseline via achieving a

much higher accuracy with lower latency of rule matching at extremely high packet rates (500pkt/s). We are

currently working on providing theoretical guarantees on the new sampling approach.

References

[1] G. Khanna, P. Varadharajan, and S. Bagchi, “Self Checking Network Protocols: A Monitor Based Approach,” In Proceedings of the

23rd IEEE Symposium on Reliable Distributed Systems (SRDS ’04), pp. 18-30, October 2004.

[2] M. Diaz, G. Juanole, and J.-P. Courtiat, “Observer-A Concept for Formal On-Line Validation of Distributed Systems,” IEEE Trans.

on Software Engineering, vol. 20, no. 12, pp. 900-913, Dec 1994.

[3] M. Zulkernine and R. E. Seviora, “A Compositional Approach to Monitoring Distributed Systems,” IEEE International Conference on

Dependable Systems and Networks (DSN'02), pp. 763-772, Jun 2002.

[4] D. M. Chiu, M. Kadansky, J. Provino, J. Wesley, H. Bischof, and H. Zhu, “A Congestion Control Algorithm for Tree-based Reliable

Multicast Protocols,” In Proceedings of INFOCOM ’02, pp.1209-1217, 2002.

[5] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S. Stolfo, “A coding approach to event correlation,” Intelligent Network Management,

pp. 266-277, 1997.

[6] http://www.experimentalstuff.com/Technologies/JRMS/

[7] G. Khanna, P. Varadharajan, and S. Bagchi, “Automated Online Monitoring of Distributed Applications through External Monitors,”

In the IEEE Transactions on Dependable and Secure Computing (TDSC), vol. 3, no. 2, pp. 115-129, Apr-Jun, 2006.

[8] W. Chen, S. Toueg, and M. K. Aguilera, “On the Quality of Service of Failure Detectors,” In IEEE International Conference on

Dependable Systems and Networks (DSN'00), pp. 191-201, Jun 2000.

[9] R. Baldoni, J.-M. Helary, and M. Raynal, “From Crash Fault-Tolerance to Arbitrary-Fault Tolerance: Towards a Modular Approach,”

In IEEE International Conference on Dependable Systems and Networks (DSN'00), pp. 273-282, Jun 2000.

[10] S. Krishna, T. Diamond, and V. S. S. Nair, “Hierarchical Object Oriented Approach to Fault Tolerance in Distributed Systems,” In

Proceedings of IEEE International Symposium on Software Reliability Engineering (ISSRE ’93), pp. 168-177, Nov 1993.

[11] B. Berthomieu and M. Diaz, “Modeling and Verification of Time Dependent Systems using Time Petri Nets,” IEEE Trans. on

Software Engineering, vol. 17 , no. 3 , pp. 259-273, Mar 1991.

[12] W. Peng, “Deadlock Detection in Communicating Finite State Machines by Even Reachability Analysis,” IEEE Conference on

Computer Communications and Networks (ICCCN), pp. 656-662, Sep 1995.

[13] L. B. Chen and I-C. Wu, “Detection of Summative Global Predicates,” IEEE Conference on Parallel and Distributed Systems

(ICPADS '97), pp. 466-473, Dec 1997.

[14] G. Cormode and S. Muthukrishnan, “What's new: finding significant differences in network data streams,” In INFOCOM 2004, Vol.

3, pp 1534- 1545, 2004.

[15] R. Schweller, Y. Chen, E. Parsons, A. Gupta, G. Memik, and Y. Zhang, “Reverse Hashing for Sketch-based Change Detection on

High-speed Networks,” In INFOCOM 2006, pp1-12, April 2006.

[16] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based Change Detection,” In ACM Internet Measurement Conference,

IMC, 2003.

[17] G. Singh Manku and R. Motwani. "Approximate Frequency Counts over Data Streams". VLDB, 2002.

[18] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approximating the frequency moments,” In Proceedings of the twenty-

eighth annual ACM symposium on Theory of computing, p.20-29, May 22-24, 1996.

[19] S. Bagchi, Y. Wu, Sachin Garg, N. Singh, and T. Tsai, “SCIDIVE: A Stateful and Cross Protocol Intrusion Detection Architecture for

Voice-over-IP Environments,” At IEEE Dependable Systems and Networks (DSN 2004), June 28-July 1, 2004, Florence, Italy.

[20] G. Vigna, W. Robertson, V. Kher, and R.A. Kemmerer, “A Stateful Intrusion Detection System for World-Wide Web Servers,” In

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC ’03), December ‘03.

21

Appendix

(A) Rule Base

T R4 S4 E11 30 500 5000 S4 E2 1 8 4000 7000: The rule has a precondition to check data packets

(E11) arrival within 5000msec. This causes the post condition that at least one ack(E2) (between 1
and 8) must be sent.

T R3 S5 E13 0 2 5000: This rule ensures that the number of re-affiliation packets (E13) is no more
than 2 within 5000ms in state S7.

T R3 S5 E15 0 10 5000: Restrict the Nacks (E15).

T R4 S0 E11 2 50 500 S4 E2 1 2 5000 7000:
T R4 S5 E13 2 500 5000 S6 E9 1 4 4000 9000

T R3 S0 E1 10 30 5000: This rule of type 3 checks for the hello packet(E1) rate. The E1 message
count should be between 10 and 30 for the next 5000 msec.

T R4 S0 E1 1 2 1000 S8 E14 1 2 2000 3000: Hello messages should be followed with Hello replies

T R3 S0 E14 10 30 5000:
T R1 S0 E1 1000 S8 1500 2500:

T R1 S0 E10 1000 S8 1000 3500:
T R2 S0 E10 50: This rule verifies that state of the receiver changes from S0 once Head Adv is

received
T R4 S0 E10 1 4 1000 S1 E9 1 2 2000 3000: Head Adv. messages should be followed by Head Bind
T R4 S0 E10 1 4 1000 S3 E8 1 2 3000 4000: Head Adv. messages should be eventually followed by
Accept message

T R4 S1 E9 1 2 1000 S1 E8 1 2 2000 3000:

T R3 S1 E9 1 10 5000:
T R3 S2 E8 1 2 10000:

(B) Rule Types in Monitor

1.Type I: (ST=Sp) = true for T∈∈∈∈(tN, tN+k) ⇒⇒⇒⇒ (ST=Sq) = true for T∈∈∈∈(tI, tI+b), where T

represents the global time at the Monitor, tI > tN, and k, b≥ 0. The above rule represents the
fact that if for some time interval k starting at tN, a node is in state Sp i.e., the state predicate
ST=Sp is true, then it will cause the system to be in another state Sq for some time b starting

from time tI. The time tN is when state changes to Sp, irrespective of which event causes the

transition. This rule is defined completely in terms of states of the entity and no events or

state variable.
2.Type II: St is the state predicate of an object at global time T : St ≠ St+∆, if event Ei

takes place at t, the state St will not remain constant for ∆ time units from t.

3.Type III: L ≤ |Vt| ≤ U ; t∈∈∈∈(ti,ti+k); The state variable Vt in a particular state SI will have its
count bounded by L and U over a time window of k starting at time ti when the defined event

corresponding to the rule first occurs.
4.Type IV: ∀∀∀∀t∈∈∈∈(ti,ti +k), L ≤ |Vt| ≤ U ⇒⇒⇒⇒ L’ ≤ |Bq| ≤ U’ , ∀∀∀∀q∈∈∈∈(tn, tn+b); tN > ti ; If a state variable
Vt has a bounded count from above and below over a time window k, it will cause another
state variable Bq to be bounded for a time window b starting from tn. This rule is in fact the

master rule and the three previous rule types are special cases of it. But we still need the first

three rule types because matching this class of rule entails matching more variables, which
increases the latency of detection.

5.Type V: If s = Si ∀∀∀∀t∈∈∈∈(ti,ti +k) ⇒⇒⇒⇒ s≠ Si ∀∀∀∀t∈∈∈∈(tN, tN+a) ; tN > ti

This rule prevents a state transition back in state Si within some time of first arriving at Si.

(C) Messages in TRAM

22

E13Join a new Repair
Head; sent by the
receiver

Sender(RH),
Receivers(RH)

Re-affiliation

E1,
E14

Indication of
Liveliness of the
members.

RH(Receiver),
Receiver(RH)

Hello
Messages
(Reply)

E4Message sent by a
receiver seeking to
join a group when
group formation is
started by receiver.

Receiver,
RH(Sender)

Member
Solicitation

E2
(E15)

Aggregate
Acknowledgement
sent by the receiver
to the repair head.

Receiver,
Repair
Head(Sender)

Ack Packet
(Nack Packet)

E7, E8Acceptance or
Rejection message
sent by the repair
head to the seeking
receiver.

Repair
Head(Sender),
Receiver(RH)

Accept/Reject

E9Receiver sends a
request to join group
in the form of Head
Bind

Receiver,
Repair
Head(Sender)

Head Bind

E11Multicast Data sent
from head to group
members

Sender(RH),
Receivers(RH)

Data

E10Repair Heads send
advertisement of the
channel

Sender(RH),
Receivers

Head Adv.

Event
ID

Interpretation(Source,
Destination)

Message
Name

E13Join a new Repair
Head; sent by the
receiver

Sender(RH),
Receivers(RH)

Re-affiliation

E1,
E14

Indication of
Liveliness of the
members.

RH(Receiver),
Receiver(RH)

Hello
Messages
(Reply)

E4Message sent by a
receiver seeking to
join a group when
group formation is
started by receiver.

Receiver,
RH(Sender)

Member
Solicitation

E2
(E15)

Aggregate
Acknowledgement
sent by the receiver
to the repair head.

Receiver,
Repair
Head(Sender)

Ack Packet
(Nack Packet)

E7, E8Acceptance or
Rejection message
sent by the repair
head to the seeking
receiver.

Repair
Head(Sender),
Receiver(RH)

Accept/Reject

E9Receiver sends a
request to join group
in the form of Head
Bind

Receiver,
Repair
Head(Sender)

Head Bind

E11Multicast Data sent
from head to group
members

Sender(RH),
Receivers(RH)

Data

E10Repair Heads send
advertisement of the
channel

Sender(RH),
Receivers

Head Adv.

Event
ID

Interpretation(Source,
Destination)

Message
Name

	Purdue University
	Purdue e-Pubs
	5-11-2007

	Stateful Detection in High Throughput Distributed Systems
	Gunjan Khanna
	Ignacio Laguna
	Fahad Arshad
	Saurabh Bagchi

