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CHAPTER ONE 

INTRODUCTION 



Language is a system for the expression of thoughts, feelings, etc., 

between two parties, by the use of spoken sounds or conventional symbols. 

However, in order to communicate, they must speak the same language, and be 

able to decode the meaning behind those sequence of sounds or words 

generated by his/her counterpart, otherwise, their conversation would end 

in failure. Although, this obstacle can sometimes be removed, by calling 

in an interpreter or by using a more explanatory language to put across the 

message, it is always a very time consumming and frustrating process. 

A similar parallel can be drawn, when communicating with a computer. 

Due to the gap between what we want (expectation) and what the machine can 

provide (limitation), overheads have to oe included to translate from the 

original problem into a directly executable machine code program. Problem 

solving by means of computer programming can be viewed as a process 

consisting of three translation subprocesses: 

Original Problem Stage 1 

Design 
(System Analysis) ,117 

Specification Stage 2 

Implementation 

,117 (Program Coding) 

HLL Program Stage 3 

Compilation/Interpretation 
(Program Translation) · ,117 

(1) Design 

Machine Code Program Stage 4 

translation from original problem to design 

specification. 

(2) Implementation: translation from design specification to a 

program written in High Level Language (HLL)~ 

(3) Compilation/ 
Interpretaion: translation from the HLL program into machine code 

program. 
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Most of the difficulties encountered in programming stem from the 

great distance that separates the initial statement of a problem and its 

correctly encoded solution, a distance which the programmer himself must 

traverse. The HLL which the programmer is using will provide him with a 

collection of data types, operations, and representation schemes that the 

language supports as primitives. Ultimately, all problems of 

representation must be solved by finding a way to represent every object of 

interest as a combination of primitive representations, and all actions 

must then be expressed as combinations of the primitive operations by means 

of the semantic and syntactic mechanisms made available by the HLL. Hence, 

in order to improve the efficiency of problem solving on computer, the 

distance between stage 1 and 4 must be reduced. We will examine this 

problem in stages: 

(1) System Analysis Process: The Design 

A software system is developed in order to meet a need perceived 

by its user. The system analysis process is therefore used here 

before any other porcesses to establish and analyse the needs of 

the user, and specify them in the form of a set of requirements 

that stating "what". the system is expected to satisfy, but not 

"how" to achieve them. In other words, it is the process of 

translating from original problems to design specifications is 

usually done manually by the system's analyst. The automation of 

this process still remains an active research area of Artificial 

Intelligence (A.I.). Nonetheless, we will be taking this subject 

up again in Chapter 8. 

(2) Program Coding Process: The Implementation 

One of the first and most important tasks to be accomplished 

before writing a program is the translation of data of the problem 

onto the manipulable data types and structures of the HLL, so much 

so that the data types and structures provided in a programming 

language determine its user's approach to all problems, as well as 

profoundly influencing their ways of thinking in programming. 

However, due to the shortage of powerful primitives available in 

HLLs, program coding is often a very labour intensive process. 
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That is, in order to support his design, the programmer need not 

only have to express his design decisions by means of program, but 

must also get involved in building data structures and their 

associated operational constructs as supplements to the HLL 

primitives. Hence, an inordinate increase in the size and cost of 

software to such an extent that this unnecessary burden has often 

been the prime target to be blamed for the so called "software 

crisis". Therefore, the enhancement of representation primitives 

in HLL is an area that we will be looking into for reducing the 

distance between stage 2 and 3. 

To do so, we will concentrate on that class of languages which 

have come to be known as "very high level languages", or 

nonprocedural languages. A possible definition of a 

"nonprocedural" program is as Sammet and Leavenworth[ 13] have 

noted: 

•••• a "nonprocedural" program is a prescription for 

solving a problem .without regard to details of how it 

is solved. 

Briefly put, the nonprocedural languages embody a more abstract 

approach to data, which provide data structures of greater 

flexibility and power, including most of the well known data types 

such as string, list, tree, graph etc., and powerful operations 

and dictions of mathematics such as set-theoretic and relational 

types of objects, directly available as primitives. Futhermore, 

they also allow various powerful techniques such as associative 

referencing, and nondeterministic programming for the manipulation 

and combination of processes. However, the crucial challenge 

facing the procedural languages has been the cost-effective 

implementation of their programming constructs. 
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There is reason to believe that current research in nonprocedual 

programming languages has brought us to the threshold of another 

advance in programming methodology[l3]. The general 

characteristics of this class of languages can be defined as 

follows: 

1) Associative Referencing 

Associative referencing capability is an important feature of 

database retrieval langauges, set theoretic languages and A. I. 

languages, that allow data to be addressed by their contents. 

In other words, the programmer does not have to specify access 

paths explicitly or program an algorithm to conduct a search 

for a specific data structure. Associative referencing is 

usually provided in those languages that contain sets and 

algebraic operations, for example, SETL[ 1) and Codd's ALPHA 

language[2,3). Codd defines algebraic operations on 

relations[4] which effectively provide various types 

associative referencing. 

~) Pattern Directed Structures-

• The classical example of a pattern directed structure is given 

by Markov algorithms[S]. A Markov algorithm consists of a set 

of replacement or substitution rules which are repeatedly 

applied to an input string of symbols. The sequencing 

algorithm is implicit in that the rules are always applied in a 

determined order. Each rule consists essentially of the 

directive: if a specified string is contained in the current 

input string, then replace it with a given string of symbols. 

The SNOBOL language is an extension and enhancement of the 

Markov algorithm idea, where the programmer is allowed to 

depart from the normal sequential control. The pattern 

directed structure is considered as nonprocedual in the sense 

that the implementation of its process in a more "conventional" 

language will involve a complicated series of steps. In other 

words, pattern directed structure is the abstraction of string 

data type at the programming language level. 
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3) Aggregate Operators 

In the development of programs by "Top Down" approaches [ 64] and 

stepwise refinement[68), the programmer is encouraged to design 

his algorithms and expresses them in an "abstract" program 

operating on "abstract" data. He then chooses for the abstract 

data some convenient and effi~ient representation in the form 

of a particular programming language's primitives, and finally 

programs the algorithms required by his abstract program in 

terms of these concrete representations. Often, a long and 

frustrating process that the programmer has to undergo. These 

abstract data types, known as data structures, or aggregate 

operators, consist of data elements with important structural 

relationships. Therefore the provision of aggregate operators, 

proposed as primitives of nonprocedual languages, has come some 

distance in compromising with the human tendency to think 

through problems in terms of aggregate constructs with which 

more complex aggregates can be built. As it will soon be 

apparent from Chapter Six and Seven that the algebraic 

operators defined by Codd are aggregate operators [ 13), so do 

t many other data structures in various HLLs such as vectors and 

array (APL)[6], strings and patterns (SNOBOL)[7], sets (SETL[l] 

and Prolog[S]), lists (LISP[9]), and many other abstract data 

types such as trees and graphs. 

4) Nondeterministic Programming 

This facility appears in most of the A. 1. languages and was 

inspired by Floyd[ll] who introduced new programming primitives 

for solving combinatorial problems. Essentially, problem 

solving methods are characterized by searching througn a state, 

or situation space or through a space of alternatives. A 

solution is a sequence of state transitions from an inital 

state(s) given in the problem specification, to a final, or 

goal state. This implies a process of going through a multiple 

branch in the execution of the program, in order to search for 

the goal state(s). Each path is computed conceptually in 
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parallel, with its own particular value of the choice as an 

argument. In most cases, nondeterministic programs are 

executed as backtracking algorithms [ 12]. This powerful 

semantic mechanism enables a programmer to solve complex 

problems such as chess playing or the "problem of 8 queens" 

[68]. There is a close correspondence between nondeterministic 

programming and parallel programming in that the multiple paths 

of the choice function could be searched in parallel. 

Other facilities of interest to the designer of nonprocedural 

languages can be enumerated, for example elimination of arbitrary 

sequencing[l3] and functional programming[59]. However, it is the 

criterion first stated that remains the most fundamental; a 

language is nonprocedural to the degree that it shortens the 

distance between fomulating and solving some significant classes 

of programming problems. Summing-up the points discussed so far, 

it is revealed that the main obstacle towards the implementation 

of nonprocedual constructs has come from the serious mismatch 

betw~n the architectures and their supporting machine, which lies 

righ~ in the heart of the data organisation of all nonprocedural 

constructs mentioned above: they all belong to the SIMD 

architecture[lO] which can not be efficently implemented on the 

Von Neumann machine (SISD processor)[lO]. Hence, orders of 

magnitude improvement are only possible if SIMD type array 

processors can be brought in to support these SIMD constructs. 

However, there seems in general to be a close relation between the 

associative referencing and all the other nonprocedural constructs 

that we are discussing. It is certainly clear that the operations 

of all known data structures are characterized by searching 

through the contents of data items and establishing relationships 

betweem them, so much so that even nondeterministic programming is 

predominated by searching. Hence, this justifies our choice of an 

associative array processor for the investigation into 

implementation of nonprocedural constructs. 
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(3) Compilation/Interpretation: Program Translation 

The machine which understands and runs HLL programs is called the 

image machine of this HLL. By definition, it must have a set of 

commands and a storage which are exactly the range and domain of 

the commands, together with a mechanism that causes the state 

transitions determined by the commands. This mechanism is often 

referred to as the host machine. 

HLL Program 

HLL Image Machine 

I I Compilation I I 

,117 
Image Program · 

Image Machine 

I l Interpretation/Emulation I l 

l Host Machine I 

The host machine itself may be an image machine for another host-­

hence, there may be several nested levels of interpretation and 

execution before the actual state transitions. Whilst recognizing 

this, we will not introduce this unnecessary complexity, 
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especially since this nesting provides very little additional 

insight into the fundamental mechanism involved. In this thesis, 

we will assume a simplified model in which a HLL program 

representation is translated into an image program, that is 

interpreted by a host machine. 

. 
IL 

HLL Program 

I I Compilation I I 

I I Interpretation I I 

I Host Machine I 

Ideally, one would like to bypass the Compilation/Interpretation 

state all together and have a host machine which could directly 

execute the HLLs' program. Yet in practice this can never be the 

case, the reasons being two fold: Firstly, even with the promise 

of VLSI technology, it is still not cost-effective to build a 

well-mapped (between image and host) machine, or a language­

oriented image machine[86,87], some HLL instructions will still 

have to be translated to a certain extent. The best that a 

comp_uter architect can do is to identify those more frequently 

used program constructs, and implement them by means of hardware, 

as a result, bringing the image and host machines closer to each 

other. Secondly, however direct the direct-execution computer 

could be, certain phases of the compiler/interpreter_ process such 
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as Lexical Analysis, Syntax and Semantic Analyses can never be by­

passed[l4). Nevertheless, the complexity of Compiler/ Interpreter 

process could still be minimized. We will first look into the 

functional organization of the compiler/interpreter: 

1) Lexical Analyzer (String & List Processors} 

2) Syntax Analyzer (List & Tree Processors} 

3) Semantic Analyzer (List Processor} 

4) Code Generator (Tree & List/String Processors) 

At the first phase of the compilation/interpretation process, a 

string processor (Lexical Analyzer) takes the HLL source program 

as input, identifying comments, blanks, quoted strings, 

identifiers and constants in the source program, grouping 

characters into tokens, and places them into symbol tables. The 

List & Tree processors (Syntax Analyzer) are then used at the 

second phase to group these tokens into syntactic structures such 

as expressions and statements, before putting them into a 

convenient form such as postfix Polish notation, tree structure, 

or quadruples fo]' the Code Generation phase.. In the process of 

these transformations, the list processor (Semantic Analyzer) 

examines each syntactic construct that has been recognized, 

checking data types, determining that functions are called with 

the appropriate number of arguments, and verifying the identifiers 

which have been declared are typical of what takes place during 

semantic analysis. Any error encountered, either syntactically or 

semantically, would prompt appropriate error recovery procedures 

to be entered for the necessary diagnostics. Finally, another 

tree & list/string Processor (Code Generator) will process those 

trees and generate algorithms to drive the host machine. 

Traditionally, these special purpose processors are software 

simulated on a conventional Von Neumann processor, as a result, 

they increase the overhead of compilation/interpretation process. 

However, since string, list and tree are part of the well known 

data structures which the nonprocedural languages support as 
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primitives, inclusion of abstract data types into HLLs will 

certainly provide a solution for the inefficiency of the program 

translation process~ Therefore, the associative array processor 

remains the key issue towards the solution of these problems. 

The idea of associative array processors originated during the late 

1950's[l5). Although not many associative array processors have actually 

been built to date, many hundreds of papers have been written on the 

subject. The.asscoiative array processor works on the principle of Content 

Addressable Memory (CAM) in which each memory cell can be addressed by 

means of its content rather than its location. From the architectural 

point of view, the associative array processor is really quite different 

from the Von Neumann machine. Whereas the latter is based on the ADD 

operation, the former is based on the COMPARE operation. Just as the Von 

Neumann computer compares by subtracting and testing for zero, the 

associative array processor adds by comparison: addition is done by a 

process analogous to "table look up". Since all memory words are capable 

of executing the SEARCH operation in parallel, the associative array 

processor is capable of highly •parallel addition. Nontheless·, due to their 
t 

relatively high implementation cost, associative array processors are 

usually used in conjunction with standard Von Neumann computer systems so 

that many high-speed parallel processing tasks which cannot be efficiently 

executed by SISD (single instruction, single data stream) processors [ 10], 

are performed by associative array processors. But recent rapid changes 

of LSI/VLSI technology has greatly reduced the implementation cost of 

associative array processors, and there is anticipation that associative 

array processors will be used more extensively in improving the efficiency 

of problem solving on computer. 

In the following chapters, we will be discussing the hardware 

organisation of associative array processors, and then lead on to the 

design of the Distributed Computer System (DCS) in which an associative 

array processor and a Von Neumann processor are integrated together to 

provide with the best of two computing worlds. 
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CHAPTER TWO 

THE HARDWARE ORGANIZATION OF ASSOCIATIVE PROCESSORS 

2.1 Associative Memories 

2.2 Associative Processors 

2.3 The Byte-Organized Associative Processor 

2.4 Summary 



Interest in associative processing can be traced back to late 1950's, 

when the computer designers recognized the advantages of the parallel 

searching of data by content addressing. However, until recently, the main 

obstacle to the realization of associative processors have been the 

enormous costs needed in hardware. A good survey by Hanlon[l5] appeared in 

1966 covered whole range of asssociative memories and their possible 

applications in the first decade (1956-1966) of development. During this 

period, many experimental associative memory models were built, 

culminating in the delivery of a 50-bit, 2K-word associative memory by 

Goodyear Aerospace to the Rome Air Development Centre in 1968. Since it 

was then not feasible to construct large scale associative memories, the 

emphasis of associative processor design during the following decade (1966-

1977) tended to focus on subsystems which are capable of both arithmetic 

and fast search operations. A number of associative processors, notably 

PEPE and STARAN, were constructed. (Several surveys by Parhami[16], 

Minker[ 17], Thurber and Wald[ 18], Yau and Fung[ 19] appeared during this 

period have detailed report of these developments). 

However, as a result of recent advances in LSI/VLSI technology, the 

design and realization of associative processors has entered a new age of 

development aiming at the construction of large capacity associative 

processors. For example: the construction of Airborne Associative 

Processor (ASPR0)[20,21] which consists of 2048 single-bit Processing 

Elements (PE's) and realized in CMOS/SOS VLSI technology, are designed with 

a total processing capacity of 64 MOPS (Million Operations Per Second). 

Also, the Massively Parallel Processor (HPP)[22], which is an extension of 

STARAN with 16384 PE's, is about 100 times the processing capability as its 

predecessor in the similar volume. It is able to do floating point 

operations at speeds better than 100 MOPS, 16-bit integer arithmetic at 

speeds between 400 MOPS (multiplication) and 3000 MOPS (addition). Such 

new developments are likely to renew the original interest in applying 

associative processors to non-numerical processings, and data base 

applications. 
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2.1 ASSOCIATIVE MEMORY 

An associative memory can be defined as a memory system with the 

property that stored data items can be retrieved by their content or part 

of their content, instead of by address of a location as in the Random­

Addressed Memory (RAM). From the hardware point of view, the basic element 

of the associative memory is merely a one bit processing cell that can only 

perform SEARCH, READ or WRITE operations on the interrogating data. 

Nevertheless, when a number of these associative bit-cells are brought 

horizontally together as a word-row, and then linked vertically to each 

another to form an Associative Memory Array (AMA), it has surprisingly 

become a very powerful machine, on which every bit-column and· word-row of 

information can be processed in parallel. 

IDR 

BSU 

----> -----> ----> -----> wsu ----> AMA -----> T R 
----> ----> 
----> -----> 

ODR l MRR l 

Fig. 2.1 The Organization of the Associative Memory 

The SEARCH operations, which consist of masking and comparison, are 

executed in a fashion that depends on the organization of the associative 

memory. The search-key can be compared with all the words in the AMA, or 

some or part of the words through the control and selectivity of the Word 

Select Unit (WSU) and the Bit Select Unit (BSU). The possibility of 

matching multiple words to a search-key requires that the associative 
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memory has some way of tagging the matched words. The tag function and 

matched-word indication are performed by the word-match tag networks called 

Tag Register (TR) and Match Reply Register (MRR). The IDR and ODR are the 

Input Data Register and the Output Data Register of the associative memory. 

2.1.1 The Classification of Associative Memory 

Although, many types of associative memories have been reported, 

Lea[23] had generally classified them into three categories of 

associative memory: 

1) The Record-Organized Associative Memory 

2) The Field-Organized Associative Memory 

3) The Byte-Organized Associative Memory 

2.1.1.1 The Record-Organized Associative Memory 

In this configuration, every word-row of associative 

memory array has a fixed but long word length which 

ideally could be allocated to each record. It is by far 

the fastest configuration in which all records can be 

processed in parallel with only one instruction; either 

the SEARCH operation or READ/WRITE operation. 

Therefore, it is sometimes referred to as the fully 

parallel word-organized associative processor[19]. 

Associative Memory Array 

Record-Field 

Record No.I Key 1 I Key 2 I Key 3 I I I 

CB 

-------------------------------------------------------
Record No ·I Key 1 I Key 2 I I I 

-------------------------------------------------------Record No.I Key 1 I I I 
-------------------------------------------------------Record No.I Key 1 I Key 2 I Key 3 I Key 4 I Key 5 I 
-------------------------------------------------------

Record No.I Key 1 I Key 2 I key 3 I Key 4 I I 
-------------------------------------------------------

Fig 2.2 The Record-Organized Associative Memory 
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The control bit CB is used as a "bit-map" or "access 

vector" to assist in the resolution of multiple 

responses and in boolean search combinations. This 

configuration is designed for applications in which all 

records are of similar length; consequently, for other 

applications in which records are of dissimilar length, 

some considerable redundancy could exist within the 

associative memory. However, this problem could be 

solved at the expense of the execution speed, if records 

are broken up at the field level. 

2.1.1.2 The Field-Organized Associative Memory 

This configuration is designed to provide the solution 

for dissimilar length applications, in which it sub­

divides the records into several fields, and allocates 

word-rows at the field level, in such a way that they 

can be joined up in almost any number to achieve a 

variable record-length data structure. 

Associative Memory Array 

Key-Field CB1 CB2 TR 

Record No. I I 
--------------------Key 1 I 
--------------------Key 2 I 
--------------------Key 3 
--------------------Delimiter \ \ 
--------------------Record No. I I 
--------------------

Key 1 I \ 
--------------------

Key 2 I I 
--------------------Delimiter I I 
--------------------

Fig. 2.3 The Field-Organized Associative Memory 
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However, one (or more) control-bits are needed to be 

used as delimiters, in addition to the control-bit of 

the Record-Organized Associative Memory. Nonetheless, 

the Field-Organized Associative Memory can support very 

different record lengths without incurring redundancy, 

provided that their keywords(fields) are of the similar 

length. 

2.1.2.3 The Byte-Organized Associative Memory 

If dissimilar length keywords do occur within the Field­

Organized Associative Memory, then it will run into the 

similar problem as the Record-Organized Associative 

Memory. Thus, a Byte-Organized Associative Memory has 

commonly been suggested. 

The Byte-Organized Associative Memory configures the 

data at the byte level, in which each word-row of the 

AMA is allocated to only a single byte of data, and a 

variable length keyword field is constructed by bringing 

together any number of bytes (word-rows), in such a way 

that it just like a record is constructed by linking up 

a chain of keyword fields. Nevertheless, more control 

bits are needed as markers to form and break the chain 

of keyword fields or records: 

1 ) One bit (e.g. CB1) to mark the beginning of records. 

2 ) One bit (e.g.CB2) to mark the beginning of keyword 

fields within records. 

3 ) Two bits (e.g. CB3 & CB4) to act as "Tag Images". 
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Associative Memory Array 

CB1 CB2 CB3 CB4 TR 
-------------------

R I 1 I 2 I 
-------------------

E I I I I 
-------------------
c I I 1 

-------------------
0 I I I I 

-------------------
R I I I 

-------------------
D I I I 

-------------------
1 I I I 

-------------------
N I 1 1 I 

-------------------
0 I I I I 

-------------------. I I I I 
-------------------

K I I 2 I I 
-------------------

E I I I 
-------------------

y I I I 
-------------------

1 I I 
-------------------

K I I 2 I I 
-------------------

E I I I I 
-------------------

y I I I I 
-------------------2 I 
-------------------

K I I 2 I 
-------------------

E I I I 
-------------------

Y I I I I 
-------------------

3 I I I I 
-------------------

11 I I I I 
-------------------

Fig. 2.4 The Byte-Organized Associative Memory 

Although the Byte-Organized Associative Memory leads to the 

slowest file searching among all the other associative memories, 

it incurs the least possible redundancy and it is by far the 

most economical to implement in hardware. 
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2.2 ASSOCIATIVE PROCESSORS 

From a computer architect's point of view, associative processors 

belong to the category of so called SIMD (Single Instruction Stream 

Multiple Data Stream) machines[10]. A SIMD machine is a computer that 

performs operations on all selected processing elements with only one 

single instruction execution. But, unlike other array processor type SIMD 

machines[24,25], an associative processor is an SIMD machine whose 

processing elements and data addressing satisfy the following two 

properties: 

1 ) The property of associative memory. 

2 ) Data transformation operations, both arithmetic and logical, can 

be performed on a SIMD basis. 

Instruction Memory I 
,I 17 

--------------II --------------------II ------------------ ----
Arithmetic 

and 
Logic Unit 

\ ~-- \1- Input/Output 
Control System 

_I\ _I\ Interface 

---------------II ---------------------II --------------
,1 17 ~, ,~ 

I Associative Memory 

Fig. 2.5 The Block Diagram of an Associative Processor 

An associative processor usually consists of an associative memory, 

arithmetic and logic unit (ALU), control system, instruction memory, and 

input/output interface. The major difference between an associative 

processor and a von Neumann machine is the use of associative memory, so 

much so that the classification of the associative memory is often used as 
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a means to classify the architecture of associative processors, regardless 

of the details of their individual hardware implementation. 

1 ) The Record-Organized Associative Processor 

2 ) The Field-Organized Associative Processor 

3 ) The Byte-Organized Associative Processor 

Regarding of our intention to integrate associative processor into the 

Distributed Computer System for the implementations of abstract data types, 

the Byte-Organized Associative Processor (BOAP) has been chosen to serve 

this purpose. As it will soon be apparent that all data types regardless 

of their structures, are ulti~ately mapped on to the physical hardware 

storage of the computer system, and abstract data types with their symbolic 

manipulation characteristic are best mapped on to the BOAP. 

\ Character Field \CBl\CB2\CB3\CB4\ 
---------------------------------\<--- 8 Bits--->\ 

The representations and manipulations of all known data structures to 

date are mostly non-numerical processing[l30], which use character 

structure as a basic building block: String structures are built from a 

sequence of characters. Similarly, List, Tree, Graph structures are built 

from a chain of character fields with pointers to link them together. As a 

result, we shall be concentrating only on the Byte-Organized Associative 

Processor in the sections that follow. 
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2.3 THE BYTE-ORGANIZED ASSOCIATIVE PROCESSOR 

The Byte-Organized Associative Processor (BOAP) shares the same 

general organization as shown in Fig. 2.5, except that it has replaced the 

ALU with a scratch Pad buffer for data transformations. 

2.3.1 The Data Transfomations of BOAP 

Traditionally, a ALU is integrated into the associative 

processor for performing complicated data transformations. For 

instance, all selected matched word-rows in the associative 

memory can be fetched serially into the ALU for specified data 

transformations, and the results are then stored back into the 

memory. But serious problems do exist in this approach: 

1 ) If large amount of data are involved in data transformation, 

bottlenecks may occur in the I/O transfer, and the 

advantages gained from the use of associative memories will 

be lost. 

2 ) It is contradictory to the design philosophy of the SIMD 

machine that a major part of its data transformations have 

to be done on the SISD basis. 

However, the contemporary approach towards the solution of these 

problems is to provide a scratch pad buffer for holding 

intermediate results, and at the same time, increase the 

complexity of the Word Select Unit, to such an extent that data 

transformations can be performed within the associative memory 

by using table look-up procedures. This is achieved by the 

insertion of tag manipulated operations (as shown in Table 2.1) 

to activate other word-rows, before the execution of the 

READ/WRITE function. Nonetheless, the formal definition of the 

Associative Assembly Language (AAL), together with the tag 

manipulated operations which shown in the Table 2.1, will be the 

subject of Chapter four. 
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----------------------------------------------------------------------
MNEMONIC I TAG MANIPULATION/WORD-ROW ACTIVATION 

----------------------------------------------------------------------
JNo activation 

----------------------------------------------------------------------
PTT JActivates all tagged word-rows 

----------------------------------------------------------------------
PCT !Activates all untagged word-rows 

----------------------------------------------------------------------
RSTTU !Activates the first tagged word-row from T-end (Top end) 

----------------------------------------------------------------------
RSTTD !Activates the first tagged word-row from B-end (Bottom end) 

----------------------------------------------------------------------
RSCTU !Activates the first untagged word-row from T-end 

----------------------------------------------------------------------
RSC.'TD !Activates the first untagged word-row from B-end 

----------------------------------------------------------------------EIR JActivates all rows from T-end or B-end to first tagged row 
----------------------------------------------------------------------

MOR !Activates all rows from first tagged row to T-end or B-end 
----------------------------------------------------------------------

GR !Activates all rows from tags in TRl to TR2 (Group Run) 

RSGSU !Activates only ending rows of every group during GR 

RSGSD !Activates only starting rows of every group during GR 

RSFGU !Activates only first group from B-end during GR 
----------------------------------------------------------------------RSFGD !Activates only first group from T-end during GR 

RSFGSU !Activates only first ending row from B-end during GR 
----------------------------------------------------------------------

RSFGSD !Activates only first starting row from T-end during GR 
----------------------------------------------------------------------

Table 2.1 The tag Manipulations of BOAP 

2.3.2 The Hardware Organization of BOAP 

The Byte-Organized Associative Processor (BOAP) that we are 

proposing is shown in Fig. 2.6. This overview of the BOAP is, 

in fact, the overall system organization of the processor. But, 

in order not to deviate our attention away from the hardware 

organization of the BOAP, we shall be focusing only on the 

associative memory part of the BOAP, other than the system part 

of BOAP which will be dealt with in greater detail in the next 

chapter. 
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Fig. 2.6 The System Organisation of BOAP 
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2.3.2.1 The Associative Memory Array (AMA) 

The AMA comprises a two-dimensional matrix of identical 

one-bit-cells, which operates as a read-write Random 

Access Memory (RAM) cell and contains sufficient logic 

to enable the selection of its content to be compared 

with the corresponding bit of the IDR. 

Theoretically speaking, the AMA could contain any number 

of word-rows, which are organized in a 12 bit long 

format --8 bits for the character field and 4 bits for 

the control-bit field. Alternatively, the character 

field and control-bit field could also be joined 

together to form a 12-bits long bit-vector, in which 

every bit functions independently as an individual bit. 

2.3.2.2 The Bit Select Unit (BSU) 

The BSU interprets the control functions of IDR 

according to the specified Associative Machine 

Instruction (AMI) and tranfers the appropriate data to 

the AMA for SEARCH and WRITE operations. Since the BOAP 

has no mask register, there can be no explicit data 

masking during SEARCH or WRITE operations, instead 

characters and control-bits are represented in tertiary 

logic which allows implicit masking of bit-columns: 

conditional masking and data complementation. Bit 

serial processing can be achieved by masking all bits 

except the one of interest. 

2.3.2.3 The Word Select Unit (WSU) 

The WSU provides the actual programmable hardware 

mechanism to implement the tag manipulations and word­

row(s) activations. It allows the propagation of 

activities between word-rows, and provides the linking 

between data fields to enable the representation of a 

wide range of data structures. The operations which the 
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WSU allows are as follows: 

1 ) Activates matching or mismatching word-rows. 

2 ) Activates adjacent word-rows and groups of word-rows 

of matching or mismatching word-rows. 

3 ) Isolates a single word-row or group of word-rows for 

activation from a range of mapping functions. 

2.3.2.4 The Microprogrammed Control Unit (MCU) 

The MCU issues the micro-order (the actual hardware 

signals) to drive the hardware of BSU and WSU. Since 

every API is eventually translated into the primitive 

associative process (either SEARCH or ACTIVATE­

READ/WRITE operation) in the form of an Associative 

Machine Instruction (AMI), MCU provides the 

microprogrammed interface between hardware and AMI. 

2.3.2.5 The Match Reply Register (MMR) 

The MMR indicates the presence of one or more set tags 

in the specified Tag Register (TRl or TR2) to provide 

feedback to external control logic for conditional 

branch operations. 

2.3.2.6 The Data Output Conflict (DOC) 

The DOG is used to indicate any occurrence of multiple­

responses [26] in a SEARCH operation. This will enable 

the isolation of matched word-rows before reading into 

ODR. 

2.3.3 The Technology of Fabricating BOAP 

Recent developments in microelectronics have revolutionized 

computer design, but how can the properties of VLSI be exploited 

to build computational structures? Our discussion at this point 

will focus on two aspects of computer design: the chip layout 

and VLSI architecture. 
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A) The Chip Layout Level: 

The Von Neumann's design philosophy was adopted in an era of 

computer technologies in which wires were cheap and switching 

elements were expensive. However, VLSI technology has 

reversed this cost situation, making switching elements 

essentially free and leaving wires as the only expensive 

component. In today's technology, the area of a circuit 

devoted to communication between elements far exceeds the area 

devoted to switching elements, and the communication delays 

are much longer than logic delays[27]. In fact, many of the 

design constraints (i.e. Layout topology, Speed, Power 

dissipation ••• etc) which constitute the characteristic of 

VLSI technology, could to a certain extent be relaxed by 

minimization of communication paths on the chip: 

1) The Layout Topology: 

In conventional computer design, switching theory is used 

as a tool by the designers to formulate logic networks with 

minimum number of logic gates. However, this approach is 

less useful in the VLSI design environment where the costs 

of testing, packaging and inter-connecting integrated 

circuits are much more important than the manufacture of 

the circuits themselves. If the topology of 

interconnection paths is not carefully controlled, the 

space required for them grows more than linearly as the 

number of logic elements to be connected is increased: 

bigger systems require more wires, which are on the average 

also longer, therefore, to interconnect twice as many 

randomly placed devices requires four times as much 

communication space [ 27]. Hence, it is obvious that 

controlling the chip layout topology is essential in the 

design of VLSI. If connections can be made to follo~ 

regular patterns, they can be produced by less expensive 

methods and can also be made to occupy less space and so be 

faster. Carver Mead and Lynn Conway[28] have developed a 
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"Chip floor plans" approach to solve wire-and­

interconnection problem: A floor plan is merely a block 

diagram with blocks drawn to approximate scale and the 

routing of major buses, clocks, power, ground, and critical 

signal paths specified in terms of their location and the 

layer on which they run[29]. It is essential to avoid 

routing a critical signal from one corner of the chip to 

another, where its delay may sometimes undo all the careful 

optimization in other parts of the circuits. Regularized 

structures interact very heavily with the floor-plan 

strategy. A regularized structure is difficult to formally 

define but usually involves a functional block that uses a 

repeated structure to accomplish a given function. A 

common example is the Programmable Logic Array (PLA), which 

is a highly regular structure that performs an arbitrary 

combinatorial logic function. 

2) The Speed Considerations: 

Not only do longer communication paths occupy a dis­

proportionate amount of space but also they function more 

slowly than short ones, due to the transmission delay in 

the lossy line: For a regular structure, the RC delay can 

be modelled as a diffusion delay in a distributed RC 

network in which the delay is proportional to the value of 

the R and C of each network element and proportional to the 

square of the number of elements in the network n2RC[30]. 

Therefore, in order to drive a signal down a longer path, 

one must either build a larger driving circuit to provide 

for the extra power required or suffer the delays of 

passing the larger amounts of energy through a less 

powerful driver. More powerful drivers must themselves be 

driven and are inherently slower than small drivers. The 

Mead-Conway design style advocates a technique known as 

"wiring by cell abutment"[Jl] by which each cell can be 

interconnected by abutting it with its neighbour(s). The 
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advantages of this approach are that it eases the design 

task by eliminating random wiring, uses space more 

efficiently by intermingling logic and buses and by 

eliminating the extra space absorbed in the intercell wire 

routing, and helps to improve performance by reducing 

interconnection lengths. 

3) The Power Dissipation: 

Before a signal path can be switched from one electrical 

state to another, the energy stored in the path must be 

removed and converted into heat. It is quite possible that 

the switching energy of logic elements required in a given 

technology and the signaling powers needed to travel down 

the communication paths may set a upper limit to the 

complexity of the system that can be build in that 

technology[27]. 

Hence, the minimization of communication paths on chip can be 

achieved by building very regular patterns of interconnection 

and partitioning processor logic accordingly[27,28]. There is 
t 

already a trend toward very regular wiring patterns for 

integrated circuits and the interconnections among 

circuits [29]. This regularity is desirable not only because 

it makes the specification simple but also because it 

efficiently reclaims space for putting more switching elements 

on the chip. 

B) The VLSI Architecture Level: 

The communications on VLSI chips brings up an important point: 

the choice of an appropriate architecture for any computer 

system is very closely related to the implementation 

technology. Mead-Conway consider that improvement in 

architectural style will immediately reduce the design problem 

by orders of magnitude. Properly designed parallel structures 

that need to communicate only with their nearest neighbours 
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will gain the most from Very-Large-Scale Integration. 

Precious time (and thus performance) is lost when modules that 

are far apart must communicate. For example, the delay in 

crossing a chip on polysilicon, one of the three primary 

interconnect layers on an Nl10S chip, can be 10 to 50 times the 

delay of an individual gate[29]. Therefore, the architect 

must keep this communication bottleneck uppermost in his mind 

when evaluating possible structures and architectures for 

implementation at VLSI. The architecture of conventional Von 

Neumann computer suffers from two limitions[27,28): 

1) The conventional Von Neumann machine provides only a single 

processor that sequentially fetches and executes 

instructions; it offers very little opportunity for 

concurrent processing activity. 

2) Th_is SISD type processor is separated from its memory by 

long communication paths such as buses. The processor 

fetches an instruction from memory, decodes it, executes 

it, and repeats the cycle. Ma~y instructions will cause 
~ 

additional references to memory in order to fetch operands 

or to store results. Therefore, the performance of such a 

computer depends critically on the method, and the speed of 

information transmission between processor and memory. As 

a matter of fact, this is the price we pay for using RAM as 

data storage. Futhermore, the locational addressing method 

of the Von Neumann machine, wastes access to many thousands 

of bits by selecting only a few bits for the CPU, and the 

size of address bus actually goes up in proportion with the 

size of computer memory: i.e. MC68000 microprocessor uses 

24-bit wide of address bus for addressing 16M bytes of 

memory versus the 16-bit wide of MC6800 for 64K bytes of 

memory. This trend will continue so long as people require 

more and more memory space for data storage and, as a 

result will inevitabily lead to wider address buses, as 

well as more pinout problems. 
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Closer examination of VLSI implementation problems has, however, 

shown that pin limitations, rather than chip area of logical 

component limitations, are the major constraint of the VLSI 

environment[32]. Consider a chip with 16 bit data-pins and 24-

bit address pins: the number of required pin connections 

(ignoring power, ground, and general control) for a single chip 

implementation is at least 40 pins. Therefore, in order to 

overcome the pinout limitation on chip implementation, the 

architecture of the conventional computer will have to be 

modified. 

1) The SIMD Solution 

In this solution, memories (M) and processing elements (P) are 

brought more closely together to avoid the unnecessary 

movement of data on the buses which sometimes constitute up to 

90% of'the activities in conventional SISD machines[33]. 

I c I 
I 

i------------------------------------------------
---
1~-1--1-;-1--1-: l--1-;-l--l-;-l--l-~-l--l-~l--l-~1 

I 

l-~-1--l-~l--l-~l--l-~l--1-~-l--l-~l--l-~-l--l-~l 

In this hypothetical machine, many thousands of identical 

processing elements are brought together to bear on separate 

parts of a problem under the control (C) of a single 

instruction sequence in rigid lock-step. These are most 

suitable for highly regular tasks such as simulation of the 

weather[24], matrix arithmetic{34,35], and implementation of 

abstract data types. 
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2) The MIMD Solution 

In this solution, the MIMD machine is one where separate, 

independent processing elements under separate, self-contained 

memory; ALU; and control structures, perform independent parts 

of the task, communicating data and instructions whenever 

required via a interconnection network[39]. 

----------------------------------------------
I M I I M I I M I I M I 
----------------------------------------------
II\ 
\ I 

----------------------------------------------
INTERCONNECTION NETWORK 

't' 11\ 11\ 
\1 \1 \1 ------- ------- -------

I c I I c I 
.. ---

IPI :tPI JPI IPI IPI 
------- ·------ ------- ------- -------

The advent of the microprocessor has, of cause, suggested to 

many people the possibility of making such a system which 

consists of thousands of separate microprocessors working in 

concert on large tasks in the most flexible arrangement for 

parallel execution of different operations[36]. This system 

works best when each element can do much processing with out 

the need to communicate with other elements. But, bottlenecks 

will develop when tasks require elements to wait for the party 

line. 

The BOAP that we proposed belongs to the category of SIMD 

architecture, which uses associative memory to minimize the 

unnecessary memory referencing in the system: Associative 
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memories are incorporated with limited switching elements to 

process simple operations such as compare, read and write, 

which can be carried out within the associative memories with 

out any memory referencing. Nevertheless, like RAM, the 

Associative Memory Array (AMA), together with its Word Select 

Unit (WSU), does have an inherently regular word structure. 

---------------------------------------------------------------------
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-------------------------------------------------------------------
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Fig. 2.7 The Chip Organization of BOAM 
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The proposed chip organization of Byte-Organized Associative 

Memory (BOAM) can be separated in four parts: 

1 ) The Associative Machine Instruction Register (48-Bits), 

2 ) The Bit Select Module (IDR, BSU and MCU), 

3 ) The Memory Module (Associative Memory and WSU), 

4 ) The Output Register Module (ODR and MMR) 

In the careful examination of these four different parts of BOAM, 

it is revealed that only the fabrication of the memory module 

(AMA and WSU) has exhibited the feature of repeatability and 

expandability suitable for VLSI development. However, linking 

mechanism must be provided in order to build a workable size of 

AMA from this standard memory chip module, which merely consists 

of a limited amount of word-row memories and their WSU. The PLT 

and PLB are designed to serve this purpose: PLT is the 

propagation link at the T-END (TOP-END) of the AMA and PLB is the 

propagation link at the B-END (BOTTON-END) of the AMA. Both PLT . . 
and PLB can be used tcl allow propagation or run options to be 

extended to activate ~ord-rows in adjacent memory modules, 

without significant loss of execution speed, by allowing the 

modules to execute the runs in parallel, with their propagation 

links PLT and PLB set.according to the MRR output and/or Overflow 

Responses (OVT/OVB) of their adjacent memory modules. The 

OVT/OVB signals the propagation of activities outside the T-END/ 

B-END (TOP END/BOTTON END) of the WSU and provide feedback to the 

PLT/PLB of adjacent memory modules to proceed with the 

propagation of word-row activation. 

PTT(D) PLTl • 0 

PLT2 • OVBl 

PLT3 • OVB2-

PLT4 • OVB3 
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2.4 SUMMARY 

The development of associative processors is based on the search 

capabilities of associative memory, which is particularly suitable for 

non-numerical data processing. The Byte-Organized Associative Processor 

with it short and neat word-length has been chosen as a vehicle for the 

implementation of abstract data types. 

In the light of the LSI/VLSI development, considerations have been 

given to the Memory chip organization of Byte-Organized Associative 

Processors. In this investigation, it is established that communications 

are the major problem on VLSI chip. Carver Mead and Lynn Conway[28] have 

developed a top-down design methodology for intermodule communication 

strategies. The key elements of their philosophy are: 

* carefully defined chip "floor plans" 

* regularized structures 

* wiring by cell abutment 
-* Non Von Neumann architectures: 

* Mapping high-level functions into silicon 

Futhermore, it is also revealed that in addition to its role at 

abstract data types in the Distributed Computer System, assocative memory 

offers a good solution for the ever increasing problem of data storage: it 

is suggested that associative memory is used to replace the conventional 

RAM for data storage but not program storage, as a result, remove the 

artificial upper limit of address space (either 16M for 24 bit address 

system or 64K for 16 bits address system as in the cases of M68000 or M6800 

microprocessors), at the same time cut down the unwanted adddress buses and 

the unnecessary burden imposed on the pinout limit. These potentials plus 

the ever rising software and personnel costs will eventually lead to the 

generalization of associative processing. 
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CHAPTER THREE 

THE DESIGN OF THE DISTRIBUTED COMPUTER SYSTEM 

3.1 The Computation Organization of DCS 

3.2 The Program Organization of DCS 

3.3 The Machine Organization of DCS 

3.4 Summary 



Distributed computing systems represent a wide variety of computer 

organizations, ranging from a star network to a completely decentralized 

computing system[37]. In all cases, the word '~istribute&' refers to the 

fact that processing logic, functions, control, data, or a combination of 

these of the computing system are distributed to a certain extent[38]. The 

characteristics of a distributed computing system are as follows: 

1 ) There are a number of hardware processors connected together via 

an interconnection network. 

2 ) The network provides data (and control) communications between the 

various processors and provides input and output connections for 

user interface. 

3 ) Each processor has a number of functional components which can 

interact with each other to perform system-wise functions such as 

task sharing and resource sharing. 

l Host ' Processor 

---------------------------------------------------------------I INTERCONNECTION NETWORK I 
---------------------------------------------------------------I \ I \ I \ I \ 

,I 17 ,I 17 ,I 17 ,I 17 
------ -------- -------- -----------

\ Proc!ssor \ \ Proc!ssor \ \ Proc!ssor \ \ Proc!ssor \ 
--------- ---------- ----------- ----------

Fig. 3.1 The Organization of Distributed Computing System 
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Distributed computing systems exhibit extreme flexibility, 

reliability, survivability and modularity by virtue of the loose coupling 

between processors: 

1 ) Flexibility: 

With appropriate design of the network communications protocol, 

the total number of nodes (i.e. processors) in the network can be 

increased or decreased even after initial fabrication. Similarly, 

a sufficiently versatile computer network communications protocol 

allows the inclusion of nodes with a wide variety of speeds, 

computing capabilities, physical configurations, and so on, since 

the only constraint on the node design is that the interface to 

the communications network must obey a predetermined protocol. 

2 ) Reliability: 

In the distributed system, the individual processors may be 

assigned to the execution of portions of a large algorithm, 

followed by a merging of their partial results~ Since task 
~ 

assignment is done via software rather than throu~h a specially 

designed architecture and a fixed hardware configuration[83,84], 

""' unassigned processors could be used to achieve good reliability 

and fault-tolerant processing[36]. 

3 ) Survivability and Modularity: 

Distributed systems are capable of resisting obsolescence, since 

the network communications structure may be left intact while some 

or all of the nodes are replaced or upgraded with newer technology 

representing more cost-effective or powerful performance. 

A large number of topologically different network schemes have been 

proposed[39-45], all of which posses unique strengths and weaknesses. 

However, it has not yet been demonstrated through a sufficently large 

number of actual hardware development efforts which of the network 

structures is the most flexible. Nevertheless, for the detailed 
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description of various interconnection networks, the reader could perhaps 

refer to Feng's survey paper[39] which covers a wide spectrum of network 

configurations. 

In that article, Feng begins by an examination of the decisions that 

designers have to make in terms of operation mode, control strategy, 

switching methods,. and network topology. He then goes on to review the 

major reseach efforts on the subject during the last few years, and 

classify them into syn~hronous and asynchronous models. 

.. 
1 ) The Synchronous Models: 

In the synchronous category, multiple processing elements and 

parallel memory modules under one control unit and linked together 

by an interconnection networks, can handle Single Instructions and 

Multiple Data streams (SIMD) processing (see the SIMD solution in 

page 28). Existing examples include Illiac IV[24] and Massively 

Parallel Processor[22]. 

2 ) The Asynchronous Models: 

The asy:1chronous approach for concurrent processing can handle 

Multiple Instruction and Multiple Data stream (MIMD) processing 

(see the MIMD solution in page 29). Examples of the MIMD 

architecture include data flow machines[48-54], and reduction 

machines[SS-60]. The multiple independently controlled processing 

elements are linked to a number of memory modules by an 

interconnention network. But, unlike the control unit in the SIMD 

machine, the activities are coordinated by the coordinator in the 

interconnention network, which implements the synchronization of 

processes and smooths out the execution sequence. 
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3.1 THE COMPUTATION ORGANIZATION OF DISTRIBUTED COMPUTER SYSTEM 

The computation organization decribes the way computation progresses 

in the form of change(s) in the state(s) brought about by executing 

instructions. In here, we describe how these state changes come to take 

place by the rules of sequencing and the effect of instructions[46]. 

1) Fetch Phase : 

2) Examine Phase 

Once selected, the instructions including all 

necessary operands, are fetched from the memory 

into the processing element for possible 

execution, but fetching does not guarantee 

execution. 

each of the instructions previously fetched in the 

processing element is examined to see if it is 

executable. The rules for making this decision 

are different in a variety of architectures. 

However, if an instruction is executab~e, it is 

passed on to the next phase for execution; 

otherwise, the examine phase may delay the 

instruction or attempt to coerce argume~ts so as 

to allow execution. 

3) Execute Phase : at the execute phase, the instruction is actually 

executed, and the result is then used to change 

the state(s) of the computation. 

3.1.1 The Classification of Computation Organization 

The mechanisms and rules which govern the fetching, examining 

and executing of instructions are often so unique that a clear 

distinction can always be drawn among different types of 

computation organization. 

1 ) Control-Driven : 

In the control-driven computation organization, it is best 

described by the well known fetch-execute control cycle of 

the Von Neumann architecture: once selected, the instruction 
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and its associated operands are fetched into the processing 

element ready for the execute phase without being checked by 

an examine phase. In other words, the examine phase is 

redundant in control-driven environment, and the progress of 

computations are marked by changes of states in shared 

memory (global state). The advantage of control-driven 

computation is full control over sequencing. But a 

corre.sponding disad.vantage is the burden of this imperative 

approach in having to specify details of how to solve a 

problem step by step. Futhermore, programming discipline is 

needed to avoid run-time errors which are har~er to prevent 

and detect, due to the twin generalities and dangers of 

control-driven computation to execute data as a program. 

2 ) Content-Driven : 

The computation organization of content-driven architecture 

is very similar to the control-driven organization except 

that the examine phase is included in the three-phase 

computation cycle. In ~his computation o~ganization, 
4 

memories and processing elements are brought together to 
t 

avoid the unnecessary movement of operands, to such an 

extent that fetching of operands is almost minimal. At the 

fetching phase, only various parts (examine phase and two 

execute phases) of the instruction are fetched from the 

program store into the control unit of the system. At the 

examine phase, a search is conducted on the content of every 

word-row of the memory to select the records (or data 

structures) concerned and to decide which execute phase of 

the instruction is to be executed. The result of execution 

is marked by state changes at all selected word-rows of the 

memory. The advantages of content-driven computation are 

minimum operand fetching, and the parallelism within the 

computation cycle obtained from the multiple data stream 

organization of SIMD architecture, which makes it the best 

candidate for logic programming. However, disadvantages do 
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exist when dealing with non-structured operations such as 

expressions and multi-tasking. 

3 ) Data-Driven : 

In the data-driven computation organization, no explicit 

control is available. Instructions when fetched are 

passively waiting for some combination of their arguments to 

become available before executions can take place. Hence, 

the key factor governing execution is the availability of 

data. Conceptually, all instructions in the program are 

fetched into the processing elements at the beginning of the 

program, each instruction has a processing element allocated 

to it continuously, just waiting for arguments to arrive. 

The examine phase then implements the so called firing rule 

which requires all arguments (data) to be available before 

proceeding to execution. At the execute phase, each 

instruction consumes its arguments and places a result in 

each successor instruction. The advantage of data-driven: 

computation is that instructions are executed as soon as~ 
~ 

their arguments are available, making way for a very high 

degree of implicit parallelism in the program organization. 

This makes it particularly suitable for processing 

expressions where the sequencing of the program organization 

is determined solely by operator precedence. However, the 

disadvantages are that some of the firing rules in the 

examine phase may be too restrictive and wasteful causing a 

wait for unneeded arguments. For example : content-driven 

type operations such as IF-THEN-ELSE operator which use only 

two of its three arguments may be forced to wait for all 

three before proceed to execute phase~ In the worst case 

this can lead to nontermination through waiting for an 

unneeded argument, for example an infinite iteration. 
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4 ) Demand Driven : 

In the demand-driven computation organization, an 

instruction is fetched into one of the processing elements 

only when the value they produce is needed by another 

already selected instruction. In the examine phase the 

arguments are checked to see whether execution is possible. 

If it is, the instruction is proceeded to the next phase for 

execution. Otherwise, the processing element will demand 

the evaluation of argument(s) until sufficient are available 

for execution. Logically, this demand consists of spawning 

one or more subcomputations to evaluate operands and waiting 

for them to return with a value. The execute phase in 

demand-driven model involves rewriting the instruction which 

will return with the arguments needed for the progress of 

the computation. Only the local state consisting of the 

instruction itself and those instructions that use its 

results are changed. The essence of demand-driven 

organization is that instruction sequencing is driven by the 

need to produce a result at the outermost level, rather than 

insisting on following a preset pattern. The advantage of 

the demand-driven computation organization is that only 

instructions whose result is needed are executed which make 

it well suited for the implementation of functional 

programming, especially in the cases of recursive, and 

iterative ("LOOP") program constructs: the demand-driven 

mechanism will synchronize and trigger executions amongst a 

group of instructions, without the imperative approach of 

control-driven architecture to specify the detail of 

sequecing. Nonetheless, it is unable to deal efficiently 

with expression type operations where every instruction (+, 

-, *, I etc.) always contributes to the final result: 

propagating demand from outermost level to innermost is a 

waste of effort, as naturally, it is the operator precedence 

that determine the sequencing, and every instruction must be 

executed. 
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3.1.2 The Computation Organization of the Host Processor 

From the above discussion, it is clear that the control-driven 

model which has lo~g been predominant, has failed in the highly 

parallel environment. But would the content-driven, data­

driven, or demand-driven computation organizations provide the 

answer to the question of parallelism? Over the past few 

years, a number of content-driven, data-driven and demand-driven 

computation organizations have been proposed[47-60], however, it 

is by no means certain which is the best candidate to cost­

effectively replace the conventional control-driven computation 

organization in handling the wide spectrum of computing 

activities. Nevertheless, it is strongly believed that none of 

the computation organizations that we have known to date is able 

to cope with the challenge of present day computational problems 

individually. Perhaps with the careful integration of all four 

kinds of computation organizations, a more efficient mechanism 

could be found. It is in the light of this philosophy that the 

Distributed Computer System is proposed. 

Intensive investigations have led us to believe. that there are 

only three kinds of computational activities existing in most of 

today's computer programming: Namely SISD, SIMD, and MIMD 

activities. Each of these is best driven by an appropriate 

computation organization: control-driven for SISD operations, 

content-driven for SIMD operations, data-driven and demand­

driven for MIMD operations. 

The control-driven organization is characterized by the lack of 

an examine stage which implies that the program has complete 

control over instruction sequencing. Once selected, 

instructions will always be executed regardless of the state of 

their operands. This means that there is no concern of the 

contents of data, no waiting or demanding for arguments. This 

unique characteristic, has placed the Von Neumann type control­

driven computation organization in an undisputable position to 
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be selected as the host processor of DCS, to handle activities 

such as program sequencing; scheduling; task allocation; and 

I/O control, within the system. 

3.1.3 The Computation Organization of the Associative Processor 

The computation organization of the associative processor is 

organized as a content-driven model: loading of instruction at 

fetch phase, a SEARCH operation at the examine phase (API 1), 

followed by MODIFY-READ/WRITE operation at the execute phase 

(API 234). 

Fetch 

Examine 

Execute 

LOADING INSTRCTION 

I 
v 

<API 1) 

I 
v 

I \ 
MR=O / \ MR=l 

I \ 
I \ 

<API 234) <API 234> 

This extraordinary organization can be traced all the way back 

to the origins of Content Addressable Memory (CAM). Unlike RAM, 

. CAM does not use location to address memory, instead, the 

content concerned is used to SEARCH (address) for required word­

rows in the memory. Similarly, a SEARCH operation is also used 

in the associative processor to examine the content of arguments 

before deciding which <API 234> is to be executed. Matched 

keywords of the argume.nts are tagged in the Tag Register (TR) 

making ready for subsequent execution. However, it would not be 

very useful, if executions can only be carried out on tagged 

word-rows of the arguments, therefore, a tag manipulation is 

inserted between the SEARCH and READ/WRITE operations for the 
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activation of word-rows to be extended beyond those tagged word­

rows. This allows modification of the logical content of Tag 

Register to be performed, before the execution of Read/Write 

function. This modification comprises a two state operation: a 

CLEAR operation (or a CLEAR-READ/CLEAR-WRITE operation) followed 

by an actual tag manipulation. Hence, LOAD(fetch)-

SEARCH(examine)-MODIFY-READ/ WRITE( execute) forms the complete 

Associative Computation Cycle (ACC). 

-------------------------------------------------------------Timing beat l <APD I <API-STATE:> ' <AMI) 
-------------------------------------------------------------

Beat 0 LOADING INSTRUCTION APIO 
-------------------------------------------------------------Beat 1 SEARCH APil I AMil 
-------------------------------------------------------------Beat 2 I CLEAR-READ/CLEAR-WRITE I API2 I 
-----------------------------------------------------: Beat 3 Tag Manipulations API3 I AMI234 
-----------------------------------------------------: Beat 4 READ/WRITE Function API4 I 
-------------------------------------------------------------

The Associative Computation Cycle (ACC) is assembled in a five 

beat time sequence as shown in the above table. However, in 

practice a four beat time sequence in a two-part instruction 

will be assumed, since the fetch phase of next instruction can 

always be pipelined with the examine-execute phases of the 

current instruction. 

1<- Beat 1 ->1<- Beat 2, Beat 3 & Beat 4 ->1 
---------------------------------------------> <API234) 

MR•01 
LABEL --> -<APil) ---> 

MRal1 
---> <API234) 

I ---------> --> NEXT 
I 

------------------------------------------
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3.2 THE PROGRAM ORGANIZATION OF THE DISTRIBUTED COMPUTER SYSTEM 

In the previous section, the computation organization of a single 

instruction was discussed. In this section, the scope of investigation 

will be broadened to consider relations between instructions: i.e. How do 

they communicate in terms of data mechanism? How one instruction causes 

the selection of another instruction in terms of control mechanism? Thus 

what determines the pattern of control to form the organization of a 

computer program? The term program organization is used here to cover the 

way machine code programs are represented and executed in a computer 

architecture[46]. ,. 

1 ) The Control Mechanism : . 
The control mechanism defines the propagation of instructions, and 

thus the control pattern within the total program. 

A) Sequential : where a single thread of control, signals an 

instruction to compute and passes from one 

instruction to another. 

B) Parallel : where more than one thread of controls are actived 

at an instance, and protocols are also provided 

for the synchronizing of these threads. 

C) Recursive : where control is used to signal the need for 

arguments, and hence, an instruction is selected 
I 

for execution when one of the output arguments it 

generates is required by the invoking instruction. 

Having executed, control is returned to the 

invoking instruction. 

2 ) The Data Mechanism : 

The data mechanism defines the way a particular argument is used 

by a number of instructions. 
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A) By Name 

B) By Value 

C) By Reference 

where an argument is known at compile time and a 

separate copy is generated and placed in each 

accessing instruction. 

where an argument, generated at run time, is 

replicated and a separate copy is placed in each 

accessing instruction. 

where an argument is commonly shared by having a 

reference to it stored in each accessing 

instruction. 

The Distributed Computer System is organized in a sequential Control­

' Flow program organization, which has a number of common Control-Flow 

features: 

1 ) The Control Mechanism : 

There is a growing belief[54], shared by the author, that since a 

computer program is a sequence of tasks carefully put together to 

solve a particular problem by means of a computer system, it is by 

no means reasonable to suggest tha't parallelism could be achieved 

in this inherently sequential program organization. Nevertheless, 

in so saying, we are not discarding the possibilty of parallelism: 

parallel operations could be implemented as concurrent processes 

(procedures) within the sequential Control-Flow computer program. 

Here, we stress very strongly the word "srequence" in the sense 

that processes and state changes have to proceed in the right 

order before the true result can be obtained. Hence, the DCS is 

based on a sequential control mechanism in which a GOTO type 

control operator such as program counter is used to direct the 

flow of control, concurrent processing is achieved by the 

augmentation of FORK-JOIN type parallel control operators. These 

parallel operators allow more than one thread of control to be 

activated at an instance, and also provide the means for 

synchronizing these threads. 
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l ALTERN ATE l 
PROCESS//2 
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v 

( BEGIN ) 

I v 
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SEQUENTIAL \ 
PROCESS Ill 

I 
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I 
v 

\ 
ALTERNATE 1 
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I v 
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\ 
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PROCESS #3 PROCESS #3 PROCESS #3 

I v v v 
---------J-o-I-N------------

1 v 
( END ) 

Fig. 3.2 The Control Mechanism of the DCS Program Organization 

A process (or procedure)--the fundamental working element in the 

DCS--is a single instruction, group of instructions, or even a 

group of other processes, reponsible for the handling of one 

prescribed activity, which will then be put together with other 

processes (or procedures) to form a main DCS program. 

2 ) The Data Mechanism : 

The basic data mechanism amongst DCS processes is a "by­

reference" mechanism, with references embedded in processes being 

used to access shared memory, in which the effects of changing the 

contents of a memory cell are immediately available to other 

processes. Hence, data is passed indirectly between processes via 
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references to shared memory cells. However, within each process, 

it is usually the "by value" data mechanism that governs the flow 

of partial results directly from the producer to the consumer 

instruction, without reference to the shared memory. The reasons 

for this design are two fold: 

-------------------------------------------------//11/II!!I/11/I/111//II/IJI//II//II/11/II//II//I/ 
///////////// THE DCS MAIN PROGRAM////////////// 
1/llll/lll/111//llll/1111/llll/1/l/111/llllll/111 
IIIII/1//I/II!I/IIII/11/II/JI/111//JI/I/1//II/1/1 
111//l/1/l/1 --------------------- ll/l/1111//ll/ 
111111111111 1111/ll/111/// 
ll/!l/111//1 1/1/ll//ll/l// 
//1////111// SEQUENTIAL 1/1/1/11/1//11 
III/IIIII/// PROCESS #l lll/11/l/11111 
l/1111111111 111111/ll//l/1 
111111111111 lll/11/ll/1111 
1111111111/1 --------------------- 111111/I/JJJ/J 
II/!I//II//III/JI/I/1111//II/IIII/111/I/1/I/11/1/ 
111/ll/lll/1111//ll//1/ll/11/l/11/llllllllll/11// 
11111/ll/1/1 --------------------- 11111111111111 
111111/ll/// lll/1111/111/1 
1/ll/11//1// ----------- 11/11111/11111 
III/IIIII/II I ALTERNATE I 11/lllll/111/1 
1/1///////// PROCESSI2 //111//11///// 
11//ll/l/11/ ----------- 1111/11//11//1 
1111//111//1 ----------- 11//11/l/11//l 
111//ll//l/1 I ALTERNATE I 1111/111//ll/1 
//////1///// PROCESSI2 //1///1//1/1/1 
111/l//ll/11 ----------- /lll/111/11//1 
11/ll/1/11// 1111//ll/111// 
III/IIIII/// --------------------- /ll/111111111/ 
llll/ll/llllllll/lll/11/llll/lllll/l/1/lll/111111 
111/lllll/ll//ll/lll/11111/lll/111111111111111111 
111//IIJI//1 --------------------- ll/l/1111111/1 
11111/111//1 111//lll/1/l// 
lll///11/l/1 ------------ 1111/lll/111// 
111111111111 I PARALLEL I lll/1111/1111/ 
///1/////1// PROCESS #3 /////1/////11/ 
1111/11111/1 ------------ 1/ll/111/1111/ 
l/11//11///1 ------------ 111//ll//l/1// 
l/11//111//1 I PARALLEL I 11111111/111// 
////1/1///11 PROCESS #3 ////////////// 
l/11//ll///1 ------------ 11111111111111 
11111//11/11 ------------ 111//lll/1//l/ 
111111111//1 I PARALLEL I 1111/lll/11111 
1/////1////1 PROCESS #3 ////////////// 
11//ll/11111 ------------ l/1/ll//ll/111 
l/111//11/11 111/ll/1111/// 
11111//111// -------------- 1/ll//lll//l// 
ll/11/llll/111111/ll/ll/111/lll/llll//llll//ll/// 
lllll/llll/lll//ll/lll/ll/111/lll//lll/ll/ll/11// 
IIIIII/111/III/IIJ/IJI/I/II/II/1/1//III/IIIII//I/ 
lll/ll/1/lllllllllll/111111/lll/1//111/llll/1/1// 
----------------~----------------------------~-

Fig. 3.3 The Data Mechanism of DCS Program Organization 
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1 ) Architectural Advantage : 

From the architectural point of view, this more modulal 

approach of data mechanism has not only given rise to a 

cleaner semantics without "side effects", but it has also open 

the way. for multiprocessing: with the "by-value" data 

mechanism, individual concurrent processes can function in 

parallel without interfere with each other in clashing for 

references to the shared memory. Hence, extensive concurrency 

can be obtained by multiprocessing many partial results in 

parallel, which otherwise may run into the so called "Von 

Neumann bottleneck": due to the "by reference" data mechanism 

of Von Neumann architecture, system performance is critically 

influenced by the I/O bandwidth of the system. Suppose that 

the I/O bandwidth between shared memory and processors is 10 

million bytes per second. If at least one byte of operand is 

read from and another byte of result is written back to the 

memory for each instruction, the maximum rate will b 5 MOPS 

(Million Operation Per Second), assuming that fetch sequence 

and execute sequence can be pipelined. 

---, SHARED l<---
1 

MEMORY 

lOOns ---------- 5MOPS 
at most 

----------------------------INTERCONNECTION NETWORK 
----------------------------

I INSTRUCTION 
-------------->1 PROCESSOR 1--
-------------

However, this I/O problem will become especially severe when a 

process of large computation is involved. Orders of magnitude 

improvement on the throughput are possible only if multiple 

computations can be perform on multi-processor per I/O access. 
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computations can be perform on multi-processor per I/O access. 

Using a "by value" mechanism where data is passed directly 

from instruction to instruction will make this become a 

reality. 

--------------\ ~~~ \ <----------------

\ 

---------- ) 5 MOPS 
100 ns . possible 

------------------------------------------------------
INTERCONNECTION NETWORK 

------------------------------------------------------

I I I I I I I I I I 

->1 P I P I P I P I P I P I P I P I P I P 1-

2 ) Hardware Advantage : 

With the introduction of "by value" data mechanism within each 

process, DCS is trying to avoid long-distance or irregular 

wiring which arises from the global communication of "by­

referenc~' mechanism. The only global communication is 

restricted at the process level. Once inside the process, a 

self-timing scheme is used for synchronizing neighbouring 

processors and passing data directly between them. This 

modular approach will lead to a more organized, more regular, 

and simpler hardware implementation, making way for the 

ultimate chip implementation of DCS even more closer to 

reality. 

Looking from the system programmers' point of view, the program 

organization of the Distributed Computer System will look very similar to 

any conventional computer, except that the DCS has facilitated APis into 

the conventional assembly languages, and hence the Associative Assembly 

Language (AAL). 
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I Byte-Organized\ 
Associative 

Memory 
--------------

Fig. 3.4 The Program Organization of the Distributed Computer System 
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The AAL is the super-set of APis and a SISD assembly language with 

which the programmer uses to access BOAP and the SISD processor. The 

choice of SISD assembly language is completely arbitrary, as the 

preprocessor type design[61] of AAL Assembler will be able to cope with all 

kind of assembly languages. For the sake of illustration, the Z-80 

Assembly Language is used here as an example of an SISD assembly language. 

The AAL program is usually input by the programmer into the system 

editor before being assembled by AAL Assembler which contains a filter to 

separate APls from the SISD assembly instructions. Three files are then 

generated after Assembling. 

1 ) API Object File : 

This is a file of APls in the form of 48-bit mac~ine-code, 

sometimes, referred to as Associative Machine Instructions (AMls). 

c c c c c c c c c c c c T n clul 
H H H H H H H H B B B B B I M S LABEL 0 LABEL 1 
7 6 5 4 3 2 1 0 1 2 3 4 V 1 B D -- . --

011001010101011000000000100000000000000100000010 
011001010101100110000000100000000000001100000100 
011001010101101000100000100000000000010000000101 
011001010110010100001000100000011111111111111110 
011001010110011000000010100000011111110111111100 
011001010110100110101010100000011111100111111011 

;API 0 
;API 1 
;API 2 
;API 3 
;API 4 
;API 5 

After assembling, the API object file is loaded into the API 

Program Store by the API Loader, ready for execution. In the DCS, 

the API Program Store has artificially occupied 4K memory from 

FOOO - FFFF on the system memory map, in which the most 

significant 4 bits ( B12 - B15 ) of the 16 bits instruction 

address are used by the BOAP Control Unit as a signal to load APis 

from API Program Store. 
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FOOO I 
4 K 

I 
FFFF -----------

1<-48 bits->! 

In the process of assembling, an Association Program Counter (APC) 

is used to keep track of every address of APis. When an API is 

assembled, its address is given by the APC to the MACRO generated 

SISD LOAD instruction in place of that API in the AAL program, 

which when executed will trigger the BOAP Control Unit to load the 

corresponding API into BOAP. At the end of each operation, the 

flow of control is returned to the Host Processor. 

e.g. S(~T~ XlXX)BMR LABELO,LABELl ;SEARCH FOR 'T' ,THEN 
;BRANCH TO LABELO IF 
;MATCH ELSE LABELl. 

will be replaced by the following SISD code 

LD (OFOOOH) ,A 
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2 ) Z-80 Object File : 

This is a combined file of the SISD part and the MACRO generated 

API replacement codes • 

• PROC ASSIGNMENT 

SNAME .EQU 0090H 
CONTENT .EQU 0091H 

.ORG OlOOH 

------- ; LOAD THE STRING IDENTIFIER INTO AMA 

LD 
LD 

LD 

DEC 

-LOOPl LD 

\ 

LD 

DEC 
------ JR 

A,(SNAME) 
(OFOOOH) ,A 

(OFOOlH),A 

A 

(OF002H),A 
(OF003H) ,A 

A 
NZ,LOOPl 

, LOAD SNAME IN A . CALL UPON BOAP TO , . EXECUTE THE AP Il , . WHICH STORED IN 
' . LOCATION FOOO • , . CONTENT OF A IS 
' . IRRELEVANT • , . EXECUTE API234 WHICH . ' 
; STORED IN LOC. FOOl . DECREMENT A , 
; EXECUTE APil FROM F002 
; EXECUTE API234 FROM 
; LOCATION F003 
; DECREMENT A 
; BRANCH TO LOOPl IF 
; NOT ZERO 

; SET DELIMITER FOR STRING'S IDENTIFIER 
LD (OF004H) ,A ; EXECUTE APil FROM F004 
LD (OFOOSH) ,A ; EXECUTE API234 FROM 

; LOCATION FOOS 

------ ; LOAD THE VALUE OF STRING INTO AMA 
LD A,(CONTENT) LOAD CONTENT IN A 

-LOOP2 LD (OF006H) ,A ; EXECUTE APil FROM F006 

I LD (OF007H) ,A EXECUTE API234 FROM 
; LOCATION F007 

DEC A ; DECREMENT A 
----- JR NZ,LOOP2 ; BRANCH TO LOOP2 IF 

------- ; NOT ZERO 

; SET DELIMITER FOR STRING'S VALUE 
LD (OFOOSH),A , EXECUTE APil FROM F008 
LD (OF009H) ,A ; EXECUTE API234 FROM 

; LOCATION F009 

; TERMINATE THE STRING BY SETTING OVERFLOW BYTE TO 0 
LD (OFOOAH) ,A EXECUTE APil FROM FOOA 
LD (OFOOBH) ,A ; EXECUTE API234 FROM 

LOCATION FOOB 

.END 

STOP : Next part of the program 
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3 ) AAL Program Listing 

This is the full listing of the AAL program plus error messages 

if any. 

.PROC ASSIGNEMT 

SNAME .EQU 0090H 
CONTENT .EQU 0091H 

.ORG OlOOH 

------- ; LOAD THE STRING 
LD 

- S('?' XXXX)BMR 
RSTTD(S) 

- W( IQF lXXX) 
DEC 

-LOOPl S('?' XXXX)BMR 

I RSTTD(S) 
W(IQF XXXX) 
DEC 

------ JR 

IDENTIFIER INTO AMA 
A,(SNAME) 
STOP,+l 

A 

STOP,+l 

A 
NZ,LOOPl 

; SET DELIMITER FOR STRING'S IDENTIFIER 
- S('?' XXXX)BMR STOP,+l 
I RSTTD(S) 
- W('$' XXXX) 

------- ; LOAD THE VALUE OF 
LD 

-LOOP2 S('?' XXXX)BMR 

I RSTTD( S) 
W(IQF XXXX) 
DEC 

----- JR 

STRING INTO AMA 
A,(CONTENT) 
STOP,+l 

A 
NZ,LOOP2 

; SET DELIMITER FOR STRING'S VALUE 
- S('?' XXXX)BMR STOP,+l 

RSTTD(S) 
- W('IJ' XXXX) 

; TERMINATE THE STRING BY SETTING OVERFLOW BYTE TO 0 
- S['?' XXXX) STOP,+l 

RSTTD(S) 
- W[lOOOOOOO XXXX) 

.END 

STOP : Next part of the DCS program 
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3.3 THE MACHINE ORGANIZATION OF DISTRIBUTED COMPUTER SYSTEM 

The term machine organization is used here to cover the way a 

machine's resources are configured and allocated to support a program 

organization. An examination of various program organizations under 

development reveals three basic classes of machine organization[46]. 

1 ) Centralized Machine Organization : 

Centralized machine organization consists of a single processing 

element (P), control unit (C), and memory resource (M). 

I c I 

I P I 

I M I 

Fig; 3.5 Centralized Machine Organization 

The processing element also contains a set of high-speed 

registers, notably Program Counter (PC), which points to the next 

instruction to be executed, and Instruction register (IR), which 

holds the instruction currently being executed. Program execution 

of the centralized machine organization proceeds in a SISD fashion 

with the PC keeping trace of the program sequencing. It views an 

executing program as naving a single active instruction which 

passed execution to a specific successor instruction. This is 
. 

clearly the machine organization for the familiar Von Neumann 

sequential control-flow Computer. 

2 ) Packet switching Machine Organization : 

Packet switching machine organization[48) consists of a circular 

instruction execution pipeline of resources in which processing 
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elements and instruction memory unit are interspersed with 11pools 

of work" interconnected by various networks. The organization 

views an executing program as a number of independent information 

packets, all of which are conceptually active, which may split or 

merge. Each packet that is ready to be processed is placed with 

similar packets in one of the pools of work. When a resource 

become idle, it takes a packet from its input pool, processes it , 

places the modified packet in an output pool, and then returns to 

the idle state. Parallelism is obtained either by having a number 

of identical resources between pools, or by replicating the 

circular pipelines and connecting them by the communications[46]. 

This feature has in fact made packet switching machine 

organization the favourite candidate for the implementation of 

data-flow program organization[48,49,51,52,53,54]. 

----------------------------------------------------------------<--- <--- DISTRIBUTION NETWORK <--- <---
----------------------------------------------------------------

\ 
. . . . \ .... . . . . . . . . . 

V :: ::: V. 

--------~------------------,-----------
' INSTRUCTION CELL l 
------------------:::MEMORY::UNIT::: 
------------------l INSTRUCTION CELL l 
----------------------------------------

\ 
. . . . \ .... . . . . .... 

v :::: v 

<--\ CONTROL UNIT \--> 

I . . . . I . .. . . .. . . .. . . .. . . . . . 
lPl::lPl 

:P.E.UNIT: 

lPl::lPl 

I . . . . I . ... 
: : : : .... . . . . 

-----------------------------------------------------------------> ---) ARBITRATION NETWORK ---> ---> 
--------------------------------------------------------------

Fig. 3.6 Packet Switching Machine Organization 

The Packeting Switching machine organization shown in Fig. 3.6 

consists of five major units: 

A ) Memory Unit, consisting of Instruction Cells that hold the 

instructions and their operands. 
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B ) Processing Element Unit, consisting of processing elements 

that perform operations on instruction packets. 

C ) Control Unit, Co-ordinating the transmission protocol between 

the Memory Unit and the Processing Element Unit. 

D ) Arbitration Network, delivering executable instruction packets 

from the Memory Unit to the Processing Element Unit. 

E ) Distribution Network, delivering data packets from the 

Processing Element Unit to Memory Unit. 

3 ) Tree Machine Organization : 

Tree machine organization consists of identical resources 

organized as a regularly structured hierarchy[57,58] such as a 

tree, as shown in Fig. 3.7. 

---------
I 

I c I 
\ 

I \ 
I I P I \ 

I \ 
I \ 

I I M I \ 
I \ 

I --------- \ 
I \ 

I \ 
I \ 

--------- ---------
I 

I c I 
\ 

I c I 
I \ 

I \ I \ 
I I P I \ I I P I \ 

I \ I \ 

I M I I M I 
--------- ---------

Fig. 3.7 Tree Machine Organization 

Each resource contains a processing element (P), control unit (C), 

and memory capability (M). The organization views an executing 
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program as consisting of one large nested expression which is then 

partitioned into the collection of hierarchically organized 

resources. Execution is by a substitution process, which 

traverses the program structure and successively replaces 

reducible expessions by others that have the same meaning until a 

constant expression representing the result of the program is 

reached. This machine organization seems most applicable to 

supporting the reduction form of program organization. 

The Distributed Computer System is configured as centralized machine 

organization, with its host processor virtually a conventional Von Neumann 

machine, and its associative processor organized in a central control SIMD 

architecture. 

Conventional 
Von Neumann 

Processor 

---------------------------------------------------------------~ . 

INTERCONNECTION NETWORK 

---------------------------------------------------------------I \ 

\ \ 
----------------

·1 Byte-Organized l 
Associative 

Processor 
----------------

The Von Neumann processor is used here mainly as the host of the 

system to co-ordinate activities such as program sequencing, scheduling, 

task allocation and I/O control within the network, in addition to the 

implemention of the conventional SISD operations. The Byte-Organized 

Associative Processor (BOAP), on the other hand, is integrated in the 

system to deal with the implementation of abstract data structures. 

Communications are provided via the Interconnection Network. But, due to 
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the incompatibility of their machine-code instruction formats, functional 

components of both processors are stored separately in two different 

program stores. 

----------------
API 

Program 
Store 

----------------

----------------
Byte-Organized 

Associative 

Processor 

----------------

__ I\ 
I/ Interconnection 

II __ , 
\I 

Network 

__ I\ 

I/ 
II __ , 
\I 

SISD 
Program 

Store 

Conventional 

Von Neumann 

Processor 

Fig. 3.8 The pistributed Computer System 

3.3.1 The API Program StoFe 

The API Program Stdre is consist of a 48-bit word AMI memory, a 

Associative Program Counter (APC), an Address Control Unit, a 

Associative Machine Instruction Address Register (AMIAR), and a 

Associative Machine Instruction Register (AMIR). The API 

program is kept in a 48-bit word AMI memory after being 

assembled into Associative Machine Instruction. Loading is done 

by the Host Processor via the Interconnection Network. 

Requests for an AMI comes from the BOAP Control System in the 

form of an AMI address, which it is then used together with the 

content of APC to calculate the absolute address of the AMI and 

load it into the AMI~ 
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-------------------------------------------
APC AMIR 

----> 
Address 
Control 

Unit 

----> 
Associative 

Machine Instruction 
Memory 

Interconnection 

I \ 

I I 
AMIARI 

-----> -----> -----> 
( 48-bit Word ) 

AMIR 

Fig. 3.9 The API Program Store 

3.3.2 The Byte-Organized Associative Processor 

Network 

In the reproduction of Fig. 2.6 (the system organization of 

BOAP), it is shown that the Control System is like the host and 

interconnection network within BOAP, that co-ordinates 
. 

activities and data transf~r within the associative processor. 

---------------- ---------------
Instruction I 

Memory 
Buffer 

\liT 
-------------II ---------------II ---------------II : :1 Input Buffer I : 

Scratch pad \1 \1 --------------- \1 Interconnection 
\ Control System \ -------------- \ Network 

Buffer - - I Output Buffer 1-
-~ I -~I --------------- -~I 

,117 I \ - -
II 

----------------

1 I Associative 

Memory 
----------------
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3.3.2.1 The BOAP Instruction Memory Buffer 

The BOAP Instruction Memory Buffer is a two register 

memory block that contains the next two alternative 

examine parts of the current AMI, to support the 

"Pipelining" of the Fetch and Examine-Execute Cycles. 

------------------------------------------------------

->\ Next Part of AMI if MR = 0 I 
Instruction __ / ----------------------------
Selector ----------------------------

\ Next Part of AMI if MR = 1 I 

------------------------------------------------------

Fig. 3.10 The BOAP Instruction Memory Buffer 

The <AMil> Instruction'Format 

The <AMil) of BOAP uses a 2-address instruction 

format[62] to addre~s the (AMI234> parts (examine 

phases) of the instruc~ion. 

\<------------------------ AMI 1 -------------------------->\ 
1 25 26 27 29 30 33 41 48 
-----------------------------------------------------------

' Wd Spec \TBV\ \Dil\ CMB \000\ Label-0 \Label-l\ 
-----------------------------------------------------------

These two addresses {Label-0 and Label-l) of the current 

<AMil) are sent to the Address Control Unit of the API 

Program Store, for the fetching of next two alternative 

parts {(AMI234>) of this AMI to be loaded into the BOAP 

Instruction Memory Buffer. The destined next <AMI234> 

is pending on the outcome of the Match Reply (Ma): If MR 

• 0, the <AMI234) in the upper register will be loaded 

into the Control System for execution, otherwise, the 

(AMI234) in the lower register will be chosen. 
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The <AMI234) Insturction Format 

The <AMI234) uses a 1-address instruction format for the 

<AMI234> part of the instruction to specify the 

addresses of its next instruction. Since only one next 

instruction is involved, it is fetched and loaded into 

both upper and lower registers of the Instruction Memory 

Buffer. 

\<----------------------- AMI 234 ------------------------->\ 

1 25 26 27 29 30 33 37 39 41 48 

\ Wd Spec \PF \ R/W \DI4\ CMB \USDI ACD IDI21 CLEAR I Label \ 

3.3.2.2 The BOAP Input Buffer 

The transfering of data between BOAP and Host Processor 

is provided by the Input Buffer and Output Buffer. Both 

buffers are structured as a 1K x 12-bit RAM, but 

function as a FIFO (First In First Out) queue. 

-------------------------------------------
(IQE) 

---------
,, \7 

--------- Queue 
Input I End Buffer -----> 

Address 
Control -----> 

Unit Queue 
--------- Front 

I \ 

I l 
(IQF) 

IBR 
-------------------

\l l7 
------------------- 1K 

-------------------l//lll/l/////1/l/// 
-------------------
------------------- 0 

,I 17 
-------------------IBR 
--------------------------------------------------------------

Fig. 3.11 The BOAP Input Buffer 
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The Input Buffer deals with the incoming data traffic 

from the Host Processor via Interconnection Network: 

data is placed at the end of the Input Buffer Queue by 

the Input Queue End (IQE) pointer as it comes in, and 

later is transfered into the Control System under the 

control of the Input Queue Front (IQF) pointer. Both 

IQE and IQF pointers are always reset back to 0, 

whenever they have gone beyond the upper limit of the 

Input Buffer. 

3.3.2.3 The BOAP Output Buffer 

The BOAP Output Buffer is organized similarly to the 

FIFO queue of the Input Buffer. However, it deals with 

the outgoing data traffic from the BOAP to the Host 

Processor via the Interconnection Network. 

(OQE) 

Output 
Buffer 

Address 
Control 

Unit 

I \ 

I I 
(OQF) 

OBR 

\l 17 
Queue ------------------- lK 

End 
-----> -------------------lllllllllllllllll/1 
-----> -------------------

Queue 
Front ------------------- 0 

,I 17 
OBR 

_,, 
-~~ 

-------------------------------------------

Fig. 3.12 The BOAP Output Buffer 

Interconnection 

Network 

The data from BOAP is placed at the end of the Output 

Buffer Queue by the Output Queue End (OQE) pointer, and 

then transfered to the Host Processor via the 

Interconnection Network by control of the Output Queue 
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Front (OQF) pointer. Both OQE and OQF pointers are 

always reset back to 0, whenever they have gone beyond 

the upper limit of the Output Buffer. 

3.3.2.4 The BOAP Scratch Pad Buffer 

The BOAP Scratch Pad Buffer is used as a working storage 

for data transformations and data transfer within BOAP. 

It is also structured as a 1K x 12-bit RAM block. Data 

usually comes in from the ODR of the Byte-Organized 

Associative Memory via the Control System, and vice 

versa into the IDR of BOAM. 

------------------- ,,_ 

Scratch ~-----> 
Pad ----> 

Address -----> 
Control -----> 

Unit -----> 
I \ 

' ' (SPA) 

SPR. 

RAM 

( 12-bit Word ) 

-------------------SPR 

-------------------------------------------

_, \ 
-" 

Fig. 3.13 The BOAP Scratch Pad Buffer 

3.3.2.5 The BOAP Control System 

Control 

System 

The BOAP Control System is the host within the 

associative processor that oversees and co-ordinates 

activities such as sequencing; scheduling; and I/O 

control of Assocative Machine Instruction (AMI), within 

BOAP. 
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---------------------------------------------------------------
-----------------------------------------------------------1 Wd Spec \PF I R/W \DI4} CMB }USD} ACD }DI2} CLEAR 1 Label I 
-----------------------------------------------------------\48-Bits\ 

\ T 
-----------------------------------------------------------MACHINE INSTRUCTION DECODER 
-----------------------------------------------------------
-------------- r-Bitsl \117 1 BEAT CONTROL I 
-------------- ------ ------

1 I I SPAR I I MIAR } 
v v \ T ----- ------

------------------------------------------------------------------------------------------------------
ICh Spec\ CB Spec I RW \DI4ICMBI IAMI4 
----------------------------------------------------------------------------------------------I IAMI3 

-----------------------------------------------
IPF=OI 1 DI21 CLEAR I AMI2 

-----------------------------------------------
1 17 25 26 27 29 30 
-----------------------------------------------ICh Spec} CB Spec lTBV 1 1 Dill CMBI I AMil 

D 
A 
T 
A 

T 
R 
A 
N 
• 
R 
E 
G 

---------------------------------------------------------------
OVT ---------- --------- -------------
--->\ OVERFLOW ~------>~ PLT/PLB ~<------~ MATCH-REPLY ~<--

-> CONTROL ------> CONTROL CONTROL 
0 ---------- --------- -------------v 
B ~ I I ! 

v v 

M 
R 

---------------------------------------------------------------

Fig. 3.14 The BOAP Control System 

The Machine Instruction Decoder: 

At the fetching phase, the <AMil> and <AMI234> parts of 

AMI are loaded from the Instruction Memory Buffer into 

the Instruction Register of the Control System. They 

are then separated by the Machine Instruction Decoder 

into a four beat sequence and addresses of <AMI234) or 

address of next instruction. 
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The Data Transfer Register: 

In BOAP, every request for data transfer among various 

buffers (Scratch Pad, Input and Output Buffers) has to 

go through the Data Transfer Register of the Control 

System before reaching their destination. In the case 

of Scratch Pad Buffer, the address of Scratch Pad Buffer 

is kept in the Scratch Pad Address Register (SPAR) for 

the SPA in Scratch Pad Buffer (Fig.3.13). 

The Feed Back Control Network: 

The feed back signals from the associative memory 

modules: Namely OVT/ OVB and MR, are first of all feed 

into the OVERFLOW CONTROL and MATCH-REPLY CONTROL 

respectively, for processing before driving the PLT/PLB 

CONTROL to set the PLT/PLB of various memory modules. 
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3.4 SUMMARY 

For almost the last fourty years, the principles of computer design 

have largely remained static, based on the model of Von Neumann computer. 

However, as computing moves from a sequential world into a multiprocessing 

environment, distributed processing has become a necessity to bring 

together a large number of computing elements providing either a general­

purpose or a special-purpose function. They may be broadly classified as 

control-flow, data-flow and reduction architecture in terms of their 

computation organization, program organization, and machine organization. 

The Distributed Computer System with its dual processor configuration 

is based on the control-flow architecture, which includes the host 

processor--a conventional Von Neumann machine, and an associative processor 

which operates as a content-driven SIMD architecture. Apart from this 

distinct feature, the only exception is the physical separation of data 

storage (arguments) from the control storage (program): arguments in 

associative memory and program in RAM respectively. The design of DCS is 

based on the middle-out strategy by first designing the conventional 

machine lev~l of the computer system, which including its computation 

organization~ program organization and machine organization, before using a 

bottom-up approach to design the assembly language and its machine 

instructions in the successive chapters (Chapter Four & Five). In Chapter 

Four, the formal definition of the Associative Assembly Language (AAL} will 

be presented as the means for programming the DCS, which followed by the 

design of its machine instructions to drive the hardware of the DCS. 
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CHAPTER FOUR 

THE DESIGN OF THE ASSOCIATIVE ASSEMBLY LANGUAGE 

4.1 The Examine Phase of API (APll) 

4.2 The Execute Phase of API <API234) 

4.3 Summary 



Assembly languages differ in a significant respect from the 

conventional problem-oriented languages in that there is a one-to-one 

mapping between machine instructions and statements in the assembly 

program. In other words, assembly language is just a mirror image of its 

machine code instruction in symbolic form, which it is therefore machine 

dependent, and has access to all the features and instructions available on 

the target machine (host machine). However, assembly languages for 

different machines have sufficient resemblance to one another to allow a 

discussion of assembly language in general. Assembly language instructions 

usually have four fields: 

1 ) Label Field : 

Labels, which are used to provide symbolic names for memory 

addresses, are needed on the executable instructions so that the 

location of the instructions can be referenced. 

2 ) Operation Field : 

The operation field contains either a symbolic abbreviation for 

the opcode or a pseudoinstruction (which is a command to the 

assembler). T~is is usually the most distinguishable field by 

which the flavo~r of the machine is reflexed. However, the choice 

of an abbreviation is often a matter of taste for individual 

assembly language designers. 

3 ) Operand Field : 

The operand fields are used to specify the addresses or registers 

whereby operands can be found. 

4 ) Comments : 

The comment field provides a place for the programmers to put 

helpful explanations of how the program works for the benefit of 

other programmers as well as the author himself. 

The Associative Assembly Language (~\AL) which is the superset of APls 

and a S ISD assembly language, follows the same general pat tern of other 

assembly languages in the design of instruction format. 
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LOOP! 
MR=l 

HR=O 

s 
M(CLBTT) 
RSTTD(S) 
w 

DEC 
JR NZ, 

('?' XlXX)BMR MR=O,MR=l 

( IQF lXXX) 

A 
LOOP! 

other <API234) 

SEARCH FOR '?' 
CLEAR BITS TRUE TAGS 
RESOLVE TRUE TAGS DOWN 

; WRITE TO ALL TAGGED 
WORD-ROWS WITH THE 
OPERAND FORN THE INPUT 
BUFF~R QUEUE FRONT 

; DECREMENT REGISTER A 
; GO BACK TO LOOPl H' > 0 
; PROCEEDED WITH THIS 

1<-LABEL->I<OPCODE>I<-OPERAND->1<-NEXT 
· EXECUTE PHASE IF MR = 0 

INS.->1<------ COMMENT ------>1 

Governed by the control-flow program organization, AAL uses the 

automatic sequencing of a program counter for the selection of next 

instruction. This mechanism allows instructions stored in consecutive 

memory locations to be fetched, examined, and executed one after the other. 

n1e program counter can also be explicitly altered by a branch instruction 

in order to accomplish the flow ,of control to be transfered to a specified 

location other than the next one in the sequence. Hence, the address field 

for next instruction is not ~eeded in most of the AAL instructions. 

However, at the computation organization level, the API uses a rather 

different control structure to maintain the flow of control: based on the 

content-driven architecture, ~he API needs to split its instruction 

logically into two separated statements in order to comply with the rule of 

content-driven organization: notably (APll) and <API234). 

Associative 
Computation 

Cycle 

1<- Beat 1 ->1<- Beat 2, Beat 3, Beat 4 ->1 
----------------------------------------------

1 

-> <API 234) --
MR=OI Statement 1 

--> --- <API 1> ----> ------------ --> 
Statement MR=ll Statement I 

-> <API 234) --
----------------------------------------------

The flow of control from <APil) to whichever <API234) is governed by 

the outcome of SEARCH operation in (APll), therefore, the addresses of the 

two alternative <API234) are explicitly included in the instruction format 

of the <APil> statement. 
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LOOPl S('?' XlXX)BMR MR=O,MR=l 
MR=l M(CLBTT) RSTTD(S) W(IQF lXXX) 

MR=O an alternative <API234) 

<APil) PART OF API 
<API234) PART FOR MR = 1 

<API234) PART FOR MR = 0 

Moveover, in order to improve the readability of APis, and be 

consistent with the general pattern of other assembly languages, the 

<API234> part of API is further split into three separated lines. 

LOOPl 

MR=O 

S('?' XlXX)BMR 
M(CLBTT) 
RSTTD(S) 
W(IQF lXXX) 

MR=O,+l 

DEC A 
JR NZ,LOOPl 
an alternative <API234> 

SEARCH FOR '?' 
; CLEAR BITS TRUE TAGS 

RESOLVE TRUE TAGS DOWN 
; WRITE TO ALL TAGGED 

WORD-ROWS WITH THE 
OPERAND FORM THE INPUT 
BUFFER QUEUE FRONT 
DECREMEMT REGISTER A 
GO BACK TO LOOPl IF ) 0 
PROCEEDED WITH THIS 
EXECUTE PHASE IF MR = 0 

\<-LABEL->\<OPCODE>\<-OPERAND->\<-NEXT INS.-) <------ COMMENT------>\ 

Nevertheless, at the progr~m organization level, API as a whole (the 

Associative Computation Cycl~ is being treated a single instruction 
t 

similar to all other SISD instructions, in which the flow of control is 

sequenced by the program counter. 

<ASSOCIATIVE COMPUTATION CYCLE> : :• <APll STATEMENT><API234 STATEMENT> 

Associative --------------- ------------------
Computation-->\ APll satement \---->\ API234 statement 1--> 

Cycle --------------- ------------------
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4 .1 THE EXAMINE PHASE OF API (APll) 

The examine phase of API is always the SEARCH instruction which used to 

locate the potential candidates within the AMA for subsequent READ/ WRITE 

operations. The functions of <APil) are shown as follows: 

1 ) Reset TRl before the SEARCH operation. 

2 ) SEARCH(complement><DD<word spec) 

Where the AMA is searched for the domain of word-rows which match 

the effective data of lOR, as interpreted by (complement) and (01). 

3 ) For all matching word-rows set their tags in TRl. 

4 ) Set MRR to logical '1' if one or more tags set. 

5 ) Load the Associative Program Counter (APC) with the addresses of 

next two alternative parts of API (<API234)) into the BOAP 

Instruction Memory Buffer ready to be loaded into the BOAP Control 

System pending on the outcome of MR~ 

(APil STATEMENT) : := <LABEL><TAB><APll)(TAB) ;<COMMEMT><CR> 

(APil) : := S(BSU>( (WORD SP~C) )<MR BRANCH> l 

S(BSU> [(WORD SPEC)) <MR BRANCH> 

-( s )- ----- -(()- -())-
1 I I I I I --------- I I 

APil -> -> -(0)- -> -!word specl-- ->lMR branchl-> 

~--(SC)-1 1_( 1)_1 ~-([)-~ --------- ~-(])-~ ---------

4.1.1 The <WORD SPEC) 

In (WORD SPEC), three different kinds of addressing schemes are 

used: namely Immediate Addressing, Scratchpad Addressing, and 

Buffer Addressing. 
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word spec 

-------1 immediate data 1---------

\ ---------------- I --------------------
-->-------1 scratchpad address 1----------> 

\ -------------------- I ----------------------------__ , input buffer queue address 1--

1 ) Immediate Addressing Scheme 

In the Immediate Addressing Scheme, the actual data to be 

used for searching is embedded in the (WORD SPEC). The BOAP 

supports two types of data organizations. 

A ) Text Symbols Mode 

Each word-row of the Associative Memory Array (AMA) is 

allocated to a single text symbol comprising an 8-bit 

character field and a 4-bit control field. 

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4 

E 
-----------~-----------------------------------

1
<------Char~cter Field-------->~<-C.B. Field ->~ 
<---- 8-bit Character Code ---> <-C.B. Field -> 

-> MSBI<---- 7-bit ASCII Code ---> <-C.B. Field -> 

1<------------- 12-bit Bit Vector------------->\ 

The choice of codes within the character field can be 

either one of the following: 

I ) 8-bit Character Code 

S('T' XlXX)BMR @LABELO ,@LABELl ; SEARCH FOR 'T' 
; WITH C.B.= XlXX 

Where T is the 8-bit character code. 

II) 7-bit ASCII Code 

Only Bit-0 to Bit-6 of the character field are used 

for the ASCII code, and remaining 7th bit (MSB) is 

be used as a extra Control Bit. 
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S(M/'k' XlXX)BMR @LABELO,@LABELl 

where M is the Most Significant Bit 

K is any ASCII character. 

B ) Bit-Vector Mode : 

In contrast with Text Symbols Mode, the Bit-Vector Mode 

organizes <WORD SPEC) into a 12-bit vector. 

S[BBBBBBBBBBBB]BMR @LABELO ,@LABELl 

Where <B> : := XI 0 I 1, a pair of square brackets is used 

here to distinguish Bit-Vectors from the Text Symbols 

which use instead a pair of round brackets. 

----(')--\ 8-bit character code 1--(')-\CB spec\-

\ 
->(X)- --~------------------- '-===----

immediate I I - ---------------- I 
-->-----)(0)- -(/)--(')-\7-bit ASCII code\-(')-> -> 

data I' l ~ --------------- I -)(1)-

----------
--------------->\bit vector!---------------------

-)(X)-- -)(X)-- -)(X)-- -)(X)--
1 II II II I 

CB spec ------)(0)------)(0)------)(0)------)(0)-----> 
I I I I I I I I 
-)(1)-- ->(1)-- ->(1)-- -)(1)--

-)(X)--
1 l 

bit vector ---------------)(0)-------------------> 

I l 1 \"" 12 ->(1)--

<--------------------
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2 ) Scratch-Pad Addressing Scheme 

Scratch-Pad is the working area between IDR and ODR for 

storing intermediate data. The Scratch pad address, when in 

use, must start with @ to distinguish API Scratch-Pad 

address from SISD RAM address, and is written in one of the 

following forms: 

A ) Direct Addressing Mode 

a) Numbers (between 0 to 1023) 

S(@164 XlXX)BMR @LABELO ,@LABELl SEARCH WITH THE 
OPERAND AT LOC. 
164 IN S.P. AND 
SET C.B.= XlXX 

b) Symbols 

S(@ADDR XlXX)BMR @LABELO ,@LABELl 

S(@ADDRESS)BMR @LABELO ,@LABELl 

The Control Bits setting can either be taken directly 

from the Scratch-Pad or set in the <APil> statement. 

B ) Relative Addressing : Expressions 

S(@ADDR+l XlXX)BMR @LABELO ,@LABELl 

----------->1 address l----------

1 
--------- l ->( X )- ---

\ l --------- l 
--->( 0 )-->-(/)--->\ address l--

SEARCH WITH THE 
OPERAND AT ONE 
AFTER @ADDR IN SP 

1 

'->( 1 >-' ---------
-(+)- ---------------

----- l l ------ l l 
scratchpad -> -->\label\--> -->\number\-------- -> 

I 
----- '-<->-' ------ '-< ,-------, l )- CB spec -

-------
-(X)- -(+)-
\ I ----- l l -----
--<o>--><1>-llabell- -lnumberl-
l_(l)-l ----- '-<->-' ------
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address 

------>1 label 1------
1 ------- I 

----------> -----> I -------- I 
--( @ )-->1 number 1--

number -------------->1 digit 1---------------> 
1 o <~ dt;t;-<= 1023 1 < 5 
<-----------------------

------------1 empty 1------------
1 ------- I 

label -----> -----> 
I --------- I 
--( @ )------1 Ch.Spec 1---------

1 -------- I < 6 
<----------------

--->1 8-bit character code 1---
1 ----------~----------- I 

Ch.spec ---> 4 ---> 
I ------------------ I ----->1 7-bit ASCII code 1-----

3 ) Buffer Adressing Scheme 

In (APil), only Input Buffer addressing is used for 

buffering input data from the Host processor via an 

Interconnection Network. The Input Buffer functions as a 

word-organized FIFO (First In First Out) queue: incoming 

data is placed at the end of the queue, and outgoing data is 

taken from the beginning of the queue pointed at by the IQF 

(Input-Buffer Queue Front). 
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Interconnection \ 
Network 

1023 

------------------- <--Queue End 

T 
lllll//l/1/llll/l/1 
IIIII/ Input 111111 
/////1 Buffer //Ill 
II/IIIII/II/IIIII/I 

Relative Position 
I 

------------------- <--Queue Front 
( IQF ) 

0 

IDR 

l<-----12 bits----->1 

S(IQF lXXX)BMR @LABELO,@LABELl ;_ SEARCH WITH OPERAND 

S(IQF)BMR 

Or alternatively, 

;· AT THE QUEUE FRONT OF 
; INPUT BUFFER, AND SET 
; CONTROL BITS = lXXX 

@LABELO,@LABELl ;- SEARCH WITH SAME 
;: OPERAND AND C.B. 
f SETTING FROM IQF 
• 

a relative addressing with reference from 

the queue front can be used. 

S(IQF+3 XXlX)BMR 

S(IQF+3)BMR 

@LABELO ,@LABELl 

@LABELO ,@LABELl 

------------>( IQF )-------------

1,->( X)-, I 
--->( 0 )-->--( I >-->( IQF )----

\ 1->( 1 >-' \ ---------------1 
IBQ address -> - -> 

' -------- ' ' ------- 1 -)( IQF )-->( + )--l number 1---- -( >-lCB specl-

1,-)(X)-1 -----=:-____ I 
~->(0)-,>(1)-(IQF)-(+)->1~~~=:1-

-)(1)-
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4.1.2 The (BSU) 

The (BSU) defines the functions of the Bit Select Unit: namely, 

Data Masking and Data Complementing. 

1 ) The data masking 

The BOAP has no Mask Register. Hence, there can be no 

explicit data masking during SEARCH or WRITE operations. 

Instead, two modes of implicit data masking are provided. 

A ) Uncondi tiona! Data Masking 

Each bit position in the DIR can be loaded with the 

tertiary datum (D), where (D)::= XIOI1, and X implies 

that the corresponding bit-column is to be masked during 

SEARCH or WRITE operations. 

B ) Conditional Data Masking 

In addition to the Unconditional Data Masking, bit­

columns of AMA can be masked accord~ng to the state of 

Data Identity (Dl). 

Content of IDR I DI = 0 I DI d 1 I DI = X 
-------------------------------------------

0 0 I Masked I 0 

1 I Masked I 0 1 

-------------------------------------------
X X X X 

With the inclusion of this data masking, one could 

select and mask on either '0' or '1' within IDR. 

Mnemonic! Function 

S I Search with the true content of IDR 

SO I Search with (Dl) • 0 

S1 I Search with <DI> • 1 
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2 ) The data complementing 

Data complementing is used for the selection of effective 

data for SEARCH or WRITE operation by the true or 

complemented content of !DR. 

------------------------------------
Content of IDR I CMW = 0 I CMW = 1 

o 1 o 1 
------------------------------------

1 1 1 o 
X X X 

------------------------------------------------------

!
Mnemonic! Function 

---;c---~-;~;~~h-;~~h-~h:-~~~;i~~~~~~~-~~~~~~~-~~-i~;-
------------------------------------------------------

To sum up the data organization of BOAP; we could view the Data 

Masking as a filter, and Data Complementing as an invertor of 

some kind. With the combination of both, a c9mprehensive 

variety of data transformations can be achieved. 

1 -~~~:::~=-~:::_:~:--~~~=~~~==~-CMW•O I CMW•1 
---------------------------------------------------Content of IDR I DI=O DI=1 DI•X 1 DI•O DI=1 DI•X 
---------------------------------------------------

0 10 X 0 I 1 X 1 
---------------------------------------------------

1 I X 1 1 I X 0 0 
---------------------------------------------------X I X X X I X X X 
---------------------------------------------------

---------------------------------------------------Mnemonic! Function 
---------------------------------------------------

l Search with complemented content of IDR, 
sco 

subject to <DI> • 0 
---------------------------------------------------

l Search with complemented content of IDR, 
SC1 

subject to <DI> • 1 
---------------------------------------------------
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1 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4 

I D R I 0 I 0 I 0 I 0 I 1 I 1 I 1 I 1 I X I X I X I X I 

MASK (DI) I 0 I 0 I 1 I 1 I 0 I 0 I 1 I 1 I 0 I 0 I 1 I 1 I 

-----------------------------------------------
COMPLEMENT 1 0 I 1 I 0 I 1 I 0 I 1 I 0 I 1 I 0 I 1 I 0 I 1 I 

-----------------------------------------------
l l l l l l l l I l I l 
v v v v v v v v v v v v 

EFFECTIVE DATA 1 0 I 1 I X I X I X I X I 1 I 0 I X I X I X I X I 

In Bit-Vector Mode, the Data Masking and Data Complementing are 

applied to all 12 bits, whereas only the Control Bit Field is 

effected in the case of Text Mode. 

4.1.3 The <MR branch) 

With the two possible alternative <API234), the <APil) adopts a 

2-address instruction format. 

.. 
1 S('T' X1XX)BMR @LABELO ,@LABELl ; SEARCH FOR 'T' 

2 S(IQF X1XX)BMR @16,@17 SEARCH IN AMA WITH 
THE (WORD SPEC) . CURRENTLY STORED , . AT THE TOP OF THE , . INPUT BUFFER. THEN , . EXECUTE (API234) AT , . ADDRESS 16 IF MR = 0, , . ELSE <API234) AT , . ADDRESS 17 IF MR = 1 , 

3 S(IQF X1XX)BMR +1 ,+2 

I<Label>I<Opcode, Operand>!<- Next Inst. ->1<--- Comments --->1 
Addresses 

Syntactically, <MR branch) may be either partially or totally 

omitted. 

A ) <MR branch) totally omitted: 

S( 'T' X1XX) DEFAULT IS +1 ,+2 
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An empty label will be interpreted by the assembler as 

branch to the next address location immediately after the 

current one for MR = 0, and the second immediately adddress 

location for MR = 1. 

empty implies BMR APC+ 1 ,APC+2 

Where APC is the Associative Program Counter. 

B ) <MR branch) partially omitted: 

S( IT' XlXX) BMR @LABELO 

S('T' XlXX)BMR ,@LABELl 

DEFAULT IS @LABELO ,+1 

DEFAULT IS +l,@LABELl 

Besides the unique feature of this addressing format, <APil> 

uses Relative Addressing to select two of its <API234) 

statements which must be either symbolic labels or displacement 

numbers, and are written in one of th~ following forms: 

A ) Displacement Numbers (between -128 to +127) 

S(@l64 XlXX)BMR +10 ,+12 

B ) Symbolic Labels 

; RELATIVE BRANCH TO 10 
; INST. AHEAD IF MR ... 0, 
; OR BRANCH TO 12 INST. 
; AHEAD IF MR ... 1 

S( @ADDR XlXX) BMR @LABELO ,@LABELl BRANCH TO @LABELO 
; IF MR = 0, OR 

BRANCH TO @LABELl 
IF MR ... 1 

The Symbolic Label must start with @ to distinguish API 

statement addresses from SISD instruction addresses. 
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------------>1 empty 1-----------
1 ------- I 

MR branch --> --> 
I ------ ------ I 
->(BMR)->IlabelOI-><,>->Ilabelll-

-(+)-
------- 1 1 ------------------labelO --> ->1 label 1- -1 relative address 1-> 
------- 1 I ------------------

-<->-

label! ------->1 labelO 1--------> 

relative address -->----------1 offset 1----------------> 

l -128.<=-~ff;~-<= +127 l < 4 : 
<-----------------------
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4.2 THE EXECUTE PHASE OF API <API234) 

The <API234) is the combination of API2, API3 and API4, which has two 

variants of these sequences to allow for domain modification before or 

after function executions. 

1 ) The Pre-Function Associative Computation Cycle 

A ) Non Group-Run Associative Computation Cycle 

Beat 0 Fetch phase (LOAD instruction) 

Beat 1 Examine phase (SEARCH operation) 

Beat 2 Execute phase 1--Domain modification (Clear option) 

Beat 3 Execute phase 2--Domain modification (Tag manipulation) 

Beat 4 Execute phase 3--Function execution (READ/WRITE oper.) 

B ) Group-Run Associative Computation Cycle 

Beat 0 Fetch phase (LOAD instruction) 

Beat 1 Examine phase (SEARCH for TRl) 

Beat 2 Execute phase 1--Domain modification (SEARCH for TR2) 

Beat 3 Execute phase 2--Domain modification (Group-Run) 

Beat 4 Execute phase 3--Function execution (Restricted) 
(READ/WRITE) 

2 ) The Post-function Associative Processing Cycle 

Beat 0 . Fetch phase (LOAD instruction) . 
Beat 1 Examine phase (SEARCH operation) 

Beat 2 . Execute phase 1--Domain modification (Clear option) . 
Function execution 1 (READ/WRITE) 

Beat 3 Execute phase 2--Domain modification (Tag manipulation) 

Beat 4 Execute phase 3--Function exection 2 (Update operation) 

(API234 STATEMENT> : :=<LABEL><TAB><API234> ;<COMMENT><CR> 

---------------------------->1 pre-function modification 1--
l --------------------------- ' ------

API 234 --> ->\branchl--> ' ---------------------------- ' ------->, post-function modification 1-
----------------------------
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4.2.1 The Pre-Function Non Group-Run <API234) 

In the Pre-Function Non-Group-Run <API234>, it consists of 

CLEAR OPTION ((API2>) 

TAG MANIPULATION ( <API3)) 

READ/WRITE FUNCTION (<API4)) 

pre-function modification -->lmod. 21->lmod. 31->lfun. 41--> 

API2 : Clear Options 

The CLEAR options are designed to clear the bit-columns of 

tagged word-rows which are related to the content of IDR used 

during beat 1 SEARCH operation. 

(MOD. 2) : :• <EMPTY> 1 
M(<CL>)<TAB>;<COMMENT><CR>I 
M{DI>(<CL>)<TAB);(COMMENT><CR> 

<CL> :;a CLABl 
CLBTTI 
CLBCT 

In these CLEAR operations, bit-columns are selected by the <DI2> 

and use the content of IDR left over from beat 1 SEARCH 

operation. The following table shows how the BSU enables the 

selected bit-columns for the subsequent CLEAR operation. 

I Logical content of IDR 

(DI2> I 0 1 1 
--------------------------------

0 I e 1 
--------------------------------

1 1 e 

--------------------------------X e e 

e = enable 
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Whereas word-rows are activated for the specified CLEAR 

operations in according to the option of <CL> chosen and the 

logical content of TRl, as shown in the following table. 

!Logical content of TR1 
--------------------------------------------------------------Specifications l <CL> 0 l 1 
--------------------------------------------------------------No Clear 1 l 
--------------------------------------------------------------Clear bits on true tags I CLBTT I 1 a 

Clear bits on complemented tags! CLBCT l a I 
--------------------------------------------------------------

Clear all bit 1 CLAB a 1 a 

a = activation 

1 ) Text Symbols 

In the case of Text Symbols, only Control-Bits will be 

cleared: The Control-Bits are used as markers to mark 

positions within a record or field. Propagation of these 

markers will then be used to chain up a number of fields or 

records, but physically, markers can not be propagated from 

one word-row to the others, instead the markers of present 

stage are cleared before the new markers of adjacent word­

rows can be created. 

S( 'T' XlXX) BMR + 1 ,+2 
M(CLBTT) 
PTT(U) 
W(* OXXX)BRN @NEXT 

, CLEAR BITS TRUE TAGS 

Since CB2 alone was used during beat 1 SEARCH, only the CB2 

column will be enabled for CLEAR operation. 
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Ch. spec. CB spec. 

IDR I T IXIliXIXI 
-------------------------

1 I 1 I 
BSU 1 I 1 I 1 1 I I I I e I e I e I e I 

-------------------------
1 1 I I 
v v v v TRl WSU 

AMA 

2 ) Bit-Vectors 

0 
c c c 

0 
B B B 

1 3 4 
0 

1 
0 
1 
0 
0 
0 
1 

a 

a 

a 

For Bit-Vectors, the CLEAR operations will affect every bit 

which has been selected in IDR during beat 1 SEARCH 

operation. 

S[XXXXllOO XXXX] BMR +1 ,+2 
·M(CLBCT) CLEAR BITS COMPLEMENT TAGS 
PTT(U) . 
W[XXXX1111 1XXX]BRN @NEXT 

Ch. spec. CB spec. 

IDR lxlxlx1x1ll1lotol txlxlxlxl 
-------------------------
11\lllll 1111 
-------------------------BSU lele1elele1elele\ 1e\e1e1el 
-------------------------
11111111 1111 
v v v v v v v v v v v v TR1 WSU 
-------------------------0 1 0 1 0 1 0 0 
1 1 1 1 0 0 1 0 
1 0 1 0 0 0 1 1 

AMA 0 0 0 0 0 0 0 1 
00110000 
0 1 0 1 0 0 1 1 
1 1 1 1 1 0 0 0 
-------------------------

1 
0 
0 
0 
0 
0 
1 

a 
a 
a 
a 
a 



m ---------------------->1 empty 1-----------------------
o I ------- I 
d--) ----- -(CLBTT)- --) 

~-)(M)-) 1 -(0)-l(()-l-(CLBCT)-l)();)->1~~;;~~~~->1-~;-, __ l 2 
I I I I ------- -----<1>- -(CLAB )-

API3 : Tag Manipulations 

The tag manipulations of this <API234) provide programmer­

control over the mapping between the tags in the TRl and the 

word-rows which will then be activated for function executions. 

<MOD. 3) ::= <TAB)(PROPAGATE OPTIONS)(TAB);(COMMENT)(CR>\ 
<TAB)(RUN OPTIONS)(TAGS);(COMMENT)(CR) 

(PROPAGATE OPTIONS) ::=<PROPAGATE TAGS>(<DIRECTION>) 

<PROPAGATE TAGS) ::~ PTT\ 
PCT 
RSTTUI RSTTD 
RSCTU 
RSCTD 

<PROPAGATE TAGS) ::= D\S\SD\U\UD\US\USD 

<RUN OPTIONS) ::=<RUN TAGS)((DIRECTION>) 

<RUN TAGS) : := EIRI 
MOR 

There are two types of tag manipulations available for Non-Group 

Run Pre-Function <API234). 

1 ) PROPAGATE TAGS ACTIVATION 

A ) Propagate Options : 

The propagate options select the tagged word-rows with 

PTT (Propagate True Tags) or untagged word-rows with PCT 

(Propagate Complement Tags) for subsequent word-row 

activations. The propagation <Direction) allows the 
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activations to be extended beyond the contents of the 

Tag Register (TR). The following table shows how word­

rows could be activated for each (Direction) selected 

when a tag is set in word-row n of the TRl. 

(Direction) I Activated word-row 

(U) (S) (D) I n-1 n n+l 

D a 

S I a 
----------------------------------

5 D I a a 
----------------------------------u I a 

u D a a 

u s a a 

U S D a a a 

U = Up ( B end --> T end ) 

D = Down ( T end --> B end ) 

S = Straight a head (only TT or CT word-rows) 

S('T' XlXX)BMR +1,+2 
M(CLBTT) 
PTT(U) PROPAGATE TRUE TAGS UP 
W(* OXXX)BRN @NEXT 

Ch. spec. CB spec. 

!DR I T 

-------------------------

BSU I I I I I I I I I I I I I I 

AMA 

c c c c 

B B B B 

1 2 3 4 

-------------------------
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1 
0 
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S('T' X1XX)BMR +1,+2 
M(CLBTT) 
PCT(D) PROPAGATE COMPLEMENT TAGS DOWN 
W(* OXXX)BRN @NEXT 

Ch. spec. CB spec. 

!DR I T lxllJXIXI 

B su I I I I I I I I I I I I I I 

AMA 

B ) Resolve Options : 

c c c c 

B B B B 

1 2 3 4 

TR1 WSU 

1 
0 
1 
0 
0 
0 
1 

a 

a 
a 
a 

The <Resolve Tags) are used to isolate a particular 

word-row from the other selected word-rows: it inhibits 

all but the first ( either from the T-end or B-end ) 

activated word-row for function execution. 

a) Resolve True Tags Up : RSTTU 

S('T' X1XX)BMR +1,+2 
M(CLBTT) 
RSTTU(S) 
W(* OXXX)BRN @NEXT 

; RESOLVE TRUE TAGS UP (S) 

Ch. spec. CB spec. 

!DR T IXIliX\XI 
-------------------------

BSU ' I I ' ' ' l l ' l ' ' ' l -------------------------

-------------------------

AMA 

c c c c 

B B B B 

1 2 3 4 

-------------------------
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b) Resolve True Tags Down : RSTTD 

S('T' XlXX)BMR+l,+2 
M(CLBTT) 
RSTTD(D) RESOLVE TRUE TAGS DOWN (D) 
W(* OXXX)BRN @NEXT 

Ch. spec. CB spec. 

!DR I T 

BSU I I I I I I I I I I I I I I 

AMA 

c c c c 

B B B B 

1 2 3 4 

c) Resolve Complement Tags Up RSCTU 

S('T' X1XX)BMR +1,+2 
M(CLBTT) 

TRl wsu 
1 
0 a 
1 
0 
0 
0 
1 

RSCTU(U) ;·RESOLVE COMPLEMENT TAGS UP(U) 
W( * OXXX) BRN @NEXT 

Ch. spec. CB spec. 

IDR I T 

-------------------------
-------------------------

B su ' ' ' ' ' ' ' I I ' ' ' ' ' -------------------------

-------------------------

AMA 

c c c c 
B B B B 

1 2 3 4 

-------------------------
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d) Resolve Complement Tags Down RSCTD 

S('T' X1XX)BMR+1,+2 
M(CLBTT) 
RSCTD(D) RESOLVE COMP. TAGS DOWN (D) 
W(* OXXX)BRN @NEXT 

Ch. spec. CB spec. 

IDR T 

B SU 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

c c c c 

AMA B B B B 

1 2 3 4 

TR1 WSU 

1 
0 
1 
0 
0 
0 
1 

a 

Since the actitvation of adjacent word-rows are allowed, 

the Overflow Bits <OVT> and <OVB> would be set if the 

selected propagation mode propagates out of either T-end 

or B-end of a chip module. This could be used as a 

means to propagate activations over a number of chip 

modules, if more than a single chip were used. 

-----
PLT 

PTT(D) PLTl "" 0 

PLT2 • OVB1 -----
PLT3 "" OVB2 ----

PLT OVB 
PLT4 • OVB3 -----

-----
-----

OVB 
-----
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PTT(U) PLB4 = 0 

PLB3 = OVT4 

PLB2 = OVT3 

PLB1 OVT2 

2 ) Run Tags Options 

-----
OVT 

2 

PLB 
-----
-----

OVT 

4 

PLB 
-----

-----
OVT 

1 

-> PLB 
-----
-----

<- OVT 

3 

r> 
PLB 

-----

The run options allow each set tag of the TR1 to activate 

word-rows in an adjacent block of word-rows in the direction 

specified by (Direction). 

A ) End In Run : EIR 

An EIR activates all word-rows from either T-end or 

B-end to the first tagged word-row, as indicated below. 

---------------------------------------------------------------
(Direction) \ Logical Content of TR1 

---------------------------------------------------------------<U> (S) (D) \ T 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 B 
---------------------------------------------------------------

0 0 0 

---------------------------------------------------------------
0 0 1 a a a a a 

---------------------------------------------------------------
0 1 0 \ a a a 

---------------------------------------------------------------0 1 1 \ a a a a a a a 
---------------------------------------------------------------1 0 0 l aaaaa 
---------------------------------------------------------------1 0 1 \ a a a a a a a a a a 
---------------------------------------------------------------1 1 0 \ a a aaaaa 

1 1 1 a a a a a a a a a a a 
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The activation networks for up ( B-end -> T-end ) and 

down ( T-end -> B-end ) are implemented independently 

such that an up run and down run may proceed in 

parallel. Resolve operation is not necessary, as EIR 

usually only activates a block of word-rows at any one 

time: EIR(U) will activate only the first group up from 

the B-end, and EIR(D) will activate only the first group 

down from the T-end etc. An EIR is initialized by 

setting <PLT> = 1 for EIR(D) or (PLB) = 1 for EIR(U). 

It can proceed over a number of chip modules without 

significant loss of the execution speed by allowing the 

modules to execute the runs in parallel with their <PLT> 

or (PLB) set according to the (MR) outputs in Beat 1. 

EIR(D) 

EIR(U) : 

PLT 1 = 1 

PLT 2 = Hlr"T 

PLT 3 = R["T + mr-2:" 

PLT 4 = RRi" + RK2 + 'H1r"1" 

PLB 4 = 1 

PLB 3 ... 'Rlf7+ 

PLB 2 .. 'Rlf7+ + Mit! 

PLB 1 • Mi[""1; + MRJ' + MR2 
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-----
PLT 

1 
-----mrr -> PLT 

-----
2 -------

PLT <- Rlt2:"" 
----~ 

3 -----
MlO" -> PLT <------

4 

'FM4 ----

1 

PLB <-
mu ~-> 
p~ <- -m-
l 3 ---

1

7 -> 

PLB 

PLB 



If no tag is set in the TR1, then <OVT> or/and <OVB) 

will be set when the selected run option causes a word-

row to be activated beyond the T-end or B-end of the 

modules. 

B ) Middle Out Run : MOR 

A MOR activates all word-rows from (but not including 

except when <S> is set) the first word-row which has 

been tagged in TR1 to (and beyond) the T-end or B-end. 

---------------------------------------------------------------
<Direction) I Logical Content of TR1 

---------------------------------------------------------------
<U> <S> <D> I T 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 B 

---------------------------------------------------------------
0 0 0 

0 0 1 I a a a a a a a a a a a a a a a a a 
---------------------------------------------------------------

0 1 0 I a a a 
---------------------------------------------------------------

0 1 1 a a a a a a a a a a a a a a a a a a 
---------------------------------------------------------------

1 0 0 a a a a a a a a a a a a a a a a 
---------------------------------------------------------------

1 0 1 I a a a a a a a a a a a a a a a a a a a.a a a 
---------------------------------------------------------------

1 1 0 I a a a a a a a a a a a a a a a a a 
---------------------------------------------------------------

1 1 1 a a a a a a a a a a a a a a a a a a a a a a 
---------------------------------------------------------------

Similar to EIR, the up-run and down-run of MOR may 

proceed in parallel. Resolve is almost impossible as MOR 

is a continued run across the modules, except for the 

case of MOR(S). If resolving MOR(S) were proved to be 

necessary, then perhaps it might be better to use 

the Resolve Tags options. MOR can proceed over a number 

of chip modules, without significant loss of speed, by 

allowing the modules to execute the runs in parallel, 

with their <PLT> or <PLB) set according to the <MR> 

outputs in Beat 1. 
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MOR(D) PLT 1 = 0 

PLT 2 = MR 1 

PLT 3 = MR 1 + MR 2 

PLT 4 = MR 1 + MR 2 + MR 3 

-----
PLT 

1 

MR1 
-----
-----

PLT 

3 

-----
-> PLT 

r 2 

<- MR2 
-----
-----

MR3 -> PLT <-

MOR(U) : PLB 4 = 0 

PLB 3 = MR 4 

PLB 2 = MR 4 + MR 3 

PLB 1 = MR 4 + MR 3 + MR 2 

-----
4 

MR4 
-----

-----
MRl 

1 
-----

MR2 -> PLB <-

MR3 

3 

PLB 
-----

PLB -----

The <OVT> will be set for MOR(U), MOR(US), MOR(UD), 

MOR(USD), and (OVB) will be set for MOR(D), MOR(SD), 

MOR(UD), MOR(USD). As any MOR will tend to activate 

beyond T-end or/and B-end. 

--(PTT)--
1 l 
--(PCT)--

m l l 
o -(RSTTU)-
d l l ------- ----
->--(RSTTD)---(()------->------->------->();)-\commentl-1 cr 1-> 

3 l l l l ' 1 ' l ------- -----(RSCIU)- -(U)- -(S)- -(D)-

1 ' -(RSCID)-
\ l 
--(EIR)--

1 ' --(MOR)--
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API4 : FUNCTION EXECUTION 

Function execution is the ultimate goal of the Associative 

Computation Cycle which is either to read from or write to the 

tagged word-rows of the AMA. 

function 4 -->1 read/write 1->1 branch 1--> 

1 ) The Read/Write Operation : 

<READ/WRITE> ::= W<BSU>((WORD SPEC>)\ 
W(BSU>l<WORD SPEC>] 
R(BSU>((SCRATCHPAD ADDRESS>)! 
R(BSU)((OUTPUT BUFFER QUEUE ADDRESS)) 

In API4, the (WORD SPEC> for WRITE function is actually the 

same as (WORD SPEC> in APil. However, the READ function has 

a s~ightly different (WORD SPEC), namely Immediate 

Addressing, Scratchpad Addressing, and Buffer Addressing 
t 

(Output Buffer Addressing instead of Input Buffer 

Addressing). 

READ word spec 

------\ scratchpad address \-------
1 -------------------- ' --> --> 
I ----------------------------- l --1 output buffer queue address 1--

The structure of Output Buffer is very similar to the Input 

Buffer except that data is read in from ODR and output to 

the Interconnection Network, and in the case of relative 

addressing, it referred to the queue end {OQE) instead of 

queue front (IQF). 
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T 

Interconnection \ 
Network 

I \ 

' ' 0 

------------------- <--Queue Front 

Relative Position 

/llll/////ll///1//1 
/IIIII output IIIII 
/////1 Buffer ///// 
///l///////l/1111/l 

' ------------------- <--Queue End 

I \ 

\ \ 
0 DR 

\<---- 12 bits---->\ 

(OQE) 

1023 

-------)(OQE)--------- ---------------
\ : t t t 

OBQ adress -> : - --> 
\ ------ t ' ------- t 
->(OQE)->(-)-\number\- -( )-\CB spec\-

R(OQE 1XXX) ; READ TAGGED WORD-ROW TO OQE WITH 
C.B .... 1XXX 

R(OQE) ; READ TAGGED WORD-ROW TO OQE WITH 
; ON CHANGE IN C.B. FIELD 

R(OQE-2 X1XX) ; READ TAGGED WORD-ROW TO TWO LOC. 
; BEHIND OQE WITH C.B. = X1XX 

R(OQE-2) ; READ TAGGED WORD-ROW TO TWO LOC. 
, BEHIND OQE WITH NO CHANGE IN C.B. 

The flow of data within the BOAP could be viewed as shown in the 

diagram as follows: 
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I 

----------- -------- -------
I\ -------

<{! 
I Input 

l<{l bits 

\ 

12 bits I I D R I bits 
---- ------- \l-----1 Buffer \1------

\ 
II --------

------------ IIC 

Scratchpad I AMA NETWORK 

-----------
I \ ---------\ 1- ------- I\ I Output I I\ 

12 bits I 0 D R I 12 bits) 12 bits) 
---------- ------- ------11 Buffer 1-----1/ 

---------- -------- -------

A ) The WRITE Operation : 

The WRITE operation will update all activated word-rows 

with the effective content of the IDR as interpreted by 

the BSU subject to the (Complement) and <DI4). 

S('T' X1XX)BMR +1,+2 
M(CLBTT) 
PTT(U) 
WC1('Z' 1XXX)BRN @NEXT WRITE TO ALL TAGGED WORD­

' ROWS WITH 'Z' AND lXXX -
; SUBJECTED TO COMP. MASKING 
; AND DI .. 1 

Ch. spec. CB spec. 

IDR 1 z I l\XIXIX1 
-------------------------
11111111 1111 

BSU \ I \ \ \ I I I I \clx1x\x1 
-------------------------
11111111 1111 
v v v v v v v v v v v v TR1 WSU 

z 0 c c c 

AMA B B B 

z 0 2 3 4 

-------------------------
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B ) The READ Operation : 

The READ operation will update the Control Bits of 

activated word-row with the effective data content of 

IDR, and will simultaneously, read the content of the 

activated word-row (included both Ch.spec. and CB spec.) 

to the ODR, and then to the Output Buffer. 

S('T' X1XX)BMR +1,+2 
M(CLBTT) 
RSTTU(S) 
R(OQE 1XXX)BRN @NEXT READ CONTENT OF TAGGED WORD­

ROW TO OUTPUT BUFFER 

Ch. spec. CB spec. 

IDR I 111x1x1x1 
-------------------------

' I 1 1 
BSU lele1elel -------

1 1 I I 
v v v v TRl WSU 

c c c 

AMA B B B 

2 3 4 
Q 1 0 1 0 

-------------------------
11111111 1111 
vvvvvvvv vvvv 

ODR I Q 11101110\ 
-------------------------,, 'r 

1 
0 
1 
0 
0 
0 
1 

1
///////// Output ////////1 
11//////1 Buffer //////// <- OQE 

-------------------------
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fun. 

----------->(OQE)------

~->(OQE)->(-l->1~~~~~-~-------

~=~:::==1 -ll;b~li- 1 ->(+)- 1 ->1~;;;1-----
1-(Rl)--1 \ ----- 1->(-)-1 ------ \ 

4 -> -(()-~-(X)- -(+)- ~--------------,())-> 
-(RC)--1 I ----- I I --- -------
-(RCO)- -(0)--(/)-llabell- -lno.1-( >-1CB spec1-

1 ----- 1 1 --- -------
-(RCl)- -(1)- -(-)-

--(W)--

-(WO)--

-(Wl)-- -----------
-(()------------------>1 word spec 1-------------> 

-(WC)--~ -----------

-(WCO)-

-(WCl)-

2 ) The Branch Operation : 
. 

In a complete Associative Computation Cycle, -two types of 
~ 

instruction addressing formats are used: one for <APll) and 

the other for <API234). 

\ 

-> <API234> -

LABEL--> -<APil) ~=~ 1 1
----------> --> NEXT 

MR=!l 1 
-> <API234) -

--------------------------------------

Because of the possibility of two <API234) pending on the 

outcome of Match reply (MR), <APil) uses a 2-address format. 

As <API234) leads to the completion of the Associative 

Computation Cycle, only a one-address fomat is needed to 

select the next instruction. Similar to <MR branch), 
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relative address is used for the selection of next 

instruction, in this case, either another Associative 

Computation Cycle or return to the flow of control to the 

Host Processor: 

A ) The Selection of another ACC : 

The address of the next ACC will, in this case, has to 

be explicitly included in the <API234) format. 

W('G' XlXX)BRN +1 SELECT THE NEXT API IN THE 
; CONSECUTIVE LOCATION OF API 
; PROGRAM STORE 
; APC = APC + 1 

R(OQE lXXX)BRN @NSTEP SELECT THE NEXT API LABELED 
@NSTEP IN THE API PROGRAM 

; STORE 

B ) Return the Flow of Control to the Host 

The return of control is signified by totally omitting 

the next instruction address. 

W('G' XlXX) ; RETURN CONTROL TO THE HOST 

branch 

-------->1 empty 1--------
1 ------- I 

--> --> 
l -------- I 
--)( BRN )--->1 labelO 1--
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4.3.2 The Group-Run Pre-Function <API234) 

The Group Run operation activates all word-rows between Tags of 

TRl to Tags of TR2. Hence a second search is needed in Beat 2 

to set the tags for TR2 before the Group Run operation can 

actually take place. 

group run -->IGR search 21-->IGR operation Jl~->lGR function 41--> 

API2 SEARCH Operation for TR2 

GRS : Group Run Search 

GRSC : Group Run Search with Complement Tags 

(GR SEARCH 2) : := GRS(BSU>(<WORD SPEC))(TAB);(COMMENT><CR> 

When Group Run is specified, <API 2) is such that 

1 ) Tag Register TR2 will be reset. 

2 ) CLEAR options will be inhibited, as the tags in TRl will be 

needed for Group Run operation in Beat 3. 

3 ) A second search operation will be initialized in which the 

AMA will be searched for the domain of word-rows which match 

the effective data content of IDR as interpreted by 

the (complement) and (Dl). But unlike the Beat 1 SEARCH 

operation, all matching word-rows will be tagged in TR2 

instead of TRl. 

4 ) MR is set if one or more tags are set in TR2. 

e.g. S( 1 T
1 XlXX)BMR+l,+2 

GRS( I$ I XXXl) 
GRN(U) 
W(OOOO)BRN @NEXT 
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G 
R 

Ch. spec. CB spec. 

!DR 1 $ 1X1X1X111 
-------------------------
1 1 1 1 1 1 1 1 1 1 1 1 
-------------------------

BSU 1 1 1 1 1 1 1 1 1 le1elele1 
-------------------------
11111111 1111 
v v v v v v v v v v v v TR1 TR2 WSU 

AMA 

T 
3 
T 
4 

~ 
T 

1 0 
c c 

1 1 
B B 

1 
1 3 

1 0 

1 
0 
1 
0 
0 
0 
1 

0 
0 
0 
0 
1 
0 
0 

s ->(GRS)-- -----
e I l I I --------- ------- ----
a-> ---(0)-->(()-lword specl-<>;>-lcommentl-1 cr 1-> 
~ 1-)(GRSC)-1 1-(1)-1 --------- ------- ----
h 

2 

API3 : Group Run Operations 

GRN : Group Run 

RSFCU : Resolve First Group Up 

ISFCD : Resolve First Group Down 

ISCSU : Resolve Group Start Up 

RSGSD : Resolve Group Start Down 

ISFGSU Resolve First Group Start Up 

RSFCSD : Resolve First Group Start Down 

(GR OP.3) ::• <TAB)(CR OPTION>(<DIRECTION>)<TAB>;<COMM.)<CR> 

A ) The Croup Run : 

The Group Run activates all word-rows from ( but not 

including except when S • 1 ) those word-rows having a tag 

set in TR1 to ( and including ) the first occurrences tagged 

word-rows in TR2 as indicated below. 
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-----------------------------------------------------------------
(Direction) I Contents of Tags Registers TR1 and TR2 

-----------------------------------------------------------------
<U> <S> <D> 

TRl T 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 B 

TR2 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 
-----------------------------------------------------------------

0 0 0 
-----------------------------------------------------------------

0 0 1 I a a a a a a a a 
-----------------------------------------------------------------
010 I a a a 

-----------------------------------------------------------------
0 1 1 a a a a a a a a a a a 

-----------------------------------------------------------------
1 0 0 I aaa aa aaa 

-----------------------------------------------------------------
1 0 1 I a a a a a a a a a a a a a a a 

-----------------------------------------------------------------
1 1 0 a a a a a a a a a a a 

-----------------------------------------------------------------
1 1 1 a a a a a a a a a a a a a a a a a a 

-----------------------------------------------------------------

In BOAP, Group Run can proceed over a number of chip 

modules, by allowing the modules to execute the run 

in parallel in two phases. In the first phase, a group run 

is performed inside each module, culminating in a set of 

output signals from the modules indicating the position at 

which the group run is to be continued. In the second 

phase, these signals (MR in beat 2 and PLT or PLB in beat 3) 

are picked up and used to link up adjacent modules and allow 

the group run to proceed to completion. 

GRN(D) : 

Phase 1 

Phase 2 

PLT l = PLT 2 = PLT 3 = PLT 4 = 0 
<-

PLT 

OVB --> PLT 

1<-- MiU 

PLT <-- OVB 
PLT 1 = 0 

PLT 2 "" OVB 1 
<- Ricr 

PLT 3 =- OVB 2 + MRZ * PLT 2 

PLT 4 = OVB 3 + mr-3" * PLT 3 
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GRN(U) : 

Phase l PLB 4 = PLB 3 = PLB 2 = PLB l = 0 

Phase 2 PLB 4 = 0 

PLB 3 = OVT 4 

PLB 2 = OVT 3 + Mit'! * PLB 3 

PLB l = OVT 2 + "HR2 * PLB 2 

OVT 

----------> PLB ---------- I 
OVT ----> 

<- 'Hicr -----
<- PLB <- OVT 

-----
1<---- Micr 

----
OVT -> PLB -----
mu.-
PLB 

Hence the total time for a inter-module group run is the 

time taken for a group run within a module plus the 

propagation delays of module linking logic and an EIR (End 

In Run). 

B ) Resolve First Group Up ( RSFGU ) 

The "Resolve First Group Up" comprise a group run followed 

by a resolve group option, executed in the specified 

direction ( U or D), which inhibits all but the first group 

of word-rows from the B-end for function execution. 

-----------------------------------------------------------------<Direction) 1 Contents of Tags Registers TR1 and TR2 
-----------------------------------------------------------------

I TRl T 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 l 0 0 B 
<U> <S> <D> 

TR2 0 1 0 0 0 0 l 0 0 1 0 0 0 0 0 1 0 0 0 0 1 

0 0 0 1 ---------------------------------------------··----------
0 0 1 1 a a 

-----------------------------------------------------------------
0 1 0 1 a 

-----------------------------------------------------------------0 1 1 1 a a a 
-----------------------------------------------------------------

1 0 0 I aaa 
-----------------------------------------------------------------

1 0 1 1 aa 
-----------------------------------------------------------------

1 l 0 1 aaaa 
-----------------------------------------------------------------

1 1 1 1 a a a a a a a a a a a a 
-----------------------------------------------------------------
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c ) Resolve First Group Down ( RSFGD ) 

The "Resolve First Group Down" is a resolve group run 

option, which inhibits all but the first group of word-rows 

from the T-end for function ~xecution. 

-----------------------------------------------------------------(Direction) I Contents of Tags Registers TR1 and TR2 
-----------------------------------------------------------------

1 

TR1 T 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 B 
(U) <S> (D) 

TR2 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 
-----------------------------------------------------------------

0 0 0 
-----------------------------------------------------------------

0 0 1 a a 
-----------------------------------------------------------------

0 1 0 I a 
-----------------------------------------------------------------

0 1 1 I aaa 
-----------------------------------------------------------------

1 0 0 I aaa 
-----------------------------------------------------------------

1 0 1 I aaa 
-----------------------------------------------------------------1 1 0 I aaaa 
-----------------------------------------------------------------

1 1 1 a a a a a a 
-----------------------------------------------------------------

D ) Resolve Group Start Up ( RSGSU ) 

The "Resolve Group Start Up" is a resolve group run option, 

which inhibits all but the first word-rows from the B-end of 

every activated group for function execution. 

-----------------------------------------------------------------<Direction) l Contents of Tags Registers TRl and TR2 
-----------------------------------------------------------------

1 

TR1 T 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 B 
(U) (S) (D) 

TR2 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 
-----------------------------------------------------------------o o o I 
-----------------------------------------------------------------

0 011 a a a 
-----------------------------------------------------------------
01 ol a a a 

-----------------------------------------------------------------01 1) a a a 
-----------------------------------------------------------------10 ot a a a 

-----------------------------------------------------------------1011 a a a a a 
-----------------------------------------------------------------1 1 0 a a a 
-----------------------------------------------------------------1 1 1 a a 
-----------------------------------------------------------------
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E ) Resolve Group Start Down ( RSGSD ) 

The "Resolve Group Start Down" is a resolve group run 

option, which inhibits all but the first word-rows from the 

T-end of every activated group for function execution. 

-----------------------------------------------------------------
(Direction) I Contents of Tags Registers TR1 and TR2 

-----------------------------------------------------------------

I TR1 T 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 l 0 0 B 
(U) (S) (D) 

TR2 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 
-----------------------------------------------------------------

0 0 0 
-----------------------------------------------------------------

0 0 1 I a a a 
-----------------------------------------------------------------

0 1 0 I a a a 
-----------------------------------------------------------------
0111 a a a 

-----------------------------------------------------------------
1 0 0 I a a a 

-----------------------------------------------------------------
1 0 1 a a a a a 

-----------------------------------------------------------------
11 Ol a a a 

-----------------------------------------------------------------
1 1 1 I a a 

-----------------------------------------------------------------

:F ) Resolve First Group Start· Up ( RSFGSU ) 

The "Resolve First Group Start Up" is a resolve group run 

option, which inhibits all but the first word-row of the 

first activated group from the B-end for function execution. 

-----------------------------------------------------------------
(Direction) I Contents of Tags Registers TRl and TR2 

-----------------------------------------------------------------

1 

TR1 T 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 B 
(U) (S) (D) 

TR2 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 
-----------------------------------------------------------------o o o I 
-----------------------------------------------------------------

0 0 1 l a 
-----------------------------------------------------------------

0 1 0 I a 
-----------------------------------------------------------------

0 1 1 1 a 
-----------------------------------------------------------------

1 0 0 a 
-----------------~-----------------------------------------------1 0 1 a 
-----------------------------------------------------------------1 1 0 a 
-----------------------------------------------------------------1 1 1 a 

-----------------------------------------------------------------
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G ) Resolve First Group Start Down ( RSFGSD ) 

The "Resolve First Group Start Down11 is a resolve group run 

option, which inhibits all but the first row of the 

activated group from the T-end for function execution. 

-----------------------------------------------------------------
(Direction) I Contents of Tags Registers TRl and TR2 

-----------------------------------------------------------------
<U> <S> (D) 

1 
TRl T 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 B 

TR2 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 

o o o I 
-----------------------------------------------------------------

0 0 1 I a 

0 1 0 l a 
-----------------------------------------------------------------

0 1 1 I a 
-----------------------------------------------------------------

1 0 0 a 

1 0 1 l a 
-----------------------------------------------------------------

1 1 0 l a 
-----------------------------------------------------------------

1 : 1 1 a 
-----------------------------------------------------------------

G --i)(GRN)---
R 

-~(RSFGU)--
0 

p -)(RSFGD)--
e -------
r --->(RSGSU)----(()--->------>------>--->();)-Icommentl-1 cr I-> 
a I I l l I I ------- ----
t -)(RSGSD)-- -(U)- -(S)- -(D)-
i 
o -)(RSFGSU)­
n 

-)(RSFGSD)-
3 

API4 : Group Run Functions 

(GR FUNCTION 4) : :• <TAB>W( (CB4 SPEC>) l 
<TAB)R((CB4 SPEC>) 

(CB4 SPEC> ::• (BINARY><BINARY><BINARY)(BINARY) 

(BINARY> : := Oil 
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In the Distributed Computer System, every <API234) is assembled 

into a 48-bit Associative Machine Instruction (AMI) which to a 

certain extent has imposed restrictions on the amount of 

information that we might wish to carry. This is certainly true 

in the case of (GR Function 4), in which the READ/ WRITE 

operation is only possible in the Control-Bit Field due to the 

fact that there are only 4 bits out of the 48-bit AMI remain 

unused after API2 and API3. Therefore, in order to read from or 

write to the Character Field of AMA, at least one more 

Associative Computation Cycle is needed: the first Associative 

Computation Cycle (the Group-Run Associative Computation Cycle) 

to activate and mark the Control-Bits of those appropriate word­

rows, and the second Associative Computation Cycle does the 

actual writing to, or resolving and reading from the <ch. spec~ 

of those activated word-rows. 

e.g. S('T' X1XX)BMR +1,+2 
GRS( '$' XXX1) 
GRN(U) 
W(0001)BRN @NEXT WRITE <CB4 SPEC) ·= 0001 

Ch. spec. CB spec. 
-------------------------

!DR IOIOIOil\ 
-------------------------

I I I I -------
BSU lelelelel -------

I I I I 
v v v v TR1 TR2 wsu 

-------------------------T 0 0 0 1 1 0 a 
3 0 0 0 1 0 0 a 
T 1 0 

AMA 4 0 0 
$ 0 0 0 1 0 1 a 
II 0 0 0 1 0 0 a 
T 1 0 

-------------------------

Generally ·speaking, the READ operation is not permitted in this 

Associative Computation Cycle, except in the case of <RSFGSU) 

and <RSFGSD), by which only one word-row will be activated, thus 
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avoiding the problem of reading "multiple-responses"[26}. In 

these cases, the function will update the word-row with the 

effective data content of !DR, and simultaneously, read the 

content of this word-row into ODR. 

e.g. S('T' X1XX)BMR +1,+2 
GRS( '$' XXX.l) 
RSFGSU(U) 
R(lOOO)BRN @NEXT READ THE TAGGED WORD-ROW TO 

OQE, AND UPADTE CB4 a 1000 

Ch. spec. CB spec. 

!DR\ \1\0\0\0\ 

AMA 

-

-------------------------

T 
3 
T 
4 
$ 
II 
T 

' l l I 
BSU lelelelel -------

' I l I v v v v 

1 0 0 0 

--------------------------
tlll1llll llll 

v v v v v v v v v v v v 

ODR 1 II 
--------------------------

TRl 

1 
0 
1 
0 
0 
0 
1 

1
///////// Output ///////// 
IIIII/I// Buffer///////// <- OQE 

--------------------------

TR2 WSU 

0 
0 
0 
0 
1 
0 a 
0 

Hence, as far as (RSFGSU> and <RSFGSD) are concerned, they could 

both have WRITE and READ operations in API4. 

GR fun. 

-(W)- -(0)- -(0)- -(0)- -(0)-

4 ->' '->(0-1 1 ' l ' ' ' l 
' ' ' ,-' ,-, ,-, ,-())-> 
-(R)- -(1)- -(1)- -(1)- -(1)-
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4.2.3 The Post-Function <API234> 

In the Post-Function Associative Computation Cycle, the 

READ/WRITE function is executed before Beat 3 Tag Manipulations, 

therefore, word-rows must be activated in Beat 2 before the 

CLEAR and READ/WRITE function. 

post-function ---------- ----- --------
->lmod.-fun.2l-lmod.3l-lupdate 41--> 

modification ---------- ----- --------

The Post-Function Computation Processing Cycle can be viewed as 

the combination of two restricted READ/WRITE cycles: 

Cycle 1 : (Beat 1 --> Beat 2) 

Searches for (word spec.) in Beat 1, then activates them for 

CLEAR operation in_ their Control-Bit Fields, and simultaneously 

executes a READ/WRITE function on the Character Field. 

-
• ( Beat 2 ) (Beat 1) 

---r---------------------
IDR 1 Ch. spec 1CB specl 

I I I I 
I B s u I <DI2> -------
1 I I I 

v v v v v v v v v v v v 

c c c c 

AMA B B B B 

1 2 3 4 

-------------------------
111111111111 v v v v v v v v v v v v 

ODR Ch. spec I CB spec\ 
-------------------------
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0 
1 
0 
0 
0 
0 
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Cycle 2 : (Beat 3 --> Beat 4) 

Activates word-rows according to the content of TRl in Beat 3, 

then updates their Control-Bit Fields with the <CB spec.) of 

!DR. 

( Beat 2 ) (Beat 4) 
-------------------------

!DR Ch. spec ICB spec! 

AMA 

ODR 

I I I I 

I B s u I <DI4) (C) 

-------
1 I I 1 
v v v v TR1 WSU 

c c c c 
B B B B 

1 2 3 4 

llllllll 1111 v v v v v v v v v v v v 
Ch. spec ICB spec! 

0 
0 
1 
0 
0 
0 
0 

a 

API2 : CLEAR and READ/WRITE Operations 

The CLEAR options in the Post-Function <API234) are exactly the 

same as those in Pre-Function <API234), except that while 

executing the CLEAR operation on Control Bit Field, a read or 

write is carried out on the Character Field. 

->lclear-readl--
1 ---------- I -------

mod.-£un.2 -->I ----------- 1 ->(;)-1~~~=~=1-1 cr 1--) 
->!clear-write!-
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A ) CLEAR_READ Operations : 

It executes the specified CLEAR option on the Control-Bit 

Field of the activated word-rows, with the <CB spec) of the 

IDR remaining from Beat 1 and selected by <DI2). 

Simultaneously, it also transfers the contents of the word-

row (which activated for the CLEAR operation) to the ODR, 

before loading it into the Output Buffer. 

(CLEAR_READ> : :=R<DD( (SP LOCATION>($)(CL)) I 
R(DD(<OB LOCATION>($)(CL)) 

S('T' X1XX)BMR +1,+2 
R(OQE CLBTT) READ TAGGED WORD-ROW TO OQE, AND CLBTT 
PTT(U) 
U(OXXX)BRN @NEXT 

( Beat 2 ) (Beat 1) 
-------------------------

IDR : lXI llXIXI 
---------------~--------

t I I I I 
BSU lelelelel <DI2) -------

1 I I I 
v v v v TRl WSU 

-------------------------
B 1 0 0 1 

AMA 

-------------------------
111111111111 v v v v v v v v v v v v 

-------------------------

0 
0 
1 
0 
0 
0 
0 

ODR I B I q 0 I 0 Ill 
-------------------------

--------------------------

1
///////// Output ///////// 
/1/////1/ Buffer ///////// <- OQE 

--------------------------
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-------->1 address 1-----------
---------

->(X)-
1 I ------------><o>--<t>-1 address 1-------
1 I ---------
-><1>-

-(+)-
c ----- I I ------
1 ->llabell-> -->lnumberl--
e ----- I I ------
a -(R)-- -(-)- -{CLBTT))-
r I I I I 
->--(RO)--(()---(X)- -(+)- -( )--(CLBCT))---> 

~ 1-(R1)-
1 1 -(0)-!(/)-ll;b~l~-~ ~-~~~~- 1

-{CLAB))--
1 

~ '-(1)-1 ----- '-<->-' 
'-----------)( OQE )---------­

'-){ OQE )->( - )->~-~~b~;-~-~-

B ) CL~WRITE Operations : 

It executes the specified CLEAR option on the Control Bit 

Field of the activated word~rows, with the (CB spec) of IDR 

remaining from Beat 1 and selected by the (012). 

Simultaneously, it also updates all word-rows (which are 
. 

activated for CLEAR operatiOn) with the (ch.spec> of IDR •. 

<CLEAR WRITE FUNCTION> ::= W<DI>('<B-BIT CODE>'<$><CL>)I 
W<DI>(M/'<ASCII>'<$><CL>I 
W<DI>(<SP LOCATION><$><CL>)l 
W(Dl)((IB LOCATION><$><CL>) 

S('T' X1XX)BMR +1,+2 
W('A' CLBTT) ; WRITE 'A' TO ALL TAGGED ROWS & CLBTT 
PTT(U) 
U( OXXX) BRN @NEXT 

( Beat 2 ) (Beat 1) 

IDR I A IXI1IXIXI 
-------------------------

1 I I I I I I ~~~ 
v v v v v v v v v v v v 

(012) 

TR1 wsu 
-------------------------

AMA I A 111011111 ~I a I 
-------------------------
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The CLEAR_READ or CLEAR_WRITE Operations on <Word Spec) in the 

Post-Function Associative Computation Cycle is split mostly into 

<Ch Spec) and <CB Spec). Hence, Post-Function <API234) can 

apply to Text Mode only. 

c 
1 

--->(')->1 8-bit code 1--(')----

--------->1 address 1-----------

->( X )- ---1 ASCII !--

!_)( o >-!><1>-1 ------- I_ 
I · I I --------- I 
->( 1 )- -1 address 1--

---------->( + )-
----- l I ------

e -->!label!- ->lnumberl-
a -(W)-- ----- I I ------
r I I ->< - >-->-<wo>--<o-
~ ~-(W1)- 1 1-(X)- -(+)-
i l ----- I I --
; 1-(0)-,>(/)-1:~~=:'-, - ,-~~~~-~ 

-(1)- -(~)-

----------->( IQF )---·---------

\ ,->( X )-, I 
1

--->,->( 0 )-,>(/)-->( IQF )---­

->( 1 )-
--------

-(CLBTT))-
1 I 

-( )--(CLBCT)) --> 
I I 
-(CLAB))--

-->( IQF )-->( + )-->1 number I-

I ->(X)- -------- I 
I I ------
l-><o>-,<1>-<IQF>-<+>->l~~~::t-
->( 1)-

API3 : Tag Manipulations 

The Post-Function's tag manipulations are exactly same as the 

set used in Pre-Function <API234). 
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API4 Update Operation 

API4 -->l update 4 l-->l branch l--> 

The Post-Function <API234) has a somewhat restricted function 

execution which is a restricted write function on Control-Bit 

Field only. Hence, the symbol U (Update) is used in place of R 

(READ) or W (WRITE). 

<UPDATE 4) ::• <TAB)U(BSU)((CB SPEC)) 

e.g. S('T' X1XX)BMR +1,+2 
W('A' CLBTT) 
PTT(U) 
U(OXXX)BRN @NEXT ; UPDATE ALL TAGGED WORD-ROWS 

; WITH OXXX 

( Beat 2 ) (Beat ~) 
-------------------------

IDR A JoJxJxl)cJ 

AMA 

-------------------------
' ' ' ' BSU 1e1e1eJeJ <DI4) (C) -----
1 1 1 ' v v v v TRl WSU 

-------------------------
0 0 0 1 

A 

-------------------

->(U)-- ------

0 
1 
0 
0 
0 
0 
0 

a 

1 1 ' ' -----update 4 --> ---->(0)--->(()->1CB specJ-(()--> 

' ' l l -)(UC)- -)(1)-
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4.3 SUMMARY 

The choice of an instruction format is a crucial decision in the 

system design of a computer, and predetermines to a certain extent the 

resultant structure of the machine in the top-down design strategy, but is 

restricted by the structure of the machine in the case of the bottom-up 

approach. The design of the Associative Processing Instruction has been 

strongly influenced by the latter case in that a two-part instruction 

format was adopted to process the Associative Computation Cycle. 

The Associative Computation Cycle is organized in three different 

types of sequencing: 

1 ) The Pre-Function Non-Group-Run Associative Computation Cycle: 

Fetch -> Search -> Clear -> Tag-Manipulation -> Read/Write 

2 ) The Pre-Function Group-Run Associative Computation Cycle: 

Fetch -> Search(TRl) -> Search(TR2) -> Group-Run -> Read/Write 

3 ) The Post-Function Associative Computation Cycle: 

Fetch -> Clear-Read/Write -> Tag-Manipulation -> C.~.Update 

In this chapter, the full definition of the Associative Assembly 

Language (AAL), which comprise both SISD and SIMD facilities, has been 

presented. The API is really a symbolic form of the Associative Machine 

Instruction (AMI) which can then be used to drive the microprogrammed 

associative processor. However, the AAL is designed to provide for people 

to write program for DCS in a form that is not as unpleasant as the AMI. 

Programs written in AAL are first translated into a AMI file and a Z-80 

file before they can be executed by our Distributed Computer System. 
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CHAPTER FIVE 

THE DESIGN OF ASSOCIATIVE MACHINE INSTRUCTIONS 

5.1 TI1e Examine Phase of AMI <AMil) 

5.2 The Execute Phase of AMI <AMI234> 

5.3 Summary 



When designing the Associative Machine Instruction set, the following 

design criteria for instruction format has been adopted: 

1 ) Short Instruction Format : 

First, and the most important, short instructions are better than 

long instructions: 

A ) cheaper hardware cost, 

B ) simpler hardware configuration. 

However, this criteria should be carefully applied in order not 

to achieved shorter instruction format at the expense of longer 

fetching time. 

2 ) Convenient Word Length : 

It is highly desirable for the word length of machine instruction 

to be an integral multiple of its bus bandwidth. If the data bus 

between the host processor and BOAP is 8 bits, the word length 

should be 8-bits, or 16-bits, or 24-bits and so on; otherwise the 

efficiency of I/O transfer will be in doubt. 

3 ) Short Address Field : 

~ddress field, regardless of whichever it is for (either 

instruction or operand addressing), has often been considered as a 

piece of unproductive information within the instruction format. 

As a result, many attempts have been made to remove it from the 

instruction format whenever desirable: the stack machine 

architecture was designed to remove the operand address field, 

similarly, the program counter scheme was adopted in order to 

remove the necessity of next instruction's address. However, the 

computation organization of AMI makes it necessary to preserve 

both the operand address field and instruction address field. 

Therefore, the only saving that could be achieved in address 

fields is to reduce the length of addresses. 
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In examining the control structure of the Associative Computation 

Cycle, it has become apparent that the optimum machine instruction format 

is the combination of two 48-bit codes: one for <AMil> (Examine Phase of 

AMI) and other for (AMI234) (Execute Phase of AMI). 

1<------------------------ AMI 1 -------------------------->1 
1 25 26 27 29 30 33 41 48 
-----------------------------------------------------------

1 Wd Spec ITBVI !Dill CMB !OOOI Label-0 !Label-l! 

l Wd Spec lPF I R/W IDI4l CMB !USDl ACD lDI2l CLEAR l Label I 
-----------------------------------------------------------

1 ) The Instruction Format : 

This is the shortest possible word length for the AMI to 

accommodate all essential information: 

A ) AMil needs 46 bits to hold information for the Examine Phase 

a) Word Spec. requires a 24 bit code 

b) Text/Bit-Vector selection requires a 1 bit code 

c) Data Identity requires a 2 bits code 

d) Data Complementing requires a 1 bit code 

f) Two <AMI234> addresses requires 8 bits each 

g) SEARCH operation requires a 3-bit opcode 

B ) AMI234 needs 48 bits to hold information for the Execute Phase 

a) Word Spec. requires a 24 bit code 

b) Post/Pre-Function selection requires a 1 bit code 

c) READ/WRITE selection requires a 1 bit code 

d) Data Identity (Beat 2) and Data Identity (Beat 4) require 2 

bits each 

f) Data Complementing requires a 1 bit code 

g) Tag Manipulation requires 4-bit opcode and 3-bit direction 

code 

h) CLEAR operation requires a 2 bit code 

i) Next AMI address requires an 8 bit address. 
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2 ) The Word Length : 

The 48-bit AMI format is an integral of the 8-bit data bus. 

3 ) The Address Fields : 

A ) The Operand Addresses: 

The immediate addressing mode of AMI needs 24 bits for its 12 

bits of tertiary data (8 bits for Ch. Spec., and 4 bits for 

Control-Bits). This requirement, to a great extent, has set 

the minimimum length for operand addresses. Nonetheless, the 

other operand addressing schemes such as Scratch-Pad; Input 

and Output Buffers modes, also need 24 bits for operand 

addressing. 

B ) The Instructure Addresses: 

On the other hand, the minimization of instruction addressing 

is restricted by the size of API Program Store (4k words), and 

the requirement to branch to all necessary locations. 

However, in order to keep the AMI format as an integral of the 

8-bit data bus, a 8-bit relative instruction address is used 

to address -128 to +127 locations from the current AMI 

location within the API Program Store. 

-------------FOOO 

-118 
------------- I 4 K Current AMI <----
------------- I 

+127 
I 

FFFF 

------------I<- 48 Bits ->I 

In the Distributed Computer System, programs written in AAL are 

translated by the one-pass AAL assembler, which in turn, will generate the 

AMI file to drive the hardware of the Distributed Computer System. The 

details of the AAL assembler are presented in the Appendix c. 
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5 .1 THE EXAMINE PHASE OF AMI (AMI!) 

The (AMil) is the object machine instruction of the <APil) generated 

by the Associative Assembler. During the Fetch Phase of the Associative 

Computation Cycle, the <AMil> is loaded from the Instruction Memory Buffer 

into the Instruction Register of the Control System, which is then 

separated by the Machine Instruction Decoder into a 30-bit long operational 

code and two 8-bit <AMI234> addresses for fetching the alternative execute 

phase of AMI into Instruction Memory Buffer during the Examine Phase. 

--------------------------------------------------------------------------------------------------------------------------I Wd Spec \TBV\ I Dill CMB I 000\ Label-0 l Label-l\ 
-----------------------------------------------------------\48-Bits\ 

\ 7 
-----------------------------------------------------------MACHINE INSTRUCTION DECODER 
-----------------------------------------------------------30-Bits 
I BEAT CONTROL I 

I 
v 

I v 7 
I SPAR I I MIAR I 

-------------------------------------------------------
----------------------------------------------- D 

IAMI4 A 

----------------------------------------------- T 
----------------------------------------------- A 

IAMI3 
----------------------------------------------- T 
----------------------------------------------- R 

IAMI2 A 
----------------------------------------------- N 
1 17 25 26 27 29 30 
-----------------------------------------------

ICh Spec\ CB Spec \TBV I I Dill CMBI I AMil 
-----------------------------------------------

• 
R 
E 
G 

The (AMil) uses the 48-bit instruction format, in which is divided 

into three different fields. 

~~----------2;---26--27 ___ ~ ~0--;;----------------41----~~ 
-----------------------------------------------------------1 Wd Spec ITBVl \Dil\ CMB lOOOl Label-0 lLabel-11 
-----------------------------------------------------------I<OPERAND>l<------- OPCODE ------>1<-- AMI234 ADDRESSES -->1 
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1 ) The Operand Field 

The operand field provides the information about operand movement 

from a source (i.e. from the instruction itself, Input Buffer or 

Scratch-Pad) to the destination ( the IDR ). 

2 ) The Opcode Field : 

The opcode field provides the information about state 

transformations. In <AMI1), it includes three part of opcodes: 

A ) the Text/Bit-Vector selection (Bit-25) 

B ) the bit select functions, namely Data Identity (DI1 in Bit-27 

& Bit-28) and Data Complementing (CMB in Bit-29) 

C ) the SEARCH operation (Bit-30 -> Bit-32) 

3 ) The <AMI234) Addresses : 

The (AMI234) addresses provide the branching information of the 

execute parts of AMI, pending on the outcome of the SEARCH 

operation. 

The <AMI1) part of Associative Machine Instruction is distinguishable 

from the <AMI234) part of AMI in its SEARCH operation, which is indicated 

by the code 000 in Bit-30 to Bit-32. 

5.1.1 The <AMil) Word Spec. 

In <AMI1) Word Spec, the data organization is indicated by the 

TBV bit (Bit-25) of the <AM11). 

A ) The Text Symbols : 

1 25 26 27 29 30 33 41 48 

-----------------------------------------------------------l Wd Spec l 1 \ \ Dll \ CMB \000\ Label-0 \Label-l\ 
-----------------------------------------------------------24 TBV 1 2 1 3 8 8 

\<OPERAND>\<------- OPCODE ------>\<-- AMI234 ADDRESSES-->\ 

B ) The Bit-Vector 

1 25 26 27 29 30 33 41 48 
-----------------------------------------------------------

' Wd Spec \ 0 \ \Dil\ CMB \000\ Label-0 \Label-l\ 
-----------------------------------------------------------24 TBV 1 2 1 3 8 8 

\<OPERAND>\<------- OPCODE ------>\<-- AM1234 ADDRESSES-->\ 
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The three kinds of <AMI!) addressing schemes are shown as 

follows: 

1 ) The Immediate Addressing Mode : 

A tertiary datum format (B) is used to represent the three 

level logic where (B) ::= XIOI1 ::= OOIOlllO 

7 6 5 4 3 2 1 0 CBl CB2 CB3 CB4 
-----------------------------------------------
IBIBI»I»IBI»I»I»I»I»I»I»I 
-----------------------------------------------
<------ Character Field ------>~<- C.B. Field-) 
<---- 8-Bit Character Code ---> <- C.B. Field-) 
MSBI<--- 7-Bit ASCII Code----> <- c.B. Field-) 
<------------ 12-bit Bit Vector --------------> 

2 ) The Scratch-Pad Addressing Mode : 

The Immediate Addressing Mode uses only three combinations 

of the two-bit code to represent the tertiary datum: namely 

00 for X, 01 for 0 and 10 for 1. The fourth combination 

(11) is therefore, used here to indicate non-immediate 

addressing modes, notably Scratch-pad, Input and Output 

Buffer addressing modes. 

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4 
2 4 6 8 10 12 14 16 18 20 22 24 

-----------------------------------------------
1
<------ Addressing Mode ------>~<- C.B •. Field-)\ 
<M>I< >I< >1<--- SP Address---> 

~ I 1--> Addressing Mode 

--> Non-Immediate Mode 

Bit 3 & 4 of the <AMil) Word Spec. is filled with the code 

11 to represent non-immediate addressing mode. Bit 5 & 6 is 

filled with the code 10 to mean Scratch-Pad addressing. 
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------------------------------------------------
Bit-S \ Bit-6 I Non-Immediate Addressing Modes 

0 I 0 Output Buffer Addressing 
------------------------------------------------0 \ l Input Buffer Addressing 
------------------------------------------------

l 0 \ Scratch-Pad Addressing 
------------------------------------------------

1 1 I Not defined 
------------------------------------------------

The field from Bit-7 to Bit-16 is used to address the 1K 

Scratch-Pad Buffer. 

3 ) The Input Buffer Addressing : 

The Input Buffer Addressing when used, its Bit 5 & 6 of the 

<AMI!) Word Spec. is filled with the code 01 to indicate 

Input Buffer Addressing Mode, and from Bit-7 to Bit-16 is 

used for the address of 1K Input Buffer. 

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4 
2 4 6 8 10 12 14 16 18 20 22 24 

-----------------------------------------------
\
<------ Addressing Mode ------>,<- C.B. Field->\ 
<M>I< >I< >\<--- IB Address---> 

s \ I B --> Addressing Mode 

--> Non-Immediate Mode 

5.1.2 The Bit Select Functions : 

The Bit Select Functions of <AMI1) are defined by the <BSU) of 

<API1) : Data Masking and Data Complementing. 

-----------------------------------------------------------\ Wd Spec \TBV\ \ 1 \ 1 \000\ Label-0 \Label-l l 
-----------------------------------------------------------24 1 1 Dl1 CMB 3 8 8 

\<OPERAND>\<------- OPCODE ------>\<-- AMI234 ADDRESSES-->\ 
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1 ) The Data Masking : 

Apart from the use of tertiary data format for the 

unconditional data masking, <AMI1) uses a two bit Data 

Identity code (DI1) to represent conditional data masking. 

Bit-27 I Bit-28 I Data Identity <DI1) 

0 0 (Dil) = X 

0 1 (Dil) "" 0 

1 0 I <Dil> = 1 
---------------------------------------1 1 I Not defined 

2 ) The Data Complementing : 

A ) The selection of true data content of IDR. 

1 25 26 27 29 30 33 41 48 

I Wd Spec ITBV\ IDUI o tooot Label-0 1 Label-l! 

24 1 1 2 CMB 3 8 8 

B ) The selection of complemented data content of IDR. 

1 25 26 27 29 30 33 41 48 
-----------------------------------------------------------

1 Wd Spec \TBV\ IDnt 1 looot Label-0 1 Label-l\ 

24 1 1 2 CMB 3 8 8 

5.1.3 The <AMI234) Addresses 

The <MR branch) of <API1) specifies the addresses of two 

alternative <API234)'s, notably the <AMI234) addresses which 

have a range of between -128 to +127. 

1 25 26 27 29 30 33 41 48 
-----------------------------------------------------------1 Wd Spec \TBV\ lDil\ CMB \000\ 1 1 
-----------------------------------------------------------24 1 l 2 1 3 Label-0 Label-l 

!<OPERAND>\<------- OPCODE ------>\<-- AMI234 ADDRESSES -->1 
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5.2 THE EXECUTE PHASE OF AMI <AMI234) 

The <AMI234> is the object machine instruction of <API234) which 

governs the execute phase of the Associative Computation Cycle. During the 

Examine Phase of the Associative Computation Cycle (<AMil>). the <AMI234) 

parts of AMI are loaded from the API Program Store into the Instruction 

Memory Buffer ready for the Execute Phase of AMI. The appropriate <AMI234> 

(pending ~n the outcome of MR) will then be loaded into the BOAP Control 

system for the Machine Instruction Decoder to separate it into a 8-bit next 

instruction address and a 38-bit operational code, which in trun. will be 

assembled into a three beat execute sequence: AMI2 (Beat-2), AMI3 (Beat-3) 

and AMI (Beat-4). 

---------------------------------------------------------------
-----------------------------------------------------------

l Wd Spec lPF l R/W \DI41 CMB lUSDI ACD lDI21 CLEAR 1 Label l 
-----------------------------------------------------------

148-Bitsl 
\ T 

-----------------------------------------------------------
MACHINE INSTRUCTION DECODER 

------------------------------------------------------------------------- ~IT l BEAT CONTROL l 
-------------- ------ ------

l l 

138-Bits\ 

\ T l ~at l m~l v v ------ ------
------------------------------------------------------------------------------------------------------

tch Spec\ CB Spec l RW lDI4\CMBl lAMI4 
----------------------------------------------------------------------------------------------

lA3lA2lAllAOI lUlSlDl l l lAMI3 
----------------------------------------------------------------------------------------------

lPF=Ol lDI2lCLEARlAMI2 
-----------------------------------------------1 17 25 26 27 29 30 
-----------------------------------------------

lCh Specl CB Spec lTBV l lDI1lCMHl lAMil 
-----------------------------------------------

-------------------------------------------------------

D 
A 
T 
A 

T 
R 
A 
N 
• 
R 
E 
G 

---------------------------------------------------------------

The <AMI234) uses the 48-bit instruction format similar to the <AMil) 

which is also divided into three fields, but with different lengths of 

Opcode field and Next Instruction Address field. 
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1<----------------------- AMI 234 ------------------------->1 
1 25 26 27 29 30 33 37 39 41 48 
-----------------------------------------------------------1 Wd Spec IPF \ R/W \DI4\ CMB \USD\ ACD \DI2\ CLEAR \ Label \ 
-----------------------------------------------------------

\<OPERAND>\<--------------- OPCODE ---------------->\-NEXT-\ 
INS. 

ADDRESS 

1 ) The Operand Field 

The Operand Field provides the information about operand movement 

from a source {i.e. from the instruction itself, Input Buffer or 

Scratch-pad) to the destination { either for the tagged word-rows 

in AMA or via ODR to the Output Buffer). 

2 ) The Opcode Field 

The Opcode Field provides the information about tag manipulations 

and READ/WRITE functions. In <AMI234>, it includes eight opcode 

subfields: 

A ) the selection of Pre/Post Function ACC {Bit-25) 

B ) the READ/WRITE selection {Bit-i6) 

C ) the bit select functions for Beat-four AMI ( <AMI4)), namely 

Data Identity (DI4 in Bit-27 & Bit-28) and Data Complementing 

(CMB in Bit-29) 

D ) the Tag Manipulation code {from Bit-33 to Bit-36), plus a 3-

bit direction code (from Bit-30 to Bit-32) 

E ) the setting of Beat-two Data Identity {Dl2 in Bit-37 & Bit-38) 

F ) the selection of CLEAR operation (Bit-39 to Bit-40) 

3 ) The Next Instruction Addresses : 

Since the execution of <AMI234) leads to the completion of the 

Associative Computation Cycle, it is therefore suggested that the 

next instruction could either be another Associative Computation 

Cycle or an order to return the flow of control to the Host 

processor: 
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A ) When the content of the Next Instruction Address field is 

equal to zero, it signifies "return the flow of control to the 

Host processor", and proceed with the next S ISO ins true tion 

in the Program. 

B ) However, a non-zero next instruction address will signify the 

selection of another ACC, which can be anywhere in the range 

of -128 to +127 from the current location within the API 

Program Store. 

5.2.1 The Pre-Function Non Group-Run <AMI234> 

The selection bit (Bit-25) of Pre/Post Function ACC is set to 0 

to indicate Pre-Function ACC. 

1<-------- The Pre-Function Non Group-Run <AMI234) -------->1 

1 25 26 27 29 30 33 37 39 41 48 
-----------------------------------------------------------

1 Wd Spec I 0 I R/W IDI41 CMB 1usn1 ACD IDI21 CLEAR I Label I 
-----------------------------------------------------------

24 PF 1 2 1 3 4 2 2 8 
I<OPERAND>I<--------------- OPCODE ---------------->1- NEXT-I 

INS. 
ADDRESS 

AMI2 : Clear Options: 

The CLEAR options are indicated in <AMI234) format in a two bit 

code (Bit-39 & Bit-40). 

1 25 26 27 29 30 33 37 39 41 48 
-----------------------------------------------------------

1 Wd Spec I 0 I R/W IDI41 CMB 1usn1 ACD IDI21 ? I Label I 
-----------------------------------------------------------

24 PF 1 2 1 3 4 2 CLEAR 8 

---------------------------------------Bit-39 I Bit-40 l CLEAR Options 
---------------------------------------

0 I 0 No Clear 
---------------------------------------0 I 1 CLBTT 
---------------------------------------1 0 I CLBCT 
---------------------------------------

1 1 I CLAB 

---------------------------------------
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AMI3 : Tag Manipulations: 

The Non Group-Run Tag Manipulations of the (AMI234) provide the 

mechanism to activate word-rows for READ/FUNCTION operation: 

1 25 26 27 29 30 33 37 39 41 48 
-----------------------------------------------------------

' Wd Spec l 0 l R/W IDI4\ CMB \ ? I 1 IDI21 CLEAR I Label I 
-----------------------------------------------------------

24 PF 1 2 1 USD ACD 2 2 8 

There are a total of nine Non Group-Run Tag Manipulation codes 

which together with the seven Group-Run codes, make up 16 tag 

activation codes. 

Bit-33 l Bit-34 l Bit-35 l Bit-36 I Tag Manipulations 
---------------------------------------------------------0 I 0 0 0 No Operation 
---------------------------------------------------------

0 \ 0 0 1 PTT 
------~--------------------------------------------------

0 : l o I 1 0 PCT 
---------------------------------------------------------

0 
• ' 0 ' 

1 1 I RSTTU 
---------------------------------------------------------

0 l 0 

' 
0 

' 
RSTTD 

---------------------------------------------------------
0 l 0 ' 1 I RSCTU 

---------------------------------------------------------
0 l 1 l 1 I 0 ' RSCTD 

---------------------------------------------------------
0 ' l l 1 l 1 EIR 

1 0 0 0 MOR 
---------------------------------------------------------

In addition to the above activation codes, three bits of 

complementary codes are used to indicate propagation direction: 
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Bit-30 I Bit-31 I Bit-32 I Activation Direction 

o o o I 
-------------------------------------------------

0 0 1 I D 
-------------------------------------------------

0 l 0 I s 
-------------------------------------------------

0 1 I l 1 SD 
-------------------------------------------------

1 0 1 0 u 

1 0 I 1 U D 

-------------------------------------------------
l l 1 0 I us 

-------------------------------------------------
l l 1 ' USD 

AMI4 : READ/WRITE Operation : 

Associated with the READ/WRITE function, there are four pieces 

of information: 

1 25 26 27 29 30 33 37 39 41 48 
-----------------------------------------------------------

1 : l o l 1 l 1 l 1 lusnt ACD \DI21 CLEAR I Label l 
-------·---------------------------------------------------Wd Spef PF R/W DI4 CMB 3 4 2 2 8 

1 ) The <AMI234) Word Spec. : 

The <AMI234) Word Spec. has three kinds of addressing 

schemes similar to (AMll) Word Spec.: 

A ) The Immediate Addressing Mode 

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4 
-----------------------------------------------

\ B ' B l B ' B ' B I B ' B I B 1 B I B ' B ' B ' -----------------------------------------------

\

<------ Character Field ------>~<- C.B. Field-)\ 
<--- 8-Bit Character Code ----> <- C.B. Field-) 
MSB\<--- 7-Bit ASCII Code ----) <- C.B. Field-) 
<------------ 12-bit Bit Vector --------------> 
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B ) The Scratch-Pad Addressing Mode 

7 6 5 4 3 2 1 0 CH1 CB2 CB3 CB4 
2 4 6 8 10 12 14 16 18 20 22 24 

\
<------ Addressing Mode ------>,<­
<M>1< >1< >1<--- SP Address---> 

s l 1 B --> Addressing Mode 

--> Non-Immediate Mode 

C.B. Field->! 

C ) The Input Buffer Addressing 

-

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4 
2 4 6 8 10 12 14 16 18 20 22 24 

\
<------ Addressing Mode ------>,<- C.B. Field->1 
<M>1< >1< >1<--- IB Address---> 

~ l 
1--> Addressing Mode 

--> Non-Immediate Mode 

D ) The Output Buffer Addressing , 
For the Output Buffer Addressing, the Bit 5 & 6 of the 

<AMI234> Word Spec. is filled with the code 00 to 

indicate Output Buffer Addressing Mode, and from Bit-7 

to Bit-16 is used for the address of 1K Output Buffer. 

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4 
2 4 6 8 10 12 14 16 18 20 22 24 

-----------------------------------------------
-----------------------------------------------

\
<------ Addressing Mode ------>,<- C.B. Field->1 
<M>l< >l< >1<--- OB Address---> 

~ I 1--> Addressing Mode 

--> Non-Immediate Mode 
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2 ) The <AMI234) Bit Select Functions : 

The Bit Select Functions of <AMI234) are defined by the 

<BSU) of <API234) : Data Masking and Data Complementing. 

1 25 26 27 29 30 33 37 39 41 48 
-----------------------------------------------------------

I Wd Spec I 0 I R/W I ? I ? IUSD\ ACD IDI21 CLEAR I Label I 
-----------------------------------------------------------

24 PF 1 Dl4 CMB 3 4 2 2 8 

A ) The Data Masking : 

The <AMI234) uses a two bit Data Identity code <DI4) to 

represent conditional data masking • 

. Bit-27 I Bit-28 I Data Identity <DI4) 

0 0 <DI4) = X 

0 I 1 <DI4) = 0 
---------------------------------------

1 1 0 I <DI4) = 1 
---------------------------------------

1 1 1 Not defined 

B ) The Data Complementing : 

a ) The selection of true data content of IDR. 

1 25 26 27 29 30 33 37 39 41 48 
-----------------------------------------------------------

1 Wd Spec I 0 I R/W IDI41 0 IUSDI ACD IDI21 CLEAR I Label I 
-----------------------------------------------------------

24 PF 1 2 CMB 3 4 2 2 8 

b ) The selection of complemented data content of IDR. 

1 25 26 21 29 30 33 37 39 41 4e 
-----------------------------------------------------------

1 Wd Spec I 0 I R/W IDI4\ 1 IUSDI ACD IDI21 CLEAR I Label l 
-----------------------------------------------------------24 PF 1 2 CMB 3 4 2 2 8 
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3 ) The READ/WRITE Function : 

The READ/WRITE Function is indicated by Bit-26 

A ) The Selection of READ Function 

1 25 26 27 29 30 33 37 39 41 48 
-----------------------------------------------------------

\ Wd Spec \ 0 \ 1 \DI4\ CMB \USD\ ACD \DI21 CLEAR I Label \ 
-----------------------------------------------------------

24 PF R/W 2 1 3 4 2 2 8 

B ) The Selection of WRITE Function 

1 25 26 27 29 30 33 37 39 41 48 
-----------------------------------------------------------

\ Wd Spec \ 0 I 0 \DI4\ CMB \USD\ ACD \DI21 CLEAR \ Label \ 
-----------------------------------------------------------24 PF R/W 2 1 3 4 2 2 8 

5.2.2 The Pre-Function Grounp-Run <AMI234) 

The decoding of the Pre-Function Group-Run <AMI234) sequence 

follows a very similar fashion to the Pre-Function <AMI234), 

except with differences in the field allocation within 

instruction format. 

~ 

---------------------------------------------------------------
-----------------------------------------------------------\ Wd Spec \PF \ R/W \DI2\ CMB \USD\ ACD \ CB Spec 4 \ Label I 
-----------------------------------------------------------\48-Bits\ 

\ T 
-----------------------------------------------------------MACHINE INSTRUCTION DECODER 
----------------------------------------------------------------------- r-Bits\ \"7 l BEAT CONTROL \ 
----------- ------ ------

l 1 ' 
SPAR \ 1 MIAR \ 

v v \ T ------ ------
-------------------------------------------------------

----------------------------------------------- D I RW \CB Spec 4\AMI4 A 
----------------------------------------------- T 
----------------------------------------------- A 

\ \AMI3 
-----------------------------------------------
-----------------------------------------------\Ch Spec\ CB Spec \PF=O\ GR \012\ CMB \AMI2 
-----------------------------------------------1 17 25 26 27 29 30 
-----------------------------------------------\Ch Spec\ CB Spec \TBV \ \ Dll \ CMB\ \ AMI1 
-----------------------------------------------

-------------------------------------------------------

T 
R 
A 
N 
• 
R 
E 
G 

---------------------------------------------------------------
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Comparing with the Non Group-Run <AMI234>, the Pre-Function 

Group-Run <AMI234> uses a slightly different AMI format. 

1<---------- The Pre-Function Group-Run <AMI234> ---------->1 

1 25 26 27 29 30 33 37 41 48 
-----------------------------------------------------------

1 Wd Spec I 0 I R/W IDI21 CMB IUSDJ ACD I CB Spec 4 I Label I 
-----------------------------------------------------------

24 PF 1 2 1 3 4 4 8 
)<OPERAND>}<--------------- OPCODE ---------------->1- NEXT-} 

INS. 
ADDRESS 

AMI2 : SEARCH Operation for TR2 

Three pieces of informations are involved in the <AMI2) SEARCH 

as similar to <AMI1) SEARCH, namely <Word Spec), DI2 and CMB. 

1 25 26 27 29 30 33 37 41 48 

? I 0 I R/W I ? I ? }USDJ ACD I CB Spec 4 I Label I 
-----------------------------------------------------------Wd Spec PF 1 DI2 CMB 3 4 4 8 

1 ) The <AMI2) Word Spec. : 

The <AMI2> Word Spec is actually the same as the <AMI1). 

A ) The Immediate Addressing Mode : 

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4 

I B I B I B I B I B I B I B I B I B I B I B I B I 

\

<------ Character Field ------>~<- C.B. Field-) 
<---- 8-Bit Character Code ---> <- C.B. Field-) 
MSBI<--- 7-Bit ASCII Code----> <- c.B. Field-) 
<------------ 12-bit Bit Vector --------------> 

B ) The Scratch-Pad Addressing Mode : 

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4 
2 4 6 8 10 12 14 16 18 20 22 24 

-----------------------------------------------
-----------------------------------------------

\
<------ Addressing Mode------>,<- C.B. Field->! 
<M>I< >I< >l<--- SP Address---> 

~ I 1
--> Addressing Mode 

--> Non-Immediate Mode 
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C ) The Input Buffer Addressing 

7 6 5 4 3 2 1 0 CBl CB2 CB3 CB4 
2 4 6 8 10 12 14 16 18 20 22 24 

-----------------------------------------------
\
<------ Addressing Mode ------>~<­
<M>1< >1< >1<--- IB Address---> 

s l I B --> Addressing Mode 

--> Non-Immediate Hode 

2 ) The <AMI2) Bit Select Functions 

C.B. Field->! 

The <AMI2) Bit Select Functions are defined by the (BSU> of 

<API2> : Data Masking and Data Complementing. 

1 25 26 27 29 30 33 37 41 48 
-----------------------------------------------------------1 Wd Spec 1 0· 1 R/W I ? I ? IUSD} ACD I CB Spec 4 I Label 1 

24 PF 1 DI2 CMB 3 4 4 8 

A ) The Data Masking : 

Bit-27 I Bit-28 I Data Identity (DI2) 
-----------------------~---------------

0 0 (Dl2) = X 

0 1 I (DI2) = 0 
---------------------------------------

1 I o 1 <DI2) = 1 

---------------------------------------
1 1 1 Not defined 

---------------------------------------

B ) The Data Complementing : 

a ) The selection of true data content of IDR. 

1 25 26 27 29 30 33 37 41 48 
-----------------------------------------------------------

1 Wd Spec 1 0 I R/W 1DI21 0 \USDl ACD \ CB Spec 4 \ Label \ 
-----------------------------------------------------------24 PF 1 2 CMB 3 4 4 8 
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b ) The selection of complemented data content of IDR. 

1 25 26 27 29 30 33 37 41 48 
-----------------------------------------------------------

1 Wd Spec I 0 I R/W IDI21 1 IUSDI ACD I CB Spec 4 I Label I 
-----------------------------------------------------------

24 PF 1 2 CMB 3 4 4 8 

AMI3 : Group-Run Operation 

The Group-Run operations of the <AMI234) provides the 

information for the activation of word-rows for READ/WRITE 

Function: 

1 25 26 27 29 30 33 37 41 48 
-----------------------------------------------------------I Wd Spec I 0 I R/W IDI21 CMB I ? I ? I CB Spec 4 I Label I 
-----------------------------------------------------------

24· PF 1 2 1 USD ACD 4 8 

There are a total of seven Group-Run operational codes which 

together w~th the nine Non Group-Run ~odes, make up 16 tag 

activation codes. 

---------------------------------------------------------
Bit-33 l Bit-34 l Bit-35 l Bit-36 l Tag Manipulations 

---------------------------------------------------------
1 0 \ 0 1 GRN 

---------------------------------------------------------
1 0 I 1 I o I RSGSU 

---------------------------------------------------------
1 0 1 1 I 1 I RSGSD 

---------------------------------------------------------
1 1 

' 0 ' 
0 RSGSU 

---------------------------------------------------------
1 1 1 I o I 1 I RSFGD 

---------------------------------------------------------
1 ' 1 l 1 o I RSFGSU 

---------------------------------------------------------
1 1 1 1 1 ' 

RSFGSD 
---------------------------------------------------------

In addition to the above activation codes, three bits of 

complementary codes are used to indicate propagation direction, . 
as similar to the Non-Group Tag Manipulation. 
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-------------------------------------------------Bit-30 I Bit-31 I Bit-32 I Activation Direction 

0 0 I 0 
-------------------------------------------------

0 1 o I 1 D 

-------------------------------------------------
0 1 1 1 0 s 

-------------------------------------------------
0 1 1 I 1 I SD 

-------------------------------------------------
1 I 0 0 1 u 

-------------------------------------------------
1 1 0 1 U D 

-------------------------------------------------
1 1 1 0 us 

-------------------------------------------------
1 1 1 1 USD 

AMI4 : Restricted READ/WRITE OPERATION 

In beat-4 of Group-Run <AMI234>, only 4 bits of the 48-bit 

instruction format remain unused. This has significantly 

reduced the scope of activity to the Control-Bit field only. 

1 25: 26 27 29 30 33 37 41 48 
-----------------------------------------------------------

' Wd Spec ' 0 r R/W 1DI21 CMB 1USD1 ACD 1 1 I Label I 
-----------------------------------------------------------24 1 2 1 3 4 CB Spec 4 8 

Hence, only 4 bits of binary codes are available in this <AMI4> 

with no conditional masking or data complementing. 

5.2.3 The Post-Function <AMI234) 

In the Post-Function (AMI234>, the data transformations are 

always split into <CH Spec) and <CB Spec), as a result, this 

characteristic is also reflected in the field allocation within 

the instruction format. 
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--------------------------------------------------------------------------------------------------------------------------
I Wd Spec IPF I R/W IDI4\ CMB IUSDI ACD \DI21 CLEAR I Label I 

148-Bitsl 
\ T 

MACHINE INSTRUCTION DECODER 
-----------------------------------------------------------
I 
-------------- \117 BEAT CONTlWL I 
-------------- ------ ------

I I 

r8-Bits 
\ T 

I SPAR l 

' 
MIAR I 

v v ------ -----

CB Spec 

I lAMI3 

!Ch Spec! \PF=l\ RW \DI2\CLEARIAMI2 

1 17 25 26 27 29 30 

lCh Spec! CB Spec \TBV \ I Dill CMB\ 'AMil 
-----------------------------------------------

-------------------------------------------------------

D 
A 
T 
A 

T 
R 
A 
N 
• 
R 
E 
G 

---------------------------------------------------------------

Although the execute sequence of the Pos~-Function <AMI234) is 
-different from the Pre-Function <AMI2-34): the READ/WRITE 
~ 

operation is executed before Beat 3 Tag Manipulation functions, 

its machine instruction format actually looks the same as the 

Pre-Function Non Group-Run <AMI234> format. 

\<--------------- The Post-Function <AMI234) -------------->\ 

1 25 26 27 29 30 33 37 39 41 48 
-----------------------------------------------------------I Wd Spec l 1 I R/W lDI4\ CMB \USD\ ACD lDI21 CLEAR l Label l 
-----------------------------------------------------------24 PF 1 2 1 3 4 2 2 8 

\<OPERAND>\<--------------- OPCODE ---------------->1- NEXT-I 
INS. 

ADDRESS 

In the Post-Function <AMI234), the selection bit (Bit-25) is set 

to 1 to indicate Post-Function ACC. 
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AMI2 : Clear and READ/WRITE Options : 

The CLEAR options on the Control-Bit field are indicated in 

<AMI234) format in a two bit code (Bit-39 & Bit-40). 

1 17 25 26 27 29 30 33 37 39 41 48 
-----------------------------------------------------------

1 1 CB 1 1 I 1 IDI41 ? 1usn1 ACD I ? I ? 1 Label 1 
-----------------------------------------------------------Ch 8 PF R/W 2 CMB 3 4 DI2 CLEAR 8 

Bit-39 I Bit-40 I CLEAR Options 

0 I o I No Clear 
---------------------------------------

0 1 1 I CLBTT 
---------------------------------------

1 0 1 CLBCT 

1 1 CLAB 

Associated with the CLEAR operations is the READ/WRITE function 

on the Character field of all activated word-rows. 

1 17 25 26 27 29 30 33 37 39 41 48 
-----------------------------------------------------------

1 I CB I 1 I 1 IDI41 ? IUSDI ACD I 1 I CLEAR I Label I 
-----------------------------------------------------------Ch 8 PF R/W 2 CMB 3 4 DI2 2 8 

1 ) The Post-Function <AMI2> Character Spec. : 

The <AMI2) Character Spec. uses three kinds of addressing 

schemes similar to <AMI1) Word Spec., except that the 

READ/WRITE operation on Control-Bit field is not effected 

until Beat 4. 

A ) The Immediate Addressing Mode 

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4 
-----------------------------------------------

' B I B I B I B I B I B ' B I B I 
-----------------------------------------------

\

<------ Character Field ------>~<- C.B. Field-)\ 
<---- 8-Bit Character Code ---> <- C.B. Field-) 
MSBI<--- 7-Bit ASCII Code ----> <- C.B. Field-) 
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B ) The Scratch-Pad Addressing Mode 

7 6 5 4 3 2 1 0 CB1 CH2 CB3 CB4 
2 4 6 8 10 12 14 16 18 20 22 24 

-----------------------------------------------
\
<------ Addressing Mode ------>~<- C.B. Field->! 
<M>I< >I< >1<--- SP Address---> 

s l I B --> Addressing Mode 

--> Non-Immediate Mode 

C ) The Input Buffer Addressing 

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4 
2 4 6 8 10 12 14 16 18 20 22 24 

\
<------ Addressing Mode ------>~<- C.B. Field->\ 
<M>I< >I< >1<--- IB Address---> 

~ l ~-->Addressing Mode 

--> Non-Immediate Mode 

D ) The Output Buffer Addressing 

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4 
2 4 6 8 10 12 14 16 18 20 22 24 

\
<------ Addressing Mode ------>~<- C.B. Field->\ 
<M>I< >l< >1<--- OB Address---> 

s I , B --> Addressing Mode 

--> Non-Immediate Mode 

2 ) The Post-Function (AMI2) Conditional Data Masking : 

The Conditional Data Masking of Post-Function (AM12) uses 

Bit-37 and Bit-38 for Data Identity selection (DI2). 

1 17 25 26 27 29 30 33 37 39 41 48 
-----------------------------------------------------------l Ch l CB,\ 1 l R/W \DI4\ CMB \USD1 ACD l 1 l CLEAR I Label I 
-----------------------------------------------------------16 8 PF 1 2 'l 3 4 Dl2 2 8 
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Bit-37 I Bit-38 I Data Identity <DI2) 

0 0 (DI2) = X 

0 1 I <DI2) = 0 
---------------------------------------

1 I 0 I <DI2> = 1 
---------------------------------------

1 I 1 I Not defined 

3 ) The READ/WRITE Function : 

The READ/WRITE Function is indicated in Bit-26 

A ) The Selection of READ Function 

1 17 25 26 27 29 30 33 37 39 41 48 
-----------------------------------------------------------

1 Ch I CB I 1 I 1 IDI41 CMB IUSDI ACD ID12I CLEAR I Label I 
-----------------------------------------------------------

16 8 PF R/W 2 1 3 4 2 8 

B ) The Selection of WRITE Function 

1 17 25 26 27 29 30 33 37 39 41 48 
-----------------------------------------------------------

1 Ch I CB I 1 I 0 IDI41 CMB IUSDI ACD IDI21 CLEAR I Label I 
-----------------------------------------------------------16 8 PF R/W 2 1 3 4 2 2 8 

AMI3 : Tag Manipulations: 

The Post-Function <AMI234) also uses the same Tag Manipulations 

codes as the Pre-Function Non Group-Run <AMI234). 

l 17 25 26 27 29 30 33 37 39 41 48 
-----------------------------------------------------------

I Ch I CB I 1 I R/W IDI41 CMB I ? I ? ID12I CLEAR I Label I 
-----------------------------------------------------------

16 8 PF 1 2 1 USD ACD 2 2 8 
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---------------------------------------------------------
Bit-33 I Bit-34 I Bit-35 I Bit-36 I Tag Manipulations 

---------------------------------------------------------
0 0 0 I 0 No Operation 

---------------------------------------------------------
0 0 1 o I 1 I PTT 

---------------------------------------------------------
0 0 1 1 I o I PCT 

---------------------------------------------------------
0 1 o I 1 I 1 I RSTTU 

---------------------------------------------------------
0 1 1 I o o I RSTTD 

---------------------------------------------------------
0 1 1 I o I 1 I RSCTU 

---------------------------------------------------------
0 1 1 1 I o l RSCTD 

---------------------------------------------------------
0 1 I 1 1 1 I EIR 

---------------------------------------------------------
1 0 1 0 0 MOR 

---------------------------------------------------------

Bit-30 I Bit-31 I Bit-32 l Activation Direction 

0 0 0 

0 I o 1 I D 

-------------------------------------------------
0 1 1 0 l s 

-------------------------------------------------
0 1 1 1 I SD 

-------------------------------------------------
1 0 1 o I u 

-------------------------------------------------
1 1 o I 1 l U D 

------------------------------~------------------
1 1 1 l 0 us 

-------------------------------------------------
1 1 1 l 1 USD 

-------------------------------------------------

AMI4 : Update Operation: 

The Post-Function <AMI4) has a very restricted WRITE function 

which operates on Control-Bits only, since 37 bits out of the 

48-bit AMI format have been used during Beat-2 and Beat-3. 

1 17 25 26 27 29 30 33 37 39 41 48 
-----------------------------------------------------------

I Ch I 1 I 1 I R/W I 1 l 1 IUSDI ACD JDI21 CLEAR I Label l 
-----------------------------------------------------------16 8 PF R/W DI4 CMB 3 4 2 2 8 

1 ) The Post-Function <AMI4> Control Bit Spec. : 

The Post-Function <AMI4> Control-Bit Spec. has only one 

addressing scheme: Immediate Addressing. 
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7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4 

I B I B I B I B I 

\
<------ Character Field ------>\<- C.B. Field-)\ 
MSBI<--- 7-Bit ASCII Code ----> <- C.B. Field-) 

2 ) The Post-Function <AMI4) Bit Select Functions : 

The Post-Function (AMI4) uses both Conditional Data Masking 

and Data Complementing. 

1 17 25 26 27 29 30 33 37 39 41 48 
-----------------------------------------------------------

1 Ch I CB I 0 I R/W J ? I ? IUSDJ ACD JDI2J CLEAR I Label I 

-----------------------------------------------------------
16 8 PF 1 DI4 CMB 3 4 2 2 8 

A ) Conditional Data Masking : 

Bit-27 J Bit-28 J Data Identity <DI4) 
---------------------------------------0 J 0 (DI4) = X 
---------------------------------------

0 I 1 : <DI4> = 0 
----------------------~----------------1 J 0 ~ (DI4) = 1 

----------------------~----------------
1 I 1 Not defined 

---------------------------------------

B ) The Data Complementing : 

a ) The selection of true data content of IDR. 

1 17 25 26 27 29 30 33 37 39 41 48 

-----------------------------------------------------------
I Ch I CB I 1 l R/W IDI4J 0 JUSDJ ACD JDI21 CLEAR l Label J 
-----------------------------------------------------------16 8 PF 1 2 CMB 3 4 2 2 8 

b ) The selection of complemented data content of IDR. 

1 17 25 26 27 29 30 33 37 39 41 4~ 

-----------------------------------------------------------
I Ch I CB I 1 I R/W JDI4J 1 JUSDJ ACD JDI2J CLEAR l Label I 
-----------------------------------------------------------16 8 PF 1 2 CMB 3 4 2 2 8 
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5.3 SUMMARY 

Being a mirror instruction of its API counterpart, the instruction 

format of AMI is predetermined by the two-part instruction structure of the 

Associative Computation Cycle. However, in the design of the AMI format, 

freedom of movement is still possible in the following areas: 

1 ) The Instruction Length: 

A 48-bit machine instruction format has been adopted as the 

shortest possible instruction length that is an integral multiple 

of the 8-bit data bus. 

2 ) The Instruction Address Fields: 

In this 48-bit format, the instruction address field is 

constrained to a 8-bit relative address (-128 to +127). 

<AMil) (AMI234) 

:neld (Non Group-Run) (Group-Run) 
allocation & Post-Function 

1 - 16 Ch Spec Ch Spec Ch Spec2 
17 - 24 CB Spec CB Spec CB Spec2 
25 TBV PF PF 
26 R/W R/W 
27 - 28 Dll DI4 DI2 
29 CMB CMB CMB 
30 - 32 000 (For AMil) DIRN (USD) DIRN (USD) 
33 - 36 Label-0[1 - 41 ACD (<=1000) ACD ()=1001) 
37 - 38 Label-0[5 - 6] DI2 CB Spec4 (1-2) 
39 - 40 Label-0[7 - 8] CL CB Spec4 (3-4) 
41 - 48 Label-1[1 - 8] Label-X[l - 8) Label-X[ 1 - 8] 

The translation of API is performed by the AAL Assembler, which as a 

result, will generate a file of 48-bit long AMis as an object program to be 

run on the Distributed Computer System. The loading of AMI file is done by 

the API Loader (Fig. 3.4) into the API Program Store, ready to be fetched 

for execution. In the process of fetching, either <AMI1) or <AMI234) parts 

of the AMI will then be loaded into the BOAP for instruction decoding, 

which in turn, will be broken into a 4-beat sequence to drive the 

microprogrammed associative processor. The detailed simulation of BOAP is 

presented in the Appendix D. However, the following table shows the 

detailed breakdown of field allocations for all three kinds of Associative 
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Computation Cycles, in terms of beat sequence Beat-1 for AMI1, Beat-2 for 

AMI2, so on and so for. 

ASSOCIATIVE COMPUTATION CYCLE 
I 

I I 
.· PRE-FUNCTION POST-FUNCTION 

I 
I I 

NGRN GRN 
l I 

1 2 3 4 1 2 3 4 1 2 3 4 

1. CH1x CH1x CH1x CHlx CH1x CH1x 
2. CH1y CH1y CH1y CH1y CHly CHly 
3. CH2x CH2x CH2xCH2x CH2x CH2x 
4. CH2y CH2y CH2y CH2y CH2yCH2y 
s. CH3x CH3x CH3x CH3x CH3x CH3x 
6. CH3y CH3y CH3y CH3y CH3y CH3y 
7. CH4x CH4x CH4x CH4x CH4x CH4x 
a. CH4y CH4y CH4y CH4y CH4y CH4y 
9. CH5x CH5x CH5xCH5x CH5xCH5x 

10. CH5y CH5y CH5y CH5y CH5y CH5y 
11. CH6x CH6x CH6x CH6x CH6x CH6x 
12. CH6y CH6y CH6y CH6y CH6y CH6y 
13. CH7x CH7x CH7x CH7x CHjx CH7x 
14. CH7y CH7y CH7y CH7y CH7y CH7y 
15. CH8x CH8x CH8xCH8x CH8x CH8x 
16. CH8y CHSy CH8y CH8y CH8y CH8y 

17. CB1x A3 CBlx CBlx CBlx A3 CBlx A3 CBlx 
18. CBly A2 CBly CBly CBly A2 CB1y A2 CB1y 
19. CB2x Al CB2x CB2x CB2x Al CB2x A1 CB2x 
20. CB2y AO CB2y CB2y CB2y AO CB2y AO CB2y 
21. CB3x CB3x CB3x CB3x CB3x CB3x 
22. CB3y u CB3y CB3y CB3y u CB3y u CB3y 
23. CB4x s CB4x CB4x CB4x s CB4x s CB4x 
24. CB4y D CB4y CB4y CB4y D CB4y D CB4y 
25. TBV PF•O TBV PF•O TBV PF•l 
26. RW (GR) RW RW (RW=O) 
27. Dllx DI2x DI4x Dllx DI2x CB1 Dllx DI2x DI4x 
28. Dlly DI2y DI4y Dlly DI2y CB2 Dlly DI2y DI4y 
29. CMB CLx CMB CMB CMB CB3 CMB CLx CMB 
30. CLy CB4 CLy 
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CHAPTER SIX 

THE STRING PROCESSING ALGORITHMS 

6.1 The Algorithm Assign 

6.2 The Algorithm Search (Success and Failure) 

6.3 The Algorithm Replace 

6.4 The Algorithm Concatenate 

6.5 The Algorithm Union 

6.6 The Algorithm Any and Not any 

6.7 The Algorithm Position 

6.8 The Algorithm Remainder 

6.9 The Algorithm Length 

6.10 Summary 



Like any model, a computer program is an abstraction from reality, 

from the relevant qualities and properties of the phenomenon being 

modelled. The computerization of problem solving usually involves three 

stages of abstractions: 

1) Abstraction from the original problem.to a design specification 

feasible of being implemented on the computer. 

2 ) Abstraction from a design specification to a program written in a 

particular programming language in terms of a collection of data 

objects, operations, and representation schemes. Two kinds of 

abstractions useful during the construction of programs are 

procedural and data abstractions. 

A ) The Procedure Abstraction : 

Procedure abstraction is better known as a subroutine or a 

function, and has been used in computer programming f~r a long 

time. The purpose of procedure abstraction is to permit the 

use of operations (algorithms) without specifying the details 
-

of implementation. What this involves is distinguishing .. 
between the use and implementation of objects in programming, 

which are referred to as the specification and the 

implementation phases. Over the years, most programmers 

realize that the degree of complexity which the human mind can 

cope with, at any one time, is considerably less than that 

embodied in much of the software that one might wish to 

build[63]. One way to overcome this limitation is by means of 

top-down design[64], which is known to some people as 

"structured programming11 [65] or 11modularity11 [66,67], that 

organizes computer programs in hierarchical structured 

procedures regardless of their detailed implementations in the 

first instance, and then builds them up in the later stage by 

stepwise refinement in the direction of instructions and 

predicates available in the programming language[68). 
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B ) The Data Abstraction : 

The top-down design approach for the abstraction of operations 

achieved by procedure abstraction, can be extended to cover 

the structuring of data. The purpose of data abstraction is 

to permit the use of data objects without specifying the 

detailed structure of the data, and again it can be organized 

in two phases: the specification and the implementation 

phases. Normally, programs operate on data structures, which 

are aggregates of information with important structural 

relationships. These data structures might be a vector, a 

matrix, a list, a tree, a graph, or almost any structure that 

can be built upon on the primitive data types and other 

existing user-defined data structures. 

3 ) Abstraction from the computer program to the underlying hardwares 

that support it. This is the abstraction of hardware onto the 

virtual machine of a particular language: implemenation of 

instructions and data types of that language which could be 

executed by the hardware. 

Generally, it is these three levels of abstractions that constitute 

the life cycle of a program construction. In the development of programs 

by stepwise refinement[68), the programmer is encouraged to postpone the 

decision on data representation until after he has designed his algorithm 

and has expressed it as an "abstract" program operating on "abstract" data. 

He then chooses for the abstract data in some convenient and efficient 

concrete representation in the store of a computer; and finally programs 

the primitive operations required by his abstract program designed during 

the specification phase in terms of this concrete representation. In other 

words, the success of an algorithm depends almost always on the choice of a 

suitable data representation in the light of the ease in which this 

representation allows the necessary operations to be expressed. 
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However, a commom difficulty in program design lies in the unfortunate 

fact that at the stage where decisions about data representations have to 

be made, it often is still difficult to foresee the details of the 

necessary instructions operating on the data, and often quite impossible to 

estimate the advantages of one possible representation over another, due to 

the shortage of powerful built-in data types in the language for complex 

modelling. This situation has become even more horrifying in the case of 

artificial intelligence where the data structures involved are so complex 

and the size of their knowledge bases are so large that a combinational 

explosion has resulted. Hence, it is in the light of bridging this gap 

between built-in data types and user-defined data structures that has 

motivated us in a search for the means to support powerful and well 

established data structures such as string, list, tree, set etc., at the 

programming language level thus enhancing the existing primitive data 

types. 

Before coming to the definition of data types, it is perhaps necessary 

to discuss the meaning of the abstraction in computer science. It has been­

used in at least two ways which are distinct but related[69]: 

1 ) The Abstract Model : 

This is the meaning common to most of science: "abstraction" 

covers the creation of a model, usually a mathematical model, to 

describe certain behaviour or characteristics of a object, as 

opposed to the real object as a whole. 

2 ) The Abstract Machine : 

The second meaning is closely related to the first, but projected 

onto the computer science perspective. It refers to process of 

generalizing, so that certain detailed features can be ignored at 

the higher levels. There are many examples in computer science, 

in particular, finite state machine models of hardware, procedure 

and data abstractions of computer programs. 
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In programming--especially in high-level programming languages--the 

concept of a data type is referred to as: 

1 ) abstraction of data representations from hardware storage 

2 ) operations applicable to objects in the data abstraction 

However, it is the semantics of these operations as the definition of 

the data type that is of greatest importance. Cliff Jones has gone even 

further in saying "data types are characterized by their operations 

alon~'[70], as what one wants to do with data types is to manipulate them, 

and the essential information about the operations is their inter­

relationships. In other words, the data type itself is like a black box 

and its representation or implementation is of no concern to its user. 

The difference between a data structure, which is an interconnection 

of the various data elements, and a data type, which separates the 

specification and the implementation of a data structure, is a matter of 

the organization of the contents of a data structure. This point can also 

be understood in terms of the external and internal behaviour of a data: 

structure. In a data structure, there is no concept of the black box,. 

every part is visible to all users who could write their own software to 

manipulate any part of the data structure. On the other hand, users never 

have any direct access to the implementation part of the data type. 

Instead, they are forced to access them indirectly through a set of 

predefined procedures. There are two kinds of data types: the built-in 

data type which the language supports as a primitive, or a user-defined 

data type which is sometimes referred to as an abstract data type[71]. 

Nevertheless, only recent languages, such as CLU and ADA , have provided 

facilities to define and enforce the implementation of abstract data types. 

Physically, the ultimate components in the construction of data 

objects are bits. Higher level data structures are then constructed using 

bits as basic building blocks, eventually to be mapped upon the memory 

structure of the machine. This is the process referred to as finite 

mapping[72], which in the mathematician's sense is a function defined 
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within a finite range of arguments of type A which maps each argument onto 

a value from type B. 

A--> B 

Conceptually, the finite mapping is similar to the symbol table in a 

compiler, but instead of mapping identifiers onto its decode (type, 

address, etc.), finite mapping maps defined ranges of data structures onto 

the hardware memory structure. Theoretically, a one bit memory can be 

mapped onto a Boolean type data, but in order to represent a greater 

variety of data structures, a larger collection of bits is necessary, and 

the first meaningful structure one can build is to collect 8 bits to form a 

byte. Using bytes one can now represent character structures in the memory 

hardware, and then a string of characters. It is from here as a starting 

point that, we will begin the investigation of the construction of data 

structures on the Byte-Organized Associative Processor. 

The idea of "pattern" type structure for strings integrated with a 

powerful pattern matching system originated from the string processing 

language SNOBOL4. Recognition of this fact has led us to abstract most of 

the SNOBOL4 constructs into nine string algorithms for investgation into 

efficient implementation of string structures on BOAP. However, we shall 

only be concerned with the underlying concepts common to such system rather 

than remaining completely faithful to a particular language. Our approach 

in this chapter is to develop only the specification of string patterns and 

their use in structuring collections of strings. Nonetheless, the detailed 

implementation phase of these algorithms is presented separately in 

Appendix E. 

A character string, or string for short, is a sequence of zero or more 

characters which can be mapped directly on a byte organized memory 

structure. The string algorithms mainly involve a SEARCH plus some kind of 

structuring operations[72): 
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1 ) Sequence : 

The first and simplest structuring method is called the sequence. 

A sequence consists of zero or more components of data, arranged 

in some meaningtul order. In mathematical notation a sequence is 

frequently denoted by an asterisk, as follows 

* STRING = Character , 

A sequence corresponds to the iterative program structure in 

procedure abstraction, using the WHILE statement: 

WHILE condition true DO loop 

The computation of this structure consists of a sequence of zero 

or more computations of the program component loop; the sequence 

is not bounded in advance, but its length on any given occasion 

must be finite. 

2 ) Discriminated Union : 

The next simple structuring method is the discriminated union, 

which specifies that a choice is to be made from a selection of 

alternative structures. In the simplest case, the alternatives 

are just indicators of some condition such as SEARCH 

SEARCH(object) = SUCCESS \ FAILURE 

This states that the SEARCH operation will proceed with either the 

sequence SUCCESS or the sequence FAILURE pending the outcome of 

SEARCH on those data structures. A more complicated example is as 

follows 

ANY( PATTERN_! PATTERN 2 PATTERN_3) = SUCCESS I FAILURE 
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This discriminated union differs from the mathematical union of 

sets, and is closely analogous to the conditional or case 

construction of program control structure. 

IF condition true THEN statement 1 ELSE statement 2 

CASE identifier OF 
option 1 function 1; 
option 2 function 2; 

END; {CASE} 

3 ) Direct Product : 

The third major data structing methods is known by mathematicians 

as direct or Cartesian product, which involves a compound 

operation. For example, REPLACE operation can be defined as 

REPLACE = DELETE x INSERT 

By this definition, it is stated that each operation of the type 

REPLACE is a structure with exactly two components, a DELETE 

operation followed by a INSERT operation. The close analogy of 

the direct product in program control structures is program by 

composition (the compound statement). For example a procedure 

which composed of a number of disjoint statements. 

A formal string data organization on BOAP is shown in Fig. 6.1, which 

included three different fields: 

1 ) The Identifier of the String 

A string identifier is the label used by progrmmers to locate the 

string of characters, it uses a label name terminated by a $ sign. 
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2 ) The Value of the String 

The second field contains the value of the string which is 

terminated by a U sign. 

3 ) The Link_Name of the String 

The Link Name field is used to signify the continuation of the 

string which is due to the REPLACE or CONCATENATE operation. A 

Link_Name usually has a value of 0 (or [10000000] which means end 

of this string), otherwise, it provides the linking identifier for 

the next part of the string. For example, the String_Name_1 which 

has a value of 'abc' is to be linked up (or concatinated) with the 

other string 'de' which has the Link_Name of [10000001] as its 

identifier. In other words, String_Name_1 actually has a value of 

'abcde'. 

L 1 I ,. 0 0 0 0 0 0 1 ] ,. 

I 
Marker set 

I 
to 1 The actual Link Name 

to mean this is 

a Link Name 

Since only 7 bits are used by the ASCII code in the character 

field, the Most Significant Bit (MSB) is used, in this case, as a 

marker to distinguish Link Names from the other string names. 
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-----------------------------------------------------Ch. Spec CB Spec 
-----------------------IDR I I I I I -----------------------

BSU I I I I I -------
c c c c 
B B B B 

7 6 5 4 3 2 l 0 l 2 3 4 
Str ng -----------------------

Identifier-> String Name l Ill I I 
I -------=----=------~---Delimiter -> $ I I I I 

-----------------------
a I Ill I 

-----------------------
b I I I I 

-----------------------
c I I I I 

-----------------------Delimiter -> U I I I I 
I -----------------------Link Name -> l 0 0 0 0 0 0 ll I I I 

-----------------------
String_Name_2 Ill I I 

-----------------------
$ I I I I 

-----------------------
h I Ill I 

-----------------------
i I I I I 

-----------------------
11 I I I I 

-----------------------
1 0 0 0 0 0 0 OJ I I I 
-----------------------1 o o o o o o 1111 I I 
-----------------------

$ I I I I 
-----------------------

d I Ill I 
-----------------------

e I I I I 
-----------------------

11 I I I I 
-----------------------End of String -> 1 0 0 0 0 0 0 OJ I I I 
-----------------------

? I I I I 
-----------------------

? I I I I 
-----------------------

? I I I I 
-----------------------

? I I I I 
----------------------------------------------ODR I I I I I -----------------------

IDR 

BSU 

TRl TR2 wsu 

MRR 

-----------------------------------------------------

Fig. 6.1 The Organization of String Data on BOAP 
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The Associative Memory Array must be initialized before any processing 

can actually take place. It is done by being filling in with '?' at every 
word-row. 

-----------------------------------------------------Ch. Spec 

!DR 

BSU 

ODR 

CB Spec 
-----------------------

? 1o1o1o1o1 
------------------------------

I I I -I I 
-------
c c c c 
B B B B 

7 6 5 4 3 2 1 0 1 2 3 4 
-----------------------

? I I I I 
-----------------------

? I I I I 
-----------------------

? I I I I 
-----------------------

? I I I I 
-----------------------

? I I I I 
-----------------------

? I I I I 
-----------------------

? I I I I 
-----------------------

? I I I I 
-----------------------

? I I I I 
-----------------------

? I I I I 
-----------------------

? I l I I 
-----------------------

? I I I I 
-----------------------

? I I I I 
-----------------------

1 I I I I 
-----------------------

? I I I I 
-----------------------

? l l l I 
-----------------------

? I I l I 
-----------------------

? I I l I 
-----------------------

1 I l I I 
-----------------------

1 I I l I 
-----------------------

? I l l I 
----------------------------------------------

I I I I I -----------------------

!DR 

BSU 

TR1 wsu 

MRR 

-----------------------------------------------------
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6.1 THE ALGORITHM : ASSIGN 

The ASSIGN algorithm uses the Cartesian product for its data 

structuring method. 

ASSIGN = String_Identifier x String_Value x Link Name 

By this definition, it states that each.content of the type ASSIGN is a 

structure with exactly three components: a String_Identifier, a 

String_Value and a Link Name. However, syntactically, it has the form 

Variable := Value; 

String! :• 'abc'; 

The assignment statement may be said to have the following meaning: 

"Let Variable have the given Value". In the later section, we will 

generalize this assignment statement to include expression such as 

concatenation. 

Variable := Expression; 

Variable :• Valuel + Value2 (Concatenation); 

String! := String2 + String3; 
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-----------------------------------------------------Ch. Spec CB Spec 
-----------------------

IDR 11 o o o o o o otxlxlxlxl 

BSU 

ODR 

-----------------------
I I I I I -------
c c c c 
B B B B 

7 6 5 4 3 2 1 0 1 2 3 4 
-----------------------

s Ill I I 
------------------~----

t I I l I 
-----------------------

r I I I I 
-----------------------

1 I I I I 
-----------------------

n I I l I 
-----------------------

& I I l I 
-----------------------

1 I I I I 
-----------------------

$ I I l I 
-----------------------

a I l l I 
-----------------------

b I I l I 
-----------------------

c I I I I 
-----------------------

11 I I I I 
-----------------------
1 0 0 0 0 0 0 Ol I I I 
-----------------------

? I I I I 
-----------------------

? I I I I 
-----------------------

1 I I I I 
-----------------------

? l I I l 
-----------------------

? I I I I 
-----------------------

? I I I I 
-----------------------

? I I I l 
-----------------------

1 I I l I 
-----------------------

? I I I I 
-----------------------

? I I I l 
-----------------------1 I I l I 
----------------------------------------------

I I I I l -----------------------

IDR 

BSU 

TR1 wsu 

1 * 
1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 MRR 

-----------------------------------------------------
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6.2 SEARCH (SUCCESS AND FAILURE) : 

The string processing algorithms are characterized by searching 

through strings of characters followed by state transformation on the 

chosen string. Therefore, the whole of string processing is centered round 

the SEARCH operations. The notions of SEARCH (success or failure) are 

shown as follows: 

IF 'Pattern' IN Variable 
THEN Function 1 
ELSE Function 2; 

To illustrate this, let us consider to search through a string for a 

pattern 'err'. 

Stringl := 'ferry' 

IF 'err' IN String1 
THEN Function 1 
ELSE Function 2; 

In this example, the program control sequence will go to execute 

Function_l, as the condition which it is searching for is satisfied. The 

SEARCH algorithm forms the precondition of "Discrimination Union" in which 

a choice is to be made from a selection of alternative structures pending 

the outcome of some condition. Frequently, it is necessary to know whether 

a pattern matches with its origin at the first character of the reference 

string, if so, it is known to be Anchored at the beginning of the reference 

string. Sometimes, the outcome of the pattern matching will be quite 

different subject to different settings of Anchored Mode. Anchored Mode 

defines the marker within the reference string, and all subsequent 

processing& will start from the marker onward to the first character (or 

the last character) of the reference string. If Anchor is not set, then 

the default setting is the first character of the reference string. 

However, the Anchored Mode will be discussed in more detail in Section 6.7. 
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6.3 THE ALGORITHM : REPLACE 

The REPLACE algorithm is a string processing function that uses the 

Cartesian Product structuring method 

REPLACE = DELETE x INSERT 

By this definition, it means that every computation evoked by this string 

function REPLACE always consists of two disjoint parts; the function DELETE 

followed by function INSERT. 

The string function REPLACE has the following syntax which means 

taking a substring out of the reference string, as determined by the 

pattern, and replacing it by the object_string. 

REPLACE 'Subject_String' BY 'Object_String' IN Variable 

Stringl :='ferry'; 

REPLACE 'err' BY 'uzz' IN Stringl; 

will cause the reference string(Stringl) to be scanned for the su~ject 

string ('err'), and replace it by the object string ('uzz'). 
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Furthermore, any string could be replaced in this way by any other 

string; without the pre-condition that both strings must have the same 

length. For instance, if we execute 

REPLACE 'err' BY '1' IN Sting!; 

then the new value of String! will be 'fly'. 
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But, if we execute 

REPLACE 'err' BY 'alsit' IN Stringl; 

then the new value of Stringl will be 'falsity'. 

-----------------------------------------------------Ch. Spec CB·Spec 

IDR 11 o o o o 0 0 liXIOIXIXI IDR 
-----------------------
-----------------------

BSU 

ODR 

I I I I I -------
c c c c 
B B B B 

7 6 5 4 3 2 1 0 1 2 3 4 
-----------------------

s 111 I I 
-----------------------

t I I I I 
-----------------------

r I I I I 
-----------------------

1 I I r I 
-----------------------

n I I I I 
-----------------------

& I I I I -----------------------
1 I I I I 

-----------------------
$ I I I I 

-----------------------
f I Ill I 

-----------------------
a I I I I 

-----------------------
1 I I I I 

-----------------------
8 I I I I 

-----------------------
1 I I I I 

-----------------------
11 I I I I 

-----------------------
1 o o o o o o 11 I I I 
-----------------------

5 I I I l 
-----------------------

t I I I I 
-----------------------

r I I I I 
-----------------------

i I I I I 
----------------------------------------------

BSU 

TRl TR2 

1 

IIIII lliMRR -----------------------

wsu 

* 

-----------------------------------------------------

162 



-----------------------------------------------------Ch. Spec CB Spec 
-----------------------

IDR 11 0 0 0 0 0 0 OIOIOIOIOI IDR 

BSU 
------------------------------

I I I I I 
c c c c 
B B B B 

7 6 5 4 3 2 1 0 1 2 3 4 
-----------------------
1 o o o o o o 1111.1 I 
-----------------------

$ I I I I 
-----------------------

t I I I I 
-----------------------

y I I I I 
-----------------------

11 I I I I 
-----------------------End of String -> 1 0 0 0 0 0 0 Ol I I I 
-----------------------

1 I I I I 
-----------------------

1 I I I I 
-----------------------

1 I I I I 
-----------------------

? I I I I 
-----------------------

1 I I I I 
-----------------------

? I I I I 
-----------------------

1 I I I I 
-----------------------

1 I I I I 
-----------------------

? I I I I 
-----------------------

1 I I I I 
-----------------------

1 I I I I 
-----------------------

1 I I I I 
-----------------------

1 I I I I 
-----------------------

1 I I I I 
-----------------------

1 I I I I 
-----------------------

? I I I I 
-----------------------

1 I I I I 
-----------------------

1 I I I I 
----------------------------------------------

BSU 

TR1 TR2 

1 

1 

1 

1 

1 

1 

1 

1 
1 
1 

1 
1 
1 
1 

1 

1 

1 

1 
1 

-----------------------IIIII I1IMRR ODR 

wsu 

* 

-----------------------------------------------------

163 

<-



Since the two component parts of the function REPLACE are disjoint, 

either one of these functions can be bypassed. For instance, using a null 

string as a subject_string will turn the function REPLACE into a DELETE 

function. Similarly, a null object_string will turn the function REPLACE 

into the function INSERT. 

However, what happens if the pattern (subject_string) occurs more than 

once in the given reference string? Suppose that the value of String2 is 

'I TOOK A VACATION WITH MY CAr, and we now execute 

REPLACE 'CAT' WITH 'DOG' IN String2; 

the new value of String2 will not be 

'I TOOK A VACATION WITH MY DOG' 

but rather 

'I TOOK A VADOGION WITH MY DOG' 

This is because all searching in BOAP is done quite differently from the 

conventional SISD processor; every word_row in AMA is searched in parallel 

for the pattern concerned, and all matched word rows are then tagged and 

enabled for subsequent reading/writing, yield, 'VADOGION' and 'DOG'. For 

certain kinds of applications, this may be hazardous, but with a more 

carefully thought out algorithm one could easily get round this problem by 

resolving them into groups and then updating (or read) them one by one. 

REPLACE 'CAT' BY 'DOG' WITH RESOLVE(LEFT) 
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will give us 

'I TOOK A VACATION WITH MY DOG' 

and by executing 

REPLACE 'CAT' BY 'DOG' WITH RESOLVE(RIGHT) 

will instead give us 

'I TOOK A VADOGION WITH MY CAr 

REPLACE 'Subject_String' BY 'Object_String' WITH RESOLVE(Direction) 

A "number factors" can also be included with Direction option, for 

Replace operation, to isolate a particular substring with reference from 

either the left or right hand end of the reference string, 

REPLACE 'CAT' BY 'DOG' WITH RESOLVE(2LEFT) 

will have the same effect as 

REPLACE 'CAT' BY 'DOG' WITH RESOLVE(RIGHT) 

since CAT is the second substring from the left that matched the pattern. 

In addition, perhaps a verification routine could also be included to 

interact with the user, of which those word_rows are to be updated (or 

read). However, this is already outside the scope of this chapter. 
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6.4 THE ALGORITHM : CONCATENATE 

The algorithm Concatenate is the basic operation for combining two 

strings to form a third. In other words, it is an 'ADD' operator in the 

context of string processing. It uses the Cartesian Product to structure 

the data. 

CONCATENATE = Stringl x String2 

This states that the type "Concatenate" is a structure with two components, 

and its associated function is to add two strings together. The following 

statement illustrates the format of an expression involving concatenation. 

String3 := Stringl + String2; 

If (Stringl ='very') and (String2 ='good'), then the content of the 

concatenated string3 will be 'very good'; 
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6.5 THE ALGORITHM : UNION 

The algorithm UNION is again a Cartesian Product that brings together 

a collection of two or more string components under one string identifier. 

UNION = String! x String2 

It is the "union of sets" in the logical sense: a union of strings contains 

the values of all its member strings. 

-----------------------------------------------------Ch. Spec CB Spec 
-----------------------

IDR ll 0 0 0 0 0 0 OIXIXIXIXI IDR 
-----------------------. -------BSU I I I I I BSU -------

c c c c 
B B B B 

7 6 5 4 3 2 1 0 1 2 3 4 
-----------------------

s 111 I I 
-----------------------

t I I I I 
-----------------------

r I I I I 
-----------------------

1 I I I I 
-----------------------

n I I I I 
-----------------------

g I I I I 
-----------------------

3 I I I I 
-----------------------

$ I I I I 
-----------------------1 o o o o o o 11 1 1 1 
-----------------------
1 o o o o o 1 o1 1 1 1 
-----------------------

11 I I I I 
-----------------------
1 0 0 0 0 0 0 Ol I I I 
-----------------------

1 I I I I 
-----------------------

1 I I I I 
----------------------------------------------

ODR I I I I I I 
-----------------------

TRl 

1 

1 

1 

wsu 

* 

-----------------------------------------------------

170 



In general, UNION statements can be expressed two ways. 

1 ) UNION by Name : 

String3 := Stringl I String2; 

By this definition, it causes the building of a new structure 

String3 and assigns to it the values of both member strings, 

String! and String2. Since the assignment of String3 is carried 

out by means of the strings' identifiers rather than the strings' 

values, it is referred to as "UNION by Name". 
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2 ) UNION by Value : 

In this case, the values are used as the union of String3. 

String3 := 'cat' I 'dog'; 
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6. 6 THE ALGORITHM : ANY & NOT ANY 

The algorithm ANY & NOTANY are organized in a "Discriminated Union" 

structure, which specifies a choice to be made from a selection of 

alternative structures such as a UNION structure. 

ANY( UNION ) = Success \ Failure 

Suppose that, instead of searching through the word 'ferry' to find if 

it contains the pattern 'err', we want to know of whether it contains any 

vowel. Obviously, we could do five separate searches using SEARCH 

statement; one each for a, for e, for i, for o and for u. However, this 

process would be inefficient, instead we can use the ANY statement as shown 

in the following 

Stringl :='ferry'; 

IF ANY('a' \ 'e' \ 'i' 
THEN Function 1 
ELSE Function 2; 

'o' \ 'u') IN Stringl 

This states that "If Stringl contains any character of 'a' I 'e' I 'i' I 'o' I 'u', 

then execute Function 1 else Function 2." 

ANY(string) and NOTANY(string) are primitive pattern matching 

functions whose arguments are pattern structures that match single 

characters or strings. ANY will match any character or string appearing in 

its argument, whereas, NOTANY will match any character or string not 

appearing in its argument. 

ANY and NOTANY are the operations of the UNION string structure: with 

the UNION statement collecting the set of values of the alternative 

strings, the ANY or NOTANY statement takes these values to examine whether 

or not any of these values exist in the reference string concerned. The 

argument of ANY may be any string either in the form of a string value or 
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string identifier, which is similar to the case of the UNION structure 

(section 6.5). Hence we will call the first 'ANY by Value', and the second 

'ANY by Name'. 

1 ) ANY by Value 

IF ANY('Patterns') IN String_Variable 
THEN Function 1 
ELSE Function 2; 

IF NOTANY('Patterns') IN String_Variable 
THEN Function 1 
ELSE Function 2; 

'Patterns' := 'Pattern 1' 'Pattern 2' I 'Pattern_3'; 

ANY or NOTANY can be further extended to match a sequence of 

characters or strings instead of terminating the search operation 

after the first match. 

'Patterns' :• 'Pattern 1' ->'Pattern 2 -> 'Pattern_3'; 

For instance, we would like to look for any strings that.consists 

of '£' 'e' and 'y' in that order, without worrying about other 

_possible characters in between, we could write 

ANY('£' -> 'e' -> 'y') IN String1 
THEN Function 1 
ELSE Function 2; 

Now, if String1 were 'ferry', the flow of control would certainly 

switch to Function 1. Arguments of ANY and NOTANY must be non­

null strings when pattern matching is performed. 

' 
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1 ) ANY by Name : 

Since the pattern structure for ANY('a' I 'e' I 'i' I 'o' I 'u') matches 

any vowel, and the pat tern for NOT ANY(' a' I' e' I' i' I' o' \ 'u') matches 

any character that is not a vowel, it could equally be legitimate 

to use ANY(Vowel) or NOTANY(Vowel) to mean the same operation, if 

Vowel := 'a'\'e'\'i'\'o'\'u'. 

Vowels :='a' I 'e' \ 'i' \ 'o' I 'u'; 

IF ANY(Vowels) IN String1 
THEN Function 1 
ELSE Function 2; 

The syntax of ANY by Name is shown as follows 

IF ANY(Variables) IN String_Variable 
THEN Function 1 
ELSE Function 2; 

IF NOTANY(Variables) IN String_Variable 
THEN Function 1 
ELSE Function 2; 

Bearing in mind that 

<Variables) ::= <Stringl) \ <String2); 

<Variables) ::= <String1) -> <String2>; 

The ANY and NOTANY which we have just described is the superset of 

their counterparts in SNOBOL4; they are in fact, the combination of ANY, 

NOTANY, SPAN, BREAK, ARB and FENCE. This is due to the changes of 

hardware; as a matter of fact, we have found that it is very 

straightforward to remove the restrictions of the SNOBOL4 instructions 

mentioned above, and merge them together to form the ANY/NOTANY statements. 
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6.7 THE ALGORITHM : POSITION 

. 
The algorithm POSITION is a string function to position either the 

cursor or anchor within the reference string. Position, in this sense, is 

perhaps best thought of as occuring between the characters of a string. In 

the string 'ferry', "position 2" occurs between thee and the first r. If 

we are at position 2, then r is the next character. 

f e r r y 

1 ) POSITION CURSOR : 

The function POSITION (N) refers to "POSITION CURSOR AT N'' within 

the reference string. 

POSITION (Number) WITHIN Variable; 

will Ca.use a marker (cursor) to be set at the position specified 

by Number within the reference string (Variable). For readers who 

are familiar with a screen editor, the function POSITION is 

nothing more than a cursor positioning instruction that moves the 

cursor around the reference string. For the case of the string 

"ferry". 

POSITION (2) WITHIN "ferry"; 

will set the cursor at position 2 with reference from the first 

character of the reference string. 

f e r r y .. 
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The Number here is a absolute number referred from the beginning 

of the reference string and has a default implication of "from 

left to right". This is sometimes referred to in SNOBOL4 as 

Anchored mode, which means anchored at the first character of the 

reference string for any subsequent pattern matching. However, 

the definition of Number can be extended to include Relative 

Number which takes reference from either the anchor or the cursor, 

set by the previous POSITION instruction, at any position within 

the reference string. 

A ) POSITION CURSOR With Reference from the Cursor 

A pair of diamond brackets is used here to imply "with 

reference from the Cursor". If the Cursor is not preset by 

any previous POSITION instruction, then this <number) will be 

the same as the absolute number which refers from the 

beginning of the reference string. 

POSITION (Number) WITHIN Variable; 

POSITION (2) WITHIN "ferry"; 

Since this positioning operation is performed with reference 

from the previous setting of the cursor, it will therefore, 

cause the cursor to be positioned beyond the second r. 

f e r r y ... 

B ) POSITION CURSOR With Reference from the Anchor 

A pair of square brackets, in this case, is used to mean refer 

from the Anchor position. If the Anchor is not preset by any 

previous POSITION instruction, then this (number) will take 

reference from the beginning of the reference string. 
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POSITION [Number] WITHIN Variable; 

POSITION [2] WITHIN "ferry11
; 

In this case, since no Anchor has been set so far, the 

positioning will take reference from the first character of 

the reference string. 

f e r r y 

Extension of the definition of POSITION is possible by diverging 

from conventional "from left to right" to "from right to left". 

RPOSITION (Number) WITHIN Variable; 

RPOSITION [Number] WITHIN Varaible; 

RPOSITION <Number) WITHIN Variable; 

• Hence, the position in the reference string that is before the 

first character is POSITION(O), whereas, the rightmost position to 

the right of the last character is RPOSITION(O). 

2 ) POSITION ANCHOR 

Apart from the positioning of the cursor within the reference 

string, the anchor can also be positioned in accordance to a 

similar set of POSITION instructions. 

POSITION_ANCHOR {Number} WITHIN Variable; 

POSITION_ANCHOR [Number] WITHIN Variable, 

POSITION_ANCHOR <Number) WITHIN Variable; 

RPOSITION_ANCHOR (Number) WITHIN Variable; 

RPOSITION_ANCHOR [Number] WITHIN Variable; 

RPOSITION_ANCHOR <Number) WITHIN Variable; 
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In the previous section, the content of substring was used as a means 

to locate a position within the reference string, whereby processing could 

take place. In this section, we will introduce another way of marking the 

beginning of substring (HEAD of block) and the end of substring (TAIL of 

block) by locating their positions within the reference string regardless 

of its content. The function POSITION_HEAD (N) refers to "position the 

beginning of substring at ~· within the reference string, and POSITION TAIL 

(N) refers to "position the end of substring at N within the reference 

string". 

3 ) POSITION HEAD : 

The function "POSITION HEAD" will cause the "HEAD MARKER" to be 

placed at the position specified by Number within the reference 

string (Variable). 

POSITION HEAD (Number) WITHIN Variable; 

POSITION HEAD [Number] WITHIN Variable; 

POS~TION_HEAD <Number) WITHIN Variable; 

RPOSITION_HEAD (Number) WITHIN Variable; 
• 

RPOSITION HEAD [Number] WITHIN Variable· - ' 
RPOSITION_HEAD <Number) WITHIN Variable; 

4 ) POSITION TAIL : 

Whereas the function "POSITION_TAIL" will cause the "TAIL MARKE~' 

to be placed within reference string in according to Number. 

POSITION TAIL (Number) WITHIN Variable· - ' 
POSITION TAIL [Number) WITHIN Variable; 

POSITION TAIL <Number) WITHIN Variable· - ' 
RPOSITION_TAIL (Number) WITHIN Variable; 

RPOSITION TAIL [Number] WITHIN Variable; 

RPOSITION TAIL <Number) WITHIN Variable· - , 
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6.8 THE ALGORITHM : REMAINDER 

The algorithm REMAINDER is an assignment statement by which the 

remainder of the value of the reference string, which is marked by markers, 

is assigned to a string identifier. 

1 ) REMAINDER ANCHOR 

Variable := REMAINDE~ANCHOR, 

will assign the value bounded by the Anchor and the end or 

beginning of the reference string, to the string identifier. The 

directional convention was preset by the POSITION statement. In 

other words, any remainder statement must be preceded by a 

POSITION statement. For instance, 

POSITION ANCHOR (6) WITHIN "transfer"; 

Temp ~tring := REMAINDER ANCHOR· - - , 

will assign "fer" as the value of Temp_String, whereas 

RPOSITION_ANCHOR (3) WITHIN "ferry"; 

Temp_String := REMAINDER_ANCHOR; 

will assign "fer" as the value of Temp_String. 

2 ) REMAINDER CURSOR : 

REMAINDER could also use the cursor as the marker, instead of the 

anchor. 

Variable := REMAINDER_CURSOR; 
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3 ) REMAINDER_BLOCK : 

For the case of the value bounded by the head and tail markers, 

within the reference string, it takes the following form: 

Variable := REMAINDER_BLOCK; 

-----------------------------------------------------Ch. Spec CB-Spec 
-----------------------

IDR 11 o o o o o o otxtxtxlxl IDR 
-----------------------

BSU I I I I I 
c c c c 
B B B B 

7 6 5 4 3 2 1 0 1 2 3 4 
-----------------------

T Ill I I 
-----------------------

e I I I I 
-----------------------

m I I I I 
-----------------------

p I I I I -----------------------
- _ I I I I 

-----------------------
5 I I I I 

-----------------------
t t I I I I 

-----------------------
r I I I I 

-----------------------
1 I I I I 

-----------------------
n I I I I 

-----------------------
s I I I I 

-----------------------
$ I I I I 

-----------------------
t I I I I 

-----------------------
e I I I I 

-----------------------
r I I I I 

-----------------------
11 I I I I 

-----------------------
1 0 0 0 0 0 0 Ol I I I 
-----------------------

1 I l I I 
-----------------------

1 I I I I 
----------------------------------------------

BSU 

TRl 

1 

1 

1 

TR2 

ODR I I I I I I 1 I MRR 
-----------------------

WCL 

* 

-----------------------------------------------------
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6.9 THE ALGORITHM : LENGTH 

The algorithm LENGTH is a string processing function, which has a 

single string argument and returns as value an integer that is the length 

of the string. 

Example String := 'ferry'; 

WRITELN('The number of characters is ',LENGTH(Stringl)); 

will print: 

The number of characters is 5 
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6.10 SUMMARY : 

The evolution of programming languages has seen a steady development 

in the use of data types, various kinds of data structures are used in all 

areas of computer science. Compilers use stacks, symbol tables, and parse 

trees; operating systems maintain lists of processes and files, and employ 

memory management schemes that use lists or tables of available space; 

programs in artifical intelligence use stacks, queue sets, search trees, 

tables and graphs; and database sys terns use strings, 1 is ts, trees, rings 

and tables. As a matter of fact, part of the art of programming is the art 

of organizing data representations. In examining the specification of 

contemporary computer programs of substantial size, one often finds that 

they tend to contain layers of separate representations that span the gap 

from the naked machine upwards to the problem domain. For example, in a 

data base system, one may include name field, address field, room_number 

field and fields for internal/external phone numbers, at the problem domain 

level. However, at the intermediate levels one might use strings, tables, 

lists, trees, queues and other data types to support the problem domain, 

while at the lowest levels, one might find that these data structures are 

constructed from bits, bytes, and serially arranged sequences of machine 

' words. Some authors[68,72] refer to the layers in such a representation 

cascade as levels of abstraction. This concept of mapping offers a very 

abstract way for the programmer to specify the system in the early stages 

of his design, without being confused by the details of the representation 

and implementaion of his data. However, all data structures or data types 

are ultimately mapped on to the physical organization of hardware storage 

such as byte. Higher level data objects are then constructed using the 

byte as a basic building block and the first meaningful structure, which 

one can build, is the ordered collection of bits to form a bit string. 

Our purpose in this chapter is to deal in some detail, and in a fairly 

formal manner, with the semantics of the string patterns at the 

specification level and their use in structuring collections of strings. 

Orginally, the SNOBOL4 language integrated the idea of a "pattern" in 

string algorithms with a very powerful pattern matching system. 
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Recognition of this fact has led us to abstract most of the string 

constructs from SNOBOL4 for the investigation of the implementation of 

string algorithms on the Byte-Organized Associative Processor: examining 

the mapping of string objects onto the memory structure of BOAP, and 

investigating how string functions can be efficiently implemented on ocs. 

Hopefully, this detailed exploration of string structure implementation 

will provide us with the insight and confidence we need to do a superficial 

but convincing coverage of other data structures on DCS. 

In the next chapter, we will expand from the basis of string 

algorithms to look into the structural organization of other data 

structures, and examine their mapping onto BOAP: a single linked list can 

be formed out of a string with a single pointer; similarly a binary tree 

can be formed from a linked list with double pointers ••• etc. However, due 

to the triviality and length that it may involve, the detailed 

implementation phase of their associated functions will not be discussed. 
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CHAPTER SEVEN 

THE OTHER DATA STRUCTURES 

7.1 The Singly Linked-List Data Structures 

1.2 The Doubly Linked-List Data Structures 

7.3 The MultiLinked-List Data Structures 

7.4 Summary 



In Chapter Six, only small and relatively simple structures (i.e 

Strings) have been dealt with. However, the String structure has its 

serious shortcoming of being bounded, and has a maximum allocation of 

whatever number of bytes the compiler designer may decide. Although an 

array structure can often be used to collect together a number of 

individual strings, the storage allocation still remains static at compile 

time, so much so, that this has become very inflexible if the program has 

to deal with dynamic data structures which may grow and shrink at run time. 

However, for a great many applications, a suitable compromise can be found 

by employing the so called "linked-memory philosophy"[73): 

If there is~t room for the information here, let's put it 

somewhere else and plant a link to it. 

As a result, since the late fifies, a great deal of effort has gone 

into the development of dynamic memory management. In a dynamic memory 

allocation environment a data structure is a block of information with one, 

two or more pointers by which next records can be found. However, we will .. 
start with the data structures with only one pointer. 

I Data Block \-------> Next Data Block 

1 ) Dynamic Memory Management using Indirect Addressing: 

This is a very simple dynamic memory management system widely used 

by FORTRAN type programming languages for simulating pointer type 

records. It is basically a fixed size array of addresses pointing 

to the beginning of each record concerned, where a fixed length of 

address is used in the system, this is, in fact, a very convenient 

way of organizing dynamic data structures in those First 

Generation high-level programming languages such as FORTRAN. 

Nonetheless, the array still remains static. 
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----------------

~-------> 

Record Address --------- ---> 
I ----------------

Record Address -------------
----------------. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
----------------

Record Address 
----------------

I 
--------> 

---> 
I 

Record Address -------------
----------------

Head of the Record 

. . . . . . . . . . . . . . . . . . 
Head of the Record 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Head of the Record 

Head of the Record 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2 ) Dynamic Memory Management using a Linked-List: 

The Linked-List approach is a more modern way of organizing 

dynamic memory which is supported by most of the Second Generation 

programming languages such as PASCAL, c, BCPL ••• etc. A List is 

defined (recursively) as a finite sequence of zero or more 

atoms/Lists. Here, an "atom" is an undefined concept referring to 

elements from any universe of objects as may be desired, so long 

as it is posssible to distinguish an atom from a List. 

Nonetheless, in the implementation phase, Lists are o~ganized as 

ordered collections of an arbitrary number of elements which can 

be accessed by pointers. 

------------------ ------------------\ Data Block I PTR \---> : : : : \ Data Block I PTR 1---> NULL 
------------------ ------------------

The Linked-List provides a much more flexible and efficient scheme 

organising dynamic memory management for data expansion and data 

manipulation : for example, INSERT and DELETE operations are 

simplified to just altering pointers. 
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7 .1 THE SINGLY LINKED-LIST DATA STRUCTURES : 

The Singly Linked-List is sometimes referred to as a linear list[73], 

or one-way linked list[74), which is a set of N nodes whose structural 

properties essentially involve only the linear (one-dimensional) relative 

positions of the nodes. The Singly Linked-List da'ta structures, like all 

other linked-list data structures, use RECURSION for data structuring. 

List = Atom I List x List; 

In other words, a list is either an atom (defined elsewhere) or an ordered 

pair, whose first and second components are themselves lists. RECURSION is 

a structuring mechanism that can be used to defined aggregates whose size 

can grow arbitrarily and whose structure can have arbitrary complexity. As 

opposed to SEQUENCING, it allows the programmer to create arbitrary access 

paths for the selection of components. Data objects of recursive type are 

implemented by use of pointers. Each component specified as be~onging to 

the recursive type is represented by a location containing a pointer to the 

data object, rather than the data object itself. In the case of a Singly 

Linked_List Data Structure, the formal list data organization o~ BOAP is 

shown in Fig. 7.1, which includes five different parts: 

1 ) The Identifier of the List 

Similar to string identifier, list identifier is the label used by 

programmers to locate the list by name. 

2 ) The Link Name of the List 

But in the usual case, the Link Name is used instead to chain from 

one list to the other. 

3 ) The Data Objects of the List 

The is the part of the list where the actual data can be found. 

In theory, data objects may be of any size. 

4 ) The delimiter of Data Object Fields 

The delimiter # is used in the list structure to terminate the 

data object fields. 

5 ) The Pointer of the List 

This is the part where the Link Name of the next list is kept. 
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-----------------------------------------------------Ch. Spec CB Spec 
-----------------------IDR I I I I I I IDR 
-----------------------

BSU I I I I I BSU 

c c c c 
B B B B 

7 6 5 4 3 2 1 0 1 2 3 4 
List --------~--------------

TRl TR2 

Identifier-> List_Name_l Ill I I 
I -----------------------Ltnk_Name -> 1 0 0 0 0 0 0 1111 I I 

-----------------------
Record_Field_l I Ill I 
-----------------------
Record_Field_2 I Ill I 
-----------------------
Record_Field_3 I Ill I 
-----------------------Delimiter -> U I I I I 

I -----------------------
Pointer-> 1 0 0 0 0 0 1 Ol Ill I 

-----------------------
List_Name_2 Ill I I 

-----------------------
1 0 0 0 0 0 1 Olll I I 
-----------------------Record_Field_l I Ill I 
-----------------------Record_Field_2 I Ill I 
-----------------------Record_Field_3 I Ill I 
-----------------------

11 I I I I 
-----------------------
1 o o o o o 1 11 111 I 
-----------------------
List~ame_3 Ill I I 

-----------------------
1 o o o o o 1 1111 I I 
-----------------------Record_Field_l I Ill I 
-----------------------Record_Field_2 I Ill I 
-----------------------Record_Field_3 I Ill I 
-----------------------

{1 I I I I 
-----------------------Null Pointer-> 1 0 0 0 0 0 0 ot Ill I 
-----------------------

? I I I I 
-----------------------

? I l I I 
-----------------------

? I I I I 
----------------------------------------------ODR I I I I I I 
----------------------- MRR 

wsu 

-----------------------------------------------------

<-

--t 

<-

Fig. 7.1 The Data Organization of a Singly Linked-List Data Structure 
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The data organization of a Singly Linked-List only provides the 

declaration part of the data structure, and the operational part still has 

to be defined. The operations we might want to perform on a singly linked­

list are as follows: 

1 ) Gain access to the Kth node of the list to examine and/or to 

change the contents of its fields. 

2 ) Insert a new node just before the Kth node. 

3 ) Delete the Kth node. 

4 ) Combine two or more Singly Linked-Lists into a single list. 

5 ) Split a Singly Linked-List into two or more lists. 

6 ) Make a copy of a Singly Linked-List. 

7 ) Determine the number of nodes in a list. 

8 ) Sort the nodes of the list into ascending/decending order based 

on certain fields of the nodes. 

9 ) Search the list for the occurrence of a node with a particular 

value in some field. 

A computer application rarely calls for all nine of the above 

operations in the full generality, therefore, we may distingish between: 

types of Singly Linked-Lists depending on the principal operations to be• 

performed. 

1.1.1 The Stack Structure: 

A Stack is a Singly Linked-List for which all insertions and 

deletions (and usually all accesses) are made at one end of the 

list. 

BOTTOM TOP -------- --------1 Data \ \->\ Data \ \->\ Data \ \->\ Data \ \->\ Data \ \-> -------- -------- -------- -------- --------... 

Insert} Delete 
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Stacks arise quite frequently in practice, and people have given 

them a number of names: push-down list, Last-In-First-Out (LIFO) 

list, and even yo-yo list! Stacks are particularly useful for 

implementing nested structures, like procedure calls, Reverse 

Polish and recursive algorithms. 

1.1.2 The Queue Structure: 

A Queue is a Singly Linked-List for which all insertions are 

made at one end of the list; all deletions (and usually all 

accesses) are made at the other end. 

QUEUE END QUEUE FRONT -------- -------- -------- -------- --------
1 Data 1 1->1 Data 1 1->1 Data 1 1->1 Data 1 1->1 Data 1 1-> 
--------... 

1 
Insert 

1 
Delete 

Queues are sometimes called circular stores or First-In-First­

Out (FIFO) lists. With the Queue structure, data blocks are 

entered at the end of the queue and are removed when they 

ultJ.mately reach the front of the queue. 

7.1.3 The Circular List Structure: 

A circularly-linked list (Briefly : a Circular List) has the 

property that its last node links back to the first instead of 

to NULL. It is then possible to access all of the list starting 

at any given point for either insertion or deletion. 

-------------------------------------------------------------­' -------- -------- -------- -------- -------- ' ->1 Data 1 1->1 Data 1 1->1 Data 1 1->1 Data 1 1->1 Data 1 1-> 
-------- -------- -------- -------- ·--------
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In view of the circular symmetry, there is no NULL link to 

signal the end of list. Consequently, a special and 

recognizable node is put into the list, as a convenient stopping 

place. This special node is called the list head, and in 

applications, it is often found that it is quite convenient to 

insist that every circular list have exactly one node which is 

its list head. 

7.1.4 The Dynamic Array Structure: 

In the absence of special information about the expansional 

patterns of array, the static array scheme has to define the 

maximum possible storage to cater for the worst case, which 

often means inefficient memory management. The Dynamic Array 

scheme which sometimes known as the extendible array[75), offers 

a better solution by defining a one dimensional array: an open 

ended array. 

I Base I 1--->1 Data I \->1 Data I 1->1 Data I 1-> NULL 

' Insert 

Usually, insertions are done in front of the list, but, other 

conventions could always be adopted. Deletions are done more 

efficiently than in the static arrray scheme by just 

manipulating pointers. 

Apart from Stack, Queue, Circular List and Dynamic Array, there are 

many other ways in which operations on Singly-Linked Lists can be definded. 

Nevertheless, there is one common feature that each of them shares: all 

functions must only operate on the one-dimensional lists. 
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7.2 THE DOUBLY LINKED-LIST DATA STRUCTURES : 

For even greater flexibility in the manipulation of Linked-Lists, we 

can include two links in each node, pointing to the items on either side of 

that node. 

LEFT RIGHT 
---------
II DATA II--> II DATA II--> II DATA II--> I DATA I 

NULL <- <-- <-- <--

--> NULL 

----------

In the Doubly Linked-Lists, Manipulation of data items becomes much 

easier: in the Singly Linked-List, we cannot perform a deletion without 

knowing which node precedes it in the chain, since the preceding node needs 

to have its link altered when the unwanted node is deleted. However, in 

the Doubly Linked-List, data blocks are chained together with a two-way 

pointer, by which deletion or insertion can be done very easily. 

LEFT RIGHT 
----------

ll DATA ~~--)~~ DATA ~~--> l DATA ~~--> l DATA ~~--> 
NULL <- <-- <-- <--

NULL 

----------
I 

To be deleted 

NULL 

... 
I 

Deleted 

The formal Doubly Linked-List data organization on BOAP is shown in 

Fig. 7.2, which is virtually the same as the Singly Linked-List data 

structure, except the inclusion of one extra pointer field. 
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-----------------------------------------------------Ch. Spec CB Spec 
-----------------------IDR I I I I I I IDR 
-----------------------

BSU I I I I I BSU 

c c c c 
B B B B 

7 6 5 4 3 2 1 0 1 2 3 4 
List -----------------------

TRl TR2 

Identifier-> List Name 1 Ill I I 
I ------=----=-----------

tink_Name -> 1 0 0 0 0 0 0 llll I I 
-----------------------
Record_Field_l I Ill I 
-----------------------
Record_Field_2 I lll l 
-----------------------
Record_Field_3 1 Ill I 
-----------------------Delimiter -> II I l I I 

I -----------------------Left Pointer-> 1 0 0 0 0 0 1 ot Ill I 
I -----------------------Right Pointer-> 1 0 0 0 0 0 1 11 Ill I 

-----------------------
List_Name_3 Ill I I 

-----------------------
1 o o o o o 1 1111 I I 
-----------------------Record_Field_l I Ill I 
-----------------------
Record_Field_2 I Ill I 
-----------------------Record_Field_3 I Ill I 
-----------------------

11 I I I I 
-----------------------
1 o o o o 1 o ol 111 I 
-----------------------
lOOOOlOlj Ill I 
-----------------------

List_Name_2 Ill I I 
-----------------------
1 0 0 0 0 0 1 Olll I I 
-----------------------Record_Field_l I Ill I 
-----------------------Record_Field_2 I Ill I 
-----------------------Record_Field_3 I Ill I 
-----------------------

11 I I I I 
-----------------------
1 0 0 0 0 1 1 Ol Ill I 
--------~--------------
lOOOOllllllll 
-----------------------
-----------------------ODR 1 1 1 1 I I 
----------------------- MRR 

wsu 

-----------------------------------------------------

<-

<--

Fig. 7.2 The Data Organization of a Doubly Linked-List Data Structure 
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The operational parts of a Doubly Linked-List are shown as follows: 

1.2.1 The Deque Structure: 

A Deque ("double-ended queue") is a linear list for which all 

insertions and deletions (and usually all accesses) are made at 

the ends of the list. 

LEFT RIGHT 

----------
NULL <-1 I DATA I 1:=:1 I DATA I 1:=:1 I DATA I 1:=:1 I DATA I ~--> 

NULL 

----------... 

\ 
Insert/Delete InsertlDelete 

A deque is therefore more general than a Stack or a Queue; it 

has some properties in common with a deck of cards, which in a 

way can also further distinguish between output-restricted or 

input-restricted deques, in which insertions or deletions are 

allowed to take place at only one end respectively. 

7.2.2 The Ring Structure: 

If orthogonal Circular Lists are used, we have what is called a 

Ring Structure. 

I I 
-- v --------------------------------- v ----------

1 ---------- ---------- \ ->I I DATA I 1-----------------------> I I DATA I 1-
---------- ----------
1 I 

-- v --------------------------------- v ----------
1 ---------- ---------- ' ->' \ DATA ' '----------------------->I I DATA I 1-

---------- ----------\ I 
-- v --------------------------------- v ----------

1 ---------- ' ----------->1 ' DATA ' 1----------------------->1 I DATA I 1-
---------- ----------
' I -------------
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Ring Structures have proved to be quite flexible in a number of 

applications. The proper choice of representation depends, as 

always, on the type of insertions, deletions, and traversals 

that are needed in the algorithms that manipulate these 

structures. For instance, in the representation of sparse 

matrices (matrices of large order in which most of the elements 

are zero), the goal is to operate on these matrices as though 

the entire matrix were present, but ignore the zero entries in 

order to save memory. For example, the matrix 

a 
0 
0 

0 
b 
0 

0 
0 
c 

~-------------~ I ~-----~ 
-------------------------------------------------------> l 

ROW COL V 

l
llllal -----------<------ LEFT I DOWN <-----------------------------------

\ --------,-- \ \ \ 

--------------------------------,---------------------\->\ 
ROW COL V 
-----------

<----------------------lLiF~T-~~~1<-------------------I I ----------- I I 

~-~------------~-------------~------~~~i~~----1->1 
<-------------------------------------ILEFT I DOWNI<----I _____________ t I ------~ I 

v ----
-------------------------
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7.2.3 The Binary Tree Structure: 

Tree structures have been the object of extensive mathematical 

investigations for many years, long before the advent of 

computers, and many interesting facts have been discovered about 

them. Generally speaking, tree structure means a"branching" 

relationship between nodes, much like that found in the trees of 

nature. Let us define a tree formally as a finite set T of one 

or more nodes such that 

A ) There is one specially designated node called the root of 

the tree. 

B ) The remaining nodes (excluding the root) are partitioned 

into m L 0 disjoint sets Tp•••• Tm, and each of these sets 

in turn is a subtree of the root. 

The simplest form of tree structure is a Binary Tree, which is 

an important type of tree, in the sense that a Binary Tree is 

not a special case of an ordinary tree, but it is another 

concept entirely (although we will see many relations between 

ordinary tree and Binary Tree). For example, conventionally, 

general trees are conveniently representable as Binary Trees, 

many trees that arise in applications are themselves inherently 

binary. A Binary Tree is defined as a finite set of nodes that 

is either empty, or consists of a root together with two binary 

trees. This definition suggests a natural way to represent 

binary tree with a Doubly Linked-List structure. 

--\ \ DATA \ \--' ---------- l 
v v 

- \ ' DATA \ 1- -I I DATA I 1-
\ ---------- \ \ ---------- \ 
v v v v 
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This simple and natural memory representation accounts for the 

special importance of Binary Tree structure, by which any Binary 

Tree can be contructed with the recursive data structure. There 

are many algorithms for the manipulation of Binary Tree 

structures, and one idea that occurs repeatedly in these 

algorithms is the notion of traversing or "walking through" a 

tree. A complete traversal of the tree gives us a sequence of 

movements of the nodes. Three principal ways may be used to 

traverse a Binary Tree: 

1 ) The Preorder Traversal 

Visit the root 

Traverse the left subtree 

Traverse the right subtree 

2 ) The lnorder Traversal 

Traverse the left subtree 

Visit the root 

Traverse the right subtree 

3 ) The Postorder Traversal 

Traverse the left subtree 

Traverse the right subtree 

Visit the root 

These three ways of arranging the nodes of a Binary Tree into a 

sequence are extremely important, as they are intimately 

connected with most of the computer methods dealing with trees. 

In many applications of Binary Tree, there is more symmetry 

between the meanings of the left subtrees and right subtrees, 

and in such cases, the Inorder is used, which puts the root in 

the middle, is essentially symmetric between left and right. 

There is an important alternative representation of Binary Tree 

to replace the NULL links (to terminal links) by "threads" to 

other parts of the tree, as an aid to traversing the tree. 
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List Head <-

-----> 
------- I 

-I I I 1---
l -------
v 

I 
I / _,-r~-,-,_ '- \ 

II II ------- ', \ 

1 I \ \ I \ I v v \ 
------- I I ------- \ 

/ -1 I B I l- I -1 l c I l- \ 
I I ------- I I ------- \ \ 

I I A I I A \ \ 

I __ _!___ I 1

1 
---~--! I ---~--- ',, 

-l_l_~_l_l-- -1_!_:_!_1-- 1-l_l_:_!_l-, ', 
I AA I \ 

\ ---~--- \\ ---~--- ', 
---1 I G I 1- -\ I H I 1-

The great advantage of threaded trees is that the traversal 

algorithms become simpler. So a threaded Binary Tree is 

decidedly superior to an unthreaded one, with respect to 

traversal. However, these advantages are sometimes offset by 

the slightly increased time needed to insert and delete nodes in 

a threaded tree. 

7.2.4 The Binary Tree Representation of Ordinary Tree Structure: 

The problem in implementing ordinary trees is the nodes may have 

a different number of children and the maximum number of 

children may be much larger than the minimum or may be unknown 

prior to the generation of the tree. One solution to this 

problem is to use a dynamic tree structure implemented by Binary 

Tree, in which the left pointer points to its first (leftmost) 

son, and the right pointer points to its brothers in the same 

generation. 

--1 I DATA I \---> Brother 
I ------------
1 v 

Son 
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\ A \ ---
\ 

-----------------------------

-l B I 
I ---

/ \ 
---

1 F \ \ G \ 

\ c I 

\ H \ 

I D \ -\ F \-
1 --- \ 

/ \ ', --- ---
\I\ \J\ \K\ 

For example, the above ordinary tree could be mapped into a form 

of Binary Tree as shown in the following. 

--l l A l l 
-I -------

\ v 

--I l B l 1----> I l c ' 1----> I l D l 1----> l l F I l 
I ------- I ------- ------- I -------
\ l_l I I 
v v v ------- -------

\ \ F \ \->\ \ G \ \ \ l H \ \ \ \ I \ \->\ \ J \ \->\ \ K \ \ -------

With this method of dynamic tree structuring, all types of 

ordinary trees could be implemented by Binary Tree. 

7.2.5 The Binary Tree Representation of Forest Structure: 

A Forest is a set (usually an ordered set) of zero or more 

disjoint trees, or in other words, the nodes of a tree 

excluding the root'form a Forest. There is a natural way to 

represent any forest as a Binary Tree. Consider the following 

Forest of two trees: 
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I A I 
I 

I 

I B I 

\ 
\ 

I c l 

' I K I 

-1 D \-
1 --- \ 

/ \ ', --- ---
IE\ \F\ \G\ 

I I 
I H I I J I 

The corresponding Binary Tree representation is obtained by 

linking the roots(fathers) of each family, and removing all 

vertical links except from a father to his son: 

I A 1-------------------->1 D I --- <-- <---- --- <---------------1 \ \ I \ 
v ----- v \ --- \ 

I B 1---> I c 1--
--> --- <-

1 I I 
\ -~-
------------1 K \--

\ --- --- --- I 

I '-T-~<=-1>'-T-~<=~>',~-~--~-'-~ -~-~-, 
---\ H \- -\ J 1-

The above transformation gives the natural correspondence 

between Forests and Binary Trees. Note that right thread links 

go from the rightmost son of a family to the father. The ideas 

about traversal expressed in the previous section can be recast 

in terms of Forests. However, there is no simple analog of the 

"Inorder" sequence, since there is no obvious place to insert a 

root among its descendants; but "Preorder" and "Postorder" carry 

over in an obvious manner. Given any nonempty Forest, the two 

basic ways to traverse it may be defined as follows: 
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1 ) The Preorder Traversal 

Visit the root of the first tree; 

traverse the subtrees of the first tree (in Preorder); 

traverse the remaining tress (in Preorder). 

2 ) The Postorder Traversal 

Traverse the subtrees of the first tree (in Postorder); 

visit the root of the first tree; 

traverse the remaining tress (in Postorder). 

One of the most important application of Forest is the 

implementation of Set structures. Sets differ from Trees in 

that the members of a Set must be distinct, a condition not 

necessarily imposed on Tree structures. .For example, in a 

special case of a nested set, which is a collection of sets in 

which any pair of sets is either disjoint or one contains the 

other: 

( A ( B (H) (J) )( C (D) ( E (G) ) (F) ) ) 

----------------------------------------------------

\ H \ \ J \ \D\ C \F\ 

A 

I B 
E 

------------------
----------------------------------------------------
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7.2.6 The Connected Graph Structure: 

Intuitively, a Graph is a data structure used to represent 

relationships among objects. It is generally defined to be a 

set of points (called vertices) together with a set of lines 

(called edges) joining certain pairs of distinct v~rtices. 

There is at most one edge joining any pair of vertices, and two 

vertices are called adjacent if there is an edge joining them. 

By this definition, it is obvious that trees, in general, 

belong to a class of Graph structures with hierarchical 

relationships among items of data, which are sometimes referred 

to as connected Graphs without cycles. 

A graph is connected if there is path between any vertices of 

the graph. Therefore, Circular List and Ring structures can 

both be considered as connected graphs. However, there is a 

good deal more significance if the direction of each edge is 

taken into account in the interpretation of a graph, and in this 

case we have what is called a "direct graph" or "digraph". The 

main feature of a direct graph from the modelling standpoint is 

that it indicates precedence constraints. If two nodes X and Y 

are linked by an arc from X toY that this implies an activity 

to happen at node X must precede those of node Y. This 

constraint can be extended to be related to time, for example 

when X and Y are the Fetch and Execute sequences of the Control­

Flow architecture. This key idea has found numerous 

applications in computer science, such as task scheduling, 

Semaphore, state graph diagram, program flowcharts, ••• etc. 

However, it is not the purpose of this section to review them 

all exhaustively, instead we will concentrate on the Linked-List 

representation of Graphs. This is done by providing for each 

vertex two "vertex-edge lists" of its adjacent vertices: one for 

in-pointing edges, the other for out-pointing edges. 
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__ , 1 , __ 

I --- \ 
I ... \ 

-~- I -~-<-\ 2 l<- ____ , 3 , __ 

~ --- \ --- ~ 
\ - I 
\ \ I \ I 

\ I 
--->1 4 \---> 

For instance, the above graph can be represented in the 

following Doubly Linked-List. 

In-Pointing Edges <--\ Node \--> Out-Pointing Edges 
Directory 

l ' 3 ' \--> ' 1 ' --> ' ' 2 ' ' --> ' ' 3 ' l 
----~--

l \ 4 l \ --> ' ' 1 ' ' --> ' 2 ' --> ' ' 4 ' ' 

l l 4 I 1--> \ l 1 l l --> l 3 l -->I I 1 \ \ 

' ' 2 ' '--> ' 4 ' -->' ' 2 ' '-->' ' 3 ' ' 

As a matter of fact, this Doubly Linked-List representation is 

the mapping of Graph Connectivity Matrix[76]. 

1 2 3 4 

1 Out Both 

2 In Both 

3 Both In 

4 Both Out 
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7.3 THE MULTILINKED-LIST DATA STRUCTURES : 

A Multilinked-List data structure involves nodes with several linked 

fields in each node, not one or two as in most of our previous examples. 

-----------------------------------------------------Ch. Spec CB Spec 
-----------------------!DR I I I I I I IDR 
------------------------------BSU I I I I I BSU -------

c c c c 
B B B B 

7 6 5 4 3 2 1 0 1 2 3 4 
List -----------------------Identifier-) List Name 1 Ill I I 

I -----------------------Link Name-> 1 0 0 0 0 0 0 1{1( I I 
-----------------------
Record_Field_l I Ill I 
-----------------------
Record_Field_2 I Ill I 
-----------------------Record_Field_3 I Ill I 
-----------------------

11 I I , I I Delimiter -> 
I -----------------------

1st Poilter -> :-~-~-~-~-~-:-~!_!:!_!_ 
2nd Pointer-> 1 0 0 0 0 0 1 11 1~1 I 

I -----------------------Jrd Pointer-> 1 0 0 0 0 1 0 01 1{1 I 
--11;~-N~~~-4--Iil"l_l_ 
-----------------------
1 0 0 0 0 1 0 Olll I I 
-----------------------
Record_Field_l I Ill I 
-----------------------
Record_Field_2 I Ill I 
-----------------------
Record_Field_3 I Ill 1 
-----------------------

11 I I I I 
-----------------------
1 o o o o 1 o 11 111 1 
-----------------------
lOOOOllOIIlll 
-----------------------
1000011111111 
-----------------------

List_Name_3 Ill I I 
-----------------------
1 o o o o o 1 1111 1 1 
-----------------------

TRl TR2 

-----------------------
ODR I I I 1 1 I MRR 

-----------------------

wsu 

-----------------------------------------------------

--> 

<-

<--

Fig. 7.3 The Data Organization of a Triply Linked-List Data Structure 
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Theoretically speaking, the number of pointers in the Multilinked-List 

structures can be increased to as many as desired. Nevertheless, in view 

of the implementation of most of the known data structures, they can all be 

accomplished by two pointer Doubly Linked-Lists. Because of its 

associative properties, all pointers on BOAP are implemented as 

bidirectional pointers, instead of unidirectional, as in conventional 

implementations. Hence, some of the Doubly Linked-List data structures 

previously discussed could in fact be implemented in Singly Linked-List on 

BOAP, i.e. Deque could be implemented in a Singly Linked-List shown as 

follows: 

LEFT RIGHT 
----------

NULL <--1 I DATA I 1<->1 DATA I 1<->1 I DATA I 1<->1 I DATA I 1--> NULL 

----------
_!"-_______ _ 

The following Associative Computation Cycle shows how a "father" 
t 

link can be traced when necessary. 
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S[lXXXXXXX XlXl]BMR 
GRS[ lXXXXXXX lXXX} 
RSGSD(U) 
R( lOlO)BRN 

+1 ,+2 , 
, 
, 

@NEXT ; 

SEARCH FOR PTR 
SEARCH FOR FATHER 
ACTIVATE FATHER PTR 
MARK. FATHER PTR 

-----------------------------------------------------Ch. Spec CB Spec 
-----------------------IDR I Ill 0 Ill 0 I IDR 
-----------------------

BSU I I I I I BSU 

c c c c 
B B B B 

7 6 5 4 3 2 1 0 1 2 3 4 
List -----------------------

TRl TR2 

Identifier-> List_Name_l Ill I I 
I -----------------------Link Name-> l 0 0 0 0 0 0 1111 Ill 1 

-----------------------Record_Field_l I Ill I 
-----------------------
Record_Field_2 I Ill I 
-----------------------Record_Field_3 I Ill I 
-----------------------Delimiter -> U I I I I 

I -----------------------Pointer-> 1 0 0 0 0 0 1 Ol Ill 11 1 
-----------------------

List_Name_2 Ill I I 
-----------------------
1 0 0 0 0 0 1 Olll I I 
----------------------- 1 

Record Field 1 I Ill I 
-----------------------Record_Field_2 I Ill I 
-----------------------Record_Field_3 I Ill I 
-----------------------

0 I I I I 
-----------------------
1000001111111 
----------------------- 1 

List_Name_3 Ill I I 
-----------------------lOOOOOlllllll 
-----------------------Record Field_l I Ill I 
-----------------------Record Field 2 I Ill I 
-----------------------Record_Field_3 I Ill I 
-----------------------

' I 1 1 1 Delimiter -> 

' Pointer-> 1 0 0 0 0 0 0 01 111 l -----------------------
-----------------------

ODR I -----------------------
-----------------------111lllliMRR 

wsu 

* 

-----------------------------------------------------
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7.4 SUMMARY: 

Data type encapsulation is now a widely accepted method of program 

development and structuring[66,78,79]. Indeed, it is one of our chief 

programming paradigms[80]: 

one is encouraged to write programs as algorithms operating on 

abstract data types, then gradually refine the data 

representation, applying this method recursively, until a 

concrete representation is found[68]. 

At each stage, the abstract data being operat~d upon present themselves as 

the objects of certain operations, which may be observed to behave in 

particular ways but whose precise internal structure is hidden. 

In this chapter, models of data structures have been developed based on 

linked-list structures, which in effect, create a mapping between abstract 

data types and the memory organization of BOAP. Briefly, every data type 

has a structure after refinement and all typed variables have a structure 

·corresponding to that type. Nevertheless, we have not yet mentioned 

anything about the relational operations to be performed on these data 

structures, and how data items communicate with each other1 It is well 

known that the concept and the use of relations are very important in data 

structures[4,81,82,83], so much so that, one can approach various data in a 

unified way via relations[77]. This unified approach seems especially 

attractive when data to be handled are diverse and heterogeneous[84]. 

1 ) UNION( Rl'R2, •••, Rk) 

2 ) INDEXED_UNION(I) : UNION( RELATION(!) ) 

3 ) INTERSECTION(R1 ,R2 , ••• , ~) 

4 ) INDEXED_INTERSECTION(I) : INTERSECTION( RELATION(!) ) 

5 ) SYMMETRIC_DIFFERENCE(R1 ,R2) : exclusive OR operation 

6 ) RELATIVE COMPLEMENT : Rl - R2 
7 ) COMPLEMENT : R 

8 ) CARTESIAN PRODUCT(S1 , s2) 
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9 ) INVERSE : R- 1 

10 ) CARDINALITY(S) : the number of members in the set S 

11 ) PROJECTION(L,R) : projection of R by L 

12 ) PERMUTATION(A,B) : permutation of B by A 

13 ) RANK(R) : rank of R 

14) RELATION(E1 , E2, ••• , E k) 

15 ) SUBSET(A,B) : true if A is a subset of B, false otherwise 

16 ) EQUAL(A,B) : true if A= b, false otherwise 

17) EQUIVALENT(A,B) true if \A\= \B\, false otherwise 

18 ) DISJOINT(A,B) : true if UNION(A,B) = 0, false otherwise 

The relational data structure described above is general enough to 

handle operations of String, List, Tree, Set, Graph and all other data 

structures that we have discussed in this chapter. In BOAP, relations 

between data items are established by first searching for the data 

concerned, examining the Data Fields and/or Pointer Fields for the 

identities of data items, before building a relationship between them by 

means of marking Control Bits (communication links). There are many of 

these examples in Chapter Six's algorithms: the String UNION algorithm to 

form a union of set, the String ANY algorithm to check for set membership. 

Finally, the point that we want to make here is that, the material 

which we present so far is not just '~et another way of implementing data 

s true tures", but in contrast, it is an expedition to a better and more 

efficient way of organizing; representing; accessing and manipulating data, 

so much so that the burden of searching and sorting [ 85], which has been 

predominating the field of data structuring for so long, can be eliminated. 
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CHAPTER EIGHT 

CONCLUSION 



Having contructed the Distributed Computer System, we now have a 

string processor, a list processor, a tree processor, a set and a graph 

processor within the computer system, to oversee the implementation of data 

structures and mathematical dictions. 

----------- ----------- ----------- ----------- -----------
\ 

String l l List l l Tree l l Graph l l Set l Processor Processor Processor Processor Processor 

----------- ----------- ----------- ----------- -----------
I \ I \ I \ I \ I \ 

,I 17 ,I 17 ,I 17 ,I 17 ,I 17 
----------------------------------------------------------------------

INTERCONNECTION NETWORK 

----------------------------------------------------------------------

1 
HOST 1 

Processor 

Fig. 8.1 The Model of the Distributed Computer System 

In this transformation, the burden of program coding, the size and 

overhead of the compilation/interpretation process have been greatly 

reduced. Hence, the machine has now not only been equipped with various 

useful data structures and powerful mathematical dictions at the HLL level, 

but is actually running much more quickly and efficiently with a smaller. 

compiler/interpreter at the system translation level, and the wishful 

thinking of Rex Rice[86,87] can now really come true. The Rice's Symbol 

IIRcomputer architecture was proposed in 1966 at Fairchild's research 

facility in Palo Alto, California, as a "blue print" to build a HLL 

machine. Although this machine was built and delivered to Iowa State 

University in 1971, the termination of funding and the hardware failures 

have forced it to be permanently decommissioned in 1978. Nevertheless, it 

had taught us a great deal about building HLL machines. Summing up the 
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experience of the Symbol computer, and with the aids of present VLSI 

technology, we could now build a even more powerful machine based on the 

model of our Distributed Computer System. 

Specification 

,117 
"V11 HLL Program 

-------------------------------"V11 HLL Image Machine 
-------------------------------

-----------------------
\ \ 

Moderately Simple \ \ 
Compilation 

------------------------------------------------------

,117 
Image Program 

--------------------------------------Image Machine 
--------------------------------------

\ \ 
Moderately Simple \ \ 

Interpretation/Emulation 
--------------------------------------------------------------------

I Distributed Computer System l 

With the Distributed Computer System (DCS), we bring together two very 

distinct processors, each performs what it is best capable of doing: The 

Von Neumann machine (SISD processor) for SISD operations, and the BOAP 

(SIMD processor) for SIMD operations. Nevertheless, this level of 
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specialization could be further extended, by bringing in more special 

purpose processors into the DCS. 

---------------- -------------

1 

Byte-Organized I I Distributed 
Associative Array 

Processor Processor I Systolic I ----------- -----------
Array Data-Flow Reduction 

Processor I Processor \ I Processor I 
---------------- -------------

I \ I \ I \ I \ I \ 

-------------------------------------------------------------------------
DISTRIBUTED LOCAL COMPUTER NETWORK 

-------------------------------------------------------------------------
I \ 

--------------

I Conventional I 
Von Neumann 

Processor 
--------------

I \ 

Carry I Look 
Ahead 
Adder· 

I \ 

Serial­
Parallel 

Multiplier/ 
Divider 

I \ 

I Floating I 
Point 

Processor 

I 

R 
0 
M 

Fig. 8.2 The Extended Distributed Computer System 

\ I 

A 
L 
u 

\ 

In this extended DCS, the Von Neumann processor is still remains the 

Host of the system, to oversee the program sequencing, scheduling, task 

allocation, I/O control and system reconfiguration[88,89], and as many 

special purpose SISD processors as necessary are integrated into the system 

for implementations of arithmeic and logic operations: the carry-look-ahead 

adder[90}, the serial-parallel multiplier/divider[91] and the floating­

point processor[92] for arithmetic processings; the look-up-table in 

ROM[91] for trigonometric functions; the single chip ALU[90] for logic 

operations. On the other hand, the byte-organized associative processor 

(BOAP) is used here to facilitate all SIMD non-numerical processing, and 

the ICL Distributed Array Processor[93], or Kung's Systolic Array[94] type 

of hardwares are used for implementation of those SIMD "number crunching" 

operations such as matrix operations, radar image processing, FFT and 

signal processing etc. Data-flow[46-54 ,95] and reduction[SS-60] types of 
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MIMD processors can also be included for the implementation of mathematical 

expressions and recursive operations respectively. All processors are 

connected together via the interconnection network[ 39-45,96-99], which 

provides data (and control) communications between the various processors. 

so what is the next step forward after this extended Distributed 

Computer System? Apart from the consolidation and expansion of the 

existing system, we think that it is perhaps the time to start thinking 

about a more higher level machine on which natural languages could be used 

to program the machine. For many years, Jean Sammet[100] has been 

preaching the virtues of allowing ordinary individuals to communicate with 

a computer in their own natural language (which is simply meant to be the 

language native to the group that using it, e.g., English, French, German, 

and which also contains scientific notation wherever it is appropriate). 

One of the primary advantages of this concept is to make it easier for any 

non-computer minded person to communicate with a computer to get his/her 

task done. 

Work on natural languages has been at the center of A. I. research 

into the ways in wldch concepts can be represented and cognitive processes 

organized. Since language is vital to our thought, any theories concerning 

memory or reasoning are strongly ·intertwined with the attempt to understand 

how language works. It is believed that a deep understanding of the 

context is vital to all uses of .language. Applied to machine translation, 

this means that before one can translate material about a subject, one must 

first have a program that "understands" the subject. However, in writing a 

program for understanding natural languages, one is faced with all the 

problems of artificial intelligence, problems of coping with huge amounts 

of knowledge, problems of finding ways to represent and describe complex 

cognitive structures, as well as problem of finding an appropriate 

structure in a gigantic space of possibilities. Among the areas in which 

research on the application of natural language understanding systems[101] 

is currently active are machine translation[102], information retrieval 

[103,104), and interactive interfaces to computer systems[l05,106,107]. 
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Like all the other programming languages, natural language would have 

to go through a translation process, similar to the compilation/ 

interpretation process of the HLLs, except that it would have to be 

strictly interpretive: 

1) Lexical Analysis 

2) Syntax Analysis 

3) Semantic Analysis 

4) Pragmatics Analysis 

5) Code Generation 

In the Syntax Analysis, the parsing problem consists of finding the 

structure of an input string, based on a given grammar. This is a common 

problem on the analysis of natural language and HLLs. Whereas the 

designers of HLLs hope to aviod ambiguity, the designers of natural 

languages must accept it. The grammatical component used most is a 

context-free grammar augmented by conditions, constraints, restriction, or 

transformations, and the result is determined by how the context-free 

system is augmented[l08): 

A parse tree is produced according to a formal grammar expressed 

as an Augmented Transition Network (ATN). The ATN, which is a 

general representation of a phrase-structure grammar, retains 

some of the simplicity of a finite-state machine but is extended 

to context-free power by allowing recursion. It is further 

enhanced by allowing the use of registers, arbitrary conditions 

and actions. Parsers for ATN grammars can incorporate advances 

made in the general theory of context-free parsing. 

On the whole, semantics interpretation has had the greatest impact of 

understanding on natural language. In order to represent the meaning of 

words and sentences, it is necessary to have a formalism for representing 

facts, concepts, and ideas. Work in the semantics of natural language has 

followed two general lines: using formal logic and developing new 
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representations. Several standard techniques exist for representing 

knowledge in natural language systems, namely, semantic networks[109,110], 

procedural semantics[l08], and frames[lll]. Based on these systematic set 

of representations, problem-solving and reasoning could then proceed by 

means of formal logic. In all these systems the existence of prototype 

frames makes possible the use of "expectations" in analysis. When an 

ambiguous or underspecified phrase or sentence occurs, it can be compared 

with a description of what would be expected, based on the prototype; if 

there is a plausible fit to the expectation, assumptions can be made as to 

what was meant. Researchers are currently involved in developing tools to 

cope with the complexities of these data structures and control--"VHLL" 

programming constructs. This would enable programmers to concentrate on 

the complexities more closely connected to the structure of language and 

thought, rather than the details of programming constructs. 

Pragmatics is the study of the use of language in context which some 

people refer to as "common-sense". For example, when you talk to someone, 

you have a prior understanding that you and he/she have much in common. 

You share a large· body of what might be called common-sense knowledge of 

the human world--physical objects, events, thoughts, motivations. In 

asking a question, stating a desire, or giving information, you include 

just enough detail for the other person to be able to understand what you 

are saying. Moreover, information about the communication itself, as well 

as its context in a conversation, are vital to understanding of what is 

being said. These is the subjects of fuzzy logic and inexact reasoning. 

Anyway, this aspect of language is one that is just beginning to be dealt 

with in current systems. Although most large systems in the past had 

specialized ways of dealing with a subset of pragmatic problems, there is 

as yet no theoretical approach. However, as people look to interactive 

system for teaching and explanation, it seems likely that this will be the 

major focus of research in the 1980s. 

Summing-up the above disscussion on natural language, it has become 

apparent that "problem solving" is the key issue in the natural language 

processing. By problem solving, we mean a large corpus of basic ideas 
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having to do with the pocesses of deduction, inference, planning, "commom 

sense" reasoning, and theorem-proving, ideas that have been applied in 

programs for understanding natural languages, information retrieval, 

automatic programmming, robotics, scene analysis, game-playing, and 

mathematical theorem-proving. Here we examine some ideas concerning 

problem solving. 

The problem solver has two requirements that are logically 

indepentent. One defines the allowable configurations for the class of 

problem (representation), while the other defines the solution for a 

problem of that class (reasoning). Problem-solving methods are 

characterized by searching through a state, or situation space or through a 

space of alternatives. A solution of a sequence of state transitions from 

an initial state or states given in the problem specification, to a final, 

or goal state. A solution sequence is any succession of states such that 

the transition is consistent with the problem specification and the 

operators provided by the method. The term search emphasizes the 

teleological nature of the solution sequence; it need not involve much 

trial-and-error seaching, although some searching is as inevitable in 

machine problem-solving as in human problem-solving. 

Research in natural languages is usually conducted by building large­

scale systems, by intensively studying subproblems and algorithms, and by 

formally analyzing these systems. The state of the art is exemplified by 

the large-scale systems. These systems have become the c~ntext for 

developing and exploring algorithms, as well as for additional research. 

In them are evident the subproblems of designing representations of 

knowleuge, developing organized bodies of linguistic knowledge, and 

designing algorithms for processing natural languages. By formally 

analyzing mathematical models of natural languages, it will become possible 

to study the power of and limitations on various approaches. Therefore, it 

is apparent that in such a system, it needs not only a knowledge of the 

structure of the language, but a body of "world knowledge" about the domain 

discussed in the language. Thus a comprehensive, language understanding 
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system presupposes an extensive reasoning system, one with a base of 

commom-sense and domain-specific knowledge. 

Natural Languages 

-----------------------------------------Natural Language Image Machine 
(Expert System) 

-----------------------------------------

l 

I Compilation I l 
----------------------------

Knowledge Base Mechanism 

-----------------------------------------

\J 17 
Image Program 

Image Machine 

------------~-----------------

\ \ 
Moderately Simple 1 1 

Interpretation/Emulation 

--------------------------------------

I Extended Distributed Computer System I 

In the fall of 1981, Japan had called a international conference on 

Fifth Generation Computer Systems [ 112], which has sent a great pulse of 

excitement across the whole computing community. These "fifth generation" 

plans are centred on knowledge-based systems, which embody the specialised 

knowledge and experience of a human expert, so much so that one could 

simply "talk" to the machines to tell them what to do. Although a lot of 

ideas presented in the conference are not new to us; some of them could 
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even be traced back a few decades ago, the whole world was impressed by the 

determination and the schedule for the realisation of this radical plans: 

it was reported that the Japan's Ministry of International Trade and 

Industry (MITI) had set up a institute for new generation computer 

technology, and would be spending 20 million pounds over the first three 

years on the project. Together with government contributions later in the 

programme, and with those from big companies such as Fujitsu, Hitachi and 

NEC, the total outlay over 10 years could amount to between 500 million and 

1000 million pounds. But, it is not just the funding that is impressive, 

in the two years leading to the conference, the Japanese had spent 100 man­

years in identifying their research priorities--before setting out this ten 

year programme, which set targets for key technology and software advances, 

merging hardware and software to an unprecedented degree. Since the plan 

was published and discussed in the FGCS conference at Tokyo in October, 

1981, Western governments and industry have been taking this programme very 

seriously. 

Semantically, the "Fifth Generation Computer System" (FGCS) is a very 

misleading term as the aim of the programme is to produce a radically new 

family of the computers (A. I. machines) of the 1990s. But, in our 

opinion, the A. I. machine will not be the only type of machine in the next 

generation of computer systems, other new generation systems such as 

weather forecasting machines, air traffic control systems, VLSI development 

tools ••• etc may themselves not be related to A. I., yet could be 

classified under the fifth generation computer system. Traditionally, the 

term "generation" is used to describe the advance of computer 

technology[l13]. As stated by Bell and Newell, "The generations are best 

definded solely in terms of logic technology"[l14]: 

1) The First Generation is that of vacuum tubes (1945 - 58) 

2) The Second Generation is that of transistors (1958 - 66) 

3) The Third Generation is that of res (1966 - 72) 
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4) The Fourth Generation is that of LSI circuits (197~- 82) 

The LSI circuitry is a integrated subsystem on a 

chip[28}. The Intel 4004 chip set was the first 

commercially available microprocessor that marked the 

beginning of the Fourth Generation computers[115]. 

S) The Fifth Generation is that of VLSI circuits (1982 - ?) 

The VLSI is a complete digital system on a chip[116]. 

Therefore, we think that it may be more appropriate to refer to the 

Japanese FGCS as expert systems. Nevertheless, we do agree that A. I. 

would be the dominant force of the next generation of computer systems. 

Basically, the areas of research and development targeted in the 

Japanese FGCS are as follows: 

1) The Hardware Level 

The "System SG" is proposed--a VLSI CAD system, on which any design 

from basic VLSl architecture to mask pattern in a uniform manner 

can be performed[117]. The personal logic p~ogramming station with 

LISP and PROLOG will be served as the standard inference terminal 

in the System SG. 

2) The Architecture Level : 

Since the FGCS are designed as Knowledge Information Processing 

System (KIPS) which realize a very high level and flexible man­

machine interface based on generalized or special~zed knowledge 

data, abstract data type, relational algebra, and database support 

mechanisms, have to be integrated into the systems [ 118-121]. In 

these respects, the Japanese had concluded that the data-flow 

machine and database machines are the most promising candidates for 

the basic architecture of the KIPS[122]. 
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3) The HLL Level : 

The Japanese had adopted PROLOG as the starting point [123-128] and 

working towards the definition of the SG-Kernel Language[129], or 

·~ core languag~' for short, to serve as a nucleus of the software 

systems and a fundemental specification for the architecture of 

FGCS[ 119]. This proposed language will be a type of logic 

programming language designed on the basis of a simple inference 

like a syllogism in logic. It is expected to incorporate the 

capability to specify parallel processing and to express more 

advanced functions perta~ning to knowledge or meta-inference 

mechanisms. 

4) The Natural Language Level : 

The expectation for the FGCS is as Karaisu has statedl130]: 

"••• non pro~essional without training can handle the 

new machines. 

position." 

This must be placed at the first 

With this requiDement, natural language processing, speech 

processing, and image processing are three fundamental categories 

of research into intelligent man-machine interfaces[131]. 

5) The Expert System Level : 

The expert systems are the final goal of the FGCS plan, all points 

mentioned so far are the foundation lain down for the ultimate 

building of 'expert systems. Hence, the heart of the FGCS project 

is to develop ~ methodology for building knowledge information 

processing systems which will provide people with the intelligent 

agents[l32,133]--field of A. I. currently starting to yield 

significant commercial results in expert systems. 
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The Japanese FGCS plan is divided into three stages and at the end of 

each stage there appears to be a short term marketing opportunity to 

develop products. For example, the first stage examines mechanisms of 

inference machines, including the use of data-flow machines for symbol 

processing; the second stage aims to build a sequential inference machine, 

at the end of which the machine would be integrated with a knowledge base 

machine; the third and final stage would build an integrated prototype of 

an expert system. In this plan, the Japanese has certainly presented to 

the world their views of FGCS, but the author does not think that they have 

taken the right approach for the realisation of their program. Our 

criticisms are as follows: 

1) The First Stage of the FGCS Plan 

By analysing the five different level of activities, it has become 

apparent that interrelations do exist between them: on the one 

hand; the FGCS Architecture has to be equipped with facilities to 

support HLL and expert systems, yet, on the other hand, the 

specification of program~ing contructs are difficult to establish 

without a host machine fo-r natural language and expert systems to 

develop ideas. 

Expert Systems 

Natural Languages 

HLL 

l FGCS Architecture I 

However, we have concluded that the host machine of FGCS has to be 

designed and built in the first stage of the program. In other 

words, the architecture and HLL are the two levels of activities 
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that ought to be dealt with first before all other activities. 

Using the top down approach, it is not difficult to estabish the 

programming constructs needed to support the processing of natural 

languages and expert systems. This information could then be used 

as a guidance to draw up the specifications for the architecture 

and HLL of the host machine. In this respect, we think that the 

Japanese have made a very serious mistake, by wrongly identifying 

the data-flow machine (a MIMD machine) as the solution for symbol 

processing, abstract data types, relational algebra, and data base 

support mechanisms, which are mostly of SIMD type architecture. 

Undoubtedly, the data-flow type MIMD machines will be needed in 

FGCS for the processing of arithmetic expressions and 

implementation of multi-tasking type operations, but it is 

certainly not the answer to SIMD type programming constructs. In 

our opinion, the Extended Distributed Computer System, with its 

undisputable capability botp as the symbol processing and database 

machines, is a more promising candidate for the first stage of a 

FGCS program. This point is also supported by Edward 

Feigenbaum[l34], who in ~is statement in the Tokyo conference 

pointed out that the fifth• generation computer systems would be 

primarily symbolic manipulation systems. 

Pattern Directed Structures 
Aggregate Operators 

-----------------------------
\ 

The Extended l 
Distributed Computer System 

-----------------------------Associative Referencing 
Nondeterministic Programming 

-----------------------------------

Futhermore, although PROLOG is a very powerful database and A. I. 

language, it is still far from being as a "universal programming 

language", therefore, if the Jananese proceed with PROLOG as a 

standard of their "FGCS", substantial improvement will have to be 

added onto the language before it could be the standard language of 
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the FGCS. It may be better to accept a more popular and well-

defined language, such as PASCAL or C, as a starting point, and 

enhance it with the "VHLL" programming constructs [ 135). However, 

it is essential to adopt an extensible modular aproach[l36) towards 

the language design of FGCS, by firstly designing the core language 

and a set of well-known data structures as the standard language of 

the first stage of the program, and any enhancement in the later 

stages will then just be an extension of this standard language. 

In other words, the new architecture in the later stages should 

provide for the upward compatibility that programma written in the 

standard language should run on these new machines with minimum 

changes. 

2) The Second Stage of FGCS Plan: 

Having constructed the FGCS host machine (Extended DCS), the micro­

electronic engineers, the A. I. s~ientists, the linguists, and the 

database experts can then move on the host machine to develop the 

System 5G, question answering sytems, natual language translating 

machines, and data base machines. · 
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3) The Third Stage of FGCS Plan: 

This is the final integration stage, in which all different parts 

of FGCS subsystems are connected together onto an interconnection 

network to form a expert system--the Japanese FGCS. (Phil 

Treleaven's analysis[l37] has stated that the FGCS will represent a 

unification of research into VLSI processors and into distributed 

processing which will allow replicated general-purpose computing 

elements, as well as special-purpose computing elements, to be 

integrated into a network.) 

Command language Program 

----------------------------------------
\ Knowledge Base & Inference System I 
\ /A 

c I s 
0 \ Relational Data Base I s 

_I\ m ---------------------------- e /I Assembly 
HLL Program p The FGCS Host Machine I m -Language 

-II i ---------------------------- b \I- Program 
1 I Dictionary \ 1 
e I \ e 
r/ \r 
I Problem-Solving & Inference System \ 

----------------------------------------I \ 

11 
Natural Language 

Despite all these differences, we think the Japanese has certainly 

made a very significant contribution toward the development of FGCS. At 

the very least, they have set the world computing targets for the rest of 

the decade and beyond. The natural of these targets and the timing of 

their announcement omen the dawn of the second computer revolution and the 

new round of races for supremacy is already beginning in earnest. However, 

our choice is simple: whether to develop our own plans to escape from the 

Von Neumann architecture or to be prepared to accept the Japanese 

domination in the 1990s. 
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GLOSSARY 

AAL Associative Assembly Language. 

ACC Associative Computation Cycle. 

ACD Tag l~nipulation code. 

ALU Arithmetic and Logic Unit. 

AMA Associative Memory Array. 

AMI : Associative Machine Instruction. 

AMil : The machine instruction of APil. 

AMI234 The machine instruction of API234. 

AMIAR Associative Machine Instruction Address Register. 

AMIR Associative Machine Instruction Register. 

APC Associative Program Counter. 

API : Associative Processing Instruction. 

APil : The examine phase of API in beat 1. 

API234 The execute phase of API which occurring in beat 2, beat 3 

and beat 4. 

Architecture: A program representation that can be interpreted. Strictly 

speaking, it is the instruction set and I/O connection 

capabilities. Hence, the architecture of a machine is the 

"blue print" used to build it. 

Adaptable 
Architecture An architecture which able to adjusts to computed 

algorithms by mean of software. 
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GLOSSARY 

Control-Flow 
Architecture : The control-flow architecture has a control-driven 

Data-Flow 
Architecture 

Reduction 
Architecture 

SISD 

computation organization, which is characterized by the 

lack of an examine phase: instructions are arbitrarily 

selected, and once selected they are immediately executed. 

This implies that the program has complete control control 

over instruction sequencing. 

An architecture which implement the data-fl·ow principles 

inherent in modern program structure by allowimg each 

instruction to be executed as soon as its operands arrive. 

A reduction architecture has a demand-driven computation 

organization, and is characterized by an outermost 

computation rule coupled with the ability to coerce 

arguments at the examine phase. 

Architecture The single instruction, single data stream organization. 

SIMD 
Architecture The single instruction, multiple data stream organization. 

MIMD 
Architecture The multiple instruction, multiple single data stream 

organization. 

ATN Augmented Transition Network. 

B-end : Bottom end. 

Binary Tree : A binary tree is defined as a finite set of nodes that is 

either empty, or consists of a root together with two binary 

trees. 

BOAM : Byte-Organized Associative Memory. 

BOAP : Byte-Organized Associative Processor. 

BSU Bit Select Unit. 
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GLOSSARY 

CAD Computer Aided Design. 

CAM Content Addressable Memory. 

CBl Control Bit 1. 

CB2 Control Bit 2. 

CB3 Control Bit 3. 

CB4 . Control Bit 4. . 
Circular List: A circularly-linked list has the property that its last node 

links back to the first instead of to NULL. 

CLAB : Clear All Bits. 

CLBCT Clear Bits on Complemented Tags. 

CLBTT Clear Bits on True Tags. 

CMOS : Complementary Metal Oxide Semiconductor. 

CMB : Data Complementing Bit. 

Command A function which given a particular state, determines the 

next state. 

Dynamic Array: An open ended one dimensional array. 

DCS : 

Deque 

Dil : 

DI2 : 

Dl4 : 

DOC 

EIR : 

Distributed Computer System. 

A deque a double-ended queue in which all insertions and 

deletions are made at the ends of the list. 

Data Identity at beat 1. 

Data Identity at beat 2. 

Data Identity at beat 4. 

Data Output Conflict. 

End In Run. 
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FGCS 

FIFO : 

Forest 

Floor Plan 

Graph : 

GRN 

GRS : 

GRSC 

HLL 

IBR 

IDR : 

Instructions 

IQE : 

IQF : 

IR : 

LIFO 

GLOSSARY 

Japanese Fifth Generation Computer System. 

First In First Out queue. 

A forest is a set (usually an ordered set) of zero or more 

disjoint trees, or in other words, the nodes of a tree 

excluding the root form a forest. 

A chip floor plan is merely a block diagram with blocks 

drawn to approximate scale and the routing of major buses, 

clocks, power, ground, and critical signal paths specified 

in terms of their location and the layer on which they run. 

A graph is a set of points (called vertices) together with a 

set of lines (called edges) joining certain pairs of 

distinct vertices. 

Group Run. 

Group Run Search at beat 2. 

Group Run Search with Complement tags. 

High Level Language. 

Input Buffer Register. 

Input Data Register. 

'Ihe set of all image commands, which represents the 

architecture of the image machtne, 'Ihey are sometimes 

referred to as image instructions. 

Input Queue End (pointer). 

Input Queue Front (pointer). 

Instruction Register. 

Last-In-First-Out. 
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List 

LSI : 

Machine 

Machine 
Organization 

Machine 
Realization 

MCU : 

GLOSSARY 

List is defined (recursively) as a finite sequence of zero 

or more atoms/Lists which can be accessed by means of 

pointer. 

Large Scale Integration. 

A set of commands and a storage which is exactly the range 

and domain of the commands, together with a mechanism that 

causes the state transitions determined by the commands. 

If the mechanism is itself a machine {i.e., has commands, 

storage, and mechanism), the original machine is called the 

image machine and the mechanism is called the host machine. 

A implementation of the machine, shown by in the form of 

block diagram. 

The actual hardware interconnection and construction of the 

machine with a given technology. 

Microprogrammed Control Unit. 

Microinstructions : The commands comprising the host machine. 

MOPS Million Operation Per Second. 

MOR Middle Out Run. 

MR Match Reply. 

MRR : Match Reply Register. 

NMOS : N-Channel Metal Oxide Semiconductor. 

Nonprocedural 
Languages : A language is nonprocedural to the degree that it shortens 

OBR : 

ODR : 

the distance between fomulating and solving some significant 

classes of programming problems. 

Output Buffer Register. 

Output Data Register. 
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OQE 

OQF 

OVB 

OVT 

PC : 

PEs 

PF : 

PCT 

PLB 

PLT 

PLA : 

Process 

PTT : 

Queue 

RAM 

Ring : 

RSCTD : 

RSCTU 

RSFGD 

RSFGU : 

RSFGSD 

RSFGSU : 

GLOSSARY 

Output Queue End (pointer). 

Output Queue Front (pointer). 

Overflow responses at the Bottom-end. 

Overflow responses at the T~~-tnd. 

Program Counter. 

Processing Elements. 

Pre/Post-Function selection bit. 

Propagate Complement Tags. 

Propagation Link at the Bottom-end. 

Propagation Link at the Top-end. 

Programmable Logic Array. 

A sequence of commands and an initial state. 

Propagate True Tags. 

A queue is a Singly Linked-List for which all insertions are 

made at one end of the list; all deletion (and usually all 

accesses) are made at other end. 

Random Addressed Memory. 

A orthogonal circular list. 

Resolve Complement Tags Down. 

Resolve Complement Tags Up. 

Resolve First Group Down. 

Resolve First Group Up. 

Resolve First Group Start Down. 

Resolve First Group Start Up. 
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RSGSD 

RSGSU 

RSTTD 

RSTTU 

R/W 

Set 

SP : 

SPA : 

SPAR : 

GLOSSARY 

Resolve Group Start Down. 

Resolve Group Start Up. 

Resolve True Tags Down. 

Resolve True Tags Up. 

Read/Write selection bit. 

A set is a collection into a whole of definite distinct 

objects of our intuition or of our thought, with some common 

property as directed from N-tuple. The objects are called 

elements (members) of the set. 

Scratch Pad Buffer. 

Scratch Pad Address. 

Scratch Pad Address Register. 

Sparse Matrix: A matrix of large order in which most of the elements are 

SPR : 

Stack 

State 

zero. 

Scratch Pad Register. 

A stack is a Singly Linked-List for which all insertions and 

deletion (usually all accesses) are made at one end of the 

list. 

A particular configuration of storage. 

State Transition : A change in the storage configuation. 

String 

TBV : 

T-end 

TRl 

TR2 : 

A sequence of zero or more characters. 

Text or Bit-Vector selection bit. 

Top end. 

Tag Register 1. 

Tag Register 2. 
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Tree 

USD : 

VLSI 

VHLL 

wsu 

GLOSSARY 

A connected directed graph which is free of cycles. 

Direction code for Tag Manipulation. 

Very Large Scale Integration. 

Very High Level Language. 

Word Select Unit. 
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