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Summary

My thesis focuses on the parameterisation and estimation of graphical mod-
els, based on the concept of hyper and meta Markov properties. These state that
the parameters should exhibit conditional independencies, similar to those
on the sample space. When these properties are satisfied, parameter estima-
tion may be performed locally, i.e. the estimators for certain subsets of the
graph are determined entirely by the data corresponding to the subset.

Firstly, I discuss the applications of these properties to the analysis of
case-control studies. It has long been established that the maximum like-
lihood estimates for the odds-ratio may be found by logistic regression, in
other words, the “incorrect” prospective model is equivalent to the correct
retrospective model. I use a generalisation of the hyper Markov properties
to identify necessary and sufficient conditions for the corresponding result
in a Bayesian analysis, that is, the posterior distribution for the odds-ratio
is the same under both the prospective and retrospective likelihoods. These
conditions can be used to derive a parametric family of prior laws that may
be used for such an analysis.

The second part focuses on the problem of inferring the structure of the
underlying graph. I propose an extension of the meta and hyper Markov
properties, which I term structural Markov properties, for both undirected
decomposable graphs and directed acyclic graphs. Roughly speaking, it re-
quires that the structure of distinct components of the graph are condition-
ally independent given the existence of a separating component. This allows
the analysis and comparison of multiple graphical structures, while being
able to take advantage of the common conditional independence constraints.
Moreover, I show that these properties characterise exponential families,
which form conjugate priors under sampling from compatible Markov dis-
tributions.
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Part I

Hyper Markov properties
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1

Graphical models and hyper Markov
properties

In this chapter, we introduce the necessary definitions and theorems for
graphical models, in particular the role of conditional independence and
the Markov properties of graphs.

The basis of this thesis involves the hyper Markov properties, introduced
in a seminal paper by Dawid and Lauritzen (1993). We introduce the neces-
sary terminology and results, but refer the reader to the original paper for
more details. Finally, we review some of the notable subsequent develop-
ments in hyper Markov theory.

1.1 Conditional independence

One of the most fundamental concepts of graphical models is the notion
of conditional independence, which is used to describe the relationship be-
tween random variables.

Definition 1.1.1 (Conditional independence). Let X, Y, Z be random vari-
ables on a joint probability space (Ω,A, P). We say X is conditionally inde-
pendent of Y given Z, written

X⊥⊥Y | Z [P],

if there exists a conditional probability measure for X given Y, Z under P
that only depends on Z.

In circumstances where the distribution is implied, we may drop the [P].
If Z is trivial, then we have marginal independence and may write X⊥⊥Y.
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1. Graphical models and hyper Markov properties

Theorem 1.1.1 (Dawid 1979, 1980). The conditional independence statement
(· ⊥⊥ · | ·) is a ternary relation on the set of random variables on (Ω,A, P), such
that for any random variables X, Y, Z, W and measurable function f , we have the
following:

C0 X⊥⊥Y | X.

C1 If X⊥⊥Y | Z, then Y⊥⊥ X | Z.

C2 If X⊥⊥Y | Z, then f (X)⊥⊥Y | Z.

C3 If X⊥⊥Y | Z, then X⊥⊥Y |
(
Z, f (X)

)
.

C4 If X⊥⊥Y | Z and X⊥⊥W | (Y, Z), then X⊥⊥ (W, Y) | Z.

Under certain conditions, such as the lack of any functional relationship
between X, Y, Z, we also have the following property:

C5 If X⊥⊥Y | Z and X⊥⊥ Z | Y, then X⊥⊥ (Y, Z),

though we will not utilise this property further.

1.2 Separoids and Graphical models

Graphical models encode a set of conditional independence properties in
the structure of a graph. To facilitate later developments, we describe these
conditional independence properties via the abstract separoid terminology
of Dawid (2001), similar to the semi-graphoid of Pearl and Paz (1987); Pearl
(1988).

Definition 1.2.1. Let M be a set with elements of the form 〈A, B |C〉 where
A, B, C are subsets of a finite set V (that is, M is a ternary relation on V).
Then M is a separoid if it satisfies the following properties:

S0 〈A, B | A〉 ∈ M.

S1 If 〈A, B |C〉 ∈ M, then 〈B, A |C〉 ∈ M.

S2 If 〈A, B |C〉 ∈ M and D ⊆ A, then 〈D, B |C〉 ∈ M.

S3 If 〈A, B |C〉 ∈ M and D ⊆ A, then 〈A, B |C ∪ D〉 ∈ M.

S4 If 〈A, B |C〉 ∈ M and 〈A, D | B ∪ C〉 ∈ M, then 〈A, B ∪ D |C〉 ∈ M,
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1.2. Separoids and Graphical models

Remark. Dawid (2001) actually defines a more general construction on a
semilattice, but the above characterisation is sufficient for our purposes.

For each vertex v ∈ V, we define a random variable Xv on a sample
space Xv. Furthermore, for any A ⊆ V we write the vector XA = (Xv)v∈V ,
the product space XA = ∏v∈A Xv, and X = XV and X = XV .

A joint distribution P for X is Markov with respect to a separoid M if:

〈A, B |C〉 ∈ M ⇒ XA ⊥⊥ XB | XC [P].

Specifically, we will focus on the separoids induced by graphs (see Ap-
pendix A for the necessary graph terminology). We define the separoid of an
undirected graph G:

M(G) =
{
〈A, B |C〉 : A and B are separated by C in G

}
. (1.1)

The separoid of a directed acyclic graph G is the set:

M(G) =
{
〈A, B |C〉 : A and B are separated by C in Gm

an(A∪B∪C)
}

. (1.2)

We say a distribution is Markov with respect to a graph, if it is Markov with
respect to its separoid.

We note that properties S0–4 are constructive, that is, each specifies the
existence of an element of the separoid. Therefore, by iteratively applying
these properties to an arbitrary set N of such triples, we can generate all
the elements of the smallest separoid containing N, which we the separoid
closure of N, and denote by N. Furthermore, we say N is a spanning subset
of N.

The link between the conditional independence properties C0–4, and the
separoid properties S0–4, implies the following:

Lemma 1.2.1. Let N be a spanning subset of the separoid M, and P be a distribu-
tion for X such that:

〈A, B |C〉 ∈ N ⇒ XA ⊥⊥ XB | XC [P].

then P is Markov with respect to M.

The separoid of an undirected decomposable graph can be generated by
the decompositions of the graph:
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1. Graphical models and hyper Markov properties

Theorem 1.2.2 (Dawid and Lauritzen 1993, Theorem 2.8). Let G be an undi-
rected decomposable graph. Then the set:{

〈A, B | A ∩ B〉 : (A, B) is a decomposition of G
}

is a separoid spanning set forM(G).

Similarly, the separoid of a directed acyclic graph can be generated by
the parent sets of individual vertices:

Theorem 1.2.3 (Lauritzen, Dawid, et al. 1990, Propositions 4 and 5). Let G be
a directed acyclic graph, with a well-ordering ≺ of the vertices. Then the sets:{〈

{v}, ndG(v) | paG(v)
〉

: v ∈ V
}

(1.3){〈
{v}, pr≺(v) | paG(v)

〉
: v ∈ V

}
(1.4)

are separoid spanning sets forM(G).

The sets (1.3) and (1.4) are known as the local and ordered Markov proper-
ties.

We note that for any separoid M, there is a natural projection onto a
subset U ⊆ V:

MU =
{
〈A, B |C〉 ∈ M : A, B, C ⊆ U

}
One interesting question is under what circumstances does this projection
agree with the separoid of the induced subgraph, i.e.MU(G) =M(GU)?

Theorem 1.2.4 (Asmussen and Edwards 1983, Corollary 2.5). Let G be an
undirected graph. ThenMU(G) =M(GU) if and only if G is collapsible onto U.

For the directed case, there is no known characterisation of such sets,
however there is the following sufficient condition:

Theorem 1.2.5. Let G be a directed acyclic graph. If U is an ancestral set, then
MU(G) =M(GU).

Another useful property is that the separoids of edge subgraphs are in
fact larger:

Theorem 1.2.6. Let G,G ′ be either undirected or directed acyclic graphs on V.
Then:

E(G) ⊆ E(G ′) ⇒ M(G) ⊇M(G ′).

In other words, if P is Markov with respect to G, and G is an edge sub-
graph of G ′, then P must also be Markov with respect to G ′.
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1.3. Hyper Markov properties

1.3 Hyper Markov properties

We define a model to be a family of probability distributions Θ over a com-
mon measurable space. Specifically, we will focus on the case where Θ ⊆
P(G), the set of distributions that are Markov with respect to a graph G.

For any θ ∈ Θ and A ⊆ V, define θA to be the marginal distribution
of XA under θ. Moreover, for A, B ⊆ V, we define θA|B to be the family of
conditional distributions of (XA |XB = xb)xb . If we use φ ' ψ to denote
the existence of a bijective function between φ and ψ, we note that for any
A ⊆ V, (Dawid and Lauritzen 1993, Lemma 3.1)

θ ' (θA, θV\A|A).

A law £ is a probability distribution of a random distribution θ̃ taking
values in Θ. As we primarily focus on Bayesian methodology, we will use
laws to describe the prior and posterior distributions for statistical models,
though Dawid and Lauritzen (1993) also used laws in the context of sam-
pling distributions of estimators.

A law £(θ̃) for an undirected graph G is (weak) hyper Markov if for any
decomposition (A, B) of G:

θ̃A ⊥⊥ θ̃B | θ̃A∩B [£] (1.5)

We note that both weak hyper Markov properties may be characterised
in terms of their separoids:

Theorem 1.3.1. A £(θ̃) is weak hyper Markov with respect to an undirected de-
composable or directed acyclic graph G if and only if:

θ̃A∪C ⊥⊥ θ̃B∪C | θ̃C [£] (1.6)

for all 〈A, B |C〉 ∈ M(G).

Proof. By Theorems 1.2.2 and 1.2.3, we simply need to show that there are
analogous properties to properties S0–4: that is, for every A, B, C, D ⊆
V:

H0 θ̃A∪A ⊥⊥ θ̃B∪A | θ̃A∪A.

H1 If θ̃A∪C ⊥⊥ θ̃B∪C | θ̃C. then θ̃B∪C ⊥⊥ θ̃A∪C | θ̃C.
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1. Graphical models and hyper Markov properties

H2 If θ̃A∪C ⊥⊥ θ̃B∪C | θ̃C and D ⊆ A, then θ̃D∪C ⊥⊥ θ̃B∪C | θ̃C.

H3 If θ̃A∪C ⊥⊥ θ̃B∪C | θ̃C and D ⊆ A, then θ̃A∪C∪D ⊥⊥ θ̃B∪C∪D | θ̃C∪D.

H4 If θ̃A∪C ⊥⊥ θ̃B∪C | θ̃C and θ̃A∪B∪C ⊥⊥ θ̃D∪B∪C | θ̃B∪C, then θ̃A∪C ⊥⊥
θ̃D∪B∪C | θ̃C.

H0–2 and H4 follow immediately by the properties of conditional indepen-
dence C0–4. To show H3, we note that θC∪D ' (θC, θD|C), and hence:

θ̃A∪C∪D ⊥⊥ θ̃B∪C ⊥⊥ θ̃D∪C

Furthermore, as XD ⊥⊥ XB |XC, then we have θB∪C∪D ' (θB∪C, θD|C).

As a consequence of this and Theorem 1.2.6:

Corollary 1.3.2. If £ is hyper Markov with respect to G, and E(G) ⊆ E(G ′), then
£ is hyper Markov with respect to G ′.

However, for much of the work in this thesis, we will utilise the stronger
property:

Definition 1.3.1 (Strong hyper Markov property). A law £(θ̃) is strong hy-
per Markov with respect to an undirected decomposable graph G if for any
decomposition (A, B) of G:

θ̃B|A ⊥⊥ θ̃A [£]. (1.7)

A law £(θ̃) is strong directed hyper Markov with respect to a directed acyclic
graph G if for every vertex v ∈ V:

θ̃v|pa(v) ⊥⊥ θ̃nd(v) [£]. (1.8)

Interestingly, there is no corresponding property to Corollary 1.3.2: if £ is
strong hyper Markov with respect to G, it need not be strong hyper Markov
with respect to G ′ ⊇ G (though it will still be weak hyper Markov), as we
will see in Example 1.6.1 below.

One of the key benefits of strong hyper Markov laws is that when used
as prior distributions in a Bayesian analysis, the posterior updating may be
done locally:
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1.4. Constructing hyper Markov laws

Theorem 1.3.3 (Dawid and Lauritzen 1993, Corollary 5.5). If the prior law
£(θ̃) is strong hyper Markov, and x is a completely observed realisation of X, then
the posterior £(θ̃ |X = x) is strong hyper Markov, and for any clique C

£(θ̃C |X = x) = £(θ̃C |XC = xc)

1.4 Constructing hyper Markov laws

One of the convenient aspects of conditional independence is that it allows
us to define distributions in a piecewise manner.

Theorem 1.4.1 (Dawid and Lauritzen 1993, Lemma 2.5). Let Q be a distribu-
tion for XA and R for XB, such that QA∩B = RA∩B, then there exists a unique
distribution P for XA∪B such that:

(i) PA = Q,

(ii) PB = R, and

(iii) XA ⊥⊥ XB | XA∩B [P].

Importantly, we can apply the same procedure to laws:

Theorem 1.4.2 (Dawid and Lauritzen 1993, Lemma 3.3). LetM(θ̃A) be a law
for XA, and N (θ̃B) be a law for XB such thatMA∩B = NA∩B. Then there exists a
unique law £(θ̃A∪B) such that:

(i) £A =M,

(ii) £B = N ,

(iii) θ̃A ⊥⊥ θ̃B | θ̃A∩B [£], and

(iv) XA ⊥⊥ XB | XA∩B [θ̃], almost surely under £.

Dawid and Lauritzen (1993) term Q and R to be consistent, and P to be
their Markov combination, denoted by the operation P = Q ? R. Likewise,M
and N are hyper consistent, and £ is their hyper Markov combination, denoted
by £ =M�N .

Both of these operations are products in a category-theoretic sense: they
are defined uniquely by their marginal projections. This concept of a condi-
tional product was explored by Dawid and Studený (1999), who explored its
axioms and how they relate to those of conditional independence.
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1. Graphical models and hyper Markov properties

We can use these to construct Markov distributions and hyper Markov
laws on undirected decomposable graphs by specifying marginal distribu-
tions and laws on cliques, and sequentially applying the above operations.
Specifically, if (P(C))C∈cl(G) are a set of pairwise consistent distributions, then
the distribution:

?
C∈cl(G)

P(C) (1.9)

is Markov with respect to G. Likewise, if
[
£(C)(θ̃C)

]
C∈cl(G) are a set of pair-

wise hyper consistent laws, the law:

�
C∈cl(G)

£(C) (1.10)

will be hyper Markov with respect to G.
How does one obtain a set of consistent distributions or hyper consistent

laws? One method is to simply take an arbitrary joint distribution or law for
XV , and take the marginal distributions or laws on the cliques; these will by
necessity be (hyper) consistent

Finally, as much of our focus will be on strong hyper Markov laws, we
would like to know under what conditions the resultant law will be strong
hyper Markov:

Theorem 1.4.3 (Dawid and Lauritzen 1993, Proposition 3.16). A weak hyper
Markov law £(θ̃) is strong hyper Markov if and only if the marginal law £(θ̃C) for
each clique C is strong hyper Markov.

In other words, (1.10) is strong hyper Markov if and only if each £(C) is
strong hyper Markov with respect to the complete graph on C.

1.5 Variation independence and meta Markov
properties

We can obtain similar properties by replacing the probabilistic independence
with variation independence:

Definition 1.5.1. Let φ, ψ and ω be functions on a common domain D. Then
we define the conditional range of φ given ω to be the image under φ of the
fibre of ω:

φ
[
ω−1(·)

]
.

10



1.6. Gaussian graphical models and Hyper inverse Wishart laws

Furthermore, we define φ to be conditionally variation independent of ψ given
ω, written:

φ ‡ ψ | ω [D]

if the conditional range of φ given (ψ, ω) is constant in ψ. That is, for all
v ∈ ψ(D), w ∈ ω(D):

φ
[
(ψ, ω)−1(v, w)

]
= φ

[
ω−1(w)

]
.

We note that the relation (· ‡ · | ·) satisfies the same properties C0–4,
and hence

If we replace the probabilistic independence of the hyper Markov prop-
erties with variation independence, we obtain meta Markov properties:

Definition 1.5.2. Let G be an undirected graph. Then a model Θ ⊆ P(Θ) is
(weak) meta Markov if:

θA ‡ θB | θA∩B [Θ]

for all decompositions (A, B) of G. Likewise, Θ is strong meta Markov if:

θB|A ‡ θA [Θ].

for all decompositions (A, B) of G.

As we shall see in the next chapter, the variation independence has an
important role in the properties of the maximum likelihood estimators, par-
ticularly when the data are obtained from different sampling regimes. More-
over, the support of weak/strong hyper Markov laws will be weak/strong
meta Markov. As such, the lack of a meta Markov model will preclude the
existence of a corresponding hyper Markov law.

1.6 Gaussian graphical models and Hyper inverse
Wishart laws

One of the most common graphical models is the multivariate Gaussian
graphical model, also called the covariance selection model (Dempster 1972;
Wermuth 1976a). Let X = ∏v∈V Xv, then:

θ(X) = N (0, Σ)

11



1. Graphical models and hyper Markov properties

In particular, θ is Markov with respect to an undirected graph G if:

{u, v} /∈ E(G) ⇒ Λuv = 0 (1.11)

where Λ = Σ−1 is the precision matrix.
For any disjoint A, B ⊆ V, the marginal and conditional distributions

are:

θ(XA) = N (0, ΣAA) and θ(XB |XA = xA) = N (ΓB|AxA, ΣB|A)

where ΓB|A = ΣBAΣ−1
AA, and ΣB|A = ΣBB − ΣBAΣ−1

AAΣBA is the Schur comple-
ment. Therefore we may write:

θA ' ΣAA and θB|A ' (ΓB|A, ΣB|A)

The conjugate prior law for the complete model is the inverse Wishart law,
£(θ̃) = I W (δ; Φ), using the notation of Dawid (1981). In particular, this
law is strong hyper Markov on the complete graph, since for any disjoint
A, B ⊆ V:

θ̃A ⊥⊥ θ̃B|A [£]

where:

£(Σ̃AA) = I W (δ; ΦAA)

£(Σ̃B|A) = I W (δ + |A|; ΦB|A)

£(Γ̃B|A | Σ̃B|A) = ΦBAΦ−1
AA +NB×A(Σ̃B|A, Φ−1

AA)

The hyper Markov law constructed by the hyper Markov combination
on the cliques (1.10) is termed the hyper inverse Wishart. Moreover, since any
clique marginal law is strong hyper Markov with respect to the complete
graph, then by Theorem 1.4.3, the hyper inverse Wishart is also strong hyper
Markov.

Interestingly, this property is generally unique to the inverse Wishart
law:

Theorem 1.6.1 (Geiger and Heckerman 2002, Theorem 7). Let G be the com-
plete graph on 3 or more vertices. Then the law for the Gaussian graphical model
on G is strong hyper Markov if and only if it is an inverse Wishart law.

However, if there are only two vertices in the clique, then the family of
strong hyper Markov laws is slightly more general:

12



1.6. Gaussian graphical models and Hyper inverse Wishart laws

Theorem 1.6.2 (Geiger and Heckerman 2002, Theorem 12). Let G be the com-
plete graph on 2 vertices. Then the law for the Gaussian graphical model on G is
strong hyper Markov if and only if it has a density on the precision space of the
form:

h(Λ12)|Λ|−δ/2−2 exp{− 1
2 tr(ΦΛ)},

for some arbitrary function h.

These results, when combined with Theorem 1.4.3, severely limit the
choice of possible strong hyper Markov laws for the Gaussian model.

For example, Letac and Massam (2007) and Rajaratnam, Massam, and
Carvalho (2008) define a more general family of the hyper inverse Wishart
law, which they term a “Type II Wishart”. This law obeys the directed strong
hyper Markov law (for a given perfect ordering of cliques), but due to the
above results, will not generally be strong hyper Markov with respect to an
undirected graph.

Also of interest is the corresponding law on the precision matrix:

Theorem 1.6.3 (Roverato 2000, Equation 13). If £(Σ̃) = H I W G(δ; Φ), then
corresponding law for Λ̃ = Σ̃−1 has a density proportional to:

|Λ|(δ−2)/2 exp
{
− 1

2 tr(ΦΛ)
}

for Λ ∈ P+
G(0), the set of positive definite matrices satisfying (1.11).

In particular, we note that this is exactly proportional to the density of
the Wishart law W (δ+ p− 1; Φ−1), albeit concentrated on P+

G(0). This means
that the hyper inverse Wishart law may be obtained from the inverse Wishart
by appropriately conditioning on the precision matrix:

Corollary 1.6.4. If £(Σ̃) = I W (δ; Φ), then:

£
(
Σ̃|Λ̃uv = 0, {u, v} /∈ E(G)

)
= H I W G(δ; Φ)

Corollary 1.6.4 suggests a way that we might extend the definition of the
hyper inverse Wishart law to non-decomposable graphs. For example, with
the graph:

1

2

3

4
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1. Graphical models and hyper Markov properties

we can define the hyper inverse Wishart law as the conditional law given
λ13 = λ24 = 0. This approach was investigated by Roverato (2002) and
Atay-Kayis and Massam (2005). However, we note that the corresponding
weak hyper Markov propertyM(G), namely:

θ̃{1,2,3} ⊥⊥ θ̃{1,3,4} | θ̃{1,3} and θ̃{1,2,4} ⊥⊥ θ̃{2,3,4} | θ̃{2,4},

does not hold. Interestingly, there are still some strong hyper Markov-type
properties, for example if C is a clique, then:

θ̃V|C ⊥⊥ θ̃C.

Furthermore, the normalisation constant of such a density generally does
not have a closed-form solution.

Finally, we note that unlike the Markov and weak hyper Markov prop-
erties, if a graph is strong hyper Markov with respect to G, it need not be
strong hyper Markov with respect to G ′, where E(G ′) ⊇ E(G):

Example 1.6.1. Suppose we have the Gaussian model on 3 vertices, that is
Markov with respect to the graph:

1 2 3

Then we can parameterise this model by the incomplete covariance matrix:

Σ∗ =

σ11 σ12 ∗
σ12 σ22 σ23

∗ σ23 σ33

 .

In the completion of this matrix, the missing element ∗ = σ13 = σ12σ23/σ22.
We now investigate the partition of the parameters into (θ{1,3}, θ2|{1,3}).

Note that:

|σ12| ≤
√

σ11σ22 and |σ23| ≤
√

σ22σ33 ⇒ |σ13| ≤
√

σ11σ33

and so θ{1,3} ' Σ{1,3} may be any positive-semidefinite 2× 2 matrix. Fur-
thermore, the regression coefficients of 2 on {1, 3} will be:

Γ2|{1,3} =

[
σ12

σ23

]> [
σ11 σ12σ23/σ22

σ12σ23/σ22 σ33

]−1

=
1

σ11σ2
22σ33 − σ2

12σ2
23

[
σ22σ12(σ22σ33 − σ2

23), σ22σ23(σ11σ22 − σ2
12)
]

Consider the following cases:

14



1.7. Contingency tables and Hyper Dirichlet laws

• If σ13 = 0, then Γ2|{1,3} = (σ12/σ11, σ23/σ33). However this would also
imply that either σ12 or σ23 = 0, and hence Γ2|{1,3} can only take values
on the axes R× {0} ∪ {0} ×R.

• If σ13 > 0, then it follows that σ12σ23 > 0, and by examining the terms
of the above expression, it follows that Γ2|{1,3} can only take values in
the quadrants (R>0)2 ∪ (R<0)2

• If σ13 < 0, then σ12σ23 < 0, and by similar inspection, Γ2|{1,3} can only
take values in the quadrants (R>0 ×R<0) ∪ (R<0 ×R>0).

As the range of Γ2|{1,3} depends on the value of σ13, then θ2|{1,3} and θ{1,3}
are not variation independent. Therefore the model cannot be strong meta
Markov on the complete graph, nor can any law with full support, such as
the hyper inverse Wishart, be strong hyper Markov on this graph.

1.7 Contingency tables and Hyper Dirichlet laws

The other common graphical model is the contingency table. If the variable
X is discrete sample space Xv is finite, then each cell x = (xv)v∈V ∈ X will
have probability θ(x).

Such models are usually parameterised in log-linear form (see, for exam-
ple, Darroch, Lauritzen, and Speed 1980), but for our purposes it is easier to
work with the clique-marginal distributions. Specifically, for any clique C,
we let θ(xC) be the marginal probability of any cell xc ∈ XC.

Then the probability of any cell x ∈ X is:

θ(x) =

∏
C∈cl(G)

θ(xC)

∏
S∈sep(G)

θ(xS)
νG (S)

where νG(S) denotes the multiplicity of a separator S.
The standard conjugate prior on the complete graph is the Dirichlet law

£(θ̃) = D(α), where the parameter α : X → R>0. This is a strong hyper
Markov law, and:

£(θ̃A) = D(αA)

£
(
θ̃B|A(· | xA)

)
= D

(
αA∪B(·, xA)

)
where αA(xA) = ∑x′ :x′A=xA

α(x)

15



1. Graphical models and hyper Markov properties

The hyper Markov combination of a set of consistent Dirichlet laws is
the hyper Dirichlet law, which by Theorem 1.4.3, must also be strong hyper
Markov.

Interestingly, this is not the only strong hyper Markov law. Consider a
2× 2 table, with θxy = θ(x, y). Geiger and Heckerman (1997, equation 10)
note that a law is strong hyper Markov if and only if it has a density of the
form:

h
(

θ00θ11

θ01θ10

)
θα00−1

00 θα01−1
01 θα10−1

10 θα11−1
11 (1.12)

for some function h. In the case where h is constant, this is simply a Dirichlet
distribution.

We can the extend sufficient condition to larger tables:

Theorem 1.7.1. If a law £(θ̃) for a 2-way contingency table X×Y on X ×Y has
density:

h

([
θxyθx∗y∗

θxy∗θx∗y

]
x 6=x∗,y 6=y∗

)
∏
x,y

θ
αxy−1
xy , (1.13)

then it is strong hyper Markov.

Proof. The Jacobian determinant of the transformation θxy 7→ (θ+y, θx|y) is:∣∣∣∣∣ dθxy

d(θ+y, θx|y)

∣∣∣∣∣ = ∏
y

θ
|X |−1
+y

(see, for example, Heckerman, Geiger, and Chickering 1995, Theorem 10),
which gives the joint density for (θ+y, θx|y):

∏
y

θ
α+y−1
+y h

[ θx|yθx∗|y∗

θx|y∗θx∗|y

]
x 6=x∗,y 6=y∗

∏
x,y

θ
αxy−1
x|y (1.14)

which factorises into a term involving only θ+y terms, and another involving
only θx|y terms. Therefore θ̃Y ⊥⊥ θ̃X|Y. By symmetry, the same argument
holds in the other direction.

It is unclear if the converse is true: the corresponding result in (1.12) re-
lies on results from functional equations, and it is unclear if these arguments
can be extended directly to higher dimensions.

The form of the density in Theorem 1.7.1 assumes the law has full sup-
port. However, as we shall demonstrate in the next chapter, we can obtain
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1.7. Contingency tables and Hyper Dirichlet laws

strong hyper Markov laws on submanifolds by conditioning on the odds-
ratio parameter. Furthermore, the form of the density in (1.14) gives the
following:

Corollary 1.7.2. If a law £(θ̃) satisfies the conditions of Theorem 1.7.1, the marginal
laws are:

£(θ̃X) = D(αX) and £(θ̃X) = D(αY).

Example 1.7.1. One way to construct such a law is through a mixture of
Dirichlet laws £(θ̃ | α̃) = D(α̃), where the law for the mixing parameter £(α̃)
has constant marginals:

£(α̃x+ = ax+) = 1 and £(α̃+y = a+y) = 1.

By the properties of the Dirichlet law, we have:

θ̃Y ⊥⊥ θ̃X|Y | α̃ and θ̃X ⊥⊥ θ̃Y|X | α̃ [£].

Furthermore, the constant marginal laws imply that θ̃Y⊥⊥ α̃ and θ̃X ⊥⊥ α̃, and
so:

θ̃Y ⊥⊥ (θ̃X|Y, α̃) and θ̃X ⊥⊥ (θ̃Y|X, α̃) [£].

Therefore £(θ̃) is strong hyper Markov. Now define axy = ax+a+y/a++, and:

η̃xy = α̃xy − axy, x 6= x∗, y 6= y∗

Furthermore, note that:

α̃x∗y = α̃+y − ∑
x 6=x∗

α̃xy = ax∗y − ∑
x 6=x∗

η̃xy, y 6= y∗

α̃xy∗ = α̃x+ − ∑
y 6=y∗

α̃xy = axy∗ − ∑
y 6=y∗

η̃xy, x 6= x∗

α̃x∗y∗ = α̃+y∗ − ∑
x 6=x∗

α̃xy∗ = ax∗y∗ + ∑
x 6=x∗,y 6=y∗

η̃xy.

Therefore, η̃ completely characterises the mixing vector. £(θ̃) has a density
of the form:

π(θ) = E£(α̃)[π(θ|α̃)] = Eα̃

[
1

B(α̃) ∏
x,y

θ
α̃xy−1
xy

]
.

This may be re-expressed as:

π(θ) = ∏
x,y

θ
axy−1
xy E£(α̃,η̃)

[
1

B(α̃) ∏
x 6=x∗,y 6=y∗

(
θxyθx∗y∗

θxy∗θx∗y

)η̃xy
]

(1.15)

which is of the same form as the density in Theorem 1.7.1.

17



1. Graphical models and hyper Markov properties

Unfortunately, for most functions h, the normalisation constant of the
density (1.13) will usually not have an analytic form. Even for Example
1.7.1, the occurrence of the beta function inside the integral in (1.15) will
usually mean that the precise form of the density is intractable, other than
for finite mixtures.

Theorem 1.7.1 may be extended to higher-order tables, but the arbitrary
function h is limited to the highest order interaction term:

Theorem 1.7.3. If a law £(θ̃) for an n-way contingency table X = ∏v∈V Xv has
density of the form:

h

[∏
B⊆V

θ(x∗B, xV\B)
(−1)|V\B|

]
x:xv 6=x∗v

∏
x

θ(x)α(x)−1 (1.16)

then it is strong hyper Markov.

Proof. For any ∅ ⊂ A ⊂ V, let Ac = V \ A, and note that the first product
term in (1.16) may be written as:

∏
C⊆A

∏
D⊆Ac

θ(x∗C, xA\C, x∗D, xAc\D)
(−1)|A\C|+|A

c\D|
.

This may be rewritten as:

∏
C⊆A

[
θ(x∗C, xA\C, x∗AC) ∏

D⊂Ac

θ(x∗C, xA\C, x∗D, xAc\D)
(−1)|A

c\D|

](−1)|A\C|

(1.17)

Recall that any finite, non-empty set has an equal number of even and odd
size subsets, therefore:

∑
D⊂Ac

(−1)|A
c\D| = −1,

and so (1.17) may be expressed as:

∏
C⊆A

 ∏
D⊂Ac

(
θ(x∗C, xA\C, x∗D, xAc\D)

θ(x∗C, xA\C, x∗Ac)

)(−1)|A
c\D|(−1)|A\C|

By the same argument over C, we obtain:

∏
C⊂A

∏
D⊂Ac

(
θ(x∗C, xA\C, x∗D, xAc\D)

θ(x∗C, xA\C, x∗Ac)

θ(x∗A, x∗Ac)

θ(x∗A, x∗D, xAc\D)

)(−1)|A\C|+|A
c\D|

Note that the term inside the parenthesis is of the same form as the fraction
in (1.13), and hence satisfies the conditions of Theorem 1.7.1 (with x = xA

and y = xAc), and therefore θ̃A ⊥⊥ θ̃V|A.
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1.8. Notes and other developments

Furthermore, this link to Theorem 1.7.1 means that we have a similar
result to Corollary 1.7.2:

Corollary 1.7.4. If a law £(θ̃) satisifies Theorem 1.7.3, then for any A ⊂ V, the
marginal law £(θ̃A) = D(αA).

1.8 Notes and other developments

The Dirichlet process (Ferguson 1973) is a law on an arbitrary measurable
space, and may be regarded as an infinite-dimensional extension of the
Dirichlet law. It has many interesting properties, notably that the result-
ing probability measure is almost surely discrete.

Asci, Nappo, and Piccioni (2006) and Heinz (2009) independently de-
velop the hyper Dirichlet process, defined as a hyper Markov combination
of consistent Dirichlet processes on the cliques. Unlike the hyper Dirichlet
law however, it is generally not strong hyper Markov. In fact, under quite
general conditions—such as the base measures being continuous and the
graph G being connected—it will simply be a Dirichlet process whose base
measure is the Markov combination of the clique base measures, in other
words:

�
C∈cl(G)

DP(µC, A) = DP

(
?

C∈cl(G)
µC, A

)
.

This is due to the inherent discrete nature of the Dirichlet process. If θ is
drawn from a Dirichlet process DP(µ, A) on some product space X ×Y ×
Z , then it will (almost surely) have a representation of the form:

θ = ∑
i

aiδ(xi ,yi ,zi)

where the coordinates (xi, yi, zi) are drawn i.i.d. from µ, and δ is the Dirac
measure. If µ is continuous, then the probability of there being two distinct
coordinates (xi, yi, zi) and (xj, yj, zi) such that yi = yj will be zero. Therefore,
if a triple (X, Y, Z) is drawn from θ, then θ(X = xi, Z = zi |Y = yi) = 1, and
hence, somewhat trivially, we have the Markov property:

X⊥⊥ Z | Y [θ].

Finally, we note that although the strong hyper Markov property is very
restrictive, such laws can form useful building blocks in constructing more
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1. Graphical models and hyper Markov properties

general laws. One common approach is to specify the law in an hierarchical
manner, by specifying a family of strong hyper Markov laws as well as a
mixing distribution over this family (often called a hyperprior).

We note that the resultant marginal law will usually not be strong, or
even weak, hyper Markov (Example 1.7.1 being an exception). Nevertheless,
such an approach can still be advantageous, as the conditional independence
properties may still be exploited for computational purposes.

For example, suppose that £(θ̃ | α̃) is a family of hyper Dirichlet laws,
and £(α̃) describes the mixing law. Then by exploiting the conditional hyper
Markovity and the fact that:

X⊥⊥ α̃ | θ̃ [£]

we could construct a Markov chain Monte Carlo algorithm to obtain a sam-
ple from the posterior by alternating the following steps:

a) For each clique Ci, independently sample:

θ
(n+1)
Ci |Si

∼ £(θ̃Ci |Si
| α(n), XC = xc),

where Si is the ith separator in a perfect ordering C1, . . . , Ck.

b) Sample:
α(n+1) ∼ £(α̃ | θ(n+1)).

In this case, step (a) may be performed in parallel on up to k processors.
This is particularly useful in the case where the evaluation of the likelihood
function is computationally intensive. Furthermore, each processor would
only require the data XCi of the corresponding clique.
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2

Logistic regression and case-control
studies

An interesting application of the meta Markov and hyper Markov properties
arises in analysis of case-control studies.

If one wishes to determine particular risk factors for a disease (or any
other binary outcome), there are two basic approaches:

Prospective or cohort study Select subjects from the population based on
their risk factors, and observe them at the end of a fixed time period
to determine if the disease arises.

Case-control or retrospective study Choose a random sample of subjects
from the population with the disease (cases), and another sample from
the population without (controls). Compare the relative frequencies of
the risk factors in the two samples.

Let Y be the response variable taking values in {0, 1}, corresponding to the
absence or presence of disease, respectively (the following results may be
extended to the multinomial case, but for sake of simplicity we only pursue
the binomial). Let X be the covariates (risk factors) taking values in X ⊆ Rk.
In a prospective study we are observing the conditional distribution of Y
given X, and so under a proportional odds assumption, we obtain the model
for logistic regression:

p(y | x, α, β) =
ey(α+β>x)

1 + eα+β>x
, α ∈ R, β ∈ Rk. (2.1)

On the other hand, a case-control study will result in observations from
the conditional distribution of X given Y. In this case, specifying a proba-
bilistic model becomes much more difficult, particularly if X is infinite.

Despite these difficulties, case-control studies are often desirable—or in
some cases unavoidable—particularly where the disease is relatively rare or
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2. Logistic regression and case-control studies

the time until diagnosis may be particularly long, as the costs of obtaining a
sufficient sample size for a prospective study are likely to be prohibitive.

The classic result of Prentice and Pyke (1979) showed that the maximum
likelihood estimate and asymptotic covariance for the log-odds ratio param-
eter β could simply be found by logistic regression. In other words, we can
use the prospective model to analyse data gathered retrospectively. This
particular result has been widely applied in epidemiology and other areas.

In this chapter, we identify the analogous result for the Bayesian case:
that is, the conditions under which the posterior distribution for β may be
computed using the prospective likelihood instead of the retrospective.

The simplest model of a single binary covariate has been well explored in
literature: Zelen and Parker (1986), Nurminen and Mutanen (1987), Marshall
(1988) and Ashby, Hutton, and McGee (1993) have all characterised such an
analysis, which consists of computing the posterior log odds ratio of a 2× 2
contingency table under a Dirichlet prior.

In the case where the covariates are categorical, that is where X is finite,
Seaman and Richardson (2004) identified a class of improper priors that
satisfy the desired properties. This class was further expanded by Staicu
(2010).

We show that the basis of this prospective–retrospective symmetry is
due to “independence” of the parameters: the original result of Prentice
and Pyke (1979) can be explained through the variation independence of
the parameter space, and that the corresponding Bayesian result will occur
when the prior law exhibits analogous probabilistic independence. Further-
more, we arrive at the same class of prior laws as Staicu (2010) via a different
route, and demonstrate how they might be extended to stratified designs.

However it should be noted that this is not the only approach for Bayesian
analysis of case-control data. With the advent of computational tools such
as MCMC, the retrospective likelihood need not present such an obsta-
cle. Indeed this path has been well followed in the literature, as reviewed
in Mukherjee, Sinha, and Ghosh (2005). For example, Müller and Roeder
(1997), Seaman and Richardson (2001) and Gustafson, Le, and Vallée (2002)
have pursued this approach. In particular, Gustafson, Le, and Vallée (2002)
note that in general the prospective posterior can serve as a useful approxi-
mation to the retrospective posterior, and use this as the basis of an impor-
tance sampling scheme.
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2.1. Notation and definitions

2.1 Notation and definitions

Throughout the chapter, (X, Y) will be a single joint observation from the
specified model, and (X(n), Y(n)) to be a sequence of n such independent
observations. p will be the density of the model (with respect to the appro-
priate measure), with variables indicating the context.

Lemma 2.1.1. For the above logistic model, we have:

θY|X ' (α, β) and θX|Y ' (θX|Y=0, β) (2.2)

Proof. The first is determined by (2.1), and the second by Bayes theorem:

dθX|Y=1

dθX|Y=0
(x) =

θY|X=x(1)
θY|X=x(0)

θY(0)
θY(1)

∝ eβ>x

2.2 Maximum likelihood estimators

Prentice and Pyke (1979) showed that the maximum likelihood odds-ratios
obtained from a case-control study have the same properties as those arising
from a prospective study, and hence may be found via logistic regression.
This can be elegantly demonstrated by the strong meta Markov property.

Lemma 2.2.1. Let ΘX be the family of all probability distributions over X , and let
ΘY|X be the family of conditional distributions with densities of the form in (2.1).
Then the corresponding family of joint distributions Θ is strong meta Markov, that
is:

θX ‡ (α, β) and θY ‡ (θX|Y=0, β)

Proof. These properties are essentially a reformulation of Müller and Roeder
(1997, Lemmas 1 and 2). By definition θX ‡ θY|X. It remains to show variation
independence in the opposite direction.

For any θX and θY|X, the joint distribution θ has a density of the form:

p(x, y | θ) = ey(α+β>x)

1 + eα+β>x
p(x | θX) (2.3)

Therefore the marginal distribution θY is Bernoulli, with parameter γ taking
values on the interval (0, 1), where:

γ = p(y = 1 | θY) =
∫
X

eα+β>x

1 + eα+β>x
p(x | θX)dx (2.4)
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2. Logistic regression and case-control studies

and the conditional distribution of X given Y has density of the form:

p(x | y, θX|Y) =
p(x, y | θ)

γy(1− γ)1−y =
ey(α−log γ

1−γ+β>x)

(1− γ)(1 + eα+β>x)
p(x | θX). (2.5)

Now for any γ′ ∈ (0, 1), we may define θ′ ' (θ′X, θ′Y|X), where:

θ′Y|X ' (α′, β) ∈ ΘY|X such that α′ = α− log
γ

1− γ
+ log

γ′

1− γ′
, (2.6)

and θ′X has density:

p(x | θ′X) =
(1− γ′)(1 + eα′+β>x)

(1− γ)(1 + eα+β>x)
p(x | θX)

By the definition of γ in (2.4), it can be shown that this integrates to 1, hence
θ′X ∈ ΘX. Furthermore, by matching terms in (2.5), then θX|Y = θ′X|Y. Since
θ′Y ' γ′ may be chosen arbitrarily, it follows that θY ‡ θY|X.

The logistic model has other variation independence properties:

Corollary 2.2.2. Under the logistic model of Lemma 2.2.1, then:

(θX, θY) ‡ β

Proof. We have θX ‡ (α, β), and for any θY, we can choose α′ as in (2.6).

Theorem 2.2.3. Suppose we have a joint model as in Lemma 2.2.1. Then the profile
likelihood function for the odds ratio β is the same for both the retrospective model
ΘX|Y and the prospective model ΘY|X, up to proportionality.

Proof. This proof follows a similar argument as Dawid and Lauritzen (1993,
Lemma 4.10). The joint density for the model θ may be written as:

p(x, y | θ) = p(x|θX)p(y | x, α, β) = p(y | θY)p(x | y, θX|Y=0, β) (2.7)

Therefore the profile likelihood for the joint model may be written in terms
of the prospective model:

Ljoint
p (β) = max

α,θX
p(x | θX)p(y | x, θY|X) (2.8)

By Lemma 2.2.1, the variation independence α and θX the factors of (2.8)
may be profiled separately, and hence:

Ljoint
p (β) ∝ max

α
p(y | x, α, β) = Lpro

p (β)
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2.3. Bayesian analysis of case-control studies

where Lpro
p denotes the profile likelihood of the prospective model. The

same argument applies to the retrospective profile likelihood Lret
p (β):

Ljoint
p (β) ∝ max

θX|Y=0

p(x | y, θX|Y=0, β) = Lret
p (β)

From this we obtain the result of Prentice and Pyke (1979):

Corollary 2.2.4. For data observed in a case control study, the maximum likelihood
estimate of the log odds parameter β̂ and its asymptotic covariance may be computed
as if the data were observed prospectively, that is, using logistic regression.

Proof. The maximum likelihood estimator is a function of the profile likeli-
hood, as is the asymptotic covariance (see Patefield 1985).

The same argument may be extended trivially to any penalised logistic
regression estimator of the form:

arg max
α,β

[
log p(y | x, α, β) + φ(β)

]
.

Examples of such estimators include ridge regression, where φ(β) ∝ ‖β‖2,
and lasso, where φ(β) ∝ ‖β‖1. Such methods have proven successful in
genome-wide association studies (GWAS), which involve case-control data
with extremely high-dimensional covariates (Park and Hastie 2008; Wu et al.
2009).

2.3 Bayesian analysis of case-control studies

We now investigate how these results correspond to a Bayesian analysis.
We will use π to denote the density of the prior law, and πpro and πret to
denote the densities of the posterior laws £pro and £ret under prospective
and retrospective likelihoods, respectively:

πpro(α, β | x(n), y(n)) ∝ π(α, β) p(y(n) | x(n), α, β)

πret(θX|Y=0, β | x(n), y(n)) ∝ π(θX|Y=0, β) p(x(n) | y(n), θX|Y=0, β)

Furthermore, we will use p̄ to denote the density of the marginal model,
where parameters have been integrated out (using the prior law), for exam-
ple:

p̄(y(n) | x(n), β) =
∫

p(y(n) | x(n), α, β)π(α | β)dα (2.9)

25



2. Logistic regression and case-control studies

In other words, when interpreted as a function of β, p̄(y(n)|x(n), β) is the
marginal likelihood for β.

We now present the key result of this section:

Theorem 2.3.1. Let £(θ̃) be a prior law for the joint parameters of the logistic
model. Then the posterior marginal law for β̃ is the same under both prospective
and retrospective likelihood for all possible observations (x(n), y(n)), if and only if:

β̃⊥⊥ θ̃X and β̃⊥⊥ θ̃Y [£] (2.10)

Proof. Firstly, note that the marginal posterior densities for β̃ may be written
as:

πpro(β | x(n), y(n)) ∝ π(β) p̄(y(n) | x(n), β)

πret(β | x(n), y(n)) ∝ π(β) p̄(x(n) | y(n), β)

where p̄ denotes the marginal model. Hence the marginal posteriors are
equal if and only if the retrospective and prospective marginal likelihoods
for β are proportional (for π(β) > 0). In other words, whenever there exists
a function k such that:

p̄(x(n) | y(n), β) = p̄(y(n) | x(n), β) k(x(n), y(n)). (2.11)

These models are also related through the joint model:

p̄(x(n) | y(n), β) p̄(y(n) | β) = p̄(y(n) | x(n), β) p̄(x(n) | β),

therefore (2.11) is equivalent to:

p̄(x(n) | β) = p̄(y(n) | β) k(x(n), y(n)). (2.12)

Since X(n) ⊥⊥ β̃ | θ̃X, we may write the marginal model for X(n) | β̃ as:

p̄(x(n) | β) =
∫

ΘX

[
n

∏
i=1

p(xi | θX)

]
π(θX | β)dθX (2.13)

Therefore, if θ̃X ⊥⊥ β̃, then p̄(x(n) | β) must be constant in β, and the same for
p̄(x(n) | β) if θ̃Y ⊥⊥ β̃, hence (2.10) implies (2.12).

To show the converse, suppose that (2.12) holds for all values of (x(n), y(n)).
As p̄(x(n) | β) is a density, it must be proportional to k(x(n), y(n)0 ), for any
fixed y(n)0 , and so X(n) is independent of β̃.
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2.3. Bayesian analysis of case-control studies

Note that p̄(x(n) | β) is the density of a mixture of i.i.d. variables, and re-
call that the mixing measure of any infinite sequence is almost surely unique
(see, for example, Aldous 1985, Lemma 2.15). As (2.13) must hold for all pos-
sible values of x(n), and n may be arbitrarily large, it follows that π(θX | β)
must also be invariant of β, and hence θ̃X ⊥⊥ β̃. The same argument holds
for θ̃Y.

Several authors have identified similar results. Notably, Müller and
Roeder (1997) appear to have almost identified the conditions in (2.10), but
then incorrectly claim that the “argument about the retrospective likelihood
only carries over to posterior inference on β if α and β are independent and
θX is not otherwise constrained”. This misconception appears to be due to
the fact that although there is a one-to-one mapping between α and θY, this
mapping is itself dependent on β, through (2.4). Unfortunately, this means
that the Dirichlet process mixture they propose does not satisfy the required
properties.

Example 2.3.1. A simple example of a law £(θ̃) satisfying Theorem 2.3.1
would be any with the property:

(θ̃X, θ̃Y)⊥⊥ β̃ [£].

One method of constructing such a law would be to take two arbitrary
laws £m(θ̃) and £o(θ̃), and take £ to be the product law of their projec-
tions £m(θ̃X, θ̃Y) and £o(β̃). By Corollary 2.2.2, there will exist a θ̃ with these
marginals, and since:

θ̃ '
(
θ̃X, α(θ̃X, θ̃Y, β̃), β̃

)
' (θ̃X, θ̃Y, β̃),

such a law would be uniquely defined.
Unfortunately, such a law would probably not be all that useful, as it

would still require computing the integral:

p̄(y | x, β) =
∫

ΘX×ΘY

eα(β,θX ,θY)+β>x

1 + eα(β,θX ,θY)+β>x
d£m(θX, θY), (2.14)

which may not be any easier than the retrospective likelihood.

One method of avoiding the need to compute such an integral is to re-
quire α̃ and θ̃X to be independent, as occurs under strong hyper Markov
laws:
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2. Logistic regression and case-control studies

Corollary 2.3.2. If £(θ̃) is strong hyper Markov, that is if:

(α̃, β̃)⊥⊥ θ̃X and (θ̃X|Y=0, β̃)⊥⊥ θ̃Y [£], (2.15)

then the posterior law for β̃ is the same under both the prospective and retrospective
likelihood.

We note that a directly equivalent result was identified by Staicu (2007,
Theorem 1) for the case where X is finite. Unfortunately, this elegant formu-
lation was modified in the published version of the manuscript to the more
complicated Staicu (2010, Theorem 2).

The problem of model comparison for case-control studies has received
comparatively little attention in the literature, particularly for Bayesian anal-
yses. However we note that we may derive a similar result to that of Theo-
rem 2.3.1:

Theorem 2.3.3. If £1(θ̃) and £2(θ̃) have the same marginal laws for θ̃X and θ̃Y,
then the Bayes factor between the prospective models is equal to the Bayes factor
between the retrospective models.

Proof. One argument is to construct a law £∗(θ̃, M̃) that is a mixture of £1

and £2, where M̃ is a variable indicating the mixture component. Then the
conditions of the theorem are equivalent to:

M̃⊥⊥ θ̃X and M̃⊥⊥ θ̃Y [£∗].

By the same argument as Theorem 2.3.1, the posterior probabilities, and
hence the Bayes factors, must be equal.

Alternatively, let p̄1 and p̄2 denote the marginal models under the re-
spective priors. Then:

p̄1(y(n) | x(n))
p̄2(y(n) | x(n))

=
p̄1(y(n) | x(n))
p̄2(y(n) | x(n))

p̄1(x(n))
p̄2(x(n))

=
p̄1(x(n) | y(n))
p̄2(x(n) | y(n))

p̄1(y(n))
p̄2(y(n))

=
p̄1(x(n) | y(n))
p̄2(x(n) | y(n))

since p̄1(x(n)) = p̄2(x(n)) and p̄1(y(n)) = p̄2(y(n)).

The requirement that the laws have the same marginals may seem re-
strictive, but there is a simple way we may construct such laws:

Proposition 2.3.4. Suppose £(θ̃) satisfies the conditions of Theorem 2.3.1. Then
the law on the submodel defined by £0(θ̃) = £(θ̃ | β̃ j = 0) will also satisfy the
conditions of Theorem 2.3.1, and £ and £0 will satisfy Theorem 2.3.3.
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2.4. Strong hyper Markov laws for logistic regression

Proof. This follows from (2.10) by noting that:

β̃⊥⊥ θ̃X
∣∣ β̃ j and β̃⊥⊥ θ̃Y

∣∣ β̃ j [£].

2.4 Strong hyper Markov laws for logistic regression

Given the results of Corollary 2.3.2, we now investigate various strong hyper
Markov laws for use as prior laws in case-control studies.

A single binary covariate

In the case of a single binary covariate we may take X = {0, 1}, then the
logistic model is a reparameterisation of a 2× 2 contingency table.

Example 2.4.1. The simplest strong hyper Markov law for this model is the
Dirichlet law £(θ̃) = D(axy). This law has been well explored in the litera-
ture, in particular Altham (1969), who investigated log odds ratio parameter;
and was later used in the context of case-control studies by Zelen and Parker
(1986), Nurminen and Mutanen (1987), Marshall (1988) and Ashby, Hutton,
and McGee (1993).

The Dirichlet law has density:

π(θ) =
1

B(θ00, θ01, θ10, θ11)
θa00−1

00 θa01−1
01 θa10−1

10 θa11−1
11 .

By reparameterising θxy = ey(α+βx)

1+eα+βx θ0+
1−xθ1+

x, we find £(θ̃x+) = B(a0+, a1+),
and:

π(α, β) =
eαa01 e(α+β)a11

(1 + eα)a0+(1 + eα+β)a1+
(2.16)

Recall from the previous chapter that there is actually a more general
family of strong hyper Markov laws on 2× 2 tables. Specifically, a law with
density of the form (1.12), in which case the density of £(α̃, β̃) would be:

π(α, β) = g(β)
eαa01 e(α+β)a11

(1 + eα)a0+(1 + eα+β)a1+

where g(β) = h(eβ).
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2. Logistic regression and case-control studies

Finite covariate space

We now investigate the more general case where X is larger, but still fi-
nite. Prior specification is not so simple: the proportional odds constraint
implies that the logistic model will be nested within a sub-manifold of the
probability simplex of the full |X | × 2 contingency table.

We solve this problem by adapting the conditioning procedure from
Dawid and Lauritzen (2001, section 4) for constructing laws on nested mod-
els:

1. Choose an arbitrary strong hyper Markov law £′(θ̃) for the saturated
model on X × {0, 1}.

2. Construct the law £ from £′ conditional on θ̃ satisfying the proportional
odds requirement.

With regards to the second point above, as Dawid and Lauritzen (2001)
emphasised, the Borel–Kolmogorov paradox means that there is no unique
way to perform such a conditioning operation. Furthermore, in selecting
the method of conditioning, we need to ensure that it preserves the strong
hyper Markov property.

Without loss of generality, we can assume that there exists x1, . . . , xk+1 ∈
X such that (1, x1), (1, x2), . . . , (1, xk+1) are linearly independent (otherwise
X exists on some affine subspace of Rk, and so β is not identifiable). We
may reparameterise the saturated model as:

p(y | x, α, β, η) =
ey(α+β>x+ηx)

1 + eα+β>x+ηx
(2.17)

where ηx = 0 if x = x1, . . . , xk+1. As such we may write θY|X ' (α, β, η) and
θX|Y ' (θX|Y=0, β, η), and hence by the strong hyper Markov property:

(α̃, β̃, η̃)⊥⊥ θ̃X and (θ̃X|Y=0, β̃, η̃)⊥⊥ θ̃Y [£′].

Note that the logistic model is on the manifold defined by η = 0, and that:

(α̃, β̃)⊥⊥ θ̃X
∣∣ η̃ and (θ̃X|Y=0, β̃)⊥⊥ θ̃Y

∣∣ η̃ [£′],

and hence £(θ̃) = £′(θ̃ | η̃ = 0) is strong hyper Markov.

Example 2.4.2. We know from Theorem 1.7.1 that densities of the form:

h

([
θx1θx∗0

θx0θx∗1

]
x 6=x∗

)
∏
x∈X

θax0−1
x0 θax1−1

x1 , (2.18)
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2.4. Strong hyper Markov laws for logistic regression

for some arbitrary x∗ ∈ X , are strong hyper Markov for the full |X | × 2
contingency table model.

The Jacobian determinant of the above transformation is:∣∣∣∣ dθY|X
d(α, β, η)

∣∣∣∣ ∝ ∏
x∈X

eα+β>x+ηx

(1 + eα+β>x+ηx)2
(2.19)

and hence the density for £′(α̃, β̃, η̃) is of the form:

h
([

eβ>(x−x∗)+ηx−ηx∗
]

x 6=x∗

)
∏
x∈X

e(α+β>x+ηx)ax1

(1 + eα+β>x+ηx)ax+
.

By conditioning on ηx = 0 for all x ∈ X , we obtain the density of £(α̃, β̃):

g(β) ∏
x∈X

e(α+β>x)ax1

(1 + eα+β>x)ax+
(2.20)

where g(β) = h
([

eβ>(x−x∗)]
x 6=x∗

)
.

The Jacobian of the transformation in terms of the retrospective parame-
ters is: ∣∣∣∣∣ d(α, β, θX)

d(θX|0, β, γ)

∣∣∣∣∣ = (1− γ)|X |−1

γ ∏
x∈X

(1 + eα+β>x) (2.21)

and so the density of £(θ̃X|0, β̃) is:

g(β)

∏
x∈X

θax+−1
x|0 eax1β>x

[
∑x∈X eβ>xθx|0

]a+1
. (2.22)

There are other ways to perform such a conditioning operation, such as
using the (non-log) odds ratio, but η has the desirable property of being
invariant of the choice of x∗ and x1, . . . , xk+1.

We note that the prior from Staicu (2010, Example 2) may be obtained by
rewriting (2.20) as:

g∗(β)eαa+1 ∏
x∈X

(1 + eα+β>x)−ax+ (2.23)

where g∗(β) = g(β) exp
{

∑x∈X β>xax1
}

. Furthermore, by taking the limit
as a+1 → 0, we also obtain the improper prior of Seaman and Richardson
(2004) and Staicu (2010, Example 1).

However, we argue that the form of (2.20) is more easily interpreted:
it may be thought of as the product of an improper prior with density
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2. Logistic regression and case-control studies

g(β)dβ dα and a logistic likelihood function, where the axy represent “pseudo-
counts”. This has the further benefit of being able to easily adapt existing
computational methods: for example, a Laplace approximation can be found
using regular logistic regression software.

Although x appears in the density of £(α̃, β̃), we disagree with Staicu
(2010) that this constitutes a covariate dependent prior, such as the g-priors
of Zellner (1986): it is dependent on the a priori expected frequency of the
covariates, and not the observed frequency of the covariates in the data.

We also note that this law may itself be constructed as the posterior of a
beta prior law:

Proposition 2.4.1. For each x ∈ X , let:

τx =
eα+β>xi

1 + eα+β>xi

For some x1, . . . , xk+1 ∈ X such that (1, x1), (1, x2), . . . , (1, xk+1) are linearly
independent, let £′(θ̃) be the product law of the marginal laws:

£′(τ̃xi) = B(axi0, axi1).

For all other x 6= x1, . . . , xk+1, let:

£′(Zx | θ̃) = Binomial(ax+, τx).

Then the posterior law £′(θ̃ | Zx = ax1) will have density of the form (2.20), where
g constant.

Proof. The prior law £′(α̃, β̃) will have density proportional to:

∏
x=x1,...,xk

e(α+β>x)ax1

(1 + eα+β>x)ax+
.

Likewise the likelihood of (Zx = ax1)x 6=x1,...,xk+1 will be proportional to:

∏
x 6=x1,...,xk+1

e(α+β>x)ax1

(1 + eα+β>x)ax+
.

This is particularly useful for implementing such procedures in generic
Bayesian MCMC packages such as WinBUGS, OpenBUGS and JAGS, and
note that these packages happily accept non-integer values for binomial
counts. Furthermore, arbitrary functions g may be included by use of the
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2.5. Stratified case-control studies

“zero Poisson” trick (see Spiegelhalter et al. 2003, “Specifying a new sam-
pling distribution”).

Unfortunately, this method is somewhat impractical for large numbers
of covariates. In particular, we note that the size of X increases exponen-
tially with its dimensionality k. Furthermore, as X increases, β̃ will tend
to concentrate around 0. To compensate for this, the values of (axy) can be
chosen closer to 0, but unfortunately, the above software packages tend not
work well, if at all, for very small values.

Extension to Dirichlet processes

A natural question is how to extend the above laws to the case where X is
infinite, for example where a covariate is continuous. One obvious choice
would be to replace the Dirichlet law D(ax+) for £(θ̃X) with a Dirichlet
process DP(µ, A). In this case, the form of the densities in equations (2.20)
and (2.22) suggests the following:

Conjecture 2.4.2. Let µ0, µ1 be measures on X , A0, A1 > 0 and µ̄ = (A0µ0 +

A1µ1)/(A0 + A1). Define a law £(θ̃) such that:

θ̃X ⊥⊥ θ̃Y|X [£]

where £(θ̃X) = DP(µ̄, A+), and £(α̃, β̃) has a density (with respect to the Lebesgue
measure on Rk+1):

g(β) exp
{

A1
(
α + β>Eµ1(X)[X]

)
− (A0 + A1)Eµ̄(X)

[
log(1 + eα+β>X)

]}
,

(2.24)
then £(θ̃) is strong hyper Markov, with £(θ̃Y) = B(A0, A1), and £(θ̃X|Y=0, β̃) has
density with respect to a product measure of a Dirichlet process DP(µ̄, A+) and
Lebesgue on Rk of:

g(β) exp
{

A1β>Eµ1(X)[X]
}(

EθX|Y=0(X)[e
β>X]

)−A1 .

Unfortunately, the expectation terms in (2.24) means that we can’t easily
apply the standard Dirichlet process machinery of taking projections onto
finite partitions of X , and appealing to the Kolmogorov extension theorem.

2.5 Stratified case-control studies

A more complicated stratified or matched case-control studies, in which par-
ticipants are selected by both the outcome Y and an additional stratum vari-
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2. Logistic regression and case-control studies

able S. Such a design can estimate the odds-ratio of interest with much
greater efficiency than an unstratified study.

The model is similar to that above, but with an intercept parameter that
varies by strata, such that the prospective model is:

p(y | x, s, α, β) =
eαs+β>x

1 + eαs+β>x

Unfortunately, this additional complication makes the estimates more diffi-
cult. As the number of strata will increase with the sample size n, the usual
maximum likelihood estimator is no longer consistent.

Instead, the standard classical approach seeks to maximise the conditional
likelihood:

`c(β) = ∏
s∈S

∏i∈Is
eyi β

>xx

∑ρ ∏i∈Is
eyρ(i)β>xx

where Is = {i : si = s}, and the summation in the denominator is over the
possible permutations of (yi)i∈Is .

Note that the number of terms in the denominator: if there are a cases
and b controls in each stratum—called a : b matching—the sum will have
(a+b

a ) terms. Most studies use 1 : 1 or 1 : m matching, but if larger strata are
used, this sum can quickly become computationally intractable.

In a Bayesian analysis however, the conditional likelihood does not have
a direct interpretation. Rice (2004, Theorem 1) showed there will exist a law
such that the marginal retrospective likelihood p̄(x | y, s, β) will be propor-
tional to the conditional likelihood. However such a law will depend on
the matching scheme: e.g. a 1 : 1 matched design will require a different law
than a 1 : 2 matched design.

Instead, we can extend Theorem 2.3.1 to find conditions under which we
may use the prospective likelihood under any matching scheme:

Theorem 2.5.1. Let £(θ̃XY|S) be a prior law for the parameters of the stratified logis-
tic model. Then the posterior marginal law for β̃ is the same under both prospective
and retrospective likelihood for all possible observations (x(n), y(n), s(n)), if and only
if:

β̃⊥⊥ θ̃X|S and β̃⊥⊥ θ̃Y|S [£]. (2.25)

Proof. The argument is essentially the sames as that of Theorem 2.3.1, noting
that θX|S and θY|S are the joint distributions for the random vectors (X|S =

s)s∈S and (Y|S = s)s∈S , respectively.
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2.5. Stratified case-control studies

One way of constructing such a law is to use a conditioning procedure
similar to that in the previous section:

1. For each stratum s, let £s(θ̃XY|S=s) be a law satisfying Theorem 2.3.1,
where θY|X,S=s ' (αs, βs).

2. Let £∗(θ̃XY|S) be the product law ∏s £s, and therefore:

θ̃X|S ⊥⊥ (β̃s)s∈S and θ̃Y|S ⊥⊥ (β̃s)s∈S [£∗].

3. Reparameterise (βs)s∈S '
[
β, (τs)s 6=s∗

]
, where β = βs∗ for some stra-

tum s∗, and τs = βs − β for each s 6= s∗.

4. Condition on τs = 0. Since:

θ̃X|S ⊥⊥ β̃
∣∣ (τ̃s)s 6=s∗ and θ̃Y|S ⊥⊥ β̃

∣∣ (τ̃s)s 6=s∗ [£∗],

it follows that £(θ̃XY|S) = £∗(θ̃XY|S | τ̃ = 0) will satisfy the conditions
of Theorem 2.5.1.

Example 2.5.1. If we let each £s(α̃s, β̃s) be of the form in Example 2.4.2, the
density for the law £∗(α̃, β̃, τ̃) will be of the form:

∏
s∈S

gs(β + τS) ∏
x∈X

e(αs+(β+τs)>x)ax1s

(1 + eαs+(β−τs)>x)ax+s
.

Conditioning on τ̃ = 0 gives a density for £(α̃, β̃) as:

g(β) ∏
(x,s)∈X×S

e(αs+β>x)ax1s

(1 + eαs+β>x)ax+s

Interestingly, this is of the same form as the density (2.20), where the strata
are simply treated as an additional categorical covariate in the model.

Note that we haven’t specified of any type of model for the stratum vari-
able S, as we have assumed all data are observed conditional on S. However,
we note that under the additional assumption:

θ̃XY|S ⊥⊥ θ̃S [£],

we can treat the data as if they were randomly sampled from the population,
as it would be in a cross-sectional study.
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2. Logistic regression and case-control studies

2.6 Discussion

We have illustrated the role of parameter independence, both variational
and probabilistic, for making inference about parameters under different
sampling regimes. In particular, we have shown the importance of these
considerations when selecting prior laws for such models, in order to avoid
introducing incorrect information into the posterior law.

There is potential for these techniques to be successfully applied to other
models. In particular, the stratified case-control model is closely related to
the Rasch model, commonly used in psychometrics for measuring ability or
attitudes of individuals based on tests and questionnaires.
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Part II

Structural Markov properties
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3

Background

In the remainder of this thesis, we consider the problem of inferring the
structure of a graphical model from data.

Initial approaches to the problem utilised sequential hypothesis tests.
The first such approach appears in the context of estimating covariance ma-
trices, where Dempster (1972) noted the usefulness of imposing sparsity on
the precision matrix, and proposed a simple forward selection procedure
based on a likelihood ratio test. Later work by Wermuth (1976a,b) identi-
fied the similarities in the multiplicative structure of contingency tables and
covariance matrix selection, and proposed a backwards selection procedure
for such models. Sundberg (1975); Frydenberg and Lauritzen (1989) further
showed that for decomposable graphs, the likelihood ratio between such
nested models differing by an edge may be computed locally.

However any such approach will suffer from the fact that the test statis-
tics are not independent, therefore making it difficult to correct for multi-
ple comparisons problems. Recently, Drton and Perlman (2008) propose a
method to control the overall error rate via simultaneous testing.

Somewhat similar approaches are based on scoring: each graph is as-
signed some numerical measure of fit, and the graph with the largest score
is selected. In the case of a small number of vertices, it is possible to evalu-
ate the score on all possible graphs, but for larger models a heuristic search
procedure is required. Such approaches include Buntine (1991), Cooper and
Herskovits (1992), Heckerman, Geiger, and Chickering (1995), Spirtes, Gly-
mour, and Scheines (2000), Chickering (2002, 2003). In certain cases, these
may be the mode of a posterior graph law, commonly called the maximum a
posteriori (MAP) estimate. However such methods fail to quantify any other
aspects of the posterior and so, we would argue, cannot really be considered
Bayesian.
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3. Background

More recently, graphical lasso approaches have become popular. These
are based on the “lasso” shrinkage estimators, used for model selection in
regression problems (see Tibshirani 1996), which seek to maximise the log-
likelihood with a `1 penalty on the coefficients. As a consequence of the
peaked form of the penalty, variables with little predictive power will have
their coefficients shrunk to zero. Yuan and Lin (2007); Banerjee, El Ghaoui,
and d’Aspremont (2008); Friedman, Hastie, and Tibshirani (2008); Rothman
et al. (2008) apply this approach to Gaussian graphical models, with an
estimator for the precision matrix of the form:

arg max
Λ

[
log det Λ− tr(SΛ)− ρ‖Λ‖1

]
,

where ‖Λ‖1 denotes the sum of absolute values of elements of Λ (some au-
thors exclude diagonal elements from this sum), and ρ is a the adjustable
penalty term. As in the regression case, this will shrink some of the off-
diagonal elements of Λ to zero, corresponding to missing edges of the esti-
mated graph.

We instead approach the problem in a fully Bayesian manner: utilising
a prior law for the structure of the graph itself, and the parameters each
graphical model. With the advent of Bayesian computational techniques
such as Markov chain Monte Carlo, such approaches have become compu-
tationally feasible. For example, Madigan and York (1995); Madigan, Ander-
sson, et al. (1996); Giudici and Castelo (2003); Friedman and Koller (2003);
Ellis and Wong (2008); Mukherjee and Speed (2008) investigated such ap-
proaches for directed acyclic graphs, and Giudici and Green (1999); Della-
portas and Forster (1999); Brooks, Giudici, and Roberts (2003) for undirected
decomposable graphs.

However, very little work has focused on the choice of prior for the graph
itself. Most authors utilise either a simple uniform prior, or some modifi-
cation of a Erdős–Rényi random graph, where the existence of each edge is
independent of the others.

Part of the problem is the difficulty of specifying a stochastic process
over the set of graphs under consideration. In the case of undirected de-
composable graphs, the only other examples appear to be McMorris and
Scheinerman (1991), in which the vertices correspond to random subtrees of
a fixed tree, and Lunagomez (2009), in which the vertices are generated by
some point process in Euclidean space, and connectivity is determined by
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simplicial complices. Unfortunately, both these methods rely on stochastic
processes over auxiliary structures, which makes their exact graphical prop-
erties difficult to determine. For directed graphs, the problem is even more
difficult, due to the problems of Markov equivalence.

In the subsequent chapters, we investigate how the meta and hyper
Markov properties may be extended to the case where the structure of the
graph is itself unknown. We develop the theory for undirected and directed
graphs separately, as the characterisations of these properties differ in their
construction.
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4

Undirected decomposable graphical
models

We propose a method of extending the undirected meta and hyper Markov
properties to allow for the case where the graph is itself a random quantity.

4.1 Motivation and definition

Recall that a law £(θ̃) over P(G), the set of Markov distributions with respect
to G, is (weak) hyper Markov if for any decomposition (A, B):

θ̃A ⊥⊥ θ̃B | θ̃A∩B [£]. (4.1)

We now consider the case where the graph itself is not fixed, but is
instead a random variable G̃. As the graph is a parameter in the model, we
will term its distribution a graph law, and will usually denote this by G(G̃).
In particular, we would like to develop hyper Markov-type properties for G̃.

Consider the case where the G(G̃) is defined over some family F of undi-
rected decomposable graphs, in which (A, B) is a common decomposition
of all G ∈ F. Recall that in (4.1), θ̃A will take values in P(GA), and similarly
for θ̃B and θ̃A∩B: that is, G̃A influences the support of θ̃A. One way to extend
the hyper Markov property in this case would be to require that:

G̃A ⊥⊥ G̃B | G̃A∩B [G]

Note that the term G̃A∩B is redundant: if (A, B) is a decomposition of G,
then GA∩B must be complete, and so we are left with a statement of marginal
independence G̃A ⊥⊥ G̃B.

A more general question remains: how might this property be extended
to an arbitrary family of graphs, such as those without a common decom-
position? This motivates the following property:
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A B

Figure 4.1: A representation of the structural Markov property for undi-
rected graphs. Conditional on (A, B) being a decomposition, the existence
of the remaining edges in G̃A ( ) are independent of those in G̃B ( ).

Definition 4.1.1 (Structural Markov property). A covering pair (of V) is any
pair of sets (A, B) such that A ∪ B = V. A graph law G(G̃) over the set U
of undirected decomposable graphs on V is structurally Markov if for any
covering pair (A, B), we have:

G̃A ⊥⊥ G̃B
∣∣ {G̃ ∈ U(A, B)} [G], (4.2)

where U(A, B) is the set of decomposable graphs for which (A, B) is a de-
composition.

In essence, the structural Markov property states that the structure of
different parts of the graph are conditionally independent given that they
are in separate parts of a decomposition. See Figure 4.1 for depiction.

Unlike the Markov and hyper Markov properties however, the condi-
tional independence is defined with respect to the event G̃ ∈ U(A, B), and
not a random variable. In other words, we do not assume G̃A ⊥⊥ G̃B | G̃ /∈
U(A, B).

4.2 Projections and products

Recall that Theorems 1.4.1 and 1.4.2, allow us to specify distributions and
laws in a piecewise manner over the cliques, via a conditional product op-
eration. We can apply the same arguments to graphs:

44



4.2. Projections and products

Proposition 4.2.1. Let H and J be two graphs on A and B respectively, such that
both HA∩B and JA∩B are complete. Then there exists a unique graph G on A ∪ B
such that:

(i) GA = H,

(ii) GB = J , and

(iii) A ∩ B separates A and B in G.

Proof. To satisfy (i) and (ii), the edge set must contain E(H) ∪ E(J ). It
cannot contain any additional edges {u, v}, as this would violate either (i),
if {u, v} ⊆ A; (ii), if {u, v} ⊆ B, or (iii), if u ∈ A \ B and v ∈ B \ A.

We define the resulting graph to be the graph product, denoted by:

G = H⊗J .

Furthermore, the completeness requirement on the intersection A ∩ B im-
plies that (A, B) will be a decomposition of G. We note that a more general
operator could be defined by only requiring that H and J be collapsible
onto A ∩ B, but this is not needed in the following theory.

The graph product provides a very useful characterisation of the struc-
tural Markov property:

Proposition 4.2.2. A graph law G is structurally Markov if and only if for every
covering pair (A, B), and every G,G ′ ∈ U(A, B),

π(G) π(G ′) = π(GA ⊗ G ′B) π(G ′A ⊗ GB) (4.3)

where π is the density of G with respect to the counting measure on U.

Proof. Note that both GA⊗G ′B,G ′A⊗GA ∈ U(A, B). Furthermore, the density
of a structural Markov law is of the form:

π(G | U(A, B)) = π(GA | U(A, B))π(GB | U(A, B)).

The result follows by substitution into (4.3).

Creating a natural projection operation for a graph law is considerably
more difficult: as we will shall see in Section 4.7, the structural Markov
property is generally not preserved under various forms of marginalisation.
But it is preserved conditional on a decomposition.
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Lemma 4.2.3. Let (A, B) be a decomposition of a graph G, and (S, T) a covering
pair of A with A ∩ B ⊆ T. Then (S, T) is a decomposition of GA if and only if
(S, T ∪ B) is a decomposition of G.

Proof. Recall that W separates U and V in G if and only if 〈U, V |W〉 ∈
M(G).

Since (S, T) is a covering pair of A, 〈S∪ T, B | S∩ B〉 ∈ M(G), and hence
〈S, B | T〉 ∈ M(G). If (S, T) is a decomposition of GA, then 〈S, T | S ∩ T〉 ∈
M(GA), which implies that 〈S, B ∪ T | T ∩ S〉 ∈ M(G). Since G(S∪B)∩T =

GT∩S is complete, (S ∪ B, T) is a decomposition of G.
The converse result is follows by the reverse argument.

Theorem 4.2.4. Let G(G̃) be a structurally Markov graph law: then the conditional
law for G̃A | G̃ ∈ U(A, B) is also structurally Markov.

Proof. Let (S, T) be a covering pair of A: If we restrict G̃ ∈ U(A, B), then
G̃A∩B must be complete. As we are only interested in the case where (S, T)
is a decomposition of G̃A, then A ∩ B must be a subset of either S or T:
without loss of generality, we may assume A ∩ B ⊆ T.

(S, T ∪ B) is a covering pair of V, so by the structural Markov property:

G̃S ⊥⊥ G̃T∪B
∣∣ {G̃ ∈ U(S, T ∪ B)}.

If 1E is the indicator variable of an event E, we may can write:

G̃S ⊥⊥ (G̃T, 1G̃T∪B∈U(T,B))
∣∣ {G̃ ∈ U(S, T ∪ B)}.

By the axioms of conditional independence, the term 1G̃T∪B∈U(T,B) may be
moved to the right-hand side. Furthermore, we are only interested in the
case where it equals 1, hence we can write:

G̃S ⊥⊥ G̃T
∣∣ {GT∪B ∈ U(T, B)}, {G̃ ∈ U(S, T ∪ B)}.

By Lemma 4.2.3, G̃T∪B ∈ U(T, B) if and only if G̃ ∈ U(S ∪ T, B) = U(A, B).

G̃S ⊥⊥ G̃T
∣∣ {G̃ ∈ U(A, B)}, {G̃ ∈ U(S, T ∪ B)}.

Again, by Lemma 4.2.3, G̃ ∈ U(S, T ∪ B) if and only if G̃A ∈ U(S, T), hence:

G̃S ⊥⊥ G̃T
∣∣ {G̃ ∈ U(A, B)}, {G̃A ∈ U(S, T)}.
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4.3 Structural meta Markov property

We can also define a similar property by replacing probabilistic conditional
independence (· ⊥⊥ · | ·) with variation independence (· ‡ · | ·), analogous to
the relationship between the hyper Markov and meta Markov properties.

Definition 4.3.1 (Structural meta Markov property). For a family of undi-
rected decomposable graphs F and a covering pair (A, B), let F(A, B) =

F ∩ U(A, B). Then F is structurally meta Markov if for every covering pair
(A, B):

GA ‡ GB
∣∣ {G ∈ F(A, B)}.

Equivalently, we can characterise it in terms of the graph product opera-
tion:

Theorem 4.3.1. A family of undirected decomposable graphs F is structurally meta
Markov if and only if GA ⊗ G ′B ∈ F for all G,G ′ ∈ F(A, B).

Therefore, if a family of graphs is characterised by a specific property,
we can show that it is structurally meta Markov if this property is preserved
under the graph product operation.

Example 4.3.1. The set of undirected decomposable graphs whose cliques
size is bounded above by some integer n is structurally meta Markov. To
see this, note that a clique of GA ⊗ G ′B must be a clique of either GA or G ′B
(and hence of either G or G ′). Therefore, the graph product operation cannot
increase the size of the largest clique.

An interesting special case is n = 2, which is the set of trees on V.

Example 4.3.2. For two graphs GL,GU ∈ U such that E(GL) ⊆ E(GU), the
“sandwich” set between the two graphs:

{G ∈ U : E(GL) ⊆ E(G) ⊆ E(GU)}.

is structurally meta Markov.

Theorem 4.3.2. The support of a structurally Markov graph law is a structurally
meta Markov family.

Proof. Let F be the support of the structurally Markov graph law G with
density π. By Proposition 4.2.2, if G,G ′ ∈ F(A, B) and both π(G) and π(G ′)
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are non-zero, then π(GA ⊗G ′B) must also be non-zero, and hence in F(A, B).
Therefore, by Theorem 4.3.1, F is structurally meta Markov.

4.4 Compatible distributions and laws

We now investigate how the structural Markov property interacts with the
Markov and hyper Markov properties.

Definition 4.4.1. Let X = (Xv)v∈V be a random variable, and θ = {θ(G) :
G ∈ U} be a family of probability distributions for X. We write X ∼ θ if,
given G̃ = G, X ∼ θ(G). Then θ is compatible if:

(i) For each G ∈ U, X is Markov with respect to G under θ(G), and

(ii) θ
(G)
C = θ

(G ′)
C whenever C ⊆ V induces a complete subgraph in both

G,G ′ ∈ U.

Likewise, let L = {£(G) : G ∈ U} be a family of laws for the parameters θ̃

of a family of distributions on X. Again, we can write θ̃ ∼ L if, given G̃ = G,
θ̃ ∼ £(G) Then L is hyper compatible if:

(i) For all G ∈ U, £(G) is a weak hyper Markov law on G, and

(ii) £(G)C = £(G
′)

C if C induces a complete subgraph in both G,G ′ ∈ U.

Remark. Dawid and Lauritzen (1993, section 6.2) originally used the term
compatible to refer to what we term the hyper compatible case: we introduce
the distinction so as to extend the terminology to the non-hyper case.

In the above definition, both θ and L will be characterised entirely by
θ(G

(V)) and £(G
(V)) respectively, where G(V) is the complete graph on V.

A graph law G(G̃) combined with a compatible set of distributions θ

defines a joint distribution (G, θ) on (G̃, X) under which X | G̃ = G ∼ θ(G).
Likewise, G combined with a set of hyper compatible laws L defines a joint
law (G,L) on (G̃, θ̃), and so a joint distribution on (G̃, θ̃, X).

The key conditional independence property of any such joint distribu-
tion or law can be characterised as follows:

Proposition 4.4.1. If G̃ has a graph law G, and X ∼ θ for a compatible family θ,
then:

XA ⊥⊥ G̃B
∣∣ G̃A, {G̃ ∈ U(A, B)} [G, θ]
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Similarly, if G̃ has a graph law G, and θ̃ ∼ L for a hyper compatible family L, then:

θ̃A ⊥⊥ G̃B
∣∣ G̃A, {G̃ ∈ U(A, B)} [G,L]

Proof. If G ∈ U(A, B), then GA is uniquely determined by its cliques. There-
fore the distribution of XA and law of θ̃A are each fixed.

When combined with the structural Markov property, we obtain some
useful results:

Theorem 4.4.2. If G̃ has a structurally Markov graph law G, and X has a distri-
bution from a compatible set θ, then:

(XA, G̃A)⊥⊥ (XB, G̃B)
∣∣ XA∩B, {G̃ ∈ U(A, B)} [G, θ]

Proof. The Markov property states that under [G, θ]:

XA ⊥⊥ XB
∣∣ XA∩B, G̃, {G̃ ∈ U(A, B)} (4.4)

Since
(
G̃, {G̃ ∈ U(A, B)}

)
'
(
G̃A, G̃B, {G̃ ∈ U(A, B)}

)
, we can rewrite (4.4)

as:
XA ⊥⊥ XB

∣∣ XA∩B, G̃A, G̃B, {G̃ ∈ U(A, B)} (4.5)

A trivial consequence of Proposition 4.4.1:

XA ⊥⊥ G̃B
∣∣ XA∩B, G̃A, {G̃ ∈ U(A, B)} (4.6)

By (4.5) and (4.6):

XA ⊥⊥ (XB, G̃B)
∣∣ XA∩B, G̃A, {G̃ ∈ U(A, B)} (4.7)

Furthermore, by the structural Markov property and Proposition 4.4.1:

G̃A ⊥⊥ (XB, G̃B)
∣∣ {G̃ ∈ U(A, B)}, (4.8)

and we can further condition on XA∩B. The result follows from this and
(4.7).

Corollary 4.4.3. If G̃ has a structurally Markov graph law, and X has a distribution
from a compatible set θ, then the posterior graph law for G̃ is structurally Markov.

Proof. By Theorem 4.4.2 and the axioms of conditional independence, we
easily obtain:

G̃A ⊥⊥ G̃B
∣∣ X, {G̃ ∈ U(A, B)}.
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We may also apply similar arguments apply at the hyper level:

Theorem 4.4.4. If G̃ has a structurally Markov graph law G, and θ has a law from
a hyper compatible set L, then:

(θA, G̃A)⊥⊥ (θB, G̃B)
∣∣ θA∩B, {G̃ ∈ U(A, B)} [G,L]

Furthermore, if each law £(G) ∈ L is strong hyper Markov with respect to G, then:

(θA, G̃A)⊥⊥ (θB|A, G̃B)
∣∣ {G̃ ∈ U(A, B)} [G,L]

Proof. The proof for the first case is the same as in Theorem 4.4.2. The proof
for the strong case follows similar steps, except starts with the strong hyper
Markov property:

θA ⊥⊥ θB|A | G̃, {G̃ ∈ U(A, B)}

Hyper compatible sets of strong hyper Markov laws have the additional
advantage that the posterior graph law will also be structurally Markov: this
follows from Theorem 4.4.2 and Dawid and Lauritzen (1993, Proposition
5.6), which states that the marginal distribution of the data under a strong
hyper Markov law is Markov. Furthermore, the posterior family of graph
laws {£(G)(· |X) : G ∈ U} will maintain hyper compatibility.

4.5 Clique vector

Definition 4.5.1. Define the completeness vector of a graph to be the function
c : U→ {0, 1}2V

, such that for each A ⊆ V:

cA(G) =

1 if GA is complete,

0 otherwise.

Furthermore, define the clique vector of a graph t : U→ Z2V
to be the Möbius

inverse of c by superset inclusion:

tB(G) = ∑
A⊇B

(−1)|A\B|cA(G). (4.9)

In the language of Studený 2005b, c and t are both imsets (integer-valued
multisets).

c can likewise be expressed in terms of t:
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Proposition 4.5.1. For any G ∈ U, we have:

cA(G) = ∑
B⊇A

tB(G), A ⊆ V. (4.10)

Proof. This follows from the Möbius inversion theorem (see, for example,
Lauritzen 1996, Lemma A.2).

Both c and t decompose elegantly:

Lemma 4.5.2. If G ∈ U(A, B), then:

c(G) = [c(GA)]
0 + [c(GB)]

0 − [c(GA∩B)]
0, and (4.11)

t(G) = [t(GA)]
0 + [t(GB)]

0 − [t(GA∩B)]
0. (4.12)

where [·]0 denotes the expansion of a vector with zeroes to the required coordinates.

Proof. U ⊆ V induces a complete subgraph of G ∈ {U(A, B)} if and only if
it induces a complete subgraph from GA, GB or both. (4.11) follows by the
inclusion–exclusion principle. (4.12) may then be obtained by substitution
into (4.9).

Theorem 4.5.3. For any decomposable graph G ∈ U and A ⊆ V:

tA(G) =


1 if A ∈ cl(G),

−νG(A) if A ∈ sep(G), and

0 otherwise;

where cl(G) are the cliques of G, and sep(G) are the clique separators, and each
separator S has multiplicity νG(S).

Proof. For any C ⊆ V, let G(C) be the graph on V whose edge set is (C
2) (that

is, complete on C and empty elsewhere). Then it is straightforward to see
that:

tA(G
(C)
C ) =

1 if A = C,

0 otherwise.

Now let C1, . . . , Ck be a perfect ordering of the cliques of G, and S2, . . . , Sk

be the corresponding separators. By Lemma 4.5.2, it follows that:

t(G) =
k

∑
i=1

t(G(Ci)
Ci

)−
k

∑
i=2

t(G(Si)
Si

).
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Objects similar to the clique vector have arisen in several contexts. No-
tably, it appears to be equivalent to the index v of Lauritzen, Speed, and
Vijayan (1984, Definition 5), which is characterised in a combinatorial man-
ner.

Another similar construction is the standard imset of Studený (2005b),
which is equal to:

t(G(V))− t(G)

where G(V) is the complete graph.
The algorithm of Wormald (1985) for the enumeration of decomposable

graphs is based on a generating function for the vector R|V| that he termed
the “maximal clique vector”, which is defined as:

mcvk(G) = ∑
A∈(V

k )

tA(G), k = 1, . . . , |V|

Proposition 4.5.4. For any G ∈ U, the vector t(G) has the following properties:

(i)

∑
A⊆V

tA(G) = 1

(ii) For each v ∈ V:

∑
A3v

tA(G) = 1

(iii)

∑
A⊆V
|A|tA(G) = |V|

(iv)

∑
A⊆V

(
|A|
2

)
tA(G) = |E(G)|

Proof. These all follow from Theorem 4.5.3 and the inclusion–exclusion prin-
ciple.

4.6 Clique exponential family

Definition 4.6.1. The clique exponential family is the exponential family of
graph laws over F ⊆ U, with t as a natural statistic (with respect to the
uniform measure on U). That is, laws in the family have densities of the
form:

πω(G) =
1

Z(ω)
exp{ω · t(G)}, G ∈ F, ω ∈ R2V

,
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where Z(ω) is the normalisation constant, which will generally be unknown.

Equivalently, the distribution can be parameterised in terms of c:

πω(G) =
1

Z(ω)
exp

{(
∑

B⊆A
(−1)|A\B| ωA

)
A⊆V
· c(G)

}
,

but t is more useful due to the fact that it is sparse (by Theorem 4.5.3) and,
as we shall see, is the natural statistic for posterior updating.

Note that this distribution is over-parameterised: by Proposition 4.5.4 (i)
and (ii), there are |V| + 1 linear relationships in t(G). For the purpose of
identifiability, we could define a normalised vector ω∗ as:

ω∗A = ωA + (|A| − 1)ω∅ − ∑
v∈A

ω{v}

such that πω = πω∗ , and ω∗{v} = ω∗∅ = 0 for all v ∈ V.

Theorem 4.6.1. Let G be a graph law which whose support is U. Then G is
structurally Markov if and only if is a member of the clique exponential family.

Proof. For any C ⊆ V, define G(C) as in Theorem 4.5.3, and let G have density
π.

Suppose that G is structurally Markov. For any G ∈ U, let C1, . . . , Ck

be a perfect ordering of the cliques, and let S2, . . . , Sk be the corresponding
separators, and H1, . . . , Hk be the histories. Furthermore, recursively define
the graphs:

G∗(j) =

G
(C1) if j = 1,

G∗(j−1)
Hj−1

⊗ G(Cj)

(V\Hj−1)∪Sj
if j = 2, . . . k.

By Proposition 4.2.2, for each j = 2, . . . , k:

π
(
G∗(j))π(G(Sj)

)
= π

(
G∗(j−1))π(G(Cj)

)
Note that G∗(k) = G, then by induction it follows that:

π(G) =

k

∏
j=1

π
(
G(Cj)

)
k

∏
j=2

π
(
G(Sj)

) ∝ exp{ω · t(G)},
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by Theorem 4.5.3, where ωC = log π
(
G(C)

)
.

To show the converse let (ω)A = (ωS)S⊆A. By Lemma 4.5.2, we have:

π
(
GA | GB, {G ∈ U(A, B)}

)
∝ exp

{
(ω)A · t(GA) + (ω)B · t(GB)− (ω)A∩B · t(GA∩B)

}
∝ exp

{
(ω)A · t(GA)− (ω)A∩B · t(GA∩B)

}
∝ π

(
GA | {G ∈ U(A, B)}

)
.

Remark. The requirement that the family have full support is not strictly
necessary: we may use exactly the same argument applies to any family F

with the property that if G ∈ F and C is a clique of G, then G(C) ∈ F. This
includes Example 4.3.1, and Example 4.3.2 if GL is the sparse graph.

We conjecture that this could hold for any structurally hyper Markov
law, but have yet to identify a proof.

A very similar family was proposed by Bornn and Caron (2011), however
their family allows the use of different parameters for cliques and separators,
which will generally not be structurally Markov.

Example 4.6.1 (Giudici and Green 1999; Brooks, Giudici, and Roberts 2003,
section 8). The simplest example of such a distribution is the uniform dis-
tribution over U, corresponding to ω = 0.

Example 4.6.2 (Madigan and Raftery 1994; Jones et al. 2005). Another com-
mon approach is to use a set of (|V|2 ) independent Bernoulli variables with
probability ψ to indicate edge inclusion (i.e. an Erdős–Rényi random graph),
conditional on G̃ being decomposable. The density of such a law is of the
form:

π(G) ∝ ψ|E(G)|(1− ψ)(
p
2)−|E(G)| ∝

(
ψ

1− ψ

)|E(G)|
By Proposition 4.5.4 (iv), it follows that this distribution has:

ωA =

(
|A|
2

)
log
(

ψ

1− ψ

)
Furthermore, if each edge e has its own probability ψe, then:

ωA = ∑
e∈(A

2 )

log
(

ψe

1− ψe

)

Example 4.6.3 (Armstrong et al. 2009). For comparison, it is useful to con-
sider a non-structurally Markov graph law. Define the distribution over the
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number of edges to be uniform, and the conditional distribution over the set
of graphs with a fixed number of edges to be uniform. This has density of
the form:

π(G) = 1
(p

2) + 1
1∣∣{G ′ ∈ U : |E(G ′)| = |E(G)|

}∣∣
Now consider the case V = {1, 2, 3}, then:

π
(

1 2 3
)
= 1

4

π
(

1 2 3
)
= 1

12

π
(

1 2 3
)
= 1

12

π
(

1 2 3
)
= 1

12

From this it follows that G̃{1,2}��⊥⊥ G̃{2,3}
∣∣ G̃ ∈ U({1, 2}, {2, 3}), and hence the

law cannot be structurally Markov.

Posterior updating

We saw in Corollary 4.4.3 that the if the sampling distributions are compat-
ible, then posterior updating will preserve the structural Markov property.
We now show that this updating may be performed locally, with the expo-
nential clique family forming a conjugate prior for a family of compatible
models.

Let θ be a family of compatible distributions for X (such as the marginal
model of a strong hyper Markov law), with density p with respect to some
product measure. Then:

π(X|G) = ∏
A⊆V

pA(XA)
[t(G)]A ,

and thus the posterior law is:

π(G|X) ∝ exp
{[

ω +
(

log pA(XA)
)

A⊆V

]
· t(G)

}
.

A key benefit of this conjugate formation is that we can describe the
posterior law with a parameter of dimension 2|V| (strictly speaking, we only
need 2|V| − |V| − 1, due to the over-parameterisation). This is much smaller
the an arbitrary law over the set of undirected decomposable graphs, which
would require a parameter of length approximately 2(

|V|
2 ).
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4.7 Marginalisation

We now consider how to marginalise a graph law. Specifically, for a given
a graph law G over U, how might we define the graph law over the set of
undirected decomposable graphs on A ⊆ V?

We have already proposed one such method in Theorem 4.2.4: however
this also required the specification of a decomposition, and multiple such
decompositions exist for any given proper subset A.

Below we propose three alternative methods for constructing such a
marginal law. However we also demonstrate that none of these preserve
the structural Markov property.

Example 4.7.1. The graph law we consider is one of the simplest non-trivial
structurally Markov graph law: the uniform law on the set of undirected
decomposable graphs on 4 vertices V = . There are (4

2) = 6 possible
edges, and hence 26 = 64 possible undirected graphs; of these, 3 are non-
decomposable 4-cycles ( , , ), so the probability of any one
graph is 1

61 .

From this law, we aim seek to construct a graph law over A = . We
show that none of the marginal laws proposed below satisfy the necessary
cross-product property of Proposition 4.2.2 for the structural Markov prop-
erties. Specifically, if we take G = and G ′ = , then (4.3) states that
we require:

πA
( )

πA
( )

= πA
( )

πA
( )

. (4.13)

Unfortunately, this lack of a structural Markov-preserving marginalisa-
tion procedure rules out any type of straightforward “self-similarity” type
property, such as that exhibited by the Wishart, inverse-Wishart and Dirich-
let laws. This also means there is no obvious way to construct a structurally
Markov graph law from a convenient infinite-dimensional stochastic pro-
cess, such as the Chinese restaurant process for generating samples from a
Dirichlet process (Aldous 1985, Section 11.19).

Induced subgraph

The simplest method of marginalisation is the induced subgraph G̃A. Note
that G̃ may not always be collapsible onto A, in which caseM(G̃A) may not
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4.7. Marginalisation

be contained inM(G). The probabilities of the graphs in (4.13) are:

πA
( )

= π
(

, , , , , , ,
)
=

8
61

πA
( )

= π
(

, , , , , , ,
)
=

8
61

πA
( )

= π
(

, , , , , , ,
)
=

8
61

πA
( )

= π
(

, , , , , ,
)
=

7
61

Marginal graph

An alternative method of marginalising a graph law is to map to each graph
to one that preserves its conditional independencies on the set of vertices of
interest.

For an undirected graph G on V and a subset A ⊆ V, we define the
marginal graph GMA to be the graph on A such that {u, v} ∈ E(GMA ) if there
exists a path from u to v in V \ (A ∪ {u, v}), in other words, if A \ {u, v}
does not separate u and v in G.

This construction preserves the conditional independence properties of
G on A:

Theorem 4.7.1 (Studený 1997, Lemma 3.1). If G is an undirected graph on V,
and A ⊆ V, then:

M(GMA ) =MA(G).

Note that this projection may destroy other properties that can’t be ex-
pressed in terms of conditional independence, e.g. a full exponential family
may map to a curved exponential family.

The graph law induced by this projection does not preserve the structural
Markov property:

πA
( )

= π
(

, , ,
)
=

4
61

πA
( )

= π
(

, , , , ,
)
=

6
61

πA
( )

= π
(

, , , , ,
)
=

6
61

πA
( )

= π
(

, , , , , , ,
)
=

8
61
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4. Undirected decomposable graphical models

Conditional on being collapsible

Finally, we consider the graph law for the induced subgraph G̃A, conditional
on G̃ being collapsible onto A. The relevant probabilities are proportional
to:

πA
( )

∝ π
(

, , ,
)
=

4
61

πA
( )

∝ π
(

, , , ,
)
=

5
61

πA
( )

∝ π
(

, , , ,
)
=

5
61

πA
( )

∝ π
(

, , , , ,
)
=

6
61

However, we note that by Theorem 4.2.4, if we further condition on the
separators, then the structural Markov property will be preserved.

4.8 Computation

The difficulties involved in enumerating U as well as computing the normal-
isation constant of the exponential family mean that some sort of numerical
approximation will usually be required.

The most common approach is to construct a Markov chain Monte Carlo
(MCMC) algorithm that moves between graphs by perturbing their edge
set. The simplest approach, proposed by Giudici and Green (1999), relies
on making single edge additions and removals. A key difficulty with such
an approach is to characterise which edge modifications will result in the
graph remaining decomposable.

For any graph G ∈ U, we define N−(G) and N+(G) to be the set of undi-
rected decomposable graphs that may be obtained by removing or adding,
respectively, a single edge from G. We call these the lower and upper neigh-
bours of G.

Fortunately, there are previous results that characterise the neighbours:

Theorem 4.8.1 (Frydenberg and Lauritzen 1989, Lemma 3). Let G be a decom-
posable graph, where {u, v} ∈ E(G). Then the graph G− obtained by removing
{u, v} is decomposable if and only if {u, v} is a subset of exactly one clique C of G.

As a consequence, the set of lower neighbours N−(G) can be partitioned
according to the clique of G which contained the removed edge.
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4.8. Computation

For any such edge removal, the change in the clique vector t is charac-
terised in a simple manner by this clique and the two vertices of the edge:

Theorem 4.8.2. For the edge removal operation in Theorem 4.8.1, the change in
the clique vector is:

tA(G−)− tA(G) =


−1 if A = C or C \ {u, v},

+1 if A = C \ {u} or C \ {v},

0 otherwise.

Proof. Firstly, consider the effect on the completeness vector c. The removal
of the edge {u, v} will only change the Bth component (B ⊆ V), if:

(i) the edge appears in GB: that is, if {u, v} ⊆ B, and

(ii) GB is complete, which can only occur with (i) if B is a subset of the
clique C.

Therefore:

cB(G−)− cB(G) =

−1 if {u, v} ⊆ B ⊆ C

0 otherwise.

As for the clique vector, it follows that from the definition of t in (4.9) that if
A * C then tA(G−)− tA(G) will be zero, and if A ⊆ C then:

tA(G−)− tA(G) = ∑
B⊇A

(−1)|B\A|[cB(G−)− cB(G)
]

= ∑
B : A∪{u,v}⊆B⊆C

(−1)|B\A|+1

= ∑
H : C\(A∪{u,v})

(−1)|H|+3−|A∩{u,v}|

Recall that any finite, non-empty set has an equal number of even- and
odd-cardinality subsets. Therefore tA(G−)− tA(G) will be zero unless C =

A ∪ {u, v}. Moreover, it will be −1 if A ∩ {u, v} is even, and +1 if it is
odd.

Likewise, there exists a similar characterisation of edge addition:

Theorem 4.8.3 (Giudici and Green 1999, Theorem 2). Let G be a decomposable
graph, where the pair of vertices {u, v} /∈ E(G). Then the graph G+ obtained by
the addition of the edge {u, v} is decomposable if and only if there exist cliques (of
G) Cu 3 u and Cv 3 v such that S = Cu ∩ Cv is a separator of Cu and Cv in G .
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4. Undirected decomposable graphical models

A consequence of this theorem is that the set of upper neighboursN+(G)
can be partitioned according to the separators of G by which they are sepa-
rated.

Similarly, we can also characterise the change in t by the two vertices and
this separator:

Theorem 4.8.4. For the edge addition operation in Theorem 4.8.3, the change in
the clique vector is:

tA(G+)− tA(G) =


+1 if A = S or S ∪ {u, v},

−1 if A = S ∪ {u} or S ∪ {v},

0 otherwise.

Proof. The proof is similar to that of Theorem 4.8.2. For B ⊆ V, cB will only
change if

(i) {u, v} ⊆ B, and

(ii) G+B is complete: this can only with (i) if both GB\{u} and GB\{v} are
complete. Since S separates u and v in G, it follows that B \ {u, v} ⊆ S.

Therefore:

cB(G+)− cB(G) =

1 if {u, v} ⊆ B ⊆ S ∪ {u, v}

0 otherwise.

The result the follows using the same argument as the proof of Theorem
4.8.2.

Finally, it is necessary to show that it is possible to move between any
two graphs by such individual edge additions and removals:

Theorem 4.8.5 (Frydenberg and Lauritzen 1989, Lemma 5). For any two
graphs G(0),G(k) ∈ U, such that E(G(0)) ⊂ E(G(k)) and |E(G(k))| − |E(G(0))| =
k, there exists a sequence of graphs G(1), . . . ,G(k−1) ∈ U such that:

E(G(0)) ⊂ E(G(1)) ⊂ . . . ⊂ E(G(k−1)) ⊂ E(G(k)).

Note that we may move between any two arbitrary graphs in at most (|V|2 )

moves by choosing G(0) to be the sparse graph, or G(k) to be the complete
graph.
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G

1

2

3

4

5

G+

1

2

3

4

5

Figure 4.2: Neighbouring graphs on 5 vertices: solid lines ( ) indicate
edges, dotted lines ( ) for missing edges. Red lines ( ) are those
whose removal/addition will result in a non-decomposable graph. In G,
only 7 of the 10 edges may be modified, whereas in G+ (obtained by adding
the edge {1, 4}), 9 of the 10 edges may be modified.

We can therefore use these results to construct an MCMC algorithm for
sampling from a structurally Markov graph law. Specifically, we can easily
construct a Metropolis–Hastings algorithm, with the following transition
kernel: given our current graph G(t), we select a pair of distinct vertices
u, v ∈ V. If {u, v} ∈ E(G(t)), and satisfies Theorem 4.8.1, the vertex is
deleted. If {u, v} /∈ E(G(t)), and satisfies Theorem 4.8.3, then the edge is
added. Otherwise, we stay at the current state.

Let N (G) = N−(G) ∪N+(G), then the proposal kernel would be:

Q
(
G(t),G ′

)
=


(
|V|
2

)−1

for G ′ ∈ N (G(t)), and

1−
∣∣N (G(t))

∣∣(|V|
2

)−1

for G ′ = G(t).

Since the proposal kernel is symmetric, i.e. Q(G(t),G ′) = Q(G ′,G(t)), the
acceptance probabilities simply depends on the relative densities. By Theo-
rems 4.8.2 and 4.8.4, this is simply min(α, 1), where:

α =

exp{ωC\{u} + ωC\{v} −ωC\{u,v} −ωC} if {u, v} ∈ E(G(t)),

exp{ωS + ωS∪{u,v} −ωS∪{u} −ωS∪{v}} if {u, v} /∈ E(G(t)).

This means that at each step, the acceptance probability can be evaluated
locally, utilising only four elements of the parameter vector: this is partic-
ularly useful when sampling from a posterior distribution, as we only then
need to evaluate the marginal likelihood of four subsets of V.

Remark. It is not explicitly stated in Giudici and Green (1999), but should the
proposed edge modification not result in a decomposable graph, it is nec-
essary to record an observation from the current state—and not just sample
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4. Undirected decomposable graphical models

another edge—as the calculation of the acceptance ratio would then require
finding the cardinality of N (G(t)), which is quite difficult to calculate (see
Thomas and Green 2009a for discussion of this problem).

One practical issue is the construction of an appropriate data structure
to represent the graph in computer memory. Although Theorems 4.8.1 and
4.8.3 characterise the possible edge removals and additions, it is far from
obvious how to efficiently determine if a proposed edge satisfies these cri-
teria. It is worth noting that simply storing a graph as a set of vertices and
edges is clearly inefficient, as this would require recomputing the cliques at
each step. The results of Thomas and Green (2009a,b) indicate that a list of
cliques stored in a perfect ordering or some representation of a clique tree
could be useful for this purpose.

Another problem is the rate of mixing of the Markov chain. Due to the
extremely large size of the space U and the restriction on staying within the
space of decomposable graphs, it can take an extremely long time to transi-
tion between two graphs. Kijima et al. (2007, 2008) show that for a uniform
graph law, certain starting graphs will result in a mixing time exponential
in |V|.

One possible solution is to propose larger jumps. Green and Thomas
(2011) suggest a slight modification of the above scheme in which multiple
edges may be removed or added. Another alternative would be to com-
pletely separate a vertex from the graph and reconnect it in some other way.
However as the sample space for such a proposal scheme would be consid-
erably larger—|V| × 2|V|−1 instead of (|V|2 )—a uniform proposal distribution
could result in frequently proposing moves to non-decomposable or low
probability graphs, giving a poor acceptance ratio. This could possibly be
improved by an adaptive sampling scheme, however it is far from clear how
this could be efficiently constructed. Furthermore, we could lose the benefits
of the local computation of the acceptance ratio.

Due to these difficulties, Jones et al. (2005) and Scott and Carvalho (2008)
propose non-MCMC “stochastic search” algorithms for obtaining a repre-
sentative sample of graphs from the posterior distribution. Although the
empirical results of these methods seem promising, their accuracy and the-
oretical properties remain unknown.
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Directed acyclic graphical models

We now investigate how the structural Markov property might be extended
to directed acyclic graphical models (DAGs). Let D be the set of directed
acyclic graphs on V vertices.

5.1 Ordered directed structural Markov property

Firstly, we consider a law for a random graph G̃ over the set D≺: the set of
directed acyclic graphs that respect a fixed well ordering ≺ on V.

The set D≺ is fairly easy to characterise: if an edge exists, its direction is
determined by ≺. Furthermore, any subset of the set of pairs of vertices (V

2)

will uniquely characterise a graph in D≺, therefore:

|D≺| = 2(
|V|
2 ).

So how might we develop a structural Markov property for such a graph?
Recall that by the strong directed hyper Markov property:

θ̃v|pa(v) ⊥⊥ θ̃pr(v). (5.1)

Both pr(v) and pr(v) ∪ {v} are ancestral sets in any such graph, then by
Theorem 1.2.5, the projections of the separoid are equal to those of the in-
duced subgraphs. Furthermore, by Theorem 1.2.3,Mpr(v)∪{v}(G) is spanned
by the set: {〈

{u}, pr≺(u) | paG(u)
〉

: u � v
}

and hence, also by the set:

{〈
{v}, pr≺(v) | paG(v)

〉}
∪M(Gpr(v)). (5.2)
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5. Directed acyclic graphical models

Note that
〈
{v}, pr≺(v) | paG(v)

〉
only depends on G through the parent set

of v. The correspondence of (5.2) to (5.1) leads to the following definition of
an ordered directed structural Markov property:

paG̃(v)⊥⊥ G̃pr(v)

Since this applies for all v ∈ V, we have:

⊥⊥
v∈V

paG̃(v).

As the parent sets of each vertex will uniquely determine the graph, we
may easily write the density of such a law as an exponential family whose
natural statistic is parent set of each vertex:

π(G) ∝ exp
{

∑
v∈V

∑
A⊆pr(v)

ωv|A1paG (v)=A

}
.

For the remainder of this chapter, we develop the structural Markov
property to the set of all directed acyclic graphs on V. Unfortunately the
above approach cannot be applied directly. For one thing, parent sets cannot
be independent: if u is a parent of v, then to maintain acyclicity v cannot be
a parent of u.

Firstly, we need to explore two key concepts: Markov equivalence and
ancestral sets.

5.2 Markov equivalence and Dagoids

Unlike undirected graphs, there is not a bijective mapping between the
graph and its separoid. That is, two or more distinct DAGs may have iden-
tical conditional independence properties, as in Figure 5.1.

Definition 5.2.1 (Markov equivalence). Let G and G ′ be directed acyclic
graphs such that M(G) = M(G ′). Then G and G ′ are Markov equivalent,
which we write as:

G M∼ G ′.

So when specifying a law for directed acyclic graphs, we are left with the
question of whether or not we should treat Markov equivalent graphs as the
same model. In other words, whether the model is defined by the graph or
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x y z

(a)

x y z

(b)

x y z

(c)

x y z

(d)

Figure 5.1: Four directed acyclic graphs with the same skeleton. Graphs (a),
(b) and (c) are Markov equivalent, and encode the property x⊥⊥ z | y. Graph
(d) has the property x⊥⊥ z.

the set of conditional independence statements which it encodes. We take
the latter view.

To simplify notation, we define a dagoid to be a Markov equivalence
class of directed acyclic graphs. Furthermore, we can define the complete
and sparse dagoids to be the Markov equivalence classes of a complete and
sparse DAGs, respectively. We will define DM to be the set of dagoids on
V.

A further advantage of working with equivalence classes is that a smaller
number of models need be considered. However this may not be as bene-
ficial as one may initially hope: Castelo and Kočka (2004) observed em-
pirically that the ratio of the number DAGs to the number of equivalence
classes appears to converge to approximately 3.7, as the number of vertices
increases.

Numerous methods of characterising Markov equivalence have arisen:

Skeleton and immoralities

The skeleton of a DAG is the undirected graph obtained by substituting the
directed edges for undirected ones. A triplet (a, b, c) of vertices is an im-
morality of a DAG G if the induced graph G{a,b,c} is of the form a→ b← c.

Theorem 5.2.1 (Verma and Pearl 1990, Theorem 1, 1992, Corollary 3.2; Fry-
denberg 1990, Theorem 5.6; Andersson, Madigan, and Perlman 1997a, The-
orem 2.1). Directed acyclic graphs G and G ′ are Markov equivalent if and only if
they have the same skeleton and the same immoralities.
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5. Directed acyclic graphical models

Essential graphs

An essential graph is a unique graphical representation of an equivalence
class. An edge of a DAG G is essential if it has the same direction in all
Markov equivalent DAGs. The essential graph of G is the graph in which all
non-essential edges are replaced by undirected edges.

Although not explored further in this work, the essential graph is a type
of chain graph, a class of graphs which may have both directed and undi-
rected edges. For further details on chain graphs, in particular their Markov
properties and how they relate to undirected and directed acyclic graphs,
see Frydenberg (1990) and Andersson, Madigan, and Perlman (1997b).

Theorem 5.2.2 (Andersson, Madigan, and Perlman 1997a, Proposition 4.3).
Directed acyclic graphs G and G ′ are Markov equivalent if and only if they have the
same essential graph.

Unfortunately, there is no simple criteria for determining whether or not
an edge of a given DAG is essential—Andersson, Madigan, and Perlman
(1997a) proposed an iterative algorithm—which limits their usefulness.

Covered edge reversals

A convenient characterisation of Markov equivalence can be given in terms
of edge reversals. An edge a → b of a DAG G is covered if pa(b) = pa(a) ∪
{a}.

Theorem 5.2.3 (Chickering 1995, Theorem 2). Directed acyclic graphs G and G ′

are Markov equivalent if and only if there exists a sequence of DAGs:

G = G0,G1, . . . ,Gk−1,Gk = G ′

such that each (Gi−1,Gi) differ only by the reversal of one covered edge.

As we shall see, this result is particularly useful for identifying properties
that are preserved under Markov equivalence, as we only need to show it is
preserved under a covered edge reversal.

Imsets

The standard imset of a directed acyclic graph G is:

uG = δV − δ∅ + ∑
v∈V

[
δpaG (v)

− δpaG (v)∪{v}

]
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See Studený (2005b, Page 135).

Theorem 5.2.4 (Studený 2005b, Corollary 7.1). Directed acyclic graphs G and
G ′ are Markov equivalent if and only if uG = uG ′ .

Studený and Vomlel (2009) give details of the relationship between the
imset and the essential graph of a DAG, and how one may be obtained from
the other.

5.3 Ancestral sets and remainder dagoids

Ancestral sets play a key role in the theory of directed acyclic graphical
models. In particular, we note the separoidM(G) is defined in (1.2) in terms
of ancestral sets. However ancestral sets are not preserved under Markov
equivalence, that is, an ancestral set in one graph G need not be ancestral in
another Markov equivalent graph G ′. For example, in Figure 5.1, {x, y} is
ancestral in (a) and (b), but not in (c).

Recall from Theorem 1.2.5 that subgraphs induced by ancestral sets pre-
serve the projection of the separoid. A somewhat trivial consequence is the
following:

Proposition 5.3.1. Let G M∼ G ′, and A ⊆ V be ancestral in both G and G ′. Then
GA

M∼ G ′A.

This leads to our definition of an ancestral set for a dagoid:

Definition 5.3.1. A set A ⊆ V is ancestral in a dagoid D if it is ancestral for
some graph G ∈ D. For any such A, define DA, the subdagoid induced by A,
to be the Markov equivalence class of GA.

We further define D(A) ⊆ DM to be the set of dagoids in which A is an
ancestral set.

We note that this property is not quite as strong as the collapsibility
property in undirected graphs, in that non-ancestral sets may also preserve
the separoid of the induced subgraph. For example, in Figure 5.1 (d), the set
{x, y} is not ancestral, but induced subgraph preserves the (trivial) separoid.

Definition 5.3.2 (Ancestral insertion). Let G be a directed acyclic graph on
V, of which A is an ancestral set, and let H be a directed acyclic graph on
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5. Directed acyclic graphical models

A. Then the insertion of H into G, written:

Hn G

is the directed acyclic graph on V with edge set:

E(H) ∪
[
E(G) \ A2].

In other words, the edges between elements of A are determined by H, and
all other edges are determined by G.

The graph insertion operation preserves Markov equivalence:

Lemma 5.3.2. Let G and G ′ be Markov equivalent graphs in which A is an ancestral
set, and H and H′ be Markov equivalent graphs on A. Then:

Hn G M∼ H′ n G ′

Proof. Both graphs must have the same skeleton. Let (a, b, c) be an immoral-
ity in Hn G. Then if b ∈ A, then (a, b, c) must be an immorality of H, and
hence also an immorality of H′, and so also of H′ n G ′.

Otherwise if b /∈ A, and at least one of a or c is not in A, then (a, b, c)
must be an immorality of G, and hence an immorality of G ′ and H′ n G ′.

Finally, if b /∈ A and a, c ∈ A, then {a, c} must not be an edge in the
skeleton H, nor an edge in the skeleton of H′. Hence it must also be an
immorality of H′ n G ′.

As a consequence of Lemma 5.3.2, for a dagoid D with ancestral set A,
we can define the ancestral insertion of a dagoid K on A into D as:

KnD = [Hn G]M

where G ∈ D is a directed acyclic graph with an ancestral set A, and H ∈ K.
We can use the idea of an insertion to partition the separoid of a directed

acyclic graph.

Definition 5.3.3. Let A be an ancestral set of a directed acyclic graph G. A
directed acyclic graph GV|A is a remainder graph of G given A if:

GV|A = C(A) n G

where C(A) is a complete dagoid on A.

68



5.4. Structural Markov property

By Lemma 5.3.2, the remainder graph must be unique up to Markov
equivalence. Hence for a dagoid D ∈ D(A), we can uniquely define the
remainder dagoid of D given A, denoted by DV|A.

The name comes from the fact thatM(DA) andM(DV|A) form a span-
ning subset ofM(D).

Theorem 5.3.3. Let A be an ancestral set of a directed acyclic graph G. Then:

M(G) =M(GA) ∪M(GV|A)

where S denotes the Markov closure of a set of conditional independence statements
S.

Proof. Recall thatM(G) is spanned by the set of elements of the form:〈
{v}, pr≺(v)|paG(v)

〉
(5.3)

where ≺ is a well-ordering in which the elements of A precede those of
V \ A. If v ∈ A, then (5.3) will be an element ofM(GA), otherwise if v /∈ A,
it will be an element ofM(GV|A).

Furthermore, the induced and remainder dagoids are variation indepen-
dent:

Theorem 5.3.4. For any A ⊆ V, we have:

DA ‡ DV|A | {D ∈ D(A)}

Proof. For any D,D′ ∈ DA, we can construct D∗ = DA nD′V|A. This will
have the required properties that D∗A = DA and D∗V|A = D′V|A.

5.4 Structural Markov property

Recall the strong hyper Markov property for the law £(θ̃) may be expressed
as:

⊥⊥
v∈V

θ̃v|pa(v) [£]

For any ancestral set A of G, we can write:

θA ' (θv|pa(v))v∈A and θV|A ' (θv|pa(v))v/∈A
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Therefore, an alternative characterisation of the strong hyper Markov prop-
erty is:

θ̃A ⊥⊥ θ̃V|A [£]

for any ancestral set A of G.

This motivates the following definition:

Definition 5.4.1 (Dagoid structural Markov property). We say a graph law
G(D̃) is structurally Markov if for any A ⊆ V, we have:

D̃V|A ⊥⊥ D̃A | {D̃ ∈ D(A)} [G].

As in the undirected case, we can characterise this property via the odds
ratio of the density:

Proposition 5.4.1. A graph law is structurally Markov if and only if for any
D,D′ ∈ D(A), we have:

π(D)π(D′) = π(DA nD′V|A)π(D′A nDV|A). (5.4)

Proof. As in Proposition 4.2.2, we may write the density π(D |D(A)) =

π(DA |D(A))π(DV|A |D(A)).

Example 5.4.1. As in the undirected case, the simplest example of a struc-
turally Markov graph law is the uniform law over DM.

However, we note that some simple laws are not structurally Markov

Example 5.4.2. Consider the law in which π(D) is proportional to |D|, in
other words, the uniform law on D projected onto DM. Then we note the
size of the following dagoids:

[ ]M = { }

[ ]M = { , }

[ ]M = { }

[ ]M = { , , , , , }

As a consequence, this law doesn’t satisfy Proposition 5.4.1, when D =

and D′ = , and A is chosen as the two top vertices.
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5.5 d-Clique vector

The equivalence class formulation of a dagoid is difficult to work with both
algebraically and computationally. Instead we propose a vector similar to
the clique vector of the previous chapter.

Definition 5.5.1. The d-clique vector of a directed acyclic graph G is:

t(G) = ∑
v∈V

[
δ{v}∪paG (v)

− δpaG (v)
]
+ δ∅ ∈ Z2V

(5.5)

where:

(δA)I =

1 if I = A

0 if I 6= A
.

Again, we note the similarity of this vector to the imsets of Studený
(2005b), specifically the structural imset t(G) = δV − uG of in section 5.2

In a similar manner to the undirected case, we can define the d-completeness
vector to be the Möbius transform of the d-clique vector:

cA(G) = ∑
B⊇A

tB(G), (5.6)

and say that a set A ⊆ B is d-complete if cA(G) = 1.

Lemma 5.5.1. Let ≺ be a well-ordering of a directed acyclic graph G. Then for any
non-empty set A ⊆ V:

cA(G) =

1 if A \ {a} ⊆ paG(a),

0 otherwise,

where a is the maximal element of A under ≺.

Proof. By substituting (5.5) into (5.6):

cA(G) = ∑
v∈V

1A⊆paG (v)∪{v} − 1A⊆paG (v)
.

These terms will cancel out unless v ∈ A. Furthermore, A ⊆ paG(v) ∪ {v}
only if all u ≺ v for all u ∈ A. Hence:

cA(G) = 1A⊆paG (a)∪{a}.
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5. Directed acyclic graphical models

This gives the link to the previous chapter, in particular the cliques and
complete sets:

Corollary 5.5.2. If G is a perfect directed acyclic graph and Gs is its skeleton, then
cG = cGs , and hence t(G) = t(Gs).

Most importantly, the d-clique vector is a unique representation of the
dagoid:

Theorem 5.5.3. Let G,G ′ be directed acyclic graphs on V. Then G M∼ G ′ if and
only if t(G) = t(G ′).

Proof. To show the d-clique vector is preserved under Markov equivalence,
by Theorem 5.2.3 it is sufficient to show that it is preserved under a covered
edge reversal. If (a, b) is a covered edge of G, then the contribution of these
vertices to the sum (5.5) is:

t(G) =
[
δ{a}∪paG (a) − δpaG (a)

]
+
[
δ{b}∪paG (b)

− δpaG (b)
]

+ ∑
v 6=a,b

[
δ{b}∪paG (b)

− δpaG (b)
]
+ δ∅

By definition paG(a) ∪ {a} = paG(b), and so the corresponding terms will
cancel. If G∗ is obtained from G by reversing (a, b), note that:

paG(a) = paG∗(b) and paG(b) ∪ {b} = paG∗(a) ∪ {a},

and the remaining terms will be unchanged. Hence t(G) = t(G∗).
To show that the d-completeness vector (and hence, also the d-clique

vector) is unique to the equivalence class, by Theorem 5.2.1 we can show
that it determines the skeleton and immoralities. By Lemma 5.5.1, there is
an edge between u and v in G if and only if c{u,v}(G) = 1. Likewise, (u, v, w)

is an immorality if and only if c{u,v,w}(G) = 1 and c{u,w}(G) = 0.

This cancellation of terms involving covered edges is very useful: as a
consequence, the d-clique vector will generally be quite sparse. In line with
the clique vector, we term sets A ⊆ V such that tA(D) = 1 to be a d-clique,
and the sets where tA(D) < 0 to be d-separators. See Figure 5.2 for examples.

Theorem 5.5.4. Let A be an ancestral set of a dagoid D. Then:

t(D) = [t(DA)]
0 + t(DV|A)− δA,

where [·]0 denotes the expansion of the vector with zeroes to the required coordinates.
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5.5. d-Clique vector

(a) (b)

Figure 5.2: The d-cliques ( ) and d-separators ( ) of different directed
acyclic graphs. Note that in the perfect DAG (a), the d-cliques and d-
separators are the cliques and separators of the skeleton. However, as in
(b), d-separators may contain d-cliques.

Proof. Let G ∈ D in which A is ancestral, and ≺ be a well-ordering of G in
which elements of A precede those of V \ A.

Note that:

paG(v) =

paGA
(v) v ∈ A,

paGV|A
(v) v /∈ A.

The result then follows after noting that:

∑
v∈A

[
δ(paGV|A

(v)∪{v}) − δpaGV|A
(v)
]
= δA

We now arrive at the key result of this section: the dagoid structural
Markov property characterises an exponential family of graph laws.

Theorem 5.5.5. Let G whose support is DM. Then G is structurally Markov if
and only if it is a member of an exponential family with the d-clique vector as a
sufficient statistic. That is, G has density:

πω(D) ∝ exp{ω · t(D)} (5.7)

Proof. If the law is in the exponential family in (5.7), by Theorem 5.5.4, we
have:

π(D|D(A)) ∝ exp{ω · [t(DA)+ t(DV|A)]−ωA} ∝ p(DA|D(A))p(DV|A|D(A))

hence the law must be structurally Markov.
For the converse, define D(A) to be the dagoid in which the induced

dagoid on A ⊆ V is complete, but otherwise sparse (in other words, the
remainder dagoid D(∅)

V|A, of the sparse dagoid D(∅)).
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5. Directed acyclic graphical models

Select some G ∈ D, and let v1, . . . , vd be a well ordering of V. Recursively
define the dagoids:

D∗(i) =

D({v1}) if i = 1,

D∗(i−1)
pr(vi)

nD({vi}∪pa(vi))
vi |pr(vi)

otherwise.

By Proposition 5.4.1, for i = 2, . . . , d:

π(D∗(i−1))π(D({vi}∪pa(vi))) = π(D∗(i))π(D({vi}∪pa(vi))
pr(vi)

nD∗(i−1)
vi |pr(vi)

)

However,

D({vi}∪pa(vi))
pr(vi)

nD∗(i−1)
vi |pr(vi)

= D(pa(vi))

Therefore, since D∗(d) = D, then:

π(D) =

d

∏
i=1

π(D({vi}∪pa(vi)))

d

∏
i=2

π(D(pa(vi)))

.

which is of the form in (5.7), where:

ωA = log π(D(A)).

We note that a similar exponential families were proposed by Mukherjee
and Speed (2008), however they treat Markov equivalent graphs as distinct,
and allow them to have different probabilities.

5.6 Compatibility

As with the undirected case, a graph law is only part of the story. For each
dagoid D, we also require a method to specify either a Markov sampling
distribution, or a law over such sampling distributions.

Definition 5.6.1. Distributions θ and θ′ which are Markov with respect to
directed acyclic graphs G and G ′, respectively, are graph compatible if for every
vertex v where paG(v) = paG ′(v), there exists versions of the conditional
probability distributions for Xv | Xpa(v) such that:

θ(Xv |Xpa(v)) = θ′(Xv |Xpa(v)).
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Furthermore, distributions θ and θ′ which are Markov with respect to dagoids
D and D′, respectively, are (dagoid) compatible if they are graph compatible
for every pair of graphs G ∈ D,G ′ ∈ D′.

Likewise, laws £(θ̃) and £′(θ̃), hyper Markov with respect to G and G ′

respectively, are graph hyper compatible if for every vertex v where paG(v) =
paG ′(v), there exists versions of the conditional laws for θ̃v|pa(v) | θ̃pa(v) such
that:

£(θ̃v|pa(v) | θ̃pa(v)) = £′(θ̃v|pa(v) | θ̃pa(v)).

Recall that by Theorem 1.3.1 the weak hyper Markov property may be char-
acterised in terms of M(G), and so the weak hyper Markov property can
be defined with respect to a dagoid. Laws £(θ̃) and £′(θ̃), that are hyper
Markov with respect to D and D′, respectively, are (dagoid) hyper compatible
if they are graph compatible for every pair of graphs G ∈ D,G ′ ∈ D′.

As in the undirected case, we can define a family of compatible dis-
tributions θ = {θ(G) : G ∈ U} and a family of hyper compatible laws
L = {£(G) : G ∈ U} if they are pairwise compatible or hyper compatible
with respect to the relevant graphs.

Proposition 5.6.1. Suppose G(D̃) is a graph law over DM and θ is a family of
compatible distributions. Then:

XA ⊥⊥ D̃V|A | D̃A, {D̃ ∈ D(A)} [θ,G] (5.8)

and
XV\A ⊥⊥ D̃A | XA, D̃V|A, {D̃ ∈ D(A)} [θ,G]. (5.9)

Likewise, if G(D̃) is a graph law over DM and L is a hyper compatible family of
laws, then:

θ̃A ⊥⊥ D̃V|A | D̃A, {D̃ ∈ D(A)} [L,G]

and
θ̃V\A|A ⊥⊥ D̃A | θ̃A, D̃V|A, {D̃ ∈ D(A)} [L,G].

Proof. This is much the same as Proposition 4.4.1: for (5.8), the distribution
for XA are determined by the parent sets of the vertices in A in some G ∈ D
in which A is ancestral. Likewise, in (5.9), the conditional distribution for
XV\A | XA is determined by the parents sets of vertices in V \ A. The same
argument applies at the hyper level.
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5. Directed acyclic graphical models

Note that in the definition of compatibility and hyper compatibility we
specifically refer to versions of conditional probabilities and laws, as in some
cases the conditional distributions/laws will not be uniquely defined, due
to the Borel–Kolmogorov paradox.

Example 5.6.1. Suppose the joint distribution P on a triplet of binary vari-
ables (X, Y, Z) has P(X = 1, Y = 1) = 0, but with P(X = 1) > 0 and
P(Y = 1) > 0. Then the conditional distribution P(Z = 1 |X = 1, Y = 1) is
not uniquely defined.

Now consider a compatible distribution P′ on the graph:

X Z Y (5.10)

Then we have P′(X = 1, Y = 1) = P(X = 1)P(Y = 1) > 0. Therefore
P′(X = 1, Y = 1, Z = 1) may be defined arbitrarily, as for any conditional
probability P′(Z = 1 |X = 1, Y = 1), there will exist a corresponding version
of P(Z = 1 |X = 1, Y = 1)

We could avoid this type of ambiguity in the case of compatible distribu-
tions by requiring that the density be positive with respect to some product
measure. However the situation isn’t so simple at the hyper level:

Example 5.6.2. Consider a law £(θ̃) for a triplet of binary variables (X, Y, Z),
and suppose that it is continuous on the full probability simplex.

A hyper compatible law £′ on the graph in (5.10), will have marginal
laws £′(θ̃X) = £(θ̃X) and £′(θ̃Y) = £(θ̃Y). This means the joint law £′(θ̃XY)

will be their product law, which is concentrated on the manifold X⊥⊥Y.
As this manifold will have probability 0 under £, we may define the

conditional law £′(θ̃Z|XY | θ̃XY) arbitrarily.

It is possible to uniquely define such conditional laws if we impose fur-
ther conditions, such as the existence of a continuous density for £(θ̃). How-
ever we can also resolve the problem by insisting on a dagoid form of the
strong hyper Markov property:

Definition 5.6.2. A law £(θ̃) is over P(D) is strong hyper Markov with respect
to D if it is strong directed hyper Markov with respect to every G ∈ D.

Note that if G ∈ D is perfect, then the dagoid strong hyper Markov
property is equivalent to the undirected strong hyper Markov property on
the skeleton of G (see Dawid and Lauritzen 1993, Proposition 3.15).
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The notion of hyper compatibility is equivalent to the “parameter mod-
ularity” property of Heckerman, Geiger, and Chickering (1995). Likewise,
the strong hyper Markov property is equivalent to their “parameter inde-
pendence”

Example 5.6.3 (Dagoid hyper inverse Wishart law). We may extend the hy-
per inverse Wishart law in section 1.6 to dagoids. For each vertex v of a
directed acyclic graph G, we define the law for the conditional parameter
£(θ̃v|paG (v)

) to be the same as that of the inverse Wishart I W (δ; Φ). That is:

£(Σ̃v|paG (v)
) = I W (δ + |paG(v)|; Φv|paG (v)

)

£(Γ̃v|paG (v)
| Σ̃v|paG (v)

) = Φ{v},paG (v)
Φ−1

paG (v)
+N{v}×paG (v)

(Σ̃v|paG (v)
, Φ−1

paG (v)
)

By the properties of the inverse Wishart law, it follows that the law derived
under a covered edge reversal will be identical, hence may be defined by the
dagoid. Furthermore, by the above definition, it is hyper compatible.

Theorem 5.6.2. If L is a family of strong hyper Markov hyper compatible laws,
then the family of marginal data distributions is compatible

Proof. The hyper compatibility and the strong hyper Markov property imply
that for any two dagoids D,D′, and any G ∈ D,G ′ ∈ D′, that if paG(v) =

paG ′(v) for some v ∈ V, then:

£(D)(θ̃v|pa) = £(D
′)(θ̃v|pa)

Therefore, the family of marginal data distributions θ̄ = {θ̄(D) : D ∈ DM}
will have:

θ̄(D)(Xv |XpaG ) = E£(D) [θ̃v|paG
] = θ̄(D

′)(Xv |XpaG ) = E£(D′) [θ̃v|paG
].

This is particularly useful because, as in the undirected case, the struc-
tural Markov property will be preserved in the posterior under compatible
sampling:

Theorem 5.6.3. Suppose G(D̃) is a structurally Markov graph law over DM and
θ is a family of compatible distributions. Then the posterior graph law for D̃ is
structurally Markov.
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Proof. By the structural Markov property and (5.8), we have:

(XA, D̃A)⊥⊥ D̃V|A
∣∣ {D̃ ∈ D(A)}

and hence:

D̃A ⊥⊥ D̃V|A
∣∣ XA, {D̃ ∈ D(A)}

Combining this with (5.9), we get:

D̃A ⊥⊥ (D̃V|A, XV\A)
∣∣ XA, {D̃ ∈ D(A)}

and hence:

D̃A ⊥⊥ D̃V|A
∣∣ X, {D̃ ∈ D(A)}

We can specify a compatible family by a positive density on the complete
dagoid:

Theorem 5.6.4. If the distribution on the complete dagoid has positive density p
(with respect to some product measure), then the compatible distribution for any
dagoid D, has density:

p(D)(x) = ∏
A⊆V

[p(xA)]
t(D)A (5.11)

Proof. Let G be an arbitrary graph in D. Then by compatibility:

p(D)(x) = ∏
v∈V

p(xv|xpa(v)) =

p

∏
i=1

p(x{vi}∪pa(vi))

p

∏
i=2

p(xpa(vi))

= ∏
A⊆V

[p(xA)]
t(D)A

As a consequence, if the graph law has a d-clique exponential family of
the form (5.7), and the sampling distributions are compatible with density
of the form (5.11), then the posterior graph law will have density:

π(D |X) ∝ exp
{[

ω + (log pA(XA))A⊆V
]
· t(D)

}
.

That is, the d-clique exponential family is a conjugate prior under sampling
from a compatible family.
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Three Markov equivalent graphs, (a), (b) and (c), in which the
same edge removal will result in a transition to a distinct Markov equiva-
lence class, (d), (e) and (f), respectively. The d-cliques ( ) and d-separators
( ) of each graph are also drawn.

5.7 Computation

As in the undirected case, the normalisation constant of the exponential
family has no analytic form. Furthermore, as the number of dagoids will
increase superexponentially with the number of vertices, simple enumera-
tion of all possible dagoids is generally not be feasible. Thus we will usually
need to resort to some approximation method.

Unfortunately, specification of such a MCMC algorithm for dagoids is
much more difficult than for the undirected case. Specifically, an individual
edge no longer uniquely characterises a neighbouring dagoid, as in Figure
5.3.

If the directed graph G+ is obtained from the directed graph G by the
addition of the edge (u, v), the only term in the summation (5.5) that will
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change is those pertaining to the vertex v, in which case:

t(G+)− t(G) =
(
δ{v}∪paG+ (v) − δpaG+ (v)

)
−
(
δ{v}∪paG (v)

− δpaG (v)
)

= δpaG (v)∪{u,v} − δpaG (v)∪{u} − δpaG (v)∪{v} + δpaG (v)

In other words, the change in the d-clique vector is determined by the parent
set of v in G. Therefore, to characterise the neighbouring dagoids (defined
as the equivalence classes of the neighbouring graphs), we need to know
the parent set of v for each G ∈ D. Furthermore, as in the undirected case,
computing the ratio of probabilities only requires evaluating the parameter,
and hence the marginal likelihood, on 4 subsets.

Notably, Chickering (2003), Auvray and Wehenkel (2002) and Studený
(2005a) develop methods for characterising the neighbouring dagoids. Un-
fortunately, all these methods are rather complicated, and it is not readily
apparent how they might be utilised in an efficient MCMC approach.

Another approach is to incorporate an auxiliary variable. One such
method is the “Augmented Markov chain Monte Carlo model composition
(AMC3)” algorithm proposed by Madigan, Andersson, et al. (1996). At each
step, the algorithm proposes a random well-ordering ≺̃ of the vertices, with
respect to (some graph contained in) the current dagoid D, and then pro-
poses a random edge addition or removal consistent with this well-ordering
to obtain a new dagoid D′.

However, as with any auxiliary variable method, there are two related
difficulties:

(a) Specification of the proposal distribution for the auxiliary variable:
it is generally quite difficult to characterise the well-orderings of a
dagoid. The authors propose a mechanism based on maximum cardi-
nality search, however this will fail to reach all possible orderings.

(b) Evaluation of the acceptance ratio:

π(D′ | ≺)
π(D |≺) =

π(D′)
π(D)

π(≺ |D′)
π(≺ |D)

The authors propose two methods of approximating this ratio, but it is
unclear if there will have an adverse influence on the accuracy of the
computation.

Castelo and Kočka (2004) propose a similar method they term “enhanced
MC3”, which instead uses the graph itself as the auxiliary variable. At each
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step, the algorithm performs a sequence of random covered edge reversals,
then proposes a move. Again, they require an approximation of the accep-
tance ratio.
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6

Discussion

We have demonstrated the usefulness of hyper Markov properties, and
shown how they might be extended to the case where the structure of
the graph is unknown. In particular, we have shown that these structural
Markov properties characterise exponential families on the set of undirected
decomposable graphs, and the set of Markov equivalence classes of directed
acyclic graphs. Furthermore, when used as priors, they are conjugate with
a family of compatible sampling distributions.

One of the significant remaining challenges is computation. Although
we have suggested some possible MCMC approaches for evaluating the pos-
terior, these methods will generally become impractical as the number of
vertices in the graph increases. This problem could be alleviated somewhat
by considering a smaller family of graphs, such as limiting the maximum
clique size in undirected graphs.

One disadvantage of sample-based approximations such as MCMC is
that the posterior is approximated by a large set of graphs. By averaging
over a large number of graphs, we lose some of the convenient aspects of the
graphical formulation, such as efficient propagation algorithms for inferring
marginal distributions. One possible solution would be to find a graph, or
small set of graphs, that best represent the posterior in some way.

A common approach is to simply take the graph with the highest poste-
rior probability, the so-called maximum a posteriori or MAP estimate. How-
ever, this may not necessarily be optimal: Barbieri and Berger (2004) showed
that for regression models, the median model (that which incorporates the
variables whose marginal probability greater than 1

2 ) can be optimal in terms
of future predictive ability.

It would be of interest to know if such a result could extend to graphical
model determination, perhaps based on edge inclusion probability, though
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this would depend on the choice loss function. Furthermore, in the undi-
rected case, there is no guarantee that the resultant graph would be decom-
posable, and it is not clear how such an approach could be applied in the
case of dagoids.
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Graph terminology

We provide a quick summary of graph terminology used throughout the
paper. For further details, see Lauritzen (1996) or Cowell et al. (2007).

A graph G is a pair of finite sets:

• V(G) of vertices or nodes, and

• E(G) of edges, which are pairs of distinct vertices.

We say a graph G is on V if V(G) = V.

A.1 Undirected graphs

In an undirected graph, the edges are unordered pairs {u, v}, that is:

E(G) ⊆
(
V(G)

2

)
=
{

A ⊆ V(G) : |A| = 2
}

.

We say G is sparse if E(G) = ∅. Conversely, G is complete if it contains an
edge between every pair of vertices, that is E(G) = (V(G)2 ).

A graph G ′ is a subgraph of G if:

V(G ′) ⊆ V(G) and E(G ′) ⊆ E(G).

Specifically, it is an edge subgraph if V(G ′) = V(G). The subgraph (of G)
induced by A ⊆ V(G) is the graph GA on A, with the edges from G that are
between elements of A, that is:

E(GA) =
{
{u, v} ∈ E(G) : u, v ∈ A

}
.

A set B ⊆ V(G) is complete in G if the induced subgraph GB is complete.
If {u, v} ∈ E(G), then u, v are adjacent, and u is a neighbour of v. We write

neG(v) to be the set of neighbours of v. The boundary bdG(A) of a subset A
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of V(G) is the set of vertices in V(G) \ A that are neighbours of elements in
A.

A path (of length k) is a sequence of vertices v0, v1, . . . , vk such that each
{vi−1, vi} ∈ E(G). A cycle is a path that starts and ends at the same vertex.

Vertices u, v ∈ V(G) are connected if there exists a path from u to v.
A connected component is a maximal subset C of V(G) such that every pair
u, v ∈ C is connected. A graph is connected if it has exactly one connected
component.

A chord of a cycle is an edge joining two nonconsecutive vertices. A
graph is triangulated or chordal if any cycle of length ≥ 4, has a chord.

Vertices a and b are separated by a subset S ⊆ V(G) if every path from
a to b passes through S. In this case, we can say that S is an a-b separator.
Subsets A and B are separated by S if every a ∈ A and b ∈ B are separated
by S.
G is collapsible onto a subset A of V(G) if each connected component Bi

of GV\A has a boundary bdG(Bi) in G that is complete.
A decomposition of an undirected graph is a pair (A, B) such that:

(i) A ∪ B = V(G),

(ii) GA∪B is complete, and

(iii) A and B are separated by A ∩ B in G.

A decomposition is proper if both A and B are proper subsets of V.
A graph is decomposable if it is complete, or there exists a proper decom-

position (A, B) such that GA and GB are decomposable.

Note. This recursive characterisation is well-defined, as both GA and GB must
have fewer vertices than G.

We will write U as the set of undirected decomposable graphs on V.
A clique is a subset of vertices C ⊆ V(G) such that GC is complete, and it

is maximal with this property. We use cl(G) to denote the set of cliques of
G.

For a sequence of subsets B1, . . . , Bk of V(G) we can define:

Hi = B1 ∪ . . . ∪ Bi, i = 1, . . . , k

termed the histories, and:

Ri = Bi \ Hi−1, and Si = Bi ∩ Hi−1, i = 2, . . . , k
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residuals and separators, respectively. This sequence is perfect if each GBi is
complete, and each Si ⊆ Bj for some j < i (called the “running intersection
property”).

A numbering of the vertices v1, . . . , vn is perfect if the corresponding se-
quence of sets:

Bj = {v1, . . . , vj} ∩
(
neG(vj) ∪ {vj}

)
, j = 1, . . . , n

is perfect.

Theorem A.1.1 (Lauritzen 1996, Proposition 2.5 and Proposition 2.17). For
an undirected graph G, the following conditions are equivalent:

(i) G is decomposable.

(ii) G is chordal.

(iii) Every minimal separator between any two nonadjacent nodes is complete.

(iv) The vertices of G admit a perfect numbering.

(v) The cliques of G can be arranged in a perfect sequence.

The separators of a decomposable graph are the separators in a perfect
sequence of cliques, the set of which we denote by sep(G), and we note that
these will be the minimal separators between non-adjacent vertices. Further-
more, the same separator S may appear multiple times in this sequence: the
number of times in which it appears is said to be its multiplicity, which we
will usually denote by νG(S).

An algorithm known as maximum cardinality search (Tarjan and Yannakakis
1984) can determine whether or not a graph is decomposable, and if it is,
will provide a perfect numbering. A small modification (Cowell et al. 2007,
Algorithm 4.11) will also provide a perfect ordering of cliques.

A.2 Directed graphs

In a directed graph, the edges are ordered pairs of distinct vertices (u, v), and
so:

E(G) ⊆
{
(u, v) : u, v ∈ V(G), u 6= v

}
.

Some notions transfer directly from undirected graphs, such as a sparse
graph, subgraph and induced subgraph.
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Figure A.1: The cliques ( ) and separators ( ) of an undirected decom-
posable graph. Note that the separator {5, 6} has mutliplicity 2, as it sepa-
rates the three cliques {4, 5, 6}, {5, 6, 7} and {5, 6, 8, 9}.

The skeleton of a directed graph G is the undirected graph Gs obtained by
substituting the directed edges for undirected ones, i.e. V(Gs) = V(G) and:

E(Gs) =
{
{u, v} : (u, v) ∈ V(G)

}
.

In this case, we say G is a directed version of Gs. A directed graph is complete
if its skeleton is complete.

A directed path is a sequence of vertices v0, . . . , vk such that each pair
(vi−1, vi) ∈ E(G). A trail is a sequence such that at least one of either
(vi−1, vi) or (vi, vi−1) is in E(G), i.e. a trail is a path in the skeleton.

An directed acyclic graph or DAG is a directed graph without any directed
cycles. We note that this precludes the existence of a pair of opposingly
directed edges (u, v) and (v, u) in the same graph. We will write D as the
set of directed acyclic graphs on V.

If (u, v) ∈ E(G) we say u is a parent of v, and v is a child of u. We write the
set of parents of v as paG(v). If there exists a directed path from u to v, then
u is an ancestor of v, and v is a descendant of u. We write the set of ancestors
and descendants of v as anG(v) and deG(v), respectively, and note that both
of these sets include v itself. Furthermore, for a set A ⊆ V(G), we write
anG(A) = ∪v∈A anG(v) and deG(A) = ∪v∈A deG(v). The non-descendants of
v is the complement set V \ deG(v), and written ndG(v). A subset A ⊆ V(G)
is ancestral if anG(A).

The moral graph Gm is the undirected graph constructed from the skeleton
of G by adding edges between any two vertices that have a common child.
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A.2. Directed graphs

A well-ordering of a directed acyclic graph G is an proper ordering ≺ of
the vertices v1 ≺ . . . ≺ vp such that for any edge (u, v) ∈ E(G), we have
u ≺ v.

A directed acyclic graph is perfect if the subgraph induced by the parent
set of each node is complete. In this case, the moral graph is simply the
skeleton. Furthermore, a well-ordering of the vertices of a perfect graph will
induce a perfect numbering of the skeleton.
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