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Abstract

We consider the research problem of quantitative support for decision making in supply

chain network design (SCND). We first identify the requirements for a comprehensive

SCND as (i) a methodology to select uncertainties, (ii) a stochastic optimisation model,

and (iii) an appropriate solution algorithm. We propose a process to select a man-

ageable number of uncertainties to be included in a stochastic program for SCND. We

develop a comprehensive two-stage stochastic program for SCND that includes uncer-

tainty in demand, currency exchange rates, labour costs, productivity, supplier costs,

and transport costs. Also, we consider conditional value at risk (CV@R) to explore

the trade-off between risk and return. We use a scenario generator based on moment

matching to represent the multivariate uncertainty. The resulting stochastic integer

program is computationally challenging and we propose a novel iterative solution al-

gorithm called adaptive scenario refinement (ASR) to process the problem. We describe

the rationale underlying ASR, validate it for a set of benchmark problems, and discuss

the benefits of the algorithm applied to our SCND problem. Finally, we demonstrate

the benefits of the proposed model in a case study and show that multiple sources of

uncertainty and risk are important to consider in the SCND. Whereas in the literat-

ure most research is on demand uncertainty, our study suggests that exchange rate

uncertainty is more important for the choice of optimal supply chain strategies in inter-

national production networks. The SCND model and the use of the coherent downside

risk measure in the stochastic program are innovative and novel; these and the ASR

solution algorithm taken together make contributions to knowledge.
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1. Introduction

1.1. Problem Context and Motivation

Responding to changing environments of economy and commerce, as well as the impact

of geopolitics and disruptive technologies, manufacturing companies have to embark

upon strategic planning, which involves supply chain network design (SCND). In par-

ticular in the automotive industry, numerous factors require companies to analyse and

improve their supply chain strategies, for example the rise of the Asian markets, new

product introductions like hybrid and electric cars, mergers and acquisitions, fluctu-

ating currency exchange rates, and increasingly volatile fuel costs. Further, modern

manufacturing supply chains face customers with demand for increasing product vari-

ety, shorter product life cycles, lower cost, better quality, and faster response. To be

successful in increasingly globalised and competitive markets, companies must con-

stantly strive to reduce supply chain costs and improve customer service while planing

for the unexpected. (Vonderembse et al., 2006; IBM, 2009).

Supply chain network design (SCND) is the strategic planning of supply chains, con-

cerned with the number, location, and capacity of facilities and distribution centres,

production technology to be employed at each facility, supplier selection, make-or-buy

decisions, and the design of the transportation network (Shapiro, 2007). SCND determ-

ines the technology, process, and manufacturing assets for a company over the future

years, in which it needs to fulfill the customer demands while remaining competitive.

Further, the strategic decisions typically involve high investment costs and are not eas-

ily reversible. Therefore, SCND is crucial to the long term success of any manufacturing

company. Four key aspects of the problem are (i) the topology of the supply chain,

(ii) the timing of the decisions, (iii) consideration of uncertainty due to the stochasticity

of input data, and (iv) the aim to maximise profit (Alonso-Ayuso et al., 2005b). To

support managers at making decisions in this highly complex problem, quantitative,

data-driven models are needed (Shapiro, 2007).

In this thesis, we study the scope of quantitative decision support in the SCND. We

focus on SCND for manufacturing supply chains, especially in the automotive industry.

In the remainder of this chapter, we pose research questions about SCND and set out

the contents of this thesis.

1



1. Introduction

1.2. Research Questions

Set against the background presented in section 1.1, in this thesis we develop a meth-

odology to support quantitative decision making in SCND and address the following

research question:

Q1 How can we support decision making in SCND with a quantitative methodology?

To refine this question, we first need to specify the requirements for such a methodology:

Q2 What are the methodological requirements for quantitative decision support in

SCND?

By answering this question, we identify three aspects of SCND that need further invest-

igation: (i) uncertainty identification, (ii) SCND optimisation models, and (iii) solution

algorithms. It is well accepted that uncertainties play a crucial role in the design of

supply chains. However, there are numerous uncertainties that might have a possible

effect on a production network, an issue addressed by the following question:

Q3 Which uncertainties need to be considered in SCND and how do we identify them?

Given the uncertainties, we need a model to support the decision making, which is

addressed in the following research question:

Q4 What is an appropriate way to model the SCND problem?

We claim that the answer to this is a stochastic optimisation model, which – due to its

complexity – requires an appropriate solution algorithm, investigated in the following

question:

Q5 How do we solve the SCND optimisation problem?

By providing answers in the form of models and solution algorithms to the series of

these research questions Q2 – Q5 we develop a comprehensive methodology for decision

support in SCND.

1.3. Outline of the Thesis

The contents of this thesis is organised in the following way.

In chapter 2 we investigate the methodological requirements for quantitative decision

support in SCND. To set the relevant background and refine the research questions,

we first define SCND and introduce concepts of decision making under uncertainty.

Then, we identify three key issues, based on the previous definitions and the related

literature. (i) We find that uncertainty and risk play an important role and that we need

2



1.3. Outline of the Thesis

a methodology to select uncertainties that are included in the subsequent model. (ii) We

suggest to employ a holistic optimisation model, including comprehensive strategic and

tactical stages, detailed cost calculation in line with accountancy standards, and the

consideration of multiple sources of uncertainty and risk. (iii) We set out the need for

a solution approach that can deal with the resulting large scale optimisation problem

but is still flexible enough to cope with evolving model structures in varying real world

applications.

In chapter 3 we investigate how one can identify a set of relevant uncertainties for a

SCND project, manageable in an optimisation model. First, we set the relevant back-

ground by introducing the concept of risk management in supply chains. Then, we

review the related literature and deduce that while many concepts are related, no suit-

able methodology exists. Hence, we propose a new process for uncertainty selection

based on the principle ideas of risk management. This is a structured, qualitative ap-

proach which aims to objectively capture expert opinion. For a case study we select

six sources of uncertainty for an international production network in the automotive

industry: uncertainty in demand, productivity, transport costs, labour costs, raw ma-

terial costs, and exchange rates.

In chapter 4 we investigate the modeling of SCND under uncertainty. We give an

extensive review of the literature and find that, although many of the features identified

in chapter 2 appear in some research, no comprehensive study covering them altogether

is reported. Therefore, we propose a two-stage stochastic program which includes the

identified uncertainties, a holistic network structure, and detailed operations, especially

in regards to exploiting flexibility. Since the decisions are made under uncertainty, the

profit for a given network design is itself uncertain. To explore the resulting trade-

off between risk and return, we take into account conditional value at risk (CV@R) as

a coherent downside risk measure and measure return as expected profit (EP). The

two key features of the optimisation model are the consideration of multiple sources

of uncertainty and the inclusion of the risk measure to explore the trade-off between

risk and return. Further, we propose a scenario generator to represent the uncertainty.

This is an extension of a moment matching scenario generator by Høyland et al. (2003)

through a combination with sampling. Thereby we generate multi time period scenarios

with the number of scenarios being constant over time, while capturing the correlation

structure of the multivariate uncertainty.

In chapter 5, we investigate solution methodologies suitable for the proposed model,

which is a stochastic integer program (SIP) with a large number of scenarios. We

review existing algorithms and conclude that the problem can only be addressed by

approximation heuristics. Among the reviewed algorithms, two are suitable: (i) a

scenario reduction method by Heitsch and Römisch (2007) and (ii) using the scenario

generator to produce a small scenario set for ex-ante decision making and a large set for

3



1. Introduction

ex-post evaluation. Still, we propose a new solution heuristic called adaptive scenario

refinement (ASR), that iteratively adds scenarios based on a maximum regret criterion.

This is implemented in the FortSP stochastic programming solver system (see Ellison

et al., 2010). We carry out an empirical study comparing the solution quality of the

above approximation methods on publicly available linear and mixed integer test cases

for stochastic programming, as well as on the SCND model.

Having developed a comprehensive methodology for SCND in the previous chapters,

we apply it to a case study in chapter 6. The case study network is an international

production network in the automotive industry with suppliers and facilities in Europe,

Brazil, and China, and markets in Europe, Brazil, China, and the United States. The

focus of the investigation is to analyse the effects and benefits of the key features of

the optimisation model, that is, multiple sources of uncertainty and the CV@R risk

measure. This is undertaken in three steps: (i) We explore the trade-off between risk

and return and give insights into successful supply chain strategies. (ii) We use an ex-

ante decision making / ex-post evaluation approach to analyse the benefits from taking

multiple uncertainties into account, in contrast to planning under single uncertainties.

(iii) We investigate the effects of various uncertainties on given network structures.

Finally, we summarise the findings reported in this thesis and present our conclusions

in chapter 7.

4



2. Methodological Requirements for

Supply Chain Network Design (SCND)

In this chapter we investigate the relevant requirements for comprehensive SCND. This

defines the structure of the thesis, as we expand on the identified topics in subsequent

chapters. To set out the relevant background, we define ‘supply chain network design’

and related terms in section 2.1 and introduce the concepts of decision making under

uncertainty in section 2.2. This enables us to identify the methodological requirements

in section 2.3.

2.1. SCND – Scope and Definition

2.1.1. Supply Chain Management

Following the works of Mentzer et al. (2001) and Aitken (1998, in Christopher 2011),

we define a supply chain as a network of connected and interdependent organisations,

directly involved in the upstream and downstream flows of products, services, finances,

and information from sources to customers. These organisations include manufacturers,

suppliers, transporters, warehouses, and retailers (Chopra and Meindl, 2007).

On a more abstract level, a supply chain is a directed graph in which the set of

nodes represents organisations or customers; these are connected by directed arcs, and

products flow along these arcs. At the nodes, different products at different stages of

the production process are bought, transformed, stored, or sold. The goal of the supply

chain is to maximise the overall value added to the products as they pass through the

network. The products in turn have to be supplied in required quantities, achieving a

specified quality, at a competitive cost, and in a timely fashion. (Chopra and Meindl,

2007; Shapiro, 2007). In a typical supply chain, four types of nodes are identified: at

the supplier nodes (S) raw materials or intermediate products are acquired; at facility

nodes (F) manufacturing takes place, that is, physical product transformations; at dis-

tribution centre nodes (DC) intermediate operations such as sorting, storage, packaging,

and dispatching take place, but no physical transformation (Shapiro, 2007); finally, at

market nodes (M) products are sold to customers. A typical supply chain is set out in

figure 2.1 (Shapiro, 2007).

Supply chain management is defined as the integrated planning within the supply

5



2. Methodological Requirements for Supply Chain Network Design (SCND)

Suppliers MarketsDCsFacilities

Figure 2.1. A typical supply chain (Shapiro, 2007)

chain across function, space, and time, with the purpose of improving the perform-

ance of the individual companies in the supply chain, as well as the entire network

(Mentzer et al., 2001; Shapiro, 2007). In this context, functional integration refers to

the business functions purchasing, manufacturing, transportation, warehousing, and

inventory management. Spatial integration indicates the planning across geographic-

ally dispersed nodes in the supply chain, and, thereby, also across multiple businesses.

Finally, intertemporal integration, also called hierarchical planning, is the integration

across strategic, tactical, and operational planning and spanning across different time

horizons; this is discussed in the next section.

2.1.2. SCND in the Context of Supply Chain Management

The hierarchical levels of supply chain management are commonly classified as follows

(Schmidt and Wilhelm, 2000; Mitra et al., 2006; Chopra and Meindl, 2007; Shapiro,

2007; Fleischmann et al., 2008; Simchi-Levi et al., 2008):

Given a product strategy as well as marketing and pricing plans, strategic supply

chain management is concerned with resource acquisition and resource divestment de-

cisions. This includes the number, location, and capacity of facilities and DCs, pro-

duction technology to be employed at each facility, supplier selection, make-or-buy

decisions, and the design of the transportation network. Hence, strategic supply chain

decisions define the design of the supply chain and determine the framework in which

tactical and operational supply chain management operate. This usually involves high

investment costs and the decisions are difficult or expensive to alter on short notice.

Strategic supply chain management has a relatively long planning horizon between two

and twelve years, with the aim of determining the most effective long-term organisation

6



2.1. SCND – Scope and Definition

of the company’s supply chain. This is achieved by maximising economic performance

indicators such as return on investment or net revenues. In recent times, in addition to

maximising economic performance, the consideration of risk has become an important

decision criterion (Mitra, 1988; Chopra and Meindl, 2007; Shapiro, 2007). Strategic

supply chain management is also called supply chain network design (SCND).

Tactical supply chain management decides about resource adjustments and alloca-

tions on the basis of a fixed supply chain design. It manages how the supply chain is

used and how market demand is met over the coming three to twelve months, which

includes purchasing decisions, production levels, inventory policies, and transporta-

tion strategies. Tactical supply chain management aims to minimise manufacturing,

transportation, and inventory holding costs while meeting customer demand.

Operational supply chain management coordinates the supply chain in response to

customer demands. Therefore, it includes scheduling and sequencing decisions on a day-

to-day basis for production, inventory, and distribution, while the planning policies set

out in the tactical phase as well as the supply chain design are fixed. Operational

supply chain management aims to minimise short-term production costs while assuring

on-time delivery. These decisions are about the effectiveness of the resource utilisation

within the supply chain.

To achieve intertemporal integration, a suite of hierarchical models is needed, that

is consistent with the strategic, tactical, and operational planning problems faced by

a company (Shapiro, 2007; Goetschalckx and Fleischmann, 2008). This is achieved

through linking and overlapping the different model classes which address different

supply chain activities (Dominguez-Ballesteros, 2001): strategic models about resource

acquisition and divestments give input to and constrain aggregate tactical models that

decide how to use these resources. Conversely, to evaluate a supply chain, operations

carried out under a proposed design must at least approximately be anticipated in

a strategic model (Shapiro, 2007). In the same way, detailed operational models are

linked with more aggregate tactical models.

Within strategic supply chain management, the decision process covers four phases

(Chopra and Meindl, 2007): (i) A supply chain strategy is defined, which includes

a market strategy, the stages in the supply chain, and functions to be outsourced.

(ii) Regions for the facilities are identified, with the potential role and approximate

capacity of each facility. (iii) Desirable potential facility sites within each region are

selected. (iv) The exact location and capacity of each facility is defined. To suit the

different phases of the strategic decision process, there is a need for different models

with varying detail and focus. As in the case of hierarchical integration, these need to

be linked and overlapping, such that they can support progressive decision-making. A

first step is to identify a set of potential new facility locations as well as the relevant

existing facilities. Next, based on these facilities, first ideas for strategies are identified,
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2. Methodological Requirements for Supply Chain Network Design (SCND)

which might include the countries, in which to produce, a broad estimate of production

capacities, and key suppliers. For the more promising strategies and facilities, a more

detailed analysis is done which might include prices for machinery at different capacities,

costs of building facilities and buying land, stock levels and warehouse capacities, as

well as increased tactical detail. This follows the order of the planning process, starting

from a management idea and leading to contracts with machinery suppliers, hiring new

staff, and finally the implemented strategy.

Due to the long planning horizon and the difficulty to alter a network design on short

notice, strategic supply chain decisions face a high exposure to uncertainty (Chopra and

Meindl, 2007), while the extent and possible impact of uncertainties is lower for tactical

planning, and still lower for operations (Mitra, 1988; Shapiro, 2007). Therefore, to

optimise performance, companies need to build flexibility into the supply chain design

in the strategic phase and exploit it in the tactical phase (Chopra and Meindl, 2007).

As flexibility and uncertainty are closely connected in SCND, we next define flexibility

in the context of manufacturing and subsequently summarise the principles of decision

making under uncertainty.

2.1.3. Manufacturing Flexibility

Flexibility is defined as ‘the ability to change or react with little penalty in time, ef-

fort, cost, or performance’ (Upton, 1994). In the context of manufacturing, this means

‘being able to reconfigure manufacturing resources so as to efficiently produce different

products of acceptable quality’ (Sethi and Sethi, 1990). Besides environmental uncer-

tainty, that is, the need to react to unexpected events, the need for flexibility arises due

to variability in the products and processes (Toni and Tonchia, 1998). Manufacturing

flexibility is further broken down into different dimensions, as set out in Sethi and

Sethi (1990) and shown in table 2.1. Clearly, many of these dimensions are strongly

influenced by the supply chain design, especially process, routing, product, and volume

flexibility, as the network design defines the capacity and type of production facilities,

as well as the assignment of products to facilities.

2.2. Decision Making under Uncertainty

In this section we introduce the basic principles of decision making under uncertainty.

In section 2.2.1 we define the terms uncertainty, risk, and decision problem under un-

certainty, with the related concept of decision trees. Risk preferences and risk measures

are discussed in section 2.2.2 and stochastic programming is introduced in section 2.2.3.
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2.2. Decision Making under Uncertainty

Flexibility Definition

Machine The various types of operations that a machine can perform
without requiring a prohibitive effort in switching from one op-
eration to another.

Material Handling The ability of a material handling system to move different
product types efficiently for proper positioning and processing
through the manufacturing facility it serves.

Operation The ability of a product to be produced in different ways.
Process The set of product types that manufacturing system can pro-

duce without major setups.
Routing The ability of a manufacturing system to produce a product by

alternate routes through the system.
Product The ease with which new products can be added or substituted

for existing products.
Volume The ability of a manufacturing system to be operated profitably

at different overall output levels.
Expansion The ease with which the capacity and capability of a manufac-

turing system can be increased when needed.
Program The ability of the system to run virtually untended for a long

enough period.
Production The universe of product types that the manufacturing system

can produce without adding major capital equipment.
Market The ease with which the manufacturing system can adapt to a

changing market environment.

Table 2.1. Dimensions of manufacturing flexibility (Sethi and Sethi, 1990)
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Figure 2.2. Risk matrix (adapted from Norrman and Jansson, 2004)

2.2.1. Uncertainty and Risk

The terms uncertainty and risk have different meanings in a number of academic fields

as well as the general public. While in economics these terms are sometimes used to

distinguish between unknown outcomes with or without a known underlying probability

distribution (see for example Knight, 2002), we take the more intuitive approach as

found in dictionaries, finance, and classical risk management:

Decisions are made under certainty when perfect information is available

and under uncertainty when one has only partial (or imperfect) information.

(French, 1995; Zimmermann, 2000; Roy, 2005; Stewart, 2005). The term

uncertain under this paradigm is value neutral, i.e. it includes the chance of

gain and, conversely, the chance of damage or loss. As explained by Stewart

(2005), uncertainty leads to risk which is the possibility that undesirable

outcomes could occur. (Klibi et al., 2010).

Another perspective is given by Kaplan and Garrick (1981) who set out:

risk = uncertainty + damage

As we are concerned with quantitative decision making, we assume that we can identify

uncertainty with a random variable with known probability distribution on an appro-

priate probability space, while risk is the possibility of loss or injury, together with

the probability and severity of such loss (Kaplan and Garrick, 1981). Risk is often

illustrated in a risk matrix, as shown in figure 2.2 (Norrman and Jansson, 2004). Note

that risk is a subjective concept that depends on a decision maker’s information, goals,
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2.2. Decision Making under Uncertainty

personal preferences, as well as the decision itself. For example, high market demand

might be positive for a company if its supply chain has the ability to fulfill it, and

negative otherwise.

A common way to describe decision problems under uncertainty are decision trees,

represented by three types of nodes (Shapiro, 2007; Brandimarte, 2011):

State nodes correspond to the state of a system at points in time, just before decisions

have to be made. At these nodes, the decision maker has to choose between

mutually exclusive alternatives. State nodes are represented by squares.

Chance nodes correspond to points in time when random events occur. They are

represented by circles and probabilities are denoted next to the arcs leaving the

node. We assume that the realisation of the random event is independent from

the decisions at the previous nodes, as needed in stochastic programming (see

Kall and Wallace, 1994).

Terminal nodes are state nodes without decisions and mark the end of the decision

process, whose gain is calculated at this stage. Terminal nodes are represented

by bullets.

Usually, the root of a decision tree is a state node (otherwise the problem can be

disaggregated into multiple smaller decision problems) and state nodes alternate with

chance nodes (otherwise nodes can be aggregated). A typical decision tree is shown in

figure 2.3.

C1S1,1

S2,1

S2,2 C2

S3,1

S3,2

S3,3

0.7

0.3

0.2

0.3

0.5Si,j State node j at stage i

Ci Chance node at stage i

Figure 2.3. A sample decision tree

The decision problem under uncertainty is for the decision maker to choose one of

the alternatives at each state node in accordance with his goals. The fundamental

concept of decision problems under uncertainty is, that, at each state node the decision

maker has to make a decision, before he knows what the realisation of uncertainty at

the subsequent chance node is (if there is any). Possible criteria on which a decision

maker might base these decisions are discussed in the following section.

11



2. Methodological Requirements for Supply Chain Network Design (SCND)

The maximum number of decision nodes in a path from the root node to a decision

node is called the stage of the decision node and decisions on stage one are also called

here-and-now (HN) decisions.

2.2.2. Risk Aversion and Risk Measures

For our discussion of decision making under uncertainty, we take the economic point of

view that our goal is to maximise profit, measured by some suitable financial perform-

ance indicator. In this situation, the profit or return following a given decision becomes

a random variable itself (see Kall and Wallace, 1994) and we need a methodology by

which we choose one random variable over another. An approach to this, widely used

in economics is ‘utility theory’ (see for example Ingersoll, 1987), and related to this ap-

proach is ‘stochastic dominance’ (see for example Stewart, 2005; Gollmer et al., 2008,

2011). An approach, which is more practical in business applications (Eppen et al.,

1989; Brandimarte, 2011), is the use of probability functionals; these are discussed next.

Notations and Probability Functionals

Let (Ω,F , P ) be a probability space, L a linear space of real valued, measurable func-

tions defined on (Ω,F , P ), and ξ ∈ L be a random variable with distribution function F

and – in case ξ is absolutely continuous – probability density function f . ξ is inter-

preted as the profit distribution of a decision and its expected value is the expected

profit (EP), calculated as

EP[ξ] = E[ξ] = ∫
Ω
ξdP (ω) =

∫R x dF (x) = ∫R x f(x) dx.
A probability functional M is a function M : L → R ∪ {±∞} (Pflug and Römisch,

2007).

The Trade-Off between Risk and Return

Modern portfolio theory (Markowitz, 1952) recognises a principal trade-off between

risk and return which can be explored by using two probability functionals: a return

measure, which is the expected profit, and a risk measure, which indicates the riskiness

of the random variable, with large values representing high risk and low values low risk.

Thereby, the decision problem under uncertainty becomes a bi-objective optimisation

problem.

Given a bi-objective optimisation problem

min
x∈X

fi(x), i = 1, 2,
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2.2. Decision Making under Uncertainty

a solution x∗ ∈ X is called efficient, if there is no other solution x̃ ∈ X , such that

fi(x
∗) ≥ fi(x̃), i = 1, 2, with strict inequality for at least one of the two objectives

(Brandimarte, 2011). The set of all efficient solutions is called the efficient frontier.

Among these, a decision maker has to choose according to his risk preferences, that is,

how much risk he is willing to take for an additional expected return. (Figueira et al.,

2005)

Assuming X , f1, and f2 are convex, the efficient frontier can equivalently be calcu-

lated using the following optimisation problems by varying the parameters a and b,

respectively (Krokhmal et al., 2002). Note that a mixed integer program (MIP) is not

convex.

min
x∈X

af1(x) + (1− a)f2(x), a ∈ [0, 1],

min
x∈X

f1(x), s.th. f2(x) ≥ b, b ∈ R.
Common risk measures used in the trade-off between risk and return are presented

next.

Risk Measures

To simplify the notation for risk measures and to be in line with the usual interpretation

that high values of a risk measure indicate high risk, we define a random variable ζ = −ξ

on (Ω,F , P ), which is the loss distribution associated with a decision. Also, let G and

g denote the distribution function and (if it exists) probability density function for ζ,

respectively.

Traditionally, risk is measured by variance (Var) (Markowitz, 1952), defined asVar[ζ] = E[ζ2]−E[ζ]2.
In some situations this gives a risk measure in line with our definition of risk. For

example, in manufacturing the tolerance can be crucial and deviations from a target

value in both directions are disadvantageous. Also, if ξ is symmetric around its mean,

deviations below are equivalent to deviations above, and, therefore, variance is a mean-

ingful risk measure. However, for general loss distributions it fails to capture the idea

that high losses are negative and, therefore, pose a risk, while low losses (that is high

profits) are not. Therefore, downside risk measures have been developed to account for

the decision maker’s different attitude towards downside losses as opposed to upside

gains (Stulz, 1996; Ang et al., 2006). Further, variance is not a coherent risk measure

in the sense of Artzner et al. (1999), that is, it fails to fulfill some properties desirable

for risk measures. See appendix A for a discussion of the coherence property and note

that the variance is obviously not transitive.
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2. Methodological Requirements for Supply Chain Network Design (SCND)

Besides variance, the most common downside risk measure in finance is the value at

risk (V@R). For a continuous loss distribution and confidence level β ∈ (0, 1), the V@R

is the β-quantile of the loss distribution (Pflug and Römisch, 2007)

V@Rβ [ζ] = G−1(β).

For a formal definition that works for general distributions see Acerbi and Tasche

(2002). For example, the 90%-V@R is an upper estimate of losses, which is exceeded

with at most 10% probability. However, V@R is also not a coherent risk measure (see

Roman and Mitra, 2009) and therefore, other risk measures have been proposed.

A coherent risk measure (see Acerbi and Tasche, 2002) closely related to the V@R is

the conditional value at risk (CV@R). For continuous loss distributions and confidence

level β ∈ (0, 1), the CV@R is defined as the expected losses exceeding the V@R, that is,

the expected losses in the worst 1− β cases (Acerbi and Tasche, 2002):

CV@Rβ [ζ] =
1

1− β

∫ ∞

V@Rβ [ζ]
x g(x) dx.

For general distributions a more careful definition is needed, which defines the CV@R as a

weighted average of the V@R and profits falling short of V@R, (Acerbi and Tasche, 2002).

The CV@R can easily be included in linear optimisation models using a formulation by

Rockafellar and Uryasev (2000). Theoretical properties of the CV@R as well as its

application in stochastic programs with mixed integer recourse are discussed in Schultz

and Tiedemann (2006).

Another downside risk measure, similar to CV@R and often used in stochastic pro-

gramming formulations, is the expected downside risk (EDR). For a loss distribution and

a maximum acceptable loss x̃ ∈ R, the expected downside risk is defined as (Fishburn,

1977)

EDRx̃[ξ] = E[max(0, ζ − x̃)] =

∫ ∞

x̃
(x− x̃) g(x) dx.

Hence, the expected downside risk measures the expected value above the fixed target

level x̃, while the CV@R measures the expected value above the value at risk. The

expected downside risk is easy to include in linear optimisation models, but it is again

not a coherent risk measure (see Roman and Mitra, 2009).

Based on a similar idea as expected downside risk is the probability of failure (PF)

(also called excess probability), which simply measures the probability of exceeding the

acceptable loss x̃ ∈ R:

PFx̃[ζ] = P (ζ ≥ x̃).

Theoretical properties of probability of failure as well as its application in stochastic

programs with mixed integer recourse are discussed in Schultz and Tiedemann (2003),
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2.2. Decision Making under Uncertainty

but probability of failure is also not a coherent risk measure (see Roman and Mitra,

2009).

2.2.3. Stochastic Programming

In very general terms, stochastic programming is defined as an optimisation model for

decision making under uncertainty. The classical approach is to optimise the expected

value. However, the use of expected value optimisation is not necessarily limiting,

since all the previously discussed risk measures can be expressed in this setting. Thus,

stochastic programming models are well equipped to explore the trade-off between risk

and return in decision problems under uncertainty. We are only concerned with two-

stage decision processes and linear or mixed integer optimisation problems; hence we

restrict ourselves to two-stage stochastic linear programs with recourse in the definition

and notations.

Let (Ω,F , P ) be a probability space and ξ : (Ω,F , P )→ (Rm,B) be a random vector

with m ∈ N and B the Borel σ-algebra on Rm. Consequently, the expected value of ξ

is EP [ξ] = EP [ξ(ω)] =

∫

ω∈Ω
ξ(ω) dP (ω) =

∑

ω∈Ω

ξ(ω)P (ω),

with the last equality being true if Ω is finite. The two-stage stochastic linear program

with recourse (SP) is defined as (Dantzig, 1955; Kall and Wallace, 1994; Birge and

Louveaux, 1997; Ruszczynski and Shapiro, 2003a):

(SP) z∗P = min
x∈X

zP (x) with zP (x) = cTx+ EP [R(x, ω)]

s.th. Ax = b,

x ≥ 0,

where R(x, ω) is the recourse problem

R(x, ω) = R(x, ξ(ω)) =min
y∈Y

{

q(ω)T y|W (ω)y = h(ω) − T (ω)x, y ≥ 0
}

.

In this definition, ξ denotes the random components ξ = (q,W, h, T ), and, for some

n1, p1, n2, p2 ∈ N, the sets X = Rn1−p1 ×Zp1 and Y = Rn2−p2 ×Zp2 enforce integrality

conditions.

(SP) is called relatively complete recourse if

|R(x, ω| <∞, ∀ω ∈ Ω and ∀x ∈ X : Ax = b, x ≥ 0.

That is, the second stage problem R(x, ω) has a feasible solution and is bounded,

for every random realisation ω and for every feasible first stage solution x. If W is
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constant, that is, W (ω) = W for all ω ∈ Ω, then the corresponding problem is called

fixed recourse.

(SP) can be restated as the so-called deterministic equivalent model (DEM), which

is – as the name suggests – an equivalent reformulation of (SP) as a deterministic

optimisation problem. This is also the way we present the SCND model in chapter 4.

(DEM) min
x∈X ,yω∈Y ,ω∈Ω

cTx+ EP

[

q(ω)T yω
]

s.th. Ax = b,

T (ω)x+W (ω)yω = h(ω), ω ∈ Ω

x ≥ 0, yω ≥ 0, ω ∈ Ω.

For some algorithms, it is also useful to consider the deterministic equivalent problem

with explicit non-anticipativity constraints (DEX). Here, ω̃ ∈ Ω is an arbitrary but fixed

scenario.

(DEX) min
xω∈X ,yω∈Y ,ω∈Ω

EP

[

cTxω + q(ω)T yω
]

s.th. Axω = b, ω ∈ Ω

T (ω)xω +W (ω)yω = h(ω), ω ∈ Ω

xω − xω̃ = 0, ω ∈ Ω \ {ω̃}

xω ≥ 0, yω ≥ 0, ω ∈ Ω.

Minimising the conditional value at risk

Rockafellar and Uryasev (2000) show that the CV@R for a feasible solution x ∈ X of

(SP) can be calculated as

CV@R(x) = min
v∈R v + 1

1− β
Eω∈Ω

(

[

cTx+R(x, ω)− v
]+
)

,

where [a]+ = max(a, 0). In this situation, the set of optimal solutions is a closed interval

whose left endpoint is the V@R. Further, we can minimize the CV@R by the following

2-stage stochastic program (see Schultz and Tiedemann, 2006)

min
x∈X

CV@R(x) = min
x∈X ,v∈R{v + 1

1− β
Eω∈Ω

(

[

cTx+R(x, ω)− v
]+
)

}

= min
x∈X ,v∈R,∆ω≥0

{

v +
1

1− β
Eω∈Ω (∆ω) | ∆ω ≥ c

Tx+R(x, ω)− v

}

,

with the last equation beeing true for finite Ω.
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2.3. Requirements

As set out in chapter 1, our goal is to develop a methodology for quantitative decision

support for SCND in manufacturing, with a focus on the early phases of the strategic

decision process introduced in section 2.1. In the following section requirements for such

a methodology are identified. As indicated by Vidal and Goetschalckx (1996, in Schmidt

and Wilhelm 2000), some aspects of global logistics are difficult or even impossible to

capture in a quantitative model, for example political stability. Following Schmidt and

Wilhelm (2000), we limit the discussion to issues that appear to be quantifiable.

2.3.1. Uncertainty Identification

As set out in section 2.1 and emphasised by numerous authors (see for example Bi-

enstock and Shapiro, 1988; Eppen et al., 1989; Escudero et al., 1993; Goetschalckx

and Fleischmann, 2008), uncertainty plays a crucial role in SCND. However, the list

of potential uncertainties is extensive (see for example Chopra and Meindl, 2007, and

chapter 3), which means that only a fraction of them can be considered in any model.

Therefore, we adopt ideas from risk management to a qualitative methodology for un-

certainty identification based on expert knowledge. This is presented in chapter 3 and

used to identify relevant uncertainties, before developing a suitable model.

2.3.2. Modelling Issues

Modelling techniques able to support SCND decision making are divided into two cat-

egories: optimisation and pure modelling approaches (Blackhurst et al., 2005). Char-

acteristics of optimisation approaches include linear, (mixed) integer, and nonlinear

programming, as well as deterministic and stochastic models. In contrast, pure mod-

elling approaches like simulation do not include any optimisation elements and rely

on decision makers to analyse results and identify improvements to be made. While

simulation models are able to deal with elaborate detail, the successful applications of

(stochastic) mixed integer programs in SCND (see for example Mitra et al. (2006) and

section 4.1) prove that optimisation models are well qualified for these type of decision

problems. Also, Shapiro (2007) emphasizes the importance of going beyond pure mod-

elling approaches and using optimisation models to better support decision makers with

the complexity of SCND, especially the interactions among several decisions. Therefore,

we suggest using an optimisation model whose requirements are discussed as follows.

Existing models and our proposed model are presented in chapter 4 and matched against

these requirements.
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Strategic Sub-Model

The key task of a SCND optimisation model is to design the supply chain by decid-

ing on resource acquisitions and divestment options and the mission of each facility

(Shapiro, 2007). This includes the selection of suppliers and the capacities of facilit-

ies and DCs (Vidal and Goetschalckx, 1997; Chopra and Meindl, 2007; Fleischmann

et al., 2008; Simchi-Levi et al., 2008), where – depending on the modelling situation

and application – continuous or discrete capacity can both be an appropriate choice

(van Mieghem, 2003). Also, the technology used at each facility must be decided, and,

thereby, which products are manufactured at each facility, which could also include

make-or-buy decisions (Schmidt and Wilhelm, 2000; Chopra and Meindl, 2007; Sha-

piro, 2007; Goetschalckx and Fleischmann, 2008). As discussed in section 2.1, these

decisions have great influence on manufacturing flexibility which should therefore be

considered in the design (Goetschalckx and Fleischmann, 2008). Several authors (see

for example Schmidt and Wilhelm, 2000; Meixell and Gargeya, 2005; Goetschalckx and

Fleischmann, 2008) point out that the underlying supply chain structure for a SCND

model should be holistic, that is, include suppliers, multiple manufacturing echelons,

and customers. Also, it should feature a bill of material (BoM) structure, which is

a directed graph describing the recipe for the manufactured products. Further, the

design decisions need to be dynamic to develop a strategy adapted to a changing en-

vironment (Vidal and Goetschalckx, 1997; Schmidt and Wilhelm, 2000; Goetschalckx

and Fleischmann, 2008).

Tactical Sub-Model

In the context of hierarchical planning, tactical decisions need to be anticipated to eval-

uate a supply chain design. Besides purchasing, production, labour, and the product

flow through the network, this needs to include capacity utilisation and demand sat-

isfaction (Vidal and Goetschalckx, 1997; Schmidt and Wilhelm, 2000; van Mieghem,

2003; Goetschalckx and Fleischmann, 2008). Also, any flexibility built into the network

design should be exploited in these decisions (Chopra and Meindl, 2007). Further, de-

tail is desirable, but has to be balanced carefully against the effort for acquiring the

necessary data and computational complexity – as Vidal and Goetschalckx (1997) point

out, strategic models always need a high degree of aggregation.

Revenues and Costs

As discussed in section 2.1, the aim of SCND is to determine the most effective long-

term organisation of the company’s supply chain, which means maximising profit while

satisfying customer demand and responsiveness requirements. Therefore, an optimisa-

tion model needs to consider all relevant revenues and costs, and calculate performance
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measures in line with the company’s accountancy standards. These should discount

revenues and costs to their present value since SCND involves a long planing horizon

(Chopra and Meindl, 2007; Goetschalckx and Fleischmann, 2008). In practice, nearly

all costs follow economies of scale or include fixed costs, which therefore should not be

neglected (Vidal and Goetschalckx, 1997; Chopra and Meindl, 2007; Shapiro, 2007).

Also, supply chains are often international, which implies that export taxes, import

tariffs, different income tax rates, duties, duty drawbacks, and exchange rates can have

a significant effect on optimal design decisions (Schmidt and Wilhelm, 2000; Chopra

and Meindl, 2007; Goetschalckx and Fleischmann, 2008).

The Role of Uncertainty and Risk in Decision Making

We have emphasised the importance of uncertainty in SCND and propose a methodo-

logy to identify relevant uncertainties in chapter 3. Obviously, an optimisation model

should be consistent with these identified uncertainties and be able to deal with them

in an appropriate way. Especially, it needs to include risk measures. However, few re-

search exists on the choice of risk measures and in the lack of other criteria, we suggest

that the chosen risk measure should at least fulfill the coherence as a set of desirable

properties (see appendix A). Further, the model should explore the trade-off between

risk and return (see section 2.2). However, in our opinion this does not mean that an

optimisation model has to propose a single solution, optimal for a specific risk pref-

erence, but instead it should propose multiple efficient solutions, and leave the choice

among them to the decision maker. Finally, a methodology to realistically represent

uncertainty is needed as part of the model.

Flexibility of the Optimisation Model

As pointed out by Geoffrion and Powers (1995), a model for SCND needs to be flexible

enough to adapt to evolving requirements in real world applications. Using a modern

algebraic modelling language (see for example Kallrath, 2004), changing the model

itself is simple. However, highly specialised solution algorithms, tailored to a specific

problem structure, are far more complex to adapt to new situations, and requirements

on a solution algorithm are therefore discussed next.

2.3.3. Solution Methodology

Optimisation models that include all of the features described previously are very com-

plex and challenging to solve, as they are large MIPs or SIPs. Further, real world

uncertainty has many dimensions and, therefore, has to be considered in a multivariate

setting. Typically, demand of different products at different markets in multiple time

periods, and multiple exchange rates in multiple time periods are uncertain components.
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When approximated by discrete probability distributions this means a large number

of scenarios (realisations of the distribution) is needed for an accurate representation

of uncertainty, which further increases the challenge to solve the decision problem.

Moreover, the required flexibility of the optimisation model discussed previously im-

plies that a solver has to be flexible enough to cope with new or modified parts of

the model, such as strategic and tactical constraints, operational details, revenues and

costs, risk measures in objectives and constraints, and uncertainties in different places.

This can prohibit the utilisation of highly specialised algorithms. Solution method-

ologies able to deal with such decision problems in general, and the SCND model we

propose in chapter 4 in particular, are discussed in chapter 5.

2.4. Summary

In this chapter we have refined the problem statement by defining SCND and related

concepts, and introduced the relevant background to decision making under uncer-

tainty. We have identified three requirements to support decision making in SCND:

(i) a methodology to identify uncertainties relevant to the decision problem, (ii) an

optimisation model, and (iii) an algorithm appropriate for this class of optimisation

models. These three requirements are explored in the rest of this thesis and constitute

the major focus of the research reported.
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SCND

In this chapter we develop a process to identify and select uncertainties for a SCND pro-

ject. We introduce the concept of risk management in section 3.1 to set the background

and review the relevant literature in section 3.2. A new methodology for uncertainty

selection is developed in section 3.3 and applied for a case study in section 3.4. The

chapter is summarised in section 3.5.

3.1. Risk Management

In an organisation, risk management is a continuous and systematic process to identify

and treat risks attached to the organisation’s activities. It is a central part of strategic

management and aims to secure the organisation’s existence and long term success.

A typical risk management process consists of the four phases (i) risk identification,

(ii) risk estimation, (iii) risk treatment, and (iv) risk monitoring, which are cycled as

shown in figure 3.1 (Norrman and Jansson, 2004; IRM, 2002; Hallikas et al., 2004;

Locher et al., 2004; Manuj and Mentzer, 2008a; Vose, 2008).

Risk Identification

Risk Estimation

Risk Treatment

Risk Monitoring

Figure 3.1. Risk management process (adapted from Norrman and Jansson,
2004, and others).
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Given the objectives of the decision maker, risk identification is the first step in the

risk management process. Its aim is to identify an organisation’s exposure to uncer-

tainty, and, thereby, be able to mange risks proactively. Therefore, risk identification is

an important stage of the risk management process, since unidentified risks remain neg-

lected in the subsequent steps; hence, it should be approached in a methodical way. In

a supply chain environment, risk identification must take into account the value stream

of products and processes, assets and infrastructure, dependencies on other organisa-

tions, and the environment. The result of this process step is a list and description

of the identified risks. (IRM, 2002; Hallikas et al., 2004; Norrman and Jansson, 2004;

Peck, 2005; Vose, 2008)

The aim of risk estimation is to give a quantitative, semi-quantitative, or qualitative

description of the probability and severity of each risk. This helps to focus attention

on more severe risks and to choose suitable management options in the subsequent

step. The results of risk estimation are commonly presented in a risk matrix, as shown

in figure 2.2, page 10, which helps gaining an understanding of the organisation’s risk

exposure. Techniques used to estimate risks vary from expert opinions to sophisticated

simulation or statistical models. The estimation of risks is further complicated by

complex cause-and-effect relations, as the occurrence of one risk might increase or

decrease another risk, often leading to feedback loops (Hallikas et al., 2002). (Hallikas

et al., 2002; IRM, 2002; Hallikas et al., 2004; Manuj and Mentzer, 2008a; Vose, 2008)

Risk treatment is the process to manage the identified risks by reducing the prob-

ability of occurrence, reducing the consequence, or accepting the risk. Its goal is not

necessarily to minimise risk, but to find an acceptable trade-off between risk and return

for the organisation. Risk treatment actions generally include risk transfer, risk tak-

ing, risk elimination, risk reduction, and further analysis of individual risks. Also, risk

treatment should define mitigation plans for reducing the consequences if an adverse

event is realised, for example through business continuity management. (Hallikas et al.,

2004; Norrman and Jansson, 2004; Manuj and Mentzer, 2008a; Vose, 2008)

The final phase of the risk management process is risk monitoring. It includes a

reporting and review structure for identified and newly emerging risks, as well as con-

trolling the implementation of risk treatment strategies. (IRM, 2002; Hallikas et al.,

2004)

3.2. Literature Review: Analysis of Uncertainties Impacting

SCND

In this section we discuss various research concerned with risk management in the

context of supply chains. Our focus is on approaches that select a manageable number

of uncertainties relevant to a SCND project. In section 3.2.1 we look into the literature
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concerned with the risk management process in the context of supply chains. We give

some examples of work focusing on the risk estimation step in section 3.2.3 and of work

reporting practices in risk management in section 3.2.4. In section 3.2.5 we conclude

with a summary of the literature and identify open research problems.

3.2.1. Supply Chain Risk Management

Miller (1992) is one of the first to take a holistic view at international business risk

management, instead of focusing on single uncertainties. He provides a classification

of risks as environmental, industry, and firm-specific risks. Environmental risks are

further categorised as political, government policy, macroeconomic, social, and natural

risks. Industry risks are categorised as input market, product market, and competitive

risks, while firm risks include operating, liability, research and development, credit,

and behavioral risks. Each category is illustrated by examples. Further, an overview

of possibilities for organisations to deal with the identified risks is given.

Hallikas et al. (2002) are one of the first to describe a conceptual framework for

risk management in network environments. The authors focus on subcontractors and

aim to illustrate how small and medium-sized companies can analyse risks related to

networking. Risks are discussed and characterised in two approaches: by hierarchical

levels and by cause-and-effect relations. The hierarchical levels are ‘risk clusters’, ‘effect

factors’, and ‘causal factors’. For example, the risk cluster ‘pricing’ has underlying effect

factors such as ‘non-competitive prices’ and ‘price benefit of manufacturer not obtained’,

while a causal factor for ‘non-competitive prices’ could be ‘company not able to achieve

competitive cost efficiency’. However, these hierarchical levels often are not enough,

as risk may consist of more complex cause-and-effect relationships. For example, the

causal factor ‘company not able to achieve competitive cost efficiency’ could be the

effect factor of a different cause, that might be part of the risk cluster ‘manufacturing’.

Hallikas et al. (2004) extend this work and investigate risk management in cooperative

supplier networks.

Harland et al. (2003) review definitions and classifications of types of risk, based

on which the authors present a risk management process. Identified risk categories

are strategic, operations, supply, customer, asset impairment, competitive, reputation,

financial, fiscal, regulatory, and legal risk.

Jüttner et al. (2003) identify research possibilities in supply chain risk management

and propose that more empirically grounded research is needed to describe, explain,

predict, and understand the risk management as it is currently practised in organisa-

tions. Jüttner (2005) identifies requirements on supply chain risk management from a

practitioner perspective through an empirical survey. Thereby the author categorises

risks via components of the supply chain and distinguishes supply, process and control,

demand, and environmental risks.
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Chopra and Sodhi (2004) investigate risk management strategies to prevent break-

downs of the supply chain. They categorise risks as disruptions, delays, systems, fore-

cast, intellectual property, procurement, receivables, inventory, and capacity. Further,

for each category they give examples and report empirical risk treatment strategies.

Christopher and Peck (2004) discuss strategies to improve the resilience of supply

chains, while Peck (2005) identifies drivers of supply chain vulnerability through an

empirical study and discusses according risk management strategies. In (Peck, 2006),

the author investigates risk management in purchasing and supply and reports supplier

assessment strategies.

Wagner and Bode (2006) make an empirical investigation into the vulnerability of

supply chains and its relation to supply chain risk. Thereby, they identify drivers of

supply chain vulnerability and correlate them to demand, supply, and catastrophic

risks.

Manuj and Mentzer (2008a) present a risk management process with focus on global

supply chains. Risks are categorised as supply, operational, demand, security, macro,

policy, competitive, and resource risks, and examples of such risks are given. The

authors discuss related risk management strategies in (Manuj and Mentzer, 2008b).

Rao and Goldsby (2009) review the literature on supply chain risk management and

develop a classification of risks in supply chains, given as environmental, industry,

organisational, problem specific, and decision maker risks. Each of these categories is

comprehensively discussed, illustrated, and further sub-categorised.

3.2.2. Risk Identification

Kouvelis et al. (2006) and Rao and Goldsby (2009) note that there is a substantial

amount of literature dealing with supply chain risk management, but few explicitly

address risk identification.

General techniques are proposed in some research. In (IRM, 2002) a list of pos-

sible methods is given that includes brainstorming, questionnaires, business studies,

industry benchmarking, scenario analysis, risk assessment workshops, incident invest-

igation, auditing and inspection, and hazard and operability studies. Vose (2008) sug-

gests using a list of relevant topics to help participants of a risk identification workshop,

while Harland et al. (2003) recommend to use brainstorming.

One of the few research concerned with risk identification is presented by Sodhi and

Lee (2007). However, the authors do not describe a process, but have identified the

risks themselves and present the resulting list of risks. This is for risks in the consumer

electronics industry and categorised via two dimensions: strategic and operational risks

versus supply-related, demand-related, and contextual risks. In each category, risks are

described and illustrated by risk management strategies used by Samsung Electronics.
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3.2.3. Risk Estimation

The following publications are especially concerned with techniques for risk estimation.

Pai et al. (2003) investigate inference techniques, Zsidisin et al. (2004) focus on the

assessment of supply risks, and Tang (2006) gives an extensive review of quantitative

models for managing supply chain risks. The textbook by Vose (2008) introduces basic

quantitative methods in detail.

3.2.4. Practices in Risk Management

Finally, some research discusses practices in risk management. Johnson (2001) reports

from the toy industry, as an industry facing rapid change and a high degree of demand

uncertainty. Lee (2002) discusses strategies under supply and demand uncertainty of

products. Finch (2004) shows through empirical studies that the risk of a large com-

pany is increased by having small- and medium-size enterprises as partners in critical

positions in the supply chain. Norrman and Jansson (2004) report a case from Ericsson,

where a fire at a sub-supplier causes huge disruptions. Ericsson’s subsequent improve-

ments to its risk management are discussed. Kleindorfer and Saad (2005) investigate

risks arising from disruptions to normal activities and possible risk treatment strategies.

3.2.5. Summary of Uncertainty Selection Literature and Open Research

Problems

We have seen in this section that there is an extensive literature on risk management

in supply chains. However, as noticed by Kouvelis et al. (2006) and Rao and Goldsby

(2009), and confirmed by the literature review, there is few research concerned with

the process of risk identification. Some authors propose general techniques like the

use of lists, brainstorming, and questionnaires, while other literature does not refer to

a specific methodology but is helpful in this context by providing categorisations and

examples of risks in supply chains.

Once risks are identified, a selection of a subset of these is not a direct concern of

risk management. However, the literature agrees on using the risk estimation and its

visualisation in a risk matrix (see figure 2.2, page 10), to focus attention on the most

pressing risks.

Since no suitable methodology exists, we develop a process to identify and select

relevant risks for SCND problems in the subsequent section, which sets out to answer

the research question ‘Which uncertainties need to be considered in SCND and how do

we identify them?’
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3.3. An Uncertainty Selection Process for SCND

We facilitate ideas from the reviewed literature to develop a process to identify and

select uncertainties for a SCND project. The aim of the process is to identify the

most important uncertainties to include in an optimisation model, while, at the same

time, not selecting more than is manageable. It consists of a list of potential risks,

a brainstorming session to complete this list, a risk estimation workshop, and a step

to select uncertainties. The structure of the process is set out in figure 3.2 and the

individual steps are described subsequently.

Risk List

Brainstorming

Risk Estimation

Uncertainty Selection

Figure 3.2. Process leading to uncertainty selection

The proposed process has three advantages over simply asking an expert to name the

uncertainties to consider. (i) The results are more objective and especially less biased

by recent developments or news coverage. (ii) Through the structured approach and

the risk list, it is less likely that important risks slip. This can easily happen in SCND

problems since they often involve new market and production regions, where issue are

encountered that are not relevant in the existing production network. (iii) Undertaking

a risk assessment in this early stage helps to manage risks in the further planning and

implementation of the supply chain.

3.3.1. Risk List

As a starting point for the uncertainty selection process, we compile a structured list

of risks that can affect SCND, as suggested by Vose (2008). As noted by Hallikas et al.

(2002), risks form a complex network of cause-and-effect relationships, which we break

up at the point where it enters the supply chain. Consider for example the following

chain: ‘banking crises→ economic crisis→ low demand→ less production→ insolvency

of supplier’, which enters the supply chain at the event ‘low demand’. Trying to list

risks at an early point would include finding all reasonable causes for low demand or

26



3.3. An Uncertainty Selection Process for SCND

even for economical crises – tasks predetermined to fail. However, exemplary causes

are still listed in the risk list, as they are vital for understanding and estimating the

identified risks. On the other hand, in the context of supply chain management under

uncertainty, the effects of low demand are subject to a decision makers actions and

should be part of a model, rather than be assumed as given.

Following this logic, we get a risk categorisation around elements of supply chains,

similar to Jüttner (2005), with sub-categories from cause-and-effect relationships. The

structure is shown in table 3.1, while the complete risk list is given in appendix B. Each

risk in the risk list contains a name, a description, its category, and possible causes.

The list is based on the examples found in the literature presented in section 3.2 and

expert knowledge obtained through the brainstorming element of the process described

subsequently.

Risk category Description

Risks from suppliers and
procurement

Risks originating at a supplier.

Risks from logistics Risks from flows of goods in the network: suppliers to
facilities, inter-facility, and facility to market. Includes
storage at the origin and destination of the flow, stock
turn, and handling.

Production risks Risks originating at the production in the facilities.
Does not include production at a supplier.

Demand risks All changes to demands of the products manufactured
within the network.

Risks for profit and goals Risks which influence financial and non-financial goals
directly.

Risks from changing the
network design

For example, during the acquisition or building of a
new facility.

Network specific risks Risks due to the interconnection of multiple suppliers,
facilities, and markets.

Risks from the legal and
social environment

Such as changes to laws and taxes.

Other risks All other risks.

Table 3.1. Categories of the risk list

3.3.2. Brainstorming

Although the compiled risk list is extensive, in given situations it might be incomplete or

require further detail. For example, this might be the case in specialised SCND projects

concerning sourcing or distribution networks, or in tactical supply chain management.

Therefore, we use a brainstorming session to identify further risks, as suggested by IRM

(2002) and Harland et al. (2003). The brainstorming is executed with experts from the
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project team realising the SCND project and – if possible – also experts running the

existing and future supply chain. Its task is simply to name risks in the considered

supply chain. The identified risks are added to the risk list, either as causes for existing

risks or as new risks.

Besides completing the risk list, the brainstorming has two purposes: (i) The experts

gain familiarity with the concepts of uncertainty and risk in supply chains, the structure

of the risk list, and the identified risks. (ii) With the confidence that no risk has slipped,

attention can focus on the estimation in the subsequent step of risk estimation. Also,

motivation is increased when participants recognise their suggestions in the risk list.

This process step can be omitted for repeating SCND projects, especially if the same

experts are involved.

3.3.3. Risk Estimation

The central step of the uncertainty selection process is the risk estimation. While

sophisticated models exist to estimate a risk’s probability and severity, the aim of our

process is only to identify a manageable set of relevant risks, which is subsequently

investigated in depth in the optimisation model. Therefore, a simpler approach based

on expert opinion is suitable.

We suggest a workshop with the participants described in the brainstorming step,

where the task is to place the risks from the risk list in a risk matrix as in figure 2.2

(page 10). The participants estimate the probability and severity of the the risks

relative to each other – that is, the risks are not given a numeric value, but risk A

is placed above risk B, if it has a higher probability, and to the right, if its severity

is higher. Consequently, the axes of the matrix are only semi-quantified by categories

such as ‘low’, ‘medium’, and ‘high’.

As pointed out by Miller (1992), the effect of a risk is different for different supply

chains. For example, exchange rate uncertainty is of lower concern in a European supply

chain in contrast to an inter-continental supply chain. Also, the relevance of supplier-

related uncertainty depends on the types of products sourced or whether make-or-buy

decisions are considered. Hence, the risk estimation is executed for every SCND project

separately.

3.3.4. Uncertainty Selection

The estimated risks in the risk matrix are identified with and grouped by their underly-

ing uncertainty and uncertainties are selected in a discussion. In this step, the previous

estimation helps to objectively choose the most important uncertainties to consider in

the SCND project.

Not all uncertainties are suitable to include in an optimisation model; for example
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a five day disruption at a supplier has significant effects on the operation of a supply

chain, but the resulting 2% decrease of its annual delivery capacity is barely visible in

a model with annual time periods. Other risks like the loss of prestige or intellectual

property are difficult to capture in any quantitative model. Hence, at this stage a

decision is made about which uncertainties to include in an optimisation model and

which to consider otherwise, for example through simulation or qualitative assessment.

3.4. Uncertainty Identification for the Case Study

We have gone through the described uncertainty selection process for a SCND project

similar to the network used in the case study in chapter 6. The supply chain consists

of an intercontinental production network in the automotive industry, with suppliers,

facilities, and markets in various emerging and developed economies.

Six uncertainties have been selected to consider in the optimisation model: uncer-

tainty in demand, productivity, transport costs, labour costs, raw material costs, and

exchange rates. Disruptions to production and supply were chosen to be analysed by

a simulation model, which is not part of this thesis.

3.5. Summary

In this chapter we have introduced the concepts of risk management, reviewed related

literature in the context of SCND, and shown that no suitable method exists to identify

and select relevant uncertainties for a SCND optimisation model. Consequently, we

have proposed a new process for risk identification, which is based on expert opinion

and principal ideas from risk management. We have applied the uncertainty selection

process in a case study and identified six uncertainties, which are integrated into a

stochastic optimisation model described in the subsequent chapter. However, as dis-

cussed in section 3.3, risks have different effects on different supply chains, and therefore

the selected risk are not universal but specific to the case study.
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SCND under Uncertainty and Risk

In this chapter we introduce a stochastic optimisation model that meets the specific-

ations for a decision support system identified in chapter 2 and that includes the un-

certainties identified in chapter 3. In section 4.1 we review the relevant literature and

consider the state of the art; taken together, these put the models described in this

thesis in context. In section 4.2 the stochastic SCND model is described, while we

provide details of a scenario generator for the uncertain parameters in section 4.3. The

work reported in this chapter is based on Hollmann et al. (2011).

4.1. Literature Review: Quantitative Decision Support for

SCND

The literature covering SCND includes a large volume of work reported under diverse

topics, namely supply chain (network) design, facility location, capacity expansion

problems, supply chain planning, and manufacturing flexibility.

In section 4.1.1 we discuss general introductions on the application of mathematical

programming models to SCND and related literature reviews.

We review SCND models in section 4.1.2. These are characterised by a network struc-

ture with multiple nodes and multiple products, as well as capacity decisions on the

nodes. The early studies of SCND (see for example Geoffrion and Graves, 1974) incor-

porate deterministic optimisation models while more recent studies take into account

uncertainties by building stochastic programs (two-stage and multistage), (see for ex-

ample Kall and Wallace, 1994; Birge and Louveaux, 1997). Since our aim is to develop a

stochastic optimisation model, which follows as a natural extension of the deterministic

case, both model classes are reviewed.

As set out in section 2.1, manufacturing flexibility is a topic closely related to SCND.

In contrast to SCND, models concerned with manufacturing flexibility do not necessar-

ily include a network structure or capacity decisions. Instead they mainly focus on

allocation decisions or product-specific capacities. As this can also be part of the SCND

decisions, an overview on manufacturing flexibility is given in section 4.1.3.

Within the hierarchy of supply chain planning, tactical and operational models over-
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lap with strategic models; in section 4.1.4 a short introduction to the related literature

is given.

Finally, we present our findings in the form of two summary tables in section 4.1.5.

By critically examining these, we identify our research problem and the motivation for

investigating it.

4.1.1. Introductory Literature and Reviews

General introductions on the application of mathematical programming models to SCND

can be found in Mitra et al. (2006); Snyder et al. (2006); Chopra and Meindl (2007);

Shapiro (2007); Simchi-Levi et al. (2008). We discuss below a few further reviews,

the first three of which focus on international aspects, and we note that the terms

‘international’ and ‘global’ are used interchangeably in the literature.

Vidal and Goetschalckx (1997) give a comprehensive summary of features of SCND

models with emphasis on international aspects. As research directions, the authors sug-

gest models that incorporate more of these features, but they also note that a model

including all of them may not be practical. Hence, they conclude that interrelated,

consistent models that exchange data are needed. This work is extended by Goetschal-

ckx et al. (2002), where the authors focus on the integration of strategic and tactical

models in international production networks.

The review by Meixell and Gargeya (2005) focuses on international aspects of SCND.

Performance measures, the underlying network structure, special international aspects,

and the types of decision variables are reported. For future research, the authors

suggest including external suppliers and internal manufacturing, considering multiple

echelons, developing performance measures – especially in an international context, and

analysing industry-specific models.

Beamon (1998) classifies research into four categories: deterministic analytical mod-

els, stochastic analytical models, economic models, and simulation models. Besides

these categories, models are summarised by the utilised performance measures and the

types of strategic decision variables modelled. Identified research questions include

performance measures, optimisation – especially in situations with decentralised de-

cision making, some modelling issues, and classification of supply chains together with

managerial insights on their behaviour.

Van Mieghem (2003) reviews the state of the art on strategic capacity management

under uncertainty. This is categorised as static capacity investments, time, dynamic

capacity investments, and capacity investments under risk aversion. Also, different

model classes are explained, such as capacity expansion and facility location, and gen-

eral modelling issues are discussed, namely capacity constraints, costs, inventory, and

uncertainty.

Klibi et al. (2010) review SCND models under uncertainty by distinguishing between
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the representation of uncertainty as random variables, as ‘hazards’ (high-impact ex-

treme events), and as ‘deep’ uncertainty (hazardous events with unknown probability).

Further, the authors investigate robustness, responsiveness, and resilience in the con-

text of SCND. They conclude that most design models make too many assumptions

and simplifications, and are therefore only of limited use in real-world business decision

making. To overcome this, they propose research in SCND risk analysis, hazards mod-

elling, scenario generation, performance measures, modeling of robustness, resilience,

and responsiveness, and solution methods.

4.1.2. SCND Models

Deterministic SCND Models

Geoffrion and Graves (1974) propose one of the early optimisation models for supply

chain network design. The task is to optimally locate DCs between fixed facilities and

markets and determine the connections between markets and DCs. All products for a

specific market must be supplied from the same DC. The surrounding network structure

is rather simple: there is just a single level in the DC-network, no time periods, but

several products. Also, there is a single operational decision, the routing decision which

is defined as the amount of a product shipped from a facility through a DC to a market.

A solution technique based on Benders decomposition is developed, which proves to

be very effective. The methodology is applied to a real life problem for a major food

company. The result analysis concentrates on the performance of the proposed solution

algorithm.

The model by Brown et al. (1987) distinguishes between facilities and production

lines. While facilities can be opened or closed, lines must be assigned to opened facil-

ities. The network has two stages (facilities and markets), a single time period, and

multiple products. There are operational decisions on production amounts and network

flows. The model is solved using a goal decomposition technique. The authors report

the successful application of their model at a company in the food industry, where it

significantly reduces planning time.

The model by Shulman (1991) is a two-echelon, multi time period, multi product

network design model. The design decision is to associate a capacity from a finite set of

possible capacities to each facility while the only operational decision is for production /

distribution quantities. A solution technique using Lagrangian relaxation is developed

and its computational performance is reported.

Arntzen et al. (1995) present a model for facility location in a multi level, multi

product network, that includes an assignment of products to facilities with fixed set

up costs. The operational part of the model covers production, inventory, transporta-

tion via different transportation modes, as well as auxiliary variables to calculate duty
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drawback and duty avoidance. The strategic decisions are static and the operational

decisions dynamic; the objective is a weighted sum of the total costs and the total

production and shipment time. The methodology is applied to a consumer electronics

company, where it is used to (i) analyse the supply chain for new products, (ii) analyse

sourcing strategies for commodity products, and (iii) to study supply chains of business

units as well as company-wide. The results for several real life case studies are reported.

Dogan and Goetschalckx (1999) propose a network design model with multiple

products and time periods. The structure is defined in six echelons as supplier –

production – storage – finishing – storage – market, and the capacities for facilities and

DCs are chosen from finite possibilities. Further, different machines can be installed at

the facilities. The operational decisions are production, transportation, and inventory

storage. The model is solved using an accelerated Benders approach and is applied

in the packaging industry. The authors compare the results from a single time period

model with results from three time periods with seasonal demand. They investigate

the benefit of accounting for storage and find that there is a 2% reduction in costs.

This can be explained by lower capacity requirements as the multi time period model

is able to cover peak demands from inventory. However, demand used for the single

time period model is from the peak season which explains the high capacity – using

average demand instead might be the better option.

Yan et al. (2003) develop a static model where suppliers, facilities, and DCs are

selected, and products are assigned to them. No operational details surpassing trans-

portation are included. The distinguishing feature is the consideration of constraints

of the type ‘if a product is produced in at least x facilities, then at least y suppliers

delivering the required raw materials must be selected’.

The model by Melo et al. (2005) is a multi level, multi time period, multi product ca-

pacity expansion problem, where the task is to decide the facilities’ capacity. Capacity

is modeled via a 0-1 variable, indicating whether a facility is operating or not, together

with a continuous variable describing the actual capacity. A notable distinction is that

the capacity is described via transfers from other facilities while the total network ca-

pacity is given. However, the authors demonstrate that this formulation can still be

used for capacity expansion or reduction problems by using auxiliary facilities. Fur-

ther, the authors mention the possibility to model capacities as a discrete choice, but

this approach is not investigated. The operational decisions are procurement, routing,

and inventory. The computational studies focus on computation times for alternative

reformulations of the model, for relaxing of certain model aspects, and for varying the

number of time periods, products, and markets.

Cordeau et al. (2006) develop a model for multi level, single time period, multi

product network design. The decision is to select operating nodes from suppliers,

facilities, and DCs. For each node an allocation decision is included, to decide whether
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or not a product is assigned to the specific node. Also, for each transport link an

allocation decision is included, indicating whether or not a product is shipped from a

start node of the link to its destination node. The operational decisions are routing

amounts per transportation mode for the links. A Benders decomposition approach

is used to solve the problem and valid inequalities are given to strengthen the LP

relaxation. The result analysis focuses on the performance of the proposed solution

algorithm as well as the impact of the valid inequalities.

Fleischmann et al. (2006) present a model aimed at the automotive industry with

three production lines at each facility: body assembly, paint shop, and assembly. Ship-

ments between different facilities are not possible; hence, only one production stage is

needed. Further, there are multiple time periods and multiple products. The strategic

task is to choose the capacity from a finite set for each line at each facility, and to assign

the products to facilities, while the operational decisions are production, transporta-

tion, and overtime. The authors demonstrate how the proposed model can be used to

optimise the case study network and identify crucial issues in its design.

All presented deterministic SCND models are MIPs with 0-1 decisions for the network

design. While the early papers still investigate specialised solution algorithms to deal

with these types of problems, more recent research can focus on modelling aspects.

This is due to the rapid improvements of general purpose MIP solvers such as CPLEX

or Gurobi.

Stochastic SCND Models

Bienstock and Shapiro (1988) develop one of the first stochastic SCND models, which is

in the context of energy networks. The underlying network design problem has a single

production level, multiple time periods, and a single product. The capacity is modelled

by continuous variables with piecewise linear costs, rather than by discrete expansion

sizes. The only operational decision is the production volume. The stochastic model

is two-stage with decisions taken here-and-now affecting the first x time periods, and

the recourse stage being the remaining T − x time periods. Uncertainty comes from

demand, air pollution control limits, the time of completion of a pipeline, and fuel

prices. Example results for uncertainty in demand and environmental laws are shown,

but only six scenarios are used. Several runs with different uncertainties are used to

identify hedging strategies.

The model by Eppen et al. (1989) is a single production level, multi time period, and

multi product capacity planning problem. Capacity is modeled via a finite set of pos-

sibilities and capacity changes are allowed only once for each facility. The operational

decisions are production amounts and shortages. The stochastic model is two-stage

where the first stage variables are the capacity acquisitions and the second stage are

the operational decisions. Uncertainty comes from demand and sales contribution mar-
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gin, and risk is measured by expected downside risk. Since the stochastic optimisation

is based on only three scenarios, Monte Carlo simulation is used to provide a better

estimate of the return distribution. The model is applied in the automotive industry.

Huchzermeier and Cohen (1996) present a stochastic dynamic programming model

for SCND under exchange rate uncertainty. Design decisions include facility and mar-

ket selection, as well as selection of transportation links. However, the optimisation

only chooses from selected network configurations which reduces the state space from

227 to 16 states in the case study. The underlying network has only one production

stage and operational decisions are limited to transportation of a single product. To

account for international operations, individual taxes per country and exchange rates

are included. The uncertainty in the latter is modeled as a stochastic diffusion process

with three scenarios per time period. In the case study, financial hedging via future

contracts is compared to operational hedging via switching network configurations.

The applicability of the latter one might not be practical, since time periods repres-

ent quarter years which implies that production is switched between different global

production facilities several times per year. Financial hedging on the other hand is

reasonable for the considered time horizon of 15 months. In the case study results,

operational hedging dominates financial hedging, measured as expected profit versus

expected downside risk. These studies are extended in further research by the authors

in Cohen and Huchzermeier (1999), where demand uncertainty is added to the model.

Managerial insights are reported, which conclude that real options can improve both

shareholder value and risk, they are more valuable than financial options, and com-

bining both option types gives further benefits. Goh et al. (2007) formulate the same

model as a multi-stage problem and propose a solution algorithm. However, neither

computational performance nor case study results are reported.

The model by Vidal and Goetschalckx (2000) is a single echelon production network

with one time period and multiple products. Facilities are selected by 0-1 decisions and

there are allocation decisions, whether a supplier ships a certain good to a facility, as

well as whether a facility produces a specific good. The operational decisions are pro-

duction and routing with different transportation modes. Sensitivity analysis is used

to deal with uncertainty, that is, the model is optimised as a deterministic model for

each scenario separately and the optimal objective is reported. This is used to illustrate

the effects of uncertainty in exchange rates, demand, supplier reliability, and procure-

ment lead times on the minimum costs. Supplier reliability is included via a constraint,

which ensures that the probability of being on time for all suppliers is at least a spe-

cified target value. Procurement lead times are included by cost factors for different

transportation modes. In the case study, uncertainties are applied individually – only

one parameter is assumed to be uncertain at a time while the rest are deterministic.

In this situation, exchange rate has the largest effect on the optimal objective.
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Dominguez-Ballesteros (2001) describes a two-stage stochastic model under demand

uncertainty. The network includes multiple facilities, multiple products, multiple time

periods with the strategic decisions on a subset of the operational time periods, and

a single source of demand. Therefore, the operational decisions do not include trans-

portation, but instead production, inventory, sales, unsatisfied demand, and demand

carry-over. The strategic decisions are the selection of facility capacities from a set

of finite possibilities, outsourced capacity, and inventory capacity. Risk is measured

by CV@R and the trade-off between risk and return is explored, but result analysis is

limited to reporting solutions and profit distributions.

Lucas et al. (2001) present a multi time period, multi product model, consisting of

production facilities, packaging facilities, and DCs. Nodes can be opened or closed,

and at operating nodes lines of different types can be installed. The operational de-

cisions are production and transportation. The stochastic model is two-stage with the

network design decisions taken here-and-now and the operational decisions being re-

course. Demand is assumed to be uncertain although production efficiency and costs

are mentioned as a source of uncertainty as well. In MirHassani et al. (2000) two solu-

tion approaches are proposed for this model: scenario analysis and a parallel Benders

algorithm. The result analysis focuses on computational performance, but the model

has also been applied in case studies in the consumer good as well as pharmaceutical

industry. Earlier versions of this research also appear in Baricelli et al. (1996) and

Lucas et al. (1997).

Tsiakis et al. (2001) present a distribution network design model where production

facilities are assumed to be fixed. It has four levels with warehouses and distribution

centres (smaller warehouses), one time period, and multiple products. Capacities of

warehouses and DCs are continuous with a 0-1 variable indicating whether it is operat-

ing. Also, there are assignment decisions for warehouses to DCs, and DCs to markets.

Production and transportation are the operational decisions, with transportation costs

being piecewise linear to account for economies of scale. The stochastic model is two-

stage with the network design decisions as first stage, the operational decisions as second

stage variables, and uncertainty in demand. In the case study, uncertainty is represen-

ted by three scenarios and the expected value-solution and wait-and-see-solutions are

compared to the here-and-now-solution via their expected costs.

Alonso-Ayuso et al. (2003a) present a comprehensive model for network design. It

has multiple production levels, multiple products, as well as multiple time periods. In

the strategic sub-model, facilities can be opened in the first time period only, and be

expanded in the later periods by choosing capacities from a set of finite possibilities.

Further, products are allocated to suppliers and facilities in the first time period. The

operational decisions are production, inventory, and routing. The stochastic model

is two-stage with the network design as here-and-now decisions, operational decisions
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as recourse, and uncertainty in demand, product net profit, raw material costs, and

production costs. In the case study, demand and raw material uncertainty is included

via 23 scenarios. The analysis focuses on computational performance. In Alonso-

Ayuso et al. (2007) the model is slightly extended with additional supplier selection,

but no computational studies are reported. A simplified version is studied in Alonso-

Ayuso et al. (2005a) with no suppliers, no product facility assignments, static capacity

decisions and no BoM. Instead, the model includes V@R and probability of failure

risk measures, but with the proposed solution algorithm only the expected value or

probability of failure objective can be solved. In the case study, only the expected

value objective is used and the analysis focuses on computational performance.

In Guillén et al. (2005), a two-stage stochastic program for SCND under demand

uncertainty is presented. The model includes one echelon of facilities and one echelon

of warehouses with multiple products, but no BoM structure. The first stage decisions

are a static network design, consisting of facility and DC capacity, which is modeled by

continuous values with binary decisions for fixed costs. Besides transportation and fa-

cility production, the operational second stage decisions include inventory levels at DCs,

taken over multiple time periods. The objective function comprises three components:

expected profit, expected downside risk, and demand satisfaction. In the analysis, the

trade-offs between the objectives are explored.

Santoso et al. (2005) present a multi production echelon, single time period, multi

product facility location problem, that is, the main decision is to decide which facilities

are operational. This is evaluated against operational production / routing and shortage

decisions. The stochastic model is two-stage with the network design as first stage and

the operations as second stage. Production costs, transport costs, demand, supply, and

capacity are all assumed to be uncertain. A computational study shows results from

two real supply chain networks. In these studies, only demand and facility capacity

are assumed to be uncertain, and the according scenarios are generated by sampling

from independent log-normal distributions. The focus of the result analysis lies on the

performance and quality of the solutions from the proposed approximation algorithm.

A more detailed description of the approach and the computational results can be found

in Santoso (2003).

Azaron et al. (2008) present a two-stage stochastic model with multiple echelons in

the network, multiple products, but no BoM structure. Also, while mentioning a sep-

aration between facilities and DCs, they are handled identically, both on the strategic

and the operational side. The model includes few details – the only strategic decision

is whether facilities are opened; the operational decisions are transportation and short-

ages. Additionally, there is a possibility to expand facility capacity on the second stage.

Further, the model is static with no time periods. The main focus of the paper is on a

multi objective approach that combines expected costs, variance of costs, and probab-
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ility of failure in a goal programming formulation. The model includes uncertainty in

demand, the amount a supplier can deliver, and all second stage costs; however, in the

case study only uncertainty in demand, supply, production costs, and capacity expan-

sion costs are considered. These uncertainties are represented by eight scenarios. Given

the static model, flexibility cannot be evaluated. The authors illustrate the trade-off

in the different objectives, as well as the importance of accounting for uncertainty and

risk in SCND, while the effect of different and importance of multiple uncertainties are

not explored. Both risk measures facilitated seem unusual, as variance is not a down-

side risk measure, and penalising probability of failure does not take into account the

failure’s size. Also, both measures are computationally challenging, as variance gives

a quadratic objective and probability of failure introduces 0-1 variables on the second

stage. Additionally, the formulation uses seven parameters to parametrise the object-

ive, which makes it hard to explore. The authors do not demonstrate the advantages

of the proposed risk measures as compared to expected downside risk or CV@R.

The model by Bihlmaier et al. (2009) is a multi production level, multi time period,

multi product network design problem for facilities. The capacity is chosen from a finite

set and products are assigned to facilities. Operational decisions include production,

routing, and shortages. Based on this, the authors develop different models: a determ-

inistic model, which includes detailed work force planning and discrete choice of shift

models, a second deterministic model where the shift models and work force are ap-

proximated by linear organisational capacity increases and decreases, and a two-stage

stochastic model based on the latter deterministic model with demand uncertainty,

strategic decisions on the first stage, and operational decisions on the second stage.

The two deterministic models are compared in a case study where they give the same

strategic decisions, which justifies the use of the approximation for the stochastic model.

The model by Kauder and Meyr (2009) is based on Fleischmann et al. (2006), with

some simplifications on the details. This is combined with chaining strategies identified

in Jordan and Graves (1995) and Graves and Tomlin (2003) (see section 4.1.3). To

include these strategies, numerous constraints are added to the model. The model is

analysed by a simulation approach, where the optimisation problem with and without

the chaining constraints is solved as a deterministic model, and the behaviour of the

strategic decision under seven further exchange rate and demand scenarios is simulated.

In a regret approach this is compared to the optimal solution of the given scenario. The

scenarios are rather simple with only one parameter being altered by a constant factor.

While this helps in the analysis, it probably results in underestimating the value of

flexibility since a more dynamic uncertainty would require more flexibility. The authors

conclude that dedicated chain structures perform better under demand uncertainty

and reasonably well under exchange rate uncertainty. The model is applied on data

constructed similarly to the automotive application in Fleischmann et al. (2006).
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Schütz et al. (2009) present a supply chain model for multiple levels and multiple

echelons, based on Tomasgard and Høeg (2005). The design decision is to decide

which processes to install at different facilities, where a process can apply to several

products. Hence, one can think of each process as being a separate facility. The

operational decisions are inventory at designated warehouse facilities, transportation,

production, and shortages. The model can handle both, combining processes (as for

example in the manufacturing industry) and splitting processes (as for example in the

chemical industry). The design decisions are static, while the operational decisions

are dynamic over multiple time periods. The results from this approach are compared

to a simplified model with static operations, to analyse the benefits from the detailed

operations. The stochastic model is two-stage with the design decisions on the first

stage and operational decisions on the second stage. In theory, all model parameters

are uncertain, except for the network design costs and BoM, but in the case study

only demand is assumed to be uncertain. This is separated into two parts: short term

uncertainty (seasonality) and long term uncertainty (trends). For long term demand

uncertainty, a simple approach is used that samples from a uniform distribution. Short

term uncertainty is modeled as a combination of an autoregressive forecasting process

of first order, principle component analysis of the error term, and moment matching

of the (uncorrelated) principle components based on Høyland et al. (2003). Results

from an application in the Norwegian meat industry are reported, where the value of

the stochastic solution is at least 16%, while the results from the approximated static

solution are significantly worse. The improvement in the objectives mainly results from

more installed capacity, which leads to higher flexibility.

Nickel et al. (2010) describe a multi-stage model that combines DC location with

alternative investments in financial products and loans. Operational decisions are lim-

ited to shipments and shortages, and demand as well as return on investments are

uncertain. The objective is a weighted sum of operational profit, financial returns, cus-

tomer satisfaction, and expected downside risk. In computational studies, the value of

the multi-stage stochastic solution (VMS) over deterministic optimisation is calculated;

however, not as a rolling deterministic planning approach (see Kall and Wallace, 1994).

Thereby the VMS is overestimated, which is on average less than 1% and never more

than 3%. The trade-off between risk and return is not explored.

Stephan et al. (2011) develop a multi-stage model which is solved using stochastic

dynamic programming, accelerated by dual reoptimisation and parallelisation. To cope

with the increased complexity from the multistage approach, the network structure

is relatively simple with a single echelon, multiple time periods, and fixed product to

facility assignments. The strategic decision is to select facility capacities from discrete

possibilities, while the recourse actions consist of a single production / transportation

decision. The demand is uncertain and assumed to follow a Markovian model, which is
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justified by a partial autocorrelation analysis of historical data. A main contribution is

the rigorous analysis of the VMS over two-stage stochastic programming. Following a

proposition for the VMS over deterministic optimisation from Kall and Wallace (1994),

Stephan et al. (2011) use a rolling evaluation procedure where a two-stage model is

solved after every uncertainty stage, as new information becomes available. However,

given the inaccuracy of strategic planning data (in their case for the next six years),

the reported VMSs of 0.02% to 0.55% seems rather small. An interesting insight is

however, that as the VMS increases, less flexibility is available in the given assignments of

products to facilities. This seems plausible since the less flexibility is available through

shifting production between facilities, the more important it becomes to adapt the

manufacturing capacity at each facility instead – which can be done best by a multi-

stage optimisation.

All presented stochastic SCND models are SIPs with 0-1 variables for the network

design at least on the first stage. These remain computationally challenging; there-

fore, several of the publications investigate specialised solution algorithms. These are

reviewed in chapter 5 where we present our approach to this problem.

4.1.3. Manufacturing Flexibility

In-depth reviews and definitions of manufacturing flexibility can be found in various

literature, such as Sethi and Sethi (1990); Gerwin (1993); Upton (1994); Toni and

Tonchia (1998); Koste and Malhotra (1999). Further, Vokurka and O’Leary-Kelly

(2000) and Hallgren and Olhager (2009) review empirical research on manufacturing

flexibility. Jack and Raturi (2002) study volume flexibility through case studies, while

Gupta et al. (1992) use an analytical approach. Bengtsson and Olhager (2002a) and

Bengtsson and Olhager (2002b) use real options to evaluate manufacturing flexibility.

The following approaches use quantitative methods from operational research; these

are discussed in more depth.

Jordan and Graves (1995) investigate the benefits of process flexibility through a sim-

ulation approach in a network with one stage, one time period, and multiple products.

The assignment of products to facilities is fixed and only production amounts are op-

timised for multiple demand scenarios. The assignments are represented by edges in a

bipartite graph whose partition vertices are the products and facilities. A main con-

tribution is the concept of chaining, where a chain is a connected sub-graph. The

authors show through analytical and numerical studies, that the flexibility (measured

as expected sales) of a Hamiltonian path is nearly as good as the flexibility of the

fully connected bipartite graph. In this context, we note that a Hamiltonian path is

a circular path that visits each of a graph’s vertices exactly once. The authors show

that chains have the greatest benefit when they are as large as possible. Furthermore, a

measure is developed that indicates whether a given assignment is likely to be improved.
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This work is extended by Graves and Tomlin (2003) for multi echelon networks. The

authors introduce a measure of flexibility and propose flexibility guidelines that extend

the single-stage chaining strategies to multi-stage networks.

The model by Jordan and Graves (1995) is extended to an optimisation model by

Boyer and Leong (1996), which is used to investigate the relation between process and

machine flexibility. Further, it is confirmed that an added link which closes a chain to a

circle ‘is an essential element in realising the full benefits of process flexibility’, (Boyer

and Leong, 1996).

Van Mieghem (1998) studies the simple situation where one company with two

products can invest in product-specific and product-flexible machines in a static model.

This can be solved analytically and the author investigates the effect of costs, sales mar-

gins, and demand uncertainty (especially its correlation) on the optimal capacity. Not

surprisingly, with increased demand correlation the dedicated capacities increase while

the flexible capacity decreases.

Chen et al. (2002) propose a multi-stage stochastic model that optimises product-

flexible and product-dedicated capacity at a single facility. The benefits of flexible

capacities in various situations are investigated.

Chandra et al. (2005) formulate a model for flexibility planning in the automotive

industry. They investigate flexibility enablers such as product allocation, part com-

monality between products, and supply flexibility and demonstrate their benefits. The

authors use a combination of Monte Carlo simulation, a genetic algorithm, and linear

programming to solve the problem, while product allocation and commonality of parts

are fixed.

Francas et al. (2009) extend the model by Jordan and Graves (1995) to a two-stage

stochastic program with assignment decisions on the first stage, production amounts

on the second stage, demand uncertainty, and the objective to minimise unsatisfied

demand. This is used to investigate optimal assignment decisions under lifecycle de-

mand and the authors conclude that chains still remain superior, although the benefit

of additional flexibility decreases when the lifecycles of different products are out of

phase as compared to when they are in phase.

Koberstein et al. (2011) incorporate different financial hedging instruments, namely

forward contracts and put and call options, in a multi-stage stochastic program with

product to facility assignments on the strategic level and transportation and shortages

on the operational level. Demand and exchange rates are uncertain with the design

decision in the first stage only, financial hedging as here-and-now decisions on every

stage, and operational decisions as recourse. The objective includes expected profit

and CV@R. The result analysis investigates the effect of including the financial hedging

instruments. While it is clearly shown that for a given network design financial instru-
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ments have a significant impact on risk and return, it is less obvious that they have a

significant impact on the optimal network design.

4.1.4. Operational and Tactical Supply Chain Models

There is comprehensive research focusing on tactical and operational aspects of supply

chain management. Some examples concerned with production planning or the integ-

ration of strategic and operational decisions are described below. Van Landeghem and

Vanmaele (2002) propose a framework for Monte Carlo simulation in tactical supply

chain planning under uncertainty, Alonso-Ayuso et al. (2005b) and Alonso-Ayuso et al.

(2007) present a hierarchical suite of models, and Mula et al. (2006) provide a literature

review for models under uncertainty at all hierarchy levels. In what follows we discuss

case studies which use optimisation or simulation methods.

Escudero et al. (1993) describe two models for production planning under demand

uncertainty with multiple products, time periods, and machines at a single facility. The

first model decides on production volumes, inventory, lost demand, and amounts ob-

tained from a secondary source, while the second model extends the secondary source

by allowing for alternative supply. The models are described as multi-stage stochastic

programs with various segmentation into here-and-now and recourse decisions, approx-

imated using a three-stage scenario tree, and solved using Benders decomposition.

Escudero et al. (1999) formulate a two-stage stochastic model for the optimisation of

the production in a given supply chain with multiple products. It covers many opera-

tional details, such as production, product substitution (if a component needed is not

available, this might be substituted by a different suitable component), procurement,

shipment, lost demand, backlogging of demand, and inventory. The uncertain para-

meters are production costs, procurement costs, and product demand with the decision

variables for the first time period in the first stage and remaining time periods in the

second stage. The authors suggest different objective functions: minimising expected

costs, minimising expected maximum weighted product backlog, minimising expected

total weighted product backlog, and minimising lost demand.

Bradley and Arntzen (1999) present a deterministic model that optimises (i) the

capacity of a single facility with multiple production lines, and (ii) the production

plan for multiple products. Capacity is chosen from discrete possibilities and the op-

erational decisions include production, purchase, sales, overtime, and inventory. The

authors show through computational studies that minimising unit costs or maximising

equipment utilisation, instead of return on investment, leads to sub-optimal strategies.

Sabri and Beamon (2000) combine a simple strategic network design model with a

detailed operational model in an iterative heuristic. The strategic model is static with

multiple echelons and multiple products, the design decisions are facility selection, DC

selection, and DC to market assignments, while the operational decisions include pro-
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duction and transportation. The operational model is a heuristic model that specifies

(s, S)-type inventory control strategies and includes uncertainty in production, deliv-

ery, and demand. In this context we note that a (s, S) inventory control states that S

units are ordered whenever inventory falls below a level of s units. Large parts of this

are handled by analytically solving sub-problems. The expected values from the oper-

ational model are then used as input for the strategic model in an iterative procedure.

However, the benefits from including that much operational detail as compared to the

strategic model are not thoroughly investigated.

Gupta and Maranas (2003) formulate a tactical two-stage model for supply chain

production planning under demand uncertainty. Manufacturing quantities are first

stage here-and-now decisions whereas transportation logistics make up the recourse

decisions. A trade-off between customer satisfaction and costs is investigated.

Chen and Lee (2004) propose a production planning model in a multi echelon, multi

product, and multi time period supply chain under uncertain demand and fuzzy product

prices. They consider inventory and piecewise linear transportation costs. Numerous

objectives, such as expected profits for multiple companies in the supply chain, in-

ventory safety levels, customer service levels, and expected downside risk for selected

objectives are investigated. A case study demonstrates that using the multiple object-

ives leads to a solution that counterbalances the differences between the members of

the supply chain.

You and Grossmann (2008) present a supply chain model for the chemical industry. It

includes network design decisions, but the focus is on lead times and operational details,

such as inventory, production scheduling, and sequencing. By considering demand

uncertainty, the resulting model becomes a two-stage mixed-integer nonlinear stochastic

program. This is approximated, decomposed, and solved using a heuristic. This work

is extended by You et al. (2009) and You and Grossmann (2010).

In section 4.1.2 we have reviewed an SCND model by Schütz et al. (2009); its opera-

tional sub-model is investigated by Schütz and Tomasgard (2009). This is a two-stage

stochastic program which includes inventory, transportation, and shortfall. Decisions

in the first time period are the first stage whereas the decisions in the remaining time

periods are the second stage. The model is used to investigate the value of operational

flexibility, defined as the ability to change production plans in a rolling planning meth-

odology. Using case studies the authors demonstrate that operational flexibility is only

beneficial when there is medium volume flexibility or medium delivery flexibility; when

they are very low or very high, operational flexibility has no value.

44



4.1. Literature Review: Quantitative Decision Support for SCND

4.1.5. Summary of SCND Literature and Open Research Problems

Summary of Essential Characteristics

We have identified essential characteristics of SCND models and summarised the re-

viewed literature by these in tables 4.1 and 4.2.

Table 4.1 shows the general network design features of the deterministic and

stochastic models. These are summarised in the following columns.

1. The reference is cited.

2. The network structure and types of nodes are listed, as well as which of these

have capacity decisions.

3. The number of echelons (levels) in the network structure is given.

4. It is shown whether there is a BoM structure.

5. The number of time periods, first for the strategic decisions, and second for the

operational decisions are supplied.

6. It is indicated how capacity is modeled.

7. The allocation decisions considered are given.

8. The operational decisions are shown. However, all models include transportation

and/or production decisions and these are therefore omitted in the table.

The first part of this table summarises deterministic models, whereas the second part

covers stochastic models. Abbreviations used in table 4.1 are summarised in table 4.3.

Table 4.2 extends the summary for stochastic models, to describe their additional

features and summarises these in the following columns.

1. The reference is cited.

2. The modeling paradigm used to account for uncertainty is given.

3. The considered uncertainties are listed.

4. The distinction between first stage here-and-now decisions and second stage re-

course decisions (respectively the according distinction for multi-stage models) is

shown.

5. The modelling approaches to deal with risk are supplied.

Abbreviations used in table 4.2 are summarised in table 4.4.
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(1) (2) (3) (4) (5) (6) (7) (8) Operational
Authors Network Echelons BoM Periods Capacity Allocations Decisionsa

Geoffrion and Graves 1974 F-DC-M 3 – 1, 1 b DC-Mb

Brown et al. 1987 Fc-M 2 – 1, 1 b F-Fd

Shulman 1991 F-M 2 – x, x e
Arntzen et al. 1995 F-M x X 1, x b F-P Inventory, duty,

transportation
with modes.

Dogan and Goetschalckx 1999 S-F-DC-M 6e – 1, x e Inventory.
Yan et al. 2003 S-F-DC-M 4 X 1, 1 b S-P

F-P
DC-P

Melo et al. 2005 F-M x – x, x c+b Inventory.
Cordeau et al. 2006 S-F-DC-M x – 1, 1 b S-P

F-P
DC-P
S-F-P
F-DC-P
DC-M-P

Transport mode
selection.

Fleischmann et al. 2006 S-F-M 3 X x, x e F-P Production,
transportation,
overtime.

Bienstock and Shapiro 1988 F 1 – x, x e+c
Eppen et al. 1989 F 1 – x, x e Shortages.
Huchzermeier and Cohen 1996f S-F-M 3 – x, x b S-F

F-M
Taxes.

Vidal and Goetschalckx 2000 S-F-M 3 X 1, 1 b S-F-P
F-P

Transportation
with modes.

Dominguez-Ballesteros 2001 F 1 – x, x e Shortages, invent-
ory, unsatisfied
demand, demand
carry-over.

Lucas et al. 2001 F-DC-M 4g – x, x e Shortages.
Tsiakis et al. 2001 F-DC-M 4 – 1, 1 c+b DC-DC

DC-M
Piecewise linear
transport costs.

Alonso-Ayuso et al. 2003a S-F-M x X x, x e F-P
S-P

Inventory.

Guillén et al. 2005 F-DC-M 3 – 1, x c+b Inventory.
Santoso et al. 2005 S-F-M x – 1, 1 b Shortages.
Azaron et al. 2008 S-F-M x – 1, 1 b Shortages, capa-

city expansion.
Bihlmaier et al. 2009 F-M x X x, x e F-P Organisational

capacity adap-
tion, shortages.

Kauder and Meyr 2009 S-F-M 3 – x, x e F-P Overtime.
Schütz et al. 2009 F-DC-M x X

h 1, x b Inventory, short-
ages.

Nickel et al. 2010 DC-M 2 – x, x b Financial invest-
ments, loans,
shortages.

Stephan et al. 2011 F-M 2 – x, x e
Our model S-F-M x X x, x c+b F-P Organisational

capacity adap-
tion, workforce,
shortages.

aAll models include transportation and/or production decisions. These are omitted in the table.
b1-to-many allocation: DC can supply several M, but each M must be supplied by a single DC.
cDecision on facilities to be built and on lines to be built at each facility.
dMany-to-1 assignment of lines to facilities: each line must be assigned to exactly 1 facility.
eThe structure is S-F-DC-F-DC-M.
fSingle product model.
gThe structure is F-F-DC-M.
hIncludes BoM and reverse BoM for combining and splitting processes.

Table 4.1. Literature overview – network features. Abbreviations are summarised
in table 4.3.
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(1) (2) (3) (4) (5) (6)
Authors Type Uncertainty HN Decisions Recourse Decisions Risk

Bienstock and Shapiro 1988 2S demand
environmental laws
(capacity)
(prices)

first x time periods remaining time periods

Eppen et al. 1989 2S+Sim demand
sales contribution

network design operational decisions EDR

Huchzermeier and Cohen 1996 StDP exchange rates network design operational decisions EDR

Vidal and Goetschalckx 2000 Sens exchange rates
demand
supplier reliability
procurement lead times

all decisions

Dominguez-Ballesteros 2001 2S demand network design operational decisions CV@R

Lucas et al. 2001 2S demand network design operational decisions
Tsiakis et al. 2001 2S demand network design operational decisions
Alonso-Ayuso et al. 2003a 2S demand

raw material costs
(product net price)
(production costs)

network design
initial capacity

dynamic capacity
operational decisions

Guillén et al. 2005 2S demand network design operational decisions EDR,
shortages

Santoso et al. 2005 2S demand
facility capacity
(transport costs)
(supply)

network design operational decisions

Azaron et al. 2008 2S demand
supply
production costs
capacity expansion costs
(transport costs)
(shortage costs)

network design operational decisions Var, PF

Bihlmaier et al. 2009 2S demand network design operational decisions
Kauder and Meyr 2009 Det+Sim demand

exchange rates
network design operational decisions

Schütz et al. 2009 2S demand
(all 2nd stage parameters)

network design operational decisions

Nickel et al. 2010 MS demand
return of investments

network design
financial investments
loans

transportation EDR

Stephan et al. 2011 StDP demand (Markovian) network design operational decisions
Our model 2S+Sim demand

productivity
exchange rates
labour costs
raw material costs
transport costs

network design operational decisions CV@R

Table 4.2. Literature overview – stochastic features. Abbreviations are summar-
ised in table 4.4.
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Columns Notation Meaning

2, 7 S supplier
2, 7 F facility
2, 7 DC distribution centre
2, 7 M market
2, 7 P product
2 Bold network nodes with capacity decisions; other nodes are fixed

3, 5 x Model can handle an arbitrary number
5 xs, xo xs: time periods on strategic level; xo: time periods on oper-

ational level
6 b node capacity modeled as binary on/off decision
6 e choice from multiple, discrete capacity possibilities, requiring

multiple 0-1 variables
6 c continuous capacity decision

Table 4.3. Abbreviations for network features used in table 4.1.

Columns Notation Meaning

2 2S two-stage stochastic program
2 Det deterministic optimisation of the HN decisions
2 MS multi-stage stochastic program
2 StDP stochastic dynamic program
2 Sens sensitivity analysis: optimisation for each scenario and re-

porting the optimal objective under that scenario.
2 Sim simulation (ex-post evaluation) of the recourse decisions for

a given solution of the HN decisions
3 (param) model can handle uncertainty in param, but this is not in-

vestigated in the result analysis
4 HN here-and-now
6 EDR expected downside risk, see section 2.2.2
6 shortages expected value of relative, uncovered demand
6 Var variance, see section 2.2.2
6 PF probability of failure to meet a given target objective, see

section 2.2.2
6 CV@R conditional value at risk, see section 2.2.2.

Table 4.4. Abbreviations for stochastic features used in table 4.2.
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4.2. Model Description

Identified Research Problems

The literature review and the summary tables show that each of the requirements for a

comprehensive SCND model (identified in section 2.3) appears in some of the research

literature, but no work covers them altogether. In particular, there has been little

research on multiple sources of uncertainty, coherent risk measures, and the resulting

trade-off between risk and return. In the remainder of this chapter we present a model,

which sets out to answer the research question ‘What is an appropriate way to model

the SCND problem?’

4.2. Model Description

4.2.1. Model Development

We develop a two-stage stochastic mixed integer programming problem with 0-1 and

continuous decisions in the first stage and continuous decisions only in the second stage.

The strategic network design decisions are in the first stage, while the operational

second stage decisions follow naturally as recourse actions.

Sets and Uncertainties

The network underlying our model is defined in terms of suppliers, facilities, and mar-

kets. The facilities have multiple echelons which reflect the BoM structure of the

products. This is a problem for a multinational company so that we have a set of

currencies which are all eventually converted to the company’s base currency. Further,

we have a set of time periods and a set of different labour shifts. Uncertainty is captured

by using discrete scenarios for demand, productivity, exchange rates, labour costs, raw

material costs, and transport costs. This means, our model has uncertain parameters

appearing in the right hand side, the technology matrix, as well as the objective.

Objective

The objective has two components: maximising expected profit and minimising CV@R.

By varying the weighting between these two, we are able to explore the trade-off between

risk and return and, hence, to find solutions in accordance with the decision maker’s risk

preference. The expected profit is made up of revenues from sales less investment costs,

operational costs, and penalties for unsatisfied demands. All monetary parameters are

expressed as their net present value in the local currency, which is then converted to

the base currency using defined exchange rates.

A general modelling paradigm underlying the cost structure is to use 0-1 and con-

tinuous variables together – this allows the inclusion of fixed costs and, hence, simple

economies of scale.
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First Stage Strategic Decisions

The main decisions are to determine which facilities are open and what level of capa-

city should be installed. Associated with setting facility capacities there are decisions

indicating whether capacities are increased or decreased between two time periods and,

if so, by how much. Further, there are decisions to determine which products can be

produced at which factory as well as determining which suppliers are operating. Fi-

nally, target levels for facility utilisation and labour levels are set. Deviations from

these are penalised by second stage variables to account for exploiting flexibility. This

reflects a company’s desire not to shift production quantities rapidly between facilities,

since a large variation of production amounts leads to organisational costs, penalties

associated for breaking long term contracts with suppliers, redundancy payments, and

recruitment costs.

Second Stage Operational Decisions

On the operational level, we have decisions about transport volumes. Based on these,

production volumes, supplier purchases, as well as market deliveries and market short-

falls are determined. Decisions on labour per shift at different variable cost rates for

each shift reflect the increase of costs due to shift surcharges. Finally, we model by how

much capacity consumption and labour requirements differ from their target levels.

Constraints

The following gives a brief outline of the constraints.

Constraints on first stage choices

Connect investments and divestments with the facility capacity via capacity balance

equation.

Restrict facility capacity by facility choice.

Restrict divestment and investment of capacity by the corresponding choice decisions.

Constraints connecting first stage and second stage decisions

Restrict supplier purchases by supplier choice.

Bound production capacity utilisation by facility capacity.

Restrict production by product-facility assignments.

Calculate deviations of capacity utilisation and labour requirement from target levels.

Second stage recourse constraints

Network flow balance equations with BoM.

Connect labour per shift with total labour requirement.

Bound market sales by market demand.

CV@R calculation.
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4.2. Model Description

4.2.2. Discussion of Model Features

Choice of Risk Measure

We use the CV@R as a risk measure for two reasons: most importantly, it as a coherent

risk measure (see section 2.2.2 and appendix A) and therefore fulfills a set of commonly

accepted desirable properties. Further, it is easily included in stochastic programs in a

linear form; therefore, it does not require additional 0-1 variables.

Financial Hedging

Our model includes multiple currencies which are exposed to exchange rate uncertainty.

However, we do not include financial risk hedging instruments as these apply to shorter

time scales and are therefore suitable for tactical rather than strategic models.

Objective Features

As mentioned in the problem description in section 1.1, the model presented in this

paper was developed for an automobile manufacturer. For simplicity of notation we

aggregate details in our model cost parameters. This is a simplification of the company’s

cost model which meets internal accounting requirements. These aggregations include

international features such as import duties, export incentives, transfer prices, and

taxes.

DCs and Storage

As our model is aimed at automotive supply chains, we do not consider DCs, as these

do not play a crucial role in this industry. Further, in line with Fleischmann et al.

(2006), our model does not allow any storage decisions at facilities. Stock levels are

usually investigated by tactical and operational supply chain models.

Continuous Facility Capacity

As discussed in section 2.1, the decision process of SCND consists of several phases with

varying detail. The model presented in this chapter is designed for the early phases

and, therefore, aims to identify promising network strategies. These are analysed in

subsequent planning phases in more detail. As a consequence of this approach, we allow

facility capacities to be continuous values rather than selecting from finite, discrete

possibilities. This is appropriate for the given situation since an estimate of useful

capacities is made first, before subsequently actual machinery setups are considered

which require discrete choices. Also, continuous capacities give the model the possibility

to react naturally to parameter values and uncertainty.
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Two-stage vs. Multistage

We model the decision process as two-stage, since we believe that this gives a good

trade-off between accuracy and computational complexity. Multi-stage models have an

advantage over two-stage models if decisions in earlier time periods significantly affect

decisions in later periods.

However, we do not consider storage and, therefore, in the operational sub-model

only labour and the use of flexibility have an influence over multiple time periods,

since changing the number of labour or the facility utilisation between consecutive

time periods generates costs. In the model this is approximated by deviations from a

target level, which we believe is reasonably accurate and the resulting operations are

more realistic than in the case where this aspect is neglected.

On the strategic level, the influence of decisions across time is more obvious, since

investments and divestments affect the network design for all subsequent time periods.

Few research exists on the benefit of multi-stage SCND over a rolling two-stage decision

process; only Stephan et al. (2011) investigate this and in their case studies the dif-

ference is at most 0.55%. Therefore, we think that a two-stage model is sufficiently

accurate.

4.2.3. Model Formulation

In this section, a complete formulation of the mathematical programming model is

given, where the following conventions are used for notations: sets and decision variables

are denoted by upper case letters, set elements and parameters by lower case letters,

uncertain parameters are bold, and parameters and decision variables are assumed to

be zero for all non-defined index combinations. Further, units of measurement are given

in square brackets, denoted as follows:

[CU] capacity units

[BC] monetary units in the base currency

[LC] monetary units in local currency

[PU] product units

[LH] labour hours

Sets

We have the following index sets:

S suppliers, indexed by s

F facilities, indexed by f
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P products, indexed by p

M markets, indexed by m

Y shifts, indexed by y

C currencies, indexed by c

T = {t, . . . , t̄} time periods, indexed by t

Ω scenarios, indexed by ω

In order to reflect the sparse structure present in supply chain networks, we define the

following multi-dimensional sets:

PP ⊆ P × P represents a product-product dependency, with (p1, p2) ∈ PP if and

only if (iff) product p2 is needed to build product p1. This represents the digraph

of the BoM structure.

SP ⊆ S×P represents a supplier-product dependency, with (s, p) ∈ SP iff product p

can be delivered by supplier s.

FP ⊆ F×P represents a facility-product dependency, with (f, p) ∈ FP iff product p

can be produced at facility f .

MP ⊆ M × P represents a market-product dependency, with (m, p) ∈ MP iff

product p is sold at market m.

SFP ⊆ S × F × P represents a supplier-facility-product transport relation, with

(s, f, p) ∈ SFP iff product p can be delivered from supplier s to facility f .

Therefore, (s, f, p) must satisfy at least the following conditions

(s, p) ∈ SP and ∃ p2 ∈ P s.th. (f, p2) ∈ FP ∧ (p2, p) ∈ PP,

since supplier s can only deliver product p to facility f if p is one of its products

according to the supplier-product dependency SP , and if p is needed for the

production of a product p2 which is manufactured at facility f .

FFP ⊆ F × F × P represents a facility-facility-product transport relation, with

(fs, fd, p) ∈ FFP iff product p can be delivered from facility fs to facility fd.

Therefore, (fs, fd, p) must satisfy at least the following conditions

(fs, p) ∈ FP and ∃ p2 ∈ P s.th. (fd, p2) ∈ FP ∧ (p2, p) ∈ PP,

since the start-facility fs can only deliver product p to the destination-facility fd

if p is one of its products according to the facility-product dependency FP , and

if p is needed for the production of a product p2 which is manufactured at

facility fd.
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FMP ⊆ F × M × P represents a facility-market-product transport relation, with

(f,m, p) ∈ FMP iff product p can be delivered from facility f to market m.

Therefore, (f,m, p) must satisfy at least the following conditions

(f, p) ∈ FP and (m, p) ∈MP,

since facility f can only deliver product p to the market m if p is one of its

products according to the facility-product dependency FP , and if p is sold at

market m according to the market-product dependency MP .

Decision Variables

According to the modelling paradigm of two-stage stochastic programming, we distin-

guish between two types of variables: first stage variables, which are not indexed over

the scenario set Ω, and second stage variables, which are indexed over Ω.

First Stage Strategic Decisions

SOst ∈ {0, 1}. Supplier s is operational (1) or not operational (0).

FOft ∈ {0, 1}. Facility f is operational (1) or not operational (0).

Cft ≥ 0, [CU]. capacity of facility f .

IF+
ft ∈ {0, 1}, t ∈ {t + 1, . . . , t̄}. Indicates if the capacity of facility f is increased

between time period t− 1 and time period t.

IF−
ft ∈ {0, 1}, t ∈ {t + 1, . . . , t̄}. Indicates if the capacity of facility f is decreased

between time period t− 1 and time period t.

IV +
ft ≥ 0, t ∈ {t+1, . . . , t̄}, [CU]. Amount by which the capacity is increased between

time period t− 1 and time period t.

IV −
ft ≥ 0, t ∈ {t+1, . . . , t̄}, [CU]. Amount by which the capacity is decreased between

time period t− 1 and time period t.

PFfpt ∈ {0, 1}, (f, p) ∈ FP . Product p is assigned to facility f between time period t−1

and time period t.

CP t
ft ≥ 0, [CU]. Target capacity consumption for production.

CLt
ft ≥ 0, [LH]. Target labour level.

V@R ∈ R, [BC]. Value at Risk.

Second Stage Operational Decisions

TSsfptω ≥ 0, (s, f, p) ∈ SFP , [PU]. Transport volume from supplier to facility.
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TFfsfdptω ≥ 0, (fs, fd, p) ∈ FFP , [PU]. Transport volume from facility to facility.

TMfmptω ≥ 0, (f,m, p) ∈ FMP , [PU]. Transport volume from supplier to market.

CP+
ftω ≥ 0, [CU]. Capacity consumption above target level.

CP−
ftω ≥ 0, [CU]. Capacity consumption below target level.

Lfytω ≥ 0, [LH]. Labour employed in shift mode y.

CL+
ftω ≥ 0, [LH]. Labour above target level.

CL−
ftω ≥ 0, [LH]. Labour below target level.

∆ω ≥ 0, [BC]. The maximum of zero and the difference between the profit in

scenario ω and V@R. Needed for CV@R calculation.

Notation

To make equations easier to read, we denote by PVfptω the production volume of

product p at facility f which can be calculated as the total amount of product p being

shipped from facility f to other facilities and to markets,

PVfptω =
∑

f2

TFff2ptω +
∑

m

TMfmptω, [PU ], ∀(f, p) ∈ FP, t, ω.

Parameters

Technology Parameters

cf > 0, [CU]. Maximum facility capacity.

cf ≥ 0, [CU]. Minimum facility capacity, if facility is operating.

c+f ≥ 0, [CU]. Maximum facility capacity increase. Should satisfy c+f ≤ cf since

c+f serves as big M in a constraint and the capacity increase cannot be more

than the maximum capacity.

c−f ≥ 0, [CU]. Maximum facility capacity decrease. Should satisfy c−f ≤ cf since

c−f serves as big M in a constraint and the capacity decrease cannot be more

than the maximum capacity.

c+f ≥ 0, [CU]. Minimum facility capacity increase, if the capacity is increased.

c−f ≥ 0, [CU]. Minimum facility capacity decrease, if the capacity is decreased.

ssp > 0, (s, p) ∈ SP [PU]. Maximum amount of product p supplier s can deliver.

cpfptω > 0, (f, p) ∈ FP [CU/PU]. Capacity consumption for producing product p.

clfptω ≥ 0, (f, p) ∈ FP [LH/PU]. Labour hours needed for producing product p.

dmptω (m, p) ∈MP [PU]. Demand of product p at market m.

bomp1p2 > 0, (p1, p2) ∈ PP , [PU2/PU1]. Amount of product p2 needed to produce one

item of product p1.
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Objective Parameters

πω ∈ (0, 1]. Scenario probability, which should satisfy
∑

ω πω = 1.

α ∈ [0, 1]. Weighting of the two objectives EP (α = 1) and CV@R (α = 0).

β ∈ [0, 1]. Confidence level of the CV@R. Should be in (0.5, 1) to measure the

lower tail.

ρmptc (m, p) ∈MP , [LC/PU]. Revenue for selling product p at market m.

σmptc (m, p) ∈ MP , [LC/PU]. Shortage penalty costs for for not being able to

meet customer demand of product p at market m.

xrtcω > 0, [LC/BC]. Exchange rate between local currency c and the base currency.

γSF
stcω [LC]. Fixed supplier costs.

γSV
sptcω [LC/PU]. Variable supplier costs. This includes the purchase costs for the

products bought from the supplier.

γFO
ftc [LC]. Fixed facility costs.

γCftc [LC/CU]. Variable facility costs per capacity unit.

γIF
+

ftt2c
[LC]. Fixed costs in time period t for capacity increases in period t2. Needs

to satisfy
∑

t2
γIF

+

ftt2c
> 0.

γIF
−

ftt2c
[LC]. Fixed costs in time period t for capacity decreases in period t2. Needs

to satisfy
∑

t2
γIF

−

ftt2c
> 0.

γIV
+

ftt2c
[LC/CU]. Variable costs in time period t for capacity increases in time

period t2.

γIV
−

ftt2c
[LC/CU]. Variable costs in time period t for capacity decreases in time

period t2.

γPF
fptt2c

(f, p) ∈ FP , [LC]. Fixed costs in time period t for assigning products to

facilities in time period t2.

γPV
fptc (f, p) ∈ FP , [LC/PU]. Variable production costs.

γLF
ftcω [LC]. Fixed labour costs.

γLV
fytcω [LC/LH]. Variable labour costs per labour hour.

γTS
sfptcω (s, f, p) ∈ SFP , [LC/PU]. Transport costs from supplier to facility.

γTF
fsfdptcω

(fs, fd, p) ∈ FFP , [LC/PU]. Transport costs from facility to facility.

γTM
fmptcω (f,m, p) ∈ FMP , [LC/PU]. Transport costs from facility to market.

γCP+

ftc [LC/CU]. Costs for capacity consumption above target level.

γCP−

ftc [LC/CU]. Costs for capacity consumption below target level.

γCL+

ftc [LC/LH]. Costs for labour above target level.
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γCL−

ftc [LC/LH]. Costs for labour below target level.

Note that the cost parameters for investment decisions IF+, IF−, IV +, IV −, and PF

are indexed twice over time periods. This is needed to correctly calculate the net

present value (NPV), since an investment decision with start of production in time

period t2 can have investment costs in earlier time periods but also might have a

residual book value at the end of the planning horizon. Also, especially product to

facility assignments might cause additional fixed costs in following time periods, for

example for maintenance or increased complexity.

Objective

The goal is to maximise a weighted sum of the expected profit associated with the

network design decision and its risk measured as CV@R. Profit has three elements:

revenues from market sales of products, costs associated with the decisions, and penalty

costs if market demand is not satisfied.

First, for time period t, currency c, and scenario ω, we define the elements of the

objective, which are all measured in local currency [LC]. We can calculate revenues as

ρtcω =
∑

f,m,p

ρmptcTMfmptω,

and shortage penalties as

σtcω =
∑

m,p,t

σmptc(dmptω −
∑

f

TMfmptω).

Facility costs are the sum of the fixed facility costs for operating facilities and the

capacity-dependent variable facility costs, expressed as

γFtc =
∑

f

(

γFO
ftc FOft + γCftcCft

)

.

Similarly, investment costs for capacity changes are calculated from fixed and variable

costs for capacity decreases and increases as

γItc =
∑

f,t2

(

γIF
+

ftt2cIF
+
ft2c

+ γIF
−

ftt2cIF
−
ft2c

+ γIV
+

ftt2cIV
+
ft2c

+ γIV
−

ftt2cIV
−
ft2c

)

.

Supplier costs include fixed costs for operating suppliers plus variable costs per product

bought. Note that this can also be used to express simple economies of scale in the

purchase costs from suppliers.

γStcω =
∑

s

γSF
stcωSOst +

∑

s,f,p

γSV
sptcωTSsfptω.
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Production costs consist of fixed costs for assigning products to facilities, variable costs

per produced product, and costs for production differing from the target level. This is

expressed as

γPtcω =
∑

f,p,t2

γPF
fptt2cPFfpt2 +

∑

f,p

γPV
fptcPVfptω +

∑

f

(

γCP+

ftc CP+
ftω + γCP−

ftc CP−
ftω

)

.

Labour has fixed costs, variable costs per shift, and costs for labour differing from the

target level:

γLtcω =
∑

f

γLF
ftcωFOft +

∑

f,y

γLV
fytcωLfytω +

∑

f

(

γCL+

ftc CL+
ftω + γCL−

ftc CL−
ftω

)

.

Finally, transport costs are defined as

γTtcω =
∑

s,f,p

γTS
sfptcωTSsfptω +

∑

fs,fd,p

γTF
fsfdptcω

TFfsfdptω +
∑

f,m,p

γTM
fmptcωTMfmptω.

Now, the costs per local currencies can be defined as

γLCtcω = γFtc + γItc + γStcω + γPtcω + γLtcω + γTtcω, [LC].

Summing over time periods while accounting for revenues, costs, and shortage penalties,

we can exchange the profit from local currencies to the base currency which gives the

profit per scenario in base currency,

φω =
1

xrtcω

∑

t,c

(

ρtcω − γ
LC
tcω − σtcω

)

, [BC].

Finally, this gives the expected profit as the weighted sum of the profits per scenario:

φ =
∑

ω

πωφω, [BC].

We include the CV@R in the objective by using the formulation by Rockafellar and

Uryasev (2000) as introduced in section 2.2.3. Therefore, the model includes a con-

straint ∆ω ≥ V@R − φω,∀ω, (see p. 61), which enables us to express the CV@R by

minimising the term

ψ = −

(

V@R−
1

1− β

∑

ω

πω∆ω

)

, [BC].
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Now, our objective is to maximise the weighted sum of EP and CV@R:

maximise z = αφ− (1− α)ψ

=
∑

ω

πω

[

αφω + (1− α)

(

V@R−
1

1− β
∆ω

)]

, [BC]

Constraints

We categorise the constraints into three groups: first stage constraints, which only con-

tain first stage variables and are therefore independent of the scenario index Ω; linking

constraints, which contain first as well as second stage variables; and operational con-

straints, which contain second stage variables only. Therefore, the first stage constraints

are part of the master problem, while the linking and second stage constraints are part

of the recourse problem.

Constraints on First Stage Choices

Connect investments and divestments with capacity via capacity balance equation

The capacity increase minus the capacity decrease has to be equal to the difference

between the capacity in time period t and the capacity in time period t− 1. Note that

for simplicity we assume the initial capacity in time period t− 1 to be zero. This could

of course be replaced by a parameter.

IV +
ft − IV

−
ft = Cft −







Cf,t−1, t > t

0, t = t
, [CU ],∀f, t

Restrict facility capacity by facility choice The capacity of facility a f can only be

greater than zero, if the facility is operating. Also, the capacity has to be at least the

minimum capacity in this case. cf is the tightest possible big M since there is equality

if f ’s capacity is at its maximum cf .

cfFOft ≤ Cft ≤ cfFOft, [CU ],∀f, t

Restrict divestment and investment capacity by divestment and investment choice,

respectively Facility capacity decreases IV −
ft (increases IV +

ft ) are connected with the

according binary decision IF−
ft (IF+

ft). Also, the minimum and maximum capacity

decreases (increases) are established here.

c−f IF
−
ft ≤ IV

−
ft ≤ c

−
f IF

−
ft and c+f IF

+
ft ≤ IV

+
ft ≤ c

+
f IF

+
ft, [CU ],∀f, t

Constraints Connecting First Stage and Second Stage Decisions
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Restrict supplier purchases by supplier choice Product p can only be shipped from

supplier s to factories if s is operating. ssp is the tightest possible big M since this

equation also establishes the supplier’s product specific capacity.

∑

f

TSsfptω ≤ sspSOst, [PU ],∀s, p, t, ω

Bound production capacity utilisation by facility capacity The capacity used to

produce all products at facility f is bounded by the available capacity Cft.

∑

p

cpfptωPVfptω ≤ Cft, [CU ],∀f, t, ω

Restrict production by product-facility assignments Product p can only be produced

at facility f if p has been assigned to f .
cf

cpfptω
is the tightest big M we can use here:

if the capacity of f is at its maximum cf and the production of p utilises f ’s capacity

to the full, then there is equality in the constraint.

PVfptω ≤
cf

cpfptω

t
∑

t2=t

PFfpt2 , [PU ],∀f, p, t, ω

Calculate deviations of capacity utilisation and labour requirement from target levels

Capacity consumption and labour requirements are linked to the target level as follows:

CP t
ft + CP+

ftω − CP
−
ftω =

∑

p

cpfptωPVfptω, [CU ],∀f, t, ω

CLt
ft + CL+

ftω − CL
−
ftω =

∑

p

clfptωPVfptω, [LH],∀f, t, ω

Second Stage Recourse Constraints

Network flow balance equation with BoM The network flow balance equation states

that the amount of product p coming in at a facility f from all other factories and

suppliers, has to be equal to the amount needed for products p2 produced at f . The

outbound balance equation is satisfied via the definition of PVfp2tω.

∑

s

TSsfptω +
∑

fs

TFfsfptω =
∑

p2

bomp2pPVfp2tω, [PU ],∀f, p, t, ω

Connect labour per shift with total labour requirement The labour working in all

shifts at facility f must meet the capacity required by production at f .

∑

y

Lfytω =
∑

p

clfptωPVfptω, [LH],∀f, t, ω
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Bound market sales by market demand The amount of a product p delivered to

market m is limited by the demand of p at m. Note that shortages are allowed.

∑

f

TMfmptω ≤ dmptω, [PU ],∀m, p, t, ω

Risk Calculation Using the formulation by Rockafellar and Uryasev (2000), the CV@R

can be calculated by using the following constraint, where φω is the profit under scen-

ario ω.

∆ω ≥ V@R− φω, [BC],∀ω

4.3. Random Parameters: Scenario Generation

In our model, uncertainty is present in demand, exchange rates, labour costs, productiv-

ity, supplier costs, and transport costs. These parameter uncertainties are captured

through discrete scenarios created by scenario generators (see for example Di Domen-

ica et al., 2007, 2009). The testing of scenario generators and their desirable proper-

ties, namely correctness, consistency, and stability, are discussed by Kaut and Wallace

(2003) and Mitra et al. (2009). As scenario generation is not a main contribution of

this thesis, we only briefly analyse the stability of the presented scenario generator in

sectionsub:stabilityAnalysis.

We present a scenario generator that extends a moment matching algorithm (see

Høyland et al., 2003; Date et al., 2008, and section 4.3.1) to multiple time periods

by combining it with sampling. Thereby we generate vector-valued scenarios with a

two-stage tree structure that captures correlations between components of the random

vector. The scenario generator uses the company’s forecast as the expected value since

this is their best guess about future developments and is often based on sophisticated

models and expert knowledge. Also, under this assumption the expected value problem

matches a deterministic optimisation study undertaken by the company. The details

of the scenario generator are described subsequently.

4.3.1. Moment Matching

Assume our model has m-dimensional uncertainty represented by a random variable

ξ̃ : (Ω̃, F̃ , P̃ )→ (Rm,B) where B is the Borel σ-algebra on Rm and let Ω = {1, . . . , N}.

The aim of moment matching scenario generation is to find a discrete random variable

ξ : Ω→ Rm (the scenarios) that matches moments of ξ̃. Moment matching is suitable

when the probability distribution of ξ̃ is unknown, but observed realisation of ξ̃ are

given, since in this case the moments of ξ̃ can be estimated.

We use the moment matching heuristic by Høyland et al. (2003), which approximates

the first four marginal moments for each of the m components of ξ̃ (expected value,
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4. A Stochastic Optimisation Model for SCND under Uncertainty and Risk

variance, skewness, and curtosis) and the m×m correlation matrix. In this approach,

the goal is to find ξ, such that the Euclidean distance of the moments is less than some

tolerance ε > 0:

4
∑

i=1

∥

∥

∥
E[ξi]−E[ξ̃i]∥∥

∥

2
+

m
∑

k=1

m
∑

l=1

(orr(ξk, ξl)− orr(ξ̃k, ξ̃l))2 ≤ ε2.
Here, ‖.‖ denotes the Euclidean norm and orr the correlation. The scenarios are con-

structed by an iterative procedure combining independent sampling, Cholesky decom-

position of the covariance matrix, and cubic transformations. The resulting scenarios

are all equally likely.

Date et al. (2008) present a different approach to moment matching scenario gener-

ation. Under the assumption that ξ̃ is symmetric, it matches the first two moments

exactly and approximates the fourth moments.

4.3.2. Bootstrapping

The main idea of (non-parametric) bootstrapping is to sample with replacement from

historical data. In statistics, this is used to estimate a distribution of some statistic θ

on the random sample, such as the expected value, (Efron and Tibshirani, 1993; Cheng,

2006; Vose, 2008). The approach is set out in algorithm 4.1.

Algorithm 4.1 Bootstrapping

Input: N,B ∈ N, historical data h1− τ , . . . , h0.
1: for b = 1 to B do

2: Create a bootstrap sample s1b , . . . , s
N
b by uniformly and independently sampling

with replacement from h1−τ , . . . , h0.
3: Calculate the required statistic θ̃b from the sample.
4: end for

5: return Use the empirical distribution of θ̃b, b = 1, . . . , B as probability distribution
of the uncertainty in estimating the real statistic θ.

An advantage of bootstrapping is that the generated scenarios are correct and con-

sistent with the dataset in the sense of Zenios (2007). A disadvantage is that the values

in the bootstrap samples are limited to those of the original sample h1−τ , . . . , h0. Boot-

strapping is similar to the sampling involved in sample average approximation (see

section 5.3.4).

4.3.3. Extended Moment Matching for Multi Time Period Scenarios

Our scenario generator is aimed at models where the recourse includes several time

periods 1, . . . , T . Therefore, the uncertain vector ξ is grouped as ξ = (ξ1, . . . , ξT )
T

with multivariate random variables ξi : Ω→ Rm, i = 1, . . . , T . The main idea is to use
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Algorithm 4.2 A multi time period scenario generator

Input: Desired number of scenarios N , number of future time periods T , time series
of historical data h1−τ , . . . , h0.
Optional: base case scenario b = (b1, . . . , bT )

T .
1: Calculate first 4 moments and correlation from h1−τ , . . . , h0.
2: if base case scenario b is given then

3: Replace first moment (mean) by 0.
4: else

5: Define b = 0.
6: end if

7: Use moment matching to generate N scenarios s̃1, . . . , s̃N .
8: for t = 1 to T do

9: Sample N times without replacement from s̃1, . . . , s̃N to receive scenarios
s1t , . . . , s

N
t .

10: end for

11: return scenarios ξ(ω) = (sω1 + b1, . . . , s
ω
T + bT )

T , ω ∈ Ω = {1, . . . , N}, each with
probability 1

N .

moment matching to generate single time period scenarios and extend them by sampling

without replacement to multi time period scenarios. The scenario generator is set out

in algorithm 4.2. Given a time series of historical data, the moments are calculated and

adjusted if a base case scenario is given. The moment matching scenario generator is

applied once to generate N single period scenarios. Then, we sample N times without

replacement for each time period, thereby creating a random permutation of the single

period scenarios. Finally, a multi period scenario is the series of permutated single

period scenarios. These are adjusted by the base case scenario to separate scenario

generation from forecasting. If it is not given, the forecast trend of the scenarios is the

mean of the historical data.

We observe that by sampling without replacement in step 9 we retain the moments

of the generated scenarios. Many multi time period scenario generators combine all

scenarios from one time period with all scenarios from other time periods, resulting

in NT scenarios. The sampling approach in this step guarantees that the number of

scenarios is independent of the number of time periods.

4.3.4. Autoregressive Transformation of the Time Series

For many applications, using direct observations as historical data gives crude results,

as values observed several time periods earlier might be directly followed by recent

values, therefore possibly leading to large jumps in the values. This is because the

scenario generator itself assumes the values of two consecutive time periods of a scenario

as independent, identically distributed. However, this can be changed by suitable

transformations of the input data and appropriate backwards transformations of the
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scenarios. For example, applying the scenario generator on

h′t = ht − ht−1, t = 2− τ, . . . , 0

assumes a linear relationship between consecutive time periods. Using the back-

transformation

ht = ht−1 + h′t,

we see that this is an autoregressive process of order one if we interpret h′t as the

error term (Chatfield, 2003). In this sense, we generate scenarios for the error term h′t.

Alternatively,

h′t =
ht
ht−1

assumes a relative relationship, which – via logarithmic transformation – also gives an

autoregressive model of order one. Similar transformations of order two or more are

possible.

4.3.5. Example

A typical example with 20 scenarios for one uncertainty (m = 1) is given in figure 4.1.

We apply relative transformation of the historical data h′t = ht/ht−1, and have a con-

stant base case scenario bt = h0, with the transformed base case scenario taking the

value b′t = 1. All elements of algorithm 4.2 applied to the transformed historical data

are marked with a dash.

We observe a slight variation of E[ξt] in figure 4.1. Using the back-transformation

with ξ0 = h0, we get

ξt =ξ
′
t ξt−1

=ξ′t · · · ξ
′
1 h0

=(s′t + b′t) · · · (s
′
1 + b′1)h0

=

(

s′t +
bt
bt−1

)

· · ·

(

s′1 +
b1
h0

)

h0.

Therefore, by using the independence of the sampling in step 9 of algorithm 4.2, we getE[ξt] =E [s′t + bt
bt−1

]

· · ·E [s′1 + b1
h0

]

h0

=
bt
bt−1

· · ·
b1
h0
h0

=bt

=h0.
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Figure 4.1. Example scenario tree with N = 20 scenarios

Thereby we see, that the variation of E[ξt] in the figure is due to numerical inaccuracies

and the approximation of the mean in the moment matching algorithm.

4.4. Summary

In this chapter, we have given an extensive review of SCND literature and of related

topics; we have shown that many of the desirable features identified in section 2.3 appear

in some research, but no single study covers them altogether. We have developed an

extensive model suitable for our application that includes many of the essential features.

While the holistic network structure and detailed operations are important, its most

distinguishing features are the inclusion of multiple sources of uncertainty which are

identified in chapter 3, and the consideration of downside risk via a coherent risk

measure. Finally, we have presented a scenario generator which captures the essential

parameter uncertainties.

The resulting optimisation problem is computationally challenging and we investigate

suitable solution techniques which are reported in chapter 5.
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5. Solving Large Scale Two-Stage

Stochastic Integer Programs

Stochastic programs are gaining increasing attention of the OR community. However,

as the number of variables as well as constraints grow linearly with the number of scen-

arios, even with improved specialised solution techniques they remain computationally

challenging – especially when some of the variables are integer. Hence, in problems

with a large number of scenarios, which is required to have an accurate representation

of real world uncertainty, even the most sophisticated solvers reach their limits. In this

chapter we present a novel, iterative approach called adaptive scenario refinement (ASR)

for solving large scale two-stage SIPs. The aim is to find good solutions for optimisa-

tion problems which are otherwise computationally intractable – rather than to find

them fast. ASR starts on an examination set containing only one scenario, on which

the here-and-now problem is solved. Then, scenarios are added iteratively to this set,

based on regret and a distance measure, with the goal to add scenarios from regions of

the probability space where more detail is beneficial. Therefore, numerous stochastic

programs of increasing size are solved by this algorithm. ASR can be applied to any

two-stage SIP, but it works best when the problem has relatively complete recourse (see

section 2.2.3). The name ‘adaptive scenario refinement’ is loosely based on ‘adaptive

mesh refinement’, a technique in numerical analysis that adaptively refines a mesh in

areas where more details are needed.

This chapter is organised as follows: In section 5.1 we give notations and assump-

tions. In section 5.2 we introduce the concept of ex-ante decision making with ex-post

evaluation, as this sets the background for the sampling methods in the literature re-

view in section 5.3, as well as the ASR algorithm. We discuss known methods for

handling large scale stochastic programs in section 5.3 and present the ASR heuristic in

section 5.4. In section 5.5 we demonstrate that ASR is effective and well suited for the

SCND model presented in chapter 4, as well as for stochastic programming benchmark

problems taken from publicly available test libraries. Our findings are summarised in

section 5.6.
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5.1. Notations and Assumptions

The definitions and notations for two-stage stochastic programs introduced in sec-

tion 2.2.3 are used throughout this chapter. Based on these, we introduce the following

notations and assumptions.

Support

The support of the probability measure P is defined as the smallest closed set whose

probability is 1. If P is discrete, this is

supp(P ) = {ω ∈ Ω|P (ω) > 0}

where Ā denotes the closure of a set A. Throughout this chapter we assume P to

be discrete with finite support |supp(P )| = N . We call ω ∈ supp(P ) a scenario and,

without loss of generality, we assume Ω = supp(P ).

In this setting, the objective of the stochastic program (SP) becomes the finite sum

zP (x) = cTx+
∑

ω∈Ω

P (ω)R(x, ω).

Optimal Solutions x∗P
By x∗P we denote an optimal solution to (SP), that is,

x∗P ∈ argmin
x∈X

zP (x).

Reduced Number of Scenarios K

1 ≤ K ≤ N denotes the desired number of scenarios in the examination set.

Dirac Probability Distribution 1ω̃
By 1ω̃ we denote the Dirac probability distribution on (Ω,F) that places all mass at

ω̃, defined via 1ω̃(ω) = 


1, if ω = ω̃

0, else
, for ω ∈ Ω.

When used as an index, the probability distribution 1ω̃ is abbreviated by ω̃.

Note that zω̃(x) = z1ω̃(x) = cTx+R(x, ω̃) and P =
∑

ω̃∈Ω P (ω)1ω̃.
Distance δ on Ω

Let ω1, ω2 ∈ Ω. As introduced in section 2.2.3, the uncertainty of the stochastic pro-

gram (SP) is represented by the random vector ξ : (Ω,F , P ) → (Rm,B). We define
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δ : Ω× Ω→ R as

δ(ω1, ω2) =

(

m
∑

i=1

|ξi(ω1)− ξi(ω2)|
2

)1/2

,

that is, the Euclidean distance between ξ(ω1) and ξ(ω2). δ is a metric (or distance

function) on Ω if we assume ξ(ω1) 6= ξ(ω2) for all ω1 6= ω2.

5.2. Ex-Ante Optimisation with Ex-Post Simulation

A general technique for investigating large scale stochastic programs is ex-ante op-

timisation with ex-post simulation (see Di Domenica et al., 2009), also referred to as

in-sample optimisation with out-of-sample evaluation (see Kaut and Wallace, 2003).

This method is set out in algorithm 5.1.

Algorithm 5.1 Ex-ante optimisation with ex-post simulation (Di Domenica et al.,
2009)

Input: (SP)
1: Apply scenario generator to generate probability distribution Q with K scenarios.
2: Ex-ante optimisation: solve minx∈X zQ(x).
3: Apply scenario generator to generate probability distribution P with N scenarios.
4: Ex-post evaluation: calculate zP (x

∗
Q).

5: return x∗Q.

Two sets of scenario Q and P with K and N scenarios respectively are generated.

The (SP) is solved using the smaller set and the first stage solution is evaluated on the

larger set in a simulation approach. The interpretation of this is, that P is assumed to

represent the ‘real’ uncertainty, usually with many scenarios, while Q is its approxim-

ation. Note that the scenario generators for P and Q do not need to be identical. Of

course, the optimality gap zP (x
∗
Q)− z

∗
P – and, therefore, the quality of this approach –

depends not only on the problem (SP) itself, but also on the used scenario generators.

Obviously, suitable methods like the (integer) L-shaped method (see section 5.3.2) can

be used to solve the stochastic program.

This approach can be applied to our SCND model by running the scenario generator

described in section 4.3 twice to generate two scenario sets with K and N scenarios,

respectively. We refer to this approach as scenario generation (SCENGEN) and it is

investigated in section 5.5.

Ex-Post Simulation with CV@R-Objective

As stated in section 2.2, decision making under uncertainty faces a fundamental trade-

off between risk and return, which can be explored by stochastic optimisation using

a CV@R risk measure. Rockafellar and Uryasev (2000) show that, for a given feasible

decision x ∈ X of (SP), the CV@R at confidence level β ∈ (0, 1) is calculated by the

69



5. Solving Large Scale Two-Stage Stochastic Integer Programs

stochastic linear program

(CV@R) CV@Rβ
P (x) = min

ν,φω ,ω∈Ω
ν +

1

1− β

∑

ω∈Ω

P (ω)φω

s.th. φω ≥ zω(x)− ν, ω ∈ Ω,

ν ∈ R, φω ≥ 0, ω ∈ Ω.

Also, Fábián (2008) shows that minimising the CV@R in (SP) can be achieved by the

stochastic program

(CP) CV@Rβ
P = min

x∈X ,ν∈R ν +
1

1− β
EP [S(x, ν, ω)]

s.th. Ax = b,

x ≥ 0, ν ∈ R,
where

S(x, ν, ω) = min
y∈Y ,φ∈R φ

s.th. φ ≥ cTx+ q(ω)T y − ν,

W (ω)y = h(ω)− T (ω)x,

y ≥ 0, φ ≥ 0.

In ex-post evaluation we use zP (x) = cTx +
∑

ω∈Ω P (ω)R(x, ω) =
∑

ω∈Ω P (ω)zω(x).

This is also true for (CP), if ν is fixed as a first stage decision to a feasible value – which

is any value in R since there are no constraints on ν. However, the result does not give

the CV@R, as it means solving

min
φω ,ω∈Ω

{

ν + (1− β)−1EP [φω] | φω ≥ zω(x)− ν, φω ≥ 0, ω ∈ Ω
}

,

which differs from (CV@Rβ
P (x)), as ν is fixed and not a variable.

Therefore, ex-post evaluation with a CV@R objective does not work directly as presen-

ted in algorithm 5.1. However, this problem is easy to overcome by adjusting the

approach as set out in algorithm 5.2.
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Algorithm 5.2 Ex-ante optimisation with ex-post simulation for a CV@R objective

Input: (SP)
1: Apply scenario generator to generate probability distribution Q with K scenarios.
2: Ex-ante optimisation: solve CV@Rβ

Q in (CP) with optimal solution X∗
Q.

3: Apply scenario generator to generate probability distribution P with N scenarios.
4: Ex-post evaluation: calculate zP (x

∗
Q).

5: CV@R calculation: solve CV@Rβ
P (x

∗
Q) via the problem (CV@R).

6: return x∗Q.

5.3. Literature Review: Algorithms for Solving Large Scale

Stochastic Mixed Integer Programs

In this section, we review the literature on algorithms for solving large scale linear and

mixed integer stochastic programs. We focus on approaches that are applied to or seem

promising to apply to models for SCND under uncertainty, or that share features with

ASR. We compare these algorithms to the requirements identified in section 2.3.3, that

is, whether they are able to deal with large scale two-stage stochastic programs with

mixed integer first stage, a large number of scenarios, uncertainty in the objective, right

hand side, and technology matrix, as well as whether they are flexible enough to deal

with evolving models.

For general introductions on stochastic programming, its theory, and solution al-

gorithms, we refer to Kall and Wallace (1994); Birge and Louveaux (1997); Ruszczynski

and Shapiro (2003b); Kall and Mayer (2010).

5.3.1. The Deterministic Equivalent Model

Probably the most commonly used method to solve stochastic programs is to solve

the deterministic equivalent model (DEM) with a state of the art solver like CPLEX,

Gurobi, or XPRESS. However, this approach is not scalable and is not suitable for

complex stochastic mixed integer programs with a larger number of scenarios; this is

unfortunately the class of problem investigated by us.

5.3.2. Decomposition Algorithms

Description of the Methodology

Due to their special structure, two-stage stochastic programs are naturally processed

by decomposition approaches. There are two types of decomposition methods: primal

decomposition and dual decomposition (Carøe and Schultz, 1999).

Primal methods decompose the problem between the stages, that is, they solve the

first stage problem in the decision variables x in one step, and the recourse prob-
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lem R(x, ω) in a separate step (Carøe and Schultz, 1999). Benders decomposition (also

called the L-shaped method) is the most common primal decomposition method for lin-

ear stochastic programs. In appendix C we provide a description of the base algorithm;

also see Birge and Louveaux (1997) for an introduction to Benders decomposition, and

Zverovich et al. (2010) for a recent implementation. Stochastic programs with first

stage integer variables and linear second stage can be solved by a branch-and-cut vari-

ation of Benders decomposition called the integer L-shaped method. See Laporte and

Louveaux (1993) for an introduction and Escudero et al. (2007, 2009); Sherali and Zhu

(2009) for recent advances.

Dual methods decompose the problem among the scenarios, that is, in a first step

they relax the non-anticipativity constraints in the deterministic equivalent problem

with explicit non-anticipativity constraints (DEX). Thereby, the problem decomposes

into N separate problems, one for each scenario ω ∈ Ω. In a second step the solutions

xω for x are combined again (Carøe and Schultz, 1999). See Escudero et al. (2011) for

recent advances, also applicable to multi-stage models.

Applications of Decomposition Algorithms in SCND

Many of the approaches for stochastic SCND reviewed in section 4.1.2 involve decom-

position algorithms, tailored to the specific optimisation model. Bienstock and Shapiro

(1988) and Lucas et al. (2001) use Benders decomposition while Santoso et al. (2005)

accelerate Benders decomposition by trust regions, knapsack inequalities, upper bound-

ing heuristics, cut strengthening, logistics constraints, and cut disaggregation to solve

sub-problems within sample average approximation (see section 5.3.4). Based on this,

Bihlmaier et al. (2009) use trust regions and an upper bounding heuristic to accelerate

Benders decomposition. Alonso-Ayuso et al. (2003a) and Alonso-Ayuso et al. (2005a)

propose a dual decomposition with a specialised branch and fix coordination algorithm

from Alonso-Ayuso et al. (2003b); this can be applied to models with fixed recourse and

pure integer first stage. Finally, Schütz et al. (2009) use the dual decomposition with

Lagrangian relaxation as proposed in Carøe and Schultz (1999), to solve sub-problems

within sample average approximation.

Table 5.1 shows the sizes of the according optimisation problems. By comparing

these with the problem size of the SCND model presented in chapter 4 with the number

of scenarios required to represent multiple sources of uncertainty (see table 6.2, p. 89),

we see that this problem is too complex for the proposed approaches. Especially the

number of 0-1 variables is significantly larger than in the other models. This is with

the exception of Lucas et al. (2001). However, their model is an approximation where

the first stage decision is to choose a network design from a given set of possibilities.

Therefore, the solved optimisation problem is not a SCND model and has only 590

feasible first stage solutions. Also, many of the algorithms rely on specifics of the
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Reference 0-1 Vars Cont. Vars Constraints Scenarios

Bienstock and Shapiro 1988 165 2 200 1 250 6
Lucas et al. 2001 590 5 442 096 580 001 100
Santoso et al. 2005 140 1 254 860 469 320 60
Bihlmaier et al. 2009 200
Alonso-Ayuso et al. 2003a 114 3 634 3 933 23
Schütz et al. 2009 28 250 926 000 60

Table 5.1. Problem sizes of SCND models solved by decomposition algorithms

An empty cell means that the according number is not reported in the reference.
If multiple numbers are given by the reference, the largest is reported.

model structure, for example a pure integer first stage, uncertainty only in some places

of the stochastic model, no risk objective, or no risk constraint. This means that they

might not be flexible enough to cope with the evolving requirements from multiple

application projects or are not applicable to our model at all.

5.3.3. Meta-Heuristic Approaches

Bianchi et al. (2009) present an extensive and recent survey on meta-heuristic ap-

proaches to stochastic integer programs, classifying the algorithms by the heuristics

which are chosen. These are ant colony optimisation, evolutionary computation, sim-

ulated annealing, tabu search, stochastic partitioning methods, progressive hedging,

rollout algorithms, particle swarm optimization, and variable neighbourhood search.

However, of the nearly 50 reviewed publications, only five apply to two-stage stochastic

programs and all of them are specialised to certain models that are not related to SCND.

Most recent meta-heuristic approaches include the following:

Lazić et al. (2010) present a variable neighbourhood decomposition search for general

two-stage SIPs. However, the authors conclude that their algorithm ‘usually requires

much longer execution time than the deterministic equivalent solver’ (Lazić et al., 2010),

but becomes more effective when more of the decision variables are 0-1-variables. As

this is not the case in our model, this solver is not suitable for us.

Crainic et al. (2011) propose a progressive hedging algorithm with dual decomposition

tailored to stochastic network design, where the design decisions are to select arcs for

operation in a given network. The algorithm is tailored to the specific problem structure

– particularly it works only for pure binary first stage – and computational studies are

reported with up to 96 scenarios. Therefore, it is not applicable to our model.
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5.3.4. Sample Average Approximation

Description of the Methodology

The sample average approximation (SAA) is a Monte Carlo simulation-based approach

that can be applied to any type of two-stage stochastic program, for example MIP,

non-linear, and especially when Ω is too large (or infinite) to evaluate the recourse

function R(x, ω) for all ω ∈ Ω. The main idea is to use Monte Carlo sampling as a

scenario generator for Q and then to perform ex-ante optimisation with ex-post simu-

lation several times, thereby providing estimators for the optimality gap zP (x
∗
SAA)−z

∗
P

and its variance. Sample average approximation is discussed in depth for example by

Kleywegt et al. (2002); Shapiro (2003), and is set out in algorithm 5.3. L stochastic

Algorithm 5.3 Sample average approximation algorithm (Kleywegt et al., 2002)

Input: (SP), L ∈ N, K̃ ≥ K.
1: Identically and independently sample K̃ scenarios ω̃1, . . . , ω̃K̃ from P .

2: Define a probability distribution Q̃ on {ω̃1, . . . , ω̃K̃} via Q̃ = 1
K

∑K̃
k=1 1ω̃k

.
3: for l = 1 to L do

4: Identically and independently sample K scenarios ωl
1, . . . , ω

l
K from P .

5: Define a probability distribution Ql on {ωl
1, . . . , ω

l
K} via Q

l = 1
K

∑K
k=1 1ωk

.
6: Ex-ante optimisation on Ql:

Solve the stochastic program minx∈X zQl(x) and get solution x∗
Ql .

7: Ex-post evaluation on Q̃:
Calculate zQ̃(x

∗
Ql).

8: end for

9: return a best solution x∗ = x∗
Qi with i ∈ argminl∈{1,...,L}{zQ̃(x

∗
Ql)}.

programs are solved ex-ante, each on K scenarios which are independently sampled

from the probability distribution P . The solutions are evaluated ex-post on a sampled

probability distribution with K̃ scenarios. Note that the evaluation of the x∗
Ql using Q̃

is only necessary if P is such that zP (x) is not practical to calculate, for example due

to a very large number of scenarios – otherwise P is used instead of Q̃.

Estimators for the optimality gap can be used to improve the algorithm, such that

if the estimators are not sufficiently small, K, K̃, and/or L are increased. Also, under

some regularity conditions and given that the set of feasible first stage solutions is

finite, probabilistic bounds on the optimality gap are given in terms of K – however,

for applications these are usually difficult to calculate and very conservative, that is,

K is too large (Kleywegt et al., 2002; Shapiro, 2003).

A special case of sample average approximation is Monte Carlo importance sampling

within Benders decomposition; see Infanger (1992) for a description of the linear case.

Only one sample is taken (L = 1), but still a confidence interval for the objective is

provided. Thereby, the quality of a solution is evaluated and it can be improved by
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taking a larger sample size K, if necessary. ‘Importance’ here refers to an improved

sampling technique that reduces the estimator’s variance as compared to ‘crude’ Monte

Carlo sampling.

Applications in SCND

Linderoth et al. (2002) and Linderoth et al. (2006) study the behaviour of sample

average approximation on test cases with up to 6 × 1081 scenarios. Among the SCND

models from section 4.1.2, Santoso et al. (2005) use sample average approximation with

L = 20,K = 20, 30, 40, 60, and K̃ = 1000 scenarios, while sampling from continuous

log-normal distributions. Sub-problems are solved by accelerated Benders decomposi-

tion. Similarly, Schütz et al. (2009) use L = 20,K = 20, 40, 60, and K̃ = N = 1000,

but solve the sub-problems by dual decomposition.

5.3.5. Scenario Reduction

Given the stochastic program (SP) (or a multi-stage, possibly non-linear stochastic

program) with probability distribution P , the aim of scenario reduction is to reduce

the number of scenarios, such that the optimal objective of (SP) admits minimal changes

(Heitsch and Römisch, 2007). Formally, the goal is to find a probability measure Q on

(Ω,F) with supp(Q) ⊆ Ω, |supp(Q)| ≤ K, such that zP (x
∗
Q)−z

∗
P is minimal. Obviously,

this problem is not easy to solve as it includes solving the original stochastic program

with the probability distribution P .

Therefore, an approach is developed by Dupačová et al. (2003) and improved by

Heitsch and Römisch (2003), where the problem is approximated by finding Q, such

that µ(P,Q) is minimal. Here, µ denotes a distance measure based on a Fortet-Mourier

metric, which is chosen due to a stability result by Rachev and Römisch (2002). The

special case of two-stage programs is discussed by Heitsch and Römisch (2007), where

the problem becomes easier to handle, which allows for some parts of the algorithm to

be calculated directly, rather than to be approximated. Note that the methodology is

developed for convex stochastic programs; therefore, bounds on the gap do not hold for

integer variables – but the algorithm still gives good results. In what follows, we discuss

the scenario reduction approach for two-stage stochastic programs in more detail; this

also constitutes part of our algorithm. Also, it is a suitable approach for our model

and, therefore, included in the computational studies in section 5.5.

Other work on scenario reduction are considered below.

Henrion et al. (2008), based on work by Henrion et al. (2009), adapt the scenario

reduction approach for linear stochastic programs to two-stage SIPs by using a discrep-

ancy distance instead of the Fortet-Mourier metric. However, the approach is only

applicable for stochastic programs with linear first stage, mixed integer recourse, and
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randomness only in the right-hand side (h(ω) in (SP)). Also, the authors note that

the complexity of the proposed algorithm quickly increases with the original number

of scenarios N , the reduced number K, and the dimension m of the random vector ξ.

Therefore, this approach is not investigated in the computational studies.

Karuppiah et al. (2010) present a different approach to scenario reduction for models

where multiple uncertain parameters are stochastically independent. In this situation

the set of all scenarios consists of the Cartesian product of the sets of individual scen-

arios. The goal then is to select a subset of minimal size from the combined scenarios,

such that each individual scenarios keeps its marginal probability. This problem is

solved as a MIP. As this approach is only applicable to certain types of stochastic pro-

grams, and especially not for the SCND model developed in chapter 4, it is not further

investigated.

An application of scenario reduction to SCND is not reported in the literature.

Optimal Redistribution

A sub-problem of optimal scenario reduction is optimal redistribution. Denote the

scenarios in Ω by ωi with probabilities pi = P (ωi), i = 1, . . . , N . Given a examination

set J ⊂ {1, . . . , N} of scenarios, the goal of optimal redistribution is to determine

probabilities qj ≥ 0, j ∈ J , such that the Fortet-Mourier distance µ(P,Q) between P

and the resulting probability measure Q =
∑

j∈J qj1ωj
is minimal.

As shown by Heitsch and Römisch (2007), this problem is solvable by simply adding

the probability of deleted scenarios ωi, i ∈ {1, . . . , N} \ J to the probability of a closest

scenario in the examination set J . This is set out in algorithm 5.4. Note that we only

report the case where µ is the Fortet-Mourier metric of order 1; the interested reader

is referred to the cited references for cases of order greater than 1.

Algorithm 5.4 Algorithm of optimal redistribution (Heitsch and Römisch, 2007)

Input: ∅ 6= J ⊂ {1, . . . , N}. Denote scenarios by ωi ∈ Ω, i = 1, . . . , N .
1: qj = P (ωj) for j ∈ J .
2: for i ∈ {1, . . . , N} \ J do

3: j ∈ argmink∈J{δ (ωi, ωk)}.
4: qj ← qj + P (ωi).
5: end for

6: return probability distribution Q on {ωj | j ∈ J} defined as Q =
∑

j∈J qj1ωj
.

Scenario Reduction Heuristics

Using algorithm 5.4, the problem of optimal scenario reduction can be restated, but

still is NP-hard. Therefore, the authors propose heuristics derived by extending the

extreme cases where K = 1 (forward selection) and K = N − 1 (backward reduction).
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Forward selection is set out in algorithm 5.5 and is investigated in the computational

studies.

Algorithm 5.5 Heuristic of scenario reduction with forward selection (Heitsch and
Römisch, 2007)

Input: P
1: Let J0 = ∅.
2: for i = 1 to K do

3: Let

J̄ i−1 = {1, . . . , N} \ J i−1

ji ∈ argmin
j∈J̄i−1







∑

k∈J̄i−1\{j}

P (ωk) min
l∈Ji−1∪{j}

{δ (ωk, ωl)}







J i = J i−1 ∪ {ji}

4: end for

5: Do optimal redistribution on JK as set out in algorithm 5.4 and get probability
distribution Q.

6: return Q.

5.3.6. Iterative Approaches

Some iterative methods for multi-stage stochastic programs have been proposed: after

solving the problem on a scenario tree, they add or remove some scenarios and solve

the problem again with the idea to add detail to the tree exactly where needed (Kaut

and Wallace, 2003). Dempster and Thompson (1999) uses expected value of perfect

information as importance sampling criterion in a nested Benders decomposition while

Casey and Sen (2005) uses dual variables from the current solutions. Both approaches

only work for continuous linear stochastic programs and they cannot be easily trans-

ferred to two-stage problems: at a node of the multi-stage tree they either collapse

all branching scenarios to a single expected value scenario, or they use all scenarios

branching from that node. In a two-stage tree this means only having the possibility

of solving the expected value problem or of solving the full problem (SP).

5.3.7. Summary of Solver Literature and Open Research Problems

We have shown that except for scenario reduction and scenario generation, none of the

solution algorithms in the literature meets the requirements identified in section 2.3.3.

Therefore, we present a novel solution heuristic in the subsequent section and compare

it to the applicable existing methodologies in the computational studies in section 5.5.
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5.4. Adaptive Scenario Refinement Algorithm

In this section, the adaptive scenario refinement (ASR) heuristic is presented. ASR iter-

atively solves the optimisation problem on an examination set of scenarios of increasing

size, with the new scenario in each iteration being selected such that it lies in areas of

the scenario set where improvements seem most likely. This is based on two criteria:

the regret of the scenario and the probability it would get under optimal redistribution.

For a feasible solution x ∈ X of (SP) and scenario ω ∈ Ω, the regret is defined as

rx(ω) = zω(x)− z
∗
ω,

that is, the difference of the objective on ω under the current solution and the optimal

wait-and-see objective of ω. Thereby, zω(x) − zω(x̃) ≤ rx(ω) for all feasible solutions

x̃ ∈ X of (SP), which means that the objective of solution x under scenario ω can be

improved at most by rx(ω). Conversely, a high regret of a scenario ω indicates that

under the current solution x the objective of ω is much worse than it could be, indicating

that such a scenario is desirable to add. The second criterion is the probability the

scenario ω would get by optimal redistribution if it was added to the examination

set. The idea is that if ω is close (in terms of the distance δ) to many already selected

scenarios, this is lower than if ω is far from any selected scenario. Thereby this criterion

aims to ensure a certain diversity of the selected scenarios.

ASR is set out in algorithm 5.6. First, the wait-and-see problem is solved, the solu-

tions are evaluated under all uncertainties, and a best solution is selected as the starting

scenario. Then, the number of scenarios is iteratively increased, until the desired num-

ber K of scenarios is reached.

In each iteration, the regret is calculated and in step 6 the redistribution of prob-

abilities is calculated, under the hypothesis that scenario ω̄ ∈ Ψk is added to the

examination set Ψk. The selection of scenario k + 1 in step 7 is the crucial step of

the algorithm and follows the idea of balancing new probabilities and regret, as set

out above. The new probability measure Qk+1 in step 8 is defined via the optimally

redistributed probabilities.

In step 9 the here-and-now stochastic program is solved, which is by far the most time-

consuming step of the algorithm. Any solver suitable for (SP) can be used and should

be warm-started with x∗k to improve the solution time. If this problem is infeasible, the

algorithm terminates in step 10, as the set of feasible solutions will only become smaller

if more sceanrios are added. Conversely, if the here-and-now problem is unbounded,

the algorithm does not terminate, as the problem might become bounded by adding

additional scenarios.

In step 11, the remaining recourse problems are solved. This is needed to calculate

the regret in step 5 and the ex-post objective zP (x
∗
k+1) in step 14. If (SP) contains
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Algorithm 5.6 Adaptive scenario refinement algorithm

Input: (SP)
Note: When used as index, we abbreviate the probability distribution Qk by the
notation k. We write Ψ = Ω \Ψ for an examination set Ψ ⊂ Ω.

1: Solve the wait-and-see problem:
For each ω ∈ Ω solve minx∈X zω(x).
Optimal solutions are denoted by x∗ω and optimal objectives by z∗ω.

2: Simulation:
Solve the recourse problems R(x∗ω, ω̃) for all ω, ω̃ ∈ Ω and calculate
zP (x

∗
ω) = cTx∗ω +

∑

ω̃∈Ω P (ω̃)R(x
∗
ω, ω̃).

3: Let ω1 ∈ argminω∈Ω {zP (x
∗
ω)} , Ψ1 = {ω1}, and Q1 = 1ω1

.
4: for k = 1 to K − 1 do

5: Let rk(ω̄) = zω̄(x
∗
k)− z

∗
ω̄ be the regret of unselected scenarios ω̄ ∈ Ψk.

6: For ω̄ ∈ Ψk and ω ∈ Ψk ∪ {ω̄}, let πk(ω̄, ω) be the probability of ω calculated by
optimal redistribution in algorithm 5.4 on the scenario-set Ψk ∪ {ω̄}.

7: Let ωk+1 = argmaxω̄∈Ψk
{πk(ω̄, ω̄) rk(ω̄)} .

8: Let Ψk+1 = Ψk ∪ {ωk+1} and define the probability distribution Qk+1 with sup-
port Ψk+1 via Qk+1 =

∑

ω∈Ψk+1
πk(ωk+1, ω)1ω.

9: Ex-ante optimisation of (SP) on Qk+1:
minx∈X zk+1(x) with optimal solution x∗k+1.

10: Stop if zP (x
∗
k+1) =∞. The problem is infeasible.

11: Ex-post simulation:
Solve the recourse problem R(x∗k+1, ω̄) for ω̄ ∈ Ψk+1 and calculate

zP (x
∗
k+1) = cTx∗k+1 +

∑

ω∈Ω P (ω)R(x
∗
k+1, ω).

12: Stop if zP (x
∗
k+1) = −∞. The problem is unbounded.

13: end for

14: return a best solution x∗ = x∗i with i ∈ argmini∈{1,...,K} {zP (x
∗
i )}.
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the calculation of a CV@R, steps 4 and 5 from algorithm 5.2 need to be executed here

instead. If the result is unbounded, the algorithm terminates in step 12 since it has

found a feasible first stage solution x∗k+1 with unbounded second stage. Conversely, if

the second stage is infeasible, the algorithm does not terminate, as there might be a

first stage solution which gives a feasible second stage.

As with any sampling procedure, the sequence of the ex-post objective-values

zP (x
∗
k), k = 1, . . . ,K is not necessarily monotonously decreasing. Therefore, the best

solution found is returned in step 14, which might not be x∗K . Obviously ASR converges

to an optimal solution if we let K → N .

5.5. Computational Studies

In this section we compare the results for adaptive scenario refinement (ASR) with

scenario reduction (SCENRED) and, where available, also with different scenario sets

from the scenario generator as ex-ante optimisation with ex-post evaluation (SCENGEN).

5.5.1. Description of Test Cases

We use test cases from the stochastic integer programming test problem library (SIPLIB)

by Ahmed (2004), from the test-problem collection for stochastic linear program-

ming (SLP) by Felt (2003), test cases (LSW) by Linderoth et al. (2001), and two test

cases based on the SCND model described in chapter 4 – one with expected profit (EP)

objective and one with CV@R objective. From the libraries, all test cases of two-stage

stochastic linear or mixed integer programs with at least 25 scenarios and at most 4 096

scenarios are used. A summary of the selected test cases is shown in table 5.2.

In sslp 10 50 integer constraints are relaxed to cope with computational complexity.

Further, the number of scenarios in the LSW test cases is reduced from values as large

as 6 × 1081 to values reasonable for ASR and SCENRED. For the SCND test cases, the

scenario generator described in section 4.3 is used to generate scenario sets of arbitrary

size. Obviously, the problems cannot be solved on the largest scenario set with 1 000

scenarios – this is after all the reason to use approximation algorithms. Therefore, this

set is used for ex-post evaluation only.

5.5.2. Method of Investigation

Optimality Gap

Results from the algorithms are reported by their (relative) optimality gap

gap(x) =
zP (x)− z

∗
P

1 + |z∗P |
,
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Test Suite Test Case Integer on Stage Number of Scenarios VSP

SIPLIB dcap233 1, 2 200, 300, 500 2.8× 10−2

SIPLIB dcap243 1, 2 200, 300, 500 2.4× 10−2

SIPLIB dcap332 1, 2 200, 300, 500 9.2× 10−2

SIPLIB dcap342 1, 2 200, 300, 500 2.2× 10−2

SIPLIB sslp 5 25 1, 2 50, 100 0.0
SIPLIB sslp 10 50 1 50, 100, 500, 1 000, 2 000 0.0
SIPLIB sslp 15 45 1, 2 5, 10, 15 0.0

SCND scnd EP 1 25, . . . , 50, (1 000) 0.0
SCND scnd CV@R 1 25, . . . , 50, (1 000) 0.0

SLP airlift – 25 1.8× 10−4

SLP cargo – 2i, i = 0, . . . , 12 0.0

LSW 20term – 1 024 1.1× 10−2

LSW gbd – 1 024 2.5× 10−2

LSW lands – 1 000 2.8× 10−4

LSW ssn – 735 2.0× 10−1

LSW storm – 625 1.4× 10−4

Table 5.2. Summary of test cases

The value of stochastic programming (VSP) is introduced in section 5.5.2 and is
given here for convenience.

where x ∈ X denotes a feasible solution of (SP), and P is the probability distribution

from the largest scenario set. As the SCND problems cannot be solved to optimality on

the largest scenario set, the best feasible solution found in any investigation is used to

approximate z∗P .

Value of Stochastic Programming

In some of the test cases, one of the wait-and-see solutions is already optimal. To focus

on the interesting results, we introduce a measure called (relative) value of stochastic

programming (VSP), which we define as

zVSP = min
ω∈Ω

zP (x
∗
ω)− z

∗
P

1 + |z∗P |
.

It gives the difference between the best wait-and-see objective and the optimal objective.

Obviously, zVSP ≥ 0 and zVSP = 0 if and only if one of the wait-and-see solutions x∗ω

is an optimal solution to (SP). Problems with zVSP = 0 are solved to optimality in

step 1 of the ASR algorithm 5.6. Except for the SCND test cases, these are omitted in

the result presentation.
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Computations

The three approaches ASR, SCENRED, and SCENGEN are applied on the test cases in

the following way:

ASR and SCENRED For each test case, the largest scenario set with N scenarios is

selected. For K = 1, . . . , N (K = 1, . . . , 50 for SCND), ASR and SCENRED are applied

as described in algorithm 5.6 and algorithm 5.5, respectively. The resulting optimality

gaps are reported for each K.

SCENGEN For each test case the problem is solved on all scenario sets (except for the

1 000 scenarios in SCND). Then, the solution is evaluated ex-post under the largest

scenario set as set out in algorithm 5.1 and the optimality gap is reported.

Implementation

All three approaches are implemented in the FortSP stochastic programming solver

system (see Ellison et al., 2010) and here-and-now problems are solved using an appro-

priate solver from the FortSP suite: Benders decomposition for linear programs, the

integer L-shaped method for problems with integer variables on the first stage only, and

the deterministic equivalent model for problems with integer variables on the second

stage. CPLEX 12.1 is used to solve underlying linear and mixed integer programs. The

default stopping criterion with a relative MIP gap 10−4 is used, except for the SCND

problems where it is set to 10−2 due to computational complexity.

5.5.3. Test Case Results

Stochastic Integer Programs

Figures 5.1 and 5.2 show the relative optimality gap of the applicable algorithms for all

SIP test cases with a non-zero value of stochastic programming. In the three test cases

not shown, ASR finds an optimal solution in the first iteration while SCENRED always

needs more than one scenario.

In the SIPLIB test cases shown in figure 5.1, ASR clearly outperforms the other ap-

proaches, as it always finds an optimal solution within the first 9 to 42 scenarios, while

SCENRED needs 340 to 421 out of 500 scenarios. The SCENGEN approach has too few

data points to make a reliable statement, but seems to perform rather worse than better

than SCENRED.

The SCND test cases reported in figure 5.2 cannot be solved to optimality. Therefore,

the best found solution is used to approximate the optimality gap, which in both cases

is one of the wait-and-see solutions. Therefore, ASR finds an optimal solution with

the first scenario. For expected profit optimisation the SCENRED algorithm performs
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Figure 5.1. Relative optimality gap for SIPLIB test cases

The x-axis shows the number of scenarios K, the y-axis the relative gap.
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Figure 5.2. Relative optimality gap for SCND test cases

The x-axis shows the number of scenarios K, the y-axis the relative gap. ASR is
omitted since the VSP is less than the optimality gap.
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good as well, with all solutions within the MIP gap after 21 scenarios. However, for

CV@R optimisation the results look worse, since the objective does not seem to converge

to 0. Instead, the gap varies between 1% and 500%. The SCENGEN approach has a

gap of around 2% for all scenarios when optimising expected profit, and between 10%

and 110% for CV@R optimisation. In both cases, SCENGEN does not show any sign of

converging to the optimal value.

Stochastic Linear Programs

Figure 5.3 shows the relative optimality gap of the applicable algorithms for the test

cases of linear stochastic programs with a non-zero value of stochastic programming. In

the remaining test case not shown, ASR finds an optimal solution in the first iteration

while SCENRED needs more than one scenario.

For the LSW and SLP test cases shown in figure 5.3, results are mixed. In the test

cases gbd and airlift, ASR is better than SCENRED, while in lands and storm they both

perform very good. In the 20term and ssn test cases, ASR performs worse. Notable

about these problems is that in both the objective consists only of penalty costs for

some scenarios on the second stage with no first stage costs, which means there is little

information in the regret for ASR to work with.

5.5.4. Advantages of ASR

Similar to sample average approximation, the benefit of the ASR heuristic is not that

it is fast – in fact if we want to solve a stochastic program with K ≤ N scenarios using

ASR, this involves solving K here-and-now problems on examination sets of increasing

size 1, . . . ,K, as well as solving the wait-and-see problem on N scenarios with N2

recourse evaluations. Therefore, it cannot be faster than any exact method that solves

the problem on K scenarios directly. However, the benefit of ASR is illustrated by

the SCND test case. In this situation, the problem cannot be solved with N = 1000

scenarios as the problem is too large. Instead, it can only be solved with K = 50

scenarios in reasonable time, even with a state-of-the-art integer L-shaped solver. In

this situation, good approximations are needed. Therefore, the aim is not to solve the

problem on K or N scenarios as fast as possible, but to select K scenarios, such that

the resulting solution is as good as possible when evaluated under all N scenarios.

5.6. Summary

As we have seen, the SCENGEN solution approach gives the worst results, which em-

phasises the importance of generating a large number of scenarios for the resulting

stochastic program. The ASR method did significantly better than SCENRED in 12 out
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Figure 5.3. Relative optimality gap for LSW and SLP test cases for linear
stochastic programs

The x-axis shows the number of scenarios K, the y-axis the relative gap.
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of 16 cases, about equally good in two cases, and worse in two cases, both of which did

not include integer variables. However, most importantly, ASR was the best algorithm

in the SCND test cases. Therefore, ASR is the solution algorithm we adopt for the SCND

case study in the subsequent chapter.
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Analysis

In this chapter we apply the developed methodology to a case study network and

investigate its benefits and implications. This combines the stochastic SCND model

introduced in chapter 4 with the corresponding scenario generator, as well as the iden-

tified uncertainties from chapter 3 as they are part of the model. Also, we use the ASR

heuristic from chapter 5 to solve the optimisation problems.

We describe the case study network in section 6.1 and the scenarios in section 6.2.

We discuss the case study results in section 6.3 and show the reliability of the results

by demonstrating the stability of the scenario generator in section 6.4. Finally, we

summarise the chapter in section 6.5.

6.1. The Case Study Network

We apply the SCND methodology to a production network in the automotive industry.

To maintain confidentiality we use simulated but representative data; the general struc-

ture is retained.

In the case study we have ten products whose assembly structure is shown in fig-

ure 6.1. The main product groups are the power train (PT), car bodies, and assembled

cars. Car bodies and assembled cars are further categorised as small (S) and large (L).

The supply chain network is distributed over the four currency regions Euro (EUR),

Brazilian Real (BRL), Chinese Yuan (CNY), and US Dollar (USD), with the network as

set out in figure 6.2. The first three regions have a production structure as shown in

figure 6.1, whereas there is no production in the US. The EUR is the company’s base

currency. The set sizes are shown in table 6.1. The dimensions of the first and second

stage for a single scenario, as well as of the deterministic equivalent model (DEM) with

50 and 1 000 scenarios are summarised in table 6.2.

For the purpose of illustration, we have decided for the case study to allow the first

stage decisions to be set in the first time period only. To account for this, we assume

constant expected demand over all time periods.

CV@R is measured at 90% confidence level.
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6.2. Scenario Generation for Random Parameters

Set Name Size

S Suppliers 9
F Facilities 9
M Markets 4
P Products 10
Y Shifts 3
C Currencies 4
T Time periods 10
N Scenarios 1 000

Table 6.1. Sets and case study sizes

1st stage 2nd stage DEM 50 DEM 1 000

0-1 variables 510 0 510 510
Continuous variables 451 1 681 84 501 1 681 451
Constraints 270 891 44 820 891 270

Table 6.2. Case study model sizes

Second stage sizes are for a single scenario and the deterministic equivalent model
(DEM) sizes for 50 and 1 000 scenarios, respectively.

6.2. Scenario Generation for Random Parameters

For the multiple uncertain parameters included in our model we assume a correlation

structure of the uncertainties as set out in figure 6.3.

Demand

Exchange Rates

Labour Costs
Transport Costs

Productivity

Supplier Costs

0

0

Figure 6.3. Correlation structure of uncertainties

We apply the relative autoregressive transformation of order 1 (see section 4.3) to

the historical data and construct 1 000 scenarios by fitting the scenario generator de-

scribed in section 4.3. However, two of the uncertain parameters, namely demand and

productivity, require further discussion since these include some expert intervention.
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6. A SCND Case Study and Results Analysis

6.2.1. Demand Scenarios

Given historical data of demand and the company’s demand forecast, we assume the

uncertainty to be in the company’s forecast. Therefore, we generate scenarios for the

forecasting error instead of for the demand. This approach has the advantage that

we do not claim to have any expert knowledge or insight into the demand forecast

or market and sales strategy – which is a core expertise of any company. Instead we

just objectively measure, how good they can predict their demand. This increases the

acceptance of the scenarios and, therefore, of the whole study.

While not explicitly modeled in the scenario generator, the following conceptual

decomposition of demand uncertainty is useful in the later discussion. For a product

p ∈ P , market m ∈ M , time period t ∈ T , and scenario ω ∈ Ω, we can rewrite the

demand dmptω as

dmptω = dttω dpptω dmmptω.

Here

dttω =
∑

m,p

dmptω

denotes the total demand, which is used to represent volume uncertainty in overall

demand.

dpptω =
1

dttω

∑

m

dmptω

is the share of product p on the total demand and is used to represent product mix

uncertainty. Finally,

dmmptω =
1

∑

m dmptω
dmptω

is the share of market m on the demand of product p and is interpreted as market

location uncertainty.

6.2.2. Productivity Scenarios

The uncertainty in productivity is more difficult to capture: the uncertainty is especially

high for new production facilities – but for new facilities there is also a lack of historical

data. Our approach is to assume a learning curve for the capacity consumed by the

production of each product (see for example Chase et al., 2006). Learning curves

assume a logarithmic decline in capacity consumption over the cumulated production

amount, where with each doubling of production the capacity consumption is reduced

by a factor L ∈ (0, 1]. As this is not possible to include in a linear optimisation problem

we use a slight variation, where the decline is over time instead. This gives a capacity
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6.2. Scenario Generation for Random Parameters

consumption cf(t) in time period t ∈ {t, . . . , t} as

cf(t) = cft · L
log2(t−t+1)),

where cft is the initial capacity consumption in the first time period t, and L ∈ (0, 1]

is the learning rate.

Uncertainty in productivity is then modelled as uncertainty in the learning rate L.

This is generated by moment matching without sampling, since no multi time period

uncertainty is needed in this situation.

6.2.3. Single Period Scenario Results

To get an impression of the generated scenarios, we show the box plots of the single time

period scenarios s̃ from the moment matching algorithm, as introduced in algorithm 4.2.

Except for the productivity scenarios, we use the relative transformation with a base

case scenario; therefore these uncertainties have mean 1 plus the base case value. The

results for the generated scenarios are shown as box plots in figures 6.4 – 6.7 for 1 000

generated scenarios. Readers not familiar with the definition of box plots are referred

to appendix D.

As we can see from figure 6.4, demand uncertainty is similar across the markets

and products, with slightly higher uncertainty in China and for large cars. Demand

scenarios have mean 1 to comply with the situation that we allow the first stage decisions

to be set in the first time period only.

Figure 6.5 shows the economical uncertainties. Obviously, transport costs are subject

to huge variation and also they increase on average by 12% per year. Among the

exchange rates, the BRL has the highest variability towards the EUR while USD and

CNY behave similarly – which reflects the fact that the CNY is closely linked to the

USD. As expected, labour costs are most volatile in China with a high annual increase

of 7.5%. In Europe most scenario values are within a vary narrow range, but some

extreme cases also appear. Labour costs uncertainty in Brazil has lower variation –

this is due to fewer available historical data.

Supplier cost uncertainty shown in figure 6.6 behaves similar in the different countries,

with slightly higher variation in China than in Brazil, and with Europe the least volatile.

Supplier costs have mean 1 when considered as real costs after inflation.

Finally, figure 6.7 shows the productivity uncertainty for the learning rate. There is

nearly no uncertainty in Europe and 75% of the scenario values in Brazil are between

0.98 and 1.00 with few values below 0.95. In China, productivity uncertainty is higher

with 50% of the scenario values between 0.95 and 0.98 and some values as low as 0.85.
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Figure 6.4. Box plots of demand scenarios for products at markets

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
ce
n
ar
io

V
al
u
e

Transport Costs

0.75

1.00

1.25

1.50

1.75

BRL USD CNY

Exchange Rates

0.9

1.0

1.1

1.2

1.3

EUR BRL CNY

Labour Costs

Average

Figure 6.5. Box plots of scenarios for transport costs, exchange rates towards
the EUR, and labour costs
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Figure 6.6. Box plots of scenarios for supplier costs of different raw materials in
different countries
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Figure 6.7. Box plots of scenarios for productivity in different countries
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6.3. SCND Case Study Result Analysis

We study the effects of introducing multiple parameter uncertainties and illustrate

its importance by studying the behaviour of the case study network under various

uncertainties. This is achieved by the following method of investigation, belonging to

the general concepts of combining ex-ante decision making with ex-post evaluation (see

section 5.2). In the ex-ante decision making phase we select a subset of parameters

to be represented by their probability distribution, replace all other uncertainties by

their expected value, and solve the resulting here-and-now optimisation problem. In

the ex-post evaluation phase we select a second subset of parameters to be represented

by their statistical distribution and replace the remaining parameters by their expected

value. Next, the first stage decision variables are set to the optimal solution values from

the ex-ante optimisation, and then we solve the second stage recourse problem.

To explore the trade-off between risk and return, we use as objective either ex-

pected profit or CV@R. Also, we compare the results to deterministic profit maxim-

isation. By utilising the notations of table 6.3, we specify an investigation for ex-

pected profit maximisation and CV@R minimisation as Z
up
ua and R

up
ua , with ua, up ∈

{A,D,X,P, T, L, S, ∅}, where ua is the uncertainty set for the ex-ante phase and up

the uncertainty set for the ex-post phase. As the first stage decisions do not depend

on the ex-post evaluation, these are denoted by Zua and Rua , respectively.

Notation Meaning

A = (Dω,Xω, Pω, Tω, Lω, Sω) all uncertainties simultaneously
D = (Dω, X̄, P̄ , T̄ , L̄, S̄) demand uncertainty
X = (D̄,Xω, P̄ , T̄ , L̄, S̄) exchange rate uncertainty
P = (D̄, X̄, Pω, T̄ , L̄, S̄) productivity uncertainty
T = (D̄, X̄, P̄ , Tω, L̄, S̄) transport cost uncertainty
L = (D̄, X̄, P̄ , T̄ , Lω, S̄) labour cost uncertainty
S = (D̄, X̄, P̄ , T̄ , L̄, Sω) supplier cost uncertainty
∅ = (D̄, X̄, P̄ , T̄ , L̄, S̄) no uncertainty

Z expected profit maximisation as objective
R CV@R minimisation as objective

Table 6.3. Notations for objectives and uncertainties

¯denotes expected value and ω uncertainty via scenarios ω ∈ Ω.

In section 6.3.1 we investigate all uncertainties, that is, ZA
A and RA

A, and compare

these to the expected value problem ZA
∅ . In section 6.3.2, we investigate the import-

ance of accounting for multiple uncertainties in ex-ante decision making when faced

by multiple uncertainties in ex-post evaluation. Therefore, we look at the investiga-

tions ZA
ua
, RA

ua
, and ZA

∅ with ua ∈ {A,D,X,P, T, L, S}. In section 6.3.3 we investigate
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6.3. SCND Case Study Result Analysis

the situations Z
up

A , R
up

A , and Z
up

∅ with up ∈ {A,D,X,P, T, L, S}. This highlights the

effects of different uncertainties on given network designs.

We solve the here-and-now problems using the ASR algorithm described in chapter 5

with K = 50 out of N = 1000 scenarios and the MIP gap set to 1%. Ex-post evaluation

is performed on all 1 000 scenarios. All objective values are scaled such that the expected

value of the deterministic solution is set to act as a reference point with 100 units of

profit.

6.3.1. The Trade-Off Between Risk and Return with Multiple Sources of

Uncertainty

We analyse the investigations ZA
A , R

A
A, and Z

A
∅ with the results from the stochastic

optimisations shown in a risk return diagram in figure 6.8. We also give five solutions

on the efficient frontier by varying the weight β = i/6, i = 1 . . . 5. Note that only four

solutions are visible since β = 1/6 and β = 2/6 give the same solution, which is the

bottom left point of the efficient solutions shown. Given that we wish to have high

profit and low CV@R, solutions in the top left corner of the risk return diagram are

efficient.

From the risk return diagram, we can get a first impression of how the different

solutions behave. The value of the stochastic solution depends on the weighting of

expected profit and CV@R in the objective, that is, the risk preference of the decision

maker. For the extreme points, this is the vertical difference 28.8 between ZA
∅ and ZA

A ,

and the horizontal difference 123.7 between ZA
∅ and RA

A. Also, the diagram illustrates

the trade-off between risk and return: the CV@R from RA
A is 8.9 lower than the one

from ZA
A . However, this risk reduction comes at a cost, which is 17.0 of the maximum

possible expected profit.

Figure 6.9 shows the box plots of profit distributions for the different investigations, as

well as the inverse of the cumulative distribution function. This illustrates the situation

in the risk return diagram: ZA
A has high potential when it comes to the upside of the

profit distribution but also significant risk on the downside, even with a possibility

of losses. RA
A in contrast results in less losses but at the expense of heaving a worse

upside tail. Hence, we again see the trade-off between risk and return in those two

solutions. ZA
∅ has a poor downside tail distribution while producing a good upside tail

distribution. We observe that ZA
A already significantly reduces the risk when compared

to the deterministic optimisation ZA
∅ .

For further investigation we describe the network design decisions of the solutions.

The facility capacities from the different solutions are shown in figure 6.10. While

solution Z∅ installs all capacities in Brazil, ZA allocates all capacities in Europe. RA

splits capacities between Europe and China for the assembly and power train facilities,

but has production in Europe only for the body shop. This different behaviour is due
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The CV@R-axis is split.
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Ex-post optimisation Z∅ ZA RA

Supplier EU BR CN EU BR CN EU BR CN

Assembly raw – X – X – – X – X

Body raw – X – X – – X – –
Power train raw X – – X – – X – –

Table 6.4. Suppliers operating

to the fact that body shops have high fixed costs which makes them expensive to build

and maintain.

Operating suppliers are shown in table 6.4. Raw materials are locally sourced, except

for the power train raw materials in Z∅ and in RA. In RA they are not split – as is the

production – but they are still located at the larger production facility.

All facilities that are open are assigned all of the appropriate products. Labour and

production base levels are difficult to compare due to differing productivity. However,

in general, base levels are equal to labour and production requirements in Z∅ and to

the expected requirements in ZA, but about 10% lower than the requirements in RA

since this decreases the costs in the worst cases.

Figure 6.11 shows the components contributing to the objective with the box plots

showing the corresponding range of values. Supplier costs form the biggest part, fol-
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Figure 6.11. Box plot break down of revenues and costs

lowed by investment and labour costs. As ex-post evaluation on the given first stage

solutions, exchange rates have an effect on all objective components, except for those
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that are incurred in EUR. Demand uncertainty has an effect on all variable parts, which

means it does not apply to facility and investment costs. Productivity has an influence

on production and labour costs while labour, supplier, and transport cost uncertainty

have only effects on their corresponding cost component.

6.3.2. The Effects of Multiple Uncertainties

We analyse the benefits of accounting for multiple uncertainties by comparing the

solutions from ex-ante optimisation under single uncertainties with ex-ante optimisation

under all uncertainties, when faced with all uncertainties in ex-post evaluation. The

corresponding investigations are ZA
ua
, RA

ua
, and ZA

∅ for ua ∈ {A,D,X,P, T, L, S}. Their

risks and returns are shown in figure 6.12, but the investigations ZA
T , Z

A
L , R

A
L , Z

A
S ,

and RA
S are omitted, as their first stage decisions are the same as or very similar to

the solution Z∅. The according expected profit and CV@R for all solutions are given in

table 6.5.

ZA
ua

RA
ua

ua EP CV@R EP CV@R

A 128.80 −19.19 111.84 −28.07
X 127.48 −17.04 100.35 3.83
D 100.81 97.90 96.15 84.81
P 99.77 92.57 127.42 −15.58
T 100.00 95.59 127.47 −17.16
S 100.00 95.59 100.00 95.59
L 100.00 95.59 100.05 95.49
∅ 100.00 95.59

Table 6.5. Risk and return for all solutions

Surprisingly, only three of the single-uncertainty solutions are close to the efficient

frontier, namely ZA
X , RA

T , and R
A
P . Z

A
X leads to the best solutions from the single-

uncertainty optimisations, with the profit only 1.0% worse than ZA
A but still 11.0%

higher risk. While RA
P and RA

T are nearby, these solutions are completely misleading:

although the aim of risk optimisation is a low CV@R at the cost of a low expected profit,

these solutions actually have a high expected profit at the cost of being risky. This

is a consequence of ex-post evaluation; for RP it can be explained since productivity

uncertainty is lower in Europe than in the other two countries and for RT by the fact

that having all production at the largest market requires the least transports. Hence,

both solutions install facility capacity in Europe and are thereby similar to ZA. RX is

the solution most distinct from the other results. It installs the assembly and power

train facilities in China, and the body shop facility in Europe. However, this solution is

far from being efficient. The solutions ZD and RD are very similar to the deterministic
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The CV@R-axis is split. Solutions not shown are very close to ZA
∅ .
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solution Z∅, with all facilities in Brazil. The main difference is, that ZD installs about

5% more, and RD about 10% less capacity than Z∅. All other solutions are equal or

nearly equal to the deterministic solution Z∅.

The differences in downside risks and upside gains become even more apparent when

looking at the box plots of the profit distributions in figure 6.13. Again, the investiga-

tions ZA
T , Z

A
L , R

A
L , Z

A
S , and R

A
S are omitted as they give the same results as ZA

∅ .
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Figure 6.13. Box plots of profit distributions for ex-post evaluations under all
uncertainties

6.3.3. Risk Hedging Strategies in SCND

Figure 6.14 shows the box plots of the profit distributions for the solutions ZA, RA,

and Z∅ with ex-post evaluation under different uncertainties. Since the other solutions

studied in section 6.3.2 behave similarly to one of the above three investigations, we

focus on discussing these only.

Exchange Rate Uncertainty

For these network designs we observe that exchange rate uncertainty has the biggest

effect in ex-post evaluation; in what follows we show how we can hedge against this

uncertainty. The deterministic investigation ZX
∅ has a high exposure to exchange rate

uncertainty, as all of the facilities are located in Brazil. The Brazilian market being the

smallest of all four means that only a small proportion of production costs are covered by

local revenues, while the remaining costs are exchanged into the EUR as the company’s
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Figure 6.14. Box plots of profit distributions for ex-ante decisions under all
uncertainties

base currency. Similarly, the revenues in USD and CNY are also exchanged into the

EUR. In ZX
A , all facilities are located in Europe which leads to lower uncertainty in

profits since production costs are not exposed to exchange rate uncertainties, although

the revenues in foreign currencies are. In RX
A facilities are Europe as well as in China,

which further reduces the effect of exchange rate uncertainty. This is because in China

revenues are set off against production costs, and since the CNY closely traces the

USD, a similar effect applies for revenues in the US. Also, with assembly suppliers in

Europe and China, sourcing can partly be adapted to take advantage of fluctuating

exchange rates. In this study, clearly we have not considered multinational corporate

tax planning or financial hedging instruments.

Demand Uncertainty

The next major influence on profit is due to demand uncertainty for which we distin-

guish in the discussion between market location uncertainty, product mix uncertainty,

and volume uncertainty, as described in section 4.3. Market mix uncertainty influ-

ences transportation costs and import duties. In our case study, transportation costs

are relatively low and duties are not considered and, thereby, the risk from market

location uncertainty is low. Flexible production systems, that is, production systems

that are able to manufacture multiple products efficiently, hedge against product mix

uncertainty. Since in the solutions each operating facility is able to manufacture every
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product, product mix uncertainty has an equal effect on all investigations. Finally,

volume uncertainty is much harder to hedge against as this requires the production

costs to scale with the load. Unfortunately, in the automotive industry expensive ma-

chinery is needed which mainly prohibits this strategy. Still, the flexibility of labour

costs is different from country to country: changes to the labour force in Europe can

be expensive, while in emerging countries companies are able to reduce labour num-

bers during economic down turns. In summary, this explains why the effect of demand

uncertainty in ZD
∅ and ZD

A is similar, and even the added flexibility in RD
A is not able

to decrease it significantly. On the other hand, this solution has lower capacity which

leads to lost opportunities on the upside.

Productivity Uncertainty

Productivity uncertainty in Europe is lower than in emerging countries – especially for

European companies which have been established for several years, in contrast to new

facilities in low cost countries. Hence, avoiding new facilities in emerging markets and

keeping production in Europe is an obvious possibility to hedge against productivity

uncertainty. This is reflected in the investigations ZP
∅ , ZP

A , and RP
A.

Labour Cost Uncertainty

The results from the ex-post evaluation under labour cost uncertainty reflect the uncer-

tainty in the labour cost scenarios. This uncertainty has the smallest effect on profits

from all considered uncertainties.

Supplier Cost Uncertainty

In our model, supplier cost uncertainty is strongly driven by steel costs, which makes

their behaviour correlate similarly around the world. This explains why their effect is

similar in all solutions, and why it is hard to hedge against these.

Transport Cost Uncertainty

Finally, transport cost uncertainty has a relatively large influence on the total profit,

given its rather small share on all costs (see figure 6.11). This is because transport

costs are the most volatile of all considered uncertainties, given the large variation in oil

prices. ZT
A has the least exposure since production is in Europe, close to one of the main

markets. RT
A has a slightly higher exposure because production is split across Europe

and China and therefore, intercontinental transport between the production echelons

are needed, which increases transport costs and hence the exposure to transport cost

uncertainty. ZT
∅ instead produces in Brazil, which is a small market and power train
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raw materials are sourced in Europe. Therefore, many long trips are needed, which

explains the high effect of transport cost uncertainty in this investigation.

6.4. Stability Analysis of the Scenario Generator

6.4.1. Notation

In this section, we use the notation as introduced in section 5.1. Further, we label the

probability distribution Qi as i, when used as an index.

6.4.2. In-Sample and Out-of-Sample Stability

As discussed by Kaut and Wallace (2003) and Mitra et al. (2009), most scenario gen-

erators are non-deterministic and hence generate different scenario trees in each run.

Therefore, the so called ‘stability’ is a desirable property of scenario generators. It

is tested for a specific optimisation problem by generating multiple probability distri-

butions Qi, i = 1, . . . , I with the same input and solving the resutling optimisation

problems z∗i = minx∈X zi(x). We can then distinguish two types of stability: in-sample

and out-of-sample. The scenario generator is considered in-sample stable, if we have

zi(x
∗
i ) ≈ zj(x

∗
j ), ∀ i, j ∈ {1, . . . , I},

that is, if we receive approximately the same optimal objective value for each optim-

isation run. The scenario generator is considered out-of-sample stable, if we have

zP (x
∗
i ) ≈ zP (x

∗
j ), ∀ i, j ∈ {1, . . . , I},

where P is the probability distribution of the ‘true’ uncertainty. However, P is usually

not known in applications in SCND. Therefore, we use the following test for empirical

out-of-sample stability instead:

zk(x
∗
l ) ≈ zi(x

∗
j ), ∀ k, l, i, j ∈ {1, . . . , I}.

Here, a scenario genrator is considered emprically out-of-sample stable, if all optimal

solutions x∗i have approximately the same objective value under each probability dis-

tribution Qj.

Note that all stability properties are considered in respect of a particular optimisation

problem.

104



6.4. Stability Analysis of the Scenario Generator

6.4.3. Test Case

The scenario generator used in our approach is non-deterministic for two reasons.

(1) The single-period scenarios in the moment matching approach are based on a ran-

dom sample and (2) we use sampling to extend the single-period scenarios to multi-

period scenarios. To analyse the stability of the results, we run multiple experiments on

a fixed supply chain using multiple scenario-trees. For this purpose, we use the supply

chain described in section 6.1, but reduce the computational effort by only consider-

ing the final assemply and according raw materials. Based on the same parameters as

shown in section 6.2, we generate five scenario-trees, each containing 1 000 scenarios.

As in the case study in section 6.3, we optimise the supply chain for each scenario-tree

using the ASR heuristic with 50 scenarios for the stochastic investigations ZA
A and RA

A.

6.4.4. Test Case Results

Tables 6.6 and 6.7 show the results of the stability analysis for expected profit and

CV@R objective, respsectively. The values zi(x
∗
j ), i, j = 1, . . . , 5 are shown, where the

column indicates the scenario set j for ex-ante optimisation while the row indicates the

scenario set i for ex-post simulation. All numbers are scaled, such that the average of

each table is 100.

Scenario set j for optimisation
1 2 3 4 5

S
ce
n
ar
io

se
t
i

fo
r
si
m
u
la
ti
on 1 99.8 99.7 99.5 99.5 99.7

2 100.1 100.0 99.8 99.8 100.0
3 100.5 100.3 100.2 100.2 100.4
4 99.9 99.7 99.6 99.6 99.8
5 100.5 100.5 100.2 100.3 100.5

Table 6.6. Stability results for expected profit objective

Scenario set j for optimisation
1 2 3 4 5

S
ce
n
ar
io

se
t
i

fo
r
si
m
u
la
ti
on 1 100.1 100.1 99.7 99.5 100.1

2 99.7 99.7 99.7 99.8 99.7
3 99.2 99.2 99.5 98.8 99.3
4 101.6 101.6 101.8 101.7 101.6
5 99.5 99.5 99.5 99.4 99.5

Table 6.7. Stability results for CV@R objective

The in-sample stability is expressed by the diagonal elements zi(x
∗
i ), i = 1, . . . , 5 of

the tables. Clearly, this is very good for the expected profit objective, as all values
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are within [99.6, 100.5], that is, they are all within the relative MIP gap of 1%, used

to terminate the optimisations. Also, for the CV@R objective all objective values are

within the range [99.5, 101.7], which is still very narrow. Therefore, we conclude that

the scenario generator is in-sample stable for the SCND test case.

For empirical out-of-sample stability we look at the whole tables. With the expected

profit objective, all objective values are in the range [99.5, 100.5] and are therefore

again within the relative MIP gap. As expected, the optimal objective values are less

stable for the CV@R objective, since the CV@R is driven by the extreme realisations the

probability distributions, which are less stable to genearate. However, all values are in

the range [98.8, 101.8], which is still reasonably small. Therefore, we conclude that the

scenario generator is also empirically out-of-sample stable for the SCND test case.

Further, if we look at rows and columns of the tables separately, we see that the main

driver for the variation in the out-of-sample objectives is the stability of the objective

value, rather than the solution quality. For the expected profit objective, we have

max
k

zi(x
∗
k)−min

j
zi(x

∗
j) ≤ 0.3

in each row i, while

max
i
zi(x

∗
j )−min

l
zl(x

∗
j ) ∈ [0.7, 0.8]

for all columns j. Similarly, for the CV@R objective we have

max
k

zi(x
∗
k)−min

j
zi(x

∗
j) ≤ 0.7

in each row i and

max
i
zi(x

∗
j )−min

l
zl(x

∗
j ) ∈ [2.3, 2.9]

for all columns j. Therefore, if we optimise for a given probability distribution Qi,

the optimal solution x∗i is also within the MIP gap for all other probability distribu-

tions Qj, j = 1, . . . , 5. This suggests that, while we cannot predict the optimal objective

zP (x
∗
P ) by using zi(x

∗
i ) exactly (especially in the case of CV@R optimisation), we can still

assume that the optimal solution x∗i is nearly optimal for zP , that is, zP (x
∗
P ) ≈ zP (x

∗
i ).

6.5. Summary

In this chapter we have presented a SCND case study application of the methodology

developed in the previous chapters. The supply chain is typical for a company in the

automotive industry, with multiple products, potential production in Europe, Brazil,

and China, as well as markets in Europe, Brazil, China, and the United States.

We have seen that there is a significant trade-off between risk and return, indicating

that it is essential to take risk measures into account in the design of supply chain net-
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works. More generally, stochastic programming solutions are superior to the expected

value solution, demonstrating that it is important to consider uncertainties.

We have investigated the results from ex-ante optimisation under single sources of

uncertainties when faced with multiple uncertainties in ex-post evaluation, as they

would in the real world. Thereby we have seen that only expected profit optimisation

under exchange rate uncertainty gives nearly optimal results; in particular no solution

came even close to the optimal CV@R. This highlights the importance of considering

multiple instead of single sources of uncertainty, especially in the face of risk.

Finally, we have studied the effects of different uncertainties on given network designs.

While in the literature most work on SCND focuses on demand uncertainty, our study

suggests that exchange rate uncertainty has a larger effect on profits and can also be

better hedged against. Both aspects make it the most important uncertainty to con-

sider. However, while exchange rate uncertainty is the main influence on the expected

profit, the CV@R is determined by the combination of the worst case behaviours of

multiple uncertainties together.

Overall, we have demonstrated that the consideration of multiple uncertainties and

risk is (i) applicable to real world SCND applications and (ii) superior to the most

common stochastic programming approach, where expected profit is optimised under

demand uncertainty. Further, the results are reliable and reproducable as we have

demonstrated the stability of the scenario generator.
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7.1. Summary of Findings and Contribution

In this thesis we have investigated the question of how to support decision making in

SCND with a quantitative methodology.

In chapter 2 we have investigated the methodological requirements for quantitative

decision support in SCND. We have identified three key issues: (i) We have high-

lighted that uncertainty and risk play an important role and it is necessary to identify

a manageable number of uncertainties. (ii) The optimisation model should include

comprehensive strategic and tactical stages, with detailed cost calculation in line with

accountancy standards and the multiple sources of uncertainty and risk previously iden-

tified. (iii) A solution approach is required with which the resulting large scale SIP can

be investigated, but which is still flexible enough to cope with evolving model structures

in various real world applications.

In chapter 3 we have investigated the first problem of identifying a set of relevant

uncertainties for a SCND project, that are included in an optimisation model. We have

proposed a new process for uncertainty selection based on concepts from the risk man-

agement literature. This is a structured, qualitative approach which aims to objectively

capture expert opinion. For a case study we have considered an international produc-

tion network in the automotive industry and have selected six sources of uncertainty:

demand, productivity, transport costs, labour costs, raw material costs, and exchange

rates. Our approach of identifying the critical uncertainties and its inclusion in the

decision modeling paradigm is novel and makes contribution to knowledge.

In chapter 4 we have investigated the modeling of SCND under uncertainty. We

have developed a two-stage SIP which includes the six uncertainties identified earlier, a

holistic network structure, and detailed operations, especially in regards to exploiting

flexibility. Since the decisions are made under uncertainty, the profit for a given network

design is itself uncertain. To explore the resulting trade-off between risk and return, risk

has been measured using CV@R, since it is a coherent risk measure that has the added

benefit of leading to a linear optimisation model. Further, we have proposed a scenario

generator to represent the uncertainty, which is an extension of a moment matching

method by Høyland et al. (2003). Thereby we have generated multi time period scen-

arios while capturing the correlation structure of the multivariate uncertainty. To the
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best of our knowledge, our model is different to other approaches found in the literature

and makes novel contributions in the following ways. (i) We have included multiple

sources of uncertainties in the model. (ii) Our study has considered a coherent meas-

ure of risk to explore the trade-off between risk and return. (iii) We have constructed

practical and realistic scenarios by incorporating correlations between parameters and

including dynamic variation over time. (iv) The logical structure of the optimisation

model captures more detail than has previously been reported in the literature. Al-

though many of these features (i) – (iv) appear in some research, no comprehensive

study covering them altogether has previously been reported. Our development of this

comprehensive model bringing in diverse features also makes contribution to knowledge.

In chapter 5 we have investigated solution methodologies suitable for the proposed

model, which is a SIP with a large number of scenarios. We have proposed a new

solution heuristic called adaptive scenario refinement (ASR), that iteratively adds scen-

arios based on a maximum regret criterion. This has been implemented in the FortSP

stochastic programming solver system (see Ellison et al., 2010). We have carried out

an empirical study comparing the solution quality of ASR to other approaches reported

in the literature. Publicly available linear and mixed integer test cases for stochastic

programming, as well as the developed SCND model have been used. Thereby, we have

demonstrated that ASR gives an approximation of the optimal solution superior to the

other approaches in the majority of the cases, particularly for the SCND problem.

Having developed a comprehensive methodology for SCND in the previous chapters,

we have investigated its benefits and implications in chapter 6. Therefore, we have

analysed the results of a case study based on a typical production network in the

automotive industry, with multiple products, potential suppliers and production in

Europe, Brazil, and China, as well as markets in Europe, Brazil, China, and the United

States. The focus has been to analyse the effects and benefits of the key features of the

optimisation model, that is, multiple sources of uncertainty and the CV@R risk measure.

Thereby, we have investigated the problem of SCND in a novel way, since each of the

reviewed research does not consider all of the following aspects. (i) We have studied the

effects of uncertainties on supply chains and according hedging strategies. Most research

focuses on algorithmic performance instead, and only the value of the stochastic solution

is reported as an indicator for the importance of accounting for uncertainties. (ii) We

have explored the trade-off between risk and return, which is often neglected, even

if a risk measure is included. (iii) We have included multiple sources of uncertainty

in the case study and have investigated the benefits of this. Azaron et al. (2008) is

the only publication reporting a case study with more than two sources of uncertainty

being considered simultaneously. However, their investigation is limited by considering

only eight scenarios and the benefits from accounting for multiple uncertainties are not

explored.
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Through our approach we have gained the following insights. We have demonstrated

that there is a considerable trade-off between risk and return in the design of a supply

chain and, hence, that risk measures should not be neglected. We have shown that

optimisation results can be significantly improved by accounting for multiple sources

of uncertainty simultaneously; especially in the case of risk minimisation. While in the

literature most work on SCND focuses on demand uncertainty, our study has suggested

that for multi national supply chains, exchange rate uncertainty is more important for

the choice of optimal strategies. Additionally, the effect of exchange rate uncertainty on

the network can be significantly influenced by an appropriate network strategy, making

it even more important to consider.

In conclusion, we have developed a novel and comprehensive approach to SCND,

consisting of uncertainty identification, a stochastic optimisation model, and an ap-

propriate solution algorithm. We have applied this approach to a case study in an

innovative way and, thus, demonstrated its applicability and benefits, while gaining

new insights into the design of supply chains. The SCND model and the use of the

coherent downside risk measure in the stochastic program are innovative and novel;

these and the ASR solution algorithm taken together make contributions to knowledge.

7.2. Suggestions for Future Research

In chapter 3 we have presented an approach for uncertainty identification in the context

of supply chains. We have seen in the case study in chapter 6 that not all of the

identified uncertainties had a significant impact on the supply chain performance or

its optimal design. Therefore, we think that further research is necessary to analyse

the effects of various sources of uncertainty on the SCND, to better understand their

different impacts. Also, not all uncertainties are suitable for an optimisation model.

To take these into account during the decision process, the integration of stochastic

optimisation with other approaches, such as simulation or qualitative models, is an

interesting field of research.

In the modelling of SCND we suggest three issues that could be addressed by fur-

ther research. (i) By using a two-stage model, we have approximated the underlying

multi-stage decision process. The quality of this approximation in SCND has only very

recently been addressed for the first time by Stephan et al. (2011). However, due to

the computational complexity only few details are included in their model, it considers

uncertainty in demand only, and no risk. Therefore, more research in the trade-off

between detail in the decision process, detail in the model, and detail in the uncer-

tainty representation and risk is an interesting direction for future work. (ii) While our

model includes many features of strategic and tactical sub-models compared to other

stochastic SCND models, it still neglects many aspects, such as storage and seasonality
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in demand. Bihlmaier et al. (2009) present one of the few research investigating the

‘right’ amount of detail in SCND modeling, with a focus on labour costs. This allows

for further research into this matter. (iii) We have used CV@R to measure risk since it

is coherent and results in a linear optimisation problem. However, numerous other risk

measures exist that could be used instead. Future research could investigate compu-

tational performance of different risk measures, as well as characteristics of the return

distribution. However, the latter issue is difficult to approach, since this evaluation

depends on the risk preferences of the decisions maker.

A topic often neglected in publications on SCND under uncertainty is scenario gen-

eration. Also outside the domain of SCND, little research is reported on this and even

fewer scenario generators are applicable to generate two-stage scenario trees over mul-

tiple time periods. Further, the question of how many scenarios are needed for an

accurate enough representation of multivariate uncertainty remains challenging.

We think that the investigations on the effects of uncertainty on SCND could be

extended in the following two ways. (i) The question of which uncertainties to include

could be further investigated. We have included six uncertainties in the model and

shown that this is superior to optimisation under single sources of uncertainty. However,

including two or three sources of uncertainty might be enough to gain most of the

benefits from the six uncertainties – the question then remains, which two (or three)

to include. On the other hand, by including additional uncertainties we might find

that even six sources are not enough. (ii) There is little research reporting managerial

insights and strategies for SCND under uncertainty. We think that more research into

this direction would propagate the application of stochastic programming for SCND in

industry by revealing the benefits of including uncertainty.

Solution algorithms for two-stage stochastic programs and SIPs are an important topic

and there is already a wide research community dedicated to it. However, many of the

algorithms in the SCND literature are highly specialised and cannot be easily applied

to other models. We feel that to expand the application of stochastic programming

in industry, more general purpose stochastic solvers, modeling systems, and scenario

generators need to be developed.

We feel that iterative solution algorithms are an interesting field of research. In the

ASR algorithm different criteria for the selection of new scenarios could be explored,

for example to ensure a better spread of the scenarios. However, the most important

issue would be an estimate of the gap, which is especially difficult to establish in the

non-convex case of SIPs.
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A. On the Coherence of Risk Measures

In this appendix we introduce the coherence property of risk measures, since the selec-

tion of the CV@R as risk measure is based in large part on this. Coherence was first

introduced by Artzner et al. (1999) and is a set of four desirable properties that should

be fulfilled by risk measure to comply with intuition. See Roman and Mitra (2009) for

a summary of this property for various risk measures.

Using the notations from section 2.2.2, let (Ω,F , P ) be a probability space and L

be a linear space of real valued, measurable functions on (Ω,F , P ), which are assumed

to represent portfolio return distributions. A risk measure ρ : L → R is defined to be

coherent, if it fulfills the following four properties:

ρ(ξ + c) = ρ(ξ)− c, ∀ξ ∈ L, c ∈ R, (T)

ρ(ξ + ζ) ≤ ρ(ξ) + ρ(ζ), ∀ξ, ζ ∈ L, (S)

ρ(λ ξ) = λρ(ξ), ∀ξ ∈ L, λ ≥ 0, (PH)

ξ ≤ ζ ⇒ ρ(ξ) ≥ ρ(ζ), ∀ξ, ζ ∈ L. (M)

(T) is the transitivity property, stating that if a sure gain c is added to a portfolio,

its risk is decreased by c. (S) is called subadditivity and ensures that diversification

reduces risk (Acerbi et al., 2001). Property (PH) is called positive homogeneity and its

interpretation is that if an amount λ is invested in a portfolio, the risk is λ times the

risk of investing the amount 1. Finally, (M) is a monotonicity property: if the return

of ξ is always less than the return of ζ, then ξ has higher risk than ζ.
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B. A Risk List for SCND

In this appendix we give a complete description of the risk list introduced in section 3.3.

The list is structured as set out in table 3.1, with sub-categories related to cause-and-

effect relationships. The risks in each category are summarised in tables B.1 – B.9.

Risk Description

Delay at a supplier A delivery leaves a supplier too late.
Temporary breakdown of a sup-
plier or location of a supplier

A supplier is not able to supply for a limited time period, e.g.
due to strike action.

Permanent breakdown of a sup-
plier or location of a supplier

A supplier is not able to supply permanently or for an indefinite
time, e.g. due to insolvency or war.

Delivery has to be (partially) re-
ordered

E.g. unusable or wrong goods.

New location of a supplier Due to a new supplier location, an existing facility is located
sub-optimal.

Missing suppliers Not enough sufficiently qualified suppliers available.

Table B.1. List of risks from suppliers and procurement

Risk Description

Delays of delivery during trans-
portation

E.g. due to a traffic jam or storm.

Delivery has to be (partially) re-
ordered

E.g. due to unusable or wrong goods, theft, or accident.

A route of transportation is per-
manently not available

E.g. due to laws in a country.

Storage risks Risks during storage and related handling of a good.

Table B.2. List of risks from logistics

Risk Description

Shifting markets Demand shifts from one market to a different market.
Changes in the demand mix Demand mix changes.
Local decrease of demand Compared to the forecast demand.
Global decrease of demand Compared to the forecast demand.
Local increase of demand Compared to the forecast demand.
Global increase of demand Compared to the forecast demand.

Table B.3. List of demand risks
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B. A Risk List for SCND

Risk Description

Production quality E.g. faulty components or products.
Productivity Decrease in productivity of a single facility or the whole network.
Capacity shortages The available production capacity in a facility or the network

does not suffice for the demand.
Temporary blackout of part of a
facility

A part of a facility (e.g. a production line) is interrupted for a
limited time period.

Temporary blackout of a facility The whole production at a facility is interrupted for a limited
time period.

Permanent blackout of a facility The whole production at a facility is stopped permanently or for
an indefinite time period, e.g. due to a fire or war.

Table B.4. List of production risks

Risk Description

Interface risks Problems at the connection between old and new parts of the net-
work, particularly for network flows such as information, goods,
and money.

Barriers for entering new mar-
kets

E.g. obstruction from governments to protect local businesses.

Technical equipment and labour Problems during acquisition or putting into operation of equip-
ment and labour.

Buildings and land Problems during acquisition and putting into operation of build-
ings and land.

Missing suppliers Not enough sufficiently qualified suppliers available.

Table B.5. List of risks from changing the network design

Risk Description

Flow of information Risks concerning the flow of information.
Increased cycle time Longer cycle times in the network, e.g. due to centralisation or

globalisation.
Dependencies Problems originating from dependencies on other locations or

suppliers.

Table B.6. List of network specific risks

Risk Description

Local content laws Change of laws.
Possibilities for working time Due to laws or agreements with the works council some working

times become less attractive.
Environmental laws E.g. emissions of plants or products.
Interference of governments E.g. subsidies.

Table B.7. List of risks from the legal and social environment
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Risk Description

Financial risks

Interest rate risk Change of interest rate.
Inflation risk Change of inflation rate.
Exchange rate risk Change of exchange rate.

Decreased revenues

Decreased net price Price of the sold products decreases.
Debit failures E.g. leasing customers.
Decreased sales See also demand risks.

Increased costs

Investment costs E.g. for a new facility or production line.
Cost of materials Costs of materials increase, e.g. intermediate products from sup-

pliers, raw materials, or imputed costs for products from other
plants.

Energy costs Energy costs increase more than expected.
Taxes and duties Increases in various taxes and duties.
Maintenance and repairs Costs for maintenance, repairs of buildings, and land increase.
Production costs Increase in production costs.
Transport costs Transport costs increase more than expected.
Labour costs Labour costs increase more than expected.

Physical losses

Loss of investment goods E.g. due to natural disasters, war, terror attacks, or man-made
disasters.

Injuries or loss of human lives E.g. due to accidents and natural or man-made disasters.

Other losses

Loss of prestige E.g. due to child labour at a supplier.
Loss of intellectual property and
know-how

E.g. through theft or failed cooperation.

Table B.8. List of risks for profit and goals

Risk Description

Product development Problems during development of a new product, e.g. leading to a
delayed start of production.

Environment within the com-
pany

Risks which originate in the fact, that the production network
is part of a larger company. E.g. risks from other parts of the
company, management, shareholders, or lack of control.

Table B.9. List of other risks
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C. Benders Decomposition

Benders decomposition (also called L-shaped method) is among the most common tech-

niques to solve linear stochastic programs exactly. In its simplest form, for (SP) with

relatively complete fixed recourse and X = Rn1 ,Y = Rn2 , it is set out in algorithm C.1

(Birge and Louveaux, 1997). Notations are used as explained in chapter 5. The con-

straints Elx+ θ ≥ el are called optimality cuts. In case (SP) is not relatively complete,

Benders decomposition can be extended such that it involves solving a second set of

recourse linear programs to generate feasibility cuts.
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C. Benders Decomposition

Algorithm C.1 Benders decomposition algorithm (Birge and Louveaux, 1997)

Input: (SP) linear with relatively complete fixed recourse.
1: Set s = ν = 0.
2: repeat

3: Set ν = ν + 1. Solve the linear program:

if s > 0 if s = 0

min z = cTx+ θ min z = cTx

s.th. Ax = b s.th. Ax = b

Elx+ θ ≥ el, l = 1, . . . , s, x ≥ 0.

x ≥ 0, θ ∈ R.
4: Let (xν , θν) be an optimal solution with θν = −∞ for s = 0.
5: for ω ∈ Ω do

6: Solve the linear program:

min w = q(ω)T y

s.th. Wy = h(ω) − T (ω)xν ,

y ≥ 0.

7: Let πν(ω) be the simplex multipliers associated with the optimal solution.
8: end for

9: Let

Es+1 =
∑

ω∈Ω

P (ω)(πν (ω))T T (ω), es+1 =
∑

ω∈Ω

P (ω)(πν (ω))T h(ω),

wν =es+1 −Es+1x
ν , s =s+ 1.

10: until θν ≥ wν

11: return optimal solution xν .
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D. Box Plots

A box plot is a compact graphical representation of the quartiles and expected value

of a probability distribution. The spacings between the different parts of the box plot

indicate the degree of spread and skewness of the probability distribution. Its advantage

over a histogram is that it takes up less space and, thereby, helps comparing different

probability distributions.

Let ξ : (Ω,F , P ) → (R,B) be a random variable with B the Borel σ-algebra on R.

Let F be the distribution function of ξ and f its probability density function (if it

exists). The ith quartile qi is defined as qi = F−1(0.25i), i = 0, . . . , 4. Thereby, q0 is

the minimum of the support of ξ, q4 its maximum, q1 the lower quartile, q3 the upper

quartile, and q2 the median. Note that, in the case where F is not continuous, F−1(y)

might not exist. Various definitions are proposed for the quartiles in this situation, for

example via the left-sided inverse F−1(y) = sup{x | F (x) ≤ y}. Also, q0 and q4 are

infinite, if the support of ξ is unbounded.

A box plot is a diagram of the five quartiles and the expected value. The lower and

upper quartiles are represented by a box, the median by a line within that box, and

minimum and maximum by lines outside the box. A typical example of a probability

density function and its box plot are shown in figure D.1.
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Figure D.1. Example of a probability density function f and its box plot
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