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Abstract 

Friedreich ataxia (FRDA) is an autosomal recessive, neurodegenerative disorder with 

severely debilitating effects and no current cure. FRDA is mainly caused by the hyper-

expansion of a GAA repeat present in intron 1 of the FXN gene, which results in decreased 

gene expression and consequently a deficiency of the mitochondrial protein frataxin. In the 

first instance, frataxin deficiency renders an impaired protection from oxidative stress. 

Antioxidant therapy with cannabinoids (CBD and THC) and CTMIO was investigated in 

GAA repeat FXN YAC transgenic mouse models of FRDA, but no significant improvements 

were detected on functional measurements such as rotarod performance and locomotor 

activity. Additionally such compounds failed to protect the brain of treated mice from 

oxidative insults. Therefore, the use of such antioxidant compounds cannot be advocated for 

FRDA therapy. 

Recent findings indicate that FXN silencing in FRDA may be mediated by repressive 

heterochromatin, suggesting the use of histone deacetylase inhibitors (HDACi) as FXN up-

regulators. Therefore, therapy with a benzamide-type HDACi (106) was similarly investigated 

on the FXN YAC GAA mouse model. No significant improvements were detected by 

functional and histochemical analysis. However, significant changes were produced in global 

acetylation levels of H3 and H4 in the brain of treated mice, suggesting that the drug is 

capable of crossing the blood-brain barrier and producing an effect. Additionally, significant 

increases in frataxin expression were detected in the brain of treated mice. 

To identify further FRDA disease mechanisms, characterization of the FXN gene for the 

presence of the CCCTC-binding factor (CTCF) was also performed on FRDA patient 

cerebellum samples. Overall, lower levels of CTCF were detected in FRDA-associated FXN 

alleles, suggesting the potential involvement of CTCF in the regulation of FXN transcription. 
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Friedreich ataxia (FRDA) is an inherited autosomal recessive neurodegenerative 

disorder – OMIM #229300 (OMIM 2006). Being the most common inherited ataxia, it affects 

approximately 1.8/100,000 individuals in the UK (Schulz et al. 2009). 

Generally the first symptoms appear in childhood but age of onset may vary from 

infancy to adulthood (Pandolfo 2002a). Clinical features include progressive limb and gait 

ataxia, absent lower limb reflexes, extensor plantar responses, dysarthria, and 

cardiomyopathy. Other common problems include kyphoscoliosis, pes cavus, and, in 10% of 

patients, diabetes mellitus (Pandolfo 2002b). The main sites of pathology include the dorsal 

root ganglia (DRG), posterior columns of the spinal cord, corticospinal tracts and cardiac 

muscle (Durr et al. 1996). On average, patients lose the ability to walk 15 years after the 

onset of symptoms and have a reduced life expectancy. The commonest cause of death is 

cardiomyopathy (Delatycki et al. 2000).  

Although the above clinical features certainly identify the typical cases of FRDA, the 

disease shows a remarkable clinical variability involving age of onset, rate of progression, 

severity and extent of disease involvement (Montermini et al. 1997c). 
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1.1 – FXN gene: structure and expression 

The Friedreich ataxia gene (FXN) was mapped to chromosome 9 in 1988 (Chamberlain 

et al. 1988) and is localised in the proximal long arm at position 9q13 (Figure 1.1).  

 

 

Figure 1.1 – Schematic representation of human chromosome 9. The area in the red box 
identifies the location of the FXN gene as 9q13 (Ensembl 2006). 

 

The FXN gene, initially called X25, spans 95 kb of genomic DNA and contains seven 

exons: 1-5a, 5b and 6 (Campuzano et al. 1996) (Figure 1.2). The gene is transcribed in the 

centromere to telomere direction. The major, and probably only functionally relevant mRNA, 

has a size of 1.3 kb. This corresponds to the first five exons, 1 to 5a, and encodes a 210 

amino acid protein named frataxin (Campuzano et al. 1996). By alternative splicing, exon 5b 

can be transcribed and here a 171 amino acid protein arises. Exon 6 is non-coding 

(Campuzano et al. 1996). 

 

 

Figure 1.2 – Schematic representation of exons and splicing pattern of the FXN gene. The 

GAA repeat in intron 1 is indicated (). Diagram adapted from Cossee et al. (1997). 
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The FXN gene is expressed in all cells, but at variable levels in different tissues and 

during development (Campuzano et al. 1996; Koutnikova et al. 1997). In adult humans, 

frataxin mRNA is most abundant in the heart and spinal cord, followed by liver, skeletal 

muscle, and pancreas. In mouse embryos, the highest levels of frataxin mRNA are found in 

the spinal cord and in the dorsal root ganglia. The developing brain is also very rich in 

frataxin mRNA. In the adult mouse brain the level of frataxin mRNA is reduced, but remains 

high in the spinal cord and dorsal root ganglia. However, protein levels remain high in the 

adult human and mouse brain and cerebellum (Koutnikova et al. 1997). 

Frataxin expression is generally higher in mitochondria-rich cells, such as 

cardiomyocytes and neurons. There is, however, a still unexplained additional cell specificity, 

which in the nervous system is reflected in a higher abundance of frataxin in specific 

neuronal types, as primary sensory neurons (Koutnikova et al. 1997). 
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1.1.1 – The GAA triplet repeat mutation 

The most common mutation causing FRDA (~95%) is the hyperexpansion of a GAA 

triplet repeat sequence (TRS) in the first intron of the FXN gene (Figure 1.2). Because of the 

recessive nature of the disease, affected individuals generally have expansions in both alleles 

of FXN, while heterozygous carriers are clinically normal. Occasional patients (~5%) are 

heterozygous for a GAA expansion and a missense or nonsense point mutation disrupting 

the frataxin coding sequence (Campuzano et al. 1996). No patients have been identified so 

far that carry point mutations in both copies of the frataxin gene. 

Normal alleles contain <30 triplets, and disease-causing expansions (66–1700 triplets) 

arise via hyperexpansion of premutations (30–65 triplets) (Cossee et al. 1997; Montermini et 

al. 1997a). The severity and age of onset of the disease are in part determined by the size of 

the expanded repeat sequence, in particular of the smaller allele (Pandolfo 2002a).  

To date, no other disease has been recognised to be caused by an expansion of 

GAA·TTC. This is also the most common disease-causing triplet repeat expansion identified 

so far, with a carrier frequency of 1 in 90 Europeans (Cossee et al. 1997). 
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1.1.2 – Instability of GAA expanded repeats  

The FRDA-associated expanded alleles - E alleles - show meiotic (intergenerational) and 

mitotic (somatic) instability. 

Intergenerational instability 

When transmitted from parent to child, expansions and contractions of expanded GAA 

repeats can both be observed (Campuzano et al. 1996; Durr et al. 1996; Montermini et al. 

1997c). Expanded alleles are equally likely to further expand or contract during maternal 

transmission, but most often contract during paternal transmission (Monros et al. 1997; 

Pianese et al. 1997), a result also supported by sperm analysis (Pianese et al. 1997). Parental 

age and the intergenerational change in expansion are directly correlated in maternal 

transmission and inversely in paternal transmission (Kaytor et al. 1997; De Michele et al. 

1998). 

Somatic instability is age dependent 

Small-pool PCR analysis from tissues of an 18-week fetus homozygous for expanded 

GAA alleles revealed very low levels of instability compared with adult-derived tissues (4.2% 

versus 30.6%, p<0.0011, Figure 1.3A) (De Biase et al. 2007b). Mutation load in blood samples 

from multiple patients and carriers increased significantly with age, ranging from 7.5% at 18-

weeks gestation to 78.7% at 49 years of age (p=0.0001, Figure 1.3B). Therefore, somatic 

instability in FRDA occurs mostly after early embryonic development and progresses 

throughout life, lending further support to the role of postnatal somatic instability in disease 

pathogenesis (De Biase et al. 2007b). 
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A 

 

 

B 

 

Figure 1.3 – SP-PCR analysis showing differential GAA mutation load in fetus versus adults. 
(A) Mutation load of fetal (18 weeks old) versus adult (24 years old) tissues analyzed by 
SP-PCR showing a highly significant, 7.3-fold lower level of somatic instability in fetal 
tissues compared with adult tissues. Error bars depict ±2 SEM. (B) Bar graph of mutation 
load in the blood of fetus versus both parents (combined) showing a highly significant, 
seven-fold lower level of somatic instability in fetal tissues compared with adult tissues. 
The error bar depicts ±2 SEM (De Biase et al. 2007b). 

 

Somatic instability is tissue dependent 

Mitotic instability, leading to somatic mosaicism for expansion sizes, can also be 

observed in FRDA (Montermini et al. 1997c), with a significant predilection for large 

contractions (Sharma et al. 2002). Analysis of GAA expansions reveals ample variations in 

different cell types or tissues from the same patient. Moreover, heterogeneity among cells 

occurs at a variable degree in different tissues: whilst cultured fibroblasts and cerebellar 

cortex show very little heterogeneity in expansion sizes among cells, lymphocytes are more 

heterogeneous, and most brain regions show a quite complex pattern of allele sizes, 

indicating extensive cellular heterogeneity (Montermini et al. 1997b). 

Recently, SP-PCR was used to analyze somatic instability of the expanded GAA triplet-

repeat sequence in multiple tissues obtained from six autopsies of FRDA patients (De Biase 

et al. 2007a), showing that DRGs had a significantly greater frequency of large expansions 

and a relative paucity of large contractions compared with all other tissues (Figure 1.4). 
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Figure 1.4 – SP-PCR analysis showing greater prevalence of large expansions in DRG 
Frequency distribution (plotted on the y-axis) of expansions (magnitude plotted on the x-
axis as increase in size [%] over the constitutional allele) seen in various tissues from a 
FRDA patient (GAA950/950). All data points to the right of the bold line, plotted at 20%, 
represent large expansions (De Biase et al. 2007a). 

 

While some of these differences could be accounted for by a major period of instability 

during the first weeks of embryonic development, GAA expanded repeats seem to be 

inherently more stable in some cell types. Therefore, determining the size of a patient’s 

expansion in peripheral blood lymphocytes, from which DNA is usually obtained, only 

provides a single sample of the overall repeat size distribution occurring within the patient, 

and consequently only an approximate estimate of expansion sizes in affected tissues 

(Pandolfo 2002b). 
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1.1.3 – Mechanism of expansion of the GAA repeat 

Although various mechanisms for trinucleotide repeat instability are under debate, a 

common theme is that the triplet is able to form stable non-B-DNA structures (LeProust et 

al. 2000). Recent evidence proposes that triplet repeat instability specific to GAA·TTC results 

from strand displacement during DNA replication together with hairpin formation (Figure 

1.5), leading to reiterative synthesis and expansion/contraction (Heidenfelder et al. 2003). 

The discontinuous nature of lagging strand replication is characterized by the presence of 

single-stranded regions in the template and free 5’-ends in the growing strand (Okazaki 

fragment). The template single-stranded DNA presents the opportunity for formation of 

secondary structures such as hairpins. Lagging strand replication is predicted to lead to 

contractions by replication across hairpins formed in the template strand and expansion by 

DNA slippage to give hairpin formation in the Okazaki fragment (Heidenfelder et al. 2003). 

 

 

Figure 1.5 – Representation of GAA·TTC secondary structure: hairpin formation 
(Heidenfelder et al. 2003). 
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1.1.4 – FXN becomes truncated at the transcriptional level 

FRDA is the consequence of frataxin deficiency. It has been shown that the reduced 

FXN mRNA and frataxin levels are the result of inhibition of transcription and not at the level 

of post-transcriptional RNA processing (Delatycki et al. 2000). The current explanation for 

this phenomenon is that long GAA repeats adopt a specific secondary structure that impedes 

transcription. To date, two secondary structures have been associated with expanded GAA 

tracts: triplexes and sticky DNA (Figure 1.6). 

 

 

Figure 1.6 – Models of an intramolecular DNA triplex and a sticky DNA structure in a closed 
circular plasmid (Wells 2008). 
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Triplex formation 

The GAA·TTC tract is a purine·pyrimidine (or R·Y) polymer and may adopt a number of 

unusual nucleic acid structures, including triple helices – triplexes (Frank-Kamenetskii and 

Mirkin 1995). Triplexes in general may take the form R·R·Y or Y·R·Y, depending on whether 

the third strand is purine-rich or pyrimidine-rich, and can be formed as intermolecular 

structures or as folded intramolecular structures (Figure 1.7) (Grabczyk and Usdin 2000b). 

 

 

Figure 1.7 – Schematic representation of intramolecular R·R·Y and Y·R·Y triplexes. The 
purine (R) strand is black; the pyrimidine (Y) strand is grey. The single black dots indicate 
normal Watson–Crick base pairs and the smaller double dots indicate alternative hydrogen 
bonding interactions that are pH independent. Hoogsteen base pairs involving a 
protonated cytosine are indicated with a plus sign (Grabczyk and Usdin 2000b). 

 

Although the actual molecular mechanism by which the GAA·TTC repeat tract 

expansion reduces frataxin mRNA levels is still unknown, models based on different triplex 

variants have been suggested to explain the effects of GAA·TTC tract expansion as a possible 

block to transcription elongation in FXN (Sakamoto et al. 1999; Grabczyk and Usdin 2000b).  

One mechanism proposed is that a transient R·R·Y intramolecular triplex forms behind 

the RNA polymerase (RNAP) during transcription of a long GAA·TTC tract, trapping the 

polymerase (Grabczyk and Usdin 2000b) as illustrated in Figure 1.8. The movement of RNA 

polymerase along the template locally unpairs the DNA duplex and generates a wave of 



Chapter 1 – Friedreich ataxia: literature review 

 

 
12 

 

negative supercoiling in its wake (Figure 1.8A). This creates conditions favourable for triplex 

formation. At the transcription bubble the polymerase covers the Y (TTC) template strand 

but the single-stranded portion of the GAA non-template strand is available to initiate triplex 

formation, promoting formation of the R·R·Y structure. The initial folding may be analogous 

to the formation of the folded R·R·Y structure by an oligodeoxy­ribonucleotide (Figure 1.7). 

The spread of triplex formation (Figure 1.8B) is driven by the release of the standing wave of 

negative superhelical energy that had formed behind the polymerase. It has been suggested 

that the polymerase has trouble negotiating the junction between the triplex and the duplex 

in the distal end of the repeat tract (indicated by the black arrow in Figure 1.8C), resulting in 

a transcript truncated at the 3' end of the structure (Grabczyk and Usdin 2000b). 

In addition, recent evidence suggests that the transcription of the FXN GAA·TTC repeat 

sequence results in the formation of a persistent RNA·DNA hybrid (Grabczyk et al. 2007). 

During in vitro transcription of longer repeats, T7 RNA polymerase arrested in the promoter 

distal end of the GAA·TTC tracts and an extensive RNA·DNA hybrid was tightly linked to this 

arrest (Figure 1.8D). The authors (Grabczyk et al. 2007) propose that, initially, the repeating 

DNA d(TTC)n strand serves as the template for synthesis of r(GAA)n to form a moderate 

length of DNA·RNA hybrid. Due to the stability of this hybrid, the DNA triplex is dislodged 

behind the growing transcription complex to give an even longer RNA·DNA hybrid. The 

waves of negative supercoiling behind the translocating RNA polymerase facilitate these 

processes from a topological standpoint. In summary, this model advocates that FXN 

transcription seems to be truncated in FRDA as a consequence of the formation of  a quasi-

stable DNA triplex and a DNA·RNA hybrid, generating a pause site at the TRS (Grabczyk et al. 

2007). 
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Figure 1.8 – Model for transient transcription-
dependent triplex formation leading to an RNA 
polymerase pause and RNA·DNA hybrid formation 
(Grabczyk et al. 2007). The purine (GAA or R) 
strand of the repeat is red, the pyrimidine (TTC or 
Y) strand is yellow, and the flanking DNA is gray. 
(A) A standing wave of negative supercoiling 
follows RNA polymerase. At the transcription 
bubble, the nontemplate (GAA) strand is available 
to fold back in an R·R·Y interaction; the template 
strand is covered by RNA polymerase. (B) Rotation 
of the helix (curved arrow) as it winds in the third 
strand relaxes the negative supercoils caused by 
transcription and leaves a length of the template 
single-stranded. (C) RNAP is impeded at the distal 
template-triplex junction and the nascent 
transcript (green) can anneal to the single-
stranded stretch of template. (D) The RNA·DNA 
hybrid displaces the much less stable triplex 
structure. 

 

 

Sticky DNA 

Another proposed mechanism is based on the finding that a new type of DNA 

structure, that implies intramolecular triplex formation, is adopted by lengths of GAA·TTC. 

This structure was called “sticky DNA” and is formed by the association of two R·R·Y triplexes 

(Sakamoto et al. 1999) (Figure 1.9). Correlation was found between the lengths of GAA·TTC 

and the formation of this novel conformation: FRDA patients have 66 or more repeats, sticky 

DNA was found only for repeats longer than 59 units (Sakamoto et al. 1999). The proposed 

molecular mechanism of transcriptional inhibition by sticky DNA is a sequestration of the 

RNAP by direct binding to the complex DNA structure (Pandolfo 2002b). 
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Figure 1.9 – A Model of the association of two triplexes formed by long GAA·TTC tracts. 
(A) Schematic picture of the strand exchange model. The two triplexes are represented as 
thin and thick lines. The short vertical lines between the bases represent Watson-Crick 
pairs, and the stars represent the reversed Hoogsteen base pairs. (B) Three-dimensional 
picture of the strand exchange model. Different colours represent different strands. In the 
left molecule, blue shows the purine strand, while yellow shows the pyrimidine strand. In 
the right molecule, green shows the purine strand and red shows the pyrimidine strand 
(Sakamoto et al. 1999). 

 

It has been suggested that interruption in the GAA·TTC sequence may destabilize sticky 

DNA structure and facilitate transcription: a systematic analysis of the effects of introducing 

interruptions into a (GAA·TTC)150 repeat by substituting an increasing number of As with Gs 

has confirmed that the sticky DNA/triplex structure is progressively destabilised and it fails 

to form when the sequence becomes (GAAGGA·TCCTTC)75 (Ohshima et al. 1999). As the 

tendency to form a sticky DNA/triplex structure decreases, less and less inhibition of 

transcription is observed in vivo and in vitro (Ohshima et al. 1999). 
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Heterochromatin mediated silencing 

In contrast to the DNA structure-based mechanism for gene silencing by long GAA·TTC 

repeats, a study employing artificial transgenes for the lymphoid cell surface marker protein 

hCD2 has shown that expanded GAA·TTC repeats induce repressive heterochromatin in vivo, 

in a manner reminiscent of position effect variegated (PEV) gene silencing (Saveliev et al. 

2003). 

Recent studies have confirmed that FRDA may be caused by a heterochromatin-

mediated gene silencing of FXN (Figure 1.10), characterised by a differential DNA 

methylation profile accompanied by histone acetylation/methylation changes (Herman et al. 

2006; Greene et al. 2007; Al-Mahdawi et al. 2008). 

 

 

Figure 1.10 – Putative heterochromatin-mediated silencing pathway in FRDA. The 
chromatin organization of an active FXN gene is shown on the far left. Protruding from the 
nucleosomes are acetylated histone tails (Ac, acetyl). The presence of GAA repeats might 
nucleate heterochromatin formation, pushing the pathway to the right through several 
stages. An early step in this process may be the deacetylation of the lysines on histones, 
which would provide a substrate for histone methyltransferases (HMTases). Methylation 
of the histone H3 tail (on Lys9) would provide a binding site for HP1, consistent with a 
histone code for silencing. If the nucleosomes were sufficiently close (possibly because of 
the repetitive nature of the DNA), then HP1 dimers might stabilize a condensed higher-
order heterochromatin structure that prohibits access of the transcriptional machinery to 
the FXN locus (Festenstein 2006). 
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DNA methylation changes 

Bisulfite sequence analysis of the FXN flanking GAA regions in FRDA patient brain, 

cerebellum and heart tissues, reveals a shift in the FRDA DNA methylation profile, with 

upstream CpG sites becoming consistently hypermethylated and downstream CpG sites 

hypomethylated. Differential DNA methylation at three specific CpG sites within the FXN 

promoter and one CpG site within exon 1 were also identified (Figure 1.11) (Al-Mahdawi et 

al. 2008). 

 

 

Figure 1.11 – DNA methylation analysis of the FXN promoter (A and B), upstream GAA (C 
and D) and downstream GAA (E and F) regions of human brain and heart tissues. In each 
case the mean percentage (+SEM) of methylated CpG sites is shown as determined by 
bisulfite sequencing (Al-Mahdawi et al. 2008). 
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Histone modifications 

Heterochromatin hallmarks such as reduced levels of histone H3 and H4 acetylation, 

accompanied by increased H3K9 trimethylation, are particularly noticeable in FRDA 

immediately upstream and downstream of the expanded GAA repeat tract (Figure 1.12) 

(Herman et al. 2006; Al-Mahdawi et al. 2008). 

 

 

Figure 1.12 – Analysis of histone modifications in human brain tissue. ChIP Q-PCR results 
for the FXN promoter/exon1 (Pro), upstream GAA (Up) and downstream GAA (Down) 
amplified regions are represented as the relative amount of immunoprecipitated DNA 
compared with input DNA, having taken negligible –Ab control values into account. FXN 
values were normalized with human GAPDH and all values have been adjusted so that all 
of the upstream GAA mean values from the unaffected individuals are 100%. In each case 
two individual ChIP samples from two FRDA patients and two unaffected controls were 
analysed in triplicate. The means and SEMs of these values are shown (Al-Mahdawi et al. 
2008). 

 

Similarly, it was shown that long intronic GAA·TTC repeats (560) induce comparable 

epigenetic changes (hypoacetylation and hypermethylation of histones in the vicinity of the 

repeats) and reporter gene silencing in a molecular model of FRDA (Soragni et al. 2008). 
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1.1.5 – Genotype/phenotype correlation 

As expected by the experimental finding that smaller expansions allow a higher 

residual frataxin gene expression (Campuzano et al. 1997), probably because they form less 

stable triplexes and sticky DNA, expansion sizes have an influence on the severity of the 

phenotype. A direct correlation has been firmly established between the size of GAA repeats 

and earlier age of onset, earlier age when confined in wheelchair, more rapid rate of disease 

progression, and presence of non-obligatory disease manifestations indicative of more 

widespread degeneration (Durr et al. 1996; Filla et al. 1996; Monros et al. 1997; Montermini 

et al. 1997c). However, differences in GAA expansions account for only about 50% of the 

variability in age of onset, indicating that other factors influence the phenotype (Pandolfo 

2002a). These may include somatic mosaicism for expansion sizes, possibly variation in the 

triplet repeat sequence, modifier genes and environmental factors. 
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1.2 – Frataxin: structure and function 

Mature frataxin is a compact, globular protein containing an N-terminal α helix, a 

middle β sheet region composed of seven β strands, a second α helix, and a C-terminal coil 

(Musco et al. 2000) (Figure 1.13). The α helices are folded upon the β sheet, with the C-

terminal coil filling a groove between the two α helices. The size and nature of the 

conserved surface regions suggest that they interact with a large ligand, probably a protein. 

However, experiments aimed to identify a protein partner of frataxin, mostly by using the 

yeast two-hybrid method, have so far failed (Pandolfo 2002b). A possibility is that the 

surface is necessary for frataxin oligo- and multimerization, or that interaction with other 

proteins only occurs when frataxin has oligomerized. This is particularly relevant in the light 

of the proposed ability of frataxin to form high molecular weight complexes with iron 

(Cavadini et al. 2002). Frataxin monomers do not have any feature resembling known iron-

binding sites. However, the negatively charged ridge confers some resemblance to a unique 

bacterial ferritin in which an iron-binding pouch is formed by two adjoining subunits, so 

structural studies are compatible with iron-binding by frataxin oligo- or multimers (Corsi et 

al. 2002). 
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Figure 1.13 – Ribbon representation of the solution structure of the C-terminal domain of 
frataxin (Musco et al. 2000). 

 

1.2.1 – Frataxin is a mitochondrial protein 

Frataxin does not resemble any protein of known function. However, the lack of any 

patients homozygous for a null mutation, and the early embryonic lethality displayed by 

mice containing a knockout of the murine FXN homologue (Fxn) (Cossee et al. 2000), suggest 

that frataxin is essential for life. Its aminoacid sequence predicts a small soluble protein with 

no transmembrane domain. It is highly conserved during evolution (Campuzano et al. 1996), 

with homologs in mammals, invertebrates, yeast and plants. The protein is targeted to the 

mitochondrial matrix (Branda et al. 1999a) (Figure 1.14).  

Frataxin has an N-terminal mitochondrial targeting sequence, which is proteolytically 

removed by the mitochondrial processing peptidase (MPP) after the protein is imported into 

mitochondria. Recent evidence suggests that mature human frataxin is encoded by amino 

acids 81–210 (m81-FXN) (Schmucker et al. 2008). 
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1.2.2 – FRDA pathogenesis 

Reduced levels of frataxin result in mitochondrial dysfunction. Studies incorporating 

FRDA patients, conditional knockout mouse models, and yeast mutants containing a 

disruption of the FXN homologue, YHF1, have shown intramitochondrial iron accumulation, 

oxidative stress, and reduced activity of iron-sulphur (FeS) cluster-containing subunits of the 

mitochondrial electron transport chain (ETC) (complexes I–III) and of aconitase (Koutnikova 

et al. 1997; Cavadini et al. 2000; Puccio et al. 2001). The exact physiological function of 

frataxin is unknown but it may be involved in mitochondrial iron homeostasis and/or the 

assembly of FeS proteins (Bradley et al. 2000) (Figure 1.14 & Figure 1.15).  

While the exact mechanism by which frataxin is involved in mitochondrial iron 

homeostasis is unknown, investigation of the yeast frataxin homologue indicates that the 

protein is involved in iron efflux from mitochondria (Radisky et al. 1999). Recent evidence 

has shown that yeast frataxin homologue (Yfh1p) interacts with mitochondrial intermediate 

peptidase (MIP), a metalloprotease required for maturation of ferrochelatase and other iron 

using proteins (Branda et al. 1999b). When there is diminished Yfh1p, there is activation of 

MIP leading to mitochondrial iron uptake (Branda et al. 1999b). Thus it appears that Yfh1p 

regulates mitochondrial iron directly at the level of iron efflux and indirectly through 

regulation of YMIP activity (Figure 1.16). 
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Figure 1.14 – Alterations in mitochondrial biochemistry associated with reduced frataxin 
levels in FRDA. Frataxin is a highly conserved nuclear-encoded mitochondrial protein for 
which specific functions are unknown. The proposed roles include as an iron-binding 
protein (carrying out a function as a mitochondrial ferritin); the protection and synthesis of 
FeS clusters; in haem metabolism as a binding partner for ferrochelatase; or as a metabolic 
switch between haem metabolism and FeS cluster synthesis. In FRDA, when frataxin levels 
are low, FeS cluster containing proteins, such as respiratory transport complexes I–III and 
aconitase, are reduced. Cytoplasmic proteins that contain FeS clusters can also be affected. 
The accumulation of iron in the mitochondria leads to free-radical generation; this could 
feedback to further decrease the levels of FeS clusters, which are sensitive to the oxidative 
state. ABCB7, ATP-binding cassette, sub-family B, member 7 (ABC transporter 7 protein); 
ISC, iron–sulphur cluster (Gatchel and Zoghbi 2005). 
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Figure 1.15 – Schematic representation of the proposed events leading to cell death in 
FRDA. The precise sequence of events in FRDA pathogenesis is uncertain. It is suggested 
that impaired intramitochondrial iron metabolism results in defective Fe-S formation 
resulting in decreased complex I–III and mitochondrial aconitase activities and iron 

overload. Increased free iron levels and a defective mitochondrial respiratory chain will 
result in increased free radical generation, which will cause oxidative damage including 
further inhibition of aconitase activity. Impaired respiratory chain activity and decreased 
aconitase activity will impair ATP synthesis, which, together with oxidative damage to 
cellular components, will compromise cell viability (Bradley et al. 2000). 

 

It has been suggested that excess mitochondrial iron catalyses the production of 

hydroxyl radicals (OH•) by Fenton chemistry. The Fenton reaction is: 

 
Fe2+ + H2O2 → Fe3+ + OH- + OH• (Delatycki et al. 2000). 

 
OH• is known to be highly toxic to cells leading to inactivation of FeS enzymes, lipid 

peroxidation and damage to nucleic acids and proteins, ultimately resulting in cell death 

(Pandolfo 1999). However, studies with conditional knockout mouse models indicate that 

deficiencies in FeS enzymes occur prior to iron accumulation within the mitochondria (Puccio 

et al. 2001). Recently, it has also been suggested that mitochondrial iron accumulation does 

not induce oxidative stress (Seznec et al. 2005). Nonetheless, ultimately there remains some 
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uncertainty as to whether mitochondrial iron accumulation is the result or the cause of the 

oxidative stress responsible for mitochondrial damage.  

 
 

 

 

Figure 1.16 – Schematic representation of the likely pathogenesis of FRDA. (A) The normal 
situation in the mitochondrion is shown with iron influx and efflux maintaining low 
mitochondrial iron (Fe) and free radical (OH•) levels. Frataxin is likely to be acting directly at 
the level of iron efflux. Yeast data suggest that frataxin may also be indirectly limiting the 
influx of iron into mitochondria by reducing mitochondrial intermediate peptidase (MIP) 
activity. (B) The situation believed to exist in FRDA. Reduced frataxin results in inhibition of 
the efflux of mitochondrial iron. This leads to reduced cytosolic iron, which results in 
induction of iron uptake systems and this in turn results in further iron uptake into 
mitochondria. The increased iron uptake may be in part the result of overactivity of MIP 
owing to the absence of frataxin. The excess mitochondrial iron leads to excess production of 
toxic free radicals leading to cell damage and death (Delatycki et al. 2000). 

 

Another question that arises is why some tissues are affected in FRDA and not others. 

Part of the explanation relates to frataxin expression. Additionally, different tissues have 

different sensitivity to oxidative stress and may use different ways of dealing with that stress 

(Fridovich 1995). Thus the organ specificity of pathology in FRDA may be explained by the 

combination of different expression patterns of frataxin and different requirements for 

frataxin in dealing with ATP production, mitochondrial iron and oxidative stress. 
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1.3 – Therapeutic approaches 

There is currently no effective treatment for FRDA. However, the growing 

understanding of the role of frataxin and the disease pathogenesis has led to the 

consideration of four primary potential therapeutic targets (Table 1.1). 

 

Table 1.1 – Identification of the major signs of FRDA pathogenesis and respective suggestion 
of potential therapeutic strategy. 

   

Target  Potential Therapeutic Strategy 
   

   

↓ frataxin  Increase of frataxin levels 
   

↑ intramitochondrial iron accumulation  Removal of excess mitochondrial iron 
   

↑ free radical formation  Protection from oxidative stress 
   

↓ mitochondrial ETC activity 
↓ ATP Decrease of ATP demand 

↓ aconitase activity 
   

 

1.3.1 – Removal of excess mitochondrial iron 

The removal of excess iron accumulated in the mitochondria should resolve the issues 

concerning the formation of free radicals. However, the use of iron chelators such as 

desferrioxamine (DFO), the major chelator in widespread clinical use, has proven to be 

problematic since it lacks the property to specifically enter and target mitochondrial iron 

pools (Richardson 2003), suggesting that DFO would cause severe generalised iron deficiency 

before it could reduce mitochondrial iron levels. Curiously, a recent study reports that when 

cytosolic iron is chelated by DFO treatment, frataxin mRNA and protein levels decrease, 

further compromising cellular function (Li et al. 2008). 

Nevertheless, there is ongoing research into the development of iron chelators, 

namely the 2-pyridylcarboxaldehyde isonicotinoyl hydrazone (PCIH) analogues, as agents to 



Chapter 1 – Friedreich ataxia: literature review 

 

 
26 

 

specifically remove intramitochondrial iron deposits (Richardson et al. 2001; Richardson 

2003). 

On a contrary note, a recent study challenges current concepts favouring the use of 

mitochondrion-specific iron chelators (Sturm et al. 2005a). According to this study, in FRDA 

patient lymphoblast and fibroblast cells the concentration of intramitochondrial chelatable 

iron is not increased, despite a profound reduction in the mitochondrial frataxin content, 

suggesting that frataxin deficiency does not affect the mitochondrial labile (chelatable) iron 

pool (Sturm et al. 2005a). 

 

1.3.2 – Protection from oxidative stress 

Taking into account the difficulties associated with the removal of intramitochondrial 

iron, the use of antioxidant agents to protect from increased oxidative stress has been 

suggested as an alternative. Initial clinical trials utilising antioxidants such as coenzyme Q10 

(CoQ10) and idebenone (CoQ10 short-chain synthetic analogue), a potent free radical 

scavenger, have shown some promise (Rustin et al. 1999; Lodi et al. 2001a).  

Idebenone has been shown to rescue respiratory chain complex II activity, decreased 

by ferrous iron in heart homogenate. Consequently, the treatment of three patients with 

FRDA and left ventricular hypertrophy (LVH) with idebenone 5mg/kg/day for 4 to 9 months 

was accompanied by substantial decreases in interventricular septum (IVS) and left 

ventricular posterior wall thickness, as well as in left ventricular mass (LVM) index (Rustin et 

al. 1999). However, there was no clear benefit for neurologic findings (Rustin et al. 1999). 

Similar results were confirmed on 38 patients, treated with the same dosage in a 6-month 

open-label trial. A 20% decrease of the LVM was observed in about half of the patients with 

no serious side effects reported (Hausse et al. 2002). Complementarily, idebenone 
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treatment has also resulted in decreased levels of urinary 8-hydroxy-2'-deoxyguanosine, 

which is a peripheral marker of oxidative DNA damage (Schulz et al. 2000). 

Recently, two studies have been reported where the idebenone treatment has been 

applied for a 1-year period (Buyse et al. 2003; Mariotti et al. 2003). Mariotti et al. report on a 

randomized, placebo-controlled, double-blind trial to evaluate the efficacy of 5mg/kg 

idebenone in 29 patients with FRDA (Mariotti et al. 2003). A significant reduction of IVS 

thickness and LVM was found in the idebenone group as compared with the placebo group. 

This study confirms that idebenone has an effect on echocardiographic measures of LVH. On 

the other hand, the differences found in IVS and LVM between treated and nontreated 

patients are small and of uncertain clinical significance. In addition, no evidence that cardiac 

function improved under treatment was reported. Buyse et al. (2003) reported the effect of 

5mg/kg/day idebenone in 8 patients in an open-label trial. The study confirmed a decreased 

LVM index in FRDA patients with LVH and also showed improvement of functional measures 

(Buyse et al. 2003). 

These two studies are complementary in showing that whereas idebenone may 

modestly reduce LVH in FRDA, it has no effect on the progression of ataxia. These studies 

also raise several important questions. Do they indicate that antioxidants such as idebenone 

and related agents are likely to reverse the metabolic dysfunctions induced by frataxin 

deficiency? Is the modest reduction in LVH a signal that idebenone exerts a useful effect on 

the heart? Does it suggest that idebenone (or a related agent) at higher dosage or for a 

longer treatment period may stop the progression of neurologic dysfunction in FRDA? 

Answers to these questions are needed before the use of idebenone can be recommended 

in the treatment of FRDA patients. Further basic science investigation and additional 
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controlled clinical trials are needed to establish both the safety and the possible efficacy of 

idebenone in FRDA. 

Mitoquinone (MitoQ) is an antioxidant selectively targeted to mitochondria (Voncken 

et al. 2004). Its ability to move across biological membranes leads to a 100- to a 500-fold 

accumulation in mitochondria and a 5- to 10-fold accumulation inside the cell, and its 

antioxidant effects take place by preventing lipid peroxidation and regeneration of vitamin E 

(Voncken et al. 2004). MitoQ was shown to be 800 times more potent than idebenone in 

protecting FRDA fibroblasts from death due to endogenous oxidative stress generated by 

inhibition of glutathione synthesis (Jauslin et al. 2003). 

Recently, the long-term efficacy of a combined antioxidant and mitochondrial 

enhancement therapy in 10 FRDA patients was reported (Hart et al. 2005). This combined 

therapy of CoQ10 and vitamin E caused a prolonged improvement in cardiac and skeletal 

muscle bioenergetics clearly demonstrating its biochemical efficacy (Hart et al. 2005). Heart 

function, assessed by fraction shortening, significantly improved after 35 and 47 months 

and, when compared with cross-sectional data, the International Co-operative Ataxia Rating 

Scale (ICARS) and kinetic clinical scores were improved in 7 of 10 patients. However, the 

posture and gait scores and hand dexterity scores continued to deteriorate (Hart et al. 

2005). Therefore, a larger randomized trial focusing on the response to such a therapy of 

both neurological and cardiological symptoms is required to confirm whether an early 

diagnosis of FRDA can be exploited to initiate antioxidant treatment and prevent the 

progression of this disorder. 

In summary, thus far, therapeutic studies with antioxidants have shown a limited 

effect on the progression and pathology of FRDA, and this is probably because these agents 

cannot reach the primary sites of neuronal pathology and/or because they cannot remove 
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the iron accumulation. Taking the later matter into consideration, the use of bifunctional 

drugs targeting oxidative stress and iron chelation was suggested as an approach to 

neuroprotection in Parkinson’s and other neurodegenerative diseases (Youdim et al. 2004).  

 

1.3.3 – Decrease ATP demand 

The involvement of mitochondrial respiratory chain dysfunction in FRDA pathogenesis 

has also been considered as a potential target for FRDA therapy. Decreased levels of frataxin 

lead to a mitochondrial ATP deficiency in tissues with high energy dependency, such as the 

heart (Lodi et al. 2001b). It has also been reported that cardiac hypertrophy is a 

compensatory phenomenon in response to the metabolic deficit rather than a direct 

consequence of mutations (Marian and Roberts 1995). Familial hypertrophic 

cardiomyopathy (HCM) patients have been successfully treated with a high-dose beta-

blocker (HDβB) therapy (Ostman-Smith et al. 1999).  

Therefore, considering that abnormalities of ATP homeostasis do play a central role in 

any form of HCM, irrespective of the type of mutation or the pathohistology, and that HDβB 

treatment is capable of inducing the regression of left ventricular hypertrophy in patients 

with familial HCM (Ostman-Smith et al. 1999), it has been suggested that the same effect 

could be achieved in any patient with myocardial hypertrophy including FRDA patients 

(Kosutic and Zamurovic 2005). Subsequently, a recent case report presents a 5-year follow-

up of symmetrical concentric HCM in an FRDA patient treated with highdose propranolol (β-

blocker) (Kosutic and Zamurovic 2005). The HDβB therapy resulted in a reduction in the 

thickness of the septal and posterior left ventricular walls and complete normalization of 

diffuse electrocardiographic repolarization abnormalities (Kosutic and Zamurovic 2005), 

suggesting that the HDβB treatment resulted in a reduction of energy demand and that it 
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favorably changed the myocardial energy demand–supply mismatch, thereby inducing the 

regression of cardiac hypertrophy.  

Nevertheless, more FRDA patients with HCM should be submitted to HDβB treatment 

before any definitive conclusions can be drawn. In addition, a therapy protocol combining a 

potent antioxidant such as idebenone (increases mitochondrial ATP production) and HDβB 

(decreases ATP demand) might prove to be a promising therapeutic strategy. 

 

1.3.4 – Increase of frataxin levels 

While all the therapeutic approaches mentioned above may have the potential to 

reduce neurological deterioration and retard disease progression, they do not directly 

overcome the effects of the underlying FXN mutation. Since FRDA is caused by a deficiency 

of frataxin, an obvious solution would be to increase expression of frataxin. 

Gene therapy 

Ideally, this could be achieved through gene therapy by delivering a fully functional 

normal FXN allele to the main sites of pathology. Although it is unlikely that such an 

approach will be readily available within the near future, a recent gene therapy strategy 

consists of using patient’s cord blood-derived multipotent stem cells, modified to include a 

bacterial artificial chromosome (BAC) containing the normal FRDA locus (Zaibak et al. 2009). 

Inhibition of triplex formation 

On a different perspective, since the rate of formation of full-length transcripts has 

been shown to be inversely correlated with the length of the GAA expansion, a potential 

therapeutic approach targets the inhibition of triplex formation, or “sticky” DNA, during 

transcription (Figure 1.17). Oligodeoxyribonucleotides (ODNs) designed to block particular 
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types of triplex formation have been shown in vitro to provide specific and concentration-

dependent increases in full-length transcript (Grabczyk and Usdin 2000a).  

 

 

Figure 1.17 – Foundation for ODN antagonism of transcription-driven intramolecular 
triplex formation. Ribbon diagrams show two points in transcription-driven triplex 
formation (A and C) and indicate how ODN hybridization may disrupt it (B). (A) RNAP with 
an attached nascent transcript (black wavy line) is shown just after nucleation of an 
intramolecular triplex in the R·Y tract behind it. The curved arrow indicates rotation of 
the acceptor helix as it winds in the third strand and relaxes negative supercoils. The 
supercoil energy-driven spread of triplex formation may rapidly progress to the situation 
shown in (C). (B) as in (A) but with the addition of an ODN able to bind to the non-
template strand. Hybridization by the ODN to the expanded transcription bubble might 
prevent the initial fold-back that nucleates triplex formation or stop spread of the triplex 
by blocking additional winding in by the third strand. RNAP continues to transcribe 
unhindered. (C) Once the non-template strand has been wound into a triplex, the RNAP 
that initiated formation may be paused at the triplex–duplex junction formed ahead of it 
at the promoter distal end of the triplex. If the triplex is stable, it may serve to block the 
next transcribing polymerase, which will encounter the triplex at its promoter proximal 
end (Grabczyk and Usdin 2000a). 
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Recently, a range of small molecules with the potential to bind selectively to the 

duplex form of the GAA repeat sequence was identified by competition dialysis (Grant et al. 

2006). Potentially, such groove binding agents prefer duplex over triplex forms, and would in 

fact displace the third strand to form a drug-duplex DNA complex (Grant et al. 2006). Using 

cell lines containing a portion of expanded FXN intron 1 (GAA148) fused to a green 

fluorescent protein (GFP) reporter, a selection of the above mentioned small molecules was 

found to increase frataxin expression through the GAA repeat region (Grant et al. 2006). In 

addition, it has also been shown that one of such small molecules, namely pentamidine 

(approved drug for the treatment of infections in HIV patients), can increase frataxin levels 

in cultured patient lymphocytes (Grant et al. 2006). 

Similarly, polyamides seem to bind GAA·TTC tracts with high affinity and disrupt the 

intramolecular DNA·DNA-associated region of the sticky DNA conformation (Burnett et al. 

2006). These synthetic ligands increase transcription of the frataxin gene in cell culture, 

resulting in increased levels of frataxin protein, while DNA microarray analyses indicate that 

a limited number of genes are significantly affected in FRDA cells (Burnett et al. 2006). 

Inhibition of heterochromatin-mediated silencing 

In contrast to the above mentioned strategy, an alternative therapeutic approach 

takes into account the fact that expanded GAA repeats have been shown to induce 

repressive heterochromatin in a manner reminiscent of PEV gene silencing (Saveliev et al. 

2003). PEV occurs when a gene is located within or near regions of heterochromatin, and 

silent heterochromatin is characterized by the presence of particular types of histone 

modifications, the absence of acetylated histones, and the presence of histone deacetylases 

(HDACs), DNA methyltransferases, chromodomain proteins and polycomb group proteins 

(Elgin and Grewal 2003). Since the acetylation and deacetylation of histone proteins (and of 



Chapter 1 – Friedreich ataxia: literature review 

 

 
33 

 

other proteins involved in transcriptional regulations) have a critical role in regulating gene 

expression, it has been suggested that HDAC inhibitors may revert silent heterochromatin to 

an active chromatin conformation and restore the normal function of otherwise silenced 

genes (Figure 1.18) (Herman et al. 2006). Pursuing this thought, a recent study has reported 

the synthesis and characterization of a class of HDAC inhibitors that increase histone 

acetylation on FXN and successfully reverse its silencing in primary lymphocytes from FRDA 

patients (Herman et al. 2006). 

 

 

Figure 1.18 – Representation of the use of HDAC inhibitors in FRDA to promote histone 
acetylation and consequently cancelling out the gene-silencing effect (Herman et al. 2006). 

 

Other/unknown mechanisms 

A recent report describes recombinant human erythropoietin (rhuEPO) as a potential 

therapeutic agent for FRDA (Sturm et al. 2005b). Over the last decade, the cytokine rhuEPO 

has proven to be a safe therapeutic agent in haemodialysis patients with minimal adverse 

events (de Francisco et al. 2002). However, in recent times, rhuEPO has received 

considerable attention owing to its broad neuroprotective and cardioprotective capabilities 

(Cerami et al. 2002; Erbayraktar et al. 2003; Smith et al. 2003) by a still poorly understood 
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mechanism. It has been hypothesized that the function of rhuEPO in tissue protection could 

also be mediated by increasing frataxin expression (Sturm et al. 2005b). And in fact, it has 

been demonstrated that rhuEPO can, additionally to its reported neuro- and 

cardioprotective properties, increase frataxin expression in vitro (Sturm et al. 2005b). 

Significant increases on frataxin expression in primary lymphocytes from FRDA patients were 

observed following rhuEPO treatment (Sturm et al. 2005b). Additionally, rhuEPO was also 

reported to increase frataxin expression in many other cell types, among them the most 

affected cell types in FRDA such as neurones and cardiac cells (Sturm et al. 2005b). 

Curiously, a recent study investigating the effects of rhu-EPO on frataxin mRNA and 

protein in primary fibroblast cell cultures derived from FRDA patients, reported a slight but 

significant increase in the amount of frataxin protein, but did not identify any increase in the 

mRNA expression at any of the times and doses tested, suggesting that the regulatory 

effects of rhu-EPO on the frataxin protein are at the post-translational level (Acquaviva et al. 

2008). 

 

High throughput screening 

In order to investigate the regulation of FXN expression, a sensitive cellular genomic 

reporter assay was developed, which allows the in vitro screening of compounds for their 

ability to increase frataxin expression (Sarsero et al. 2003). A low level of enhancement of 

FRDA gene expression by hemin and butyric acid was initially demonstrated using this assay 

(Sarsero et al. 2003). Adaptation of this approach to high throughput screening with human 

cell lines may enable the development of specific inducers of frataxin expression. Further 

support for this approach has been recently provided by the observation that resistance to 

cisplatin in a cancer cell line was associated with an increase in frataxin expression 
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(Ghazizadeh 2003). In addition, 3- nitropropionic acid increases frataxin expression in human 

lymphoblasts and in transgenic rat PC12 cells (Turano et al. 2003). 

Recently, an alternative high-throughput system was developed by Soragni et al. 

(2008). This cell line-based molecular model of FRDA is characterized by the introduction of a 

GFP reporter minigene which contains 560 GAA·TTC repeats in intron 1. The 

GFP_(GAATTC)560 minigene recapitulates the molecular hallmarks of the mutated FXN gene 

such as: inhibition of transcription of the reporter gene, decreased levels of the reporter 

protein and hypoacetylation and hypermethylation of histones in the vicinity of the repeats 

(Soragni et al. 2008). 

Finally, a greater understanding of the mechanisms involved in FXN gene expression 

may identify additional genomic targets for drug development, as expression studies should 

facilitate delineation of the endogenous regulatory elements that determine the tissue and 

developmental specificity. 
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1.4 – FRDA mouse models 

In order to gain further understanding of the physiological function of frataxin and 

FRDA pathogenesis, as well as to develop an effective system for testing potential therapies, 

mouse models of FRDA are considered essential.  

 

1.4.1 – Knockout mouse models 

As most recessive mutations reduce or ablate protein function, knockout mice can 

often replicate most of the features of these diseases (Watase and Zoghbi 2003). However, 

the production of accurate animal models for recessive diseases is not always so 

straightforward. For FRDA a basic knockout approach, using targeted deletion of Fxn exon 4, 

to generate a mouse model was unsuccessful: mice that are heterozygous for an Fxn-null 

allele seem normal, but the homozygotes die in utero as early as E6.5 (Cossee et al. 2000). 

Even though a model was not achieved this result indicates that frataxin has a critical role in 

development. 

Conditional knockout mice were generated using a loxP-flanked allele and Cre-lines 

that are driven by the neuron-specific enolase (NSE) and muscle creatine-kinase promoters 

(Puccio et al. 2001). Mutants, in which frataxin protein levels are reduced in the brain and 

absent in the heart, show large sensory-neuron dysfunction, cardiomyopathy, iron-sulphur 

enzyme deficiency and premature death. Unfortunately, the primary sites of FRDA 

pathology, such as the dorsal column of the spinal cord, do not seem to be affected in these 

mice (Puccio et al. 2001).  

To obtain specific and progressive neurological models for FRDA, Simon et al. (2004) 

generated an inducible knock-out mouse model expressing the tamoxifen-dependent 



Chapter 1 – Friedreich ataxia: literature review 

 

 
37 

 

recombinase (Cre-ERT) under the mouse Prion protein (Prp) promoter, thus enabling 

spatiotemporal control of conditional alleles of the target genes. Ablation of frataxin in adult 

mice caused both spinal cord and DRG anomalies, leading to progressive neurological 

symptoms resembling FRDA, although with absence of motor neuropathy (Simon et al. 

2004). 

Conditional knockout mice were also generated to investigate the involvement of 

frataxin deficiency in the development of diabetes mellitus (Ristow et al. 2003). These mice 

had disrupted expression of frataxin selectively in pancreatic β cells. This resulted in an 

impairment of insulin secretion due to a loss of β cell mass, and consequently in the 

development of impaired glucose tolerance (Ristow et al. 2003). 

 

1.4.2 – Knockin mouse models 

Recently, a frataxin knockin mouse was produced by introducing a 230-repeat GAA 

tract into the mouse frataxin gene (Miranda et al. 2002). The homozygous mutation led to a 

25% reduction in the levels of frataxin in all the tissues examined. GAA repeat knockin/Fxn 

knockout compound heterozygous mice express 25–36% of wild-type frataxin levels - such 

levels are typically associated with mild FRDA in humans. Even though a clear microarray 

gene expression phenotype has been determined (Coppola et al. 2006), these double 

mutants are viable and show no discernible phenotype (Miranda et al. 2002), indicating that 

longer repeats might be necessary to generate an accurate model of FRDA in mice.  

The use of mouse models to study both germ-line and somatic repeat instability in 

CAG, CGG, and CTG trinucleotide-repeat disorders has proved to be very effective in 

studying the dynamics of trinucleotide repeats and their relation to disease (Kaytor et al. 

1997; Mangiarini et al. 1997; Monckton et al. 1997; Sato et al. 1999; Shelbourne et al. 1999; 
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Wheeler et al. 1999; Fortune et al. 2000; Kennedy and Shelbourne 2000; Lorenzetti et al. 

2000; Seznec et al. 2000; Ishiguro et al. 2001; Peier and Nelson 2002; Watase et al. 2003). 

However, instability is apparent only when the repeat sequence is introduced within the 

appropriate genomic context, such as a large human genomic transgene or knockin at the 

endogenous mouse locus (Shelbourne et al. 1999; Wheeler et al. 1999; Bontekoe et al. 2001; 

Ishiguro et al. 2001; Peier and Nelson 2002; Libby et al. 2003). Thus, a similar knockin 

strategy for FRDA is somewhat hampered by the fact that the Fxn intron 1 region of the 

mouse does not normally contain a GAA repeat sequence. Indeed, the knockin of a 230-GAA 

repeat sequence into the Fxn intron 1 has not reproduced triplet repeat instability in mice 

(Miranda et al. 2002). 

 

1.4.3 – FXN YAC transgenic mouse models 

As an alternative approach in the generation of FRDA mouse models, Pook et al. chose 

to study the potential applications of FXN transgenic mice, suggesting that a human genomic 

FXN transgene that contained a large GAA repeat expansion at the correct intronic position 

would enable both GAA repeat instability and reduced frataxin expression to be obtained 

within the one single model (Pook et al. 2001). 

 

YAC derived human frataxin is functional and rescues homozygous Fxn knockout mice 

In an initial effort to assess whether human frataxin could function in a mouse 

background and substitute for loss of endogenous murine frataxin, a human wild-type FXN 

yeast artificial chromosome (YAC) (Figure 1.19) transgenic mouse line was generated and 

crossbred with heterozygous Fxn exon 4 deletion knockout mice (Fxn+/-) (Cossee et al. 2000; 

Pook et al. 2001).  
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Figure 1.19 – The position of YAC 37FA12 with respect to the FXN locus at 9q13. Genes are 
represented as solid arrows, which indicate the direction of transcription, and the broken 
lines represent incomplete gene sequence. Individual exons are numbered and are shown 
below the relevant gene (Pook et al. 2001). 

 

The result was phenotypically normal homozygous Fxn knockout (Fxn-/-) offspring that 

have no endogenous murine frataxin, but are rescued by expression of functional YAC-

derived human frataxin (Pook et al. 2001). These results demonstrate that: the 370kb FXN 

YAC transgenic construct (37FA12) is functional and can express frataxin during 

development; the protein undergoes correct post-translational modification to achieve 

mitochondrial localisation and is able to interact with other proteins in the cellular 

environment to achieve its normal function (Pook et al. 2001). Furthermore, this assisted in 

the delineation of a minimal genomic region that drives complete frataxin expression (Pook 

et al. 2001), which can be of great value in FRDA gene therapy studies. 

 

GAA-containing human FXN YAC transgenic mice  

Further advances were made by the generation of a FXN YAC transgenic mouse model 

that contains a GAA expansion mutation (Al-Mahdawi et al. 2004). This was achieved by GAA 

repeat modification of the 370-kb human genomic YAC clone, 37FA12 (Figure 1.20). To carry 

out the GAA modification, a PCR product containing approximately 700 GAA repeats and 
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1.85 kb of flanking intron 1 sequence was initially amplified from FRDA patient genomic 

DNA. Subsequent to cloning into pCR2.1 and then YEp24 vectors, the GAA repeat sequence 

showed contraction to a maximum size of 230 repeats. A very similar degree of contraction 

has previously been observed upon cloning of large GAA repeat expansion sequences into 

plasmids (Ohshima et al. 1998). Yeast pop-in/pop-out homologous recombination between 

the 230-GAA plasmid sequence and retrofitted YAC 37FA12 resulted in a final modified YAC, 

designated 1(38), which contained 190 GAA repeats (Al-Mahdawi et al. 2004). 

 

 

Figure 1.20 – GAA repeat modification of YAC 37FA12. The position and orientation of the 
normal FXN gene (9 GAA repeats) within the human YAC clone 37FA12 are indicated by the 
arrow. L and R indicate left and right arms of the YAC. A 700-GAA PCR product was 
amplified from FRDA patient DNA using primers S2F and S3R. The PCR product was first 
cloned into pCR2.1 and then into YEp24, which contains a selectable URA3 gene, with 
resultant contraction to 230 GAA repeats. Pop-in/pop-out homologous recombination 
between Yep24 and YAC 37FA12 FXN sequences produced the 190-GAA-repeat YAC clone 
1(38), which was subsequently used to generate transgenic mice (Al-Mahdawi et al. 2004). 
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Two lines of GAA containing human FXN YAC transgenic mice have been generated (Al-

Mahdawi et al. 2004), designated YG8 and YG22 (Table 1.2). Both lines were shown to 

contain transgene sequences spanning the whole 370-kb human YAC clone, including the left 

and right arms of the YAC and the entire FRDA gene together with GAA repeat expansions. 

YG8 contained two GAA sequences of 90 and 190 repeats, while YG22 contained a single 

190-GAA repeat sequence. Southern blot hybridization with YAC left arm and right arm 

probes detected nonsegregating bands in all transgenic offspring for both YG8 and YG22, 

indicating single sites of integration (Al-Mahdawi et al. 2004). By performing human–mouse 

comparative frataxin exon 3 33P-labeled PCR amplification, specific restriction enzyme 

digestion, and subsequent densitometry analysis, it was determined that the YG22 line had a 

single copy of the FXN gene and the YG8 line had two copies of the FXN gene (Al-Mahdawi et 

al. 2004). 

 

Table 1.2 – General characterisation of FXN YAC transgenic mouse lines. (Al-Mahdawi et al. 
2004) 

Transgenic 
line 

YAC transgene 
integrity 

FXN copy 
number 

Founder GAA 
repeat length(s) 

Range of GAA repeats 
in offspring 

YG8 Complete 2 190 + 90 <9 to 223 

YG22 Complete 1 190 <9 to 235 

 

GAA-repeat instability in FXN YAC GAA transgenic mice  

Intergenerational GAA instability was identified in both the YG8 and the YG22 

transgenic mice, ranging from complete contractions (<9 GAA repeats) to substantial 

expansions (223 and 235 GAA repeats in YG8 and YG22, respectively) (Table 1.2) (Al-

Mahdawi et al. 2004). However, very large expansions have not been detected yet. The 

instability of the GAA repeat sequence during transmission from YG8 and YG22 transgenic 
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parents to offspring was assessed through five generations and eight generations of 

backcrossing, respectively, onto the C57BL/6J background (Al-Mahdawi et al. 2004). Both 

maternal and paternal GAA expansions and contractions have been identified as they have in 

FRDA patients. However, neither of the two lines shows patterns of intergenerational GAA 

repeat instability that are particularly similar to those found in FRDA patients (Al-Mahdawi et 

al. 2004). 

Somatic instability of the GAA repeat was assessed in a variety of tissues from YG22 

mice 2–12 months of age and YG8 mice 2–6 months of age (Al-Mahdawi et al. 2004). No 

somatic GAA instability was detected in either YG8 or YG22 mice at 2 months of age (Figure 

1.21). However, pronounced changes were detected in tissues from older mice of both lines. 

 

Figure 1.21 – Somatic GAA repeat instability in FXN YAC transgenic mice. Autoradiographs 
of Southern-blotted GAA PCR products from somatic tissues of representative transgenic 
mice. (A) 2-month F4 YG22, (B) 5-month F8 YG22, (C) 9-month F7 YG22, (D) 12-month F6 
YG22, (E) 2-month F4 YG8, and (F) 3-month F4 YG8. No GAA repeat instability is detected 
in either 2-month-old YG22 or 2-month-old YG8 mice. Instability is greatest in the 
cerebellum of 9- and 12-month-old YG22 mice and the cerebellum and spinal cord of 3-
month-old YG8 mice. Y, YAC 1(38); B, whole brain; Ch, cerebral hemisphere; Bs, brain 
stem; C, cerebellum; S, spinal cord; H, heart; L, liver; K, kidney; Sp, spleen; P, pancreas; Sk, 
skeletal muscle; T, testis; Ta, tail (Al-Mahdawi et al. 2004). 
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In contrast to the situation with germ-line instability, there is a marked similarity 

between the FXN YAC GAA transgenic mice and FRDA patients when it comes to observing 

somatic instability of the GAA repeat as both YG8 and YG22 transgenic mice showed 

prominent GAA expansion changes in CNS tissues, particularly in the cerebellum (Al-

Mahdawi et al. 2004). This is a very interesting finding since consistently larger GAA alleles 

have been described in the cerebellar cortex of FRDA patient autopsy samples, when 

compared with other CNS tissues (Montermini et al. 1997b). Therefore, it is possible that 

some trans-acting cerebellar tissue or cell factors may be influencing GAA instability within 

both species. 

Recently, a small pool PCR (SP-PCR) approach was used to perform a detailed 

quantitative analysis of the length-, tissue-, and age-dependent instability of the GAA repeat 

sequence in the context of the human FXN locus, using both YG8 and YG22 mouse lines 

(Clark et al. 2006). This has further confirmed that both lines display tissue specific instability 

characterized by expansions in the cerebellum and DRG and that somatic instability is age 

dependent. 

The somatic instability of the (GAA)190 tract was analysed in multiple tissues from 12-

month-old mice derived from both transgenic lines, and over 2,000 molecules, representing 

individual somatic transgenes, were analyzed from each transgenic line (Clark et al. 2006). 

Although, both expansions and contractions were observed in most tissues, the (GAA)190 

sequence was most unstable in cerebellum and DRG (Figure 1.22). The mutation load in 

cerebellum was 20.4% and 39.4% in YG8 and YG22, respectively, and in DRG of YG8 it was 

8.3% (DRG was not analyzed in YG22). By comparison, the combined mutation loads of the 

other tissues (i.e., excluding cerebellum and DRG) were only 1.4% and 4.3% in the YG8 and 

YG22 lines, respectively (p<0.001 in both lines). Somatic instability in cells derived from 
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actively proliferating tissues such as peripheral blood and sperm was also much lower than 

in the cerebellum and DRG (p<0.001; Figure 1.22) (Clark et al. 2006).  

 

 

Figure 1.22 – SP-PCR analysis showing somatic instability of the GAA triplet-repeat 
sequence in multiple tissues from YG8 (A) and YG22 (B) transgenic mice. Representative 
gels are shown for the indicated tissues. The locations of the constitutional (GAA)190 and 
(GAA)82 alleles, as determined by conventional PCR, are indicated by arrowheads. Each 
lane typically contains 5–10 individual molecules. Note that cerebellum and DRG show 
higher levels of instability. The relative positions of the DNA size markers are indicated by 
dashes on the left margin of each gel; they represent 0.65, 0.85 and 1 kb from the bottom 
of the gels in (A) and 0.85 and 1 kb in (B). (Clark et al. 2006) 

 

A significant expansion bias was noticed in all tissues, with at least an eightfold greater 

frequency of expansions over contractions in both lines (p<0.001 in both lines; Figure 1.23). 

Again, most of the expansions were noted in the cerebellum and DRG, which accounted for 

75% and 44% (92/122 and 68/154) of all expansions seen in the YG8 and YG22 lines, 

respectively. It is noteworthy that the same frequency of expansions was noted for the 

(GAA)190 transgene in both YG8 and YG22 mice (p=0.7; Figure 1.23). The magnitude of 
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expansions was comparable for the two lines (Figure 1.24), with maximum expansions in 

cerebellum of 50+ triplets noted in both lines (representing an increase of >30%). Similar 

instances of expansion by 50+ triplets, although less frequent than in cerebellum, were also 

noted for the (GAA)190 transgene in DRG (Clark et al. 2006). 

 

 

Figure 1.23 – Somatic instability of the (GAA)190 allele in tissues from YG8 and YG22 
transgenic mice shows a significant bias for expansions. Note that both transgenic mice 
show a >eightfold excess of expansions over contractions (Clark et al. 2006). 

 

 

Figure 1.24 – Similar magnitude of cerebellar expansions of the (GAA)190 allele in YG8 and 
YG22 transgenic mice. Bars represent the frequency of expansions with the indicated 
increase in repeat length (measured in triplets) (Clark et al. 2006). 
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The SP-PCR analysis was also used to compare the levels of somatic instability in 

tissues derived from young (2 month old; 2,400 individual molecules) versus old (12 month 

old; 2,000 individual molecules) YG8 transgenic mice (Table 1.3) (note DRG was analyzed at 3 

and 14 months) (Clark et al. 2006). Through 2 months of age, the (GAA)190 allele showed low 

levels of somatic instability (≤1%) including in the cerebellum and DRG (Table 1.3; Figure 

1.25A). The (GAA)82 allele was completely stable through 2 months, indicating that repeat 

length determines the age of onset of somatic instability (Figure 1.26). In older mice, a 

significant increase in mutation load was noted, which was mainly due to the accumulation 

of expansions. The (GAA)190 allele showed a significant age-dependent increase in the 

frequency of expansions in DRG and cerebellum (p<0.001 for each tissue; Table 1.3). The 

(GAA)82 allele showed a similar age-dependent increase in mutation load in cerebellum and 

DRG, which at 12 months was indistinguishable from the (GAA)190 allele in terms of the 

proportion of mutant molecules (p=0.12 for all tissues and p=0.36 for cerebellum only) 

(Figure 1.26). However, as opposed to cerebellum and DRG, low mutation loads (<2.5%) 

were noted for both alleles even up to 12 months of age in blood and sperm (proliferative 

cells), spinal cord, and kidney (Table 1.3) (Clark et al. 2006). 

 

Table 1.3 – Age-dependent and expansion-biased somatic instability of the (GAA)190 allele in 
YG8 transgenic mice (Clark et al. 2006). 

 2 Months  12 Months 

ML 
(%) 

Molecules 
analyzed 

Cont Exp  
ML 
(%) 

Molecules 
analyzed 

Cont Exp 

Blood 0 898 0 0  0.6 711 0 4 
Sperm 0 121 0 0  2.3 216 0 5 
Kidney N/a N/a N/a N/a  0 189 0 0 
Spinal cord 1 100 0 1  2.4 42 0 1 
Brainstem 0.65 306 0 2  5.5 161 2 7 
DRGa  0.9 112 1 0  8.3 180 2 13 
Cerebellum 0.35 862 0 3  20.4 501 10 92 
Total 0.29 2399 1 6  6.8 2,000 14 122 

N/a not analyzed; ML mutation load; a DRG was analyzed at 3 and 14 months. 
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The age-dependent increase in expansions described in the cerebellum of YG8 mice 

was reproduced in the YG22 mice (Clark et al. 2006). The (GAA)190 allele, which was only 

slightly unstable at 2 and 5 months (4.3% of 325 individual molecules at 5 months), by 

12 months showed a significant increase in mutation load (39.3% of 211 individual 

molecules; p<0.001 compared with 2 or 5 months), and expansion bias (4.5-fold greater 

frequency of expansions over contractions; p<0.001)  (Figure 1.25B) (Clark et al. 2006). 

 

Figure 1.25 – Somatic instability of the (GAA)190 and (GAA)82 alleles is age-dependent. 
Representative gels are shown for cerebellar DNA, and the locations of the constitutional 
(GAA)190 and (GAA)82 alleles, as determined by conventional PCR, are indicated by 
arrowheads. Each lane contains a comparable number (5–10) of individual molecules. YG8 
cerebellum and YG22 cerebellum are shown in (A) and (B), respectively. Note the increase 
in instability and bias for expansion, seen in 12 month versus 2 or 5-month-old cerebellum. 
The relative positions of the DNA size markers are indicated by dashes on the left margin 
of each gel; they represent 0.65, 0.85 and 1 kb from the bottom of the gels in (A) and 0.85 
and 1 kb in (B) (Clark et al. 2006). 

 



Chapter 1 – Friedreich ataxia: literature review 

 

 
48 

 

 

 

Figure 1.26 – Somatic instability of the (GAA)190 and (GAA)82 alleles is age-dependent. The 
graph shows a significant increase in somatic instability of the (GAA)190 and (GAA)82 alleles 
in (all tissues of) 12 versus 2-month-old-littermates of YG8 transgenic mice (DRG was 
collected 14 and 3 months instead) (Clark et al. 2006). 

 

In summary, both the YG8 and YG22 mice lines show progressive and tissue-specific 

expansions of GAA repeats specifically in the regions of the nervous system that show 

pathology in FRDA patients. This suggests the involvement of trans or cis-acting factors, 

likely independent of DNA replication, in the regulation of tissue-specific and age-dependent 

GAA somatic instability. 

The fact that the two FXN YAC GAA transgenic mice lines show both intergenerational 

and somatic GAA repeat instability, when neither was observed with the  230-GAA repeat 

knockin mouse model (Miranda et al. 2002), also suggests that the genomic context of the 

GAA repeat influences its instability. In addition, such intergenerational and somatic GAA 

repeat instability observed in both FXN YAC GAA transgenic lines represents the first time 

that such occurrence has been reported in a FRDA mouse model (Al-Mahdawi et al. 2004). 

Therefore, such a model is potentially useful for detailed study of FRDA GAA repeat 

expansion mechanisms within an in vivo mammalian system. 
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GAA expansion-containing FXN YAC transgene rescues Fxn knockout embryonic lethality 

To determine the viability of each GAA FXN transgene, both the YG22 or YG8 lines 

(FXN+, Fxn+/+) were crossbred with heterozygous Fxn knockout mice (Fxn+/−) (Al-Mahdawi et 

al. 2006). The FXN+, Fxn+/− offspring from these crosses were further bred with Fxn+/− mice to 

generate FXN+, Fxn−/− “rescues” (Al-Mahdawi et al. 2006). Correct Mendelian ratios of rescue 

mice to overall offspring number were obtained from both YG22 and YG8 crosses, indicating 

functional frataxin derived from both GAA repeat-containing transgenes (Al-Mahdawi et al. 

2006). The rescue mice from both lines have exhibited a normal life span, with mice 

surviving up to at least 2 years of age. 

 

Comparable epigenetic changes in human and transgenic mouse brain and heart tissues 

Since the transgene present in the FXN YAC transgenic mice consists of the entire 

human FXN gene sequence, it was possible to investigate the DNA methylation profiles and 

the histone modifications at exactly the same three regions of the FXN gene that had 

previously been analysed in human tissue (Al-Mahdawi et al. 2008). 

Overall, the DNA methylation profiles of FXN transgenic mouse brain and heart tissues 

resemble the profiles of human tissue (Figure 1.27), particularly on the upstream GAA 

regions of both YG8 and YG22 transgenic mouse brain and heart tissues (Al-Mahdawi et al. 

2008). 

Similarly, histone modifications of FXN transgenic mouse brain tissue are comparable 

with histone modifications of human tissue (Figure 1.28): overall GAA repeat-induced 

decreases in histone H3K9 acetylation and increases in H3K9 methylation for both YG8 and 

YG22 transgenic mice, as previously identified in human FRDA tissue (Al-Mahdawi et al. 

2008). However, the level of deacetylation in the transgenic mouse tissue was not as great 
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as that seen in the human tissue, possibly as a consequence of the smaller transgenic GAA 

repeat expansion sizes. The greatest consistent histone residue changes found between the 

non-GAA (Y47) and both of the GAA (YG8 and YG22) transgenic brain tissue samples were 

decreases in acetylated H3K9 and increases in di- and tri-methylated H3K9 (Al-Mahdawi et 

al. 2008). 

 

 

Figure 1.27 – DNA methylation analysis of the FXN promoter in FXN YAC transgenic mice: 
(A and B), upstream GAA (C and D) and downstream GAA (E and F) regions of Y47 (black 
columns), YG8 (light grey columns) and YG22 (dark grey columns) transgenic mouse brain 
and heart tissues (Al-Mahdawi et al. 2008). 
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Figure 1.28 – Analysis of histone modifications in transgenic mouse brain tissues. ChIP Q-
PCR results for the transgenic FXN promoter/exon1 (Pro), upstream GAA (Up) and 
downstream GAA (Down) amplified regions are represented as the relative amount of 
immunoprecipitated DNA compared with input DNA, having taken negligible –Ab control 
values into account. FXN values were normalized with mouse GAPDH and all values have 
been adjusted so that all of the upstream GAA values from the non-GAA transgenic mouse 
tissues (Y47) are 100% (Al-Mahdawi et al. 2008). 

 

Decreased levels of frataxin mRNA and protein expression in FXN YAC GAA mouse model 

Both the YG8 and YG22 rescue mice express comparatively decreased levels of human 

frataxin mRNA in all tissues (Figure 1.29) and decreased levels of human frataxin protein in 

at least some tissues compared with endogenous mouse levels (67% and 42% in cerebellum, 

37% and 25% in heart, and 10% and 9% in skeletal muscle of YG22 and YG8 rescue mice, 

respectively) (Figure 1.31) (Al-Mahdawi et al. 2006). Overall the YG8 rescue mice 

demonstrate slightly less frataxin mRNA and protein expression compared with the YG22 

mice. 

Recently, real-time reverse transcriptase PCR (Q-RT-PCR), was used to confirm the FXN 

transgene expression levels, showing YG8 and YG22 to have mean decreased mRNA levels of 
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26% and 35% in brain and 57% and 56% in heart compared with Y47 normal-sized GAA 

repeat-containing FXN YAC transgenic mice (Figure 1.30)(Al-Mahdawi et al. 2008). 

 

Figure 1.29 – Frataxin mRNA expression analysis in YG8 and YG22. (A) A representative RT-
PCR image showing restriction-digested human frataxin products (112 and 29 bp) and 
mouse frataxin products (75 and 64 bp), together with mouse Hprt controls. mRNA 
samples were isolated from tissues of wild-type, YG22 rescue, YG8 rescue, YG22 
transgenic, and YG8 transgenic mice (lanes 1, cerebrum; 2, brain stem; 3, cerebellum; 4, 
heart; 5, skeletal muscle). (B) Levels of frataxin mRNA expression as a percentage value of 
wild-type mouse expression. Values were generated by determining the means of six 
different RT-PCR experiments, each normalized to Hprt. Error bars indicate SEM. *p<0.05, 
**p<0.01 (Al-Mahdawi et al. 2006). 

 

 

Figure 1.30 – Q-RT-PCR analysis of transgenic FXN mRNA isolated from Y47, YG8 and YG22 
mouse brain and heart tissues (Al-Mahdawi et al. 2008). 
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Figure 1.31 – Frataxin and antioxidant enzyme expression levels in YG22 and YG8 rescue 
mice. (A) Western blot showing comparative levels of frataxin relative to actin in skeletal 
muscle samples from human (H), wild-type mouse (M), and YG22 transgenic mouse (TG). 
(B) Western blot of YG22 and YG8 rescue mouse tissue lysates (lanes 1, cerebrum; 2, brain 
stem; 3, cerebellum; 4, heart; 5, skeletal muscle) hybridized with antibodies against 
frataxin, actin, porin, MnSOD, and CuZnSOD. The very low levels of YG8 skeletal muscle 
frataxin, which appear to be negative in this image, were revealed upon longer exposure. 
(C, D) Levels of transgenic human frataxin expression as a percentage value of endogenous 
wild-type mouse frataxin expression, (C) relative to porin controls or (D) relative to actin 
controls (n=5–8). Tissues 1–5 are as described for (B). (E) Levels of CuZnSOD in rescue mice 
as a percentage value of wild-type mouse expression, normalized to actin (n=3–7). Tissues 
1–5 are as described for (B). (F) Levels of MnSOD in rescue mice as a percentage value of 
wild-type mouse expression, normalized to porin (n=3–6). Tissues 1–5 are as described for 
(B). Error bars indicate SEM. *p<0.05, **p<0.01 (Al-Mahdawi et al. 2006). 
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Such differentially reduced levels of frataxin in the FXN YAC GAA mouse model have 

been proven sufficient to induce a mild FRDA-like pathological phenotype. Impaired 

aconitase activity (Figure 1.32), oxidative stress (Figure 1.33), and functional deficits are 

apparent (Figure 1.34), although not severe, and neuronal histopathology within the DRG 

and iron deposition within the heart are later progressive effects (Figure 1.35 & Figure 1.36) 

(Al-Mahdawi et al. 2006). 

 

Oxidative stress in FXN YAC GAA mouse model 

The FXN YAC GAA mouse models demonstrate an obvious, but not severe, degree of 

oxidative stress (Figure 1.33) (Al-Mahdawi et al. 2006). This may be due to the fact that the 

models have residual frataxin in all tissues. The mice also have a mitochondrial respiratory 

chain that shows only a slight overall functional deficit (Figure 1.32) and, therefore, 

continues to produce damaging free radicals. The greater loss of aconitase activity than MRC 

complex activity deficits suggests that aconitase impairment is a prominent early feature, 

even in mild cases of FRDA. The increases described in CuZnSOD and MnSOD are generally 

consistent with a reaction to oxidative stress in our FRDA mouse model tissues. However, 

where there is the greatest decrease in frataxin (i.e., skeletal muscle) a decrease in both 

CuZnSOD and MnSOD was observed. This indicates a different susceptibility or handling of 

this tissue to mild oxidative stress (Al-Mahdawi et al. 2006). 
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Figure 1.32 – Mitochondrial respiratory chain and aconitase activities in heart tissue from 6-
month-old YG8 rescue mutant and control mice. (A) The specific activities of aconitase 
(Acon) and citrate synthase (CS). CS activities were divided by 10 (n=6). (B) The 
mitochondrial respiratory chain (MRC) activities expressed as a ratio with citrate synthase; 
MRC I, NADH coenzyme Q1 reductase (NQ1R); MRC II/III, succinate cytochrome c reductase 
(SCcR); MRC II, succinate coenzyme Q2 reductase (SQ2R); and MRC IV, cytochrome oxidase 
(COX). COX/CS ratio was multiplied by a factor of 10 (n=4). Activities are expressed as 
means ±SEM. *p=0.03. (Al-Mahdawi et al. 2006) 

 

 

 

Figure 1.33 – Oxidative stress in YG8 and YG22 mice. (A) Protein oxidation analysis 
(Oxyblot) in cerebrum, cerebellum, heart, and skeletal muscle tissues of 6- to 9-month old 
YG22 and YG8 rescue mice, compared with wild-type controls, measured in arbitrary units 
(a.u.) of densitometry (n=8–12). Error bars indicate SEM. *p<0.05, **p<0.01. (B) TBARS 
analysis shows levels of MDA (nmol/mg of protein) as a marker of lipoperoxidation in YG22 
cerebrum and heart tissue compared with wild-type controls (n=6). Error bars indicate SEM. 
*p<0.05 (Al-Mahdawi et al. 2006). 
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Neurobehavioral deficits in FXN YAC GAA mouse model 

The coordination ability of the YG22 and YG8 rescue mice was shown to be impaired 

from the age of 3 months as determined by reduced performance on an accelerating rotarod 

treadmill compared with wild-type littermate controls (p<0.01) (Figure 1.34A) (Al-Mahdawi 

et al. 2006). However, the degree of impairment did not extend to overt ataxia in either line 

of mice up to the age of 2 years. Locomotor activity, assessed by examining the unrestricted 

movement of mice in an open field, was decreased in both lines (Figure 1.34B) (Al-Mahdawi 

et al. 2006). The YG22 rescues showed a decreased trend in locomotor activity from 6 

months of age, but no statistically significant difference was seen until 1 year (p<0.05). YG8 

rescues, on the other hand, showed a significant decrease in locomotor activity from 6 

months of age (p<0.05). Both YG22 and YG8 lines demonstrated an increase in weight, with 

statistically significant differences detected in YG22 rescues from 6 months of age (p<0.01) 

and in YG8 rescues from 9 months of age (p<0.01) (Figure 1.34C) (Al-Mahdawi et al. 2006). 

One reason for the observed gain in weights may be the decreased locomotor activity 

identified in the mice. 
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Figure 1.34 – Functional studies of 3, 6, 9, and 12 month old YG22 and YG8 rescue mice, 
compared with wild-type controls. (A) Rotarod analysis of YG22 and YG8 rescue mice 
compared with wild-type littermate controls shows a coordination deficit in both rescue 
mice from 3 months of age (n=10 and 9, respectively). However, a direct comparison 
between YG22 and YG8 experiments is not possible due to the use of different rotarod 
acceleration rate settings carried out at different periods of time. (B) Locomotor analysis 
identifies a progressive decrease in the mobility of both rescue mice (n=6–8 and 7–13, 
respectively). (C) Weight increases are detected in both rescue mice (n=6–16). Error bars 
indicate SEM. *p<0.05, **p<0.01 (Al-Mahdawi et al. 2006). 
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Histological abnormalities in the DRG and heart in FXN YAC GAA mouse model 

Vacuoles were identified in the DRG of the FXN YAC GAA mouse models (Figure 1.35A), 

similar to those in the “Cb” neuron-specific frataxin conditional knockout model (Simon et al. 

2004). The vacuolar pathology progressed from affected distal lumbar regions at 6 months of 

age to more proximal cervical regions at 13–15 months (Al-Mahdawi et al. 2006), resembling 

the dying-back phenomenon of neurodegeneration that is observed in FRDA patients. 

Although DRG vacuoles have not been described in FRDA patients, loss of large sensory DRG 

cell bodies is a hallmark of the disease. Thus, it is likely that this represents a milder or 

earlier effect in the FXN YAC GAA mouse models, before the DRG neurons degenerate and 

are lost completely. Iron deposition was also identified in the hearts (Figure 1.35B) of only 

older mice, confirming the later onset aspect of this pathology as previously described for 

cardiac frataxin conditional knockout mouse mutants (Puccio et al. 2001). 

 

 

Figure 1.35 – Neuronal and cardiac histopathology. (A) H&E-stained section of lumbar DRG 
from a representative YG22 rescue mouse over 1 year of age, showing two neurons 
containing large vacuoles. Original magnification 400×. (B) Perl's staining of a heart section 
from a representative YG22 rescue mouse over 1 year of age, showing characteristic blue 
staining indicating iron deposition. Original magnification 600× (Al-Mahdawi et al. 2006). 
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Ultrastructure pathology in the DRG and heart in FXN YAC GAA mouse model 

Electron microscopy of DRG from FXN YAC GAA mice identified lipofuscin deposition, 

chromatolysis, swelling of neuronal cell bodies and demyelination of axons (Figure 1.36) 

similar to a mouse model of ataxia with vitamin E deficiency, indicating chronic oxidative 

stress (Yokota et al. 2001). 

 

 

Figure 1.36 – Electron microscopy of lumbar DRG and cardiac muscle of YG8 mice. (A–E) 
Electron micrographs of lumbar DRG from 20-month-old YG8 rescue mice showing 
examples of: (A) giant vacuoles, (B) chromatolysis, and (C) lipofuscin deposits within the 
large neuronal cell bodies. Also detected within the lumbar DRG are instances of: (D) 
complete demyelination of a large axon with its associated Schwann cell and (E) large 
axonal swelling with reduced myelination. (F) Electron micrograph of cardiac muscle from 
a 20-month-old YG8 rescue mouse showing lipofuscin deposition and lysosomes disrupting 
an ordered array of mitochondria. Scale bars represent 10 μm (Al-Mahdawi et al. 2006). 

 

In summary, the FXN YAC GAA mouse model of FRDA, which expresses only human-

derived frataxin, shows comparatively reduced levels of frataxin mRNA and protein 

expression, decreased aconitase activity, and oxidative stress, leading to progressive 

neurodegenerative and cardiac pathological phenotypes (Al-Mahdawi et al. 2006). This 
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phenotype is indicative of the early effects of FRDA pathology that precede overt ataxia and 

the later development of hypertrophic cardiomyopathy. Indeed, these mild mouse models 

can be considered representative of the less severe, later onset cases of FRDA. The 190 and 

190+90 GAA repeat expansion mutation sizes within our mouse models are also in keeping 

with the cases of later onset FRDA that have smaller GAA allele sizes of fewer than 200 

repeats (Gellera et al. 1997; Sorbi et al. 2000; Lhatoo et al. 2001; McDaniel et al. 2001; 

Berciano et al. 2002). 

Consequently, a GAA-repeat-based mouse model of FRDA has been generated, that 

would be suitable for the investigation of many different therapeutic strategies. The fact that 

such FRDA mouse model has been generated by the introduction of a GAA repeat expansion 

mutation also makes it appropriate for novel therapeutic strategies aimed at interacting with 

and modifying the GAA repeat expansion itself. 

 

1.4.4 – FXN BAC transgenic mouse models 

Recently, a similar strategy to the FXN YAC GAA transgenic mouse model has been 

used to generate a FXN bacterial artificial chromosome (BAC) transgenic mouse model 

(Sarsero et al. 2004). As with the human wild-type FXN YAC transgenic mice, the 188-kb BAC 

(pBAC265) containing the complete wild-type FXN gene has successfully rescued the 

embryonic lethality that is associated with homozygosity for the Fxn knockout mutation 

(Sarsero et al. 2004). Rescued mice displayed normal behavioural and biochemical 

parameters (Sarsero et al. 2004). A FXN BAC transgenic mouse model that contains a GAA 

expansion mutation (around 500 repeats) has also been generated, but these mice do not 

exhibit GAA repeat instability nor do they exhibit any FRDA-like phenotype, most likely due 

to an interrupted GAA tract (J. Sarsero, personal communication).                                                .
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2.1 – Solutions 

General solutions: 

- Tail digestion buffer: 100mM Tris-HCl (pH 8), 5mM EDTA, 200mM NaCl, 0.2% SDS 

- TE buffer: 10mM Tris-HCl (pH 7.5), 1mM EDTA 

- Orange G loading dye (6x): 0.35% Orange G dye, 30% sucrose 

- 1x TBE: 90mM Tris, 90mM Boric acid, 2mM EDTA 

- 1x TAE: 40mM Tris, 20mM Acetic acid, 1mM EDTA 

- Tris/glycerol homogenisation buffer: 100mM Tris-HCl (pH 9.0), 15% glycerol 
- filter-sterilised via 0.2μm pore 

 

Chromatin immunoprecipitation (ChIP) analysis 

- Cell lysis buffer: 10mM HEPES pH 8, 85mM KCl, 0.5% NP-40 (Igepal) 

- Nuclei lysis buffer: 1% SDS, 10mM EDTA, 50mM Tris-HCl (pH 8) 

- Low salt buffer: 1% Triton-X100, 0.1% SDS, 150mM NaCl, 2mM EDTA, 20mM Tris 

- High salt buffer: 1% Triton-X100, 0.1% SDS, 500mM NaCl, 2mM EDTA, 20mM Tris 

- Dilution buffer: 1% Triton-X100, 150mM NaCl, 2mM EDTA, 20mM Tris 

- Elution buffer: 1% SDS, 100mM NaHCO3 

 

Western blot analysis 

- Running buffer: 25mM Tris, 190mM glycine, 3.5mM SDS 

- Sample buffer: 80mM Tris-HCl (pH 6.8), 12.5% glycerol, 10% SDS, 0.5% BPB, 1% BME 

- Transfer buffer: 25mM Tris, 190mM glycine, 10% methanol 

- PBS/T: 0.2% Tween-20 in PBS 

- 5% milk PBS/T: 5% w/v milk, 0.2% Tween-20 in PBS 
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OxyBlot analysis 

- Dilution buffer: 60mM Tris-HCl (pH 6.8), 2% SDS, 10% glycerol 

- Loading buffer: 62.5mM Tris-HCl (pH 6.8), 180mM BME, 0.002% BPB 

- Transfer buffer: 12mM Tris-HCl (pH 8.3), 96mM glycine, 20% methanol 

 

Electrophoretic mobility shift assay (EMSA) analysis 

- Binding buffer: 5mM MgCl2, 0.1mM ZnSO4, 1mM DTT, 0.1% Nonidet P-40, 10% glycerol 
in PBS 

 

Southern blot analysis 

- Church buffer: 340mM Na2HPO4, 180mM NaH2PO4, 1mM EDTA, 7% SDS 

 

Histological analysis 

- Heparinised saline: 2u/ml heparin in PBS 

- 4% paraformaldehyde saline (pH 7.4): 4% w/v paraformaldehyde, 30mM NaOH in PBS 

- Hillman & Lee’s EDTA: 150mM EDTA, 10% formalin 

- Acid alcohol: 1% HCl in 70% IMS 
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2.2 – Primers 

Oligonucleotides were obtained from either previous studies (as referred to) or 

designed using Primer3 software (Rozen and Skaletsky 2000). All primers were purchased 

from Sigma-Genosys. 

Table 2.1 – Primers used for genotyping 

 Primer name Sequence (5’ – 3’) Product length 

    
GAA repeat (Campuzano et al. 1996) 
 GAA-F GGGATTGGTTGCCAGTGCTTAAAAGTTAG 

457 bp + 3xGAAn 
 GAA-R GATCTAAGGACCATCATGGCCACACTTGCC 
    
Fxn knockout (Cossee et al. 2000) 
 WJ5 CTGTTTACCATGGCTGAGATCTC  
 WN39 (Wt specific) CCAAGGATATAACAGACACCATT 520 bp 
 WC76 (KO specific) CGCCTCCCCTACCCGGTAGAATTC 245 bp 
    
Msh2 knockout (Toft et al. 1999) 
 Msh2-P1 CGGCCTTGAGCTAAGTCTATTATAAGG  
 Msh2-P2 (KO specific) GGTGGGATTAGATAATGCCTGCTCT 194 bp 
 Msh2-P3 (Wt specific) CCAAGATGACTGGTCGTACATAAG 164 bp 
    
Msh3 knockout (de Wind et al. 1995) 
 Msh3-P1 (Wt specific) CAGGAAGAGGTCACTGGGAAATGG 130 bp 
 Msh3-P2 (KO specific) GGTGGGATTAGATAATGCCTGCTCT 250 bp 
 Msh3-P3 GCTGAGAATACTTAGTCTCTGGCA  
    
Msh6 knockout (de Wind et al. 1995) 
 Msh6-P1 (Wt specific) CAAGTCCTAGGATTAGAGGTCTGG 220 bp 
 Msh6-P2 (KO specific) CCGGTGGATGTGGAATGTGTGCG 253 bp 
 Msh6-P3 CCATGCAAATCAGACTCGATACAA  
    
Pms2 knockout (designed by Mark Pook) 
 Pms2-P1 ACAGTTACATTCGGTGACAG  
 Pms2-P2 (KO specific) TTTACGGAGCCCTGGCGC 189 bp 
 Pms2-P3 (Wt specific) ACTAATTCCCCTACGGTTTAG 385 bp 
    
Atm knockout (Liao et al. 1999) 
 Atm-P1 GACTTCTGTCAGATGTTGCTGCC  
 Atm-P2 (Wt specific) CGAATTTGCAGAAGTTGCTGAG 162 bp 
 Atm-P3 (KO specific) GGGTGGGATTAGATAAATGCCTG 441 bp 
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Table 2.2 – Primers used for Q-RT-PCR analysis of FXN expression 

 Primer name Sequence (5’ – 3’) Product length 

    
FXN (Al-Mahdawi et al. 2008) 
 FxnRT-F CAGAGGAAACGCTGGACTCT 

172 bp 
 FxnRT-R AGCCAGATTTGCTTGTTTGGC 
    
Gapdh – endogenous control (Al-Mahdawi et al. 2008) 
 Gapdh-F ACCCAGAAGACTGTGGATGG 

81 bp 
 Gapdh-R GGATGCAGGGATGATGTTCT 
    

 

Table 2.3 – Primers used for EMSA/ChIP Q-PCR analysis of CTCF 

 Primer name Sequence (5’ – 3’) Product length 

    
FXN – 5’UTR 
 h-FXN-pro - F AAGCAGGCTCTCCATTTTTG 

186 bp 
 h-FXN-pro - R CGAGAGTCCACATGCTGCT 
    
FXN – GAA upstream (Herman et al. 2006) 
 h-FXN-up - F GAAACCCAAAGAATGGCTGTG 

116 bp 
 h-FXN-up - R TTCCCTCCTCGTGAAACACC 
    
FXN – GAA downstream 
 h-FXN-down - F TGGGTTGTCAGCAGAGTTGT 

165 bp 
 h-FXN-down - R CCGATAATCCCAGCTACTCG 
    
DM1 site 1 – CTCF positive (Filippova et al. 2001) 
 DM1-1-F GCCTGCCAGTTCACAACC 

150 bp 
 DM1-1-R AGCAGCATTCCCGGCTAC 
    
DM1 site 3 – CTCF negative (Filippova et al. 2001) 
 DM1-3-F AGCTTTCTTGTGCATGACG 

226 bp 
 DM1-3-R GGTTGTTGGGGGTCCTGTAG 
    
H19 – CTCF positive (Burke et al. 2005) 
 h-H19 - F CCCATCTTGCTGACCTCAC 

165 bp 
 h-H19 - R AGACCTGGGACGTTTCTGTG 
    
H19neg – CTCF negative (Burke et al. 2005) 
 h-H19neg - F CATCATGGTGTCCTCACAGG 

161 bp 
 h-H19neg - R AGCTCTAAGGGAGGCTCCAG 
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2.3 – General techniques 

Centrifugation of samples was performed in different equipment according to sample 

size and temperature requirements: centrifugation of small samples (≤ 1.5ml) at room 

temperature using a standard bench top microcentrifuge (16K, BioRad) and at 4°C using a 

refrigerated microcentrifuge (5415R, Eppendorf); while larger volumes (≤ 50ml) were 

centrifuged in a Centaur 2 centrifuge (Sanyo/MSE). 96 well plates were centrifuged at room 

temperature using a Legend T centrifuge (Sorvall). 

Incubations at lower temperatures (37-60°C) were performed in waterbaths (Grant), 

while for higher temperatures a heating block (DB-2A, Techne) was used. 

The pH of solutions was determined using a pH meter (Delta 340, Mettler) and pH 

adjustments were made by adding either concentrated HCl or NaOH. 

 

Agarose gel electrophoresis 

Agarose gel electrophoresis was used to separate DNA fragments. 0.8%-2% agarose 

(UltraPure electrophoresis grade, Invitrogen) gels were prepared in 1x TBE/TAE. The agarose 

solution was melted using a standard microwave and allowed to cool until approximately 

60°C. Ethidium Bromide was then added to a final concentration of 0.5µg/ml and the gel was 

poured and allowed to set. Small gels (50ml) were run in mini-gel tanks (Flowgen Bioscience) 

while a midi-gel tank (BRL) was used for larger gels (150ml). Products were loaded on gels by 

adding 6x Orange G loading dye. Gel electrophoresis was performed in 1x TBE/TAE (same as 

used to prepare gel) and powered by a power pack at 50-100V. 

Gels were visualised and documented using a UV-lighted gel documentation cabinet 

(Alpha Innotech). 
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DNA extraction: ethanol method (Wang and Storm 2006) 

This method was used to quickly extract genomic DNA from mice tails for routine 

genotyping. Tail samples (<5mm in length) were collected in eppendorf tubes. 400μl of tail 

digestion buffer and 10μl of 50mg/ml Proteinase K was added to the tail sample, followed by 

brief vortexing and overnight incubation at 55°C in a waterbath. After digestion, samples 

were vortexed and centrifuged at 14K rpm for 5min. Avoiding transferring any of the 

cell/hair/bone debris, the supernatant was collected into a new eppendorf tube. 1ml of 

absolute ethanol was added, immediately followed by brisk inversion several times. Samples 

were incubated for 10min at -80°C followed by spinning at 14K rpm for 30min at 4°C. The 

ethanol was drained off and the pellet washed with 1ml of 70% ethanol. Samples were 

recentrifuged at 14K rpm for an extra 20min at 4°C and the ethanol carefully drained off. The 

tubes were left to dry inverted on paper towels for ~10min. The DNA pellet was 

resuspended in 50-100μl of TE buffer and stored at 4°C. 

 

DNA extraction: phenol/chloroform method (Sambrook et al. 1989) 

This method was used to extract genomic DNA from samples where greater DNA 

quality was necessary. Proteinase K digestion was performed as just described. After 

digestion, samples were vortexed and 400μl of phenol (equilibrated with Tris-HCl pH 8.0) 

was added. Samples were mixed by vortexing (2x 15s) and centrifuged at 14K rpm for 5min 

at 4°C. 380μl of the upper aqueous phase was removed to a fresh eppendorf tube and 380μl 

of chloroform/isoamyl alcohol (24:1) was added, followed by a brief vortex and spin at 14K 

rpm for 5min at 4°C. 350μl of the resulting upper aqueous phase was transfered to a fresh 

eppendorf tube and 35μl of 3M Na-acetate (pH 5.2) was added. 700μl of absolute ethanol 

was then added and ethanol precipitation performed as previously described. 
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Determination of DNA concentration and purity 

The concentration of DNA was determined using a UV spectrophotometer 

(BioPhotometer, Eppendorf). DNA samples were diluted 1:20 and the absorbance (A) was 

measured at 260nm. The DNA purity was determined by the A260/280 ratio (≥ 1.8). 

 

Purification of PCR products from agarose gels 

This method involves the use of agarose gel electrophoresis and a gene-cleaning kit 

(Geneclean III, Bio 101) to purify PCR products. PCR products (~20l) were separated on a 

0.8% agarose TAE mini-gel for approximately 2hr at 100V in 1x TAE buffer, leaving an empty 

well between each sample loaded. Using a scalpel blade and under high wavelength UV light 

(362nm), the bands were excised from the gel and transferred to eppendorf tubes. The 

weight of the excised gel block was determined and 3x that was added of NaI volume. The 

agarose blocks were completely dissolved by incubating at 55°C in a waterbath. 5l of 

glassmilk was added to each sample. The samples were incubated on ice for a minimum of 

30min with gentle shaking. The tubes were then centrifuged at 14k rpm for 15min and the 

supernatant discarded. The glassmilk pellet was washed 3x by adding 250l of “new wash” 

solution, followed by brief vortexing and centrifugation as described above. The pellet was 

briefly air-dried and then resuspended in 6l of dH2O. The DNA was eluted from the 

glassmilk by vortexing and incubating at 55°C for 5min in a waterbath. The purified DNA was 

collected as the supernatant phase, and 1l was separated in a 1% agarose TBE mini-gel to 

confirm the success of purification. The DNA sample was stored at -20°C. 
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Radioactive labelling of PCR products 

Gene-cleaned PCR products used for labelling were prepared as previously described. 

γ-32P ATP labelling 

End-labelling with 32P was performed using T4 polynucleotide kinase (PNK) kit 

(Invitrogen) and γ-32P ATP (PerkinElmer). Reactions were prepared in a final volume of 10l 

by adding the following in order: 1l of gene-cleaned PCR product, 5l of dH2O, 2l of 5x 

Forward buffer, 1l T4 PNK and 1l of γ-32P ATP. The reaction was performed at 37°C for 1hr 

and terminated at 65°C for 15-30min. The final volume was adjusted to 100l with TE. 

α-32P ATP labelling 

Labelling with 32P was performed using the RadPrime DNA labelling system (Invitrogen) 

and α-32P dCTP (PerkinElmer). Initially, 5l of gene-cleaned PCR product was diluted in 15l 

of TE buffer and heat-denatured by incubating at 100°C for 5min, followed by immediate 

incubation on ice for 5min. The labelling reaction was prepared in a final volume of 50l by 

adding the following in order: 3l of 1.5mM dNTP mix (dATP + dGTP + dTTP), 20l of 2.5x 

RadPrime buffer, 1l of α-32P dCTP and 5l of klenow fragment. The reaction was performed 

at 37°C for 45min. The final volume was adjusted to 100l with TE buffer. 

Removal of unincorporated nucleotides 

Unincorporated radionucleotides were removed using a MicroSpin S-200 HR column 

(Amersham Biosciences). The column was prepared by re-suspending the resin by vortexing. 

The column cap was slightly loosened (¼ turn) and the bottom closure was broken. The 

column was placed in an eppendorf tube and centrifuged for 1min at 3k rpm. The column 

was transferred to a fresh tube and the sample (100μl) was then carefully applied to the top-

centre of the resin bed. The purified 32P labelled PCR product was then eluted by 

centrifuging for 2min at 3k rpm and either used immediately or stored at -20°C. 
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Extraction of total RNA 

This method involved the use of Trizol (Invitrogen) to isolate total RNA following the 

supplier guidelines. 30-60mg of frozen mouse brain or heart tissue was collected in a 1.5ml 

eppendorf tube. 1ml of Trizol solution was added and the tissue was homogenised using an 

eppendorf homogenising plastic rod. The homogenates were incubated for 5min at 30°C. 

0.2ml of CHCl3 was added followed by vigorous shaking by hand for 15sec. The homogenates 

were incubated for 15min at 30°C and phase separated by centrifuging at 14k rpm for 15min 

at 4°C. The upper aqueous phase was transferred to a fresh tube and the RNA precipitated 

by mixing with 0.5ml isopropyl alcohol, incubating for 10min at 30°C, and centrifuging at 12k 

rpm for 10min at 4°C. The supernatant was discarded and the RNA pellet was washed with 

1ml of 75% ethanol. The sample was then centrifuged at 7.5k rpm for 5min at 4°C. The 

supernatant was discarded and the RNA pellet air-dried. The RNA was finally dissolved in 50-

100μl DEPC-treated dH2O (pre-heated to 60°C), mixed by pipetting and incubated for 10min 

at 60°C. The RNA quality was crudely checked by separating 5μl in a 2% agarose mini gel in 

1x TBE. RNA was either used immediately for cDNA synthesis or stored at -80°C. 

 

cDNA synthesis 

This method involved the use of a cloned AMV first-strand cDNA synthesis kit 

(Invitrogen) to convert mRNA to cDNA following the supplier guidelines. On ice, 2l of total 

RNA was added to 9.5l of dH2O in an RNase-free eppendorf tube. 1l of Oligo(dT) primer 

was added followed by annealing at 65°C for 10min, and then transferred to ice. The 

following kit reagents were then added in order: 1l of RNase inhibitor, 4l of 5x RT buffer, 

1l of 100mM dNTPs, 1l of 80mM sodium pyrophosphate, and 0.5l of AMV Reverse 
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Transcriptase (RT). The 20l reaction was gently mixed by taping the tube and briefly 

centrifuged to bring all contents to the bottom of the tube. The RT reaction was then 

completed by incubating at 42°C for 1hr. The contents were again brought to the bottom of 

the tube by brief centrifugation. The RT reaction was terminated by incubating at 95°C for 

2min. The cDNA was then transferred to ice and either immediately used for RT-PCR or 

stored at -80°C. 

 

 

Preparation of protein lysates 

Following the method of Campuzano et al. (1997), 30-60mg of frozen mouse brain 

tissue was collected in a 1.5ml eppendorf tube and homogenised on ice in 312μl of 

Tris/glycerol homogenisation buffer, in the presence of protease inhibitors, using an 

eppendorf homogenising plastic rod. The homogenate was then passed through a 19G 

needle 5x, followed by an additional 5x through a 21G needle to shear the DNA. This was 

followed by the addition of 60μl of 10% SDS. The homogenates were subsequently 

incubated at 100°C for 10min and then put on ice. The samples were centrifuged at 14K rpm 

for 10min at 4°C and the clear supernatant was collected in a fresh eppendorf tube. DTT was 

added at a final concentration of 1mM and the final protein lysates were stored at -80°C. 

Protein concentrations were determined by the BCA protein assay method, on samples 

without DTT. 
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Determination of protein concentration using BCA protein assay 

The protein concentration was estimated using the BCA Protein Assay Reagent Kit 

(Perbio). This is a detergent-compatible formulation based on bicinchoninic acid (BCA) for 

the colorimetric detection and quantification of total protein. A set of protein standards 

(samples with known protein concentration) was produced by diluting the contents of one 

bovine serum albumin (BSA) ampoule [2mg/ml] with Tris/glycerol homogenisation buffer 

into several eppendorf tubes as shown on Table 2.4. 

 

Table 2.4 – Preparation of diluted BSA standards for BCA analysis 

Tube 
Volume of 

homogenisation buffer 
Volume and source  

of BSA 
Final BSA 

concentration 
    

A – 300μl of stock 2,000μg/ml 
B 125μl 375μl of stock 1,500μg/ml 
C 325μl 325μl of stock 1,000μg/ml 
D 175μl 175μl of tube B dilution 750μg/ml 
E 325μl 325μl of tube C dilution 500μg/ml 
F 325μl 325μl of tube E dilution 250μg/ml 
G 325μl 325μl of tube F dilution 125μg/ml 
H 400μl 100μl of tube G dilution 25μg/ml 
I 400μl – 0μg/ml 
    

 

According to the number of samples studied at one time, two different methods were 

used: test tube or microplate procedures. 

Test tube procedure 

This approach was taken when dealing with lower sample numbers (i.e. for Western  

blotting and EMSA). 2ml of working reagent (WR) was prepared for each sample and was 

added to appropriately labelled bijou tubes. 100μl of protein lysate, diluted 1:20 with 

Tris/glycerol homogenisation buffer, was added to the respective bijou, followed by a gentle 

mix. The bijous were incubated at 37° C for 30min, in a waterbath. Tubes were then left to 
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cool to room temperature. 1ml of each sample was pipetted into clean cuvettes and the 

absorbance at 562nm (A562) of the standards and protein lysates was measured using a 

spectrophotometer (BioPhotometer, Eppendorf). 

Microplate procedure 

This approach was taken when dealing with higher sample numbers (i.e. for Oxyblot 

analysis). 200μl of WR was prepared for each sample/standard and added to individual wells 

of a 96 wells microplate. 25μl of protein lysate, diluted 1:20 with homogenisation buffer, 

was added to the respective wells, followed by a gentle mix. 25μl of the BSA standards was 

also added. The plate was incubated at 37° C for 30min in an incubator and then allowed to 

cool at room temperature. The A562 of the standards and protein lysates was then measured 

using a plate reader (BP800, BioHit). 

Following either method, a standard curve was prepared by plotting the blank-

corrected measurement for each BSA standard against its concentration. The standard curve 

was then used to determine the protein concentration of each study sample. 

 

Preparation of nuclear extracts 

Nuclear extracts were prepared from normal human cerebellum autopsy tissue. In a 

50ml falcon tube, 0.7g of tissue was homogenised in cold PBS using a 5mm dispersing 

element (S8N-8G, IKA Labortechnik), attached to a rotor (Ultra-Turrak T8, IKA Labortechnik). 

The homogenisation was performed in increasing volumes of cold PBS up to a final volume 

of 15ml. The sample was centrifuged at 5k rpm for 5min at room temperature. The 

supernatant was discarded and the pellet washed 2x with 15ml cold PBS. The cells were 

pelleted by centrifuging as before and the supernatant discarded. The cells were lysed in the 

presence of protease inhibitors in 3.5ml of cell lysis buffer, for 10min on ice. The sample was 
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then split in 4 equal volumes (~1ml each) and transferred to eppendorf tubes. The nuclei 

were pelleted by centrifuging for 10min at 13K rpm, 4°C. The pelleted nuclei were then lysed 

in the presence of protease inhibitors in 350μl of nuclei lysis buffer, for 10min on ice. The 

cell debris was removed by centrifugation for 30min at 13K rpm, 4°C. The supernatants were 

collected and combined. To reduce the viscosity of the nuclear extract, this was passed 

through a 25G needle 5x. Nuclear extracts were aliquoted and stored at -80°C. Protein 

concentration was determined using the BCA assay as described above. 

 

Polyacrylamide gel electrophoresis (PAGE) 

PAGE was performed using AE-6200 gel apparatus (ATTO Corp.) powered by BioRad 

power pack. PAGE was performed differently for Western blot and EMSA analysis. 

PAGE for Western blotting 

The gel plates were sealed and assembled in an upright position and held in place with 

bulldog clips. An appropriate well forming comb was slotted in place and the bottom of the 

wells was marked on the glass plate. A 12% resolving polyacrylamide gel (37.5:1 acrylamide, 

0.5mM Tris (pH 8.8), 0.1% SDS) was prepared in a glass flask. Polymerisation was initiated by 

adding 0.05% APS and 0.05% TEMED. The resolving gel was gently poured between the gel 

plates up to ~1cm below the comb marking. Water-saturated butanol was immediately 

added over the gel mix to prevent air contact and the gel was left to polymerise for 30-

40min. The butanol was drained and the gel rinsed with dH2O. A 4% stacking polyacrylamide 

gel (37.5:1 acrylamide, 0.125mM Tris (pH 6.8), 0.1% SDS) was then prepared in a glass flask 

and polymerisation was started by adding 0.05% APS and 0.1% TEMED. The stacking gel was 

gently poured on top of the resolving gel and the well comb was then fitted. The gel was 

allowed to polymerise for 45-60min. The gel cast was then put inside the PAGE tank and 
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approximately 1L of 1x running buffer was poured into the two compartments of the tank in 

order to establish an electric current through the gel, from the upper to the lower end. The 

comb was then removed and the wells carefully flushed with running buffer, using a syringe 

and needle. The tank was connected to the power pack and the presence of current was 

checked. After loading of samples, gels were run at 150V for 3-4hr. 

PAGE for EMSA analysis 

The gel plates were sealed and assembled in an upright position and held in place with 

bulldog clips. A 4% nondenaturing polyacrylamide gel (29:1 acrylamide, 0.5x TBE) was 

prepared in a glass flask and polymerisation was started by adding 0.05% APS and 0.1% 

TEMED. The gel was carefully poured between the plates, the well forming comb fitted and 

the gel was left to polymerise for approximately 30min. The gel cast was fitted inside the 

PAGE tank and approximately 1L of 0.5x TBE buffer was poured into the two compartments 

of the tank. The comb was then removed and the wells carefully washed out with 0.5x TBE 

using a syringe and needle. The tank was connected to the power pack and the presence of 

current was checked. After loading of samples, gels were run at 50-100V for 1-2hr. 

 

X-ray film processing 

Radiographic imaging was always performed in a dark room under red safety light. 

Amersham Hyperfilm ECL films (GE Healthcare) were exposed to radioactive 

gels/chemiluminescent blots in x-ray cassettes. Exposure was performed for a range of 

different times (30s-days). Longer exposures (≥ 15min) were performed at -80°C. The films 

were either developed using an automatic film processing unit (Xograph) or hand-developed 

using X-OMAT developer and fixer solutions (Kodak). Hand development was performed by 

soaking the film in developer solution for 1-2min, followed by a brief wash under running tap 

water. The film was then soaked in fixer solution for 2min, followed by an extensive wash 

under running tap water. Finally the film was air-dried. 
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Densitometry analysis 

Densitometry was carried out using UN-SCAN-IT software (Silk Scientific Corp.). 

Initially, developed films were scanned using a desktop scanner (G2710, HP) and the 

resulting images were saved as high resolution greyscale JPEG files. Images were imported 

into UN-SCAN-IT and the bands of interest were selected by drawing a rectangle around it. 

The analysis method was slightly different between Oxyblots and Western blots. For 

Western blot analysis the segments’ size varied from band to band as these were individually 

drawn to just include the band of interest. On the other hand, for Oxyblot analysis all 

segments covered exactly the same sized area in order to minimise background effects 

(Figure 2.1). Nevertheless, background correction was performed for both methods. The 

pixel average figures (combined intensity of all pixels in each segment divided by the 

segment size) were used as measurement for graphical/statistical analysis. 

 

 

Figure 2.1 – Screenshot capture of UN-SCAN-IT densitometry for Oxyblot analysis.  
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Statistical analysis 

Graphical visualisation and statistical analysis of data was performed using both 

Microsoft Excel and SPSS software. Student's t test and Mann-Whitney test for independent 

samples were used to determine if the mean values between two different groups of 

samples were significantly different or not. Two-way mixed analysis of variance (ANOVA) for 

repeated measures was also performed to investigate the effect of therapeutic compounds 

over a specific period of time. 
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2.4 – Genotyping of newborn mice 

Newborn mice were weaned at approximately 3 weeks of age. The mice ears were 

clipped for identification purposes and, after local anaesthesia with Ethyl Chloride BP 

(Cryogesic, Acorus Therapeutics Ltd) the tip of the tail (<5mm in length) was collected into a 

sterile eppendorf tube. The tails were digested with proteinase K and the DNA extracted as 

previously described. 

PCR genotyping was performed for the presence/absence of the FXN YAC transgene by 

amplifying the GAA repeat. In addition, PCR analysis was also performed to determine the 

knockout genotype of Fxn, Msh2, Msh3, Msh6, Pms2 and Atm. All primers used for 

genotyping PCRs are described in Table 2.1. PCR reactions were performed using Taq 2x 

mastermix (Qiagen) in a final volume of 25μl containing appropriate amounts of the 

respective forward and reverse primers (Table 2.5) and 1μl of DNA. For each PCR experiment 

DNA samples with known genotype were used as controls (at least one sample used for each 

possible genotype). In addition, a reaction containing dH2O in place of DNA was prepared for 

each experiment as a contamination control. 

PCR amplification was performed in 0.25ml tubes using a thermal cycler (PTC-225, MJ 

Research) and the cycling conditions were as described in Table 2.6. To visualise the results, 

10-15μl of PCR product was separated in 1-2% agarose TBE mini-gels along with 1kb+ DNA 

ladder (Invitrogen) at 75V for ~30min. 

Additionally, samples positively identified for the presence of the FXN YAC transgene 

were further analysed to obtain a better estimation of the GAA repeat size. This was 

achieved by separating the GAA PCR products, along with 1kb+ and 100bp DNA ladders 

(Invitrogen), on a 20cm-long 1.5% agarose 1xTBE gel at 50V, overnight. 
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Table 2.5 – Primer amounts used for various genotyping PCRs  

 
Primer 

Amount per 
reaction 

  
Primer 

Amount per 
reaction 

      

GAA repeat  Msh2/Msh3/Msh6/Atm knockout 
 GAA-F/R 12.5pmol   P1/P2/P3 12.5pmol 
       

Fxn knockout  Pms2 knockout 
 WJ5/WN39 20pmol   P1 30pmol 
 WC76 3.5pmol   P2 20pmol 
     P3 10pmol 
       

 

Table 2.6 – Cycling conditions for various genotyping PCRs 

GAA   Fxn   Msh2/3/6   Pms2   Atm 

                       

 94°C 2min    94°C 2min    94°C 1min    94°C 1min    94°C 1min 
                       

10x 
94°C 10s   

40x 
94°C 20s   

30x 
94°C 30s   

40x 
94°C 20s   

30x 
94°C 30s 

60°C 30s   54°C 20s   60°C 30s   49°C 20s   55°C 30s 
68°C 45s   72°C 20s   72°C 1min   72°C 20s   72°C 1min 

                       

20x 
94°C 10s    72°C 6min    72°C 10min    72°C 10min    72°C 10min 
58°C 30s                     
68°C 1min *                    

                       

 68°C 6min                     
                       

* - time increased by 20s increments per cycle. 

 

2.5 – Mice breeding for drug treatments 

FRDA mice were approximately 84% B6 while Wt mice were 100% B6. Animal 

husbandry was performed under controlled temperature and light/dark cycles. The breeding 

of mice was designed to produce litters with maximum numbers of either rescue FRDA mice 

(YG8 and YG22) or wild type mice. Initially, the main strategy to get rescue FRDA mice 

consisted on mating hemizygous rescue mice (FXN+, Fxn-/-). Although this strategy produced 

only FRDA rescue mice, a small proportion would have been homozygous rescue mice 

(FXN+/+, Fxn-/-). Later, with the identification of a few homozygous rescue mice, it was 

decided that these would be mated with Fxn+/- mice, to produce known hemizygous rescue 

mice only. The mice were grouped by gender and age, and up to a maximum of 5 per cage. 
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2.6 – Functional studies during drug treatments 

Weight, rotarod performance and locomotor activity measurements were taken at the 

start of and periodically repeated throughout the drug treatments. 

 

Rotarod performance analysis 

Rotarod analysis was performed using a Ugo-Basille 7650 accelerating rotarod 

treadmill apparatus. A maximum of 5 mice were assessed per run. The mice were placed on 

the rotating rod with the speed of the rotation gradually increasing from 4 to 40 rpm 

(increments of 4 rpm per 30 seconds) over a maximum period of 400 seconds. The time 

taken for each mouse to fall from the rod was recorded. Four runs were completed and a 

resting period of approximately 200 seconds (minimum) was allowed between each trial. 

 

Locomotor activity analysis 

Locomotor activity was assessed by placing the mice in a 3x5 gridded open-field 

(33cm x 55cm) perspex box. The number of gridded squares entered by the mouse over a 

period of 30 seconds was recorded. Four runs were completed for each timepoint and a 

resting period of approximately 200 seconds (minimum) was allowed between each trial. 
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2.7 – Sample collection from mice post drug treatment 

At the completion of the drug treatment the mice were appropriately culled and 

samples were collected according to the type of analysis desired. 

 

Preparation of mouse tissue for expression and biochemical analysis 

For the preparation of samples intended for molecular biology and biochemical 

analysis, the mice were culled by cervical dislocation and immediately dissected. The tissues 

collected were snap-frozen in liquid nitrogen and stored at -80°C. The following samples 

were collected: brain (B); brain stem (Bs); cerebellum (C); spinal cord (Sc); heart (H); lung 

(Lu); liver (L); pancreas (P); kidney (K); spleen (Sp); skeletal muscle (Sk); blood (Bl); tail (Ta); 

lumbar vertebral column (Vl); thoracic vertebral column (Vt); cervical vertebral column (Vc); 

testis (T) and sperm (S) from males; and ovaries (O) from females. 

 

Preparation of mouse tissue for histological analysis 

For histological preparations, mice were terminally anaesthetized by intraperitoneal 

injection with 5µl/g Pentobarbitone Sodium (Pentoject, Ph. Eur. Animalcare Ltd), followed by 

a preliminary intracardial perfusion with approximately 50ml of heparinised saline. Fixation 

of tissues was performed by intracardial perfusion with approximately 100ml of 4% 

paraformaldehyde in PBS. The fixed mice were dissected and a tissue block containing the 

exposed brain, spinal cord and heart was collected, as well as other tissues such as the 

pancreas and liver. The fixation of tissues was completed by means of storage in 4% 

paraformaldehyde in PBS at 4°C for up to 3 days. The fixed tissues were then washed with 

dH2O and immersed in 70% EtOH at 4°C for long term storage. 
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2.8 – Real-time PCR/RT-PCR 

Quantitative real-time PCR (Q-PCR) and RT-PCR (Q-RT-PCR) amplification was 

performed using SYBR Green (SYBR Green 2x mastermix, Applied Biosystems) in a real-time 

PCR system (ABI Prism 7900HT, Applied Biosystems). 

Reactions were carried out in 96 well plates (MicroAmp, Applied Biosystems), in 

triplicates, and in a final volume of 20μl containing 2.5-5pmol of each of the respective 

forward and reverse primers and 5μl of gDNA/cDNA. 5μl of dH2O was added to control 

reactions instead of template DNA. The reactions were setup on ice while trying to minimize 

light exposure. The plates were then sealed with real-time plate sealers (MicroAmp, Applied 

Biosystems) and the reactions briefly mixed by gently shaking the plate. The plate was then 

briefly (1min) centrifuged at 1k rpm to collect the reactions to the bottom of the wells. 

The cycling conditions varied according to the application and were optimised to 

amplify the different targets (being co-amplified in the same run) with similar efficiencies, 

ensuring that a clear exponential phase was produced and the plateau phase was reached 

before the end of PCR program. 

Following each real-time PCR run a dissociation curve run was performed by gradually 

increasing the temperature from 60°C to 95°C. Relative quantification values were 

determined by the 2-ΔΔCt method using SDS 2.1 software (Applied Biosystems). 
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2.9 – Chromatin immunoprecipitation (ChIP) analysis 

This procedure was performed as previously described by Al-Mahdawi et al. (2008). 

Initially, 30mg of frozen tissue was homogenised in cold PBS, in a final volume of 1ml, 

followed by cross-linking of DNA and protein by incubating at room temperature for 20min 

in 1% formaldehyde (Sigma Aldrich). The cross-linking reaction was stopped by adding 

glycine to a final concentration of 125mM and incubating for 5min at room temperature. 

The cells were pelleted by centrifugation for 5min at 13K rpm, 4°C, and washed 2x with 

500μl cold PBS. The cells were lysed in the presence of protease inhibitors (Roche) in 250μl 

of cell lysis buffer, for 10min on ice. The nuclei were pelleted by centrifugation for 5min at 

5K rpm, 4°C. The pelleted nuclei were then lysed in the presence of protease inhibitors in 

100μl of nuclei lysis buffer, for 10min on ice. The DNA was then sheared by sonicating 5x for 

10 seconds at 21-22db. The cell debris was removed by centrifugation for 30min at 13K rpm, 

4°C, and the DNA collected as the supernatant phase. To assess the quality of the DNA 

shearing, 5μl were separated on a 1% agarose 1xTBE mini-gel. DNA fractionation was 

considered acceptable when the majority of the DNA was ≤600bp. The DNA was either 

immediately submitted to immunoprecipitation or stored at -80°C. 

For the immunoprecipitation (IP), protein A-agarose beads (Upstate) were used. 

Initially, 40μl of beads were washed 2x with 1ml of cold PBS, and resuspended in a final 

volume of 40μl. The sonicated sample (100μl) was then added to the washed beads and 

incubated at 4°C with gentle shaking for 2hrs. The beads were removed by centrifuging for 

2min at 13K rpm, and collecting the supernatant. An “Input” sample (10μl) was collected and 

stored at -80°C for later use as control. The remaining sample was diluted to 1ml in ChIP 

dilution buffer, in the presence of protease inhibitors (Roche). The sample was split into 2 

equal parts, and the following added: “+Ab” – 5μl of antibody specific to the protein of 
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interest; “-Ab” – 5μl of Immunoglobulin G (IgG) (Upstate). Both samples were incubated, 

with gentle shaking, at 4°C overnight. The IP was achieved by adding 60μl of beads 

(previously washed as described above), followed by incubation at 4°C with gentle shaking 

for 2hrs. The beads were pelleted by centrifugation for 30 seconds at 6K rpm, 4°C, and the 

supernatant discarded. The beads were washed 3x with 1ml of low salt buffer, each time 

gently rotating at 4°C for 5min, followed by centrifugation for 30 seconds at 6K rpm, 4°C. The 

beads were then washed 1x as described above with 1ml of high salt buffer. The chromatin 

was subsequently eluted by adding 150μl of elution buffer to each bead pellet, followed by 

incubation at 65°C, for 10min. The samples were centrifuged for 30 seconds at 6K rpm, and 

the supernatant collected into a fresh tube. The elution was repeated as described above 

and the resulting supernatant combined with the previous one. At this stage, the “Input” 

sample was thawed and 300μl of elution buffer was added. The cross-linking was reversed 

on the 3 samples by adding 0.5mg Proteinase K and incubating at 37°C for 30min, followed 

by 65°C overnight. The DNA was extracted using the phenol/chloroform method, followed 

by ethanol precipitation in the presence of 100μg of glycogen (Sigma Aldrich). The DNA was 

finally resuspended in TE buffer (“Input” in 100μl; “+Ab” and “-Ab” in 50μl) for 2 hrs at 4°C 

and ultimately stored at -20°C. 

Relative Q-PCR amplification was carried out with SYBR Green (Applied Biosystems) in 

an ABI Prism 7900HT real-time PCR instrument (Applied Biosystems) as previously described. 

Reactions were carried out in triplicates, in a final volume of 20μl containing 12.5pmol of 

each of the respective forward and reverse primers (Table 2.3). Relative quantification 

values were normalised to input and minus antibody samples, and finally determined in 

relation to a control region. 
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2.10 – Western blot analysis 

Protein lysates were prepared from mouse frozen brain tissue and the protein 

concentration determined using BCA assay as previously described. For each sample, 

approximately 40μg of protein was prepared in 1x working sample buffer to a final volume 

of 20μl. Samples were placed at 100°C for 5min and then put on ice. Low and high molecular 

weight (LMW and HMW) protein markers (BioRad) were incubated at 37°C for 5min prior to 

loading. Protein samples were separated, alongside the size markers (17μl), by PAGE in a 4% 

stacking / 12% resolving polyacrylamide gel, at 150V for 3-4hr (until the smaller band of the 

LMW protein marker was 2-3cm from the end of the gel). The distance migrated by each of 

the bands of the protein markers was measured from the end of the stacking gel. 

 

Transfer to membrane – Western blotting 

Transfer of protein from gel to membrane was performed using a Hoefer TE22 

Transphor tank transfer unit (Amersham Biosciences). The transfer tank was filled with 

approximately 1L 1x transfer buffer, attached to a water cooling system and placed on a 

magnetic stirrer. The stacking gel was removed and the resolving gel divided into upper and 

lower sections by cutting the gel at approximately 30kD, so that the protein of interest and 

the internal control were in separate gel sections. For each gel section one piece of PVDF 

membrane (Amersham Biosciences) and two pieces of 3MM Whatman paper were cut to 

match the gels’ size. The PVDF membranes were appropriately labelled with a pencil to 

distinguish the top from the bottom section of the gel. The blotting sponges and filter paper 

pieces were soaked in 1x transfer buffer for 5min. Separately, the gel sections were also 

equilibrated in 1x transfer buffer for 5min. The blotting system was assembled in 1x transfer 

buffer as shown in Figure 2.2. At every step of layering a 10ml pipette was used to smoothen 
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the surface and remove any air bubbles. The blotting cassette was placed in the transfer tank 

in a vertical position oriented so that negatively charged molecules would migrate towards 

the grey anode, transferring from the gel into the nitrocellulose membranes. Transfer was 

carried out at constant 400mA and 60-80V for 15min. 

 

 

Figure 2.2 – Schematic representation of Western blotting transfer cassette assembly. The 
cassette panels are colour coded: black is the cathode side and grey the anode side 

 

Gel staining 

At the end of the transfer the gel was briefly washed in dH2O, followed by staining with 

GelCode blue stain reagent (Perbio) on a shaker for 1h. The gel was washed again in dH2O 

for 5-10min. The stained gel was placed on a piece of 3MM Whatman paper, covered with 

cling film and dried on a gel dryer (5040, Fisherbrand) under vacuum and ramp temperature 

of 80°C for 2h. 
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Hybridisation of membrane with antibodies 

Separately, each PVDF membrane was briefly washed in PBS/T, transferred to a small 

plastic box and blocked at room temperature in 10ml 5% milk in PBS/T for 30min with gentle 

shaking. 5μl of primary antibody was added to the respective box: rabbit anti-tubulin 

antibody (1:40,000 dilution) (Sigma) was applied to the membrane corresponding to the top 

section of the gel, and rabbit anti-mature frataxin antibody (1:2,000 dilution) (G. Isaya, Mayo 

Clinic) was applied to the bottom one. The membranes were incubated at 4°C overnight, 

with shaking. Each membrane was extensively washed in PBS/T buffer for 2h, at room 

temperature, with several changes of wash, with shaking. Blocking with 10ml 5% milk in 

PBS/T was carried out for 30min at room temperature, with shaking. 5μl of secondary 

antibody (1:2,000 dilution) goat anti-rabbit conjugated with horseradish peroxidase (HRP) 

(Dako) was added to each membrane. The membrane was then incubated at room 

temperature for 30min, with shaking. Extensive washing in PBS/T buffer for 2h with several 

changes of wash was repeated. 

 

Chemiluminescent visualisation and densitometry 

SuperSignal West Pico Chemiluminescent Substrate (Perbio) was used to detect HRP 

on the immunoblots. The membranes were placed on Saran wrap with the protein side 

upwards. The chemiluminescent reagent mix (1:1 ratio of substrate components) was 

prepared and 2ml were pipetted onto each membrane covering its entire surface. 

Incubation was carried out for 5min. The excess reagent was discarded and the membrane 

was covered with Saran wrap and exposed to Amersham Hyperfilm ECL films (GE Healthcare) 

for various lengths of time up to 1h. Films were either developed by hand or automatically 

using a film processing unit (Xograph) as previously described. 
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2.11 – Oxyblot analysis: detection of protein oxidation 

Overall, this method is as previously described by Al-Mahdawi et al. (2006) and 

consists on the use of a protein oxidation detection kit (OxyBlot, Chemicon International). 

This kit detects protein oxidation by targeting the carbonyl groups introduced into protein 

side chains by oxygen free radicals and other reactive species. 

 

Derivatisation of protein samples 

Initially, protein lysates were prepared from mouse frozen brain tissue and the protein 

concentration determined using BCA assay as previously described. Protein samples were 

diluted with dilution buffer so that 30μg of protein was present in a final volume of 15μl. The 

protein sample was denatured by adding 15μl of 12% SDS and then split into two 10μl 

aliquots, each containing 10μg of protein. One aliquot was derivatised with 10μl of DNPH 

while the other was used as a negative control sample and 10μl of derivatisation-control 

solution was added instead. The derivatisation reaction was performed at room temperature 

for 15min, and stopped by adding 7.5μl of neutralization solution to both aliquots. 

 

Slot-blotting 

This method consisted in the transfer of the derivatised protein samples to a PVDF 

membrane (Millipore) using a 4x12 slot-blot apparatus. Initially two 6x11cm pieces of PVDF 

membrane were cut and pencil-labelled for identification and orientation purposes. A single 

piece of 3MM filterpaper (Whatman) was cut to the same size. The PVDF membrane was 

activated by soaking in 100% EtOH for 2min and then briefly washed in dH2O. The 

membrane was then equilibrated in 50mM Tris-HCl (pH 6.8) for 5min. The 3MM filterpaper 

was also briefly soaked in this solution. The blotting apparatus was then set up by placing 
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the 3MM paper over the suction holes (making sure that all holes were completely covered), 

followed by both PVDF sheets. The slot lid was then applied and the screws tightly tightened. 

Correct assembly was checked by loading in each slot 100μl of loading buffer and by 

applying vacuum suction. Each sample was then diluted with loading buffer to a final volume 

of 100μl and loaded into the appropriate slot. The protein was then transferred to the PVDF 

membrane by applying vacuum suction. After all samples have filtered through the suction 

was removed. The membranes were washed by loading 100μl of loading buffer to all wells, 

followed by suction. A final wash was performed as above but using 100μl of transfer buffer 

instead. The apparatus was disassembled and the PVDF membranes briefly left to air dry on 

clean filter paper. 

 

Immunodetection and densitometry 

Immunodetection and chemiluminescent visualisation were performed as previously 

described for the Western blotting, using the primary (rabbit anti-DNP, 1:150 dilution) and 

secondary (goat anti-rabbit IgG, 1:300 dilution) antibodies included in the OxyBlot kit. 

Finally, densitometry was carried out using UN-SCAN-IT software (Silk Scientific Corp.) as 

previously described. 
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2.12 – Southern blot analysis 

This method is based on Sambrook et al. (1989). Initially, DNA products were 

separated on a 1% agarose 1xTBE midi-gel along with 5μl 1kb+ DNA marker at 75V for ~6h. 

 

Transfer to membrane – Southern blotting 

A transfer assembly was prepared as depicted in Figure 2.3. The transfer solution used 

was 0.4M NaOH. The lane containing the DNA marker was excised and the gel was carefully 

placed with the DNA side upwards on top of the 3MM Whatman filter paper wick. A piece of 

Hybond N+ (Amersham Biosciences) membrane was cut to the same size of the gel, labelled 

for orientation, soaked in 0.4M NaOH and placed over the gel. Two pieces of 3MM Whatman 

filter paper were also cut to the same size of the gel, soaked in 0.4M NaOH and placed over 

the membrane. At every step of layering, a 10ml pipette was used to smoothen the surface 

and remove any air bubbles. A stack of paper towels was placed on top followed by a weight. 

 

 

Figure 2.3 – Schematic representation of Southern blotting transfer assembly. 
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The transfer was carried out overnight by capillary action: the negatively charged DNA 

was drawn from the agarose gel and bound to the positively charged Hybond N+ membrane. 

 

Probing of membrane 

Following transfer, the membrane was washed twice in 3x SSC. The membrane was 

then transferred into a hybridisation bottle and pre-hybridisation was carried out in 10ml of 

pre-warmed Church buffer at 65°C for 2-3h with rotation in a hybridisation oven (HIR12, 

Grant). An appropriate radioactively (γ32P ATP) labelled DNA probe was heat-denatured at 

98°C for 10min, followed by 5min incubation on ice. The pre-hybridisation solution was 

replaced by 10ml of pre-warmed Church buffer containing the denatured radioactive probe. 

Hybridisation was carried out at 65°C overnight with rotation in a hybridisation oven. 

Following hybridisation the probe solution was removed and stored at -20°C for future use. 

 

Stringency washing of membrane and development 

The membrane was washed inside the hybridisation bottle with pre-warmed  

3x SSC / 0.1% SDS at 50°C for 20min with rotation in a hybridisation oven. The blot was 

monitored with a Geiger counter (Series 900 mini-monitor, Thermo Electron Corp.) and if the 

background signal was still too strong further stringency washes were performed by initially 

increasing the incubation period, then increasing temperature to 65°C and finally lowering 

the SSC concentration all the way down to 0.1x, as necessary. The membrane was exposed 

to Amersham Hyperfilm ECL films (GE Healthcare) and developed as previously described. 
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2.13 – Histological analysis of lumbar DRG sections 

This method was kindly made available by Lorraine Lawrence, Imperial College London. 

Preparation of vertebral column paraffin wax blocks 

Paraformaldehyde fixed vertebral column samples were cut into appropriate blocks: 

using a scalpel blade, cuts were made at the intervertebral disks resulting in 2 blocks, each 

containing 2 vertebrae: VL1+2 and VL3+4 (Figure 2.4). 

 

 

Figure 2.4 – Representation of vertebral blocks processed for histological analysis. The red 
arrows represent the location of the cutting and the 2 red boxes represent the blocks used. 

 

Excessive muscular and connective tissue surrounding the vertebral column was 

carefully removed, and the isolated vertebrae block was placed in a tissue-tek cassette. 

Decalcification was performed by immersing the cassettes in 500ml of Hillman & Lee’s EDTA 

for a minimum of five days, with occasional gentle agitation and changing the solution once 

a day. The EDTA was then washed off by washing the cassettes under running tap water for 

at least 4hrs. Using an automated wax embedding unit (Hypercenter XP, Shandon) the 

cassettes were immersed in increasing concentrations of industrial methylated spirit (IMS), 
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followed by Histoclear (Sigma Aldrich) and finally in molten paraffin wax-based embedding 

medium (Kendall), as described in Table 2.7. The final paraffin wax incubation was 

performed under vacuum for 1 hr. 

 

Table 2.7 – Schedule of incubations performed for paraffin wax embedding. 

Solution* Duration 

Hillman & Lee’s EDTA 5 days (changing solution once a day) 

70% IMS Overnight 

90% IMS 4 hr 

100% IMS 1.5 hr 

100% IMS 1.5 hr 

100% IMS 1 hr 

Histoclear Overnight 

Histoclear 1 hr 

Parafin wax 1.5 hr 

Parafin wax 1.5 hr 

Parafin wax - Vacuum 1 hr 

* - Fresh solutions were used at each incubation step. 

 
The vertebrae block was then vertically positioned in a pre-heated mould, covered 

with a tissue-tek cassette and submerged by pouring wax. The block was then allowed to 

cool down on a cold plate and removed from the mould. 

 

Preparation and H&E staining of section slides 

DRG-containing transversal sections (6μm thick) were cut using a rotary microtome (AS 

325, Shandon) and briefly suspended on the surface of a 37°C waterbath. The sections were 

then transferred to microscope slides (SuperFrost Plus, VWR) and left to dry overnight at 

37°C. The sections were de-waxed by soaking 2x 5min in Histoclear. They were then washed 

2x in 100% IMS, followed by 70% IMS, with a brief water rinse in between each wash. The 
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sections were immersed in Haematoxylin Harris (BIOS Europe) for 2min and put in running 

tap water until they turned blue. Colour was differentiated by dipping 2x in acid alcohol (1% 

HCl in 70% IMS). The sections were returned to running tap water until they turned blue. The 

sections were then immersed in 1% Eosin (BIOS Europe) for 1min and briefly rinsed in 

running tap water. They were subsequently dehydrated by rinsing with gentle agitation in 

increasing concentrations of IMS (70%, 90%, 100% and 100%), for 30s each time. Finally, the 

sections were washed 3 x 5min in Histoclear. Coverslips were applied with DPX mount. 

 

Analysis of neurodegeneration in the DRG  

DRG sections were analysed using a light microscope (CH20, Olympus). A minimum of 

2 sections was analysed for each vertebrae block. The DRG were screened for the presence 

of vacuoles within the neuronal cell bodies. For each DRG, as a measurement of 

neurodegeneration, the number of cells with vacuoles was divided by the total number of 

neuronal cells. 
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3.1 – Introduction 

Cannabis has been used medicinally in many cultures and civilisations for 5000 years. 

In China, it was recommended for malaria, constipation, rheumatic pains, childbirth, and was 

mixed with wine as a surgical analgesic. In India, it has been used as an anticonvulsant, 

antispasmodic, anti-emetic and hypnotic (Mechoulam 1986). It was used extensively in 

Britain and America in the second half of the nineteenth century, most notably by Queen 

Victoria and was prescribed by British doctors up until 1971 (Ashton 1997). However, the use 

of cannabis as a medicine declined, mainly due to variability in the potency, unpredictable 

responses with oral use and poor storage stability (Mechoulam 1986). Illegal use of cannabis 

by patients with Multiple Sclerosis (MS) to treat their symptoms of pain is well established in 

the literature (Consroe 1998; Pertwee 2002). As a result there is much anecdotal evidence of 

safety and efficacy. 

The in vitro and in vivo efficacies of cannabis extracts and their individual compounds 

reported to date in the scientific and medical literature are those of anti-inflammatory 

(Costa et al. 2004), analgesic (Pertwee 2001), anti-anxiety and anti-emetic (Mechoulam et al. 

2002), anti-cancer (Guzman 2003) and antioxidant (Hampson et al. 1998). Antioxidant 

activity indicates that the extracts and/or compounds derived from cannabis may be 

effective in preventing and/or treating the development of some cardiovascular and 

neurodegenerative diseases. 

Cannabis based medicines are prepared from the Cannabis sativa L. plant. The most 

abundant potentially therapeutic compounds in the plant are the cannabinoids  

Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) (Figure 3.1) (Pacher et al. 2006). The 

plant also contains smaller amounts of a wide range of other compounds such as other 

cannabinoids, terpenoids, flavonoids and sterols (Pacher et al. 2006). 
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Figure 3.1 – Chemical structures of THC and CBD (Russo and Guy 2006). 

 

3.1.1 – Cannabinoid receptors and ligands 

Up until the last two decades, marijuana research was strongly neglected and enjoyed 

by a rather reserved number of scientists. A contributory factor was the highly lipophilic 

nature of the biologically active ingredients, which led to the notion that marijuana elicits its 

effects non-specifically by perturbing membrane lipids (Lawrence and Gill 1975). The first 

important breakthrough that ultimately led to a rejection of this concept was the 

identification of the correct chemical structure of THC, the main psychoactive ingredient of 

marijuana; and the subsequent demonstration that bioactivity resides in the L-stereoisomer 

of this compound (Mechoulam and Gaoni 1967), which is one of approximately 60 

cannabinoids present in the plant (Dewey 1986). This discovery stimulated the generation of 

a whole range of synthetic analogs in the 1970s that included not only compounds 

structurally similar to phytocannabinoids but also analogs with different chemical structures, 

including classic and nonclassic cannabinoids and aminoalkylindoles, as well as the 

subsequently discovered endogenous arachidonic acid derivatives or endocannabinoids 

(Howlett et al. 2002). 

Studies of the biological effects of THC and its synthetic analogs revealed strict 

structural selectivity (Hollister 1974) as well as stereoselectivity, suggesting drug-receptor 
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interactions (Jones et al. 1974). Definitive evidence for the existence of specific cannabinoid 

receptors was followed soon by the demonstration of high-affinity, saturable, stereospecific 

binding sites for a synthetic cannabinoid agonist – [3H]CP-55940 – in mouse brain plasma 

membranes, which correlated with both the in vitro inhibition of adenylate cyclase (AC) and 

the in vivo analgesic effect of the compound (Devane et al. 1988). The availability of a 

radioligand also allowed the mapping of cannabinoid receptors in the brain by receptor 

autoradiography (Herkenham et al. 1991). This mapping turned out to be of key importance 

in the subsequent identification of an orphan G protein-coupled receptor (GPCR) as the 

brain receptor for cannabinoids (Matsuda et al. 1990), later named CB1 receptor, based on 

the overlapping regional distribution of the mRNA for this GPCR and [3H]CP-55940 binding 

sites. CB1 receptors are the most abundant receptors in the mammalian brain but are also 

present at much lower concentrations in a variety of peripheral tissues and cells. A second 

cannabinoid GPCR, CB2, is expressed primarily in cells of the immune and hematopoietic 

systems (Munro et al. 1993) but recently has been found to be present in the brain (Van 

Sickle et al. 2005; Gong et al. 2006), in nonparenchymal cells of the cirrhotic liver (Julien et 

al. 2005), in the endocrine pancreas (Juan-Pico et al. 2006), and in bone (Ofek et al. 2006). 

An interesting twist on the steric selectivity of cannabinoid receptors has emerged 

through recent studies of the behaviorally inactive phytocannabinoid CBD and its synthetic 

analogs, which have negligible affinity for either CB1 or CB2 receptors. Paradoxically, some of 

the synthetic stereoisomers of these compounds were found to bind potently to both CB1 

and CB2 receptors (Bisogno et al. 2001) but to display only peripheral and not centrally 

mediated cannabinoid-like bioactivity, suggesting that they may act as antagonists rather 

than agonists at central, but not peripheral, CB1 receptors (Fride et al. 2005). 
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Among the 60 or so cannabinoids present in marijuana, only THC is psychoactive 

(Pacher et al. 2006). However, some of the other constituents, such as CBD, have well-

documented biological effects of potential therapeutic interest, such as antianxiety, 

anticonvulsive, antinausea, anti-inflammatory and antitumor properties (Mechoulam et al. 

2002). As previously mentioned, CBD does not significantly interact with CB1 or CB2 

receptors, and its actions have been attributed to inhibition of anandamide degradation 

(AEA) or its antioxidant properties (Mechoulam et al. 2002), or an interaction with as yet 

unidentified cannabinoid receptors. 

In addition to CB1 and CB2 receptors, pharmacological evidence has been accumulating 

over the years to support the existence of one or more additional receptors for cannabinoids 

(Begg et al. 2005). Two of these possibilities which have been more extensively explored are: 

an endothelial site involved in vasodilation and endothelial cell migration (Begg et al. 2003), 

and a presynaptic site on glutamatergic terminals in the hippocampus mediating inhibition 

of glutamate release (Hajos et al. 2001). 

Although both CB1 and CB2 receptors are GPCRs, they share little sequence homology, 

with only 44% homology at the protein level or 68% in the transmembrane domains, which 

are thought to contain the binding sites for cannabinoids (Lutz 2002). Despite this, THC and 

most synthetic cannabinoids have similar affinities for the two receptors, and only recently 

did synthetic ligands that discriminate between CB1 and CB2 receptors emerge (Pacher et al. 

2006). These include agonists as well as antagonists.  

The fact that specific receptors in mammalian cells recognize a plant-derived 

substance suggested the existence of an endogenous ligand. This theory was confirmed in 

1992 with the isolation from porcine brain of the lipid arachidonoyl ethanolamide, named 

anandamide (AEA), which bound to the brain cannabinoid receptor with reasonably high 
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affinity and mimicked the behavioral actions of THC when injected into rodents (Devane et 

al. 1992). Three years later a second endocannabinoid, 2-arachidonoylglycerol (2-AG), was 

discovered (Mechoulam et al. 1995; Sugiura et al. 1995). Since then, a number of related 

endogenous lipids with endocannabinoids-like activity have been reported, but follow-up 

studies about biosynthesis, cellular transport, metabolism, and biological function have 

focused on AEA and 2-AG, with much less information available about the other compounds 

with endocannabinoid-like properties (Pacher et al. 2006). 

The development of potent and highly selective CB1 and CB2 receptor antagonists 

(Rinaldi-Carmona et al. 1994; Rinaldi-Carmona et al. 1998) is particularly noteworthy as it 

provided critically important tools to explore the physiological functions of 

endocannabinoids. For example, the appetite-reducing effects of a particular CB1 antagonist 

(SR141716) in various rodent models was the first sign to suggest that endocannabinoids 

may be active orexigenic agents (Thornton-Jones et al. 2005), representing the endogenous 

counterpart of the “munchies” caused by marijuana smoking.  

However, these antagonists, as well as most of the other CB1 and CB2 antagonists 

developed to date, have inverse agonist properties (Bouaboula et al. 1999). For this reason, 

the development of CB1 and CB2 receptor-deficient mouse strains (Marsicano et al. 2002) 

was similarly important, as the use of these animals in combination with receptor 

antagonists can reinforce the presumed regulatory roles of endocannabinoids. More 

recently, the development of conditional mutant mice that lack the expression of CB1 

receptors only in certain types of neurons represents another milestone, as it allows linking 

of specific neuronal populations with a well-defined cannabinoid-modulated behaviour 

(Marsicano et al. 2003). 
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3.1.2 – CBD and THC as potential therapeutics for FRDA 

The emerging role of the endocannabinoid system in a variety of CNS disorders should 

not come as a surprise given the very high level of expression of CB1 receptors in the brain. 

The particularly high density of CB1 receptors in the cortex, cerebellum, hippocampus, and 

basal ganglia had drawn early attention to diseases affecting movement, mood and anxiety 

disorders, and conditions related to altered brain reward mechanisms, as well as processes 

of memory and learning (Pacher et al. 2006).  

Endocannabinoid involvement in the central regulation of motor functions and in 

movement disorders is based on multiple lines of evidence (reviewed by Pacher et al. 2006). 

First, CB1 receptors are highly expressed in the basal ganglia, especially in the substantia 

nigra and in the cerebellum, areas involved in motor control. Second, endocannabinoids are 

also abundant in these brain regions. Third, endogenous, plant-derived, and synthetic 

cannabinoids have potent, mostly inhibitory, effects on motor activity. Fourth, CB1 receptor 

and endocannabinoid levels are altered in the basal ganglia both in experimental models and 

human forms of movement disorders. Fifth, the endocannabinoid system interacts with 

several neurotransmitter pathways at various levels of the basal ganglia circuitry. 

The endocannabinoid system is thought to provide on-demand protection against 

acute excitotoxicity in the CNS, as endocannabinoids have been shown to be 

neuroprotective through numerous mechanisms involving blockade of microglial activation 

(Ramirez et al. 2005), increase in brain-derived neurotrophic factor (Khaspekov et al. 2004), 

reduction of calcium influx (Nadler et al. 1993), and antioxidant activity (El-Remessy et al. 

2003), suggesting a role for cannabinoids as therapeutic agents in the CNS. 

A number of cell culture and rodent model studies have provided evidence for a 

cannabinoid neuroprotective effect both in acute neuronal injury, e.g. cerebral ischemia 
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(stroke) (Hampson et al. 1998), and in chronic neurodegenerative disorders such as 

Alzheimer disease (AD) (Iuvone et al. 2004), Parkinson disease (PD) (Brotchie 2003), 

Huntington disease (HD) (Lastres-Becker et al. 2003), and amyotrophic lateral sclerosis (ALS) 

(Raman et al. 2004). 

During an ischemic episode, large quantities of the excitatory neurotransmitter 

glutamate are released, causing neuronal cell death. The neuroprotective actions of CBD and 

THC have been examined in rat cortical neuron cultures exposed to toxic levels of glutamate 

(Hampson et al. 1998). Both compounds significantly reduced glutamate toxicity. However, 

the observed neuroprotection was unaffected by cannabinoid receptor antagonist, 

indicating it to be cannabinoid receptor independent (Hampson et al. 1998). Both CBD and 

THC were shown to be potent antioxidants.  

Excessive accumulation of β-amyloid peptide has been proposed as a pivotal event in 

the pathogenesis of AD, although the precise mechanism by which it induces neuronal death 

is still unknown. In a study of β-amyloid-induced neurotoxicity, treatment with CBD 

significantly elevated cell survival, while it decreased ROS production, lipid peroxidation, 

caspase 3 levels, DNA fragmentation and intracellular Ca2+ (Iuvone et al. 2004). This has 

further shown that CBD can exert a combination of neuroprotective, antioxidant and 

antiapoptotic effects, with the antiapoptotic effect being produced by CBD inhibition of 

caspase 3 formation. 

Previous studies have indicated that CBD is non-toxic, even when chronically 

administered to humans (Cunha et al. 1980) or given in large acute doses [700 mg/day] 

(Consroe et al. 1991). Furthermore, the lack of psychoactivity associated with CBD allows for 

the administration of higher doses than would be possible with psychotropic cannabinoids 

such as THC. Recently, it has also been suggested that CBD may achieve synergy with THC 
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consisting of potentiation of benefits, antagonism of adverse effects, pharmacokinetic 

advantages, and metabolism (Russo and Guy 2006). Finally, the reported neuroprotective, 

antioxidant and antiapototic effects of both CBD and THC make them potential candidates 

for the therapy of FRDA. 
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3.2 – Aim of study 

FRDA is primarily a neurodegenerative disorder with pathological loss of large sensory 

neurons in the DRG, posterior columns of the spinal cord, and corticospinal tracts. It is 

generally accepted that such pathology is a consequence of the actions of free radicals. The 

cannabinoids THC and CBD have been shown to have antioxidant and antiapoptotic 

properties, and ultimately a neuroprotective effect, thus preventing neuronal cell loss. 

Additionally, there is anecdotal evidence from FRDA patients that the taking of cannabis 

relieved their symptoms. 

Therefore, it has been hypothesised that such cannabinoids may be of potential 

benefit to the therapy of FRDA. For that reason, the aim of this research project is to 

examine the potential neuroprotective effects of the cannabinoids CBD and THC in FRDA by 

performing drug trials on the two lines of FXN YAC GAA transgenic mice available. 
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3.3 – Materials and methods 

3.3.1 – Botanical origin of cannabinoids 

The THC and CBD extracts of cannabis were prepared from two strains (chemovars) of 

Cannabis sativa L. These chemovars, unique to GW Pharmaceuticals Plc (UK), contain 

consistently high levels of either THC or CBD. The plants were grown indoors under strict 

temperature and light conditions and reproduced asexually, thus providing crop consistency 

and minimal genetic variation. Both the CBD and THC botanical drug substances (BDS) are a 

brown viscous semi-solid with an absence of immiscible liquid and have a characteristic 

smell of decarboxylated cannabis. The THC BDS typically contains not less than 64% THC 

(more than 90% of the total cannabinoid present), and the CBD BDS not less than 60% CBD 

(more than 85% of the total cannabinoid present), with the remainder being co-extracted 

plant material. 

 

3.3.2 – Drug preparation 

The cannabinoid extracts were provided by GW Pharmaceuticals and stored in the dark 

at -80°C. Two distinct drug formulations were prepared as described by Pertwee et al (1992): 

– CBD solution [4mg/ml]: 1 part CBD BDS, 2 parts Tween-80, 247 parts sterile saline. 

– CBD:THC (1:1) solution [4mg/ml]: 1 part CBD BDS, 1 part THC BDS, 4 parts Tween-80, 494 

parts sterile saline. 

The BDS was initially completely dissolved in Tween-80 and then saline was added in a 

series of aliquots of increasing volume, the mixture being shaken between additions. The 

drug dispersions were stored in 1ml aliquots in the dark at -80°C. A Tween-80/saline solution 

(1:248) was prepared for placebo administration and stored at room temperature. 
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3.3.3 – Study design and drug administration 

Mice under investigation were treated with courses of CBD, CBD:THC or placebo 

solution. Mice that started being treated at 6 months of age were administered 

intraperitoneally (i.p.) with a 10mg/kg CBD drug dose (approximately 6 mice per group) 

while the mice that started being treated at 3 months of age were administered i.p. with 

either 20mg/kg CBD or 20mg/kg CBD:THC drug doses (approximately 10 mice per group) 

(Table 3.1). A corresponding volume of Tween-80/saline solution was administered to the 

placebo control mice. All treatments consisted of twice-weekly i.p. doses for a period of 3 

months. 

Initially, treatments were performed on all available mouse lines: Wt, YG8 and YG22. 

However, the CBD:THC treatment was only performed on Wt and YG8 mice. 

 

Table 3.1 – Study details including the number of mice used in each treatment group 

10mg/kg 
6-9 months of age 

 
20mg/kg 

3-6 months of age 

         

 Wt YG8 YG22   Wt YG8 YG22 
         

         

Placebo 6 5 6  Placebo 19 18 10 
CBD 6 6 5  CBD 9 10 10 
     CBD:THC 10 11 – 
         

 
 

3.3.4 – Functional studies during drug treatments 

Weight, rotarod performance and locomotor activity measurements were taken just 

before the start of the drug treatments and repeated thereafter with monthly intervals until 

the completion of the treatment. 
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3.3.5 – Sample collection 

At the completion of the drug treatment the mice were appropriately culled and 

samples were collected as described in Chapter 2 according to the type of analysis desired. 

Preference was given to the collection of samples for molecular biology and biochemical 

analysis rather than histology (Table 3.2 and Table 3.3). 

 

Table 3.2 – Number of mice sampled for biochemical analysis 

10mg/kg  20mg/kg 

         

 Wt YG8 YG22   Wt YG8 YG22 
         
         

Placebo 5 4 5  Placebo 17 16 9 
CBD 5 5 4  CBD 8 9 9 
     CBD:THC 9 10 – 
         

 

Table 3.3 – Number of mice sampled for histological analysis 

10mg/kg  20mg/kg 

         

 Wt YG8 YG22   Wt YG8 YG22 
         
         

Placebo 1 1 1  Placebo 2 2 1 
CBD 1 1 1  CBD 1 1 1 
     CBD:THC 1 1 – 
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3.3.6 – OxyBlot analysis 

Oxyblot analysis was performed on brain samples of Wt and YG8 mice from the 

20mg/kg studies. 

 

Table 3.4 – Number of brain samples investigated by OxyBlot analysis 

20mg/kg 

   

 Wt YG8 
   
   

Placebo 6 6 
CBD 3 3 
CBD:THC 3 3 
   

 

 

3.3.7 – Histological analysis 

Standard H&E histological analysis was performed on brain and DRG paraffin 

embedded sections. Only YG8 male mice were investigated. 

Table 3.5 – Number of brain and DRG samples investigated by histology 

10mg/kg  20mg/kg 

     

 YG8   YG8 
     
     

Placebo 1  Placebo 1 
CBD 1  CBD 1 
   CBD:THC 1 
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3.4 – Results 

3.4.1 – Functional studies 

10mg/kg CBD – 6-9 months of age 

An initial study consisted of administering 10mg/kg CBD (or placebo) to 6 months old 

Wt, YG8 and YG22 rescue mice (n=5-6), for a duration of 3 months. The mice were generally 

matched for age (Figure 3.2A), and despite the fact that all Wt mice tested were males, an 

attempt was made to keep a balanced proportion of males to females in the YG8 and YG22 

groups (Figure 3.2B). No drug/placebo administration-associated deaths were observed. 

 

            A                                                                                B 

  

Figure 3.2 – (A) Age and (B) gender distribution of mice used in the 10mg/kg CBD study. 

 

Although the YG22 mice seemed to be generally heavier mice (in comparison to the Wt 

and YG8 mice) no difference was observed between drug and placebo taking groups (Figure 

A.1). The weight gain was by and large consistent (Figure 3.3), with only a few mice deviating 

from normality. Nevertheless, this was not associated with the drug taking factor since such 

deviations were observed in both drug and placebo taking mice (Figure A.2). 
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Figure 3.3 – Weight gain/loss during the 10mg/kg CBD study (error bars: +/- 1 SE). 

 

Two-way mixed ANOVA for repeated measures confirmed that the age of the mice 

(timepoint) had a significant effect on the weight gain (Table 3.6 and Table 3.7). However, no 

significant effect of either the genotype (Table 3.7) or drug treatment (Table 3.6) on the 

weight gain was detected over the duration of the study. 

Regarding rotarod performance, this was relatively normally distributed with all study 

groups showing average levels of performance (Figure A.3). The number of high 

performance mice (scoring near the test maximum of 400s) was reduced, but these mice 

were observed in all genotypic groups. In contrast, poor performance mice (<100s) were 

only observed in the YG8 and YG22 line and only after 8 months of age. Regarding individual 

changes in performance these were also mainly normal distributed (Figure A.4). In general, 

performance levels were maintained through the first month of the study, but seem to have  
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Table 3.6 – ANOVA associated p-values of timepoint and drug treatment effect on the 
various functional measurements during the CBD 10mg/kg study. 

  ANOVA p-values 

Effect on Genotype Timepoint  
Timepoint * 
Treatment 

    

Weight 
Wt <0.001 0.819 
YG8 0.001 0.944 
YG22 <0.001 0.702 

Rotarod performance 
Wt 0.027 0.465 
YG8 0.010 0.603 
YG22 0.134 0.505 

Locomotor activity 
Wt 0.035 0.819 
YG8 0.114 0.757 
YG22 0.011 0.624 

    

 

Table 3.7 – ANOVA associated p-values of timepoint and genotype effect on the various 
functional measurements during the CBD 10mg/kg study. 

   ANOVA p-values 

Effect on Genotype Treatment Timepoint 
Timepoint * 
Genotype 

     

Weight 
Wt vs YG8 

placebo <0.001 0.321 
CBD <0.001 0.644 

Wt vs YG22 
placebo <0.001 0.905 
CBD <0.001 0.472 

Rotarod performance 
Wt vs YG8 

placebo 0.069 0.743 
CBD 0.002 0.415 

Wt vs YG22 
placebo 0.818 0.703 
CBD <0.001 0.234 

Locomotor activity 
Wt vs YG8 

placebo 0.058 0.719 
CBD 0.058 0.869 

Wt vs YG22 
placebo 0.043 0.017 
CBD 0.376 0.335 

     

 
 

 

slightly declined after that. Final drops of approximately 10% and 10-30% were observed in 

Wt and YG8 mice respectively, with some of the later showing drops of 35% in performance. 

Graphical analysis of the change in rotarod performance over the duration of the study did 
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not suggest any clear effect of the drug treatment (Figure 3.4). However, at the end of the 

study, all CBD-treated groups showed lower average performance values when compared to 

the respective placebo groups. Nevertheless, ANOVA statistical analysis confirmed that the 

drug effect over the duration of the study was not significant (Table 3.6). Curiously, no 

significant difference was observed either between Wt and YG8, and Wt and YG22 mice for 

each of the drug treatments (Table 3.7). 

 

 

Figure 3.4 – Rotarod performance change during the 10mg/kg CBD study (error bars: +/- 1 SE). 

 

Regarding locomotor activity, little data is available for this study given that only a very 

small number of mice from each group (n=2-3) was analysed since t=0. The absolute levels of 

activity were generally consistent among the different study groups (normally around 10 

squares covered in 30s), with the exception of the CBD-treated YG22 mice which reached 

relatively higher levels (15-25 squares covered in 30s) as the study progressed (Figure A.5 
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and Figure A.6). No timepoint effect can be clearly observed with locomotor activity both 

reducing (Wt and YG8) and drastically increasing (YG22) over the duration of the study 

(Figure 3.5). ANOVA analysis confirms that the locomotor activity of Wt groups significantly 

decreased and significantly increased in YG22 groups, throughout the study (Table 3.6). No 

clear drug effect was detected, and regarding the genotype effect, this was only significant 

when placebo-taking Wt and YG22 mice were compared (Table 3.7), where the former 

showed a final average decrease of 25%, while the latter’s activity levels increased by nearly 

300% (Figure 3.5). 

 

 

Figure 3.5 – Change in locomotor activity during the 10mg/kg CBD study (error bars: +/- 1 SE). 
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20mg/kg CBD and CBD:THC – 3-6 months of age 

A later study consisted of administering 20mg/kg of either CBD or CBD:THC (or 

placebo) to 3 months old Wt, YG8 and YG22 rescue mice (n=9-19), for a duration of 3 

months. The mice were generally matched for age (Figure 3.6A) and an attempt was made to 

keep a relatively balanced proportion of males to females in all groups (Figure 3.6B). No 

drug/placebo administration-associated deaths were observed. 

 

            A                                                                                B 

  

Figure 3.6 – (A) Age and (B) gender distribution of mice used in the 20mg/kg CBD/CBD:THC 
studies. 

 

All mice in the different study groups started off with fairly similar weight levels (Figure 

A.7), and although they all constantly gained weight throughout the study, YG22 mice seem 

to have gained relatively more than Wt and YG8 mice (Figure 3.7). In fact when comparing 

CBD-taking Wt vs YG22 mice, the genotype effect appears to a significant nature (Table 3.9). 

Regarding the drug effect on weight gain, this seems non-existent when CBD is administered 

on its own. However, both Wt and YG8 CBD:THC-taking mice seem to have put 

comparatively less weight on throughout the study. In fact, ANOVA analysis confirmed the 

significance of the drug effect of CBD:THC in Wt mice weight loss (Table 3.8). 
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Figure 3.7 – Weight gain/loss during the 20mg/kg CBD/CBD:THC studies. (error bars: +/- 1 SE) 

 

Table 3.8 – ANOVA associated p-values of timepoint and drug treatment effect on the 
various functional measurements during the 20mg/kg CBD and CBD:THC studies. 

   ANOVA p-values 

Effect on Genotype 
Treatment 

(vs placebo) 
Timepoint  

Timepoint * 
Treatment 

     

Weight 

Wt 
CBD <0.001 0.923 
CBD:THC <0.001 0.004 

YG8 
CBD <0.001 0.759 
CBD:THC <0.001 0.169 

YG22 CBD <0.001 0.776 

Rotarod performance 

Wt 
CBD 0.019 0.124 
CBD:THC 0.017 0.548 

YG8 
CBD 0.164 0.752 
CBD:THC 0.003 0.455 

YG22 CBD 0.003 0.207 

Locomotor activity 

Wt 
CBD 0.515 0.919 
CBD:THC 0.002 0.077 

YG8 
CBD 0.016 0.487 

CBD:THC 0.037 0.446 

YG22 CBD 0.237 0.098 
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Table 3.9 – ANOVA associated p-values of timepoint and genotype effect on the various 
functional measurements during the 20mg/kg CBD and CBD:THC studies. 

   ANOVA p-values 

Effect on Genotype Treatment Timepoint 
Timepoint * 
Genotype 

     

Weight 
Wt vs YG8 

placebo <0.001 0.233 
CBD <0.001 0.644 
CBD:THC <0.001 0.592 

Wt vs YG22 
placebo <0.001 0.420 
CBD <0.001 0.040 

Rotarod performance 
Wt vs YG8 

placebo 0.025 0.374 
CBD 0.183 0.284 
CBD:THC 0.004 0.945 

Wt vs YG22 
placebo 0.042 0.339 
CBD 0.099 0.113 

Locomotor activity 
Wt vs YG8 

placebo 0.284 0.848 
CBD 0.033 0.241 
CBD:THC <0.001 0.267 

Wt vs YG22 
placebo 0.638 0.224 
CBD 0.341 0.350 

     

 

Regarding rotarod performance, a relatively high rate of intra-study group variability 

was observed (Figure A.9). However, when this was analysed in terms of change in rotarod 

performance a certain degree of consistency was present, with only few outlier mice 

detected (Figure A.10). In general, the rotarod performance has changed significantly 

throughout the duration of the study, with the exception of CBD-treated YG8 mice (Table 

3.8). In both Wt and YG8 groups the CBD-taking mice have consistently showed increased 

improvement (or decreased deterioration) in rotarod performance, while the CBD:THC-

taking mice showed the strongest deterioration throughout the study (Figure 3.8). Regarding 

the YG22 mice, a similar change in performance was observed until 5 months of age, and at 

the final timepoint placebo-taking mice recovered to original levels, while the CBD-taking 

mice further deteriorated (Figure 3.8). Nevertheless, no genotype (Table 3.9) or treatment 

(Table 3.8) effect on rotarod performance was found to be significant. 
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Figure 3.8 – Rotarod performance change during the 20mg/kg CBD/CBD:THC studies. 
(error bars: +/- 1 SE) 

 

Regarding locomotor activity, with the exception of a CBD-taking Wt mouse which was 

clearly hyperactive (covering 25-50 squares in 30s), the absolute values were fairly normally 

distributed, regularly ranging from 5-10 squares (Figure A.11). However, when a change in 

activity levels was computed, greater levels of variability were observed, with some mice 

from the same study group doubling their activity while other were showing drops to one 

quarter of original levels (Figure A.12). In general, activity levels decreased throughout the 

study, with the exception of placebo-taking YG22 mice which actually showed a gradual 

increase. The activity of Wt mice dropped approximately 10%-15% for the placebo- and CBD-

taking study groups (Figure 3.9). However, the CBD:THC-taking Wt mice showed a steep drop 

in activity culminating in values of 60% of original levels. Regarding the YG8 mice the 

placebo-taking showed a final drop of 10%, while both the CBD- and CBD:THC-taking mice 
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ended up with a 30%-35% drop (Figure 3.9). Nevertheless, neither genotype (Table 3.9) nor 

drug treatment (Table 3.8) were found to have a significant effect on locomotor activity 

levels throughout the duration of the study. 

 

 

Figure 3.9 – Change in locomotor activity during the 20mg/kg CBD/CBD:THC studies. 
(error bars: +/- 1 SE) 
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3.4.2 – Oxyblot analysis 

The levels of protein oxidation were determined in the brain of Wt and YG8 rescue 

mice from the 20mg/kg CBD/CBD:THC studies (n=3-6). Two oxyblots (blot A and B), each 

containing all samples investigated, were quantified by densitometry (Figure A.13). Slightly 

different results were obtained between the two oxyblots: although the placebo values were 

similar, their relation to YG8 mice levels was reversed in the two experiments (Figure A.14). 

In oxyblot A no significant genotype or drug effect was observed (Table A.2 and Table A.3). 

However, in blot B a significant difference was observed between Wt and YG8 mice in 

corresponding treatments, with the YG8 mice showing higher levels of protein oxidation 

(Table A.2). In addition, in YG8 mice a significant drug effect was observed for both drug 

treatments, increasing the protein oxidation levels (Table A.3). 

Ultimately, after combining the two blots, in both placebo and YG8 mice CBD 

treatment seems to lower the protein oxidation levels, but CBD:THC seems to slightly cause 

the opposite effect (Figure 3.10). Nevertheless, the genotype or drug effect was found to be 

non-significant (Table 3.10 and Table 3.11). 

 

Table 3.10 – Independent samples t-test associated p-values of drug treatment effect on 
brain levels of protein oxidation during the 20mg/kg CBD and CBD:THC studies. 

Genotype 
Treatment 

(vs placebo) 
p-value 

   

Wt 
CBD 0.065 
CBD:THC 0.645 

YG8 
CBD 0.685 
CBD:THC 0.076 

   

Placebo n=6, CBD n=3, CBD:THC n=3 
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Table 3.11 – Independent samples t-test associated p-values of genotype effect on brain 
levels of protein oxidation during the 20mg/kg CBD and CBD:THC studies. 

Genotype Treatment p-value 

   

Wt vs YG8 
placebo 0.987 
CBD 0.483 
CBD:THC 0.176 

   

Placebo n=6, CBD n=3, CBD:THC n=3 

 

 

Figure 3.10 – Levels of protein oxidation in the brain of mice from the 20mg/kg 
CBD/CBD:THC studies, as determined by Oxyblot analysis. Placebo n=6, CBD/CBD:THC n=3. 

(au = arbitrary units; error bars: +/- 1 SE) 
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3.4.3 – Histological analysis 

Histological analysis was performed by means of H&E staining of lumbar vertebral 

column sections (Figure 3.11 and Figure 3.12) from a single mouse representative of each 

YG8 study group, and the levels of DRG neurodegeneration were determined by counting 

the number of cell bodies displaying vacuoles (Figure 3.12). 

 

 

Figure 3.11 – H&E stained vertebral column section from YG8 rescue mouse (placebo). Red 
arrows point out the DRG. 

 

Very low levels of neurodegeneration were observed in younger mice (6 months of 

age), where the maximum number of vacuoles observed never exceeded 2 (Figure 3.13). 

When lower sections of the lumbar region were analysed (VL3+4) the level of 

neurodegeneration consistently increased, but only marginally (when compared to VL1+2).  

 

50X 
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Figure 3.12 – H&E stained DRG section from YG8 rescue mouse (placebo). Red arrows 
point to vacuoles present in DRG cell bodies.  

 

 

With the exception of the VL1+2 sections from the placebo-taking mouse, older mice 

showed much higher levels of neurodegeneration. In these mice, much higher levels of 

neurodegeneration were also observed in the lower lumbar region, with an average of 12 

and 25 vacuoles observed in placebo- and CBD-taking mice respectively (Figure 3.13). In fact, 

in the placebo mouse this represented 14% of the total DRG cell bodies, and for the CBD-

treated mouse this level reached 20%. 

 

 

 

400X 
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Figure 3.13 – Levels of DRG neurodegeneration in YG8 mice following the CBD and 
CBD:THC treatments (n=1). (error bars: +/- 1 SE) 
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3.5 – Discussion 

The recently reported antioxidant and neuroprotective effects of the cannabinoids 

CBD and THC have drawn attention to the fact that such compounds could be of potential 

therapeutic benefit to FRDA patients by alleviating some of the associated symptoms. 

Adding to this, anecdotal reports from FRDA patients also advocated such therapeutic 

properties. 

Drug studies were performed on Wt and FRDA mice to investigate such effects. These 

consisted of administering either a course of: 10mg/kg CBD to 9 months old; or 20mg/kg 

CBD or CBD:THC (1:1) to 6 months old mice. All treatments lasted for 3 months, and during 

this period various functional studies were routinely performed, such as: weight monitoring, 

and assessment of rotarod performance and locomotor activity. Although it does not seem 

accurate to compare absolute values from functional studies between the higher and lower 

dose studies because of age differences, the alterations experienced can be evaluated. 

Administration of 10mg/kg CBD seems to have had a detrimental effect on the rotarod 

performance of all study groups (when compared to corresponding placebo groups). After 

increasing the CBD concentration to 20mg/kg, increased changes in performance were 

observed (when compared to corresponding placebo groups), with the exception of YG22 

mice. On the other hand, administration of 20mg/kg CBD:THC produced the most 

detrimental changes in rotarod performance, in both Wt and YG8 mice. Administration of 

the higher doses of cannabinoids seems to have caused reduced levels of locomotor activity, 

particularly when THC was present. 

Based on these findings we could postulate that the higher dose of CBD may be 

causing this positive change in rotarod performance by protecting neuromotor system from 

oxidative damage. Regarding the reduced locomotor activity observed this may be related to 
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the well established anti-anxiety effects of cannabinoids, therefore maybe relaxing the mice 

and making them less inquisitive. Nevertheless, none of the drug effects on the alterations 

of both rotarod performance and locomotor activity were found to be statistically 

significant. 

Additionally, although the analysis of performance alterations can provide a better 

idea of the potential drug effects, the lack of a strong demarcation between Wt and FRDA 

mice makes the analysis of absolute performance values very difficult to interpret. In fact, no 

significant difference was observed between Wt and any of the FRDA mice (in corresponding 

drug treatments). 

The antioxidant potential of CBD and CBD:THC was also investigated by analysing the 

levels of protein oxidation in the brain of YG8 mice. Administration of 20mg/kg CBD seems 

to have successfully reduced levels of protein oxidation, although only marginally, while 

CBD:THC seems to have had the opposite effect. However, none of these effects were found 

to be statistically significant. Again, as far as YG8 mice are concerned, no significant 

difference was observed in the brain levels of protein oxidation, when compared against Wt 

mice. 

Histological analysis confirmed the presence of neurodegeneration in the YG8 line, but 

only in older mice (9 months old). Although the investigated YG8 mouse which was treated 

with CBD showed higher levels of neurodegeneration than the placebo mouse, this cannot 

be considered definite since only one mouse from each study group was analysed. 

One of the points to be taken from this histological investigation is that DRG from 

distal lumbar vertebrae show much higher levels of neurodegeneration, confirming the 

FRDA-like “dying back” effect. 
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Additionally, the fact that the levels of neurodegeneration were significant in 9 months 

old mice, but not in 6 months old mice, suggests that maybe the mice used in the higher 

cannabinoid dose studies were simply too young to be displaying a significant phenotype. 

In fact, it seems that any general interpretations from this study, concerning the 

effects of cannabinoid therapy for FRDA, are severely hampered by the fact that any 

abnormal phenotype exhibited by both the YG8 and YG22 lines of the FRDA mouse model 

was not very evident. Therefore, based on the findings obtained it is not possible to promote 

or refute the use of the cannabinoids CBD and THC as therapeutic agents for FRDA patients. 

To address this issue, future preliminary studies should be performed in cell lines 

derived from FRDA patients, followed by in vivo studies utilising more severely affected 

mice. Whether that may consist on performing longer studies with the current FRDA model, 

until mice are much older and displaying a potentially more significant phenotype, or simply 

using a better model, yet to be developed. 

 

 



 

 

 
127 

 

Chapter 4 – CTMIO antioxidant therapeutic testing in FRDA mice



Chapter 4 – CTMIO antioxidant therapeutic testing in FRDA mice 

 

 
128 

 

4.1 – Introduction 

The isoindoline nitroxide antioxidant CTMIO 

Nitroxides are stable free radicals that protect against oxidative and radiation-induced 

cytotoxicity (Hahn et al. 1994). 

An initial study investigating the antioxidant properties of isoindoline nitroxides 

consisted of exposing plasmid DNA to peroxyl and hydroxyl free radicals damage, and 

assessing the DNA damage by analysing the proportion of linear/circular plasmid, ultimately 

revealing that these protect DNA from oxidative damage (Damiani et al. 2000). 

The isoindoline nitroxide CTMIO (5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl) 

(Figure 4.1) is a compound that preserves the advantages of the isoindoline systems while 

possessing water solubility up to 2mM (Chen et al. 2003). 

 

 
5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl (CTMIO) 

Figure 4.1 – Structure of the isoindoline nitroxide CTMIO (Chen et al. 2003). 

 

To date, studies with CTMIO have primarily focused on its potential therapeutic effects 

in ataxia-telangiectasia (A-T) (Chen et al. 2003; Hosokawa et al. 2004; Gueven et al. 2006). 

A-T is an autosomal recessive disorder that is characterized by early onset progressive 

cerebellar ataxia, oculocutaneous telangiectasia, susceptibility to bronchopulmonary 

disease, and lymphoid tumours. Various other abnormalities are also associated with this 
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disorder, including the absence or the rudimentary appearance of a thymus, 

immunodeficiency, progressive apraxia of eye movements, insulin-resistant diabetes, clinical 

and cellular radiosensitivity, cell-cycle checkpoint defects and chromosomal instability 

(reviewed by Lavin 2008). 

Interestingly, when a patient-derived A-T lymphoblastoid cell line was irradiated, not 

only did CTMIO treatment significantly increase cell survival but also reduced the level of 

chromosome aberrations (Hosokawa et al. 2004). Additionally, in this study, the antioxidant 

effect of CTMIO was shown to be much more significant than that of vitamin E. 

An alternative study investigated the effect of CTMIO on cerebellar Purkinje neuron 

cultures derived from A-T mice, which are characterized by reduced cell survival. CTMIO 

treatment dramatically increased the survival rates (from 32% to 77% of Wt) and partially 

restored dendritic elongation and branching of Purkinje neurons (Chen et al. 2003). 

More recently, an in vivo study was also performed using A-T mice (Gueven et al. 

2006). Disruption of the Atm gene in mice largely recapitulates the human phenotype, with 

almost all Atm−/− mice succumbing to thymic lymphomas within 5 months (Barlow et al. 

1996). CTMIO intake through drinking water (40µM) significantly prolonged the survival of 

Atm−/− mice (median survival of 54 weeks versus 16 weeks, CTMIO versus untreated 

respectively) (Figure 4.2). The CTMIO chemoprevention mechanism did not appear to 

involve apoptosis, as tumours from CTMIO treated mice did not show higher levels of 

apoptosis compared to tumours from untreated Atm−/− mice (Gueven et al. 2006). 

This study also examined the effect of CTMIO on neuromotor performance by 

employing a multiparameter test based on performance on a narrow beam. CTMIO 

treatment significantly improved overall motor performance of Atm−/− mice, correcting the 

neurobehavior function to levels comparable to Wt mice (Figure 4.3) (Gueven et al. 2006). 
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Figure 4.2 – Effect of CTMIO on survival of Atm−/− mice (Gueven et al. 2006). 

 

 

Figure 4.3 – Effect of CTMIO on neurobehavioral function of Atm−/− mice. Neuromotor 
performance assessed by multiparameter test based on performance on a narrow beam. 
All three statistical models show a significant effect for the CTMIO treatment of Atm−/− 
mice, but not Wt mice (Gueven et al. 2006). 

 

Additionally, Atm−/− mice show multiple manifestations of oxidative stress in the 

cerebellar Purkinje cells as determined by 3-nitrotyrosination of proteins and 

immunoreactivity to 4-hydroxy-2-nonenal Michael adducts. Treatment with CTMIO reduces 

the levels of oxidative damage to those of Wt mice, suggesting that CTMIO corrects the A-T 

neurobehavioral phenotype by its antioxidative activity (Gueven et al. 2006). 
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4.2 – Aim of study 

The isoindoline nitroxide CTMIO has been shown to have strong antioxidant 

properties, so much as displaying a neuroprotective effect in A-T cell and mouse models by 

preventing neuronal cell loss. FRDA, similarly to A-T, is a progressive neurodegenerative 

disorder, and it is generally accepted that such pathology may be a consequence of the 

actions of free radicals. 

Therefore, it has been hypothesised that such compound may be of potential benefit 

to the therapy of FRDA. For that reason, the aim of this research project is to examine the 

potential antioxidant and neuroprotective effects of CTMIO in FRDA by performing drug 

trials on the FXN YAC GAA transgenic mice available. 
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4.3 – Materials and methods 

4.3.1 – CTMIO synthesis and origin 

The isoindoline nitroxide antioxidant CTMIO was synthesised as previously described 

by Bottle et al. (2000) and kindly made available by Dr Nuri Gueven from the Queensland 

Institute of Medical Research, Australia. 

 

4.3.2 – Drug preparation 

The CTMIO was provided to us in a solid form and was stored at 4°C. Initially, a 250x 

stock solution was prepared by dissolving 23mg of the provided CTMIO in 10ml PBS under 

heating and stirring conditions, resulting in a 10mM stock solution. This stock solution was 

also stored through the duration of the study at 4°C. Finally, the stock solution was diluted 

1:250 in drinking tap water as required, resulting in a 40µM CTMIO solution. A placebo 

solution was prepared by diluting PBS 1:250 in drinking tap water. 

 

4.3.3 – Study design and drug administration 

A long-term CTMIO study was performed on Wt and YG8 rescue mice with 30 animals 

in each drug/placebo group (Table 4.1). The treatment was initiated as soon as possible after 

weaning and genotyping, at approximately 2 months of age and, at an initial stage, lasted for 

3 months. An additional 3 months of treatment were then performed on only half of the 

mice, with 15 animals in each group. 

The 40µM CTMIO/placebo solution was administered ad libitum as a replacement to 

normal drinking water. The water was changed twice a week. 
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Table 4.1 – CTMIO study details including the number of mice used in each group 
   

  3 month duration  6 month duration 

  Wt YG8  Wt YG8 
       

       

Placebo  30 30  15 15 
CTMIO  30 30  15 15 
       

 

 

4.3.4 – Functional studies during drug treatments 

Weight, rotarod performance and locomotor activity measurements were taken just 

before the start of the drug treatment and repeated thereafter every 1.5 months until the 

completion of the treatment. 

 

4.3.5 – Sample collection 

At the completion of the drug treatment the mice were appropriately culled and 

samples were collected as described in Chapter 2 according to the type of analysis desired: 7 

mice from each group were sampled for biochemical analysis and the remaining 8 were 

sampled for histological analysis (Table 4.2). 

 

Table 4.2 – Number of mice sampled for biochemical and histological analysis 

  biochemical analysis  histological analysis 

  3 months  6 months  3 months  6 months 
  Wt YG8  Wt YG8  Wt YG8  Wt YG8 
             

             

Placebo  7 7  7 7  8 8  8 8 
CTMIO  7 7  7 7  8 8  8 8 
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4.3.6 – OxyBlot analysis 

Oxyblot analysis was performed on brain samples of Wt and YG8 mice for both the 3 

months and the 6 months duration studies (Table 4.3). The OxyBlot analysis was performed 

2x for all samples. 

 

Table 4.3 – Number of brain samples investigated by OxyBlot analysis 
   

  3 month duration  6 month duration 

  Wt YG8  Wt YG8 
       

       

Placebo  6 6  6 6 
CTMIO  6 6  6 6 
       

 

4.3.7 – Histological analysis 

DRG paraffin-embedded sections were analysed by standard H&E histology (Table 4.4). 

 

Table 4.4 – Number of DRG samples investigated by H&E histology 

  6 month duration 
    

  Wt YG8 
    

    

Placebo  2 2 
CTMIO  – 2 
    

 

Additionally, paraformaldehyde-fixed brain and heart samples were sent to Dr John 

Luff and Dr Nuri Gueven from the Queensland Institute of Medical Research in Australia, 

where histological and immunohistochemistry analysis was performed in order to 

investigate levels of: nitrotyrosine (NO-dependent oxidative stress marker), 4HNE (lipid 

peroxidation marker), p53 (tumour suppressor gene), ATM S1981 (protein phosphorylation 

marker), 8oxoG (DNA damage marker), Fe deposits, and cardiac hypertrophy. 
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4.4 – Results 

4.4.1 – Functional studies 

A CTMIO drug study consisted of administering 40µM CTMIO (or placebo) ad libitum in 

drinking water to Wt and YG8 rescue mice (n=30), for a preliminary duration of 3 months. 

After this, treatment was continued for an additional 3 months on only half of the mice 

(n=15). The treatment was initiated as soon as possible after weaning and genotyping, with 

the mice being generally matched for age, at approximately 2 months of age (Figure 4.4). In 

the first 3 months of treatment the proportion of males to females was 1:1. However, for 

the second 3 months period, two thirds were males and the remaining third were females 

(Figure 4.5). No drug/placebo administration-associated deaths were observed. 
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Figure 4.4 – Age distribution of mice used in the CTMIO studies. 
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Figure 4.5 – Gender distribution of mice used in the CTMIO studies. 

 

All mice in the different study groups started off with similar weight levels (Figure B.1), 

and although they all constantly gained weight throughout the study, YG8 mice seem to 

have gained relatively more than Wt (Figure 4.6 and Figure B.2). This was particularly 

noticeable at the end of the 6 months study, where, on average, Wt mice had increased 

their weight by 40% while YG8 mice showed a 52% increase. In fact, 2-way mixed ANOVA for 

repeated measures confirmed that not only the age of the mice (timepoint) had a significant 

effect on the weight gain, but also the genotype (Table 4.5). It was also noticeable that 

throughout the study all CTMIO-taking mice seem to have gained more weight when 

compared to placebo-taking mice of the same genotypic background. However, this was 

generally statistically non-significant (Table 4.5). 

Regarding rotarod analysis, mice from all study groups showed similar average 

performance levels at the start of the study (Figure B.3). However, a considerable variability 

of performance levels were observed within all study groups, with values regularly ranging 

from approximately 100s to the test maximum of 400s (Figure B.3). As the study progressed, 

the number of highly performing mice seems to have reduced, but at the end of the 6 
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Figure 4.6 – Weight gain/loss during the CTMIO studies. (error bars: +/- 1 SE) 

 

Table 4.5 – ANOVA associated p-values of timepoint, genotype and drug treatment effect on 
the various functional measurements during the CTMIO studies. 

  ANOVA p-values 

  3months (n=30)  6 months (n=15) 

Treatment effect on Genotype Timepoint  
Timepoint * 
Treatment 

Timepoint 
Timepoint * 
Treatment 

      

Weight 
Wt <0.001 0.042 <0.001 0.655 
YG8 <0.001 0.763 <0.001 0.658 

Rotarod performance 
Wt 0.129 0.113 <0.001 0.252 
YG8 <0.001 0.519 <0.001 0.272 

Locomotor activity 
Wt 0.001 0.219 <0.001 0.060 
YG8 <0.001 0.470 <0.001 0.255 

      

  3months (n=30)  6 months (n=15) 

Genotype effect on Treatment Timepoint  
Timepoint * 

Genotype 
Timepoint 

Timepoint * 
Genotype 

      

Weight 
Placebo <0.001 <0.001 <0.001 0.015 
CTMIO <0.001 0.039 <0.001 0.005 

Rotarod performance 
Placebo <0.001 0.584 <0.001 0.479 
CTMIO 0.002 0.040 <0.001 0.046 

Locomotor activity 
Placebo 0.001 0.679 <0.001 0.022 
CTMIO <0.001 0.056 <0.001 0.943 
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months study these were still present, particularly in YG8 study groups (Figure B.3). 

Regarding individual changes in performance these were also relatively normally distributed 

(Figure B.4). Overall, although rotarod performance levels were maintained for the first 1.5 

months, they significantly declined after that (Figure 4.7 and Table 4.5). Final drops of 

approximately 14% and 28% were respectively observed in Wt placebo- and CTMIO-taking 

mice, while a 30% and 43% reduction was observed in YG8 placebo- and CTMIO-taking mice, 

respectively (Figure 4.7). Therefore, it appears that the YG8 mice demostrated greater 

declines in rotarod performance when compared to the Wt mice. In fact, this was found to 

be statistically significant when comparing Wt and YG8 CTMIO-taking mice (Table 4.5). 

Additionally, it seems that the CTMIO treatment is having a detrimental effect on rotarod 

performance: both Wt and YG8 CTMIO-taking mice showed stronger decreases in rotarod 

performance when compared to the respective placebo-taking mice (Figure 4.7). However, 

this was not found to be statistically significant (Table 4.5). 
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Figure 4.7 – Rotarod performance change during the CTMIO studies. (error bars: +/- 1 SE) 
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Regarding locomotor activity, with the exception of two CTMIO-taking Wt mice which 

were clearly hyperactive (regularly covering >20 squares in 30s), the absolute values were 

normally distributed, regularly ranging from 0-15 squares (Figure B.5). However, when a 

change in activity levels was computed, much greater levels of variability were observed: 

some mice from the same study groups more than doubled their activity while others 

showed drastic drops in activity (Figure B.6). Nevertheless, activity levels of all study groups 

generally decreased throughout the study. Although the progress of locomotor activity 

performance throughout the study was found to be significantly different between Wt and 

YG8 placebo-taking mice (Table 4.5), both study groups completed the 6 months study with 

similar final average levels: 51% and 49% reduction in locomotor activity, respectively 

(Figure 4.8). Additionally, CTMIO treatment slowed the decline in locomotor activity over the 

6 months study: 38% and 35% reduction in final average locomotor activity levels of Wt and 

YG8 CTMIO-taking mice, respectively (Figure 4.8). However, this was not found to be 

statistically significant (Table 4.5). 
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Figure 4.8 – Change in locomotor activity during the CTMIO studies. (error bars: +/- 1 SE) 
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4.4.2 – Oxyblot analysis 

The levels of protein oxidation were determined in the brain of Wt and YG8 rescue 

mice from the 3 and 6 months CTMIO studies (n=6). Four oxyblots, each containing all 

samples investigated, were quantified by densitometry (Figure B.7), with similar results 

between them. Combined analysis of all oxyblots revealed no great differences in the 

average levels of protein oxidation between the 3 and 6 months duration studies. Although 

average protein oxidation levels in YG8 brains seem to be generally higher than in Wt (Figure 

4.9), these were not found to be statistically significant (Table 4.6). CTMIO treatment seems 

to have further increased protein oxidation levels in the brain of both Wt and YG8 rescue 

mice, even elevating the Wt levels to those observed in YG8 mice (Figure 4.9). In fact, the 

treatment effect was found to be statistically significant in Wt mice from the 3 months study 

and in YG8 rescue mice from the 6 months study (Table 4.6). 
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Figure 4.9 – Levels of protein oxidation in the brain of mice from the CTMIO studies, as 
determined by Oxyblot analysis. (error bars: +/- 1 SE) 
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Table 4.6 – Independent samples t-test associated p-values of treatment and genotype 
effect on brain levels of protein oxidation during the CTMIO studies. 

Treatment effect  Genotype effect 

Genotype 
p-value (n=6)  

Treatment 
p-value (n=6) 

3 months 6 months  3 months 6 months 
       

Wt 0.032 0.100  placebo 0.092 0.343 
YG8 0.747 0.023  CBD 0.585 0.525 

       

 

 

4.4.3 – Histological analysis 

Histological analysis was performed by means of H&E staining of lumbar vertebral 

column sections (as performed for the cannabinoid studies – Figure 3.11 and Figure 3.12) 

from Wt (placebo) and YG8 rescue (placebo and CTMIO) mice (n=2). The levels of DRG 

neurodegeneration were determined by counting the number of neuronal cell bodies 

displaying vacuoles (Figure 3.12). All of the mice investigated were from the 6 months study 

and were 8 to 8.5 months old. 

Analysis of distal sections of the lumbar vertebrae (VL3+4) consistently revealed higher 

levels of neurodegeneration when compared to the proximal lumbar vertebrae (VL1+2) in all 

mice analysed (Figure 4.10). CTMIO treatment seems to have induced higher levels of DRG 

neurodegeneration in YG8 mice: CTMIO-treated YG8 mice showed 3x (VL1+2) and 2.5x (VL3+4) 

the number of DRG cell bodies with vacuoles compared with placebo YG8 mice (Figure 4.10). 

Relatively high levels of DRG neurodegeneration were also detected in Wt placebo-

treated mice (Figure 4.10). These levels were similar to the ones observed in YG8 CTMIO-

treated mice. 
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Figure 4.10 – Levels of DRG neurodegeneration following the 6 months CTMIO treatment. 
(n=2; error bars: +/- 1 SE) 
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4.5 – Discussion 

The reported antioxidant and neuroprotective effects of the isoindoline nitroxide 

CTMIO displayed in A-T cell and mouse models (Gueven et al. 2006) suggested that such 

compound could possibly be of therapeutic use to FRDA patients. Therefore, the effect of 

CTMIO on FRDA was investigated by performing drug studies on Wt and YG8 rescue mice. 

These studies consisted of administering 40µM CTMIO (or placebo) ad libitum in drinking 

water for a period of 3 and 6 months. This was the same CTMIO concentration as originally 

described by Gueven et al. (2006). Various functional studies were routinely performed 

throughout the treatment period, such as: weight monitoring, assessment of rotarod 

performance and locomotor activity. 

Analysis of the data revealed that CTMIO treatment produced an increased weight 

gain at the same time as having a detrimental effect on rotarod performances. On the other 

hand, CTMIO treatment slowed the decline in average locomotor activity levels throughout 

the study. These data may seem contradictory, but such effects were statistically non-

significant. In fact, although a considerable number of mice were investigated (n=30 and 

n=15 in 3 and 6 months studies respectively), statistical analysis of functional data seems to 

be limited by the mild severity of the FRDA-associated phenotype displayed by YG8 rescue 

mice. 

The antioxidant properties of CTMIO were further investigated by performing oxyblot 

analysis on brain samples of treated Wt and YG8 mice. This analysis confirmed marginally 

elevated protein oxidation levels in YG8 mice, when compared to Wt, although not 

statistically significant. CTMIO treatment seems to have further increased these levels. In 

fact, this effect was determined to be of statistical significance in both Wt (3 months) and 

YG8 (6 months) study groups. This finding not only seems to negate the antioxidant 
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properties of CTMIO (at least in brain tissue), but rather seems to suggest a detrimental 

effect as far as protection from oxidative stress in the brain is concerned. Nevertheless, the 

lack of any significant difference between Wt and YG8 mice and the fact that the degree of 

variability between the study groups was minimal (<9%), suggests that any findings should 

be interpreted with caution. 

Histological analysis of DRG from YG8 mice confirmed the FRDA-like “dying back” 

effect, demonstrated by the higher levels of neurodegeneration present in DRG from distal 

lumbar vertebrae. CTMIO treatment seems to have aggravated the levels of DRG 

neurodegeneration in YG8 mice. Interestingly, Wt mice (placebo) displayed previously 

unreported (Al-Mahdawi et al. 2006) high levels of DRG degeneration. Therefore, the 

presence of vacuoles in DRG cell bodies of YG8 mice as an FRDA-associated pathological 

phenotypic trait must now be re-evaluated. 

Additionally, histological and immunohistochemical analysis was performed by Dr John 

Luff and Dr Nuri Gueven from the Queensland Institute of Medical Research in Australia, 

investigating levels of: nitrotyrosine (NO-dependent oxidative stress marker), 4HNE (lipid 

peroxidation marker), p53 (tumour suppressor gene), ATM S1981 (protein phosphorylation 

marker), 8oxoG (DNA damage marker), Fe deposits, and cardiac hypertrophy. However, no 

significant differences were detected between Wt and YG8 mice, and thus no CTMIO-

associated improvements could be measured (N. Gueven, personal communication). 

In summary, based on rotarod performance studies, oxyblot and DRG histology 

analysis, it seems that CTMIO may have a more damaging than neuroprotective effect for 

FRDA mice. However, any conclusive interpretations from this study, concerning the use of 

CTMIO in FRDA therapy, are considerably restricted by the lack of a strong demarcation 

between Wt and YG8 mice in functional, biochemical and histological terms. As a 
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consequence, the potential beneficial or detrimental effects of CTMIO may go by unnoticed. 

In fact, the antioxidant and neuroprotective effects of CTMIO were originally reported in 

Atm−/− mice exhibiting a severe phenotype such as life expectancy <5 months (Gueven et al. 

2006). 

Therefore, based on the findings hereby reported, it is not possible to promote or 

refute the use of CTMIO as therapeutic agent for FRDA patients. 

Consequently, future investigations into the potential therapeutic effect of CTMIO for 

FRDA should, in a first instance, rely on the use of cell lines derived from FRDA patients. Only 

then, assuming promising results, should investigations be followed in vivo, making use of 

more severely affected FRDA mice. This may consist of performing studies that either use 

the current FRDA model, but with mice that are much older and displaying a potentially 

more significant phenotype, or else use a model with an earlier phenotype, as yet to be 

developed. 
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5.1 – Introduction 

DNA methylation at CpG dinucleotides and histone modifications control accessibility 

of chromatin to the core transcriptional machinery and play an essential role in determining 

the activation state of genes. An array of post-translational histone modifications are known 

to occur at the N-termini of histone polypeptides, also known as histone tails. To date, more 

than 60 different modifications have been detected and these include acetylation, 

methylation, ubiquitylation, phosphorylation, and sumoylation (Table 5.1), all of which can 

serve as epigenetic tags (reviewed by Kouzarides 2007). Although most of these 

modifications remain poorly understood, there has been great progress in recent years, 

particularly in the understanding of methylation and acetylation roles in transcriptional 

regulation. In addition to roles in transcriptional regulation, histone modifications have been 

implicated in DNA replication, condensation and repair (Kouzarides 2007). 

 

Table 5.1 – Different classes of modifications identified on histones (Kouzarides 2007) 

Chromatin Modifications Residues Modified Functions Regulated * 

   

Acetylation K-ac Trans, Rep, Repli, Cond 
Methylation (lysines) K-me1 K-me2 K-me3 Trans, Rep 
Methylation (arginines) R-me1 R-me2a R-me2s Trans 
Phosphorylation S-ph T-ph Trans, Rep, Cond 
Ubiquitylation K-ub Trans, Rep 
Sumoylation K-su Trans 
ADP ribosylation E-ar Trans 
Deimination R > Cit Trans 
Proline Isomerization P-cis > P-trans Trans 
   

* – Trans = Transcription, Rep = Repair, Repli = Replication, Cond = Condensation. 
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5.1.1 – Histone modifications and transcriptional regulation 

Histone modifications primarily regulate gene expression in two mechanistic ways. 

Firstly, they regulate chromatin structure, making genetic loci more or less accessible to the 

transcriptional machinery. Secondly, they serve a signalling role by integrating responses to 

multiple biochemical signalling cascades and recruit or repel the transcriptional machinery 

and chromatin remodelling complexes (Kouzarides 2007). 

It is generally accepted that histone modifications determine higher-order chromatin 

structure by affecting the contact between different histones in adjacent nucleosomes or 

the interaction of histones with DNA. Of all the known histone modifications, acetylation has 

the most potential to unfold chromatin since it neutralizes the basic charge of the lysine 

(Abel and Zukin 2008). This function is not easy to observe in vivo, but biophysical analysis 

indicates that inter-nucleosomal contacts are important for stabilization of higher-order 

chromatin structure (Abel and Zukin 2008). Thus, any alteration in histone charge will 

undoubtedly have structural consequences for the chromatin architecture. 

Histone acetylation is catalysed by transcriptional coactivators such as CREB-binding 

protein, which possess histone acetyltransferase (HAT) activity (Lee and Workman 2007). 

Specificity of gene regulation is achieved by the recruitment of HATs by transcription factors 

to specific genetic loci, where they locally modify histones. Importantly, HATs interact with a 

large number of transcription factors and thus serve as crucial hubs, integrating the activity 

of multiple signalling cascades (Abel and Zukin 2008). 

The effects of HATs can be reversed by histone deacetylases (HDAC), which remove 

acetyl groups from lysine residues in the histone tails (Lee and Workman 2007). 

Deacetylation of histone proteins shifts the balance toward chromatin condensation and 

thereby silences gene expression. Altogether, mammalian HDACs fall into four main classes 
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(I–IV), with class I and class II HDACs receiving the most attention in the nervous system 

(Carey and La Thangue 2006). Class I HDACs (HDACs 1, 2, 3, and 8) are constitutively nuclear 

proteins and are widely expressed, while class II HDACs (HDACs 4, 5, 6, 7, 9, and 10) are 

expressed in a tissue- and cell-specific manner, and are regulated, at least in part, by 

shuttling between the nucleus and cytoplasm (Bolden et al. 2006). Sequence specificity of 

HDAC action is acquired by recruitment of HDACs to specific genetic loci by repressors, 

corepressors, and methyl-DNA-binding proteins (Abel and Zukin 2008). 

 

5.1.2 – Histone modifications in FRDA 

Recent findings consensually implicate chromatin modifications in the aetiology of 

FRDA (Herman et al. 2006; Greene et al. 2007; Al-Mahdawi et al. 2008). Herman et al. (2006) 

originally investigated the histone acetylation state of the FXN gene in a lymphoblastoid cell 

line derived from a FRDA patient (GAA650/1030) by ChIP, and reported significantly lower levels 

of histone acetylation in H3K9, H3K14, H4K5, H4K8, H4K12 and H4K16 surrounding the GAA 

repeat, when compared to a normal cell line (Figure 5.1a). No significant difference was 

observed on the FXN promoter region. Additionally, the levels of H3K9 mono-, di- and 

trimethylation (me3) for the region upstream of the GAA repeat were also reported to be 

significantly higher in the FRDA cell line, particularly those of H3K9 trimethylation (Figure 

5.1b). Similarly, Greene et al. (2007) reported significantly elevated levels of H3K9 

dimethylation upstream of the GAA repeat in lymphoblasts from four FRDA patients, when 

compared to those of unaffected individuals. 

Investigation of H3 and H4 acetylation and H3K9 methylation modifications was later 

extended by Al-Mahdawi et al. (2008) by ChIP analysis (in the same FXN regions investigated 

by Herman et al. 2006) in autopsy brain tissues from two FRDA patients and two unaffected 
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individuals (Figure 1.12). Overall decreased H3ac and H4ac was confirmed in FRDA brain 

tissue, particularly in the downstream GAA region. All of the six acetylated histone residues 

examined (H3: K9, K14; and H4: K5, K8, K12, K16) showed a GAA-induced gradient of 

comparative acetylation that is highest in the FXN 5’UTR and lowest in the downstream GAA 

region, with the single most altered residue being H3K9. Interestingly, H3K9 also showed 

consistently increased levels of di- and trimethylation in all three of the FXN regions (Al-

Mahdawi et al. 2008). 

 

 

Figure 5.1 – Investigation of histone modifications in the FXN gene by ChIP analysis on a 
FRDA (GM15850) versus a normal lymphoblastoid cell line (GM15851). In FRDA, (a) histone 
acetylation levels at specified lysine residues are generally lower immediately upstream 
and downstream of the GAA repeat, (b) while levels of H3K9 methylation are significantly 
higher upstream of the GAA., when compared to the normal cell line (Herman et al. 2006). 
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5.1.3 – Use of HDAC inhibitors as therapy for FRDA 

Considering the recent findings regarding an altered histone acetylation/methylation 

profile in FRDA, which resulted in a heterochromatin-mediated silencing effect of the FXN 

gene, it was postulated that the reversal/inhibition of these histone modifications could 

represent a potential therapeutic route for FRDA (Figure 5.2) (Herman et al. 2006). 

 

 

Figure 5.2 – HDACi therapy may reverse the heterochromatin-mediated silencing pathway 
in FRDA (Festenstein 2006). 

 

Unlike HATs, HDACs have a rich structural diversity, which confers diversity of function 

and renders HDACs promising targets for drug discovery and therapeutic intervention. 

In recent years there has been great activity in the development of new HDAC 

inhibitors (HDACi) (Carey and La Thangue 2006). HDACi can be classified into four main 

chemical families, the short-chain fatty acids (e.g. sodium butyrate, phenylbutyrate, and 

valproic acid), the hydroxamic acids (e.g. trichostatin A and suberoylanilide hydroxamic acid 

(SAHA)), the epoxyketones (e.g. trapoxin), and the benzamides (Abel and Zukin 2008). Of 

these, the most widely studied are sodium butyrate, phenylbutyrate, trichostatin A, and 

SAHA. 



Chapter 5 – HDACi 106 therapeutic testing in FRDA mice 

 

 
152 

 

Initial studies linked HDACs to a wide variety of human cancers and in some cases 

HDACi treatment was successfully shown to have potent anticancer effects, with remarkable 

tumour specificity (Carey and La Thangue 2006; Minucci and Pelicci 2006). Inhibitors of class 

I and II HDACs are currently in phase I/II clinical trials for cancer therapy and potentially 

cancer prevention (Kuo et al. 2008; Molife et al. 2009). 

Additionally, recent work has revealed that inhibitors of class I and II HDACs represent 

novel therapeutic approaches to treat neurodegenerative disorders, depression and anxiety, 

and the cognitive deficits that accompany many neurodevelopmental disorders (reviewed by 

Abel and Zukin 2008). This therapeutic potential in neurodegenerative disorders was initially 

revealed in Huntington disease (HD), where HDACi therapy was shown to ameliorate the 

characteristic cognitive and motor deficits (Ferrante et al. 2003; Hockly et al. 2003). 

The potential of HDACi use in FRDA therapy was initially investigated by monitoring the 

effects of a range of commercial HDACi on the levels of histone acetylation and FXN 

transcription in a FRDA lymphoid cell line (Herman et al. 2006). This study showed that, of 

the tested compounds, the benzamide-type SAHA derivative BML-210 was the only HDACi to 

significantly increase (~2-fold) the level of FXN mRNA in the FRDA cell line (Figure 5.3b), even 

though other HDACi produced much higher levels of total acetylated histone (Figure 5.3a). 

In this same study, a series of BML-210-derived HDACi were also described, with one 

compound in particular – 4b – showing great promise as a therapeutic agent for FRDA 

(Herman et al. 2006). HDACi 4b was shown to successfully increase the acetylation levels of 

H3K14, H4K5 and H4K12 in the GAA upstream region of FXN. Additionally, it significantly 

increased (~2.5-fold) the FXN mRNA levels in primary lymphocytes derived from individual 

with FRDA, to approximately 80% of that in unaffected individuals and to at least those of 

carriers (Figure 5.4), without apparent toxicity (Herman et al. 2006). 
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Figure 5.3 – Effects of commercial HDACi in a FRDA lymphoid cell line on: (a) the levels of 
H3 and H4 acetylation and (b) FXN mRNA levels (Herman et al. 2006). Compounds used: 
BML-210 (SAHA derivative), SBHA (suberoyl bis-hydroxamic acid), SAHA (suberoylanilide 
hydroxamic acid), TSA (trichostatin A), and VPA (valproic acid). 

 

 

Figure 5.4 – HDACi increase FXN mRNA in primary lymphocytes from individuals with FRDA 
(Herman et al. 2006). 

 

More recently, with the further development of a safe and effective compound for 

FRDA therapy in mind, a derivative of 4b, named 106 (Figure 5.5), was generated by 

RepliGen Corporation (Waltham, USA). 
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Figure 5.5 – Chemical structure of HDACi 106 (Chou et al. 2008). 

 

Recent studies with 106 confirmed the induced hyperacetylation of H3 (K9 and K14) 

and up-regulation of frataxin protein in FRDA lymphoblast cell cultures (Chou et al. 2008). In 

this study the duration of effect after removal of 106 from culture was also investigated, 

revealing that hyperacetylated levels of H3 do not fully return to basal levels until 6-7h after 

the removal of the inhibitor. Regarding the frataxin protein levels, although a 2-fold increase 

was initially observed after 24h of treatment, a far more significant increase in frataxin levels 

was observed 1-2h after removal of 106 (Figure 5.6). 

Further investigations on 106 revealed that the causal increased levels of acetylated 

histones in the FXN gene and the increased frataxin expression result from a slow and strong 

inhibition of class I HDACs (HDAC1, 2, and 3), particularly of HDAC3 (Chou et al. 2008). 

 

 

Figure 5.6 – HDACi 106 prolongs H3 acetylation and increases frataxin protein in FRDA 
lymphoblasts, as determined by Western blotting. GM15850 FRDA lymphoblast cells were 
either untreated (lane 1, marked 0 at top) or treated with 106 at 2 µM concentration for 
24h (lane 2, marked 2µM at top), and then washed to remove the inhibitors. Cells were 
harvested at the indicated times (lanes 3–10, 0–7h) (Chou et al. 2008). 
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5.2 – Aim of study 

Along with histone hypoacetylation, trimethylation of H3K9 is a recognised hallmark of 

heterochromatin. Thus, the reported histone modification states observed in pathology-

associated FXN alleles are consistent with a chromatin-mediated mechanism as the cause of 

gene silencing in FRDA. 

The FXN YAC transgenic mouse model described by Al-Mahdawi et al. (2008) shows 

FRDA patient-comparable epigenetic changes, including an altered DNA methylation profile, 

decreased H3K9 acetylation and increased in H3K9 methylation at the FXN transgenic locus. 

The recently described series of benzamide-type, pimelic diphenylamide HDACi shows 

great promise as therapeutics for FRDA, particularly compound 106, which successfully 

increases levels of histone acetylation at the FXN gene and significantly increases levels of 

frataxin mRNA and protein (Herman et al. 2006; Chou et al. 2008). 

For that reason, the aim of this research project is to examine the effects of 106 in 

FRDA by performing drug trials on the FXN YAC GAA transgenic mice available. 
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5.3 – Materials and methods 

5.3.1 – HDACi 106 origin and drug preparation 

The HDACi 106 was synthesised and made available to us by RepliGen Corporation. The 

drug was provided to us in a solid form as an HCl salt and was stored at 4°C. The different 

diluent solutions were also prepared and provided by RepliGen. Different HDACi 106 

formulations were prepared according to the administration method. 

Formulation A: 330mg of HDACi 106 was initially completely resuspended in 3 ml of 

diluent A (80% PEG400, 0.1M Na-acetate pH5.2), followed by 7ml of diluent B (40% HP-β-CD, 

0.14M Na-acetate pH5.2) resulting in a 30mg/ml HDACi 106 solution. A placebo solution 

(24%PEG400, 28% HP-β-CD, 0.13M Na-acetate pH5.2) was prepared by mixing 3 parts 

diluent A with 7 parts diluent B. The drug/placebo solution was stored at 4°C. 

Formulation B: 330mg of HDACi 106 was initially completely resuspended in 1 ml of 

DMSO (pre-warmed to 37°C), followed by 19ml of diluent C (40% HP-β-CD, 0.1M Na-acetate 

pH5.2)(pre-warmed to 37°C) resulting in a 15mg/ml HDACi 106 stock solution which was 

stored at 4°C. This stock drug solution was then diluted 1:15 in drinking tap water, resulting 

in a 1mg/ml HDACi 106 solution. A placebo solution (0.33% DMSO, 2.5% HP-β-CD, 6mM Na-

acetate pH5.2) was prepared by mixing 1 parts DMSO with 19 parts diluent C, followed by 

1:15 dilution in drinking tap water. 

Formulation C: 330mg of HDACi 106 was initially completely resuspended in 0.25 ml of 

DMSO (pre-warmed to 37°C), followed by 9.75ml of diluent C (40% HP-β-CD, 0.1M Na-

acetate pH5.2)(pre-warmed to 55°C) resulting in a 30mg/ml HDACi 106 solution which was 

stored at 4°C. A placebo solution (2.5% DMSO, 39% HP-β-CD, 0.1M Na-acetate pH5.2) was 

prepared by mixing 1 part DMSO with 39 parts diluent C. 
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5.3.2 – Study design: drug administration and sample collection 

Pre-studies 

Initial short-term pre-studies were performed on the YG8 mouse line, exploring 2 

different delivery routes: sub-cutaneous injection and oral gavage. Mice subjected to this 

treatment were 3-5 months old and treatments consisted of 3 consecutive daily doses of 

HDACi 106 formulation A (30mg/ml) by either: oral gavage (150mg/kg) or sub-cutaneous 

(subQ) injection (150mg/kg and 300mg/kg). Regarding the placebo control mice, a 

corresponding volume of formulation A placebo solution was administered. Samples were 

collected for molecular biology/biochemistry analysis at distinct timepoints for each HDACi 

106 treatment plan: 4h and 24h after the last dose (Table 5.2). 

 

Table 5.2 – HDACi 106 pre study details including the number of mice used in each group 

 
 

Sub cutaneous 
administration 

 
Oral administration 

(gavage) 
         

  150mg/kg  150mg/kg  300mg/kg 

  4h* 24h*  4h* 24h*  24h* 
         

         

Placebo  6 6  5 5  – 
HDACi 106  6 6  5 5  3 
         

* - time of study termination after last dose. 

 

Long-term study – oral administration 

A long-term study was performed on the YG8 line with 15 mice in each drug/placebo 

group. Mice subjected to this treatment were 4-5 months old and the treatment consisted of 

continuous ad libitum administration of HDACi 106 formulation B (1mg/ml), as replacement 

to normal drinking water, for 3 months (Table 5.3). Regarding the placebo control mice, 

formulation B placebo solution was administered in the same way. After the treatment 



Chapter 5 – HDACi 106 therapeutic testing in FRDA mice 

 

 
158 

 

period was completed, a proportion of the mice were immediately culled and sampled for 

molecular biology/biochemistry analysis (8 mice per group) and for histology analysis (2 mice 

per group). The remaining mice (5 mice per group) were kept alive for an additional month 

with normal drinking water. 

 

Long-term study – sub-cutaneous administration 

A long-term study was performed on the YG8 line with 15 mice in each drug/placebo 

group. Mice subjected to this treatment were approximately 4 months old. The treatment 

consisted of continuous sub-cutaneous administration of 150mg/kg HDACi 106 formulation 

C (30mg/ml), 3x per week (i.e. Monday, Wednesday and Friday), for 4.5 months (Table 5.3). 

Regarding the placebo control mice, a corresponding volume of formulation C placebo 

solution was administered. After the treatment period was completed, mice were culled and 

sampled at distinct timepoints: 4h, 24h and 1 month after the last dose. Mice were sampled 

for molecular biology/biochemistry and histological analysis, respectively 4 and 1 mice from 

each distinct group. 

 

Table 5.3 – HDACi 106 long-term study details including the number of mice used per group 

 
 

Sub cutaneous administration  
Oral administration 

(ad libitum in drinking water) 

        

 
 150mg/kg 

4.5 month treatment 
 

150mg/kg 
3 month treatment 

  4h* 24h* 1 month*  0h* 1 month* 
        

        

Placebo  5 5 5  10 5 
HDACi 106  5 5 5  8 5 
        

* - time of study termination after last dose. 
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5.3.3 – Functional studies during drug treatments 

Weight, rotarod performance and locomotor activity measurements (only performed 

for the long-term studies) were taken just before the start of the drug treatments and 

repeated thereafter until the completion of the treatment every 1-1.5 months. 

 

5.3.4 – Investigation of frataxin expression 

FXN mRNA expression investigated by relative Q-RT-PCR 

The FXN levels were determined by relative Q-RT-PCR amplification using SYBR Green 

in a microplate-based real-time PCR system (ABI Prism 7900HT, Applied Biosystems) as 

previously described. Relative Q-RT-PCR analysis was performed using mRNA-specific 

primers for FXN and for Gapdh (endogenous control) (Table 2.2). Relative quantification 

values were determined by the 2-ΔΔCt method using SDS 2.1 software (Applied Biosystems). 

 

Table 5.4 – Number of brain samples investigated for FXN mRNA expression by Q-RT-PCR 

  Pre-studies  Long-term studies 

                

  Oral  SubQ  Oral  SubQ 
              

  4h* 24h*  24h*#  4h* 24h*  0h* 1M*  4h* 24h* 1M* 
                

                

Placebo  5 5  –  6 6  4 4  4 4 4 
HDACi 106  5 5  3  6 6  4 4  4 4 4 
                

* - time of study termination after last dose; # - [300mg/kg] 

 

Frataxin protein expression investigated by Western blotting 

The levels of frataxin protein were determined in brain samples from mice submitted 

to both short- and long-term HDACi 106 studies by Western blot analysis (Table 5.5), as 
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previously described. Frataxin levels were detected with rabbit anti-mature frataxin antibody 

(G. Isaya, Mayo Clinic) and were normalised to the levels of tubulin, detected by using rabbit 

anti-tubulin (Sigma). 

 

Table 5.5 – Number of brain samples investigated for frataxin expression by Western blot 

  Pre-studies  Long-term studies 

           

  SubQ  Oral  SubQ 
          

  4h* 24h*  0h* 1M*  4h* 24h* 1M* 
           

           

Placebo  4 4  4 4  4 4 4 
HDACi 106  4 4  4 4  4 4 4 
           

* - time of study termination after last dose 

 

5.3.5 – Investigation of histone modifications following drug treatment 

The effect of HDACi 106 treatment on histone acetylation levels, particularly H3ac and 

H4ac, was investigated on brain samples from the short- and long-term studies by Western 

blot analysis (Table 5.6), as previously described. H3ac and H4ac levels were detected with 

rabbit anti-H3ac and anti-H4ac antibodies (Upstate) and were normalised to the levels of 

tubulin, detected by using rabbit anti-tubulin (Sigma). 

 

Table 5.6 – Number of brain samples investigated for histone modifications by Western blot 

  Pre-studies  Long-term studies 

           

  SubQ  Oral  SubQ 
          

  4h* 24h*  0h* 1M*  4h* 24h* 1M* 
           

           

Placebo  4 4  4 4  4 4 4 
HDACi 106  4 4  4 4  4 4 4 
           

* - time of study termination after last dose. 
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5.3.6 – Histological analysis 

Brain and DRG paraffin embedded sections were analysed by standard H&E histology 

(Table 5.7). This investigation was performed on the long-term studies and only for the mice 

culled immediately after the end of treatment. 

 

Table 5.7 – Number of DRG samples from long-term studies investigated by H&E histology 

 
 

SubQ  Oral 

     

Placebo  2  2 
HDACi 106  2  2 
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5.4 – Results 

5.4.1 – Preliminary short-term HDACi 106 studies 

Short-term preliminary studies investigating the effect of HDACi 106 on FRDA were 

performed on a small number of YG8 rescue mice (n=3-6, Table 5.2). Mice subjected to this 

treatment were 3-5 months old and treatments consisted of 3 consecutive daily doses of 106 

by either: oral gavage (150mg/kg) or sub-cutaneous (subQ) injection (150mg/kg and 

300mg/kg). Samples were collected for analysis 4h and 24h after the last dose. Treatment 

with the lower dose of 106 (150mg/kg) did not produce any explicit toxicity, but the higher 

dose (300mg/kg) displayed severe signs of toxicity with 5 out of 8 treated mice dying. 

Treatment with 106 (150mg/kg) reduced by approximately half the relative FXN mRNA 

levels in the brain of YG8 mice, 4h after the last dose (Figure 5.7). However, after 24h these 

levels were increased by approximately 20% when compared with placebo samples (Figure 

5.7). These results were obtained with both oral and sub-cutaneous drug administration. 

Treatment with 106 (300mg/kg) reduced the relative FXN mRNA levels to 80% of those 

observed in placebo brain samples, 24h after the last dose (Figure 5.7). 

Sub-cutaneous treatment with 106 (150mg/kg) reduced the relative levels of frataxin 

protein in the brain of YG8 mice to approximately 80% of those observed in placebo brain 

samples, 4h after the last dose (Figure 5.8). These levels were increased 24h after the final 

dose (approximately 20% higher than placebo) (Figure 5.8). 

Additionally, sub-cutaneous treatment with 106 (150mg/kg) increased the total levels 

of H3 and H4 acetylation in the brain of YG8 mice by approximately 30%, 4h after the last 

dose, when compared with placebo samples (Figure 5.9). The levels of H3 acetylation 

remained increased 24h after the final dose (10% higher than placebo), while H4 acetylation 

levels returned to normal placebo levels (Figure 5.9). 
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Figure 5.7 – Relative FXN mRNA levels in YG8 mouse brain following treatment with 106, 
as determined by Q-RT-PCR. (* - n= 3 for [300mg/kg]; error bars: +/- 1 SE) 
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Figure 5.8 – Relative frataxin protein levels in YG8 mouse brain following treatment with 
106 [150mg/kg] (sub-cutaneous administration), as determined by Western blot analysis. 

(n=4; error bars: +/- 1 SE) 
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Figure 5.9 – Relative H3 and H4 acetylation levels in YG8 mouse brain following treatment 
with 106 [150mg/kg] (sub-cutaneous administration), as determined by Western blotting. 

(n=4; error bars: +/- 1 SE) 

 

 

5.4.2 – Long-term HDACi 106 studies 

The effect of HDACi 106 on FRDA was subsequently investigated by performing long-

term studies on YG8 rescue mice (n=15). HDACi 106 (150mg/kg) was administered on a 

continuous base, either orally (ad libitum, as replacement to normal drinking water) or sub-

cutaneously, for periods of 3 and 4.5 months respectively (Table 5.3). 

Placebo and drug-taking mice from both studies were relatively matched for age, at 

approximately 4.7 and 3.8 months of age at the start of the oral and sub-cutaneous studies, 

respectively (Figure 5.10). In both studies, approximately two thirds of the treated animals 

were females (Figure 5.11). 
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The duration of effect was investigated in both studies by keeping a proportion of the 

treated animals (n=5) for an additional period of 1 month on drinking water only, following 

the last dose. These animals were either all females or all males in the oral and sub-

cutaneous studies, respectively (Figure 5.11). 
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Figure 5.10 – Age distribution of mice used in the long-term HDACi 106 studies. Vertical 
dashed line represents the end of drug treatment. * - n=5 for duration of effect studies. 
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Figure 5.11 – Gender distribution of mice used in the long-term HDACi 106 studies. 
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Functional studies 

Sub-cutaneous administration of 106 did not produce overt toxicity, but two deaths 

(out of 15) were observed within the first 1.5 months of the 106 oral administration study. 

At the start of both 106 studies, placebo and drug-taking mice showed similar weight 

distributions (Figure C.1), which significantly increased throughout the studies (Table 5.8). 

Both 106 treatments significantly slowed the natural weight gain (Figure 5.12 and Table 5.8), 

which resumed after treatment withdrawal (Figure 5.13). 
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Figure 5.12 – Weight gain/loss during the HDACi 106 studies. (error bars: +/- 1 SE) 

 

Table 5.8 – ANOVA associated p-values of timepoint and drug treatment effect on the 
various functional measurements during the oral and sub-cutaneous HDACi 106 studies. 

 ANOVA p-values (n=12-15) 

 Oral administration  Sub-cutaneous administration 

Treatment effect on Timepoint  
Timepoint * 
Treatment 

Timepoint 
Timepoint * 
Treatment 

     

Weight <0.001 <0.001 <0.001 0.002 
Rotarod performance 0.003 0.146 0.001 0.080 
Locomotor activity <0.001 0.332 <0.001 0.661 
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Figure 5.13 – Duration of effect on weight gain/loss during the HDACi 106 studies. 
(vertical dashed line represents last dose; error bars: +/- 1 SE) 

 

Regarding rotarod analysis, placebo and drug-taking mice from both studies showed 

similar average performance levels at the start of the study (Figure C.3). No evident drug 

effect was detected when 106 was orally administered, but average performance levels of 

106-taking mice were higher at treatment completion, when compared to placebo (Figure 

5.14). Sub-cutaneous administration had a positive effect on rotarod performance, with 106-

taking mice regularly displaying improved changes in performance throughout the study 

(Figure 5.14). However, the effect of 106 was not significant for either of the two studies 

(Table 5.8). Withdrawal of the drug treatment, for a period of 1 month, did not produce 

noticeable changes in rotarod performance in either study (Figure 5.15). 

Regarding locomotor activity, with the exception of a single mouse which showed 

relatively higher than average levels, the absolute values were normally distributed, 

regularly ranging from 0-15 squares (Figure C.5). However, when the change in activity levels 

was analysed, much greater levels of variability were observed: some mice from the same 

study groups almost doubled their activity while others showed drastic drops in activity 

(Figure C.6). Nevertheless, activity levels of all study groups generally decreased throughout 
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Figure 5.14 – Rotarod performance change during the HDACi 106 studies. (error bars: +/- 1 SE) 
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Figure 5.15 – Duration of effect on rotarod performance during the HDACi 106 studies. 
(vertical dashed line represents last dose; error bars: +/- 1 SE) 

 

the study. Oral administration of 106 slowed the decline of locomotor activity (Figure 5.16). 

However, sub-cutaneous administration of 106 had the opposite effect, further decreasing 

the average levels of locomotor activity, when compared to placebo levels (Figure 5.16). 

Nevertheless, the effect of 106 on locomotor activity was not statistically significant in either 

study (Table 5.8). After drug treatment withdrawal for a period of 1 month, the 106 orally-

treated mice retained their activity levels, as opposed to the corresponding placebo mice, 
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which showed a strong drop in activity (Figure 5.17). Sub-cutaneously treated mice, which 

showed reduced locomotor activity levels throughout the study, ultimately displayed a 

strong increase in these levels 1 month after the treatment withdrawal (Figure 5.17). At this 

stage, these levels were even higher than those of placebo mice. 
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Figure 5.16 – Change in locomotor activity during the HDACi 106 studies. (error bars: +/- 1 SE) 
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Figure 5.17 – Duration of effect on locomotor activity during the HDACi 106 studies. 
(vertical dashed line represents last dose; error bars: +/- 1 SE) 
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Investigation of frataxin expression 

Continuous oral administration of 106 for a period of 3 months resulted in increased 

FXN mRNA levels in the brain of YG8 mice (Figure 5.18). These levels were 20% higher than 

placebo levels (p=0.029; Table 5.9). However, 1 month after treatment withdrawal, these 

levels had dropped to 68% of those observed in placebo brain (Figure 5.18). Sub-cutaneous 

administration of 106 for a period of 4.5 months resulted, at an initial stage (4h after last 

dose), in significantly decreased FXN mRNA levels (77% of placebo, p=0.014), followed by 

significantly increased levels 24h after the last dose (30% higher than placebo, p=0.014) 

(Figure 5.18 and Table 5.9). These levels remained increased in the brain of sub-cutaneously 

treated YG8 mice 1 month after treatment withdrawal (19% higher than placebo) (Figure 

5.18). 

Oral administration of 106 had a similar effect on the frataxin protein levels to the 

findings for FXN mRNA levels: significantly increased levels of frataxin were detected in the 

brain of YG8 mice immediately after treatment (23% higher than placebo, p=0.029), followed 

by decreased levels 1 month after treatment withdrawal (79% of placebo) (Figure 5.19 and 

Table 5.9). Regarding the sub-cutaneous treatment, increased frataxin protein levels were 

determined 4h after the last dose (41% higher than placebo) (Figure 5.19). However, 24h 

after the final dose these levels were approximately the same for 106- and placebo-treated 

mice (Figure 5.19). Finally, the levels of frataxin protein were significantly increased 1 month 

after the last sub-cutaneous dose (70% higher than placebo, p=0.014) (Figure 5.19 and Table 

5.9), suggesting a compensatory effect to potential 106-induced inhibition of frataxin 

expression throughout the study. 
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Figure 5.18 – Relative FXN mRNA levels in YG8 mouse brain following long-term treatment 
with 106, as determined by Q-RT-PCR. 0h, 4h, 24h and 1M indicate the time of sample 
collection, after the last dose. (n=4; * p<0.05; error bars: +/- 1 SE) 
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Figure 5.19 – Relative frataxin protein levels in YG8 mouse brain following long-term 
treatment with 106, as determined by Western blot analysis. 0h, 4h, 24h and 1M indicate 
the time of sample collection, after the last dose. (n=4; * p<0.05; error bars: +/- 1 SE) 
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Table 5.9 – Non-parametric test associated p-values of HDACi 106 treatment effect on 
frataxin expression and H3/H4 acetylation levels during the oral and sub-cutaneous studies. 

 Mann-Whitney test p-values (n=4) 

 Oral administration  Sub-cutaneous administration 

Treatment effect on 0h 1M 4h 24h 1M 

      

FXN mRNA levels 0.029 0.171 0.014 0.014 0.057 
Frataxin protein levels 0.029 0.171 0.057 0.443 0.014 
      

      

H3 acetylation levels 0.171 0.014 0.014 0.443 0.557 
H4 acetylation levels 0.443 0.171 0.057 0.029 0.029 
      

 

Investigation of histone modifications following drug treatment 

Oral administration of 106 caused slightly increased levels of total H3 acetylation in the 

brain of YG8 treated mice (10% higher than placebo). These levels were even higher 1 month 

after treatment withdrawal (41% higher than placebo, p=0.014) (Figure 5.20 and Table 5.9). 

At an initial stage (4h after last dose), sub-cutaneous administration of 106 seems to have 

significantly increased the levels of H3 acetylation in the brain of treated mice (28% higher 

than placebo, p=0.014). However, 24h after the last dose and 1month following treatment 

withdrawal no significant changes in H3 acetylation levels were detected (97% of placebo 

and 5% higher than placebo, respectively) (Figure 5.20 and Table 5.9). 

Regarding total H4 acetylation levels, these were initially unchanged (0h), but 1 month 

after treatment withdrawal a 16% increase was detected in the brain of orally treated mice 

(Figure 5.21). When 106 was administered sub-cutaneously, H4 acetylation levels were 

initially increased in the brain of treated mice: 29% and 37% (p=0.029) higher than placebo 

levels 4h and 24h after the last 106 dose respectively (Figure 5.21 and Table 5.9). However, 

these levels were significantly decreased 1 month after treatment withdrawal (56% of 
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placebo, p=0.029) (Figure 5.21 and Table 5.9), suggesting a 106 duration of effect for less 

than 1 month. 

 

 Oral administration Sub-cutaneous administration 

R
el

at
iv

e 
H

3
 a

ce
ty

la
ti

o
n

 le
ve

ls
 

  

 

Figure 5.20 – Relative H3 acetylation levels in YG8 mouse brain following long-term 
treatment with 106, as determined by Western blot analysis. 0h, 4h, 24h and 1M indicate 
the time of sample collection, after the last dose. (n=4; * p<0.05; error bars: +/- 1 SE) 
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Figure 5.21 – Relative H4 acetylation levels in YG8 mouse brain following long-term 
treatment with 106, as determined by Western blot analysis. 0h, 4h, 24h and 1M indicate 
the time of sample collection, after the last dose. (n=4; * p<0.05; error bars: +/- 1 SE) 
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Histological analysis 

Histological analysis was performed by means of H&E staining of lumbar vertebral 

column sections (Figure 3.11 and Figure 3.12). The levels of DRG neurodegeneration were 

determined by counting the number of cell bodies displaying vacuoles (Figure 3.12). A total 

of 2 mice were investigated from each study group of both 106 studies. The average age of 

the mice was 8 months old. 

In general, very low levels of DRG neurodegeneration were detected in all investigated 

animals, with the average number of DRG neuronal cells displaying vacuoles being lower 

than 1 on most of the analysed samples (Figure 5.22). Analysis of DRG sections from the 

distal lumbar region (VL3+4) revealed slightly higher levels of neurodegeneration (when 

compared to VL1+2), with the exception of sub-cutaneously placebo-treated mice (Figure 

5.22). Regarding a potential drug effect, 106 orally treated mice showed lower levels than 

placebo-treated mice. As far as the sub-cutaneous study is concerned, no discernible effect 

was detected (Figure 5.22). 

 Oral administration  Sub-cutaneous administration 

 

Figure 5.22 – Levels of DRG neurodegeneration following the HDACi 106 treatments. 
(n=2; error bars: +/- 1 SE) 
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5.5 – Discussion 

It is currently generally accepted that FRDA may be caused by a heterochromatin-

mediated silencing effect of the FXN gene (Festenstein 2006). This phenomenon is 

characterized by a differential DNA methylation profile accompanied by decreased histone 

acetylation (H3K9, H3K14, H4K5, H4K8, H4K12 and H4K16) and increased H3K9 

trimethylation flanking the GAA repeat (Herman et al. 2006; Greene et al. 2007; Al-Mahdawi 

et al. 2008). 

Herman et al. (2006) originally described the use of a particular class of HDACi in order 

to target such chromatin modifications. In fact, treatment of FRDA patient lymphocytes with 

a particular HDACi (4b) successfully increased the levels of acetylation at H3K14, H4K5 and 

H4K12 surrounding the GAA repeat. In turn, this resulted in 2.5 to 3-fold increases in FXN 

mRNA levels (Herman et al. 2006). 

The fact that the FXN YAC GAA mouse model described by Al-Mahdawi et al. (2008) 

exhibits epigenetic modifications similar to the ones observed in FRDA patients suggested 

that such mice would be ideal for the in vivo investigation of such HDACi-based therapeutic 

approaches for FRDA. 

Therefore, preliminary short studies were performed by administering 3 consecutive 

daily doses of HDACi 106 (4b derivative) to YG8 rescue mice. While oral and sub-cutaneous 

administration of 150mg/kg 106 showed no signs of toxicity whatsoever, oral administration 

of 300mg/kg 106 resulted in a very high death rate (5 in 8 treated mice). This suggested that 

special considerations should be taken in the monitoring of potential adverse events, rather 

than simply investigating the drug’s efficiency in modifying histone acetylation levels and 

regulating frataxin expression. 
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Oral and sub-cutaneous administration of 150mg/kg 106 had similar effects on frataxin 

expression. The levels of both FXN mRNA and frataxin protein were initially reduced (4h 

after dose) in the brain of YG8 rescue mice, but afterwards (24h after last dose) increased 

levels were detected, when compared to placebo. Curiously, this initial frataxin reduction 

was associated with considerably increased total levels of both H3 and H4 acetylation in the 

brain of YG8 mice. Then 24h after dosing, when the frataxin levels were increased, histone 

acetylation levels were reduced to either marginally increased (H3ac) or normal (H4ac) 

levels. However, the histone acetylation levels that were measured are general and not 

specific for the FXN locus. Therefore, histone acetylation at the FXN locus may in fact be 

decreased. This could be investigated by future ChIP experiments. 

Nonetheless, these preliminary studies indicate that 106 successfully crossed the 

blood-brain barrier, caused global H3 and H4 acetylation changes in the brain and eventually 

increased frataxin expression levels in FRDA-associated FXN alleles. However, the results also 

suggested that an initial frataxin inhibitory mechanism must be activated soon after 106 

dosing. 

Following from these encouraging findings, long-term studies were performed in order 

to investigate the effect of extended oral and sub-cutaneous administration of 150mg/kg 

106. Sub-cutaneous administration produced no overt toxicity, but two deaths (out of 15) 

were observed when the drug was administered ad libitum in drinking water. It is possible 

that this was a result of drug toxicity, since no deaths were observed in the placebo group. 

However, before dying, these mice refused to drink either the 106 or the placebo solution, 

but would happily drink plain water. Therefore, the implication is that these mice probably 

died of dehydration due to the use of an unacceptable drug vehicle, which should not be 

used for ad libitum oral therapy in future. 
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Weight gain in 106 treated mice was significantly decreased throughout both studies 

when compared to placebo. Additionally, sub-cutaneously treated mice showed improved 

rotarod performance levels, suggesting a potentially neuroprotective effect of the drug. 

However, such improvement was not statistically significant. In fact, no statistically 

significant improvements were observed for either the rotarod performance or locomotor 

activity studies. This lack of statistical significance does not negate the therapeutic ability of 

106 for FRDA, and is probably explained by the mild severity of the FRDA-associated 

phenotype displayed by YG8 rescue mice. 

Additionally, the neuroprotective potential of extended 106 administration was also 

investigated by histological analysis of lumbar DRG. However, the observed levels of DRG 

neurodegeneration in treated and untreated mice were so insignificant that it would be 

inappropriate to make any interpretation. Consequently, as previously mentioned in Chapter 

4, this implies that the presence of vacuoles in DRG cell bodies of YG8 mice as an FRDA-

associated pathological phenotypic trait needs to be re-evaluated. 

Regarding frataxin expression levels, these were only investigated in brain samples and 

different results were obtained with oral and sub-cutaneous 106 administration. Oral 

administration resulted in significantly increased levels (approximately 20% higher) of both 

FXN mRNA and frataxin protein levels immediately after treatment termination. This 

suggested that 106 treated YG8 mice were regularly expressing 20% more frataxin in the 

brain throughout the 3 months treatment period. 

Regular sub-cutaneous administration of 106 over a period of 4.5 months had a similar 

effect on frataxin mRNA expression levels as initially observed in the short-term preliminary 

studies: the levels of FXN mRNA were initially (4h) significantly decreased but then 

significantly increased 24h after the last dose (30% increase). However, long-term treatment 
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did not cause a reduction of frataxin protein levels shortly after dosing, as opposed to what 

had been observed in the pre-studies. In fact, 4h after sub-cutaneous dosing the levels of 

frataxin protein were increased by 40%. This was probably residual frataxin found at higher 

levels due to the increased expression resultant from the previous dose. However, the 

reduced levels of FXN mRNA transcription observed shortly after dosing seem to have had an 

effect on protein levels 24h later, where frataxin levels had reduced to normal values. 

As previously mentioned for the preliminary studies, this negative effect on FXN 

transcription shortly after 106 administration may be caused by an inhibitory mechanism 

that is triggered by the sudden increase in the drug concentration present in the organism. 

This yet to be investigated mechanism seems to be related to the significantly increased 

levels of total H3 acetylation initially found in the brain 4h after dosing. This theory gains 

strength from the fact that 24h later, when FXN mRNA levels were found significantly 

increased, the level of total H3ac had decreased to normal levels. 

A possible explanation for this phenomenon may be linked to the specificity and 

different mechanisms of HDAC inhibition exhibited by 106. Recent investigations suggest 

that 106 has a slow and strong inhibition of class I HDACs (HDAC1, 2, and 3), but particularly 

of HDAC3 (Chou et al. 2008). Therefore, it is possible that 106 may initially inhibit the 

different class I HDACs, but later exhibits its preferential affinity to HDAC3. At first, this could 

translate into increased global H3ac and H4ac, later followed by more localised histone 

modifications. These initially increased total levels of H3ac and H4ac could simultaneously 

increase the expression of multiple genes, therefore potentially overstretching the 

transcription machinery. Alternatively, generalised increased H3ac and H4ac levels could be 

responsible for the up-regulation of an, as yet unknown, FXN negative regulator. In support 

of such hypotheses, recent reports have indeed described HDACi-induced down-regulation 
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of specific genes within a global increase in histone acetylation levels (Reid et al. 2005; Rada-

Iglesias et al. 2007). 

This aspect of 106 treatment needs to be further investigated since a momentary 

reduction in frataxin levels could have detrimental effects that may ultimately overpower 

any therapeutic effect caused by a subsequent rise in frataxin. 

Treatment withdrawal had contrasting effects between the oral and the sub-cutaneous 

treatments. A detrimental effect was observed 1 month after oral administration was 

interrupted since both frataxin mRNA and protein levels were considerably reduced. On the 

other hand, the levels of FXN mRNA were still increased by approximately 20% 1 month after 

the last sub-cutaneous 106 injection, and most surprisingly, frataxin protein levels were 70% 

higher than in placebo. Again, these contrasting results seem to be associated with the levels 

of total H3ac and H4ac. While 1 month after interruption of oral treatment the reduced 

frataxin levels were accompanied by increased total histone acetylation (particularly H3ac), 

the significantly increased levels of frataxin 1 month after sub-cutaneous treatment 

interruption were associated with normal levels of total H3ac and significantly reduced total 

H4ac levels (approximately 50%). 

The reason for these opposing treatment interruption reactions could be related to the 

fact that during the oral treatment 106 was being administered in a much more constant 

fashion than when sub-cutaneously injected: when administered via drinking water the 

levels of 106 should have always been found in the organism at a steady concentration, 

while when sub-cutaneously injected the mice experienced cycles of high 106 concentration, 

peaking immediately after dosing, followed by a gradual concentration decrease. 

Hypothetically, the constant exposure to 106 in the 3 months oral study could have induced 

a drug dependence, particularly in the CNS, and following interruption of treatment a 
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withdrawal effect occurred, which was still evident 1 month later. On the other hand, the 

concentration fluctuation of 106 throughout the study associated with sub-cutaneous 

administration could have allowed for plasticity to be retained. 

In summary, although sub-cutaneous 106 administration could momentarily result in 

the higher levels of frataxin expression, oral administration of 106 seems to have had a more 

consistent effect on brain frataxin levels, regularly increasing them by 20%. Additionally, 

total H3ac and H4ac changes were detected, suggesting that 106 may mediate its effect on 

frataxin expression by modulating acetylation levels of H3 and H4. However, since the 

analysis performed only investigated total H3ac and H4ac levels, it is inappropriate to assert 

that 106 facilitated FXN expression by specifically targeting H3 and H4 residues in FRDA-

associated FXN alleles. Therefore, further investigation should be performed to characterize 

the histone modifications in the FXN gene following extended 106 treatment. To begin with, 

ChIP analysis using antibodies specific for individual histone modifications (eg. H3K9ac, 

H4K12ac and H3K9me3) should be performed. Additional analysis of DNA methylation 

alterations should also be carried out either by “bisulfite sequencing” or “methylscreen” 

approaches. 

Nevertheless, a recently reported in vivo study where 150mg/kg 106 was sub-

cutaneously administered to KIKI FRDA mice (both alleles of Fxn gene contain GAA230 

inserted in intron 1) for 3 consecutive days confirmed the ability of 106 to specifically 

increase the acetylation levels at H3K14, H4K5, H4K8 and H4K16 in a region just upstream of 

the GAA repeat (Rai et al. 2008). This study also reported increased frataxin protein levels in 

the brain and elevated FXN mRNA levels in the brain, cerebellum and heart of treated KIKI 

mice, concurring with the results obtained with the YG8 rescue mice. 
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Despite the encouraging potential of 106 to successfully increase frataxin expression it 

is of major importance to determine the specificity of HDACi to the FXN gene. Recent 

investigations have determined that 106 has a slow and strong inhibitory effect on class I 

HDACs, particularly on HDAC3 (Chou et al. 2008). Nevertheless, it is possible that specifically 

inhibiting HDAC3 may have significant effects on the expression of genes other than FXN, 

which in turn could have a potentially negative outcome. For that reason, it seems critical to 

perform microarray analysis of treated samples. 

Additionally, some considerations should be taken into account for future studies with 

106. For instance, administration of lower 106 doses should be experimented in an attempt 

to avoid the negative effect on frataxin expression observed shortly after sub-cutaneous 

administration of 150mg/kg 106. To compensate for this reduction, maybe more frequent 

dosing should be performed. Alternatively, taking into the account that the effect of 106 was 

at its peak 1 month after the last dose, more widespread dosing sessions may be more 

beneficial. On the other hand, in an attempt to circumvent the initial negative effect of 106, 

further drug development should also be considered. As far as this is concerned, particular 

attention should therefore be directed at developing a slow-releasing formulation. 

In reality, novel formulations of 106 are currently being developed in order to 

potentially improve specificity and potency (Hu et al. 2009). As a result, a derivative of 106 

(HDACi 136) has been recently generated. HDACi 136 is currently being investigated in Wt 

and YG8 rescue mice (C. Sandi, personal communication).  

Finally, the fact that the GAA tract is capable of solely inducing the FRDA-associated 

epigenetic modifications (Saveliev et al. 2003; Rai et al. 2008; Soragni et al. 2008) suggests 

that for future in vivo studies the use of a model containing larger GAA repeats is of 

paramount importance.                                                                                                                          .



 

 

 
182 

 

 

Chapter 6 – Analysis of CTCF binding to the FXN gene in FRDA



Chapter 6 – Analysis of CTCF binding to the FXN gene in FRDA 

 

 
183 

 

6.1 – Introduction 

Recent advances in studying long-range chromatin interactions have shifted focus from 

the transcriptional regulation by nearby regulatory elements to recognition of the role of 

higher-order chromatin organization within the nucleus. These advances have also 

suggested that CCCTC-binding factor (CTCF), a known chromatin insulator protein, may play 

a central role in mediating long-range chromatin interactions, directing DNA segments into 

transcription factories and/or facilitating interactions with other DNA regions (Filippova 

2008). Several models that describe possible mechanisms for multiple functions of CTCF in 

establishment and maintenance of epigenetic programs are now emerging.  

Epigenetics plays an important role in normal development and disease. CTCF 

involvement in multiple aspects of epigenetic regulation, including regulation of genomic 

imprinting and X-chromosome inactivation, has been well established (Reik 2007). Emerging 

evidence also points to the role of CTCF deregulation in the epigenetic imbalance in cancer 

(Recillas-Targa et al. 2006). More recently, CTCF was found to play a role in regulation of 

noncoding transcription and establishing local chromatin structure at the repetitive 

elements in mammalian genomes (Cho and Tapscott 2007; Libby et al. 2008), suggesting a 

new epigenetic basis for several repeat-associated genetic disorders, including FRDA. 

 

6.1.1 – CTCF, the multivalent factor 

CTCF is a widely expressed 11-zinc finger (ZF) nuclear protein originally identified as a 

transcription factor that binds to the avian and mammalian MYC promoters (Lobanenkov et 

al. 1990). The 11-ZF DNA-binding domain of CTCF consists of 10 C2H2 type of ZFs and 1 C2HC 

ZF (Ohlsson et al. 2001) (Figure 6.1). CTCF was initially called the multivalent factor due to its 
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ability to bind to diverse and unusually long DNA sequences (50bp) by using different 

combinations of its individual ZFs (Filippova et al. 1996). 

 

 

Figure 6.1 – Structural features of CTCF. This schematic illustrates the molecular basis for 
the multivalent DNA-sequence specificity mediated by different sets of ZFs. The complete 
amino acid sequence of the wild-type human CTCF protein is schematically drawn to show 
the DNA binding domain composed of 10 C2H2-class and 1 C2HC-class Zn fingers. 
Functionally significant sites for CKII phosphorylation and a putative SH3-binding motif are 
also depicted (Klenova et al. 2002). 

 

CTCF is remarkably evolutionarily conserved among vertebrates, exhibiting 100% 

identity of amino acid sequences within the 11-ZF DNA-binding domains of avian and human 

CTCF proteins (Filippova et al. 1996; Burke et al. 2002). However, despite this strict 

evolutionary conservation, there appears to be considerable flexibility inherent in the CTCF 

DNA‐binding domain, enabling it to bind to evolutionarily divergent target sequences 

(Filippova et al. 1996). 

CTCF has been shown to function both as a classical transcription factor (Klenova et al. 

1993; Filippova et al. 1996; Vostrov and Quitschke 1997) and as a chromatin insulator that 
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does not directly regulate gene expression, but instead blocks functional communication 

between a promoter and surrounding enhancers and/or silencers (Bell et al. 1999; Bell and 

Felsenfeld 2000; Hark et al. 2000; Kanduri et al. 2000) (Figure 6.2). 

 

 

Figure 6.2 – Multiple functions of CTCF in gene regulation are thought to be at least partly 
mediated by the multiple sequence specificity of CTCF (Filippova 2008). (A) For a subset of 
CTCF target sites, CTCF was shown to function as a classical transcription factor that 
activates or represses transcription of its target genes. (B) CTCF also binds to all known 
vertebrate insulators and functions as a chromatin insulator protein that does not directly 
affect transcription but instead prevents interaction between a promoter and nearby 
enhancers or silencers, thereby preventing inappropriate activation or silencing of the 
genes and establishing independently regulated chromatin domains. 

 

In this latter case, CTCF functions as a chromatin insulator protein that binds all known 

vertebrate insulators and prevents inappropriate activation or silencing of genes by 

neighbouring regulatory elements, thereby establishing independently regulated chromatin 

domains. Initially, the CTCF‐mediated insulator was characterized at the chicken β‐globin 

locus (Bell et al. 1999). Enhancer blocking activity of the CTCF site within the HS4 insulator at 

this locus was found to be separable from the barrier function responsible for the 

prevention of heterochromatin spreading (Recillas-Targa et al. 2002; West et al. 2002). Later, 

CTCF was found to bind to a differentially methylated region (DMR) upstream of the H19 
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gene and mediate insulator activity by blocking access of Igf2 to an enhancer shared with 

H19, resulting in the lack of Igf2 expression from the maternal allele (Bell and Felsenfeld 

2000; Hark et al. 2000; Kanduri et al. 2000). These studies also showed that CpG methylation 

inhibits CTCF binding and allows Igf2 expression from the paternal allele. Therefore, 

differential methylation of CTCF‐binding sites in the Igf2/H19 locus likely accounts for the 

parent of origin‐specific imprinting that occurs at this locus.  

Remarkably, in addition to the fact that DNA methylation prevents CTCF binding, CTCF 

was also shown to prevent spreading of DNA methylation and play a critical role in 

maintaining methylation‐free zones (Schoenherr et al. 2003; Fedoriw et al. 2004; Lewis and 

Murrell 2004; Pant et al. 2004; Filippova et al. 2005; Engel et al. 2006). Taken together these 

data suggested a dual function for CTCF insulators that, in addition to enhancer blocking, 

prevents spreading of methylation and therefore protects nearby promoters from epigenetic 

silencing (Figure 6.3). 

 

 

Figure 6.3 – CTCF binding prevents CpG methylation, and CpG methylation prevents CTCF 
binding (Filippova 2008). (A) CTCF was shown to prevent spreading of CpG methylation 
and maintain methylation-free zones suggesting a dual function for CTCF insulators that, in 
addition to enhancer blocking, protect nearby promoters from silencing by keeping them 
free of DNA methylation. (B) CpG methylation prevents CTCF binding to CpG‐containing 
CTCF target sites. Black circles depict methylated CpGs, and open circles, unmethylated 
CpGs. 
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6.1.2 – CTCF function and repetitive elements 

Chromatin organization of repetitive elements 

Recent evidence suggests that CTCF may play a role in the regulation of noncoding 

transcription and establishing local chromatin structure at several disease‐associated repeat 

loci. This suggests that the expansion of repeats may interfere with a normal function of 

CTCF at these loci and therefore providing a new epigenetic basis for several 

repeat‐associated genetic disorders (Filippova et al. 2001; Cho et al. 2005). 

Epigenetic profiling of repetitive elements in mammalian genome revealed strong 

correlation between tandem repeats, bidirectional transcription of noncoding RNAs, histone 

H3 lysine 9 methylation, and DNA methylation, suggesting that tandem repeats and 

double‐stranded RNA (dsRNA) may play a role of primary triggers for stable 

repeat‐associated repressive chromatin imprints (Martens et al. 2005). According to the 

current model of heterochromatin formation at repetitive elements, bidirectional 

transcription across repeats would induce formation of dsRNA, which in turn would result in 

recruitment of repressive chromatin modifications and DNA methylation to the repeat locus 

(Martens et al. 2005; Talbert and Henikoff 2006). 

The role for CTCF insulators in establishing the local chromatin structure at repetitive 

elements was initially revealed by studies at the myotonic dystrophy type 1 (DM1) locus 

(Filippova et al. 2001; Cho et al. 2005). DM1 is a dominantly inherited disease caused by a 

CTG expansion in the 3’UTR of the DMPK gene (Otten and Tapscott 1995). CTCF-binding sites 

were found to flank the CTG repeat and form a methylation-sensitive chromatin insulator at 

the DM1 locus (Filippova et al. 2001). Further analysis demonstrated that the CTG repeat on 

the wild‐type allele is characterized by localized repressive histone modifications that are 

restricted to a CTG‐containing nucleosome flanked by CTCF sites and surrounded by active 
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chromatin. Mutations of CTCF-binding sites (inhibiting CTCF binding) led to the spreading of 

these repressive modifications. Consistently, the expanded allele in congenital DM1 was 

associated with the loss of CTCF binding, spread of heterochromatin, and regional CpG 

methylation (Cho et al. 2005). 

In agreement with the current model for the role of bidirectional RNA transcripts in 

heterochromatin formation at repetitive elements, an antisense transcript overlapping the 

CTG repeats at the DM1 locus was characterized and shown to be processed into small 

(21‐nucleotide) RNA fragments. CTCF restricted the extent of the antisense transcript at the 

CTG repeat and prevented spreading of the repressive chromatin marks recruited to the 

locus, possibly due to siRNA‐mediated transcriptional repression (Cho et al. 2005) (Figure 

6.4). 

Consistent with this model, the function of CTCF in regulation of noncoding transcripts 

has been proposed in the context of CTCF interaction with the largest subunit of RNA 

polymerase II, an essential component of the transcriptional machinery (Chernukhin et al. 

2007). In addition, it was demonstrated that a single CTCF target site can initiate 

transcription of the reporter gene (Chernukhin et al. 2007). This raises an attractive 

possibility of the dual role for CTCF sites surrounding repeats to both trigger 

heterochromatin formation, through the ability to initiate bidirectional transcription at 

repetitive elements, and to prevent its spreading by limiting the extent of the transcripts by 

stalling RNA polymerase II (Filippova 2008). 

Besides DM1, CTCF sites have already been identified flanking trinucleotide repeats at 

other disease‐associated loci, including: Huntington disease (HD); spinocerebellar ataxia 

(SCA) types 2, 7 and 8; dentatorubral-pallidoluysian atrophy (DRPLA); and fragile X mental 

retardation (Filippova et al. 2001; Ladd et al. 2007; Libby et al. 2008), suggesting a 
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widespread function for CTCF in regulation of noncoding transcription and establishing local 

chromatin structure at multiple repeat-associated loci in the genome. 

 

 

Figure 6.4 – CTCF role in establishing local heterochromatin structure at repetitive 
elements (Filippova 2008). (A) CTCF insulators flank repetitive elements in the genome. 
CTCF restricts the extent of the bidirectional transcript across repeats and prevents 
spreading of the repressive chromatin marks recruited to the locus, due to dsRNA-
mediated transcriptional repression (Cho et al. 2005). (B) Loss of CTCF binding is 
associated with the spread of heterochromatin and regional CpG methylation (Cho et al. 
2005). In the model for dsRNA-mediated heterochromatin formation at repetitive 
sequences, bidirectional transcription across repeats forms dsRNA, which in turn recruits 
histone methyltransferases to methylate H3K9 (gray pentagons), providing a binding site 
for the heterochromatin protein HP1. HP1 binding further promotes heterochromatin 
formation through recruitment of DNA methyltransferases, leading to methylation of CpG 
dinucleotides (black triangles) (Martens et al. 2005; Talbert and Henikoff 2006). 

 

CTCF and trinucleotide repeat instability 

CTCF binding has recently been implicated in the regulation of genetic repeat stability. 

Transgenic mice, carrying SCA7 genomic fragments with CTCF-binding site mutations, were 

used to demonstrate that the loss of CTCF at the binding sites flanking the CAG repeat 

promotes triplet repeat instability, both in the germ line and in somatic tissues. Similarly, 

CpG methylation of CTCF-binding sites produces a comparable outcome (Libby et al. 2008). 
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These findings suggest that CTCF is a trans-acting factor that specifically interacts in a 

methylation-dependent manner with the adjacent cis-environment to prevent hyper-

expansion of disease length CAG repeats. Acquisition of CTCF-binding sites at mutational hot 

spots may therefore represent an evolutionary strategy for insulating noxious DNA 

sequences (Libby et al. 2008). 
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6.2 – Aim of study 

CTCF binding to the FXN gene in FRDA is yet to be investigated. Nevertheless, there are 

various reasons that suggest that CTCF may play a role on the development of FRDA: 

FRDA is a neurodegenerative disorder caused by the hyperexpansion of a GAA repeat 

within intron 1 of the FXN gene, leading to a genetic silencing effect, and culminating in 

reduced levels of the mitochondrial protein frataxin (Pandolfo 2002b). CTCF has been 

reported to regulate gene expression either by functioning as a transcription factor or as a 

chromatin insulator (Bell and Felsenfeld 2000; Filippova et al. 2001). 

Recent studies suggest that the silencing effect in FRDA may be via a heterochromatin-

mediated effect (Saveliev et al. 2003). Heterochromatin hallmarks such as reduced levels of 

histone H3 and H4 acetylation, accompanied by increased H3K9 trimethylation, are 

particularly noticeable in FRDA immediately upstream and downstream of the expanded 

GAA repeat tract (Herman et al. 2006; Al-Mahdawi et al. 2008). CTCF has been identified 

flanking trinucleotide repeats at various disease-associated loci, constraining the 

heterochromatic region to the repetitive element, thereby preventing the spreading of these 

repressive modifications (Filippova et al. 2001; Cho et al. 2005). 

Additionally, CTCF has been specifically implicated in the regulation of CAG repeat 

instability in SCA7 (Libby et al. 2008). FRDA is also characterized by GAA somatic and 

intergenerational instability. This instability is positively correlated with the size of the 

repeat (Sharma et al. 2002). 

The frequent distribution of CTCF-binding sites throughout the genome (Kim et al. 

2007), as well as the multiple functions of CTCF described above, suggest that CTCF may 

indeed play a role on the development of FRDA. For that reason the aim of this study is to 

investigate such relationship. 
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6.3 – Materials and methods 

6.3.1 – Identification of potential CTCF-binding sites in the FXN gene 

In silico screening 

A 40kb region spanning in entirety the FXN gene (chromosome 9: 71,649,744bp to 

71,689,537bp) (NCBI 2009), was initially screened for potential CTCF-binding sites using a 

bioinformatics web tool designed by Klenova and colleagues at the University of Essex, 

available from <http://www.essex.ac.uk/bs/molonc/spa.htm> (Klenova 2007). 

Subsequently, following the publication of a CTCF-binding site database (CTCFBSDB) – 

a collection of experimentally identified and computationally predicted CTCF-binding sites 

(Bao et al. 2008) – a larger region (140kb; chromosome 9: 71,610,181bp to 71,750,180bp) 

(NCBI 2009), comprising the whole FXN gene and including approximately 40kb upstream 

and 60kb downstream of the gene, was also investigated for potential CTCF-binding sites. 

 

6.3.2 – Confirmation of CTCF-binding sites in the FXN gene 

Electrophoretic mobility shift assay (EMSA) 

a) Non-radioactive approach using EMSA kit (Invitrogen): 

PCR products were generated for 2 regions in the imprinted maternally expressed gene 

H19 (chromosome 11): H19 and H19neg (see Table 2.3 for primers used). The former region 

had been shown to contain high levels of CTCF bound to it, while the latter did not show any 

CTCF binding ability (Burke et al. 2005). The PCR products were gel-purified using a 

Geneclean III kit (Bio 101). Binding reactions were performed by incubating 100ng of 

geneclean PCR product with 10μg of HELA cells nuclear extract (Upstate) in a final volume of 

10μl, at room temperature, for 1 hour. For supershift analysis 1μl of anti-CTCF antibody 
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(Upstate) was added to the respective reaction. Samples were then separated by 5% 

nondenaturing PAGE run in 0.5x TBE buffer at 50V. The PAGE gels were stained for DNA with 

SYBR Green and subsequently stained for protein with SYPRO Ruby. Visualization and 

documentation of both stains was performed using a UV-lighted gel documentation cabinet 

(Alpha Innotech). 

b) EMSA using γ-32P end-labelled DNA probes and nuclear extracts: 

H19 and H19neg gene-cleaned PCR products were prepared as described above and 

then γ-32P end-labelled using T4 polynucleotide kinase (Invitrogen) and γ-32P ATP 

(PerkinElmer). Unincorporated radionucleotides were removed using a MicroSpin S-200 HR 

column (Amersham Biosciences). The labelled PCR products were then added to 10μg of 

nuclear extract from normal human cerebellum tissue, in the presence of 1μg of double-

stranded competitor DNA poly(dI-dC) (Sigma Aldrich) in a phosphate-buffered saline (PBS)-

based buffer containing standard PBS with 5mM MgCl2, 0.1mM ZnSO4, 1mM dithiothreitol, 

0.1% Nonidet P-40, and 10% glycerol (Filippova et al. 1996). For supershift analysis 1μl of 

anti-CTCF antibody (Upstate) was added to the respective reaction, and this was replaced 

with equal amounts of either pre-immune serum or anti-H3ac antibody (Upstate) as controls 

for the supershift analysis. Reaction mixtures with a final volume of 10μl were incubated for 

30min at room temperature and then analyzed by 5% nondenaturing PAGE run in 0.5x TBE 

buffer at 100V. Amersham Hyperfilm ECL films (GE Healthcare) were exposed to the vacuum-

dried gels and hand-developed using X-OMAT developer and fixer (Kodak). 

c) EMSA using γ-32P end-labelled DNA probes and full-length recombinant CTCF: 

PCR products were generated for 3 potential CTCF-binding regions identified in FXN: 

5’UTR; upstream; and downstream of GAA (see Table 2.3 for primer used). PCR products of 

the DM1 CTCF-binding sites 1 and 3 described by Filippova (Filippova et al. 2001) were 
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respectively used as positive and negative control regions (see Table 2.3 for primer used). 

The PCR products were gel-purified using a Geneclean III kit (BIO 101) and then γ-32P end-

labelled using T4 polynucleotide kinase (Invitrogen) and γ-32P ATP (PerkinElmer). 

Unincorporated radionucleotides were removed using a MicroSpin S-200 HR column 

(Amersham Biosciences). The labelled PCR products were then added to 0.2μg of CTFC full-

length recombinant protein (Abnova) in the presence of 1μg of double-stranded competitor 

DNA poly(dI-dC) (Sigma Aldrich) in a PBS-based buffer containing 5mM MgCl2, 0.1mM ZnSO4, 

1mM dithiothreitol, 0.1% Nonidet P-40, and 10% glycerol (Filippova et al. 1996). Reaction 

mixtures with a final volume of 10μl were incubated for 30min at room temperature and 

then analyzed by 5% nondenaturing PAGE run in 0.5x TBE buffer at 100V. Amersham 

Hyperfilm ECL films (GE Healthcare) were exposed to the vacuum-dried gels and hand-

developed using X-OMAT developer and fixer (Kodak). 

 

6.3.3 – Determination of CTCF levels in the FXN gene 

Optimization of DNA shearing method using Southern blot analysis 

This experiment was designed in order to determine the best method of shearing the 

DNA for chromatin immunoprecipitation (ChIP) analysis of CTCF levels in the FXN gene. 

Specifically, two previously described DNA fractionation methods for ChIP analysis were 

compared: restriction enzyme digestion (Kang et al. 2002) and sonication (Al-Mahdawi et al. 

2008). Consequently, this experiment consisted of 5 different sample preparations, each one 

starting with 30mg of human normal cerebellum homogenised in cold PBS, in a final volume 

of 1ml: 

1 – Standard DNA extraction and BccI restriction digestion 
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The cells were pelleted by centrifugation at 13K rpm and digested with 0.5mg 

Proteinase K in 400μl of tail digestion buffer, at 65°C overnight. The DNA was then extracted 

using the phenol/chloroform method, followed by ethanol precipitation, and finally 

resuspended in TE buffer. 10μg of DNA was then digested with 20U of BccI (New England 

Biolabs) in the presence of BSA in a final volume of 10μl, at 37°C overnight. 

2 – Simulation of ChIP experiment with no DNA shearing 

DNA-bound proteins were cross-linked to the DNA after incubation at room 

temperature for 20min in 1% formaldehyde (Sigma Aldrich). The cross-linking reaction was 

stopped by adding glycine to 125mM and incubating for 5min at room temperature. The 

cells were pelleted by centrifugation for 5min at 13K rpm, 4°C, and washed 2x with 500μl 

cold PBS. The cells were lysed in the presence of protease inhibitors (Roche) in 250μl of cell 

lysis buffer, for 10min on ice. The nuclei were pelleted by centrifugation for 5min at 5K rpm, 

4°C. The pelleted nuclei were then lysed in the presence of protease inhibitors in 100μl of 

nuclei lysis buffer, for 10min on ice. The cell debris was removed by centrifugation for 30min 

at 13K rpm, 4°C, the DNA collected as the supernatant phase and stored at -20°C. 

3 – Simulation of ChIP experiment with DNA restriction digestion – pre-nuclei lysis 

DNA-bound proteins were cross-linked to the DNA after incubation at room 

temperature for 20min in 1% formaldehyde (Sigma Aldrich). The cross-linking reaction was 

stopped by adding glycine to 125mM and incubating for 5min at room temperature. The 

cells were pelleted by centrifugation for 5min at 13K rpm, 4°C, and washed 2x with 500μl 

cold PBS. The cells were lysed in the presence of protease inhibitors (Roche) in 250μl of cell 

lysis buffer, for 10min on ice. The nuclei were pelleted by centrifugation for 5min at 5K rpm, 

4°C, and washed 2x with 1x restriction digest buffer (New England Biolabs). The pelleted 

nuclei were digested with 100U of BccI (New England Biolabs) in the presence of BSA and 
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protease inhibitors, in a final volume of 100μl, at 37°C overnight. The nuclei were re-pelleted 

as described before, and lysed in the presence of protease inhibitors in 100μl of nuclei lysis 

buffer, for 10min on ice. The cell debris was removed by centrifugation for 30min at 13K 

rpm, 4°C, and the DNA collected as the supernatant phase. 

4 – Simulation of ChIP experiment with DNA restriction digestion – post-nuclei lysis 

DNA-bound proteins were cross-linked to the DNA after incubation at room 

temperature for 20min in 1% formaldehyde (Sigma Aldrich). The cross-linking reaction was 

stopped by adding glycine to 125mM and incubating for 5min at room temperature. The 

cells were pelleted by centrifugation for 5min at 13K rpm, 4°C, and washed 2x with 500μl 

cold PBS. The cells were lysed in the presence of protease inhibitors (Roche) in 250μl of cell 

lysis buffer, for 10min on ice. The nuclei were pelleted by centrifugation for 5min at 5K rpm, 

4°C. The pelleted nuclei were then lysed in the presence of protease inhibitors in 100μl of 

nuclei lysis buffer, for 10min on ice. The cell debris was removed by centrifugation for 30min 

at 13K rpm, 4°C, and the DNA collected as the supernatant phase. The DNA was ethanol 

precipitated, resuspended in TE buffer and digested with 100U of BccI (New England Biolabs) 

in the presence of BSA and protease inhibitors, in a final volume of 100μl, at 37°C overnight. 

5 – Simulation of ChIP experiment with DNA shearing by sonication 

DNA-bound proteins were cross-linked to the DNA after incubation at room 

temperature for 20min in 1% formaldehyde (Sigma Aldrich). The cross-linking reaction was 

stopped by adding glycine to 125mM and incubating for 5min at room temperature. The 

cells were pelleted by centrifugation for 5min at 13K rpm, 4°C, and washed 2x with 500μl 

cold PBS. The cells were lysed in the presence of protease inhibitors (Roche) in 250μl of cell 

lysis buffer, for 10min on ice. The nuclei were pelleted by centrifugation for 5min at 5K rpm, 

4°C. The pelleted nuclei were then lysed in the presence of protease inhibitors in 100μl of 
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nuclei lysis buffer, for 10min on ice. The DNA was then sheared by sonicating 5x for 10 

seconds at 21-22db using a sonicator (Soniprep 150). The cell debris was removed by 

centrifugation for 30min at 13K rpm, 4°C, the DNA collected as the supernatant phase and 

stored at -20°C. 

  

TE buffer was added to the cross-linked samples (2-5) to a final volume of 250μl and 

each sample was then split in 3 (A - 50μl, B and C - 100μl): 

A – The sample was stored at -20°C; 

B – Cross-linking was reversed by adding 200μl of ChIP elution buffer and 0.5mg 

Proteinase K, at 37°C for 30min, followed by 65°C overnight; 

C – The sample was ethanol precipitated and the pellet resuspended in 300μl TE 

buffer. Cross-linking was reversed as described above. 

The DNA was then extracted using the phenol/chloroform method, followed by 

ethanol precipitation, and finally resuspended in TE buffer. Approximately 10μg of each 

sample was separated on a 1% agarose 1x TBE midi-gel for Southern blot analysis (see 

detailed method in Chapter 2). The DNA was then transferred to a Hybond N+ membrane 

(Amersham Biosciences) in 0.4M NaOH, overnight. The blot was then washed twice in 3x SSC 

and pre-hybridised in 10ml pre-warmed (65°C) Church buffer, at 65°C for ≥1hr, with gentle 

rotation. A radiolabelled probe was prepared by generating an 186bp PCR product for the 

potential CTCF-binding region identified in the 5’UTR of FXN (see Table 2.3 for primers used). 

The PCR product was gel-purified using a Geneclean III kit (BIO 101) and then labelled with 

32P using the Klenow fragment-based RadPrime DNA labelling system (Invitrogen) and α-32P 

dCTP (PerkinElmer). Unincorporated radionucleotides were removed using a MicroSpin S-

200 HR column (Amersham Biosciences). The Probe was heat-denatured at 98°C for 10min, 
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followed by a 5min incubation on ice, and then added to 10ml of prewarmed (65°C) Church 

buffer. Hybridisation was achieved by adding the probe solution to the blot, followed by 

incubation at 65°C overnight. Amersham Hyperfilm ECL films (GE Healthcare) were then 

exposed to the stringency washed blot and hand-developed using X-OMAT developer and 

fixer (Kodak). 

 

Determination of CTCF levels in the FXN gene using ChIP analysis 

The CTCF levels were investigated at three potential CTCF-binding regions identified in 

the FXN gene: 5’UTR, upstream and downstream of GAA, using normal and FRDA samples 

from human cerebellum. This procedure was adapted from a method previously used to 

investigate histone modifications by ChIP (Al-Mahdawi et al. 2008). CTCF ChIP was 

performed exactly as described in Chapter 2 and relied on the use of an anti-CTCF antibody 

(Upstate). 

Relative Q-PCR amplification was carried out with SYBR Green (Applied Biosystems) in 

an ABI Prism 7900HT real-time PCR instrument (Applied Biosystems) as described in Chapter 

2. Reactions were carried out in triplicates, in a final volume of 20μl containing 12.5pmol of 

each of the respective forward and reverse primers (see Table 2.3 for primers used). Relative 

quantification CTCF values were normalised to input and minus antibody samples, and finally 

determined in relation to a previously described CTCF-binding control region in the human 

H19 gene (Burke et al. 2005). 
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6.4 – Results 

6.4.1 – Identification of potential CTCF-binding sites in the FXN gene 

In silico screening of a 40kb region spanning in entirety the FXN gene using a 

bioinformatics web tool designed by Klenova and colleagues at the University of Essex 

(Klenova 2007) produced a relatively large number of potential CTCF-binding sites, with a 

total of 15 and 12 sense and anti-sense sites respectively (Table 6.1 and Figure 6.5). All sites 

identified were found in non-coding regions. 

 

Table 6.1 – List of potential CTCF-binding sites identified in the FXN gene using a 
bioinformatics tool designed by Klenova and colleagues, University of Essex (Klenova 2007). 

  FXN gene   

 5’ 
5’ 

UTR 
Exon 

1 
Intron 

1 
Exon 

2 
Intron 

2 
Exon 

3 
Intron 

3 
Exon 

4 
Intron 

4 
Exon 

5 
3’ 

UTR 
3’ Total 

               

Sense 1 1 0 4 0 1 0 2 0 6 0 0 0 15 

Anti-sense 0 1 0 3 0 1 0 2 0 4 0 0 1 12 
               

               

Total 1 2 0 7 0 2 0 4 0 10 0 0 1 27 
               

 

 

Figure 6.5 – Distribution of potential CTCF-binding sites identified in the FXN gene. 
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Particular interest was devoted towards 4 of the potential CTCF-binding sites in 3 

regions of the FXN gene because of their location and therefore potential involvement in 

GAA repeat dynamics and the regulation of transcription: 1 sense and 1 anti-sense site in the 

5’UTR; 1 sense site upstream of the GAA repeat; and 1 anti-sense site downstream of the 

GAA repeat (Figure 6.6). 

 

 

Figure 6.6 – Schematic representation of the potential CTCF-binding sites in the FXN gene. 
Orange bands represent sense CTCF-binding sites and purple bands represent anti-sense 
sites. The 3 green bands represent the regions investigated by CTCF ChIP analysis: 5’UTR, 
upstream and downstream of the GAA repeat. Dark grey bands represent the BccI 
restriction sites generating different sized fragments for the 3 regions investigated for 
CTCF: 1329bp, 1230bp and 419bp for 5’UTR, upstream and downstream of the GAA 
repeat, respectively. 

 

6.4.2 – Determination of CTCF levels in the FXN gene using ChIP analysis 

CTCF ChIP analysis was performed on the 3 regions of interest using 3 normal (JM, 

62341 and 62395) and 3 FRDA (HK, MS and CA) cerebellum samples. All 3 FRDA samples 

were homozygous for expanded GAA repeats, with sizes of 750/650, 700/700 and 750/550 

respectively. ChIP analysis revealed that immunoprecipitation with anti-CTCF antibody 

generally produced higher levels of chromatin at all genetic regions investigated when 

compared with the samples precipitated with IgG (minus antibody sample: “-ab”), with the 

exception of the upstream and downstream regions of one cerebellum sample (MS) (Figure 

D.1). 
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CTCF enrichment was determined by subtracting the respective minus antibody 

samples from the CTCF-precipitated samples, followed by normalisation to the input sample. 

Overall, less CTCF enrichment was detected for all FXN regions when compared to the H19 

CTCF-positive region: in normal cerebellum samples the enrichment levels in the 5’UTR, 

upstream and downstream of the GAA repeat regions were 82%, 54% and 43% of H19 

enrichment levels, respectively (Figure D.2). Although the levels of chromatin enrichment 

around the GAA repeat are lower than in the 5’UTR, this difference not statistically 

significant (Table 6.2). 

 

Table 6.2 – Independent samples t-test associated p-values of chromatin enrichment levels 
following CTCF ChIP between the 3 different regions in the FXN gene, determined separately 
for normal and FRDA samples. 

 FXN region p-value 
   

Normal 
5’UTR vs Up 0.389 
5’UTR vs Down 0.228 
Up vs Down 0.454 

   

   

FRDA 
5’UTR vs Up 0.265 
5’UTR vs Down 0.087 
Up vs Down 0.452 

   

Normal, n=4; FRDA, n=6; 

 

Decreased CTCF levels in FRDA-associated FXN gene 

Subsequently, relative CTCF levels were determined by normalising the CTCF-

precipitated values to the respective input and minus antibody samples, and finally 

standardizing with the H19 CTCF-positive region values. In general, lower relative CTCF 

binding was identified for the 3 FXN regions investigated in FRDA-patient cerebellum when 

compared to those from normal individuals: 75%, 47% and 49% of normal values in the 
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5’UTR, upstream and downstream of GAA regions, respectively (Figure 6.7 and Figure D.3). 

However, upon statistical analysis, the lower FRDA-associated CTCF levels were not found to 

be significantly different from the normal-associated levels (Table 6.3). 

 

 

Figure 6.7 – Relative CTCF levels determined in the FXN gene of normal and FRDA 
cerebellum samples. CTCF levels were normalised to input and minus antibody samples, 
and finally determined in relation to a previously described CTCF-binding control region in 
the human H19 gene. (Normal, n=4; FRDA, n=6; error bars: +/- 1 SE) 

 

Table 6.3 – Independent samples t-test associated p-values of relative CTCF levels in the FXN 
gene of normal vs FRDA patients. 

FXN region p-value 

  

5’UTR 0.279 
Upstream of GAA 0.103 
Downstream of GAA 0.079 

  

Normal, n=4; FRDA, n=6; 
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6.4.3 – Confirmation of CTCF-binding sites in the FXN gene by EMSA 

An initial investigation into the ability of CTCF to bind to the investigated regions of the 

FXN gene consisted on a non-radioactive EMSA approach. However, the fact that nuclear 

extracts were used rather than purified CTCF made the interpretation of results very difficult 

and ultimately, unreliable. A second approach consisted of using γ-32P end-labelled DNA 

probes and nuclear extracts. However, supershift analysis was inconclusive. 

Eventually, EMSA was performed using γ-32P end-labelled DNA probes and full-length 

recombinant CTCF. This proved to be a much more convincing approach, since any shift 

observed could only represent an interaction between the DNA probe of interest and CTCF. 

To begin with, the validity of the technique was confirmed by replicating previously 

described results (Figure 6.8), which reported the DM1 CTCF-binding sites 1 and 3 as CTCF 

positive- and negative-binding regions, respectively (Filippova et al. 2001). 

 

CTCF binds to the 5’UTR region of the FXN gene 

EMSA analysis using γ-32P end-labelled DNA probes and full-length recombinant CTCF 

confirmed that CTCF can recognise and bind to the 5’UTR region of the FXN gene, but not to 

the investigated regions upstream and downstream of the GAA repeat in intron 1 (Figure 

6.8). This was demonstrated by the ability of CTCF to form (or not) a high molecular weight 

complex with the DNA probe, therefore shifting the radioactive signal. 

Subsequently to all practical investigations, and following the publication of a CTCF-

binding site database (CTCFBSDB) (Bao et al. 2008), the FXN gene was reinvestigated for the 

presence of CTCF-binding sites. CTCFBSDB consists of a collection of experimentally 

identified and computationally predicted CTCF-binding sites and screening of a larger region 
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FXN DM1-1 DM1-3 

  

5’UTR Upstream Downstream +ve control -ve control 

 Probe +   + + + + + + + + +   

 rCTCF    +  +  +  +  +   

 

 

 
 

DNA + CTCF 
 
 
 
 
 
 
 
 
 
 

unbound 
DNA probe 

 

 

Figure 6.8 – Confirmation of CTCF-binding sites in the FXN gene by EMSA. γ-32P end-
labelled DNA probes separated by PAGE in the presence or absence of full-length 
recombinant CTFC protein. 

 

comprising the whole FXN gene and including approximately 40kb upstream and 60kb 

downstream of the gene, revealed five different sites originally identified by high-throughput 

ChIP-chip analysis: 2 sites in the 5’ flanking region, 2 sites in the 5’UTR, and 1 site in the 3’ 

flanking region of the FXN gene (Figure 6.9). In silico prediction of CTCF-binding motifs in the 

same region using the CTCFBSDB tool resulted in a single site being identified in intron 3 of 

the FXN gene. Further analysis of the 5’UTR sites identified by ChIP-chip analysis confirmed 

that both overlap with the 5’UTR region hereby investigated by EMSA and ChIP analysis. 
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Figure 6.9 – Schematic representation of the CTCFBSDB-identified sites in the FXN gene 
(Bao et al. 2008). Orange and green bands represent the CTCF-binding sites experimentally 
identified by 2 independent high-throughput ChIP-chip analysis. The purple band 
represents the in silico-predicted CTCF-binding site. 
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6.5 – Discussion 

The reported ability of CTCF to regulate gene expression, constrain heterochromatin 

regions, and influence trinucleotide repeat instability suggested that CTCF could play a role 

in the development of FRDA. 

To date, no FRDA research concerning CTCF has been reported. For that reason, an 

initial step consisted on identifying potential CTCF-binding sites in the FXN gene. This was 

initially addressed by performing an in silico screen of the entire FXN gene relying on 

previously identified CTCF motifs. However, this approach seems to have produced an 

unrealistically high number of sites (a total of 27 in a 40kb region) since, for example, 

genome-wide mapping of CTCF-binding sites using a ChIP-chip approach has previously 

shown that CTCF-rich genomic regions never exceeded a density of 60 sites per 2Mb, in the 

human chromosome 11 (Kim et al. 2007). According to this, a 40kb region should not 

normally contain more than one single CTCF-binding site, let alone 27. 

In fact, the effort to computationally identify potential insulators in the human 

genome is still hampered by an incomplete understanding of the DNA-recognition sequence 

of CTCF, with CTCF-binding sites identified so far exhibiting extensive sequence variation and 

lacking specificity for genome-wide prediction of CTCF binding (Ohlsson et al. 2001). 

Looking at the results obtained from this screen, it may seem interesting that all sites 

identified locate to noncoding regions. However, the coding fraction only counted for 1.6% 

of the whole 40kb region analysed. The previously mentioned genome-wide mapping of 

CTCF-binding sites study has reported that CTCF-binding sites are generally very far from 

promoters (average distance of 48kb), with nearly half (46%) of the CTCF-binding sites being 

located in the intergenic regions, 20% near transcription start sites, and 22% and 12% in 

intronic and exonic regions, respectively (Kim et al. 2007). 
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Nevertheless, considering the reported ability of CTCF to function as a transcription 

factor and in view of the situation described at the locus of various trinucleotide repeat-

associated disorders, where CTCF-binding sites were identified flanking the repeat regions, 

particular attention was devoted to the potential binding sites identified in 3 regions of the 

FXN gene: 5’UTR, upstream and downstream of the GAA repeat. 

Preliminary CTCF ChIP analysis of 3 normal and 3 FRDA patients’ cerebellum samples 

indicated that in FRDA lower levels of CTCF are found in these 3 regions of the FXN gene. In 

fact, although not statistically significant, the determined CTCF levels in FRDA were only 

75%, 47% and 49% of normal levels in the 5’UTR, upstream and downstream of GAA regions, 

respectively (Figure 6.7). 

These findings agree with the proposed hypothesis of CTCF’s involvement in FRDA. As 

previously mentioned, CTCF has the ability to directly regulate the expression in cis by 

behaving as a transcription factor (Filippova et al. 1996). Although, the regulation of the FXN 

gene is still poorly understood, with no conclusive promoter region nor associated 

transcription factors identified to date (Greene et al. 2007), the lower levels of CTCF 

observed in the 5’UTR could possibly (and probably only partially) explain the reduced 

expression of the FXN gene observed in FRDA. 

Additionally, the apparent loss of CTCF surrounding the GAA repeat could possibly also 

contribute to this by failing to constrain the heterochromatic region to the repetitive 

element. In fact, this spreading of heterochromatin has been previously described in FRDA-

associated FXN genes, with higher levels of DNA methylation and heterochromatin-

characteristic histone modifications being observed in the region upstream of the GAA and 

even reaching the 5’UTR region of the FXN gene (Greene et al. 2007; Al-Mahdawi et al. 

2008). 
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On a separate note, the lower levels of CTCF surrounding the GAA repeat of FRDA 

patients may be linked to the increased FRDA-associated GAA repeat instability. As 

previously mentioned, the loss of the CTCF-binding sites flanking the CAG repeat at the SCA7 

locus has induced a significant increase in triplet repeat instability (Libby et al. 2008). For 

that reason, these findings suggest that a similar effect may be occurring at the FRDA locus. 

In line with reduced binding of CTCF in the FXN gene of FRDA patients, there have been 

recent descriptions of novel noncoding antisense transcripts that show increased expression 

in FRDA alleles (K. Usdin and S. Bidichandani, personal communications). As previously 

mentioned, CTCF has been shown to restrict the extent of an antisense transcript at the DM1 

locus (Cho et al. 2005). It is generally accepted that expression of noncoding antisense 

transcripts may have a siRNA-mediated transcription repressive effect. As a result, it seems 

logical to consider that the loss of CTCF at the FRDA locus may also result in increased levels 

of antisense transcription, which additionally implicates CTCF in the regulation of FXN 

expression. 

Although such interpretations of the ChIP results may seem plausible and in line of 

what was initially hypothesised, they do not concur with subsequent EMSA analysis that was 

performed to confirm the ability of CTCF to bind to the 3 investigated FXN regions. This 

analysis revealed that CTCF can form a complex with the 5’UTR region, but not with the 

regions upstream and downstream of the GAA repeat (Figure 6.8). 

This finding is somehow contradictory to what was originally observed by ChIP 

analysis, where immunoprecipitation with anti-CTCF antibody generally produced higher 

levels of chromatin at all genetic regions investigated when compared with the samples 

simply precipitated with IgG (Figure D.1), therefore suggesting the presence of CTCF in such 

regions. 



Chapter 6 – Analysis of CTCF binding to the FXN gene in FRDA 

 

 
209 

 

However, it is also true that the level of chromatin enrichment caused by CTCF 

immunoprecipitation was higher at the 5’UTR than in the GAA-flanking regions, with the 

downstream region showing the lowest level of enrichment (Figure D.2), although this 

difference was statistically non significant (Table 6.2). 

A possible explanation for the discrepancy between ChIP and EMSA data is that, since 

the sites investigated are relatively close together (992bp between 5’UTR and GAA upstream 

regions; and 1856bp between 5’UTR and GAA downstream regions), perhaps the method 

used to fractionate the chromatin was ineffective at generating sufficiently distinct 

fragments for each of the regions investigated. In the event of this being true, Q-PCR 

quantification of upstream and downstream regions could actually represent chromatin 

fragments that were only immunoprecipitated with anti-CTCF because they were too large 

and also contained the CTCF-binding site in the 5’UTR region. 

In fact, this hypothesis gained strength when Southern blot analysis of sonicated CTCF 

ChIP samples (following reversal of cross-linking), using a probe specific for the 5’UTR region, 

revealed the presence of some chromatin fragments just exceeding 2kb. 

To address this issue, a restriction digestion-based approach was designed, relying on 

the ability of BccI to specifically cut the chromatin at sites between the FXN regions 

investigated (Figure 6.6). Although BccI restriction digestion of purified DNA confirmed the 

ability to generate distinct chromatin fragments for each of the FXN regions of interest, 

simulation of a ChIP experiment with BccI restriction digestion was unsuccessful. 

Therefore, in future CTCF ChIP experiments, extra attention must be devoted to the 

sonication methodology in order to ensure appropriate chromatin fractionation. This 

assessment must be made after cross-linking reversal. 
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Subsequent to all practical investigations, and following the publication of a genome-

wide CTCF-binding site database (Bao et al. 2008), the FRDA locus was reinvestigated for the 

presence of CTCF. This database reported a total of four distinct experimentally determined 

CTCF-binding sites: 2 sites upstream, 1 site in the 5’UTR, and 1 site downstream of the FXN 

gene (Figure 6.9). Detailed analysis of this 5’UTR site (identified by ChIP-chip analysis) 

established that this is the same region hereby investigated by ChIP and confirmed by EMSA. 

However, this database showed no records of any sites identified nearby the GAA repeat, 

suggesting that indeed they do not exist. 

Finally, despite the scenario of events concerning the presence of CTCF around the 

GAA repeat appearing to be inconclusive at this stage, the existence of a CTCF-binding site at 

the 5’UTR of the FXN gene does seem conclusive. Additionally, although no statistically 

significance was observed, it seems that there is a loss of CTCF in this site in FRDA. 

Therefore, it is reasonable to suggest that CTCF may play a role in the silencing mechanism 

associated with FRDA. 
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Friedreich ataxia is an autosomal-recessive, neurodegenerative disease that primarily 

affects the nervous system and heart. It is a severely debilitating disease that has a major 

influence on the lives of affected individuals. Disappointingly, there currently is no effective 

therapy for FRDA, and the development of a suitable treatment has been strongly hampered 

by an incomplete understanding of FRDA pathogenesis. 

FRDA is mainly caused by a GAA repeat hyper-expansion in intron 1 of the FXN gene, 

which results in decreased levels of the mitochondrial protein frataxin being expressed. It is 

accepted that, via a mechanism yet to be fully understood, such frataxin deficiency results at 

a first instance in a flawed ability to deal with oxidative stress (Chantrel-Groussard et al. 

2001). The antioxidant properties of coenzyme Q10, vitamin E and idebenone suggested a 

potential role for these agents in FRDA therapy. Although recent clinical trials in FRDA 

patients with such agents confirmed improved cardiac function, no significant 

neuroprotective effects were detected (reviewed by Schulz et al. 2009). 

 

Antioxidant therapy investigated in the FXN YAC GAA mouse model 

The reported antioxidant and neuroprotective properties of the cannabinoids CBD and 

THC (Hampson et al. 1998) and the isoindoline nitroxide CTMIO (Gueven et al. 2006) 

suggested a potential use for FRDA therapy. For that reason, in vivo drug trials were 

performed on the YG8 and YG22 FXN YAC GAA transgenic mouse models (Al-Mahdawi et al. 

2006). CBD treatment provided a small protection against oxidative stress and marginally 

improved rotarod performance. On the other hand, treatment with CBD:THC and CTMIO 

produced small detrimental effects on rotarod performance, locomotor activity and protein 

oxidation levels. Additionally, no neuroprotective effect in the DRG was detected with either 

treatment. 
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However, these findings lack statistical significance. This may be due to the mildness of 

the FRDA-associated phenotype displayed by the current FXN YAC GAA-containing mice and 

the lack of a strong demarcation between Wt and FRDA mice, despite the initial reported 

differences (Al-Mahdawi et al. 2006). In fact, in all studies performed (functional, 

biochemical and histological) no significant difference was observed between the FRDA and 

Wt mice. This could be a result of the relatively small GAA repeat currently found in the FXN 

YAC GAA mouse models (maximum size of GAA230), together with changes in the transgenic 

FXN locus and the genetic background of the mice throughout many generations of 

breeding. With this in mind, it should be noted that the initial report by Al-Mahdawi et al. 

(2006) used Wt littermates of predominantly, but not exclusively, C57BL6 background, 

whereas the Wt controls in the present studies were unrelated 100% C57BL6 mice. 

On the other hand, the lack of significant difference may be linked to technical aspects 

associated with the methodology used. For example, a wide variability in rotarod 

performance was observed between mice from the same study groups. The reliability of this 

technique could possibly be improved by distributing more measuring points throughout the 

studies. Additionally, alternative functional studies should be considered, such as beam 

walking assays. In fact, the improved sensitivity of beam walking over rotarod in determining 

motor coordination deficits has been reported (Stanley et al. 2005). Regarding locomotor 

activity monitoring, new methodology is also available which could provide a greater insight 

into the FRDA mouse model phenotype. An example of this consists of an open field activity 

monitoring system equipped with laser beams that automatically and accurately tracks the 

behaviour of the mouse, monitoring values such as ambulatory distance, velocity, vertical 

movements and stereotypic actions. In fact, locomotor characterization of the FXN YAC GAA 



Chapter 7 – General discussion and conclusion 

 

 
214 

 

mouse model is currently being performed using such methodology (C. Sandi, personal 

communication). 

Nonetheless, the development of more severely-affected GAA FRDA mice is crucial for 

future investigations. Potentially, this could be achieved by crossing the currently available 

FXN YAC GAA mice with either different genetic background mice (Lloret et al. 2006), 

mismatch repair deficient mice (van den Broek et al. 2002; Gomes-Pereira et al. 2007; 

Kovtun et al. 2007), or DNA methyltransferase deficient mice (Dion et al. 2008) in an attempt 

to promote GAA instability and therefore obtain FXN YAC mice with increased GAA repeat 

tracts. Such strategies are currently being followed with both YG8 and YG22 lines of FXN YAC 

GAA mouse model (M. Pook, personal communication). Alternatively, a recently generated 

FXN BAC transgenic mouse model that contains an expanded GAA tract (approximately 500 

repeats) could be of use. However, to date no GAA repeat instability and no FRDA-like 

phenotype has been detected in such mice, most likely due to an interrupted GAA tract (J. 

Sarsero, personal communication). 

In summary, the results obtained suggest minimal or no therapeutic potential of CBD, 

THC and CTMIO for FRDA. Any future investigations into the potential therapeutic effect of 

CBD, THC and CTMIO for FRDA should initially rely on in vitro studies, using for example 

FRDA patient-derived cell lines. Only then, assuming promising results, should investigations 

be followed in vivo, preferably making use of a more severely affected FRDA model yet to be 

developed. 

Antioxidants have been used as the first line of attack in FRDA therapy because such 

drug compounds are already widely available and have been shown to be safe. However, the 

use of antioxidants for FRDA therapy is unlikely to be the most effective strategy since it only 
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addresses one of the pathological endpoints, rather than targeting the primary molecular 

defect, which is frataxin deficiency. 

 

HDACi therapy investigated in the FXN YAC GAA mouse model 

More recently, new strategies focusing on increasing frataxin expression have been 

considered for the therapy of FRDA. One strategy is the use of cellular models for high-

throughput screening of small molecules to identify compounds that can increase frataxin 

expression by undetermined mechanisms (Sarsero et al. 2003; Calmels et al. 2009). 

Another strategy takes into account the heterochromatin-mediated silencing effect of 

the FXN gene in FRDA (Saveliev et al. 2003; Herman et al. 2006). Expanded GAA tracts have 

been shown to induce heterochromatin-associated histone modifications such as decreased 

H3ac and H4ac as well as increased H3K9me3, accompanied by a differential DNA 

methylation profile in the surrounding genomic regions (Herman et al. 2006; Greene et al. 

2007; Al-Mahdawi et al. 2008). Therefore, reversing such modifications should render the 

potential to increase frataxin expression in FRDA-associated FXN alleles. 

Herman et al. (2006) have recently described a class of benzamide-type HDACi that 

seems to specifically inhibit these FRDA-associated histone modifications and as a result 

successfully increased frataxin expression in FRDA patient-derived lymphocytes. In fact, one 

such HDACi – 4b – successfully increased the acetylation levels of H3K14, H4K5 and H4K12 in 

the GAA upstream region of FXN and significantly increased the FXN mRNA levels, to 

approximately 80% of that in unaffected individuals (Herman et al. 2006). 

However, such encouraging results call for in vivo confirmation. For that reason, the 

effects of HDACi 106, an improved derivative of 4b, were investigated by performing long-

term drug trials on the available FXN YAC GAA model (Al-Mahdawi et al. 2006). Two distinct 
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delivery routes were investigated for 106: oral ad libitum administration in drinking water 

and sub-cutaneous injections. 

With the exception of sub-cutaneously treated mice, which showed a mild 

improvement in rotarod performance, prolonged treatment with 150mg/kg 106 produced 

no observable effects on the functional parameters investigated, similarly to the previous 

cannabinoid and CTMIO studies. Again, this lack of significance may be due to the mildness 

of the phenotype observed in the FXN YAC GAA mice (Al-Mahdawi et al. 2006). 

However, while the functional phenotype displayed by these mice is very mild, the 

FRDA-associated epigenetic changes in the FXN transgene are rather obvious (Al-Mahdawi et 

al. 2008), allowing for further investigation of the effect of 106 in terms of its ability to target 

histone modifications and ultimately up-regulate frataxin expression. 

Significant changes in global H3ac and H4ac levels were detected in the brain following 

oral and sub-cutaneous treatments with 150mg/kg 106, indicating that the drug is capable of 

crossing the blood-brain barrier. Additionally, the ability of 106 to increase frataxin 

expression was confirmed in the brain of FXN YAC GAA mice. The levels of FXN mRNA and 

frataxin proteins were significantly increased by 20% in the brain of orally treated mice, and 

sub-cutaneous administration resulted in a 30% increase of FXN mRNA levels 24h after 

dosing. Cessation of sub-cutaneous 106 treatment for a period of 1 month produced exciting 

results, exemplified by a 70% increase in frataxin protein levels in the brain and suggesting a 

long-term duration of effect for 106. 

However, sub-cutaneous administration of 150mg/kg 106 produced an initial frataxin 

inhibitory effect 4h after dosing. This negative effect on FXN transcription shortly after 106 

sub-cutaneous administration, caused by some yet to be understood inhibitory mechanism, 

appears to be related to the considerably increased levels of global H3ac and H4ac initially 
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found in the brain soon after dosing. This may be partly explained by the fact that although 

106 preferentially inhibits HDAC3, it is capable of inhibiting other class I HDACs (Chou et al. 

2008). This raises the concern that 106 may be at some point affecting the regulation of 

various genes other than FXN. To address this issue, microarray investigation should be 

followed on brain samples following 106 treatment. 

Additionally, the fact that only global levels of H3ac and H4ac were determined in 

these studies makes it difficult to interpret the 106 effect in terms of the mechanism of FXN 

up-regulation. For this reason, it is of paramount importance to further investigate the effect 

of 106 at the FXN locus by ChIP analysis. Additionally, the DNA methylation profile at the 

FXN locus following treatment with 106 should also be analysed by either bisulfite 

sequencing or methylscreen techniques. 

Recently, a short-term in vivo study also reported the ability of 106 to significantly 

increase the expression of frataxin in the brain (among other tissues) of KIKI mice, by 

specifically increasing H3ac and H4ac at particular residues in a region just upstream of the 

GAA repeat (Rai et al. 2008). 

Overall, the potential of 106 to increase frataxin expression in the brain of FXN YAC 

GAA treated mice has been confirmed, but at the same this raised concerns regarding 

dosing. In an attempt to overcome this issue, ongoing investigations are focusing on the 

effect of a 106 derivative – 136 – which is being administered to FXN YAC GAA mice at a 

lower concentration, but with more regular dosing. 

Additionally, both in vivo studies performed so far have only confirmed 106 up-

regulation of frataxin in the presence of relatively small GAA repeat tracts (maximum of 

230), and although in vitro studies suggest that 106 can indeed up-regulate frataxin in the 

presence of larger GAA expansions (maximum of 650) (Herman et al. 2006) it is still 
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necessary to investigate the potential of 106 in much larger GAA-containing FRDA models in 

vivo. As previously discussed, such models could arise from breeding the current FXN YAC 

GAA model against a variety of genetic backgrounds or DNA repair deficient mice, 

consequently resulting in spontaneous GAA expansions. Alternatively, the FXN BAC GAA 

(interrupted GAA500 tract) model could be used (J. Sarsero, personal communication). 

However, an FRDA-associated epigenetic phenotype is yet to be described in these mice. 

 

Promising alternative therapeutic strategies 

HDACi-based treatment, in particular the benzamide group of HDACi described above, 

is currently the most promising therapy for FRDA. Nevertheless, a variety of additional 

compounds have the potential to be of therapeutic use for FRDA and should therefore be 

further investigated. 

Biacsi et al. (2008) have recently described the use of SIRT1 (class III HDAC) inhibitors 

such as splitomicin to alleviate the heterochromatin-mediated silencing effect present at the 

Fragile X locus. Sirtinol is another SIRT1 inhibitor (Ota et al. 2006) and therefore should 

similarly hold the potential to target repressive histone modifications. 

Taking into account the increased levels of DNA methylation observed in the 5’UTR 

and upstream of GAA repeat regions of FRDA-associated FXN alleles (Greene et al. 2007; Al-

Mahdawi et al. 2008), suggests the potential use of DNA de-methylating agents such as 

zebularine (Yoo et al. 2004) and 5-AzaC (Baylin 2004) in FRDA therapy. However, the use of 

such drugs may be limited due to their exclusive action on dividing cells and their high levels 

of cytotoxicity. 

A small molecule compound DB221 has been shown to interact with expanded GAA 

repeat tracts and potentially facilitate FXN expression in FRDA (D. Boykin, Georgia State 



Chapter 7 – General discussion and conclusion 

 

 
219 

 

University, personal communication). However, such compounds are in very early stages of 

development and will require many future studies to determine efficacy and toxicity. 

Additionally, the antioxidant agent resveratrol has been shown to up-regulate frataxin, 

as determined by high throughput cellular screening assays (J. Sarsero, personal 

communication). The combination of antioxidant properties with the ability to increase 

frataxin levels could prove doubly beneficical for FRDA therapy. 

The therapeutic potentials of the compounds mentioned above are currently being 

investigated in vitro and in the eventuality of promising findings, research will be followed in 

the FXN YAC GAA mouse model (C. Sandi and M. Pook, personal communications). 

 

Further epigenetic characterization in FRDA 

Although great progress has been made into the understanding of molecular 

mechanisms involved in FRDA, significant aspects remain to be fully clarified, particularly 

those concerning the regulation of the FXN gene and the dynamics of GAA repeat tracts at 

the FRDA locus. 

In an attempt to partially address this, investigations were performed as part of this 

thesis to ascertain the potential involvement of the DNA insulator protein CTCF in FRDA. 

CTCF has been reported to regulate gene expression either by functioning as a transcription 

factor or as a chromatin insulator (Bell and Felsenfeld 2000; Filippova et al. 2001). 

Additionally, CTCF has been identified flanking trinucleotide repeats at various disease-

associated loci, constraining the heterochromatic region to the repetitive element, thereby 

preventing the spreading of these repressive modifications (Filippova et al. 2001; Cho et al. 

2005). Moreover, CTCF has been specifically implicated in the regulation of CAG repeat 

instability in SCA7 (Libby et al. 2008).  
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Investigation of computationally predicted CTCF-binding sites in 3 regions of the FXN 

gene of particular interest – 5’UTR, GAA upstream and GAA downstream – was performed in 

normal and FRDA patient cerebellum samples. ChIP analysis of CTCF binding to the FXN gene 

revealed FRDA-associated lower levels of CTCF in all 3 of the investigated regions at the FXN 

gene. 

As previously mentioned, the regulation of the FXN gene is still poorly understood, 

with no conclusive promoter region nor associated transcription factors identified to date 

(Greene et al. 2007). However, the reported ability of CTCF to regulate gene expression 

combined with the finding of lower levels of CTCF at the 5’UTR of FXN in FRDA, suggests that 

CTCF may indeed play a role in the regulation of frataxin expression in cis.  

Additionally, Rothe (2008) has recently described a RNA pol II transcriptional pausing 

site in exon 1 of FRDA-associated FXN alleles, supporting the idea of deficient transcription 

elongation as the cause for frataxin deficiency. Rather interestingly, this study also reported 

the presence of CTCF at this pausing site. Although, the possibility that this pausing site 

corresponds to the 5’UTR region herein investigated for CTCF still needs to be ascertained, it 

seems likely that they are indeed the same CTCF-binding region. Therefore it is logical to 

suggest that CTCF may play a role in facilitating transcript elongation at this site and the 

decreased levels of CTCF found in the 5’UTR of FRDA-associated FXN alleles may be 

responsible for the reported RNA pol II transcriptional pausing. 

Recent descriptions of novel noncoding antisense transcripts at the FXN gene that 

show increased expression in FRDA FXN alleles (K. Usdin and S. Bidichandani, personal 

communications) further concurs with the involvement of CTCF in the regulation of frataxin 

expression. CTCF has been shown to restrict the extent of an antisense transcript at the DM1 

locus (Cho et al. 2005) and since it is generally accepted that expression of noncoding 
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antisense transcripts may have a siRNA-mediated transcription repressive effect, it is 

possible that the loss of CTCF at the FRDA locus may be a causal element of such increased 

levels of antisense transcription, which may consequently down-regulate FXN expression. 

Moreover, the observed lower levels of CTCF around expanded GAA repeat tracts in 

FXN, combined with the heterochromatin-associated histone modifications observed in 

FRDA-associated FXN alleles, further adds to the involvement of CTCF in FXN regulation. 

CTCF is responsible for constraining the spread of heterochromatin from repetitive elements 

(Filippova et al. 2001), suggesting that loss of CTCF may be responsible for the observed 

spreading of heterochromatin into the GAA upstream and 5’UTR regions of FRDA FXN genes 

(Al-Mahdawi et al. 2008). 

In a related manner, the reduced levels of CTCF surrounding the expanded GAA repeat 

tracts in FXN may also be responsible for the increased GAA repeat instability observed in 

FRDA-associated FXN alleles. Conversely, expanded GAA repeats and associated 

heterochromatin formation may result in reduced levels of CTCF binding. Further studies will 

be required to determine the order of such events. 

As part of this thesis, EMSA analysis of the 3 FXN regions confirmed the ability of CTCF 

to bind the 5’UTR, but not to the regions surrounding the GAA repeat. However, this finding 

contradicted the ChIP data, suggesting that the DNA fragmentation methodology used for 

the ChIP may not have been optimal. Therefore, future investigations should be undertaken 

to address this issue. Additionally, the differences in CTCF levels between normal and FRDA 

patient cerebellum samples were not statistically significant. Therefore, additional 

investigation needs to be performed to confirm the significance of the findings. It would 

similarly be interesting to investigate the binding of CTCF in the FXN YAC GAA model of 

FRDA. 
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In conclusion, further CTCF investigation is required to ascertain if the observed lower 

levels of CTCF in FRDA-associated FXN genes are indeed a causal element of the molecular 

mechanism of FRDA, or if this is actually a consequence of the epigenetic modifications that 

may prevent accessibility of CTCF to its binding sites. 
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Summary 

Since the identification of FXN as the FRDA gene in 1996, extensive research has 

progressed the understanding of this disorder to the extent that many clinical trials of 

antioxidants and iron-chelators are currently underway, and several other potential 

therapies are being investigated at a pre-clinical level. 

The mouse model therapeutic studies using cannabinoids and CTMIO carried out as 

part of this thesis do not promote the use of these compounds in future clinical trials. 

However, the most promising small molecule therapy for FRDA at the moment is actually the 

use of HDACi to induce increased frataxin expression, and the HDACi 106 mouse model 

therapeutic studies reported within this thesis provide supportive evidence that the 

benzamide group of HDACi should definitely be pursued as a potential FRDA therapy. 

Further investigations into the FRDA molecular disease mechanisms, such as the CTCF 

studies within this thesis, the development of more severe FRDA mouse models and the 

development of new small molecule drug compounds, will hopefully all culminate in the 

identification of an effective FRDA therapy in the near future. 
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Figure A.1 – Boxplot of absolute weight during the 10mg/kg CBD study. 

 

 

Figure A.2 – Boxplot of weight gain/loss during the 10mg/kg CBD study. 
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Figure A.3 – Boxplot of absolute rotarod performance during the 10mg/kg CBD study. 

 

 

Figure A.4 – Boxplot of change in rotarod performance during the 10mg/kg CBD study. 
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Figure A.5 – Boxplot of absolute locomotor activity during the 10mg/kg CBD study. 

 

 

Figure A.6 – Boxplot of change in locomotor activity during the 10mg/kg CBD study. 
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Figure A.7 – Boxplot of absolute weight during the 20mg/kg CBD/CBD:THC studies. 

 

 

Figure A.8 – Boxplot of weight gain/loss during the 20mg/kg CBD/CBD:THC studies. 
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Figure A.9 – Boxplot of absolute rotarod performance during the 20mg/kg CBD/CBD:THC 
studies. 

 

 

Figure A.10 – Boxplot of change in rotarod performance during the 20mg/kg CBD/CBD:THC 
studies. 
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Figure A.11 – Boxplot of absolute locomotor activity during the 20mg/kg CBD/CBD:THC 
studies. 

 

 

Figure A.12 – Boxplot of change in locomotor activity during the 20mg/kg CBD/CBD:THC 
studies. 
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  A   B 

  

Figure A.13 – Screenshots of densitometry analysis performed to quantify levels of protein 
oxidation in the brain of mice from the 20mg/kg CBD/CBD:THC studies. (A) Blot A; (B) blot 
B. Samples were randomly loaded – see Table A.1 for key. 

 

Table A.1 – List of samples used for the oxyblot analysis performed for the 20mg/kg CBD and 
CBD:THC studies. 

Segment Mouse ID Study group 

   

1 8.467 Wt - CBD 
2 8.471 Wt - placebo 
3 Msh6.100 Wt - CBD 
4 762 Wt - placebo 
5 Pms2.112 Wt - CBD 
6 Msh6.113 Wt - placebo 
7 8.484 YG8 - CBD 
8 8.485 YG8 - placebo 
9 8.439 YG8 - CBD 

10 8.45 YG8 - placebo 
11 8.496 YG8 - placebo 
12 8.499 YG8 - CBD 
13 B6.46 Wt - CBD:THC 
14 B6.47 Wt - placebo 
15 B6.48 Wt - CBD:THC 
16 B6.49 Wt - placebo 
17 B6.50 Wt - CBD:THC 
18 B6.51 Wt - placebo 
19 8.527 YG8 - CBD:THC 
20 8.558 YG8 - placebo 
21 8.547 YG8 - CBD:THC 
22 8.564 YG8 - placebo 
23 8.598 YG8 - CBD:THC 
24 8.601 YG8 - placebo 
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            A                                                                       B 

 

Figure A.14 – Levels of protein oxidation in the brain of mice from the 20mg/kg 
CBD/CBD:THC studies, as determined by Oxyblot analysis. (A) Blot A; (B) blot B. Placebo 
n=6, CBD n=3, CBD:THC n=3. (au = arbitrary units; error bars: +/- 1 SE) 

 

Table A.2 – Independent samples t-test associated p-values of drug treatment effect on 
brain levels of protein oxidation during the 20mg/kg CBD and CBD:THC studies. 

Genotype 
Treatment 

(vs placebo) 

p-value 

blot A blot B 
    

Wt 
CBD 0.175 0.180 
CBD:THC 0.668 0.777 

YG8 
CBD 0.169 0.032 
CBD:THC 0.319 0.034 

    

Placebo n=6, CBD n=3, CBD:THC n=3 

  

Table A.3 – Independent samples t-test associated p-values of genotype effect on brain 
levels of protein oxidation during the 20mg/kg CBD and CBD:THC studies. 

Genotype Treatment 
p-value 

blot A blot B 
    

Wt vs YG8 
placebo 0.162 0.043 
CBD 0.182 0.003 
CBD:THC 0.483 0.025 

    

Placebo n=6, CBD n=3, CBD:THC n=3 
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Figure B.1 – Boxplot of absolute weight during the CTMIO studies. 
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Figure B.2 – Boxplot of weight gain/loss during the CTMIO studies. 
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Figure B.3 – Boxplot of absolute rotarod performance during the CTMIO studies. 
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Figure B.4 – Boxplot of change in rotarod performance during the CTMIO studies. 
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Figure B.5 – Boxplot of absolute locomotor activity during the CTMIO studies. 
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Figure B.6 – Boxplot of change in locomotor activity during the CTMIO studies. 
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Figure B.7 – Screenshots of densitometry analysis performed to quantify levels of protein 
oxidation in the brain of mice from the CTMIO studies. (A) Blot 1; (B) blot 2; (C) blot 3; (D) 
blot 4. 
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Figure C.1 – Boxplot of absolute weight during the HDACi 106 studies. 
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Figure C.2 – Boxplot of weight gain/loss during the HDACi 106 studies. 
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Figure C.3 – Boxplot of absolute rotarod performance during the HDACi 106 studies. 

 

 

 

 Treatment period (n=15) Duration of effect (n=5) 

C
h

an
ge

 in
 r

o
ta

ro
d

 p
er

fo
rm

an
ce

 

  

 

Figure C.4 – Boxplot of change in rotarod performance during the HDACi 106 studies. 
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Figure C.5 – Boxplot of absolute locomotor activity during the HDACi 106 studies. 

 

 

 

 Treatment period (n=15) Duration of effect (n=5) 

   
 C

h
an

ge
 in

 lo
co

m
o

to
r 

ac
ti

vi
ty

 

  

 

Figure C.6 – Boxplot of change in locomotor activity during the HDACi 106 studies. 
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Figure D.1 – Precipitation levels following ChIP analysis of normal and FRDA cerebellum 
samples. Individual (A) and combined (B) levels of precipitation obtained with either anti-
CTCF antibody (+ab) or IgG (-ab), displayed as percentage of input sample. Normal (n=4): 
JM (n=2), 62341 (n=1), 62395 (n=1); FRDA (n=6): HK (n=2), MS (n=2), CA (n=2).  

(error bars: +/- 1 SE) 
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Figure D.2 – CTCF enrichment determined by ChIP analysis of normal and FRDA cerebellum 
samples. Individual (A) and combined (B) levels of enrichment obtained following 
subtraction of –ab values and normalization to input sample. Normal (n=4): JM (n=2), 
62341 (n=1), 62395 (n=1); FRDA (n=6): HK (n=2), MS (n=2), CA (n=2). 

(au = arbitrary units; error bars: +/- 1 SE) 
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Figure D.3 – Relative CTCF levels determined in the FXN gene. CTCF levels were normalised 
to input and minus antibody samples, and finally determined in relation to a previously 
described CTCF-binding control region in the human H19 gene. Normal: JM (n=2), 62341 
(n=1), 62395 (n=1); FRDA: HK (n=2), MS (n=2), CA (n=2). (error bars: +/- 1 SE) 

 

 

 

 



 

 

 
265 

 

Appendix E – Journal publications 

 

 

Al-Mahdawi S, Pinto RM, Varshney D, Lawrence L, Lowrie MB, Hughes S, Webster Z, Blake J, Cooper 

JM, King R and Pook MA (2006) GAA repeat expansion mutation mouse models of Friedreich ataxia exhibit 

oxidative stress leading to progressive neuronal and cardiac pathology. Genomics, 88 (5): 580-90 ____ 266 

 

Al-Mahdawi S, Pinto RM, Ismail O, Varshney D, Lymperi S, Sandi C, Trabzuni D and Pook M (2008) The 

Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and 

transgenic mouse brain and heart tissues. Hum Mol Genet, 17 (5): 735-46 _______________________ 277 

 

 

 



Appendix E – Journal publications 

 

 
266 

 

 



Appendix E – Journal publications 

 

 
267 

 

 



Appendix E – Journal publications 

 

 
268 

 

 



Appendix E – Journal publications 

 

 
269 

 

 



Appendix E – Journal publications 

 

 
270 

 

 



Appendix E – Journal publications 

 

 
271 

 

 



Appendix E – Journal publications 

 

 
272 

 

 



Appendix E – Journal publications 

 

 
273 

 

 



Appendix E – Journal publications 

 

 
274 

 

 



Appendix E – Journal publications 

 

 
275 

 

 



Appendix E – Journal publications 

 

 
276 

 

 



Appendix E – Journal publications 

 

 
277 

 

 



Appendix E – Journal publications 

 

 
278 

 

 



Appendix E – Journal publications 

 

 
279 

 

 



Appendix E – Journal publications 

 

 
280 

 

 



Appendix E – Journal publications 

 

 
281 

 

 



Appendix E – Journal publications 

 

 
282 

 

 



Appendix E – Journal publications 

 

 
283 

 

 



Appendix E – Journal publications 

 

 
284 

 

 



Appendix E – Journal publications 

 

 
285 

 

 



Appendix E – Journal publications 

 

 
286 

 

 



Appendix E – Journal publications 

 

 
287 

 

 



Appendix E – Journal publications 

 

 
288 

 



 

 

 
289 

 

Appendix F – Posters presented 

 

 

Pinto, R.M., Al-Mahdawi, S. and Pook, M. (2007) Cannabinoid therapeutic testing of a Friedreich 

ataxia mouse model – Poster presented at the American Society of Human Genetics 57
th

 Annual Meeting, 

San Diego, USA _______________________________________________________________________ 290 

 

Pinto, R.M., Sandi, C., Al-Mahdawi, S. and Pook, M. (2009) Analysis of CTCF binding to the FXN gene in 

Friedreich ataxia – Poster presented at the 6th International Conference on Unstable Microsatellites and 

Human Disease, Guanacaste, Costa Rica ___________________________________________________ 291 

 

 

 



Appendix F – Posters presented 

 

 
290 

 

 

 

Poster presented at the 57th ASHG Annual Meeting (2007), San Diego, USA 

 



Appendix F – Posters presented 

 

 
291 

 

 

 

Poster presented at the 6th International Conference on Unstable Microsatellites and 
Human Disease (2009), Guanacaste, Costa Rica 

 


	Therapeutic testing and epigenetic characterization of Friedreich ataxia
	Abstract
	Acknowledgements
	Table of contents
	List of figures
	List of tables
	List of abbreviations
	Friedreich ataxia: literature review
	FXN gene: structure and expression
	The GAA triplet repeat mutation
	Instability of GAA expanded repeats
	Intergenerational instability
	Somatic instability is age dependent
	Somatic instability is tissue dependent

	Mechanism of expansion of the GAA repeat
	FXN becomes truncated at the transcriptional level
	Triplex formation
	Sticky DNA
	Heterochromatin mediated silencing
	DNA methylation changes
	Histone modifications


	Genotype/phenotype correlation

	Frataxin: structure and function
	Frataxin is a mitochondrial protein
	FRDA pathogenesis

	Therapeutic approaches
	Removal of excess mitochondrial iron
	Protection from oxidative stress
	Decrease ATP demand
	Increase of frataxin levels
	Gene therapy
	Inhibition of triplex formation
	Inhibition of heterochromatin-mediated silencing
	Other/unknown mechanisms
	High throughput screening


	FRDA mouse models
	Knockout mouse models
	Knockin mouse models
	FXN YAC transgenic mouse models
	YAC derived human frataxin is functional and rescues homozygous Fxn knockout mice
	GAA-containing human FXN YAC transgenic mice
	GAA-repeat instability in FXN YAC GAA transgenic mice
	GAA expansion-containing FXN YAC transgene rescues Fxn knockout embryonic lethality
	Comparable epigenetic changes in human and transgenic mouse brain and heart tissues
	Decreased levels of frataxin mRNA and protein expression in FXN YAC GAA mouse model
	Oxidative stress in FXN YAC GAA mouse model
	Neurobehavioral deficits in FXN YAC GAA mouse model
	Histological abnormalities in the DRG and heart in FXN YAC GAA mouse model
	Ultrastructure pathology in the DRG and heart in FXN YAC GAA mouse model

	FXN BAC transgenic mouse models


	General materials and methods
	Solutions
	General solutions:
	Chromatin immunoprecipitation (ChIP) analysis
	Western blot analysis
	OxyBlot analysis
	Electrophoretic mobility shift assay (EMSA) analysis
	Southern blot analysis
	Histological analysis

	Primers
	General techniques
	Agarose gel electrophoresis
	DNA extraction: ethanol method
	DNA extraction: phenol/chloroform method
	Determination of DNA concentration and purity
	Purification of PCR products from agarose gels
	Radioactive labelling of PCR products
	γ-32P ATP labelling
	α-32P ATP labelling
	Removal of unincorporated nucleotides

	Extraction of total RNA
	cDNA synthesis
	Preparation of protein lysates
	Determination of protein concentration using BCA protein assay
	Test tube procedure
	Microplate procedure

	Preparation of nuclear extracts
	Polyacrylamide gel electrophoresis (PAGE)
	PAGE for Western blotting
	PAGE for EMSA analysis

	X-ray film processing
	Densitometry analysis
	Statistical analysis

	Genotyping of newborn mice
	Mice breeding for drug treatments
	Functional studies during drug treatments
	Rotarod performance analysis
	Locomotor activity analysis

	Sample collection from mice post drug treatment
	Preparation of mouse tissue for expression and biochemical analysis
	Preparation of mouse tissue for histological analysis

	Real-time PCR/RT-PCR
	Chromatin immunoprecipitation (ChIP) analysis
	Western blot analysis
	Transfer to membrane – Western blotting
	Gel staining
	Hybridisation of membrane with antibodies
	Chemiluminescent visualisation and densitometry

	Oxyblot analysis: detection of protein oxidation
	Derivatisation of protein samples
	Slot-blotting
	Immunodetection and densitometry

	Southern blot analysis
	Transfer to membrane – Southern blotting
	Probing of membrane
	Stringency washing of membrane and development

	Histological analysis of lumbar DRG sections
	Preparation of vertebral column paraffin wax blocks
	Preparation and H&E staining of section slides
	Analysis of neurodegeneration in the DRG


	Cannabinoid therapeutic testing in FRDA mice
	Introduction
	Cannabinoid receptors and ligands
	CBD and THC as potential therapeutics for FRDA

	Aim of study
	Materials and methods
	Botanical origin of cannabinoids
	Drug preparation
	Study design and drug administration
	Functional studies during drug treatments
	Sample collection
	OxyBlot analysis
	Histological analysis

	Results
	Functional studies
	10mg/kg CBD – 6-9 months of age
	20mg/kg CBD and CBD:THC – 3-6 months of age

	Oxyblot analysis
	Histological analysis

	Discussion

	CTMIO antioxidant therapeutic testing in FRDA mice
	Introduction
	The isoindoline nitroxide antioxidant CTMIO

	Aim of study
	Materials and methods
	CTMIO synthesis and origin
	Drug preparation
	Study design and drug administration
	Functional studies during drug treatments
	Sample collection
	OxyBlot analysis
	Histological analysis

	Results
	Functional studies
	Oxyblot analysis
	Histological analysis

	Discussion

	HDACi 106 therapeutic testing in FRDA mice
	Introduction
	Histone modifications and transcriptional regulation
	Histone modifications in FRDA
	Use of HDAC inhibitors as therapy for FRDA

	Aim of study
	Materials and methods
	HDACi 106 origin and drug preparation
	Formulation A:
	Formulation B:
	Formulation C:

	Study design: drug administration and sample collection
	Pre-studies
	Long-term study – oral administration
	Long-term study – sub-cutaneous administration

	Functional studies during drug treatments
	Investigation of frataxin expression
	FXN mRNA expression investigated by relative Q-RT-PCR
	Frataxin protein expression investigated by Western blotting

	Investigation of histone modifications following drug treatment
	Histological analysis

	Results
	Preliminary short-term HDACi 106 studies
	Long-term HDACi 106 studies
	Functional studies
	Investigation of frataxin expression
	Investigation of histone modifications following drug treatment
	Histological analysis


	Discussion

	Analysis of CTCF binding to the FXN gene in FRDA
	Introduction
	CTCF, the multivalent factor
	CTCF function and repetitive elements
	Chromatin organization of repetitive elements
	CTCF and trinucleotide repeat instability


	Aim of study
	Materials and methods
	Identification of potential CTCF-binding sites in the FXN gene
	In silico screening

	Confirmation of CTCF-binding sites in the FXN gene
	Electrophoretic mobility shift assay (EMSA)
	a) Non-radioactive approach using EMSA kit (Invitrogen):
	b) EMSA using γ-32P end-labelled DNA probes and nuclear extracts:
	c) EMSA using γ-32P end-labelled DNA probes and full-length recombinant CTCF:


	Determination of CTCF levels in the FXN gene
	Optimization of DNA shearing method using Southern blot analysis
	Determination of CTCF levels in the FXN gene using ChIP analysis


	Results
	Identification of potential CTCF-binding sites in the FXN gene
	Determination of CTCF levels in the FXN gene using ChIP analysis
	Decreased CTCF levels in FRDA-associated FXN gene

	Confirmation of CTCF-binding sites in the FXN gene by EMSA
	CTCF binds to the 5’UTR region of the FXN gene


	Discussion

	General discussion and conclusion
	Antioxidant therapy investigated in the FXN YAC GAA mouse model
	HDACi therapy investigated in the FXN YAC GAA mouse model
	Promising alternative therapeutic strategies
	Further epigenetic characterization in FRDA
	Summary

	List of references
	Additional data from cannabinoid drug studies
	Additional data from CTMIO drug studies
	Additional data from HDACi 106 drug studies
	Additional data from CTCF studies
	Journal publications
	Posters presented

