
THE DISTRIBUTED COMPUTER SYSTEM

Yan Hong NG

This Dissertation is submitted for the degree of Doctor of Philosophy

Department of Electrical Engineering & Electronics

Brunel University

1983

CONTENTS

Acknowledgement :

Chapter 1 INTRODUCTION

<.."hapter 2

Chapter 3

Chapter 4

Chapter 5 :

Chapter 6

Chapter 7

Chapter 8 :

Bibliography

Glossary :

THE HARDWARE LEVEL

The Hardware Organisation of Associative

Processors

THE COMPUTER SYSTEM ORGANISATION LEVEL

The Design of the Distributed Computer

System

THK ASSEMBLY LANGUAGE LEVEL

The Design of the Associative Assembly

Language

THE MACHINE INSTRUCTION LEVEL

The Design of Associative Machine

Instruction Set

THE PROGRAMMING CONSTRUCT LEVEL--Part I

The String Processing Algorithms

THE PROGRAMMING CONSTRUCT LEVEL--Part II

The Other Data Structures

CONCLUSION

Page

i

1

11

33

67

116

144

187

211

228

240

ACKNOWLEDGEMENT

To all those who have support me when I most needed encouragement or

help. First of all, I will like to express my upmost gratitude to the ACM

(Association for Computing Machinery) and the IEEE Computer Society

(Institute of Electrical and Electronics Engineers) for the provision of

enormous valuable publications, which like the Polaris has guided me

through the "dark ages" of my first two years. Without them the completion

of this thesis is almost beyond imagination.

I am indebted to my supervisor, Dr. R. J. Glover for many ad vices and

hleps that he has given to me in the past ten months. I am also grateful

to Professor I. Aleksander for enabling the appointment of Dr. Glover as my

supervisor who really care for me.

The Work described in this thesis is to the best of my knowledge

original, and was done by myself without collaboration. The hardware

organization of the Byte-Organized Associative Processor is originated from

Mike Lea's Associative Parallel Processors, but to a substantial extent, it

is being improved and modified to cater for the implementation of abstract

data types. The contribution of my project student Phil. Hardy towards the

writing of BOAP simulator is hereby acknowledged.

i

CHAPTER ONE

INTRODUCTION

Language is a system for the expression of thoughts, feelings, etc.,

between two parties, by the use of spoken sounds or conventional symbols.

However, in order to communicate, they must speak the same language, and be

able to decode the meaning behind those sequence of sounds or words

generated by his/her counterpart, otherwise, their conversation would end

in failure. Although, this obstacle can sometimes be removed, by calling

in an interpreter or by using a more explanatory language to put across the

message, it is always a very time consumming and frustrating process.

A similar parallel can be drawn, when communicating with a computer.

Due to the gap between what we want (expectation) and what the machine can

provide (limitation), overheads have to oe included to translate from the

original problem into a directly executable machine code program. Problem

solving by means of computer programming can be viewed as a process

consisting of three translation subprocesses:

Original Problem Stage 1

Design
(System Analysis) ,117

Specification Stage 2

Implementation

,117 (Program Coding)

HLL Program Stage 3

Compilation/Interpretation
(Program Translation) · ,117

(1) Design

Machine Code Program Stage 4

translation from original problem to design

specification.

(2) Implementation: translation from design specification to a

program written in High Level Language (HLL)~

(3) Compilation/
Interpretaion: translation from the HLL program into machine code

program.

1

Most of the difficulties encountered in programming stem from the

great distance that separates the initial statement of a problem and its

correctly encoded solution, a distance which the programmer himself must

traverse. The HLL which the programmer is using will provide him with a

collection of data types, operations, and representation schemes that the

language supports as primitives. Ultimately, all problems of

representation must be solved by finding a way to represent every object of

interest as a combination of primitive representations, and all actions

must then be expressed as combinations of the primitive operations by means

of the semantic and syntactic mechanisms made available by the HLL. Hence,

in order to improve the efficiency of problem solving on computer, the

distance between stage 1 and 4 must be reduced. We will examine this

problem in stages:

(1) System Analysis Process: The Design

A software system is developed in order to meet a need perceived

by its user. The system analysis process is therefore used here

before any other porcesses to establish and analyse the needs of

the user, and specify them in the form of a set of requirements

that stating "what". the system is expected to satisfy, but not

"how" to achieve them. In other words, it is the process of

translating from original problems to design specifications is

usually done manually by the system's analyst. The automation of

this process still remains an active research area of Artificial

Intelligence (A.I.). Nonetheless, we will be taking this subject

up again in Chapter 8.

(2) Program Coding Process: The Implementation

One of the first and most important tasks to be accomplished

before writing a program is the translation of data of the problem

onto the manipulable data types and structures of the HLL, so much

so that the data types and structures provided in a programming

language determine its user's approach to all problems, as well as

profoundly influencing their ways of thinking in programming.

However, due to the shortage of powerful primitives available in

HLLs, program coding is often a very labour intensive process.

2

That is, in order to support his design, the programmer need not

only have to express his design decisions by means of program, but

must also get involved in building data structures and their

associated operational constructs as supplements to the HLL

primitives. Hence, an inordinate increase in the size and cost of

software to such an extent that this unnecessary burden has often

been the prime target to be blamed for the so called "software

crisis". Therefore, the enhancement of representation primitives

in HLL is an area that we will be looking into for reducing the

distance between stage 2 and 3.

To do so, we will concentrate on that class of languages which

have come to be known as "very high level languages", or

nonprocedural languages. A possible definition of a

"nonprocedural" program is as Sammet and Leavenworth[13] have

noted:

•••• a "nonprocedural" program is a prescription for

solving a problem .without regard to details of how it

is solved.

Briefly put, the nonprocedural languages embody a more abstract

approach to data, which provide data structures of greater

flexibility and power, including most of the well known data types

such as string, list, tree, graph etc., and powerful operations

and dictions of mathematics such as set-theoretic and relational

types of objects, directly available as primitives. Futhermore,

they also allow various powerful techniques such as associative

referencing, and nondeterministic programming for the manipulation

and combination of processes. However, the crucial challenge

facing the procedural languages has been the cost-effective

implementation of their programming constructs.

3

There is reason to believe that current research in nonprocedual

programming languages has brought us to the threshold of another

advance in programming methodology[l3]. The general

characteristics of this class of languages can be defined as

follows:

1) Associative Referencing

Associative referencing capability is an important feature of

database retrieval langauges, set theoretic languages and A. I.

languages, that allow data to be addressed by their contents.

In other words, the programmer does not have to specify access

paths explicitly or program an algorithm to conduct a search

for a specific data structure. Associative referencing is

usually provided in those languages that contain sets and

algebraic operations, for example, SETL[1) and Codd's ALPHA

language[2,3). Codd defines algebraic operations on

relations[4] which effectively provide various types

associative referencing.

~) Pattern Directed Structures-

• The classical example of a pattern directed structure is given

by Markov algorithms[S]. A Markov algorithm consists of a set

of replacement or substitution rules which are repeatedly

applied to an input string of symbols. The sequencing

algorithm is implicit in that the rules are always applied in a

determined order. Each rule consists essentially of the

directive: if a specified string is contained in the current

input string, then replace it with a given string of symbols.

The SNOBOL language is an extension and enhancement of the

Markov algorithm idea, where the programmer is allowed to

depart from the normal sequential control. The pattern

directed structure is considered as nonprocedual in the sense

that the implementation of its process in a more "conventional"

language will involve a complicated series of steps. In other

words, pattern directed structure is the abstraction of string

data type at the programming language level.

4

3) Aggregate Operators

In the development of programs by "Top Down" approaches [64] and

stepwise refinement[68), the programmer is encouraged to design

his algorithms and expresses them in an "abstract" program

operating on "abstract" data. He then chooses for the abstract

data some convenient and effi~ient representation in the form

of a particular programming language's primitives, and finally

programs the algorithms required by his abstract program in

terms of these concrete representations. Often, a long and

frustrating process that the programmer has to undergo. These

abstract data types, known as data structures, or aggregate

operators, consist of data elements with important structural

relationships. Therefore the provision of aggregate operators,

proposed as primitives of nonprocedual languages, has come some

distance in compromising with the human tendency to think

through problems in terms of aggregate constructs with which

more complex aggregates can be built. As it will soon be

apparent from Chapter Six and Seven that the algebraic

operators defined by Codd are aggregate operators [13), so do

t many other data structures in various HLLs such as vectors and

array (APL)[6], strings and patterns (SNOBOL)[7], sets (SETL[l]

and Prolog[S]), lists (LISP[9]), and many other abstract data

types such as trees and graphs.

4) Nondeterministic Programming

This facility appears in most of the A. 1. languages and was

inspired by Floyd[ll] who introduced new programming primitives

for solving combinatorial problems. Essentially, problem

solving methods are characterized by searching througn a state,

or situation space or through a space of alternatives. A

solution is a sequence of state transitions from an inital

state(s) given in the problem specification, to a final, or

goal state. This implies a process of going through a multiple

branch in the execution of the program, in order to search for

the goal state(s). Each path is computed conceptually in

5

parallel, with its own particular value of the choice as an

argument. In most cases, nondeterministic programs are

executed as backtracking algorithms [12]. This powerful

semantic mechanism enables a programmer to solve complex

problems such as chess playing or the "problem of 8 queens"

[68]. There is a close correspondence between nondeterministic

programming and parallel programming in that the multiple paths

of the choice function could be searched in parallel.

Other facilities of interest to the designer of nonprocedural

languages can be enumerated, for example elimination of arbitrary

sequencing[l3] and functional programming[59]. However, it is the

criterion first stated that remains the most fundamental; a

language is nonprocedural to the degree that it shortens the

distance between fomulating and solving some significant classes

of programming problems. Summing-up the points discussed so far,

it is revealed that the main obstacle towards the implementation

of nonprocedual constructs has come from the serious mismatch

betw~n the architectures and their supporting machine, which lies

righ~ in the heart of the data organisation of all nonprocedural

constructs mentioned above: they all belong to the SIMD

architecture[lO] which can not be efficently implemented on the

Von Neumann machine (SISD processor)[lO]. Hence, orders of

magnitude improvement are only possible if SIMD type array

processors can be brought in to support these SIMD constructs.

However, there seems in general to be a close relation between the

associative referencing and all the other nonprocedural constructs

that we are discussing. It is certainly clear that the operations

of all known data structures are characterized by searching

through the contents of data items and establishing relationships

betweem them, so much so that even nondeterministic programming is

predominated by searching. Hence, this justifies our choice of an

associative array processor for the investigation into

implementation of nonprocedural constructs.

6

(3) Compilation/Interpretation: Program Translation

The machine which understands and runs HLL programs is called the

image machine of this HLL. By definition, it must have a set of

commands and a storage which are exactly the range and domain of

the commands, together with a mechanism that causes the state

transitions determined by the commands. This mechanism is often

referred to as the host machine.

HLL Program

HLL Image Machine

I I Compilation I I

,117
Image Program ·

Image Machine

I l Interpretation/Emulation I l

l Host Machine I

The host machine itself may be an image machine for another host-­

hence, there may be several nested levels of interpretation and

execution before the actual state transitions. Whilst recognizing

this, we will not introduce this unnecessary complexity,

7

especially since this nesting provides very little additional

insight into the fundamental mechanism involved. In this thesis,

we will assume a simplified model in which a HLL program

representation is translated into an image program, that is

interpreted by a host machine.

.
IL

HLL Program

I I Compilation I I

I I Interpretation I I

I Host Machine I

Ideally, one would like to bypass the Compilation/Interpretation

state all together and have a host machine which could directly

execute the HLLs' program. Yet in practice this can never be the

case, the reasons being two fold: Firstly, even with the promise

of VLSI technology, it is still not cost-effective to build a

well-mapped (between image and host) machine, or a language­

oriented image machine[86,87], some HLL instructions will still

have to be translated to a certain extent. The best that a

comp_uter architect can do is to identify those more frequently

used program constructs, and implement them by means of hardware,

as a result, bringing the image and host machines closer to each

other. Secondly, however direct the direct-execution computer

could be, certain phases of the compiler/interpreter_ process such

8

as Lexical Analysis, Syntax and Semantic Analyses can never be by­

passed[l4). Nevertheless, the complexity of Compiler/ Interpreter

process could still be minimized. We will first look into the

functional organization of the compiler/interpreter:

1) Lexical Analyzer (String & List Processors}

2) Syntax Analyzer (List & Tree Processors}

3) Semantic Analyzer (List Processor}

4) Code Generator (Tree & List/String Processors)

At the first phase of the compilation/interpretation process, a

string processor (Lexical Analyzer) takes the HLL source program

as input, identifying comments, blanks, quoted strings,

identifiers and constants in the source program, grouping

characters into tokens, and places them into symbol tables. The

List & Tree processors (Syntax Analyzer) are then used at the

second phase to group these tokens into syntactic structures such

as expressions and statements, before putting them into a

convenient form such as postfix Polish notation, tree structure,

or quadruples fo]' the Code Generation phase.. In the process of

these transformations, the list processor (Semantic Analyzer)

examines each syntactic construct that has been recognized,

checking data types, determining that functions are called with

the appropriate number of arguments, and verifying the identifiers

which have been declared are typical of what takes place during

semantic analysis. Any error encountered, either syntactically or

semantically, would prompt appropriate error recovery procedures

to be entered for the necessary diagnostics. Finally, another

tree & list/string Processor (Code Generator) will process those

trees and generate algorithms to drive the host machine.

Traditionally, these special purpose processors are software

simulated on a conventional Von Neumann processor, as a result,

they increase the overhead of compilation/interpretation process.

However, since string, list and tree are part of the well known

data structures which the nonprocedural languages support as

9

primitives, inclusion of abstract data types into HLLs will

certainly provide a solution for the inefficiency of the program

translation process~ Therefore, the associative array processor

remains the key issue towards the solution of these problems.

The idea of associative array processors originated during the late

1950's[l5). Although not many associative array processors have actually

been built to date, many hundreds of papers have been written on the

subject. The.asscoiative array processor works on the principle of Content

Addressable Memory (CAM) in which each memory cell can be addressed by

means of its content rather than its location. From the architectural

point of view, the associative array processor is really quite different

from the Von Neumann machine. Whereas the latter is based on the ADD

operation, the former is based on the COMPARE operation. Just as the Von

Neumann computer compares by subtracting and testing for zero, the

associative array processor adds by comparison: addition is done by a

process analogous to "table look up". Since all memory words are capable

of executing the SEARCH operation in parallel, the associative array

processor is capable of highly •parallel addition. Nontheless·, due to their
t

relatively high implementation cost, associative array processors are

usually used in conjunction with standard Von Neumann computer systems so

that many high-speed parallel processing tasks which cannot be efficiently

executed by SISD (single instruction, single data stream) processors [10],

are performed by associative array processors. But recent rapid changes

of LSI/VLSI technology has greatly reduced the implementation cost of

associative array processors, and there is anticipation that associative

array processors will be used more extensively in improving the efficiency

of problem solving on computer.

In the following chapters, we will be discussing the hardware

organisation of associative array processors, and then lead on to the

design of the Distributed Computer System (DCS) in which an associative

array processor and a Von Neumann processor are integrated together to

provide with the best of two computing worlds.

10

CHAPTER TWO

THE HARDWARE ORGANIZATION OF ASSOCIATIVE PROCESSORS

2.1 Associative Memories

2.2 Associative Processors

2.3 The Byte-Organized Associative Processor

2.4 Summary

Interest in associative processing can be traced back to late 1950's,

when the computer designers recognized the advantages of the parallel

searching of data by content addressing. However, until recently, the main

obstacle to the realization of associative processors have been the

enormous costs needed in hardware. A good survey by Hanlon[l5] appeared in

1966 covered whole range of asssociative memories and their possible

applications in the first decade (1956-1966) of development. During this

period, many experimental associative memory models were built,

culminating in the delivery of a 50-bit, 2K-word associative memory by

Goodyear Aerospace to the Rome Air Development Centre in 1968. Since it

was then not feasible to construct large scale associative memories, the

emphasis of associative processor design during the following decade (1966-

1977) tended to focus on subsystems which are capable of both arithmetic

and fast search operations. A number of associative processors, notably

PEPE and STARAN, were constructed. (Several surveys by Parhami[16],

Minker[17], Thurber and Wald[18], Yau and Fung[19] appeared during this

period have detailed report of these developments).

However, as a result of recent advances in LSI/VLSI technology, the

design and realization of associative processors has entered a new age of

development aiming at the construction of large capacity associative

processors. For example: the construction of Airborne Associative

Processor (ASPR0)[20,21] which consists of 2048 single-bit Processing

Elements (PE's) and realized in CMOS/SOS VLSI technology, are designed with

a total processing capacity of 64 MOPS (Million Operations Per Second).

Also, the Massively Parallel Processor (HPP)[22], which is an extension of

STARAN with 16384 PE's, is about 100 times the processing capability as its

predecessor in the similar volume. It is able to do floating point

operations at speeds better than 100 MOPS, 16-bit integer arithmetic at

speeds between 400 MOPS (multiplication) and 3000 MOPS (addition). Such

new developments are likely to renew the original interest in applying

associative processors to non-numerical processings, and data base

applications.

11

2.1 ASSOCIATIVE MEMORY

An associative memory can be defined as a memory system with the

property that stored data items can be retrieved by their content or part

of their content, instead of by address of a location as in the Random­

Addressed Memory (RAM). From the hardware point of view, the basic element

of the associative memory is merely a one bit processing cell that can only

perform SEARCH, READ or WRITE operations on the interrogating data.

Nevertheless, when a number of these associative bit-cells are brought

horizontally together as a word-row, and then linked vertically to each

another to form an Associative Memory Array (AMA), it has surprisingly

become a very powerful machine, on which every bit-column and· word-row of

information can be processed in parallel.

IDR

BSU

----> -----> ----> -----> wsu ----> AMA -----> T R
----> ---->
----> ----->

ODR l MRR l

Fig. 2.1 The Organization of the Associative Memory

The SEARCH operations, which consist of masking and comparison, are

executed in a fashion that depends on the organization of the associative

memory. The search-key can be compared with all the words in the AMA, or

some or part of the words through the control and selectivity of the Word

Select Unit (WSU) and the Bit Select Unit (BSU). The possibility of

matching multiple words to a search-key requires that the associative

12

memory has some way of tagging the matched words. The tag function and

matched-word indication are performed by the word-match tag networks called

Tag Register (TR) and Match Reply Register (MRR). The IDR and ODR are the

Input Data Register and the Output Data Register of the associative memory.

2.1.1 The Classification of Associative Memory

Although, many types of associative memories have been reported,

Lea[23] had generally classified them into three categories of

associative memory:

1) The Record-Organized Associative Memory

2) The Field-Organized Associative Memory

3) The Byte-Organized Associative Memory

2.1.1.1 The Record-Organized Associative Memory

In this configuration, every word-row of associative

memory array has a fixed but long word length which

ideally could be allocated to each record. It is by far

the fastest configuration in which all records can be

processed in parallel with only one instruction; either

the SEARCH operation or READ/WRITE operation.

Therefore, it is sometimes referred to as the fully

parallel word-organized associative processor[19].

Associative Memory Array

Record-Field

Record No.I Key 1 I Key 2 I Key 3 I I I

CB

Record No ·I Key 1 I Key 2 I I I

---Record No.I Key 1 I I I
---Record No.I Key 1 I Key 2 I Key 3 I Key 4 I Key 5 I

Record No.I Key 1 I Key 2 I key 3 I Key 4 I I

Fig 2.2 The Record-Organized Associative Memory

13

TR

The control bit CB is used as a "bit-map" or "access

vector" to assist in the resolution of multiple

responses and in boolean search combinations. This

configuration is designed for applications in which all

records are of similar length; consequently, for other

applications in which records are of dissimilar length,

some considerable redundancy could exist within the

associative memory. However, this problem could be

solved at the expense of the execution speed, if records

are broken up at the field level.

2.1.1.2 The Field-Organized Associative Memory

This configuration is designed to provide the solution

for dissimilar length applications, in which it sub­

divides the records into several fields, and allocates

word-rows at the field level, in such a way that they

can be joined up in almost any number to achieve a

variable record-length data structure.

Associative Memory Array

Key-Field CB1 CB2 TR

Record No. I I
--------------------Key 1 I
--------------------Key 2 I
--------------------Key 3
--------------------Delimiter \ \
--------------------Record No. I I

Key 1 I \

Key 2 I I
--------------------Delimiter I I

Fig. 2.3 The Field-Organized Associative Memory

14

However, one (or more) control-bits are needed to be

used as delimiters, in addition to the control-bit of

the Record-Organized Associative Memory. Nonetheless,

the Field-Organized Associative Memory can support very

different record lengths without incurring redundancy,

provided that their keywords(fields) are of the similar

length.

2.1.2.3 The Byte-Organized Associative Memory

If dissimilar length keywords do occur within the Field­

Organized Associative Memory, then it will run into the

similar problem as the Record-Organized Associative

Memory. Thus, a Byte-Organized Associative Memory has

commonly been suggested.

The Byte-Organized Associative Memory configures the

data at the byte level, in which each word-row of the

AMA is allocated to only a single byte of data, and a

variable length keyword field is constructed by bringing

together any number of bytes (word-rows), in such a way

that it just like a record is constructed by linking up

a chain of keyword fields. Nevertheless, more control

bits are needed as markers to form and break the chain

of keyword fields or records:

1) One bit (e.g. CB1) to mark the beginning of records.

2) One bit (e.g.CB2) to mark the beginning of keyword

fields within records.

3) Two bits (e.g. CB3 & CB4) to act as "Tag Images".

15

Associative Memory Array

CB1 CB2 CB3 CB4 TR

R I 1 I 2 I

E I I I I

c I I 1

0 I I I I

R I I I

D I I I

1 I I I

N I 1 1 I

0 I I I I

-------------------. I I I I

K I I 2 I I

E I I I

y I I I

1 I I

K I I 2 I I

E I I I I

y I I I I
-------------------2 I

K I I 2 I

E I I I

Y I I I I

3 I I I I

11 I I I I

Fig. 2.4 The Byte-Organized Associative Memory

Although the Byte-Organized Associative Memory leads to the

slowest file searching among all the other associative memories,

it incurs the least possible redundancy and it is by far the

most economical to implement in hardware.

16

2.2 ASSOCIATIVE PROCESSORS

From a computer architect's point of view, associative processors

belong to the category of so called SIMD (Single Instruction Stream

Multiple Data Stream) machines[10]. A SIMD machine is a computer that

performs operations on all selected processing elements with only one

single instruction execution. But, unlike other array processor type SIMD

machines[24,25], an associative processor is an SIMD machine whose

processing elements and data addressing satisfy the following two

properties:

1) The property of associative memory.

2) Data transformation operations, both arithmetic and logical, can

be performed on a SIMD basis.

Instruction Memory I
,I 17

--------------II --------------------II ------------------ ----
Arithmetic

and
Logic Unit

\ ~-- \1- Input/Output
Control System

_I\ _I\ Interface

---------------II ---------------------II --------------
,1 17 ~, ,~

I Associative Memory

Fig. 2.5 The Block Diagram of an Associative Processor

An associative processor usually consists of an associative memory,

arithmetic and logic unit (ALU), control system, instruction memory, and

input/output interface. The major difference between an associative

processor and a von Neumann machine is the use of associative memory, so

much so that the classification of the associative memory is often used as

17

a means to classify the architecture of associative processors, regardless

of the details of their individual hardware implementation.

1) The Record-Organized Associative Processor

2) The Field-Organized Associative Processor

3) The Byte-Organized Associative Processor

Regarding of our intention to integrate associative processor into the

Distributed Computer System for the implementations of abstract data types,

the Byte-Organized Associative Processor (BOAP) has been chosen to serve

this purpose. As it will soon be apparent that all data types regardless

of their structures, are ulti~ately mapped on to the physical hardware

storage of the computer system, and abstract data types with their symbolic

manipulation characteristic are best mapped on to the BOAP.

\ Character Field \CBl\CB2\CB3\CB4\
---------------------------------\<--- 8 Bits--->\

The representations and manipulations of all known data structures to

date are mostly non-numerical processing[l30], which use character

structure as a basic building block: String structures are built from a

sequence of characters. Similarly, List, Tree, Graph structures are built

from a chain of character fields with pointers to link them together. As a

result, we shall be concentrating only on the Byte-Organized Associative

Processor in the sections that follow.

18

2.3 THE BYTE-ORGANIZED ASSOCIATIVE PROCESSOR

The Byte-Organized Associative Processor (BOAP) shares the same

general organization as shown in Fig. 2.5, except that it has replaced the

ALU with a scratch Pad buffer for data transformations.

2.3.1 The Data Transfomations of BOAP

Traditionally, a ALU is integrated into the associative

processor for performing complicated data transformations. For

instance, all selected matched word-rows in the associative

memory can be fetched serially into the ALU for specified data

transformations, and the results are then stored back into the

memory. But serious problems do exist in this approach:

1) If large amount of data are involved in data transformation,

bottlenecks may occur in the I/O transfer, and the

advantages gained from the use of associative memories will

be lost.

2) It is contradictory to the design philosophy of the SIMD

machine that a major part of its data transformations have

to be done on the SISD basis.

However, the contemporary approach towards the solution of these

problems is to provide a scratch pad buffer for holding

intermediate results, and at the same time, increase the

complexity of the Word Select Unit, to such an extent that data

transformations can be performed within the associative memory

by using table look-up procedures. This is achieved by the

insertion of tag manipulated operations (as shown in Table 2.1)

to activate other word-rows, before the execution of the

READ/WRITE function. Nonetheless, the formal definition of the

Associative Assembly Language (AAL), together with the tag

manipulated operations which shown in the Table 2.1, will be the

subject of Chapter four.

19

--
MNEMONIC I TAG MANIPULATION/WORD-ROW ACTIVATION

--
JNo activation

--
PTT JActivates all tagged word-rows

--
PCT !Activates all untagged word-rows

--
RSTTU !Activates the first tagged word-row from T-end (Top end)

--
RSTTD !Activates the first tagged word-row from B-end (Bottom end)

--
RSCTU !Activates the first untagged word-row from T-end

--
RSC.'TD !Activates the first untagged word-row from B-end

--EIR JActivates all rows from T-end or B-end to first tagged row
--

MOR !Activates all rows from first tagged row to T-end or B-end
--

GR !Activates all rows from tags in TRl to TR2 (Group Run)

RSGSU !Activates only ending rows of every group during GR

RSGSD !Activates only starting rows of every group during GR

RSFGU !Activates only first group from B-end during GR
--RSFGD !Activates only first group from T-end during GR

RSFGSU !Activates only first ending row from B-end during GR
--

RSFGSD !Activates only first starting row from T-end during GR
--

Table 2.1 The tag Manipulations of BOAP

2.3.2 The Hardware Organization of BOAP

The Byte-Organized Associative Processor (BOAP) that we are

proposing is shown in Fig. 2.6. This overview of the BOAP is,

in fact, the overall system organization of the processor. But,

in order not to deviate our attention away from the hardware

organization of the BOAP, we shall be focusing only on the

associative memory part of the BOAP, other than the system part

of BOAP which will be dealt with in greater detail in the next

chapter.

20

-
..

\ Instruction Memory \

I Buffer I

,117
--------------II ____ -------------------- II ____ --------------

Scratch Pad \ ~-- \ ~-- Input/Output
Control System

Buffer __ I\ __ I\ Buffer

-------------- ----11 -------------------- ----1, --------------
,1 17 ~I I~

(AMI 1)

ASSOCIATIVE MACHINE INSTRUCTION (EXAMINE PHASE)

Ch. Spec. lCB Spec! ITBVI IDI1lCMBl

(AMI 234)
ASSOCIATIVE MACHINE INSTRUCTION (EXECUTE PHASE)

Ch. Spec. ICB Specl IPF IR/WlDI4ICMBIUSDI ACD lDI2lCLEAREI

I I I I I I I I I I I I
v v v v v v v v v v v v

I I D R I

' l l l l l l l 1·1 I I v v v v v v v v v·v v v v v v v v vvv vvvv v v v v .

I 1
/l_l

B S U ,,-, MICROPROGRAMMED CONTROL UNIT

----------------------- ------------------------------------
lll\lllll\1\
v v v v v v v v v v v v TRl TR2

c c c I I C:<-->:

B B B
I I

B:(--):
AMA I I . 1 2 3 4 :<-->: .

I I I . :<-->: .

111111\1\\\\
vvvvvvvvvvvv

0 DR

I . .
. .
I . .
I . .

',' v

l MRR l

I (T-END) . .
I . .
I w s u . .
I . (B-END) •

l DOC l

. .
I . .
I . .

Fig. 2.6 The System Organisation of BOAP

21

2.3.2.1 The Associative Memory Array (AMA)

The AMA comprises a two-dimensional matrix of identical

one-bit-cells, which operates as a read-write Random

Access Memory (RAM) cell and contains sufficient logic

to enable the selection of its content to be compared

with the corresponding bit of the IDR.

Theoretically speaking, the AMA could contain any number

of word-rows, which are organized in a 12 bit long

format --8 bits for the character field and 4 bits for

the control-bit field. Alternatively, the character

field and control-bit field could also be joined

together to form a 12-bits long bit-vector, in which

every bit functions independently as an individual bit.

2.3.2.2 The Bit Select Unit (BSU)

The BSU interprets the control functions of IDR

according to the specified Associative Machine

Instruction (AMI) and tranfers the appropriate data to

the AMA for SEARCH and WRITE operations. Since the BOAP

has no mask register, there can be no explicit data

masking during SEARCH or WRITE operations, instead

characters and control-bits are represented in tertiary

logic which allows implicit masking of bit-columns:

conditional masking and data complementation. Bit

serial processing can be achieved by masking all bits

except the one of interest.

2.3.2.3 The Word Select Unit (WSU)

The WSU provides the actual programmable hardware

mechanism to implement the tag manipulations and word­

row(s) activations. It allows the propagation of

activities between word-rows, and provides the linking

between data fields to enable the representation of a

wide range of data structures. The operations which the

22

WSU allows are as follows:

1) Activates matching or mismatching word-rows.

2) Activates adjacent word-rows and groups of word-rows

of matching or mismatching word-rows.

3) Isolates a single word-row or group of word-rows for

activation from a range of mapping functions.

2.3.2.4 The Microprogrammed Control Unit (MCU)

The MCU issues the micro-order (the actual hardware

signals) to drive the hardware of BSU and WSU. Since

every API is eventually translated into the primitive

associative process (either SEARCH or ACTIVATE­

READ/WRITE operation) in the form of an Associative

Machine Instruction (AMI), MCU provides the

microprogrammed interface between hardware and AMI.

2.3.2.5 The Match Reply Register (MMR)

The MMR indicates the presence of one or more set tags

in the specified Tag Register (TRl or TR2) to provide

feedback to external control logic for conditional

branch operations.

2.3.2.6 The Data Output Conflict (DOC)

The DOG is used to indicate any occurrence of multiple­

responses [26] in a SEARCH operation. This will enable

the isolation of matched word-rows before reading into

ODR.

2.3.3 The Technology of Fabricating BOAP

Recent developments in microelectronics have revolutionized

computer design, but how can the properties of VLSI be exploited

to build computational structures? Our discussion at this point

will focus on two aspects of computer design: the chip layout

and VLSI architecture.

23

A) The Chip Layout Level:

The Von Neumann's design philosophy was adopted in an era of

computer technologies in which wires were cheap and switching

elements were expensive. However, VLSI technology has

reversed this cost situation, making switching elements

essentially free and leaving wires as the only expensive

component. In today's technology, the area of a circuit

devoted to communication between elements far exceeds the area

devoted to switching elements, and the communication delays

are much longer than logic delays[27]. In fact, many of the

design constraints (i.e. Layout topology, Speed, Power

dissipation ••• etc) which constitute the characteristic of

VLSI technology, could to a certain extent be relaxed by

minimization of communication paths on the chip:

1) The Layout Topology:

In conventional computer design, switching theory is used

as a tool by the designers to formulate logic networks with

minimum number of logic gates. However, this approach is

less useful in the VLSI design environment where the costs

of testing, packaging and inter-connecting integrated

circuits are much more important than the manufacture of

the circuits themselves. If the topology of

interconnection paths is not carefully controlled, the

space required for them grows more than linearly as the

number of logic elements to be connected is increased:

bigger systems require more wires, which are on the average

also longer, therefore, to interconnect twice as many

randomly placed devices requires four times as much

communication space [27]. Hence, it is obvious that

controlling the chip layout topology is essential in the

design of VLSI. If connections can be made to follo~

regular patterns, they can be produced by less expensive

methods and can also be made to occupy less space and so be

faster. Carver Mead and Lynn Conway[28] have developed a

24

"Chip floor plans" approach to solve wire-and­

interconnection problem: A floor plan is merely a block

diagram with blocks drawn to approximate scale and the

routing of major buses, clocks, power, ground, and critical

signal paths specified in terms of their location and the

layer on which they run[29]. It is essential to avoid

routing a critical signal from one corner of the chip to

another, where its delay may sometimes undo all the careful

optimization in other parts of the circuits. Regularized

structures interact very heavily with the floor-plan

strategy. A regularized structure is difficult to formally

define but usually involves a functional block that uses a

repeated structure to accomplish a given function. A

common example is the Programmable Logic Array (PLA), which

is a highly regular structure that performs an arbitrary

combinatorial logic function.

2) The Speed Considerations:

Not only do longer communication paths occupy a dis­

proportionate amount of space but also they function more

slowly than short ones, due to the transmission delay in

the lossy line: For a regular structure, the RC delay can

be modelled as a diffusion delay in a distributed RC

network in which the delay is proportional to the value of

the R and C of each network element and proportional to the

square of the number of elements in the network n2RC[30].

Therefore, in order to drive a signal down a longer path,

one must either build a larger driving circuit to provide

for the extra power required or suffer the delays of

passing the larger amounts of energy through a less

powerful driver. More powerful drivers must themselves be

driven and are inherently slower than small drivers. The

Mead-Conway design style advocates a technique known as

"wiring by cell abutment"[Jl] by which each cell can be

interconnected by abutting it with its neighbour(s). The

25

advantages of this approach are that it eases the design

task by eliminating random wiring, uses space more

efficiently by intermingling logic and buses and by

eliminating the extra space absorbed in the intercell wire

routing, and helps to improve performance by reducing

interconnection lengths.

3) The Power Dissipation:

Before a signal path can be switched from one electrical

state to another, the energy stored in the path must be

removed and converted into heat. It is quite possible that

the switching energy of logic elements required in a given

technology and the signaling powers needed to travel down

the communication paths may set a upper limit to the

complexity of the system that can be build in that

technology[27].

Hence, the minimization of communication paths on chip can be

achieved by building very regular patterns of interconnection

and partitioning processor logic accordingly[27,28]. There is
t

already a trend toward very regular wiring patterns for

integrated circuits and the interconnections among

circuits [29]. This regularity is desirable not only because

it makes the specification simple but also because it

efficiently reclaims space for putting more switching elements

on the chip.

B) The VLSI Architecture Level:

The communications on VLSI chips brings up an important point:

the choice of an appropriate architecture for any computer

system is very closely related to the implementation

technology. Mead-Conway consider that improvement in

architectural style will immediately reduce the design problem

by orders of magnitude. Properly designed parallel structures

that need to communicate only with their nearest neighbours

26

will gain the most from Very-Large-Scale Integration.

Precious time (and thus performance) is lost when modules that

are far apart must communicate. For example, the delay in

crossing a chip on polysilicon, one of the three primary

interconnect layers on an Nl10S chip, can be 10 to 50 times the

delay of an individual gate[29]. Therefore, the architect

must keep this communication bottleneck uppermost in his mind

when evaluating possible structures and architectures for

implementation at VLSI. The architecture of conventional Von

Neumann computer suffers from two limitions[27,28):

1) The conventional Von Neumann machine provides only a single

processor that sequentially fetches and executes

instructions; it offers very little opportunity for

concurrent processing activity.

2) Th_is SISD type processor is separated from its memory by

long communication paths such as buses. The processor

fetches an instruction from memory, decodes it, executes

it, and repeats the cycle. Ma~y instructions will cause
~

additional references to memory in order to fetch operands

or to store results. Therefore, the performance of such a

computer depends critically on the method, and the speed of

information transmission between processor and memory. As

a matter of fact, this is the price we pay for using RAM as

data storage. Futhermore, the locational addressing method

of the Von Neumann machine, wastes access to many thousands

of bits by selecting only a few bits for the CPU, and the

size of address bus actually goes up in proportion with the

size of computer memory: i.e. MC68000 microprocessor uses

24-bit wide of address bus for addressing 16M bytes of

memory versus the 16-bit wide of MC6800 for 64K bytes of

memory. This trend will continue so long as people require

more and more memory space for data storage and, as a

result will inevitabily lead to wider address buses, as

well as more pinout problems.

27

Closer examination of VLSI implementation problems has, however,

shown that pin limitations, rather than chip area of logical

component limitations, are the major constraint of the VLSI

environment[32]. Consider a chip with 16 bit data-pins and 24-

bit address pins: the number of required pin connections

(ignoring power, ground, and general control) for a single chip

implementation is at least 40 pins. Therefore, in order to

overcome the pinout limitation on chip implementation, the

architecture of the conventional computer will have to be

modified.

1) The SIMD Solution

In this solution, memories (M) and processing elements (P) are

brought more closely together to avoid the unnecessary

movement of data on the buses which sometimes constitute up to

90% of'the activities in conventional SISD machines[33].

I c I
I

i--

1~-1--1-;-1--1-: l--1-;-l--l-;-l--l-~-l--l-~l--l-~1

I

l-~-1--l-~l--l-~l--l-~l--1-~-l--l-~l--l-~-l--l-~l

In this hypothetical machine, many thousands of identical

processing elements are brought together to bear on separate

parts of a problem under the control (C) of a single

instruction sequence in rigid lock-step. These are most

suitable for highly regular tasks such as simulation of the

weather[24], matrix arithmetic{34,35], and implementation of

abstract data types.

28

2) The MIMD Solution

In this solution, the MIMD machine is one where separate,

independent processing elements under separate, self-contained

memory; ALU; and control structures, perform independent parts

of the task, communicating data and instructions whenever

required via a interconnection network[39].

--
I M I I M I I M I I M I
--
II\
\ I

--
INTERCONNECTION NETWORK

't' 11\ 11\
\1 \1 \1 ------- ------- -------

I c I I c I
.. ---

IPI :tPI JPI IPI IPI
------- ·------ ------- ------- -------

The advent of the microprocessor has, of cause, suggested to

many people the possibility of making such a system which

consists of thousands of separate microprocessors working in

concert on large tasks in the most flexible arrangement for

parallel execution of different operations[36]. This system

works best when each element can do much processing with out

the need to communicate with other elements. But, bottlenecks

will develop when tasks require elements to wait for the party

line.

The BOAP that we proposed belongs to the category of SIMD

architecture, which uses associative memory to minimize the

unnecessary memory referencing in the system: Associative

29

memories are incorporated with limited switching elements to

process simple operations such as compare, read and write,

which can be carried out within the associative memories with

out any memory referencing. Nevertheless, like RAM, the

Associative Memory Array (AMA), together with its Word Select

Unit (WSU), does have an inherently regular word structure.

---ASSOCIATIVE MACHINE INSTRUCTION REGISTER

I D R

B S U MICROPROGRAMMED CONTROL UNIT

-----------------~---

Associative

....................... • • • • . • • • . . . • • • • . • • • • • • • . . • • • • • . • •• • • • • • • . • • • • • . . . • • • • • • . . . • • • • • • . • •• • • • • • . . • • . • • • . . • • . . • . . • • • • • • • . • • . • . . • . : : : : : . : : . : . . . • :

Associative Memory

<-->
<-->
<-->
<-->
<-->

<-->
<-->
<-->
<-->
<-->

------------------------------------PLT OVT

w s u

OVB PLB

.
::::::::::::::::::::::::::::::::::::
:::::::::::::::: ::::::::::::: :::::::::::::

PLT I OVT

w s u
OVB PLB

I -----------------------1 0 D R 1

1 MMR 1 DOC

I

--~

Fig. 2.7 The Chip Organization of BOAM

30

The proposed chip organization of Byte-Organized Associative

Memory (BOAM) can be separated in four parts:

1) The Associative Machine Instruction Register (48-Bits),

2) The Bit Select Module (IDR, BSU and MCU),

3) The Memory Module (Associative Memory and WSU),

4) The Output Register Module (ODR and MMR)

In the careful examination of these four different parts of BOAM,

it is revealed that only the fabrication of the memory module

(AMA and WSU) has exhibited the feature of repeatability and

expandability suitable for VLSI development. However, linking

mechanism must be provided in order to build a workable size of

AMA from this standard memory chip module, which merely consists

of a limited amount of word-row memories and their WSU. The PLT

and PLB are designed to serve this purpose: PLT is the

propagation link at the T-END (TOP-END) of the AMA and PLB is the

propagation link at the B-END (BOTTON-END) of the AMA. Both PLT . .
and PLB can be used tcl allow propagation or run options to be

extended to activate ~ord-rows in adjacent memory modules,

without significant loss of execution speed, by allowing the

modules to execute the runs in parallel, with their propagation

links PLT and PLB set.according to the MRR output and/or Overflow

Responses (OVT/OVB) of their adjacent memory modules. The

OVT/OVB signals the propagation of activities outside the T-END/

B-END (TOP END/BOTTON END) of the WSU and provide feedback to the

PLT/PLB of adjacent memory modules to proceed with the

propagation of word-row activation.

PTT(D) PLTl • 0

PLT2 • OVBl

PLT3 • OVB2-

PLT4 • OVB3

31

PTT(U) : PLB4 • 0

PLB3 • OVT4

PLB2 • OVTJ

PLBl • OVT2

2.4 SUMMARY

The development of associative processors is based on the search

capabilities of associative memory, which is particularly suitable for

non-numerical data processing. The Byte-Organized Associative Processor

with it short and neat word-length has been chosen as a vehicle for the

implementation of abstract data types.

In the light of the LSI/VLSI development, considerations have been

given to the Memory chip organization of Byte-Organized Associative

Processors. In this investigation, it is established that communications

are the major problem on VLSI chip. Carver Mead and Lynn Conway[28] have

developed a top-down design methodology for intermodule communication

strategies. The key elements of their philosophy are:

* carefully defined chip "floor plans"

* regularized structures

* wiring by cell abutment
-* Non Von Neumann architectures:

* Mapping high-level functions into silicon

Futhermore, it is also revealed that in addition to its role at

abstract data types in the Distributed Computer System, assocative memory

offers a good solution for the ever increasing problem of data storage: it

is suggested that associative memory is used to replace the conventional

RAM for data storage but not program storage, as a result, remove the

artificial upper limit of address space (either 16M for 24 bit address

system or 64K for 16 bits address system as in the cases of M68000 or M6800

microprocessors), at the same time cut down the unwanted adddress buses and

the unnecessary burden imposed on the pinout limit. These potentials plus

the ever rising software and personnel costs will eventually lead to the

generalization of associative processing.

32

CHAPTER THREE

THE DESIGN OF THE DISTRIBUTED COMPUTER SYSTEM

3.1 The Computation Organization of DCS

3.2 The Program Organization of DCS

3.3 The Machine Organization of DCS

3.4 Summary

Distributed computing systems represent a wide variety of computer

organizations, ranging from a star network to a completely decentralized

computing system[37]. In all cases, the word '~istribute&' refers to the

fact that processing logic, functions, control, data, or a combination of

these of the computing system are distributed to a certain extent[38]. The

characteristics of a distributed computing system are as follows:

1) There are a number of hardware processors connected together via

an interconnection network.

2) The network provides data (and control) communications between the

various processors and provides input and output connections for

user interface.

3) Each processor has a number of functional components which can

interact with each other to perform system-wise functions such as

task sharing and resource sharing.

l Host ' Processor

---I INTERCONNECTION NETWORK I
---I \ I \ I \ I \

,I 17 ,I 17 ,I 17 ,I 17
------ -------- -------- -----------

\ Proc!ssor \ \ Proc!ssor \ \ Proc!ssor \ \ Proc!ssor \
--------- ---------- ----------- ----------

Fig. 3.1 The Organization of Distributed Computing System

33

Distributed computing systems exhibit extreme flexibility,

reliability, survivability and modularity by virtue of the loose coupling

between processors:

1) Flexibility:

With appropriate design of the network communications protocol,

the total number of nodes (i.e. processors) in the network can be

increased or decreased even after initial fabrication. Similarly,

a sufficiently versatile computer network communications protocol

allows the inclusion of nodes with a wide variety of speeds,

computing capabilities, physical configurations, and so on, since

the only constraint on the node design is that the interface to

the communications network must obey a predetermined protocol.

2) Reliability:

In the distributed system, the individual processors may be

assigned to the execution of portions of a large algorithm,

followed by a merging of their partial results~ Since task
~

assignment is done via software rather than throu~h a specially

designed architecture and a fixed hardware configuration[83,84],

""' unassigned processors could be used to achieve good reliability

and fault-tolerant processing[36].

3) Survivability and Modularity:

Distributed systems are capable of resisting obsolescence, since

the network communications structure may be left intact while some

or all of the nodes are replaced or upgraded with newer technology

representing more cost-effective or powerful performance.

A large number of topologically different network schemes have been

proposed[39-45], all of which posses unique strengths and weaknesses.

However, it has not yet been demonstrated through a sufficently large

number of actual hardware development efforts which of the network

structures is the most flexible. Nevertheless, for the detailed

34

description of various interconnection networks, the reader could perhaps

refer to Feng's survey paper[39] which covers a wide spectrum of network

configurations.

In that article, Feng begins by an examination of the decisions that

designers have to make in terms of operation mode, control strategy,

switching methods,. and network topology. He then goes on to review the

major reseach efforts on the subject during the last few years, and

classify them into syn~hronous and asynchronous models.

..
1) The Synchronous Models:

In the synchronous category, multiple processing elements and

parallel memory modules under one control unit and linked together

by an interconnection networks, can handle Single Instructions and

Multiple Data streams (SIMD) processing (see the SIMD solution in

page 28). Existing examples include Illiac IV[24] and Massively

Parallel Processor[22].

2) The Asynchronous Models:

The asy:1chronous approach for concurrent processing can handle

Multiple Instruction and Multiple Data stream (MIMD) processing

(see the MIMD solution in page 29). Examples of the MIMD

architecture include data flow machines[48-54], and reduction

machines[SS-60]. The multiple independently controlled processing

elements are linked to a number of memory modules by an

interconnention network. But, unlike the control unit in the SIMD

machine, the activities are coordinated by the coordinator in the

interconnention network, which implements the synchronization of

processes and smooths out the execution sequence.

35

3.1 THE COMPUTATION ORGANIZATION OF DISTRIBUTED COMPUTER SYSTEM

The computation organization decribes the way computation progresses

in the form of change(s) in the state(s) brought about by executing

instructions. In here, we describe how these state changes come to take

place by the rules of sequencing and the effect of instructions[46].

1) Fetch Phase :

2) Examine Phase

Once selected, the instructions including all

necessary operands, are fetched from the memory

into the processing element for possible

execution, but fetching does not guarantee

execution.

each of the instructions previously fetched in the

processing element is examined to see if it is

executable. The rules for making this decision

are different in a variety of architectures.

However, if an instruction is executab~e, it is

passed on to the next phase for execution;

otherwise, the examine phase may delay the

instruction or attempt to coerce argume~ts so as

to allow execution.

3) Execute Phase : at the execute phase, the instruction is actually

executed, and the result is then used to change

the state(s) of the computation.

3.1.1 The Classification of Computation Organization

The mechanisms and rules which govern the fetching, examining

and executing of instructions are often so unique that a clear

distinction can always be drawn among different types of

computation organization.

1) Control-Driven :

In the control-driven computation organization, it is best

described by the well known fetch-execute control cycle of

the Von Neumann architecture: once selected, the instruction

36

and its associated operands are fetched into the processing

element ready for the execute phase without being checked by

an examine phase. In other words, the examine phase is

redundant in control-driven environment, and the progress of

computations are marked by changes of states in shared

memory (global state). The advantage of control-driven

computation is full control over sequencing. But a

corre.sponding disad.vantage is the burden of this imperative

approach in having to specify details of how to solve a

problem step by step. Futhermore, programming discipline is

needed to avoid run-time errors which are har~er to prevent

and detect, due to the twin generalities and dangers of

control-driven computation to execute data as a program.

2) Content-Driven :

The computation organization of content-driven architecture

is very similar to the control-driven organization except

that the examine phase is included in the three-phase

computation cycle. In ~his computation o~ganization,
4

memories and processing elements are brought together to
t

avoid the unnecessary movement of operands, to such an

extent that fetching of operands is almost minimal. At the

fetching phase, only various parts (examine phase and two

execute phases) of the instruction are fetched from the

program store into the control unit of the system. At the

examine phase, a search is conducted on the content of every

word-row of the memory to select the records (or data

structures) concerned and to decide which execute phase of

the instruction is to be executed. The result of execution

is marked by state changes at all selected word-rows of the

memory. The advantages of content-driven computation are

minimum operand fetching, and the parallelism within the

computation cycle obtained from the multiple data stream

organization of SIMD architecture, which makes it the best

candidate for logic programming. However, disadvantages do

37

exist when dealing with non-structured operations such as

expressions and multi-tasking.

3) Data-Driven :

In the data-driven computation organization, no explicit

control is available. Instructions when fetched are

passively waiting for some combination of their arguments to

become available before executions can take place. Hence,

the key factor governing execution is the availability of

data. Conceptually, all instructions in the program are

fetched into the processing elements at the beginning of the

program, each instruction has a processing element allocated

to it continuously, just waiting for arguments to arrive.

The examine phase then implements the so called firing rule

which requires all arguments (data) to be available before

proceeding to execution. At the execute phase, each

instruction consumes its arguments and places a result in

each successor instruction. The advantage of data-driven:

computation is that instructions are executed as soon as~
~

their arguments are available, making way for a very high

degree of implicit parallelism in the program organization.

This makes it particularly suitable for processing

expressions where the sequencing of the program organization

is determined solely by operator precedence. However, the

disadvantages are that some of the firing rules in the

examine phase may be too restrictive and wasteful causing a

wait for unneeded arguments. For example : content-driven

type operations such as IF-THEN-ELSE operator which use only

two of its three arguments may be forced to wait for all

three before proceed to execute phase~ In the worst case

this can lead to nontermination through waiting for an

unneeded argument, for example an infinite iteration.

38

4) Demand Driven :

In the demand-driven computation organization, an

instruction is fetched into one of the processing elements

only when the value they produce is needed by another

already selected instruction. In the examine phase the

arguments are checked to see whether execution is possible.

If it is, the instruction is proceeded to the next phase for

execution. Otherwise, the processing element will demand

the evaluation of argument(s) until sufficient are available

for execution. Logically, this demand consists of spawning

one or more subcomputations to evaluate operands and waiting

for them to return with a value. The execute phase in

demand-driven model involves rewriting the instruction which

will return with the arguments needed for the progress of

the computation. Only the local state consisting of the

instruction itself and those instructions that use its

results are changed. The essence of demand-driven

organization is that instruction sequencing is driven by the

need to produce a result at the outermost level, rather than

insisting on following a preset pattern. The advantage of

the demand-driven computation organization is that only

instructions whose result is needed are executed which make

it well suited for the implementation of functional

programming, especially in the cases of recursive, and

iterative ("LOOP") program constructs: the demand-driven

mechanism will synchronize and trigger executions amongst a

group of instructions, without the imperative approach of

control-driven architecture to specify the detail of

sequecing. Nonetheless, it is unable to deal efficiently

with expression type operations where every instruction (+,

-, *, I etc.) always contributes to the final result:

propagating demand from outermost level to innermost is a

waste of effort, as naturally, it is the operator precedence

that determine the sequencing, and every instruction must be

executed.

39

3.1.2 The Computation Organization of the Host Processor

From the above discussion, it is clear that the control-driven

model which has lo~g been predominant, has failed in the highly

parallel environment. But would the content-driven, data­

driven, or demand-driven computation organizations provide the

answer to the question of parallelism? Over the past few

years, a number of content-driven, data-driven and demand-driven

computation organizations have been proposed[47-60], however, it

is by no means certain which is the best candidate to cost­

effectively replace the conventional control-driven computation

organization in handling the wide spectrum of computing

activities. Nevertheless, it is strongly believed that none of

the computation organizations that we have known to date is able

to cope with the challenge of present day computational problems

individually. Perhaps with the careful integration of all four

kinds of computation organizations, a more efficient mechanism

could be found. It is in the light of this philosophy that the

Distributed Computer System is proposed.

Intensive investigations have led us to believe. that there are

only three kinds of computational activities existing in most of

today's computer programming: Namely SISD, SIMD, and MIMD

activities. Each of these is best driven by an appropriate

computation organization: control-driven for SISD operations,

content-driven for SIMD operations, data-driven and demand­

driven for MIMD operations.

The control-driven organization is characterized by the lack of

an examine stage which implies that the program has complete

control over instruction sequencing. Once selected,

instructions will always be executed regardless of the state of

their operands. This means that there is no concern of the

contents of data, no waiting or demanding for arguments. This

unique characteristic, has placed the Von Neumann type control­

driven computation organization in an undisputable position to

40

be selected as the host processor of DCS, to handle activities

such as program sequencing; scheduling; task allocation; and

I/O control, within the system.

3.1.3 The Computation Organization of the Associative Processor

The computation organization of the associative processor is

organized as a content-driven model: loading of instruction at

fetch phase, a SEARCH operation at the examine phase (API 1),

followed by MODIFY-READ/WRITE operation at the execute phase

(API 234).

Fetch

Examine

Execute

LOADING INSTRCTION

I
v

<API 1)

I
v

I \
MR=O / \ MR=l

I \
I \

<API 234) <API 234>

This extraordinary organization can be traced all the way back

to the origins of Content Addressable Memory (CAM). Unlike RAM,

. CAM does not use location to address memory, instead, the

content concerned is used to SEARCH (address) for required word­

rows in the memory. Similarly, a SEARCH operation is also used

in the associative processor to examine the content of arguments

before deciding which <API 234> is to be executed. Matched

keywords of the argume.nts are tagged in the Tag Register (TR)

making ready for subsequent execution. However, it would not be

very useful, if executions can only be carried out on tagged

word-rows of the arguments, therefore, a tag manipulation is

inserted between the SEARCH and READ/WRITE operations for the

41

activation of word-rows to be extended beyond those tagged word­

rows. This allows modification of the logical content of Tag

Register to be performed, before the execution of Read/Write

function. This modification comprises a two state operation: a

CLEAR operation (or a CLEAR-READ/CLEAR-WRITE operation) followed

by an actual tag manipulation. Hence, LOAD(fetch)-

SEARCH(examine)-MODIFY-READ/ WRITE(execute) forms the complete

Associative Computation Cycle (ACC).

---Timing beat l <APD I <API-STATE:> ' <AMI)

Beat 0 LOADING INSTRUCTION APIO
---Beat 1 SEARCH APil I AMil
---Beat 2 I CLEAR-READ/CLEAR-WRITE I API2 I
---: Beat 3 Tag Manipulations API3 I AMI234
---: Beat 4 READ/WRITE Function API4 I

The Associative Computation Cycle (ACC) is assembled in a five

beat time sequence as shown in the above table. However, in

practice a four beat time sequence in a two-part instruction

will be assumed, since the fetch phase of next instruction can

always be pipelined with the examine-execute phases of the

current instruction.

1<- Beat 1 ->1<- Beat 2, Beat 3 & Beat 4 ->1
---> <API234)

MR•01
LABEL --> -<APil) --->

MRal1
---> <API234)

I ---------> --> NEXT
I

--

42

3.2 THE PROGRAM ORGANIZATION OF THE DISTRIBUTED COMPUTER SYSTEM

In the previous section, the computation organization of a single

instruction was discussed. In this section, the scope of investigation

will be broadened to consider relations between instructions: i.e. How do

they communicate in terms of data mechanism? How one instruction causes

the selection of another instruction in terms of control mechanism? Thus

what determines the pattern of control to form the organization of a

computer program? The term program organization is used here to cover the

way machine code programs are represented and executed in a computer

architecture[46]. ,.

1) The Control Mechanism : .
The control mechanism defines the propagation of instructions, and

thus the control pattern within the total program.

A) Sequential : where a single thread of control, signals an

instruction to compute and passes from one

instruction to another.

B) Parallel : where more than one thread of controls are actived

at an instance, and protocols are also provided

for the synchronizing of these threads.

C) Recursive : where control is used to signal the need for

arguments, and hence, an instruction is selected
I

for execution when one of the output arguments it

generates is required by the invoking instruction.

Having executed, control is returned to the

invoking instruction.

2) The Data Mechanism :

The data mechanism defines the way a particular argument is used

by a number of instructions.

43

A) By Name

B) By Value

C) By Reference

where an argument is known at compile time and a

separate copy is generated and placed in each

accessing instruction.

where an argument, generated at run time, is

replicated and a separate copy is placed in each

accessing instruction.

where an argument is commonly shared by having a

reference to it stored in each accessing

instruction.

The Distributed Computer System is organized in a sequential Control­

' Flow program organization, which has a number of common Control-Flow

features:

1) The Control Mechanism :

There is a growing belief[54], shared by the author, that since a

computer program is a sequence of tasks carefully put together to

solve a particular problem by means of a computer system, it is by

no means reasonable to suggest tha't parallelism could be achieved

in this inherently sequential program organization. Nevertheless,

in so saying, we are not discarding the possibilty of parallelism:

parallel operations could be implemented as concurrent processes

(procedures) within the sequential Control-Flow computer program.

Here, we stress very strongly the word "srequence" in the sense

that processes and state changes have to proceed in the right

order before the true result can be obtained. Hence, the DCS is

based on a sequential control mechanism in which a GOTO type

control operator such as program counter is used to direct the

flow of control, concurrent processing is achieved by the

augmentation of FORK-JOIN type parallel control operators. These

parallel operators allow more than one thread of control to be

activated at an instance, and also provide the means for

synchronizing these threads.

44

I v

l ALTERN ATE l
PROCESS//2

I
v

(BEGIN)

I v

1
SEQUENTIAL \
PROCESS Ill

I
v

F 0 R K

J 0 I N

I v

I
v

\
ALTERNATE 1
PROCESSU2

I v

----------F-o-R-K------------
1 I I v v v

\
PARALLEL l \ PARALLEL \\ PARALLEL \

PROCESS #3 PROCESS #3 PROCESS #3

I v v v
---------J-o-I-N------------

1 v
(END)

Fig. 3.2 The Control Mechanism of the DCS Program Organization

A process (or procedure)--the fundamental working element in the

DCS--is a single instruction, group of instructions, or even a

group of other processes, reponsible for the handling of one

prescribed activity, which will then be put together with other

processes (or procedures) to form a main DCS program.

2) The Data Mechanism :

The basic data mechanism amongst DCS processes is a "by­

reference" mechanism, with references embedded in processes being

used to access shared memory, in which the effects of changing the

contents of a memory cell are immediately available to other

processes. Hence, data is passed indirectly between processes via

45

references to shared memory cells. However, within each process,

it is usually the "by value" data mechanism that governs the flow

of partial results directly from the producer to the consumer

instruction, without reference to the shared memory. The reasons

for this design are two fold:

---//11/II!!I/11/I/111//II/IJI//II//II/11/II//II//I/
///////////// THE DCS MAIN PROGRAM//////////////
1/llll/lll/111//llll/1111/llll/1/l/111/llllll/111
IIIII/1//I/II!I/IIII/11/II/JI/111//JI/I/1//II/1/1
111//l/1/l/1 --------------------- ll/l/1111//ll/
111111111111 1111/ll/111///
ll/!l/111//1 1/1/ll//ll/l//
//1////111// SEQUENTIAL 1/1/1/11/1//11
III/IIIII/// PROCESS #l lll/11/l/11111
l/1111111111 111111/ll//l/1
111111111111 lll/11/ll/1111
1111111111/1 --------------------- 111111/I/JJJ/J
II/!I//II//III/JI/I/1111//II/IIII/111/I/1/I/11/1/
111/ll/lll/1111//ll//1/ll/11/l/11/llllllllll/11//
11111/ll/1/1 --------------------- 11111111111111
111111/ll/// lll/1111/111/1
1/ll/11//1// ----------- 11/11111/11111
III/IIIII/II I ALTERNATE I 11/lllll/111/1
1/1///////// PROCESSI2 //111//11/////
11//ll/l/11/ ----------- 1111/11//11//1
1111//111//1 ----------- 11//11/l/11//l
111//ll//l/1 I ALTERNATE I 1111/111//ll/1
//////1///// PROCESSI2 //1///1//1/1/1
111/l//ll/11 ----------- /lll/111/11//1
11/ll/1/11// 1111//ll/111//
III/IIIII/// --------------------- /ll/111111111/
llll/ll/llllllll/lll/11/llll/lllll/l/1/lll/111111
111/lllll/ll//ll/lll/11111/lll/111111111111111111
111//IIJI//1 --------------------- ll/l/1111111/1
11111/111//1 111//lll/1/l//
lll///11/l/1 ------------ 1111/lll/111//
111111111111 I PARALLEL I lll/1111/1111/
///1/////1// PROCESS #3 /////1/////11/
1111/11111/1 ------------ 1/ll/111/1111/
l/11//11///1 ------------ 111//ll//l/1//
l/11//111//1 I PARALLEL I 11111111/111//
////1/1///11 PROCESS #3 //////////////
l/11//ll///1 ------------ 11111111111111
11111//11/11 ------------ 111//lll/1//l/
111111111//1 I PARALLEL I 1111/lll/11111
1/////1////1 PROCESS #3 //////////////
11//ll/11111 ------------ l/1/ll//ll/111
l/111//11/11 111/ll/1111///
11111//111// -------------- 1/ll//lll//l//
ll/11/llll/111111/ll/ll/111/lll/llll//llll//ll///
lllll/llll/lll//ll/lll/ll/111/lll//lll/ll/ll/11//
IIIIII/111/III/IIJ/IJI/I/II/II/1/1//III/IIIII//I/
lll/ll/1/lllllllllll/111111/lll/1//111/llll/1/1//
----------------~----------------------------~-

Fig. 3.3 The Data Mechanism of DCS Program Organization

46

1) Architectural Advantage :

From the architectural point of view, this more modulal

approach of data mechanism has not only given rise to a

cleaner semantics without "side effects", but it has also open

the way. for multiprocessing: with the "by-value" data

mechanism, individual concurrent processes can function in

parallel without interfere with each other in clashing for

references to the shared memory. Hence, extensive concurrency

can be obtained by multiprocessing many partial results in

parallel, which otherwise may run into the so called "Von

Neumann bottleneck": due to the "by reference" data mechanism

of Von Neumann architecture, system performance is critically

influenced by the I/O bandwidth of the system. Suppose that

the I/O bandwidth between shared memory and processors is 10

million bytes per second. If at least one byte of operand is

read from and another byte of result is written back to the

memory for each instruction, the maximum rate will b 5 MOPS

(Million Operation Per Second), assuming that fetch sequence

and execute sequence can be pipelined.

---, SHARED l<---
1

MEMORY

lOOns ---------- 5MOPS
at most

----------------------------INTERCONNECTION NETWORK

I INSTRUCTION
-------------->1 PROCESSOR 1--

However, this I/O problem will become especially severe when a

process of large computation is involved. Orders of magnitude

improvement on the throughput are possible only if multiple

computations can be perform on multi-processor per I/O access.

47

computations can be perform on multi-processor per I/O access.

Using a "by value" mechanism where data is passed directly

from instruction to instruction will make this become a

reality.

--------------\ ~~~ \ <----------------

\

----------) 5 MOPS
100 ns . possible

--
INTERCONNECTION NETWORK

--

I I I I I I I I I I

->1 P I P I P I P I P I P I P I P I P I P 1-

2) Hardware Advantage :

With the introduction of "by value" data mechanism within each

process, DCS is trying to avoid long-distance or irregular

wiring which arises from the global communication of "by­

referenc~' mechanism. The only global communication is

restricted at the process level. Once inside the process, a

self-timing scheme is used for synchronizing neighbouring

processors and passing data directly between them. This

modular approach will lead to a more organized, more regular,

and simpler hardware implementation, making way for the

ultimate chip implementation of DCS even more closer to

reality.

Looking from the system programmers' point of view, the program

organization of the Distributed Computer System will look very similar to

any conventional computer, except that the DCS has facilitated APis into

the conventional assembly languages, and hence the Associative Assembly

Language (AAL).

48

1 I EDITOR I I

,1 17

(Source Program File (

,1 17

1
------------------1 1 AAL Assembler I 1---------------------~ \ -------------------- l

\ 7 \
1 1

7 \ 7

(API object File ((ASsembly Listing File ((stsn Object File (

------------------1 1 API LOADER I I

I
,1 17

API

Program
Store

1 I

I
Instruction I

Memory
Buffer

1 1 SISD LOADER 1 1

,1 17

SISD
Program

Store

I I
I I ------------ I I ------------ I I _I \

<SP-~ \< -\Input Buffer1-- < - Conventional RAM)
\\- Control \I- ---------- - IIC \\- Von Neumann - \I
I\ System _1\ ------------- __ Network_\\ Processor I

-sP> >\Output Buffer\ > <IWr
-1 I ------------ -~I -------- - -\I -------------- \ 1 -

,I 17 ~I I\

I Byte-Organized\
Associative

Memory

Fig. 3.4 The Program Organization of the Distributed Computer System

49

The AAL is the super-set of APis and a SISD assembly language with

which the programmer uses to access BOAP and the SISD processor. The

choice of SISD assembly language is completely arbitrary, as the

preprocessor type design[61] of AAL Assembler will be able to cope with all

kind of assembly languages. For the sake of illustration, the Z-80

Assembly Language is used here as an example of an SISD assembly language.

The AAL program is usually input by the programmer into the system

editor before being assembled by AAL Assembler which contains a filter to

separate APls from the SISD assembly instructions. Three files are then

generated after Assembling.

1) API Object File :

This is a file of APls in the form of 48-bit mac~ine-code,

sometimes, referred to as Associative Machine Instructions (AMls).

c c c c c c c c c c c c T n clul
H H H H H H H H B B B B B I M S LABEL 0 LABEL 1
7 6 5 4 3 2 1 0 1 2 3 4 V 1 B D -- . --

011001010101011000000000100000000000000100000010
011001010101100110000000100000000000001100000100
011001010101101000100000100000000000010000000101
011001010110010100001000100000011111111111111110
011001010110011000000010100000011111110111111100
011001010110100110101010100000011111100111111011

;API 0
;API 1
;API 2
;API 3
;API 4
;API 5

After assembling, the API object file is loaded into the API

Program Store by the API Loader, ready for execution. In the DCS,

the API Program Store has artificially occupied 4K memory from

FOOO - FFFF on the system memory map, in which the most

significant 4 bits (B12 - B15) of the 16 bits instruction

address are used by the BOAP Control Unit as a signal to load APis

from API Program Store.

50

FOOO I
4 K

I
FFFF -----------

1<-48 bits->!

In the process of assembling, an Association Program Counter (APC)

is used to keep track of every address of APis. When an API is

assembled, its address is given by the APC to the MACRO generated

SISD LOAD instruction in place of that API in the AAL program,

which when executed will trigger the BOAP Control Unit to load the

corresponding API into BOAP. At the end of each operation, the

flow of control is returned to the Host Processor.

e.g. S(~T~ XlXX)BMR LABELO,LABELl ;SEARCH FOR 'T' ,THEN
;BRANCH TO LABELO IF
;MATCH ELSE LABELl.

will be replaced by the following SISD code

LD (OFOOOH) ,A

51

;CALL UPON BOAP TO
;EXECUTE THE API
;WHICH STORED IN
;LOCATION FOOO.
;CONTENT OF A IS
; IRRELEVANT.

2) Z-80 Object File :

This is a combined file of the SISD part and the MACRO generated

API replacement codes •

• PROC ASSIGNMENT

SNAME .EQU 0090H
CONTENT .EQU 0091H

.ORG OlOOH

------- ; LOAD THE STRING IDENTIFIER INTO AMA

LD
LD

LD

DEC

-LOOPl LD

\

LD

DEC
------ JR

A,(SNAME)
(OFOOOH) ,A

(OFOOlH),A

A

(OF002H),A
(OF003H) ,A

A
NZ,LOOPl

, LOAD SNAME IN A . CALL UPON BOAP TO , . EXECUTE THE AP Il , . WHICH STORED IN
' . LOCATION FOOO • , . CONTENT OF A IS
' . IRRELEVANT • , . EXECUTE API234 WHICH . '
; STORED IN LOC. FOOl . DECREMENT A ,
; EXECUTE APil FROM F002
; EXECUTE API234 FROM
; LOCATION F003
; DECREMENT A
; BRANCH TO LOOPl IF
; NOT ZERO

; SET DELIMITER FOR STRING'S IDENTIFIER
LD (OF004H) ,A ; EXECUTE APil FROM F004
LD (OFOOSH) ,A ; EXECUTE API234 FROM

; LOCATION FOOS

------ ; LOAD THE VALUE OF STRING INTO AMA
LD A,(CONTENT) LOAD CONTENT IN A

-LOOP2 LD (OF006H) ,A ; EXECUTE APil FROM F006

I LD (OF007H) ,A EXECUTE API234 FROM
; LOCATION F007

DEC A ; DECREMENT A
----- JR NZ,LOOP2 ; BRANCH TO LOOP2 IF

------- ; NOT ZERO

; SET DELIMITER FOR STRING'S VALUE
LD (OFOOSH),A , EXECUTE APil FROM F008
LD (OF009H) ,A ; EXECUTE API234 FROM

; LOCATION F009

; TERMINATE THE STRING BY SETTING OVERFLOW BYTE TO 0
LD (OFOOAH) ,A EXECUTE APil FROM FOOA
LD (OFOOBH) ,A ; EXECUTE API234 FROM

LOCATION FOOB

.END

STOP : Next part of the program

52

3) AAL Program Listing

This is the full listing of the AAL program plus error messages

if any.

.PROC ASSIGNEMT

SNAME .EQU 0090H
CONTENT .EQU 0091H

.ORG OlOOH

------- ; LOAD THE STRING
LD

- S('?' XXXX)BMR
RSTTD(S)

- W(IQF lXXX)
DEC

-LOOPl S('?' XXXX)BMR

I RSTTD(S)
W(IQF XXXX)
DEC

------ JR

IDENTIFIER INTO AMA
A,(SNAME)
STOP,+l

A

STOP,+l

A
NZ,LOOPl

; SET DELIMITER FOR STRING'S IDENTIFIER
- S('?' XXXX)BMR STOP,+l
I RSTTD(S)
- W('$' XXXX)

------- ; LOAD THE VALUE OF
LD

-LOOP2 S('?' XXXX)BMR

I RSTTD(S)
W(IQF XXXX)
DEC

----- JR

STRING INTO AMA
A,(CONTENT)
STOP,+l

A
NZ,LOOP2

; SET DELIMITER FOR STRING'S VALUE
- S('?' XXXX)BMR STOP,+l

RSTTD(S)
- W('IJ' XXXX)

; TERMINATE THE STRING BY SETTING OVERFLOW BYTE TO 0
- S['?' XXXX) STOP,+l

RSTTD(S)
- W[lOOOOOOO XXXX)

.END

STOP : Next part of the DCS program

53

3.3 THE MACHINE ORGANIZATION OF DISTRIBUTED COMPUTER SYSTEM

The term machine organization is used here to cover the way a

machine's resources are configured and allocated to support a program

organization. An examination of various program organizations under

development reveals three basic classes of machine organization[46].

1) Centralized Machine Organization :

Centralized machine organization consists of a single processing

element (P), control unit (C), and memory resource (M).

I c I

I P I

I M I

Fig; 3.5 Centralized Machine Organization

The processing element also contains a set of high-speed

registers, notably Program Counter (PC), which points to the next

instruction to be executed, and Instruction register (IR), which

holds the instruction currently being executed. Program execution

of the centralized machine organization proceeds in a SISD fashion

with the PC keeping trace of the program sequencing. It views an

executing program as naving a single active instruction which

passed execution to a specific successor instruction. This is
.

clearly the machine organization for the familiar Von Neumann

sequential control-flow Computer.

2) Packet switching Machine Organization :

Packet switching machine organization[48) consists of a circular

instruction execution pipeline of resources in which processing

54

elements and instruction memory unit are interspersed with 11pools

of work" interconnected by various networks. The organization

views an executing program as a number of independent information

packets, all of which are conceptually active, which may split or

merge. Each packet that is ready to be processed is placed with

similar packets in one of the pools of work. When a resource

become idle, it takes a packet from its input pool, processes it ,

places the modified packet in an output pool, and then returns to

the idle state. Parallelism is obtained either by having a number

of identical resources between pools, or by replicating the

circular pipelines and connecting them by the communications[46].

This feature has in fact made packet switching machine

organization the favourite candidate for the implementation of

data-flow program organization[48,49,51,52,53,54].

--<--- <--- DISTRIBUTION NETWORK <--- <---
--

\
. . . . \

V :: ::: V.

--------~------------------,-----------
' INSTRUCTION CELL l
------------------:::MEMORY::UNIT:::
------------------l INSTRUCTION CELL l
--

\
. . . . \

v :::: v

<--\ CONTROL UNIT \-->

I I
lPl::lPl

:P.E.UNIT:

lPl::lPl

I I
: : : :

---> ---) ARBITRATION NETWORK ---> --->
--

Fig. 3.6 Packet Switching Machine Organization

The Packeting Switching machine organization shown in Fig. 3.6

consists of five major units:

A) Memory Unit, consisting of Instruction Cells that hold the

instructions and their operands.

55

B) Processing Element Unit, consisting of processing elements

that perform operations on instruction packets.

C) Control Unit, Co-ordinating the transmission protocol between

the Memory Unit and the Processing Element Unit.

D) Arbitration Network, delivering executable instruction packets

from the Memory Unit to the Processing Element Unit.

E) Distribution Network, delivering data packets from the

Processing Element Unit to Memory Unit.

3) Tree Machine Organization :

Tree machine organization consists of identical resources

organized as a regularly structured hierarchy[57,58] such as a

tree, as shown in Fig. 3.7.

I

I c I
\

I \
I I P I \

I \
I \

I I M I \
I \

I --------- \
I \

I \
I \

--------- ---------
I

I c I
\

I c I
I \

I \ I \
I I P I \ I I P I \

I \ I \

I M I I M I
--------- ---------

Fig. 3.7 Tree Machine Organization

Each resource contains a processing element (P), control unit (C),

and memory capability (M). The organization views an executing

56

program as consisting of one large nested expression which is then

partitioned into the collection of hierarchically organized

resources. Execution is by a substitution process, which

traverses the program structure and successively replaces

reducible expessions by others that have the same meaning until a

constant expression representing the result of the program is

reached. This machine organization seems most applicable to

supporting the reduction form of program organization.

The Distributed Computer System is configured as centralized machine

organization, with its host processor virtually a conventional Von Neumann

machine, and its associative processor organized in a central control SIMD

architecture.

Conventional
Von Neumann

Processor

---~ .

INTERCONNECTION NETWORK

---I \

\ \

·1 Byte-Organized l
Associative

Processor

The Von Neumann processor is used here mainly as the host of the

system to co-ordinate activities such as program sequencing, scheduling,

task allocation and I/O control within the network, in addition to the

implemention of the conventional SISD operations. The Byte-Organized

Associative Processor (BOAP), on the other hand, is integrated in the

system to deal with the implementation of abstract data structures.

Communications are provided via the Interconnection Network. But, due to

57

the incompatibility of their machine-code instruction formats, functional

components of both processors are stored separately in two different

program stores.

API

Program
Store

Byte-Organized

Associative

Processor

__ I\
I/ Interconnection

II __ ,
\I

Network

__ I\

I/
II __ ,
\I

SISD
Program

Store

Conventional

Von Neumann

Processor

Fig. 3.8 The pistributed Computer System

3.3.1 The API Program StoFe

The API Program Stdre is consist of a 48-bit word AMI memory, a

Associative Program Counter (APC), an Address Control Unit, a

Associative Machine Instruction Address Register (AMIAR), and a

Associative Machine Instruction Register (AMIR). The API

program is kept in a 48-bit word AMI memory after being

assembled into Associative Machine Instruction. Loading is done

by the Host Processor via the Interconnection Network.

Requests for an AMI comes from the BOAP Control System in the

form of an AMI address, which it is then used together with the

content of APC to calculate the absolute address of the AMI and

load it into the AMI~

58

APC AMIR

---->
Address
Control

Unit

---->
Associative

Machine Instruction
Memory

Interconnection

I \

I I
AMIARI

-----> -----> ----->
(48-bit Word)

AMIR

Fig. 3.9 The API Program Store

3.3.2 The Byte-Organized Associative Processor

Network

In the reproduction of Fig. 2.6 (the system organization of

BOAP), it is shown that the Control System is like the host and

interconnection network within BOAP, that co-ordinates
.

activities and data transf~r within the associative processor.

---------------- ---------------
Instruction I

Memory
Buffer

\liT
-------------II ---------------II ---------------II : :1 Input Buffer I :

Scratch pad \1 \1 --------------- \1 Interconnection
\ Control System \ -------------- \ Network

Buffer - - I Output Buffer 1-
-~ I -~I --------------- -~I

,117 I \ - -
II

1 I Associative

Memory

59

3.3.2.1 The BOAP Instruction Memory Buffer

The BOAP Instruction Memory Buffer is a two register

memory block that contains the next two alternative

examine parts of the current AMI, to support the

"Pipelining" of the Fetch and Examine-Execute Cycles.

--

->\ Next Part of AMI if MR = 0 I
Instruction __ / ----------------------------
Selector ----------------------------

\ Next Part of AMI if MR = 1 I

--

Fig. 3.10 The BOAP Instruction Memory Buffer

The <AMil> Instruction'Format

The <AMil) of BOAP uses a 2-address instruction

format[62] to addre~s the (AMI234> parts (examine

phases) of the instruc~ion.

\<------------------------ AMI 1 -------------------------->\
1 25 26 27 29 30 33 41 48

' Wd Spec \TBV\ \Dil\ CMB \000\ Label-0 \Label-l\

These two addresses {Label-0 and Label-l) of the current

<AMil) are sent to the Address Control Unit of the API

Program Store, for the fetching of next two alternative

parts {(AMI234>) of this AMI to be loaded into the BOAP

Instruction Memory Buffer. The destined next <AMI234>

is pending on the outcome of the Match Reply (Ma): If MR

• 0, the <AMI234) in the upper register will be loaded

into the Control System for execution, otherwise, the

(AMI234) in the lower register will be chosen.

60

The <AMI234) Insturction Format

The <AMI234) uses a 1-address instruction format for the

<AMI234> part of the instruction to specify the

addresses of its next instruction. Since only one next

instruction is involved, it is fetched and loaded into

both upper and lower registers of the Instruction Memory

Buffer.

\<----------------------- AMI 234 ------------------------->\

1 25 26 27 29 30 33 37 39 41 48

\ Wd Spec \PF \ R/W \DI4\ CMB \USDI ACD IDI21 CLEAR I Label \

3.3.2.2 The BOAP Input Buffer

The transfering of data between BOAP and Host Processor

is provided by the Input Buffer and Output Buffer. Both

buffers are structured as a 1K x 12-bit RAM, but

function as a FIFO (First In First Out) queue.

(IQE)

,, \7

--------- Queue
Input I End Buffer ----->

Address
Control ----->

Unit Queue
--------- Front

I \

I l
(IQF)

IBR

\l l7
------------------- 1K

-------------------l//lll/l/////1/l///

------------------- 0

,I 17
-------------------IBR
--

Fig. 3.11 The BOAP Input Buffer

61

Interconnection

Network

The Input Buffer deals with the incoming data traffic

from the Host Processor via Interconnection Network:

data is placed at the end of the Input Buffer Queue by

the Input Queue End (IQE) pointer as it comes in, and

later is transfered into the Control System under the

control of the Input Queue Front (IQF) pointer. Both

IQE and IQF pointers are always reset back to 0,

whenever they have gone beyond the upper limit of the

Input Buffer.

3.3.2.3 The BOAP Output Buffer

The BOAP Output Buffer is organized similarly to the

FIFO queue of the Input Buffer. However, it deals with

the outgoing data traffic from the BOAP to the Host

Processor via the Interconnection Network.

(OQE)

Output
Buffer

Address
Control

Unit

I \

I I
(OQF)

OBR

\l 17
Queue ------------------- lK

End
-----> -------------------lllllllllllllllll/1
-----> -------------------

Queue
Front ------------------- 0

,I 17
OBR

_,,
-~~

Fig. 3.12 The BOAP Output Buffer

Interconnection

Network

The data from BOAP is placed at the end of the Output

Buffer Queue by the Output Queue End (OQE) pointer, and

then transfered to the Host Processor via the

Interconnection Network by control of the Output Queue

62

Front (OQF) pointer. Both OQE and OQF pointers are

always reset back to 0, whenever they have gone beyond

the upper limit of the Output Buffer.

3.3.2.4 The BOAP Scratch Pad Buffer

The BOAP Scratch Pad Buffer is used as a working storage

for data transformations and data transfer within BOAP.

It is also structured as a 1K x 12-bit RAM block. Data

usually comes in from the ODR of the Byte-Organized

Associative Memory via the Control System, and vice

versa into the IDR of BOAM.

------------------- ,,_

Scratch ~----->
Pad ---->

Address ----->
Control ----->

Unit ----->
I \

' ' (SPA)

SPR.

RAM

(12-bit Word)

-------------------SPR

_, \
-"

Fig. 3.13 The BOAP Scratch Pad Buffer

3.3.2.5 The BOAP Control System

Control

System

The BOAP Control System is the host within the

associative processor that oversees and co-ordinates

activities such as sequencing; scheduling; and I/O

control of Assocative Machine Instruction (AMI), within

BOAP.

63

---1 Wd Spec \PF I R/W \DI4} CMB }USD} ACD }DI2} CLEAR 1 Label I
---\48-Bits\

\ T
---MACHINE INSTRUCTION DECODER

-------------- r-Bitsl \117 1 BEAT CONTROL I
-------------- ------ ------

1 I I SPAR I I MIAR }
v v \ T ----- ------

--
ICh Spec\ CB Spec I RW \DI4ICMBI IAMI4
--I IAMI3

IPF=OI 1 DI21 CLEAR I AMI2

1 17 25 26 27 29 30
---ICh Spec} CB Spec lTBV 1 1 Dill CMBI I AMil

D
A
T
A

T
R
A
N
•
R
E
G

OVT ---------- --------- -------------
--->\ OVERFLOW ~------>~ PLT/PLB ~<------~ MATCH-REPLY ~<--

-> CONTROL ------> CONTROL CONTROL
0 ---------- --------- -------------v
B ~ I I !

v v

M
R

Fig. 3.14 The BOAP Control System

The Machine Instruction Decoder:

At the fetching phase, the <AMil> and <AMI234> parts of

AMI are loaded from the Instruction Memory Buffer into

the Instruction Register of the Control System. They

are then separated by the Machine Instruction Decoder

into a four beat sequence and addresses of <AMI234) or

address of next instruction.

64

The Data Transfer Register:

In BOAP, every request for data transfer among various

buffers (Scratch Pad, Input and Output Buffers) has to

go through the Data Transfer Register of the Control

System before reaching their destination. In the case

of Scratch Pad Buffer, the address of Scratch Pad Buffer

is kept in the Scratch Pad Address Register (SPAR) for

the SPA in Scratch Pad Buffer (Fig.3.13).

The Feed Back Control Network:

The feed back signals from the associative memory

modules: Namely OVT/ OVB and MR, are first of all feed

into the OVERFLOW CONTROL and MATCH-REPLY CONTROL

respectively, for processing before driving the PLT/PLB

CONTROL to set the PLT/PLB of various memory modules.

65

3.4 SUMMARY

For almost the last fourty years, the principles of computer design

have largely remained static, based on the model of Von Neumann computer.

However, as computing moves from a sequential world into a multiprocessing

environment, distributed processing has become a necessity to bring

together a large number of computing elements providing either a general­

purpose or a special-purpose function. They may be broadly classified as

control-flow, data-flow and reduction architecture in terms of their

computation organization, program organization, and machine organization.

The Distributed Computer System with its dual processor configuration

is based on the control-flow architecture, which includes the host

processor--a conventional Von Neumann machine, and an associative processor

which operates as a content-driven SIMD architecture. Apart from this

distinct feature, the only exception is the physical separation of data

storage (arguments) from the control storage (program): arguments in

associative memory and program in RAM respectively. The design of DCS is

based on the middle-out strategy by first designing the conventional

machine lev~l of the computer system, which including its computation

organization~ program organization and machine organization, before using a

bottom-up approach to design the assembly language and its machine

instructions in the successive chapters (Chapter Four & Five). In Chapter

Four, the formal definition of the Associative Assembly Language (AAL} will

be presented as the means for programming the DCS, which followed by the

design of its machine instructions to drive the hardware of the DCS.

66

CHAPTER FOUR

THE DESIGN OF THE ASSOCIATIVE ASSEMBLY LANGUAGE

4.1 The Examine Phase of API (APll)

4.2 The Execute Phase of API <API234)

4.3 Summary

Assembly languages differ in a significant respect from the

conventional problem-oriented languages in that there is a one-to-one

mapping between machine instructions and statements in the assembly

program. In other words, assembly language is just a mirror image of its

machine code instruction in symbolic form, which it is therefore machine

dependent, and has access to all the features and instructions available on

the target machine (host machine). However, assembly languages for

different machines have sufficient resemblance to one another to allow a

discussion of assembly language in general. Assembly language instructions

usually have four fields:

1) Label Field :

Labels, which are used to provide symbolic names for memory

addresses, are needed on the executable instructions so that the

location of the instructions can be referenced.

2) Operation Field :

The operation field contains either a symbolic abbreviation for

the opcode or a pseudoinstruction (which is a command to the

assembler). T~is is usually the most distinguishable field by

which the flavo~r of the machine is reflexed. However, the choice

of an abbreviation is often a matter of taste for individual

assembly language designers.

3) Operand Field :

The operand fields are used to specify the addresses or registers

whereby operands can be found.

4) Comments :

The comment field provides a place for the programmers to put

helpful explanations of how the program works for the benefit of

other programmers as well as the author himself.

The Associative Assembly Language (~\AL) which is the superset of APls

and a S ISD assembly language, follows the same general pat tern of other

assembly languages in the design of instruction format.

67

LOOP!
MR=l

HR=O

s
M(CLBTT)
RSTTD(S)
w

DEC
JR NZ,

('?' XlXX)BMR MR=O,MR=l

(IQF lXXX)

A
LOOP!

other <API234)

SEARCH FOR '?'
CLEAR BITS TRUE TAGS
RESOLVE TRUE TAGS DOWN

; WRITE TO ALL TAGGED
WORD-ROWS WITH THE
OPERAND FORN THE INPUT
BUFF~R QUEUE FRONT

; DECREMENT REGISTER A
; GO BACK TO LOOPl H' > 0
; PROCEEDED WITH THIS

1<-LABEL->I<OPCODE>I<-OPERAND->1<-NEXT
· EXECUTE PHASE IF MR = 0

INS.->1<------ COMMENT ------>1

Governed by the control-flow program organization, AAL uses the

automatic sequencing of a program counter for the selection of next

instruction. This mechanism allows instructions stored in consecutive

memory locations to be fetched, examined, and executed one after the other.

n1e program counter can also be explicitly altered by a branch instruction

in order to accomplish the flow ,of control to be transfered to a specified

location other than the next one in the sequence. Hence, the address field

for next instruction is not ~eeded in most of the AAL instructions.

However, at the computation organization level, the API uses a rather

different control structure to maintain the flow of control: based on the

content-driven architecture, ~he API needs to split its instruction

logically into two separated statements in order to comply with the rule of

content-driven organization: notably (APll) and <API234).

Associative
Computation

Cycle

1<- Beat 1 ->1<- Beat 2, Beat 3, Beat 4 ->1
--

1

-> <API 234) --
MR=OI Statement 1

--> --- <API 1> ----> ------------ -->
Statement MR=ll Statement I

-> <API 234) --
--

The flow of control from <APil) to whichever <API234) is governed by

the outcome of SEARCH operation in (APll), therefore, the addresses of the

two alternative <API234) are explicitly included in the instruction format

of the <APil> statement.

68

LOOPl S('?' XlXX)BMR MR=O,MR=l
MR=l M(CLBTT) RSTTD(S) W(IQF lXXX)

MR=O an alternative <API234)

<APil) PART OF API
<API234) PART FOR MR = 1

<API234) PART FOR MR = 0

Moveover, in order to improve the readability of APis, and be

consistent with the general pattern of other assembly languages, the

<API234> part of API is further split into three separated lines.

LOOPl

MR=O

S('?' XlXX)BMR
M(CLBTT)
RSTTD(S)
W(IQF lXXX)

MR=O,+l

DEC A
JR NZ,LOOPl
an alternative <API234>

SEARCH FOR '?'
; CLEAR BITS TRUE TAGS

RESOLVE TRUE TAGS DOWN
; WRITE TO ALL TAGGED

WORD-ROWS WITH THE
OPERAND FORM THE INPUT
BUFFER QUEUE FRONT
DECREMEMT REGISTER A
GO BACK TO LOOPl IF) 0
PROCEEDED WITH THIS
EXECUTE PHASE IF MR = 0

\<-LABEL->\<OPCODE>\<-OPERAND->\<-NEXT INS.-) <------ COMMENT------>\

Nevertheless, at the progr~m organization level, API as a whole (the

Associative Computation Cycl~ is being treated a single instruction
t

similar to all other SISD instructions, in which the flow of control is

sequenced by the program counter.

<ASSOCIATIVE COMPUTATION CYCLE> : :• <APll STATEMENT><API234 STATEMENT>

Associative --------------- ------------------
Computation-->\ APll satement \---->\ API234 statement 1-->

Cycle --------------- ------------------

69

4 .1 THE EXAMINE PHASE OF API (APll)

The examine phase of API is always the SEARCH instruction which used to

locate the potential candidates within the AMA for subsequent READ/ WRITE

operations. The functions of <APil) are shown as follows:

1) Reset TRl before the SEARCH operation.

2) SEARCH(complement><DD<word spec)

Where the AMA is searched for the domain of word-rows which match

the effective data of lOR, as interpreted by (complement) and (01).

3) For all matching word-rows set their tags in TRl.

4) Set MRR to logical '1' if one or more tags set.

5) Load the Associative Program Counter (APC) with the addresses of

next two alternative parts of API (<API234)) into the BOAP

Instruction Memory Buffer ready to be loaded into the BOAP Control

System pending on the outcome of MR~

(APil STATEMENT) : := <LABEL><TAB><APll)(TAB) ;<COMMEMT><CR>

(APil) : := S(BSU>((WORD SP~C))<MR BRANCH> l

S(BSU> [(WORD SPEC)) <MR BRANCH>

-(s)- ----- -(()- -())-
1 I I I I I --------- I I

APil -> -> -(0)- -> -!word specl-- ->lMR branchl->

~--(SC)-1 1_(1)_1 ~-([)-~ --------- ~-(])-~ ---------

4.1.1 The <WORD SPEC)

In (WORD SPEC), three different kinds of addressing schemes are

used: namely Immediate Addressing, Scratchpad Addressing, and

Buffer Addressing.

70

word spec

-------1 immediate data 1---------

\ ---------------- I --------------------
-->-------1 scratchpad address 1---------->

\ -------------------- I ----------------------------__ , input buffer queue address 1--

1) Immediate Addressing Scheme

In the Immediate Addressing Scheme, the actual data to be

used for searching is embedded in the (WORD SPEC). The BOAP

supports two types of data organizations.

A) Text Symbols Mode

Each word-row of the Associative Memory Array (AMA) is

allocated to a single text symbol comprising an 8-bit

character field and a 4-bit control field.

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4

E
-----------~-----------------------------------

1
<------Char~cter Field-------->~<-C.B. Field ->~
<---- 8-bit Character Code ---> <-C.B. Field ->

-> MSBI<---- 7-bit ASCII Code ---> <-C.B. Field ->

1<------------- 12-bit Bit Vector------------->\

The choice of codes within the character field can be

either one of the following:

I) 8-bit Character Code

S('T' XlXX)BMR @LABELO ,@LABELl ; SEARCH FOR 'T'
; WITH C.B.= XlXX

Where T is the 8-bit character code.

II) 7-bit ASCII Code

Only Bit-0 to Bit-6 of the character field are used

for the ASCII code, and remaining 7th bit (MSB) is

be used as a extra Control Bit.

71

S(M/'k' XlXX)BMR @LABELO,@LABELl

where M is the Most Significant Bit

K is any ASCII character.

B) Bit-Vector Mode :

In contrast with Text Symbols Mode, the Bit-Vector Mode

organizes <WORD SPEC) into a 12-bit vector.

S[BBBBBBBBBBBB]BMR @LABELO ,@LABELl

Where : := XI 0 I 1, a pair of square brackets is used

here to distinguish Bit-Vectors from the Text Symbols

which use instead a pair of round brackets.

----(')--\ 8-bit character code 1--(')-\CB spec\-

\
->(X)- --~------------------- '-===----

immediate I I - ---------------- I
-->-----)(0)- -(/)--(')-\7-bit ASCII code\-(')-> ->

data I' l ~ --------------- I -)(1)-

--------------->\bit vector!---------------------

-)(X)-- -)(X)-- -)(X)-- -)(X)--
1 II II II I

CB spec ------)(0)------)(0)------)(0)------)(0)----->
I I I I I I I I
-)(1)-- ->(1)-- ->(1)-- -)(1)--

-)(X)--
1 l

bit vector ---------------)(0)------------------->

I l 1 \"" 12 ->(1)--

<--------------------

72

2) Scratch-Pad Addressing Scheme

Scratch-Pad is the working area between IDR and ODR for

storing intermediate data. The Scratch pad address, when in

use, must start with @ to distinguish API Scratch-Pad

address from SISD RAM address, and is written in one of the

following forms:

A) Direct Addressing Mode

a) Numbers (between 0 to 1023)

S(@164 XlXX)BMR @LABELO ,@LABELl SEARCH WITH THE
OPERAND AT LOC.
164 IN S.P. AND
SET C.B.= XlXX

b) Symbols

S(@ADDR XlXX)BMR @LABELO ,@LABELl

S(@ADDRESS)BMR @LABELO ,@LABELl

The Control Bits setting can either be taken directly

from the Scratch-Pad or set in the <APil> statement.

B) Relative Addressing : Expressions

S(@ADDR+l XlXX)BMR @LABELO ,@LABELl

----------->1 address l----------

1
--------- l ->(X)- ---

\ l --------- l
--->(0)-->-(/)--->\ address l--

SEARCH WITH THE
OPERAND AT ONE
AFTER @ADDR IN SP

1

'->(1 >-' ---------
-(+)- ---------------

----- l l ------ l l
scratchpad -> -->\label\--> -->\number\-------- ->

I
----- '-<->-' ------ '-< ,-------, l)- CB spec -

-(X)- -(+)-
\ I ----- l l -----
--<o>--><1>-llabell- -lnumberl-
l_(l)-l ----- '-<->-' ------

73

address

------>1 label 1------
1 ------- I

----------> -----> I -------- I
--(@)-->1 number 1--

number -------------->1 digit 1--------------->
1 o <~ dt;t;-<= 1023 1 < 5
<-----------------------

------------1 empty 1------------
1 ------- I

label -----> ----->
I --------- I
--(@)------1 Ch.Spec 1---------

1 -------- I < 6
<----------------

--->1 8-bit character code 1---
1 ----------~----------- I

Ch.spec ---> 4 --->
I ------------------ I ----->1 7-bit ASCII code 1-----

3) Buffer Adressing Scheme

In (APil), only Input Buffer addressing is used for

buffering input data from the Host processor via an

Interconnection Network. The Input Buffer functions as a

word-organized FIFO (First In First Out) queue: incoming

data is placed at the end of the queue, and outgoing data is

taken from the beginning of the queue pointed at by the IQF

(Input-Buffer Queue Front).

74

Interconnection \
Network

1023

------------------- <--Queue End

T
lllll//l/1/llll/l/1
IIIII/ Input 111111
/////1 Buffer //Ill
II/IIIII/II/IIIII/I

Relative Position
I

------------------- <--Queue Front
(IQF)

0

IDR

l<-----12 bits----->1

S(IQF lXXX)BMR @LABELO,@LABELl ;_ SEARCH WITH OPERAND

S(IQF)BMR

Or alternatively,

;· AT THE QUEUE FRONT OF
; INPUT BUFFER, AND SET
; CONTROL BITS = lXXX

@LABELO,@LABELl ;- SEARCH WITH SAME
;: OPERAND AND C.B.
f SETTING FROM IQF
•

a relative addressing with reference from

the queue front can be used.

S(IQF+3 XXlX)BMR

S(IQF+3)BMR

@LABELO ,@LABELl

@LABELO ,@LABELl

------------>(IQF)-------------

1,->(X)-, I
--->(0)-->--(I >-->(IQF)----

\ 1->(1 >-' \ ---------------1
IBQ address -> - ->

' -------- ' ' ------- 1 -)(IQF)-->(+)--l number 1---- -(>-lCB specl-

1,-)(X)-1 -----=:-____ I
~->(0)-,>(1)-(IQF)-(+)->1~~~=:1-

-)(1)-

75

4.1.2 The (BSU)

The (BSU) defines the functions of the Bit Select Unit: namely,

Data Masking and Data Complementing.

1) The data masking

The BOAP has no Mask Register. Hence, there can be no

explicit data masking during SEARCH or WRITE operations.

Instead, two modes of implicit data masking are provided.

A) Uncondi tiona! Data Masking

Each bit position in the DIR can be loaded with the

tertiary datum (D), where (D)::= XIOI1, and X implies

that the corresponding bit-column is to be masked during

SEARCH or WRITE operations.

B) Conditional Data Masking

In addition to the Unconditional Data Masking, bit­

columns of AMA can be masked accord~ng to the state of

Data Identity (Dl).

Content of IDR I DI = 0 I DI d 1 I DI = X

0 0 I Masked I 0

1 I Masked I 0 1

X X X X

With the inclusion of this data masking, one could

select and mask on either '0' or '1' within IDR.

Mnemonic! Function

S I Search with the true content of IDR

SO I Search with (Dl) • 0

S1 I Search with <DI> • 1

76

2) The data complementing

Data complementing is used for the selection of effective

data for SEARCH or WRITE operation by the true or

complemented content of !DR.

Content of IDR I CMW = 0 I CMW = 1

o 1 o 1

1 1 1 o
X X X

--

!
Mnemonic! Function

---;c---~-;~;~~h-;~~h-~h:-~~~;i~~~~~~~-~~~~~~~-~~-i~;-
--

To sum up the data organization of BOAP; we could view the Data

Masking as a filter, and Data Complementing as an invertor of

some kind. With the combination of both, a c9mprehensive

variety of data transformations can be achieved.

1 -~~~:::~=-~:::_:~:--~~~=~~~==~-CMW•O I CMW•1
---Content of IDR I DI=O DI=1 DI•X 1 DI•O DI=1 DI•X

0 10 X 0 I 1 X 1

1 I X 1 1 I X 0 0
---X I X X X I X X X

---Mnemonic! Function

l Search with complemented content of IDR,
sco

subject to <DI> • 0

l Search with complemented content of IDR,
SC1

subject to <DI> • 1

77

1 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4

I D R I 0 I 0 I 0 I 0 I 1 I 1 I 1 I 1 I X I X I X I X I

MASK (DI) I 0 I 0 I 1 I 1 I 0 I 0 I 1 I 1 I 0 I 0 I 1 I 1 I

COMPLEMENT 1 0 I 1 I 0 I 1 I 0 I 1 I 0 I 1 I 0 I 1 I 0 I 1 I

l l l l l l l l I l I l
v v v v v v v v v v v v

EFFECTIVE DATA 1 0 I 1 I X I X I X I X I 1 I 0 I X I X I X I X I

In Bit-Vector Mode, the Data Masking and Data Complementing are

applied to all 12 bits, whereas only the Control Bit Field is

effected in the case of Text Mode.

4.1.3 The <MR branch)

With the two possible alternative <API234), the <APil) adopts a

2-address instruction format.

..
1 S('T' X1XX)BMR @LABELO ,@LABELl ; SEARCH FOR 'T'

2 S(IQF X1XX)BMR @16,@17 SEARCH IN AMA WITH
THE (WORD SPEC) . CURRENTLY STORED , . AT THE TOP OF THE , . INPUT BUFFER. THEN , . EXECUTE (API234) AT , . ADDRESS 16 IF MR = 0, , . ELSE <API234) AT , . ADDRESS 17 IF MR = 1 ,

3 S(IQF X1XX)BMR +1 ,+2

I<Label>I<Opcode, Operand>!<- Next Inst. ->1<--- Comments --->1
Addresses

Syntactically, <MR branch) may be either partially or totally

omitted.

A) <MR branch) totally omitted:

S('T' X1XX) DEFAULT IS +1 ,+2

78

An empty label will be interpreted by the assembler as

branch to the next address location immediately after the

current one for MR = 0, and the second immediately adddress

location for MR = 1.

empty implies BMR APC+ 1 ,APC+2

Where APC is the Associative Program Counter.

B) <MR branch) partially omitted:

S(IT' XlXX) BMR @LABELO

S('T' XlXX)BMR ,@LABELl

DEFAULT IS @LABELO ,+1

DEFAULT IS +l,@LABELl

Besides the unique feature of this addressing format, <APil>

uses Relative Addressing to select two of its <API234)

statements which must be either symbolic labels or displacement

numbers, and are written in one of th~ following forms:

A) Displacement Numbers (between -128 to +127)

S(@l64 XlXX)BMR +10 ,+12

B) Symbolic Labels

; RELATIVE BRANCH TO 10
; INST. AHEAD IF MR ... 0,
; OR BRANCH TO 12 INST.
; AHEAD IF MR ... 1

S(@ADDR XlXX) BMR @LABELO ,@LABELl BRANCH TO @LABELO
; IF MR = 0, OR

BRANCH TO @LABELl
IF MR ... 1

The Symbolic Label must start with @ to distinguish API

statement addresses from SISD instruction addresses.

79

------------>1 empty 1-----------
1 ------- I

MR branch --> -->
I ------ ------ I
->(BMR)->IlabelOI-><,>->Ilabelll-

-(+)-
------- 1 1 ------------------labelO --> ->1 label 1- -1 relative address 1->
------- 1 I ------------------

-<->-

label! ------->1 labelO 1-------->

relative address -->----------1 offset 1---------------->

l -128.<=-~ff;~-<= +127 l < 4 :
<-----------------------

80

4.2 THE EXECUTE PHASE OF API <API234)

The <API234) is the combination of API2, API3 and API4, which has two

variants of these sequences to allow for domain modification before or

after function executions.

1) The Pre-Function Associative Computation Cycle

A) Non Group-Run Associative Computation Cycle

Beat 0 Fetch phase (LOAD instruction)

Beat 1 Examine phase (SEARCH operation)

Beat 2 Execute phase 1--Domain modification (Clear option)

Beat 3 Execute phase 2--Domain modification (Tag manipulation)

Beat 4 Execute phase 3--Function execution (READ/WRITE oper.)

B) Group-Run Associative Computation Cycle

Beat 0 Fetch phase (LOAD instruction)

Beat 1 Examine phase (SEARCH for TRl)

Beat 2 Execute phase 1--Domain modification (SEARCH for TR2)

Beat 3 Execute phase 2--Domain modification (Group-Run)

Beat 4 Execute phase 3--Function execution (Restricted)
(READ/WRITE)

2) The Post-function Associative Processing Cycle

Beat 0 . Fetch phase (LOAD instruction) .
Beat 1 Examine phase (SEARCH operation)

Beat 2 . Execute phase 1--Domain modification (Clear option) .
Function execution 1 (READ/WRITE)

Beat 3 Execute phase 2--Domain modification (Tag manipulation)

Beat 4 Execute phase 3--Function exection 2 (Update operation)

(API234 STATEMENT> : :=<LABEL><TAB><API234> ;<COMMENT><CR>

---------------------------->1 pre-function modification 1--
l --------------------------- ' ------

API 234 --> ->\branchl--> ' ---------------------------- ' ------->, post-function modification 1-

81

4.2.1 The Pre-Function Non Group-Run <API234)

In the Pre-Function Non-Group-Run <API234>, it consists of

CLEAR OPTION ((API2>)

TAG MANIPULATION (<API3))

READ/WRITE FUNCTION (<API4))

pre-function modification -->lmod. 21->lmod. 31->lfun. 41-->

API2 : Clear Options

The CLEAR options are designed to clear the bit-columns of

tagged word-rows which are related to the content of IDR used

during beat 1 SEARCH operation.

(MOD. 2) : :• <EMPTY> 1
M(<CL>)<TAB>;<COMMENT><CR>I
M{DI>(<CL>)<TAB);(COMMENT><CR>

<CL> :;a CLABl
CLBTTI
CLBCT

In these CLEAR operations, bit-columns are selected by the <DI2>

and use the content of IDR left over from beat 1 SEARCH

operation. The following table shows how the BSU enables the

selected bit-columns for the subsequent CLEAR operation.

I Logical content of IDR

(DI2> I 0 1 1

0 I e 1

1 1 e

--------------------------------X e e

e = enable

82

Whereas word-rows are activated for the specified CLEAR

operations in according to the option of <CL> chosen and the

logical content of TRl, as shown in the following table.

!Logical content of TR1
--Specifications l <CL> 0 l 1
--No Clear 1 l
--Clear bits on true tags I CLBTT I 1 a

Clear bits on complemented tags! CLBCT l a I
--

Clear all bit 1 CLAB a 1 a

a = activation

1) Text Symbols

In the case of Text Symbols, only Control-Bits will be

cleared: The Control-Bits are used as markers to mark

positions within a record or field. Propagation of these

markers will then be used to chain up a number of fields or

records, but physically, markers can not be propagated from

one word-row to the others, instead the markers of present

stage are cleared before the new markers of adjacent word­

rows can be created.

S('T' XlXX) BMR + 1 ,+2
M(CLBTT)
PTT(U)
W(* OXXX)BRN @NEXT

, CLEAR BITS TRUE TAGS

Since CB2 alone was used during beat 1 SEARCH, only the CB2

column will be enabled for CLEAR operation.

83

Ch. spec. CB spec.

IDR I T IXIliXIXI

1 I 1 I
BSU 1 I 1 I 1 1 I I I I e I e I e I e I

1 1 I I
v v v v TRl WSU

AMA

2) Bit-Vectors

0
c c c

0
B B B

1 3 4
0

1
0
1
0
0
0
1

a

a

a

For Bit-Vectors, the CLEAR operations will affect every bit

which has been selected in IDR during beat 1 SEARCH

operation.

S[XXXXllOO XXXX] BMR +1 ,+2
·M(CLBCT) CLEAR BITS COMPLEMENT TAGS
PTT(U) .
W[XXXX1111 1XXX]BRN @NEXT

Ch. spec. CB spec.

IDR lxlxlx1x1ll1lotol txlxlxlxl

11\lllll 1111
-------------------------BSU lele1elele1elele\ 1e\e1e1el

11111111 1111
v v v v v v v v v v v v TR1 WSU
-------------------------0 1 0 1 0 1 0 0
1 1 1 1 0 0 1 0
1 0 1 0 0 0 1 1

AMA 0 0 0 0 0 0 0 1
00110000
0 1 0 1 0 0 1 1
1 1 1 1 1 0 0 0

1
0
0
0
0
0
1

a
a
a
a
a

m ---------------------->1 empty 1-----------------------
o I ------- I
d--) ----- -(CLBTT)- --)

~-)(M)-) 1 -(0)-l(()-l-(CLBCT)-l)();)->1~~;;~~~~->1-~;-, __ l 2
I I I I ------- -----<1>- -(CLAB)-

API3 : Tag Manipulations

The tag manipulations of this <API234) provide programmer­

control over the mapping between the tags in the TRl and the

word-rows which will then be activated for function executions.

<MOD. 3) ::= <TAB)(PROPAGATE OPTIONS)(TAB);(COMMENT)(CR>\
<TAB)(RUN OPTIONS)(TAGS);(COMMENT)(CR)

(PROPAGATE OPTIONS) ::=<PROPAGATE TAGS>(<DIRECTION>)

<PROPAGATE TAGS) ::~ PTT\
PCT
RSTTUI RSTTD
RSCTU
RSCTD

<PROPAGATE TAGS) ::= D\S\SD\U\UD\US\USD

<RUN OPTIONS) ::=<RUN TAGS)((DIRECTION>)

<RUN TAGS) : := EIRI
MOR

There are two types of tag manipulations available for Non-Group

Run Pre-Function <API234).

1) PROPAGATE TAGS ACTIVATION

A) Propagate Options :

The propagate options select the tagged word-rows with

PTT (Propagate True Tags) or untagged word-rows with PCT

(Propagate Complement Tags) for subsequent word-row

activations. The propagation <Direction) allows the

85

activations to be extended beyond the contents of the

Tag Register (TR). The following table shows how word­

rows could be activated for each (Direction) selected

when a tag is set in word-row n of the TRl.

(Direction) I Activated word-row

(U) (S) (D) I n-1 n n+l

D a

S I a

5 D I a a
----------------------------------u I a

u D a a

u s a a

U S D a a a

U = Up (B end --> T end)

D = Down (T end --> B end)

S = Straight a head (only TT or CT word-rows)

S('T' XlXX)BMR +1,+2
M(CLBTT)
PTT(U) PROPAGATE TRUE TAGS UP
W(* OXXX)BRN @NEXT

Ch. spec. CB spec.

!DR I T

BSU I I I I I I I I I I I I I I

AMA

c c c c

B B B B

1 2 3 4

86

'IRl WSU
* overflow

at T-end 1
0
1
0
0
0
1

a OV'I • 1

a

S('T' X1XX)BMR +1,+2
M(CLBTT)
PCT(D) PROPAGATE COMPLEMENT TAGS DOWN
W(* OXXX)BRN @NEXT

Ch. spec. CB spec.

!DR I T lxllJXIXI

B su I I I I I I I I I I I I I I

AMA

B) Resolve Options :

c c c c

B B B B

1 2 3 4

TR1 WSU

1
0
1
0
0
0
1

a

a
a
a

The <Resolve Tags) are used to isolate a particular

word-row from the other selected word-rows: it inhibits

all but the first (either from the T-end or B-end)

activated word-row for function execution.

a) Resolve True Tags Up : RSTTU

S('T' X1XX)BMR +1,+2
M(CLBTT)
RSTTU(S)
W(* OXXX)BRN @NEXT

; RESOLVE TRUE TAGS UP (S)

Ch. spec. CB spec.

!DR T IXIliX\XI

BSU ' I I ' ' ' l l ' l ' ' ' l -------------------------

AMA

c c c c

B B B B

1 2 3 4

87

TRl WSU

1
0
1
0
0
0
1 a

b) Resolve True Tags Down : RSTTD

S('T' XlXX)BMR+l,+2
M(CLBTT)
RSTTD(D) RESOLVE TRUE TAGS DOWN (D)
W(* OXXX)BRN @NEXT

Ch. spec. CB spec.

!DR I T

BSU I I I I I I I I I I I I I I

AMA

c c c c

B B B B

1 2 3 4

c) Resolve Complement Tags Up RSCTU

S('T' X1XX)BMR +1,+2
M(CLBTT)

TRl wsu
1
0 a
1
0
0
0
1

RSCTU(U) ;·RESOLVE COMPLEMENT TAGS UP(U)
W(* OXXX) BRN @NEXT

Ch. spec. CB spec.

IDR I T

B su ' ' ' ' ' ' ' I I ' ' ' ' ' -------------------------

AMA

c c c c
B B B B

1 2 3 4

88

TRl WSU

1
0
1
0
0
0
1

a

d) Resolve Complement Tags Down RSCTD

S('T' X1XX)BMR+1,+2
M(CLBTT)
RSCTD(D) RESOLVE COMP. TAGS DOWN (D)
W(* OXXX)BRN @NEXT

Ch. spec. CB spec.

IDR T

B SU 1 1 1 1 1 1 1 1 1 1 1 1 1 1

c c c c

AMA B B B B

1 2 3 4

TR1 WSU

1
0
1
0
0
0
1

a

Since the actitvation of adjacent word-rows are allowed,

the Overflow Bits <OVT> and <OVB> would be set if the

selected propagation mode propagates out of either T-end

or B-end of a chip module. This could be used as a

means to propagate activations over a number of chip

modules, if more than a single chip were used.

PLT

PTT(D) PLTl "" 0

PLT2 • OVB1 -----
PLT3 "" OVB2 ----

PLT OVB
PLT4 • OVB3 -----

OVB

89

PTT(U) PLB4 = 0

PLB3 = OVT4

PLB2 = OVT3

PLB1 OVT2

2) Run Tags Options

OVT

2

PLB

OVT

4

PLB

OVT

1

-> PLB

<- OVT

3

r>
PLB

The run options allow each set tag of the TR1 to activate

word-rows in an adjacent block of word-rows in the direction

specified by (Direction).

A) End In Run : EIR

An EIR activates all word-rows from either T-end or

B-end to the first tagged word-row, as indicated below.

(Direction) \ Logical Content of TR1

---<U> (S) (D) \ T 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 B

0 0 0

0 0 1 a a a a a

0 1 0 \ a a a

---0 1 1 \ a a a a a a a
---1 0 0 l aaaaa
---1 0 1 \ a a a a a a a a a a
---1 1 0 \ a a aaaaa

1 1 1 a a a a a a a a a a a

90

The activation networks for up (B-end -> T-end) and

down (T-end -> B-end) are implemented independently

such that an up run and down run may proceed in

parallel. Resolve operation is not necessary, as EIR

usually only activates a block of word-rows at any one

time: EIR(U) will activate only the first group up from

the B-end, and EIR(D) will activate only the first group

down from the T-end etc. An EIR is initialized by

setting <PLT> = 1 for EIR(D) or (PLB) = 1 for EIR(U).

It can proceed over a number of chip modules without

significant loss of the execution speed by allowing the

modules to execute the runs in parallel with their <PLT>

or (PLB) set according to the (MR) outputs in Beat 1.

EIR(D)

EIR(U) :

PLT 1 = 1

PLT 2 = Hlr"T

PLT 3 = R["T + mr-2:"

PLT 4 = RRi" + RK2 + 'H1r"1"

PLB 4 = 1

PLB 3 ... 'Rlf7+

PLB 2 .. 'Rlf7+ + Mit!

PLB 1 • Mi[""1; + MRJ' + MR2

91

PLT

1
-----mrr -> PLT

2 -------

PLT <- Rlt2:""
----~

3 -----
MlO" -> PLT <------

4

'FM4 ----

1

PLB <-
mu ~->
p~ <- -m-
l 3 ---

1

7 ->

PLB

PLB

If no tag is set in the TR1, then <OVT> or/and <OVB)

will be set when the selected run option causes a word-

row to be activated beyond the T-end or B-end of the

modules.

B) Middle Out Run : MOR

A MOR activates all word-rows from (but not including

except when <S> is set) the first word-row which has

been tagged in TR1 to (and beyond) the T-end or B-end.

<Direction) I Logical Content of TR1

<U> <S> <D> I T 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 B

0 0 0

0 0 1 I a a a a a a a a a a a a a a a a a

0 1 0 I a a a

0 1 1 a a a a a a a a a a a a a a a a a a

1 0 0 a a a a a a a a a a a a a a a a

1 0 1 I a a a a a a a a a a a a a a a a a a a.a a a

1 1 0 I a a a a a a a a a a a a a a a a a

1 1 1 a

Similar to EIR, the up-run and down-run of MOR may

proceed in parallel. Resolve is almost impossible as MOR

is a continued run across the modules, except for the

case of MOR(S). If resolving MOR(S) were proved to be

necessary, then perhaps it might be better to use

the Resolve Tags options. MOR can proceed over a number

of chip modules, without significant loss of speed, by

allowing the modules to execute the runs in parallel,

with their <PLT> or <PLB) set according to the <MR>

outputs in Beat 1.

92

MOR(D) PLT 1 = 0

PLT 2 = MR 1

PLT 3 = MR 1 + MR 2

PLT 4 = MR 1 + MR 2 + MR 3

PLT

1

MR1

PLT

3

-> PLT

r 2

<- MR2

MR3 -> PLT <-

MOR(U) : PLB 4 = 0

PLB 3 = MR 4

PLB 2 = MR 4 + MR 3

PLB 1 = MR 4 + MR 3 + MR 2

4

MR4

MRl

1

MR2 -> PLB <-

MR3

3

PLB

PLB -----

The <OVT> will be set for MOR(U), MOR(US), MOR(UD),

MOR(USD), and (OVB) will be set for MOR(D), MOR(SD),

MOR(UD), MOR(USD). As any MOR will tend to activate

beyond T-end or/and B-end.

--(PTT)--
1 l
--(PCT)--

m l l
o -(RSTTU)-
d l l ------- ----
->--(RSTTD)---(()------->------->------->();)-\commentl-1 cr 1->

3 l l l l ' 1 ' l ------- -----(RSCIU)- -(U)- -(S)- -(D)-

1 ' -(RSCID)-
\ l
--(EIR)--

1 ' --(MOR)--

93

•

i
I

l
~
I
I

' ~
I

i
I

~
·~~
I

API4 : FUNCTION EXECUTION

Function execution is the ultimate goal of the Associative

Computation Cycle which is either to read from or write to the

tagged word-rows of the AMA.

function 4 -->1 read/write 1->1 branch 1-->

1) The Read/Write Operation :

<READ/WRITE> ::= W<BSU>((WORD SPEC>)\
W(BSU>l<WORD SPEC>]
R(BSU>((SCRATCHPAD ADDRESS>)!
R(BSU)((OUTPUT BUFFER QUEUE ADDRESS))

In API4, the (WORD SPEC> for WRITE function is actually the

same as (WORD SPEC> in APil. However, the READ function has

a s~ightly different (WORD SPEC), namely Immediate

Addressing, Scratchpad Addressing, and Buffer Addressing
t

(Output Buffer Addressing instead of Input Buffer

Addressing).

READ word spec

------\ scratchpad address \-------
1 -------------------- ' --> -->
I ----------------------------- l --1 output buffer queue address 1--

The structure of Output Buffer is very similar to the Input

Buffer except that data is read in from ODR and output to

the Interconnection Network, and in the case of relative

addressing, it referred to the queue end {OQE) instead of

queue front (IQF).

94

T

Interconnection \
Network

I \

' ' 0

------------------- <--Queue Front

Relative Position

/llll/////ll///1//1
/IIIII output IIIII
/////1 Buffer /////
///l///////l/1111/l

' ------------------- <--Queue End

I \

\ \
0 DR

\<---- 12 bits---->\

(OQE)

1023

-------)(OQE)--------- ---------------
\ : t t t

OBQ adress -> : - -->
\ ------ t ' ------- t
->(OQE)->(-)-\number\- -()-\CB spec\-

R(OQE 1XXX) ; READ TAGGED WORD-ROW TO OQE WITH
C.B 1XXX

R(OQE) ; READ TAGGED WORD-ROW TO OQE WITH
; ON CHANGE IN C.B. FIELD

R(OQE-2 X1XX) ; READ TAGGED WORD-ROW TO TWO LOC.
; BEHIND OQE WITH C.B. = X1XX

R(OQE-2) ; READ TAGGED WORD-ROW TO TWO LOC.
, BEHIND OQE WITH NO CHANGE IN C.B.

The flow of data within the BOAP could be viewed as shown in the

diagram as follows:

95

I

----------- -------- -------
I\ -------

<{!
I Input

l<{l bits

\

12 bits I I D R I bits
---- ------- \l-----1 Buffer \1------

\
II --------

------------ IIC

Scratchpad I AMA NETWORK

I \ ---------\ 1- ------- I\ I Output I I\

12 bits I 0 D R I 12 bits) 12 bits)
---------- ------- ------11 Buffer 1-----1/

---------- -------- -------

A) The WRITE Operation :

The WRITE operation will update all activated word-rows

with the effective content of the IDR as interpreted by

the BSU subject to the (Complement) and <DI4).

S('T' X1XX)BMR +1,+2
M(CLBTT)
PTT(U)
WC1('Z' 1XXX)BRN @NEXT WRITE TO ALL TAGGED WORD­

' ROWS WITH 'Z' AND lXXX -
; SUBJECTED TO COMP. MASKING
; AND DI .. 1

Ch. spec. CB spec.

IDR 1 z I l\XIXIX1

11111111 1111

BSU \ I \ \ \ I I I I \clx1x\x1

11111111 1111
v v v v v v v v v v v v TR1 WSU

z 0 c c c

AMA B B B

z 0 2 3 4

96

1
0
1
0
0
0
1

--- *
a

a

OVT•l

B) The READ Operation :

The READ operation will update the Control Bits of

activated word-row with the effective data content of

IDR, and will simultaneously, read the content of the

activated word-row (included both Ch.spec. and CB spec.)

to the ODR, and then to the Output Buffer.

S('T' X1XX)BMR +1,+2
M(CLBTT)
RSTTU(S)
R(OQE 1XXX)BRN @NEXT READ CONTENT OF TAGGED WORD­

ROW TO OUTPUT BUFFER

Ch. spec. CB spec.

IDR I 111x1x1x1

' I 1 1
BSU lele1elel -------

1 1 I I
v v v v TRl WSU

c c c

AMA B B B

2 3 4
Q 1 0 1 0

11111111 1111
vvvvvvvv vvvv

ODR I Q 11101110\
-------------------------,, 'r

1
0
1
0
0
0
1

1
///////// Output ////////1
11//////1 Buffer //////// <- OQE

97

a

fun.

----------->(OQE)------

~->(OQE)->(-l->1~~~~~-~-------

~=~:::==1 -ll;b~li- 1 ->(+)- 1 ->1~;;;1-----
1-(Rl)--1 \ ----- 1->(-)-1 ------ \

4 -> -(()-~-(X)- -(+)- ~--------------,())->
-(RC)--1 I ----- I I --- -------
-(RCO)- -(0)--(/)-llabell- -lno.1-(>-1CB spec1-

1 ----- 1 1 --- -------
-(RCl)- -(1)- -(-)-

--(W)--

-(WO)--

-(Wl)-- -----------
-(()------------------>1 word spec 1------------->

-(WC)--~ -----------

-(WCO)-

-(WCl)-

2) The Branch Operation :
.

In a complete Associative Computation Cycle, -two types of
~

instruction addressing formats are used: one for <APll) and

the other for <API234).

\

-> <API234> -

LABEL--> -<APil) ~=~ 1 1
----------> --> NEXT

MR=!l 1
-> <API234) -

Because of the possibility of two <API234) pending on the

outcome of Match reply (MR), <APil) uses a 2-address format.

As <API234) leads to the completion of the Associative

Computation Cycle, only a one-address fomat is needed to

select the next instruction. Similar to <MR branch),

98

relative address is used for the selection of next

instruction, in this case, either another Associative

Computation Cycle or return to the flow of control to the

Host Processor:

A) The Selection of another ACC :

The address of the next ACC will, in this case, has to

be explicitly included in the <API234) format.

W('G' XlXX)BRN +1 SELECT THE NEXT API IN THE
; CONSECUTIVE LOCATION OF API
; PROGRAM STORE
; APC = APC + 1

R(OQE lXXX)BRN @NSTEP SELECT THE NEXT API LABELED
@NSTEP IN THE API PROGRAM

; STORE

B) Return the Flow of Control to the Host

The return of control is signified by totally omitting

the next instruction address.

W('G' XlXX) ; RETURN CONTROL TO THE HOST

branch

-------->1 empty 1--------
1 ------- I

--> -->
l -------- I
--)(BRN)--->1 labelO 1--

99

4.3.2 The Group-Run Pre-Function <API234)

The Group Run operation activates all word-rows between Tags of

TRl to Tags of TR2. Hence a second search is needed in Beat 2

to set the tags for TR2 before the Group Run operation can

actually take place.

group run -->IGR search 21-->IGR operation Jl~->lGR function 41-->

API2 SEARCH Operation for TR2

GRS : Group Run Search

GRSC : Group Run Search with Complement Tags

(GR SEARCH 2) : := GRS(BSU>(<WORD SPEC))(TAB);(COMMENT><CR>

When Group Run is specified, <API 2) is such that

1) Tag Register TR2 will be reset.

2) CLEAR options will be inhibited, as the tags in TRl will be

needed for Group Run operation in Beat 3.

3) A second search operation will be initialized in which the

AMA will be searched for the domain of word-rows which match

the effective data content of IDR as interpreted by

the (complement) and (Dl). But unlike the Beat 1 SEARCH

operation, all matching word-rows will be tagged in TR2

instead of TRl.

4) MR is set if one or more tags are set in TR2.

e.g. S(1 T
1 XlXX)BMR+l,+2

GRS(I$ I XXXl)
GRN(U)
W(OOOO)BRN @NEXT

100

GROUP-RUN SEARCH FOR 1 $1

G
R

Ch. spec. CB spec.

!DR 1 $ 1X1X1X111

1 1 1 1 1 1 1 1 1 1 1 1

BSU 1 1 1 1 1 1 1 1 1 le1elele1

11111111 1111
v v v v v v v v v v v v TR1 TR2 WSU

AMA

T
3
T
4

~
T

1 0
c c

1 1
B B

1
1 3

1 0

1
0
1
0
0
0
1

0
0
0
0
1
0
0

s ->(GRS)-- -----
e I l I I --------- ------- ----
a-> ---(0)-->(()-lword specl-<>;>-lcommentl-1 cr 1->
~ 1-)(GRSC)-1 1-(1)-1 --------- ------- ----
h

2

API3 : Group Run Operations

GRN : Group Run

RSFCU : Resolve First Group Up

ISFCD : Resolve First Group Down

ISCSU : Resolve Group Start Up

RSGSD : Resolve Group Start Down

ISFGSU Resolve First Group Start Up

RSFCSD : Resolve First Group Start Down

(GR OP.3) ::• <TAB)(CR OPTION>(<DIRECTION>)<TAB>;<COMM.)<CR>

A) The Croup Run :

The Group Run activates all word-rows from (but not

including except when S • 1) those word-rows having a tag

set in TR1 to (and including) the first occurrences tagged

word-rows in TR2 as indicated below.

101

(Direction) I Contents of Tags Registers TR1 and TR2

<U> <S> <D>

TRl T 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 B

TR2 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1

0 0 0

0 0 1 I a a a a a a a a

010 I a a a

0 1 1 a a a a a a a a a a a

1 0 0 I aaa aa aaa

1 0 1 I a a a a a a a a a a a a a a a

1 1 0 a a a a a a a a a a a

1 1 1 a a a a a a a a a a a a a a a a a a

In BOAP, Group Run can proceed over a number of chip

modules, by allowing the modules to execute the run

in parallel in two phases. In the first phase, a group run

is performed inside each module, culminating in a set of

output signals from the modules indicating the position at

which the group run is to be continued. In the second

phase, these signals (MR in beat 2 and PLT or PLB in beat 3)

are picked up and used to link up adjacent modules and allow

the group run to proceed to completion.

GRN(D) :

Phase 1

Phase 2

PLT l = PLT 2 = PLT 3 = PLT 4 = 0
<-

PLT

OVB --> PLT

1<-- MiU

PLT <-- OVB
PLT 1 = 0

PLT 2 "" OVB 1
<- Ricr

PLT 3 =- OVB 2 + MRZ * PLT 2

PLT 4 = OVB 3 + mr-3" * PLT 3

102

OVB ----

-----------> PLT

RR4

OVB

GRN(U) :

Phase l PLB 4 = PLB 3 = PLB 2 = PLB l = 0

Phase 2 PLB 4 = 0

PLB 3 = OVT 4

PLB 2 = OVT 3 + Mit'! * PLB 3

PLB l = OVT 2 + "HR2 * PLB 2

OVT

----------> PLB ---------- I
OVT ---->

<- 'Hicr -----
<- PLB <- OVT

1<---- Micr

OVT -> PLB -----
mu.-
PLB

Hence the total time for a inter-module group run is the

time taken for a group run within a module plus the

propagation delays of module linking logic and an EIR (End

In Run).

B) Resolve First Group Up (RSFGU)

The "Resolve First Group Up" comprise a group run followed

by a resolve group option, executed in the specified

direction (U or D), which inhibits all but the first group

of word-rows from the B-end for function execution.

---<Direction) 1 Contents of Tags Registers TR1 and TR2

I TRl T 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 l 0 0 B
<U> <S> <D>

TR2 0 1 0 0 0 0 l 0 0 1 0 0 0 0 0 1 0 0 0 0 1

0 0 0 1 ---··----------
0 0 1 1 a a

0 1 0 1 a

---0 1 1 1 a a a

1 0 0 I aaa

1 0 1 1 aa

1 l 0 1 aaaa

1 1 1 1 a a a a a a a a a a a a

103

c) Resolve First Group Down (RSFGD)

The "Resolve First Group Down" is a resolve group run

option, which inhibits all but the first group of word-rows

from the T-end for function ~xecution.

---(Direction) I Contents of Tags Registers TR1 and TR2

1

TR1 T 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 B
(U) <S> (D)

TR2 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1

0 0 0

0 0 1 a a

0 1 0 I a

0 1 1 I aaa

1 0 0 I aaa

1 0 1 I aaa
---1 1 0 I aaaa

1 1 1 a a a a a a

D) Resolve Group Start Up (RSGSU)

The "Resolve Group Start Up" is a resolve group run option,

which inhibits all but the first word-rows from the B-end of

every activated group for function execution.

---<Direction) l Contents of Tags Registers TRl and TR2

1

TR1 T 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 B
(U) (S) (D)

TR2 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
---o o o I

0 011 a a a

01 ol a a a

---01 1) a a a
---10 ot a a a

---1011 a a a a a
---1 1 0 a a a
---1 1 1 a a

104

E) Resolve Group Start Down (RSGSD)

The "Resolve Group Start Down" is a resolve group run

option, which inhibits all but the first word-rows from the

T-end of every activated group for function execution.

(Direction) I Contents of Tags Registers TR1 and TR2

I TR1 T 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 l 0 0 B
(U) (S) (D)

TR2 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1

0 0 0

0 0 1 I a a a

0 1 0 I a a a

0111 a a a

1 0 0 I a a a

1 0 1 a a a a a

11 Ol a a a

1 1 1 I a a

:F) Resolve First Group Start· Up (RSFGSU)

The "Resolve First Group Start Up" is a resolve group run

option, which inhibits all but the first word-row of the

first activated group from the B-end for function execution.

(Direction) I Contents of Tags Registers TRl and TR2

1

TR1 T 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 B
(U) (S) (D)

TR2 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
---o o o I

0 0 1 l a

0 1 0 I a

0 1 1 1 a

1 0 0 a
-----------------~---1 0 1 a
---1 1 0 a
---1 1 1 a

105

G) Resolve First Group Start Down (RSFGSD)

The "Resolve First Group Start Down11 is a resolve group run

option, which inhibits all but the first row of the

activated group from the T-end for function execution.

(Direction) I Contents of Tags Registers TRl and TR2

<U> <S> (D)

1
TRl T 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 B

TR2 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1

o o o I

0 0 1 I a

0 1 0 l a

0 1 1 I a

1 0 0 a

1 0 1 l a

1 1 0 l a

1 : 1 1 a

G --i)(GRN)---
R

-~(RSFGU)--
0

p -)(RSFGD)--
e -------
r --->(RSGSU)----(()--->------>------>--->();)-Icommentl-1 cr I->
a I I l l I I ------- ----
t -)(RSGSD)-- -(U)- -(S)- -(D)-
i
o -)(RSFGSU)­
n

-)(RSFGSD)-
3

API4 : Group Run Functions

(GR FUNCTION 4) : :• <TAB>W((CB4 SPEC>) l
<TAB)R((CB4 SPEC>)

(CB4 SPEC> ::• (BINARY><BINARY><BINARY)(BINARY)

(BINARY> : := Oil

106

In the Distributed Computer System, every <API234) is assembled

into a 48-bit Associative Machine Instruction (AMI) which to a

certain extent has imposed restrictions on the amount of

information that we might wish to carry. This is certainly true

in the case of (GR Function 4), in which the READ/ WRITE

operation is only possible in the Control-Bit Field due to the

fact that there are only 4 bits out of the 48-bit AMI remain

unused after API2 and API3. Therefore, in order to read from or

write to the Character Field of AMA, at least one more

Associative Computation Cycle is needed: the first Associative

Computation Cycle (the Group-Run Associative Computation Cycle)

to activate and mark the Control-Bits of those appropriate word­

rows, and the second Associative Computation Cycle does the

actual writing to, or resolving and reading from the <ch. spec~

of those activated word-rows.

e.g. S('T' X1XX)BMR +1,+2
GRS('$' XXX1)
GRN(U)
W(0001)BRN @NEXT WRITE <CB4 SPEC) ·= 0001

Ch. spec. CB spec.

!DR IOIOIOil\

I I I I -------
BSU lelelelel -------

I I I I
v v v v TR1 TR2 wsu

-------------------------T 0 0 0 1 1 0 a
3 0 0 0 1 0 0 a
T 1 0

AMA 4 0 0
$ 0 0 0 1 0 1 a
II 0 0 0 1 0 0 a
T 1 0

Generally ·speaking, the READ operation is not permitted in this

Associative Computation Cycle, except in the case of <RSFGSU)

and <RSFGSD), by which only one word-row will be activated, thus

107

avoiding the problem of reading "multiple-responses"[26}. In

these cases, the function will update the word-row with the

effective data content of !DR, and simultaneously, read the

content of this word-row into ODR.

e.g. S('T' X1XX)BMR +1,+2
GRS('$' XXX.l)
RSFGSU(U)
R(lOOO)BRN @NEXT READ THE TAGGED WORD-ROW TO

OQE, AND UPADTE CB4 a 1000

Ch. spec. CB spec.

!DR\ \1\0\0\0\

AMA

-

T
3
T
4
$
II
T

' l l I
BSU lelelelel -------

' I l I v v v v

1 0 0 0

tlll1llll llll

v v v v v v v v v v v v

ODR 1 II

TRl

1
0
1
0
0
0
1

1
///////// Output /////////
IIIII/I// Buffer///////// <- OQE

TR2 WSU

0
0
0
0
1
0 a
0

Hence, as far as (RSFGSU> and <RSFGSD) are concerned, they could

both have WRITE and READ operations in API4.

GR fun.

-(W)- -(0)- -(0)- -(0)- -(0)-

4 ->' '->(0-1 1 ' l ' ' ' l
' ' ' ,-' ,-, ,-, ,-())->
-(R)- -(1)- -(1)- -(1)- -(1)-

108

4.2.3 The Post-Function <API234>

In the Post-Function Associative Computation Cycle, the

READ/WRITE function is executed before Beat 3 Tag Manipulations,

therefore, word-rows must be activated in Beat 2 before the

CLEAR and READ/WRITE function.

post-function ---------- ----- --------
->lmod.-fun.2l-lmod.3l-lupdate 41-->

modification ---------- ----- --------

The Post-Function Computation Processing Cycle can be viewed as

the combination of two restricted READ/WRITE cycles:

Cycle 1 : (Beat 1 --> Beat 2)

Searches for (word spec.) in Beat 1, then activates them for

CLEAR operation in_ their Control-Bit Fields, and simultaneously

executes a READ/WRITE function on the Character Field.

-
• (Beat 2) (Beat 1)

---r---------------------
IDR 1 Ch. spec 1CB specl

I I I I
I B s u I <DI2> -------
1 I I I

v v v v v v v v v v v v

c c c c

AMA B B B B

1 2 3 4

111111111111 v v v v v v v v v v v v

ODR Ch. spec I CB spec\

109

TR1

0
0
1
0
0
0
0

wsu

a

Cycle 2 : (Beat 3 --> Beat 4)

Activates word-rows according to the content of TRl in Beat 3,

then updates their Control-Bit Fields with the <CB spec.) of

!DR.

(Beat 2) (Beat 4)

!DR Ch. spec ICB spec!

AMA

ODR

I I I I

I B s u I <DI4) (C)

1 I I 1
v v v v TR1 WSU

c c c c
B B B B

1 2 3 4

llllllll 1111 v v v v v v v v v v v v
Ch. spec ICB spec!

0
0
1
0
0
0
0

a

API2 : CLEAR and READ/WRITE Operations

The CLEAR options in the Post-Function <API234) are exactly the

same as those in Pre-Function <API234), except that while

executing the CLEAR operation on Control Bit Field, a read or

write is carried out on the Character Field.

->lclear-readl--
1 ---------- I -------

mod.-£un.2 -->I ----------- 1 ->(;)-1~~~=~=1-1 cr 1--)
->!clear-write!-

110

A) CLEAR_READ Operations :

It executes the specified CLEAR option on the Control-Bit

Field of the activated word-rows, with the <CB spec) of the

IDR remaining from Beat 1 and selected by <DI2).

Simultaneously, it also transfers the contents of the word-

row (which activated for the CLEAR operation) to the ODR,

before loading it into the Output Buffer.

(CLEAR_READ> : :=R<DD((SP LOCATION>($)(CL)) I
R(DD(<OB LOCATION>($)(CL))

S('T' X1XX)BMR +1,+2
R(OQE CLBTT) READ TAGGED WORD-ROW TO OQE, AND CLBTT
PTT(U)
U(OXXX)BRN @NEXT

(Beat 2) (Beat 1)

IDR : lXI llXIXI
---------------~--------

t I I I I
BSU lelelelel <DI2) -------

1 I I I
v v v v TRl WSU

B 1 0 0 1

AMA

111111111111 v v v v v v v v v v v v

0
0
1
0
0
0
0

ODR I B I q 0 I 0 Ill

1
///////// Output /////////
/1/////1/ Buffer ///////// <- OQE

111

a

-------->1 address 1-----------

->(X)-
1 I ------------><o>--<t>-1 address 1-------
1 I ---------
-><1>-

-(+)-
c ----- I I ------
1 ->llabell-> -->lnumberl--
e ----- I I ------
a -(R)-- -(-)- -{CLBTT))-
r I I I I
->--(RO)--(()---(X)- -(+)- -()--(CLBCT))--->

~ 1-(R1)-
1 1 -(0)-!(/)-ll;b~l~-~ ~-~~~~- 1

-{CLAB))--
1

~ '-(1)-1 ----- '-<->-'
'-----------)(OQE)---------­

'-){ OQE)->(-)->~-~~b~;-~-~-

B) CL~WRITE Operations :

It executes the specified CLEAR option on the Control Bit

Field of the activated word~rows, with the (CB spec) of IDR

remaining from Beat 1 and selected by the (012).

Simultaneously, it also updates all word-rows (which are
.

activated for CLEAR operatiOn) with the (ch.spec> of IDR •.

<CLEAR WRITE FUNCTION> ::= W<DI>('<B-BIT CODE>'<$><CL>)I
W<DI>(M/'<ASCII>'<$><CL>I
W<DI>(<SP LOCATION><$><CL>)l
W(Dl)((IB LOCATION><$><CL>)

S('T' X1XX)BMR +1,+2
W('A' CLBTT) ; WRITE 'A' TO ALL TAGGED ROWS & CLBTT
PTT(U)
U(OXXX) BRN @NEXT

(Beat 2) (Beat 1)

IDR I A IXI1IXIXI

1 I I I I I I ~~~
v v v v v v v v v v v v

(012)

TR1 wsu

AMA I A 111011111 ~I a I

112

The CLEAR_READ or CLEAR_WRITE Operations on <Word Spec) in the

Post-Function Associative Computation Cycle is split mostly into

<Ch Spec) and <CB Spec). Hence, Post-Function <API234) can

apply to Text Mode only.

c
1

--->(')->1 8-bit code 1--(')----

--------->1 address 1-----------

->(X)- ---1 ASCII !--

!_)(o >-!><1>-1 ------- I_
I · I I --------- I
->(1)- -1 address 1--

---------->(+)-
----- l I ------

e -->!label!- ->lnumberl-
a -(W)-- ----- I I ------
r I I ->< - >-->-<wo>--<o-
~ ~-(W1)- 1 1-(X)- -(+)-
i l ----- I I --
; 1-(0)-,>(/)-1:~~=:'-, - ,-~~~~-~

-(1)- -(~)-

----------->(IQF)---·---------

\ ,->(X)-, I
1

--->,->(0)-,>(/)-->(IQF)---­

->(1)-

-(CLBTT))-
1 I

-()--(CLBCT)) -->
I I
-(CLAB))--

-->(IQF)-->(+)-->1 number I-

I ->(X)- -------- I
I I ------
l-><o>-,<1>-<IQF>-<+>->l~~~::t-
->(1)-

API3 : Tag Manipulations

The Post-Function's tag manipulations are exactly same as the

set used in Pre-Function <API234).

113

API4 Update Operation

API4 -->l update 4 l-->l branch l-->

The Post-Function <API234) has a somewhat restricted function

execution which is a restricted write function on Control-Bit

Field only. Hence, the symbol U (Update) is used in place of R

(READ) or W (WRITE).

<UPDATE 4) ::• <TAB)U(BSU)((CB SPEC))

e.g. S('T' X1XX)BMR +1,+2
W('A' CLBTT)
PTT(U)
U(OXXX)BRN @NEXT ; UPDATE ALL TAGGED WORD-ROWS

; WITH OXXX

(Beat 2) (Beat ~)

IDR A JoJxJxl)cJ

AMA

' ' ' ' BSU 1e1e1eJeJ <DI4) (C) -----
1 1 1 ' v v v v TRl WSU

0 0 0 1

A

->(U)-- ------

0
1
0
0
0
0
0

a

1 1 ' ' -----update 4 --> ---->(0)--->(()->1CB specJ-(()-->

' ' l l -)(UC)- -)(1)-

114

4.3 SUMMARY

The choice of an instruction format is a crucial decision in the

system design of a computer, and predetermines to a certain extent the

resultant structure of the machine in the top-down design strategy, but is

restricted by the structure of the machine in the case of the bottom-up

approach. The design of the Associative Processing Instruction has been

strongly influenced by the latter case in that a two-part instruction

format was adopted to process the Associative Computation Cycle.

The Associative Computation Cycle is organized in three different

types of sequencing:

1) The Pre-Function Non-Group-Run Associative Computation Cycle:

Fetch -> Search -> Clear -> Tag-Manipulation -> Read/Write

2) The Pre-Function Group-Run Associative Computation Cycle:

Fetch -> Search(TRl) -> Search(TR2) -> Group-Run -> Read/Write

3) The Post-Function Associative Computation Cycle:

Fetch -> Clear-Read/Write -> Tag-Manipulation -> C.~.Update

In this chapter, the full definition of the Associative Assembly

Language (AAL), which comprise both SISD and SIMD facilities, has been

presented. The API is really a symbolic form of the Associative Machine

Instruction (AMI) which can then be used to drive the microprogrammed

associative processor. However, the AAL is designed to provide for people

to write program for DCS in a form that is not as unpleasant as the AMI.

Programs written in AAL are first translated into a AMI file and a Z-80

file before they can be executed by our Distributed Computer System.

5

CHAPTER FIVE

THE DESIGN OF ASSOCIATIVE MACHINE INSTRUCTIONS

5.1 TI1e Examine Phase of AMI <AMil)

5.2 The Execute Phase of AMI <AMI234>

5.3 Summary

When designing the Associative Machine Instruction set, the following

design criteria for instruction format has been adopted:

1) Short Instruction Format :

First, and the most important, short instructions are better than

long instructions:

A) cheaper hardware cost,

B) simpler hardware configuration.

However, this criteria should be carefully applied in order not

to achieved shorter instruction format at the expense of longer

fetching time.

2) Convenient Word Length :

It is highly desirable for the word length of machine instruction

to be an integral multiple of its bus bandwidth. If the data bus

between the host processor and BOAP is 8 bits, the word length

should be 8-bits, or 16-bits, or 24-bits and so on; otherwise the

efficiency of I/O transfer will be in doubt.

3) Short Address Field :

~ddress field, regardless of whichever it is for (either

instruction or operand addressing), has often been considered as a

piece of unproductive information within the instruction format.

As a result, many attempts have been made to remove it from the

instruction format whenever desirable: the stack machine

architecture was designed to remove the operand address field,

similarly, the program counter scheme was adopted in order to

remove the necessity of next instruction's address. However, the

computation organization of AMI makes it necessary to preserve

both the operand address field and instruction address field.

Therefore, the only saving that could be achieved in address

fields is to reduce the length of addresses.

116

In examining the control structure of the Associative Computation

Cycle, it has become apparent that the optimum machine instruction format

is the combination of two 48-bit codes: one for <AMil> (Examine Phase of

AMI) and other for (AMI234) (Execute Phase of AMI).

1<------------------------ AMI 1 -------------------------->1
1 25 26 27 29 30 33 41 48

1 Wd Spec ITBVI !Dill CMB !OOOI Label-0 !Label-l!

l Wd Spec lPF I R/W IDI4l CMB !USDl ACD lDI2l CLEAR l Label I

1) The Instruction Format :

This is the shortest possible word length for the AMI to

accommodate all essential information:

A) AMil needs 46 bits to hold information for the Examine Phase

a) Word Spec. requires a 24 bit code

b) Text/Bit-Vector selection requires a 1 bit code

c) Data Identity requires a 2 bits code

d) Data Complementing requires a 1 bit code

f) Two <AMI234> addresses requires 8 bits each

g) SEARCH operation requires a 3-bit opcode

B) AMI234 needs 48 bits to hold information for the Execute Phase

a) Word Spec. requires a 24 bit code

b) Post/Pre-Function selection requires a 1 bit code

c) READ/WRITE selection requires a 1 bit code

d) Data Identity (Beat 2) and Data Identity (Beat 4) require 2

bits each

f) Data Complementing requires a 1 bit code

g) Tag Manipulation requires 4-bit opcode and 3-bit direction

code

h) CLEAR operation requires a 2 bit code

i) Next AMI address requires an 8 bit address.

117

2) The Word Length :

The 48-bit AMI format is an integral of the 8-bit data bus.

3) The Address Fields :

A) The Operand Addresses:

The immediate addressing mode of AMI needs 24 bits for its 12

bits of tertiary data (8 bits for Ch. Spec., and 4 bits for

Control-Bits). This requirement, to a great extent, has set

the minimimum length for operand addresses. Nonetheless, the

other operand addressing schemes such as Scratch-Pad; Input

and Output Buffers modes, also need 24 bits for operand

addressing.

B) The Instructure Addresses:

On the other hand, the minimization of instruction addressing

is restricted by the size of API Program Store (4k words), and

the requirement to branch to all necessary locations.

However, in order to keep the AMI format as an integral of the

8-bit data bus, a 8-bit relative instruction address is used

to address -128 to +127 locations from the current AMI

location within the API Program Store.

-------------FOOO

-118
------------- I 4 K Current AMI <----
------------- I

+127
I

FFFF

------------I<- 48 Bits ->I

In the Distributed Computer System, programs written in AAL are

translated by the one-pass AAL assembler, which in turn, will generate the

AMI file to drive the hardware of the Distributed Computer System. The

details of the AAL assembler are presented in the Appendix c.

118

5 .1 THE EXAMINE PHASE OF AMI (AMI!)

The (AMil) is the object machine instruction of the <APil) generated

by the Associative Assembler. During the Fetch Phase of the Associative

Computation Cycle, the <AMil> is loaded from the Instruction Memory Buffer

into the Instruction Register of the Control System, which is then

separated by the Machine Instruction Decoder into a 30-bit long operational

code and two 8-bit <AMI234> addresses for fetching the alternative execute

phase of AMI into Instruction Memory Buffer during the Examine Phase.

--I Wd Spec \TBV\ I Dill CMB I 000\ Label-0 l Label-l\
---\48-Bits\

\ 7
---MACHINE INSTRUCTION DECODER
---30-Bits
I BEAT CONTROL I

I
v

I v 7
I SPAR I I MIAR I

--- D

IAMI4 A

--- T
--- A

IAMI3
--- T
--- R

IAMI2 A
--- N
1 17 25 26 27 29 30

ICh Spec\ CB Spec \TBV I I Dill CMBI I AMil

•
R
E
G

The (AMil) uses the 48-bit instruction format, in which is divided

into three different fields.

~~----------2;---26--27 ___ ~ ~0--;;----------------41----~~
---1 Wd Spec ITBVl \Dil\ CMB lOOOl Label-0 lLabel-11
---I<OPERAND>l<------- OPCODE ------>1<-- AMI234 ADDRESSES -->1

119

1) The Operand Field

The operand field provides the information about operand movement

from a source (i.e. from the instruction itself, Input Buffer or

Scratch-Pad) to the destination (the IDR).

2) The Opcode Field :

The opcode field provides the information about state

transformations. In <AMI1), it includes three part of opcodes:

A) the Text/Bit-Vector selection (Bit-25)

B) the bit select functions, namely Data Identity (DI1 in Bit-27

& Bit-28) and Data Complementing (CMB in Bit-29)

C) the SEARCH operation (Bit-30 -> Bit-32)

3) The <AMI234) Addresses :

The (AMI234) addresses provide the branching information of the

execute parts of AMI, pending on the outcome of the SEARCH

operation.

The <AMI1) part of Associative Machine Instruction is distinguishable

from the <AMI234) part of AMI in its SEARCH operation, which is indicated

by the code 000 in Bit-30 to Bit-32.

5.1.1 The <AMil) Word Spec.

In <AMI1) Word Spec, the data organization is indicated by the

TBV bit (Bit-25) of the <AM11).

A) The Text Symbols :

1 25 26 27 29 30 33 41 48

---l Wd Spec l 1 \ \ Dll \ CMB \000\ Label-0 \Label-l\
---24 TBV 1 2 1 3 8 8

\<OPERAND>\<------- OPCODE ------>\<-- AMI234 ADDRESSES-->\

B) The Bit-Vector

1 25 26 27 29 30 33 41 48

' Wd Spec \ 0 \ \Dil\ CMB \000\ Label-0 \Label-l\
---24 TBV 1 2 1 3 8 8

\<OPERAND>\<------- OPCODE ------>\<-- AM1234 ADDRESSES-->\

120

The three kinds of <AMI!) addressing schemes are shown as

follows:

1) The Immediate Addressing Mode :

A tertiary datum format (B) is used to represent the three

level logic where (B) ::= XIOI1 ::= OOIOlllO

7 6 5 4 3 2 1 0 CBl CB2 CB3 CB4

IBIBI»I»IBI»I»I»I»I»I»I»I

<------ Character Field ------>~<- C.B. Field-)
<---- 8-Bit Character Code ---> <- C.B. Field-)
MSBI<--- 7-Bit ASCII Code----> <- c.B. Field-)
<------------ 12-bit Bit Vector -------------->

2) The Scratch-Pad Addressing Mode :

The Immediate Addressing Mode uses only three combinations

of the two-bit code to represent the tertiary datum: namely

00 for X, 01 for 0 and 10 for 1. The fourth combination

(11) is therefore, used here to indicate non-immediate

addressing modes, notably Scratch-pad, Input and Output

Buffer addressing modes.

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4
2 4 6 8 10 12 14 16 18 20 22 24

1
<------ Addressing Mode ------>~<- C.B •. Field-)\
<M>I< >I< >1<--- SP Address--->

~ I 1--> Addressing Mode

--> Non-Immediate Mode

Bit 3 & 4 of the <AMil) Word Spec. is filled with the code

11 to represent non-immediate addressing mode. Bit 5 & 6 is

filled with the code 10 to mean Scratch-Pad addressing.

121

--
Bit-S \ Bit-6 I Non-Immediate Addressing Modes

0 I 0 Output Buffer Addressing
--0 \ l Input Buffer Addressing
--

l 0 \ Scratch-Pad Addressing
--

1 1 I Not defined
--

The field from Bit-7 to Bit-16 is used to address the 1K

Scratch-Pad Buffer.

3) The Input Buffer Addressing :

The Input Buffer Addressing when used, its Bit 5 & 6 of the

<AMI!) Word Spec. is filled with the code 01 to indicate

Input Buffer Addressing Mode, and from Bit-7 to Bit-16 is

used for the address of 1K Input Buffer.

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4
2 4 6 8 10 12 14 16 18 20 22 24

\
<------ Addressing Mode ------>,<- C.B. Field->\
<M>I< >I< >\<--- IB Address--->

s \ I B --> Addressing Mode

--> Non-Immediate Mode

5.1.2 The Bit Select Functions :

The Bit Select Functions of <AMI1) are defined by the <BSU) of

<API1) : Data Masking and Data Complementing.

---\ Wd Spec \TBV\ \ 1 \ 1 \000\ Label-0 \Label-l l
---24 1 1 Dl1 CMB 3 8 8

\<OPERAND>\<------- OPCODE ------>\<-- AMI234 ADDRESSES-->\

122

1) The Data Masking :

Apart from the use of tertiary data format for the

unconditional data masking, <AMI1) uses a two bit Data

Identity code (DI1) to represent conditional data masking.

Bit-27 I Bit-28 I Data Identity <DI1)

0 0 (Dil) = X

0 1 (Dil) "" 0

1 0 I <Dil> = 1
---------------------------------------1 1 I Not defined

2) The Data Complementing :

A) The selection of true data content of IDR.

1 25 26 27 29 30 33 41 48

I Wd Spec ITBV\ IDUI o tooot Label-0 1 Label-l!

24 1 1 2 CMB 3 8 8

B) The selection of complemented data content of IDR.

1 25 26 27 29 30 33 41 48

1 Wd Spec \TBV\ IDnt 1 looot Label-0 1 Label-l\

24 1 1 2 CMB 3 8 8

5.1.3 The <AMI234) Addresses

The <MR branch) of <API1) specifies the addresses of two

alternative <API234)'s, notably the <AMI234) addresses which

have a range of between -128 to +127.

1 25 26 27 29 30 33 41 48
---1 Wd Spec \TBV\ lDil\ CMB \000\ 1 1
---24 1 l 2 1 3 Label-0 Label-l

!<OPERAND>\<------- OPCODE ------>\<-- AMI234 ADDRESSES -->1

123

5.2 THE EXECUTE PHASE OF AMI <AMI234)

The <AMI234> is the object machine instruction of <API234) which

governs the execute phase of the Associative Computation Cycle. During the

Examine Phase of the Associative Computation Cycle (<AMil>). the <AMI234)

parts of AMI are loaded from the API Program Store into the Instruction

Memory Buffer ready for the Execute Phase of AMI. The appropriate <AMI234>

(pending ~n the outcome of MR) will then be loaded into the BOAP Control

system for the Machine Instruction Decoder to separate it into a 8-bit next

instruction address and a 38-bit operational code, which in trun. will be

assembled into a three beat execute sequence: AMI2 (Beat-2), AMI3 (Beat-3)

and AMI (Beat-4).

l Wd Spec lPF l R/W \DI41 CMB lUSDI ACD lDI21 CLEAR 1 Label l

148-Bitsl
\ T

MACHINE INSTRUCTION DECODER

--- ~IT l BEAT CONTROL l
-------------- ------ ------

l l

138-Bits\

\ T l ~at l m~l v v ------ ------
--

tch Spec\ CB Spec l RW lDI4\CMBl lAMI4
--

lA3lA2lAllAOI lUlSlDl l l lAMI3
--

lPF=Ol lDI2lCLEARlAMI2
---1 17 25 26 27 29 30

lCh Specl CB Spec lTBV l lDI1lCMHl lAMil

D
A
T
A

T
R
A
N
•
R
E
G

The <AMI234) uses the 48-bit instruction format similar to the <AMil)

which is also divided into three fields, but with different lengths of

Opcode field and Next Instruction Address field.

124

1<----------------------- AMI 234 ------------------------->1
1 25 26 27 29 30 33 37 39 41 48
---1 Wd Spec IPF \ R/W \DI4\ CMB \USD\ ACD \DI2\ CLEAR \ Label \

\<OPERAND>\<--------------- OPCODE ---------------->\-NEXT-\
INS.

ADDRESS

1) The Operand Field

The Operand Field provides the information about operand movement

from a source {i.e. from the instruction itself, Input Buffer or

Scratch-pad) to the destination { either for the tagged word-rows

in AMA or via ODR to the Output Buffer).

2) The Opcode Field

The Opcode Field provides the information about tag manipulations

and READ/WRITE functions. In <AMI234>, it includes eight opcode

subfields:

A) the selection of Pre/Post Function ACC {Bit-25)

B) the READ/WRITE selection {Bit-i6)

C) the bit select functions for Beat-four AMI (<AMI4)), namely

Data Identity (DI4 in Bit-27 & Bit-28) and Data Complementing

(CMB in Bit-29)

D) the Tag Manipulation code {from Bit-33 to Bit-36), plus a 3-

bit direction code (from Bit-30 to Bit-32)

E) the setting of Beat-two Data Identity {Dl2 in Bit-37 & Bit-38)

F) the selection of CLEAR operation (Bit-39 to Bit-40)

3) The Next Instruction Addresses :

Since the execution of <AMI234) leads to the completion of the

Associative Computation Cycle, it is therefore suggested that the

next instruction could either be another Associative Computation

Cycle or an order to return the flow of control to the Host

processor:

125

A) When the content of the Next Instruction Address field is

equal to zero, it signifies "return the flow of control to the

Host processor", and proceed with the next S ISO ins true tion

in the Program.

B) However, a non-zero next instruction address will signify the

selection of another ACC, which can be anywhere in the range

of -128 to +127 from the current location within the API

Program Store.

5.2.1 The Pre-Function Non Group-Run <AMI234>

The selection bit (Bit-25) of Pre/Post Function ACC is set to 0

to indicate Pre-Function ACC.

1<-------- The Pre-Function Non Group-Run <AMI234) -------->1

1 25 26 27 29 30 33 37 39 41 48

1 Wd Spec I 0 I R/W IDI41 CMB 1usn1 ACD IDI21 CLEAR I Label I

24 PF 1 2 1 3 4 2 2 8
I<OPERAND>I<--------------- OPCODE ---------------->1- NEXT-I

INS.
ADDRESS

AMI2 : Clear Options:

The CLEAR options are indicated in <AMI234) format in a two bit

code (Bit-39 & Bit-40).

1 25 26 27 29 30 33 37 39 41 48

1 Wd Spec I 0 I R/W IDI41 CMB 1usn1 ACD IDI21 ? I Label I

24 PF 1 2 1 3 4 2 CLEAR 8

---------------------------------------Bit-39 I Bit-40 l CLEAR Options

0 I 0 No Clear
---------------------------------------0 I 1 CLBTT
---------------------------------------1 0 I CLBCT

1 1 I CLAB

126

AMI3 : Tag Manipulations:

The Non Group-Run Tag Manipulations of the (AMI234) provide the

mechanism to activate word-rows for READ/FUNCTION operation:

1 25 26 27 29 30 33 37 39 41 48

' Wd Spec l 0 l R/W IDI4\ CMB \ ? I 1 IDI21 CLEAR I Label I

24 PF 1 2 1 USD ACD 2 2 8

There are a total of nine Non Group-Run Tag Manipulation codes

which together with the seven Group-Run codes, make up 16 tag

activation codes.

Bit-33 l Bit-34 l Bit-35 l Bit-36 I Tag Manipulations
---0 I 0 0 0 No Operation

0 \ 0 0 1 PTT
------~--

0 : l o I 1 0 PCT

0
• ' 0 '

1 1 I RSTTU

0 l 0

'
0

'
RSTTD

0 l 0 ' 1 I RSCTU

0 l 1 l 1 I 0 ' RSCTD

0 ' l l 1 l 1 EIR

1 0 0 0 MOR

In addition to the above activation codes, three bits of

complementary codes are used to indicate propagation direction:

127

Bit-30 I Bit-31 I Bit-32 I Activation Direction

o o o I

0 0 1 I D

0 l 0 I s

0 1 I l 1 SD

1 0 1 0 u

1 0 I 1 U D

l l 1 0 I us

l l 1 ' USD

AMI4 : READ/WRITE Operation :

Associated with the READ/WRITE function, there are four pieces

of information:

1 25 26 27 29 30 33 37 39 41 48

1 : l o l 1 l 1 l 1 lusnt ACD \DI21 CLEAR I Label l
-------·---Wd Spef PF R/W DI4 CMB 3 4 2 2 8

1) The <AMI234) Word Spec. :

The <AMI234) Word Spec. has three kinds of addressing

schemes similar to (AMll) Word Spec.:

A) The Immediate Addressing Mode

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4

\ B ' B l B ' B ' B I B ' B I B 1 B I B ' B ' B ' ---

\

<------ Character Field ------>~<- C.B. Field-)\
<--- 8-Bit Character Code ----> <- C.B. Field-)
MSB\<--- 7-Bit ASCII Code ----) <- C.B. Field-)
<------------ 12-bit Bit Vector -------------->

128

B) The Scratch-Pad Addressing Mode

7 6 5 4 3 2 1 0 CH1 CB2 CB3 CB4
2 4 6 8 10 12 14 16 18 20 22 24

\
<------ Addressing Mode ------>,<­
<M>1< >1< >1<--- SP Address--->

s l 1 B --> Addressing Mode

--> Non-Immediate Mode

C.B. Field->!

C) The Input Buffer Addressing

-

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4
2 4 6 8 10 12 14 16 18 20 22 24

\
<------ Addressing Mode ------>,<- C.B. Field->1
<M>1< >1< >1<--- IB Address--->

~ l
1--> Addressing Mode

--> Non-Immediate Mode

D) The Output Buffer Addressing ,
For the Output Buffer Addressing, the Bit 5 & 6 of the

<AMI234> Word Spec. is filled with the code 00 to

indicate Output Buffer Addressing Mode, and from Bit-7

to Bit-16 is used for the address of 1K Output Buffer.

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4
2 4 6 8 10 12 14 16 18 20 22 24

\
<------ Addressing Mode ------>,<- C.B. Field->1
<M>l< >l< >1<--- OB Address--->

~ I 1--> Addressing Mode

--> Non-Immediate Mode

129

2) The <AMI234) Bit Select Functions :

The Bit Select Functions of <AMI234) are defined by the

<BSU) of <API234) : Data Masking and Data Complementing.

1 25 26 27 29 30 33 37 39 41 48

I Wd Spec I 0 I R/W I ? I ? IUSD\ ACD IDI21 CLEAR I Label I

24 PF 1 Dl4 CMB 3 4 2 2 8

A) The Data Masking :

The <AMI234) uses a two bit Data Identity code <DI4) to

represent conditional data masking •

. Bit-27 I Bit-28 I Data Identity <DI4)

0 0 <DI4) = X

0 I 1 <DI4) = 0

1 1 0 I <DI4) = 1

1 1 1 Not defined

B) The Data Complementing :

a) The selection of true data content of IDR.

1 25 26 27 29 30 33 37 39 41 48

1 Wd Spec I 0 I R/W IDI41 0 IUSDI ACD IDI21 CLEAR I Label I

24 PF 1 2 CMB 3 4 2 2 8

b) The selection of complemented data content of IDR.

1 25 26 21 29 30 33 37 39 41 4e

1 Wd Spec I 0 I R/W IDI4\ 1 IUSDI ACD IDI21 CLEAR I Label l
---24 PF 1 2 CMB 3 4 2 2 8

130

3) The READ/WRITE Function :

The READ/WRITE Function is indicated by Bit-26

A) The Selection of READ Function

1 25 26 27 29 30 33 37 39 41 48

\ Wd Spec \ 0 \ 1 \DI4\ CMB \USD\ ACD \DI21 CLEAR I Label \

24 PF R/W 2 1 3 4 2 2 8

B) The Selection of WRITE Function

1 25 26 27 29 30 33 37 39 41 48

\ Wd Spec \ 0 I 0 \DI4\ CMB \USD\ ACD \DI21 CLEAR \ Label \
---24 PF R/W 2 1 3 4 2 2 8

5.2.2 The Pre-Function Grounp-Run <AMI234)

The decoding of the Pre-Function Group-Run <AMI234) sequence

follows a very similar fashion to the Pre-Function <AMI234),

except with differences in the field allocation within

instruction format.

~

---\ Wd Spec \PF \ R/W \DI2\ CMB \USD\ ACD \ CB Spec 4 \ Label I
---\48-Bits\

\ T
---MACHINE INSTRUCTION DECODER
--- r-Bits\ \"7 l BEAT CONTROL \
----------- ------ ------

l 1 '
SPAR \ 1 MIAR \

v v \ T ------ ------

--- D I RW \CB Spec 4\AMI4 A
--- T
--- A

\ \AMI3

---\Ch Spec\ CB Spec \PF=O\ GR \012\ CMB \AMI2
---1 17 25 26 27 29 30
---\Ch Spec\ CB Spec \TBV \ \ Dll \ CMB\ \ AMI1

T
R
A
N
•
R
E
G

131

Comparing with the Non Group-Run <AMI234>, the Pre-Function

Group-Run <AMI234> uses a slightly different AMI format.

1<---------- The Pre-Function Group-Run <AMI234> ---------->1

1 25 26 27 29 30 33 37 41 48

1 Wd Spec I 0 I R/W IDI21 CMB IUSDJ ACD I CB Spec 4 I Label I

24 PF 1 2 1 3 4 4 8
)<OPERAND>}<--------------- OPCODE ---------------->1- NEXT-}

INS.
ADDRESS

AMI2 : SEARCH Operation for TR2

Three pieces of informations are involved in the <AMI2) SEARCH

as similar to <AMI1) SEARCH, namely <Word Spec), DI2 and CMB.

1 25 26 27 29 30 33 37 41 48

? I 0 I R/W I ? I ? }USDJ ACD I CB Spec 4 I Label I
---Wd Spec PF 1 DI2 CMB 3 4 4 8

1) The <AMI2) Word Spec. :

The <AMI2> Word Spec is actually the same as the <AMI1).

A) The Immediate Addressing Mode :

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4

I B I B I B I B I B I B I B I B I B I B I B I B I

\

<------ Character Field ------>~<- C.B. Field-)
<---- 8-Bit Character Code ---> <- C.B. Field-)
MSBI<--- 7-Bit ASCII Code----> <- c.B. Field-)
<------------ 12-bit Bit Vector -------------->

B) The Scratch-Pad Addressing Mode :

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4
2 4 6 8 10 12 14 16 18 20 22 24

\
<------ Addressing Mode------>,<- C.B. Field->!
<M>I< >I< >l<--- SP Address--->

~ I 1
--> Addressing Mode

--> Non-Immediate Mode

132

C) The Input Buffer Addressing

7 6 5 4 3 2 1 0 CBl CB2 CB3 CB4
2 4 6 8 10 12 14 16 18 20 22 24

\
<------ Addressing Mode ------>~<­
<M>1< >1< >1<--- IB Address--->

s l I B --> Addressing Mode

--> Non-Immediate Hode

2) The <AMI2) Bit Select Functions

C.B. Field->!

The <AMI2) Bit Select Functions are defined by the (BSU> of

<API2> : Data Masking and Data Complementing.

1 25 26 27 29 30 33 37 41 48
---1 Wd Spec 1 0· 1 R/W I ? I ? IUSD} ACD I CB Spec 4 I Label 1

24 PF 1 DI2 CMB 3 4 4 8

A) The Data Masking :

Bit-27 I Bit-28 I Data Identity (DI2)
-----------------------~---------------

0 0 (Dl2) = X

0 1 I (DI2) = 0

1 I o 1 <DI2) = 1

1 1 1 Not defined

B) The Data Complementing :

a) The selection of true data content of IDR.

1 25 26 27 29 30 33 37 41 48

1 Wd Spec 1 0 I R/W 1DI21 0 \USDl ACD \ CB Spec 4 \ Label \
---24 PF 1 2 CMB 3 4 4 8

133

b) The selection of complemented data content of IDR.

1 25 26 27 29 30 33 37 41 48

1 Wd Spec I 0 I R/W IDI21 1 IUSDI ACD I CB Spec 4 I Label I

24 PF 1 2 CMB 3 4 4 8

AMI3 : Group-Run Operation

The Group-Run operations of the <AMI234) provides the

information for the activation of word-rows for READ/WRITE

Function:

1 25 26 27 29 30 33 37 41 48
---I Wd Spec I 0 I R/W IDI21 CMB I ? I ? I CB Spec 4 I Label I

24· PF 1 2 1 USD ACD 4 8

There are a total of seven Group-Run operational codes which

together w~th the nine Non Group-Run ~odes, make up 16 tag

activation codes.

Bit-33 l Bit-34 l Bit-35 l Bit-36 l Tag Manipulations

1 0 \ 0 1 GRN

1 0 I 1 I o I RSGSU

1 0 1 1 I 1 I RSGSD

1 1

' 0 '
0 RSGSU

1 1 1 I o I 1 I RSFGD

1 ' 1 l 1 o I RSFGSU

1 1 1 1 1 '

RSFGSD

In addition to the above activation codes, three bits of

complementary codes are used to indicate propagation direction, .
as similar to the Non-Group Tag Manipulation.

134

---Bit-30 I Bit-31 I Bit-32 I Activation Direction

0 0 I 0

0 1 o I 1 D

0 1 1 1 0 s

0 1 1 I 1 I SD

1 I 0 0 1 u

1 1 0 1 U D

1 1 1 0 us

1 1 1 1 USD

AMI4 : Restricted READ/WRITE OPERATION

In beat-4 of Group-Run <AMI234>, only 4 bits of the 48-bit

instruction format remain unused. This has significantly

reduced the scope of activity to the Control-Bit field only.

1 25: 26 27 29 30 33 37 41 48

' Wd Spec ' 0 r R/W 1DI21 CMB 1USD1 ACD 1 1 I Label I
---24 1 2 1 3 4 CB Spec 4 8

Hence, only 4 bits of binary codes are available in this <AMI4>

with no conditional masking or data complementing.

5.2.3 The Post-Function <AMI234)

In the Post-Function (AMI234>, the data transformations are

always split into <CH Spec) and <CB Spec), as a result, this

characteristic is also reflected in the field allocation within

the instruction format.

135

--
I Wd Spec IPF I R/W IDI4\ CMB IUSDI ACD \DI21 CLEAR I Label I

148-Bitsl
\ T

MACHINE INSTRUCTION DECODER

I
-------------- \117 BEAT CONTlWL I
-------------- ------ ------

I I

r8-Bits
\ T

I SPAR l

'
MIAR I

v v ------ -----

CB Spec

I lAMI3

!Ch Spec! \PF=l\ RW \DI2\CLEARIAMI2

1 17 25 26 27 29 30

lCh Spec! CB Spec \TBV \ I Dill CMB\ 'AMil

D
A
T
A

T
R
A
N
•
R
E
G

Although the execute sequence of the Pos~-Function <AMI234) is
-different from the Pre-Function <AMI2-34): the READ/WRITE
~

operation is executed before Beat 3 Tag Manipulation functions,

its machine instruction format actually looks the same as the

Pre-Function Non Group-Run <AMI234> format.

\<--------------- The Post-Function <AMI234) -------------->\

1 25 26 27 29 30 33 37 39 41 48
---I Wd Spec l 1 I R/W lDI4\ CMB \USD\ ACD lDI21 CLEAR l Label l
---24 PF 1 2 1 3 4 2 2 8

\<OPERAND>\<--------------- OPCODE ---------------->1- NEXT-I
INS.

ADDRESS

In the Post-Function <AMI234), the selection bit (Bit-25) is set

to 1 to indicate Post-Function ACC.

136

AMI2 : Clear and READ/WRITE Options :

The CLEAR options on the Control-Bit field are indicated in

<AMI234) format in a two bit code (Bit-39 & Bit-40).

1 17 25 26 27 29 30 33 37 39 41 48

1 1 CB 1 1 I 1 IDI41 ? 1usn1 ACD I ? I ? 1 Label 1
---Ch 8 PF R/W 2 CMB 3 4 DI2 CLEAR 8

Bit-39 I Bit-40 I CLEAR Options

0 I o I No Clear

0 1 1 I CLBTT

1 0 1 CLBCT

1 1 CLAB

Associated with the CLEAR operations is the READ/WRITE function

on the Character field of all activated word-rows.

1 17 25 26 27 29 30 33 37 39 41 48

1 I CB I 1 I 1 IDI41 ? IUSDI ACD I 1 I CLEAR I Label I
---Ch 8 PF R/W 2 CMB 3 4 DI2 2 8

1) The Post-Function <AMI2> Character Spec. :

The <AMI2) Character Spec. uses three kinds of addressing

schemes similar to <AMI1) Word Spec., except that the

READ/WRITE operation on Control-Bit field is not effected

until Beat 4.

A) The Immediate Addressing Mode

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4

' B I B I B I B I B I B ' B I B I

\

<------ Character Field ------>~<- C.B. Field-)\
<---- 8-Bit Character Code ---> <- C.B. Field-)
MSBI<--- 7-Bit ASCII Code ----> <- C.B. Field-)

137

B) The Scratch-Pad Addressing Mode

7 6 5 4 3 2 1 0 CB1 CH2 CB3 CB4
2 4 6 8 10 12 14 16 18 20 22 24

\
<------ Addressing Mode ------>~<- C.B. Field->!
<M>I< >I< >1<--- SP Address--->

s l I B --> Addressing Mode

--> Non-Immediate Mode

C) The Input Buffer Addressing

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4
2 4 6 8 10 12 14 16 18 20 22 24

\
<------ Addressing Mode ------>~<- C.B. Field->\
<M>I< >I< >1<--- IB Address--->

~ l ~-->Addressing Mode

--> Non-Immediate Mode

D) The Output Buffer Addressing

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4
2 4 6 8 10 12 14 16 18 20 22 24

\
<------ Addressing Mode ------>~<- C.B. Field->\
<M>I< >l< >1<--- OB Address--->

s I , B --> Addressing Mode

--> Non-Immediate Mode

2) The Post-Function (AMI2) Conditional Data Masking :

The Conditional Data Masking of Post-Function (AM12) uses

Bit-37 and Bit-38 for Data Identity selection (DI2).

1 17 25 26 27 29 30 33 37 39 41 48
---l Ch l CB,\ 1 l R/W \DI4\ CMB \USD1 ACD l 1 l CLEAR I Label I
---16 8 PF 1 2 'l 3 4 Dl2 2 8

138

Bit-37 I Bit-38 I Data Identity <DI2)

0 0 (DI2) = X

0 1 I <DI2) = 0

1 I 0 I <DI2> = 1

1 I 1 I Not defined

3) The READ/WRITE Function :

The READ/WRITE Function is indicated in Bit-26

A) The Selection of READ Function

1 17 25 26 27 29 30 33 37 39 41 48

1 Ch I CB I 1 I 1 IDI41 CMB IUSDI ACD ID12I CLEAR I Label I

16 8 PF R/W 2 1 3 4 2 8

B) The Selection of WRITE Function

1 17 25 26 27 29 30 33 37 39 41 48

1 Ch I CB I 1 I 0 IDI41 CMB IUSDI ACD IDI21 CLEAR I Label I
---16 8 PF R/W 2 1 3 4 2 2 8

AMI3 : Tag Manipulations:

The Post-Function <AMI234) also uses the same Tag Manipulations

codes as the Pre-Function Non Group-Run <AMI234).

l 17 25 26 27 29 30 33 37 39 41 48

I Ch I CB I 1 I R/W IDI41 CMB I ? I ? ID12I CLEAR I Label I

16 8 PF 1 2 1 USD ACD 2 2 8

139

Bit-33 I Bit-34 I Bit-35 I Bit-36 I Tag Manipulations

0 0 0 I 0 No Operation

0 0 1 o I 1 I PTT

0 0 1 1 I o I PCT

0 1 o I 1 I 1 I RSTTU

0 1 1 I o o I RSTTD

0 1 1 I o I 1 I RSCTU

0 1 1 1 I o l RSCTD

0 1 I 1 1 1 I EIR

1 0 1 0 0 MOR

Bit-30 I Bit-31 I Bit-32 l Activation Direction

0 0 0

0 I o 1 I D

0 1 1 0 l s

0 1 1 1 I SD

1 0 1 o I u

1 1 o I 1 l U D

------------------------------~------------------
1 1 1 l 0 us

1 1 1 l 1 USD

AMI4 : Update Operation:

The Post-Function <AMI4) has a very restricted WRITE function

which operates on Control-Bits only, since 37 bits out of the

48-bit AMI format have been used during Beat-2 and Beat-3.

1 17 25 26 27 29 30 33 37 39 41 48

I Ch I 1 I 1 I R/W I 1 l 1 IUSDI ACD JDI21 CLEAR I Label l
---16 8 PF R/W DI4 CMB 3 4 2 2 8

1) The Post-Function <AMI4> Control Bit Spec. :

The Post-Function <AMI4> Control-Bit Spec. has only one

addressing scheme: Immediate Addressing.

140

7 6 5 4 3 2 1 0 CB1 CB2 CB3 CB4

I B I B I B I B I

\
<------ Character Field ------>\<- C.B. Field-)\
MSBI<--- 7-Bit ASCII Code ----> <- C.B. Field-)

2) The Post-Function <AMI4) Bit Select Functions :

The Post-Function (AMI4) uses both Conditional Data Masking

and Data Complementing.

1 17 25 26 27 29 30 33 37 39 41 48

1 Ch I CB I 0 I R/W J ? I ? IUSDJ ACD JDI2J CLEAR I Label I

16 8 PF 1 DI4 CMB 3 4 2 2 8

A) Conditional Data Masking :

Bit-27 J Bit-28 J Data Identity <DI4)
---------------------------------------0 J 0 (DI4) = X

0 I 1 : <DI4> = 0
----------------------~----------------1 J 0 ~ (DI4) = 1

----------------------~----------------
1 I 1 Not defined

B) The Data Complementing :

a) The selection of true data content of IDR.

1 17 25 26 27 29 30 33 37 39 41 48

I Ch I CB I 1 l R/W IDI4J 0 JUSDJ ACD JDI21 CLEAR l Label J
---16 8 PF 1 2 CMB 3 4 2 2 8

b) The selection of complemented data content of IDR.

1 17 25 26 27 29 30 33 37 39 41 4~

I Ch I CB I 1 I R/W JDI4J 1 JUSDJ ACD JDI2J CLEAR l Label I
---16 8 PF 1 2 CMB 3 4 2 2 8

141

5.3 SUMMARY

Being a mirror instruction of its API counterpart, the instruction

format of AMI is predetermined by the two-part instruction structure of the

Associative Computation Cycle. However, in the design of the AMI format,

freedom of movement is still possible in the following areas:

1) The Instruction Length:

A 48-bit machine instruction format has been adopted as the

shortest possible instruction length that is an integral multiple

of the 8-bit data bus.

2) The Instruction Address Fields:

In this 48-bit format, the instruction address field is

constrained to a 8-bit relative address (-128 to +127).

<AMil) (AMI234)

:neld (Non Group-Run) (Group-Run)
allocation & Post-Function

1 - 16 Ch Spec Ch Spec Ch Spec2
17 - 24 CB Spec CB Spec CB Spec2
25 TBV PF PF
26 R/W R/W
27 - 28 Dll DI4 DI2
29 CMB CMB CMB
30 - 32 000 (For AMil) DIRN (USD) DIRN (USD)
33 - 36 Label-0[1 - 41 ACD (<=1000) ACD ()=1001)
37 - 38 Label-0[5 - 6] DI2 CB Spec4 (1-2)
39 - 40 Label-0[7 - 8] CL CB Spec4 (3-4)
41 - 48 Label-1[1 - 8] Label-X[l - 8) Label-X[1 - 8]

The translation of API is performed by the AAL Assembler, which as a

result, will generate a file of 48-bit long AMis as an object program to be

run on the Distributed Computer System. The loading of AMI file is done by

the API Loader (Fig. 3.4) into the API Program Store, ready to be fetched

for execution. In the process of fetching, either <AMI1) or <AMI234) parts

of the AMI will then be loaded into the BOAP for instruction decoding,

which in turn, will be broken into a 4-beat sequence to drive the

microprogrammed associative processor. The detailed simulation of BOAP is

presented in the Appendix D. However, the following table shows the

detailed breakdown of field allocations for all three kinds of Associative

142

Computation Cycles, in terms of beat sequence Beat-1 for AMI1, Beat-2 for

AMI2, so on and so for.

ASSOCIATIVE COMPUTATION CYCLE
I

I I
.· PRE-FUNCTION POST-FUNCTION

I
I I

NGRN GRN
l I

1 2 3 4 1 2 3 4 1 2 3 4

1. CH1x CH1x CH1x CHlx CH1x CH1x
2. CH1y CH1y CH1y CH1y CHly CHly
3. CH2x CH2x CH2xCH2x CH2x CH2x
4. CH2y CH2y CH2y CH2y CH2yCH2y
s. CH3x CH3x CH3x CH3x CH3x CH3x
6. CH3y CH3y CH3y CH3y CH3y CH3y
7. CH4x CH4x CH4x CH4x CH4x CH4x
a. CH4y CH4y CH4y CH4y CH4y CH4y
9. CH5x CH5x CH5xCH5x CH5xCH5x

10. CH5y CH5y CH5y CH5y CH5y CH5y
11. CH6x CH6x CH6x CH6x CH6x CH6x
12. CH6y CH6y CH6y CH6y CH6y CH6y
13. CH7x CH7x CH7x CH7x CHjx CH7x
14. CH7y CH7y CH7y CH7y CH7y CH7y
15. CH8x CH8x CH8xCH8x CH8x CH8x
16. CH8y CHSy CH8y CH8y CH8y CH8y

17. CB1x A3 CBlx CBlx CBlx A3 CBlx A3 CBlx
18. CBly A2 CBly CBly CBly A2 CB1y A2 CB1y
19. CB2x Al CB2x CB2x CB2x Al CB2x A1 CB2x
20. CB2y AO CB2y CB2y CB2y AO CB2y AO CB2y
21. CB3x CB3x CB3x CB3x CB3x CB3x
22. CB3y u CB3y CB3y CB3y u CB3y u CB3y
23. CB4x s CB4x CB4x CB4x s CB4x s CB4x
24. CB4y D CB4y CB4y CB4y D CB4y D CB4y
25. TBV PF•O TBV PF•O TBV PF•l
26. RW (GR) RW RW (RW=O)
27. Dllx DI2x DI4x Dllx DI2x CB1 Dllx DI2x DI4x
28. Dlly DI2y DI4y Dlly DI2y CB2 Dlly DI2y DI4y
29. CMB CLx CMB CMB CMB CB3 CMB CLx CMB
30. CLy CB4 CLy

143

CHAPTER SIX

THE STRING PROCESSING ALGORITHMS

6.1 The Algorithm Assign

6.2 The Algorithm Search (Success and Failure)

6.3 The Algorithm Replace

6.4 The Algorithm Concatenate

6.5 The Algorithm Union

6.6 The Algorithm Any and Not any

6.7 The Algorithm Position

6.8 The Algorithm Remainder

6.9 The Algorithm Length

6.10 Summary

Like any model, a computer program is an abstraction from reality,

from the relevant qualities and properties of the phenomenon being

modelled. The computerization of problem solving usually involves three

stages of abstractions:

1) Abstraction from the original problem.to a design specification

feasible of being implemented on the computer.

2) Abstraction from a design specification to a program written in a

particular programming language in terms of a collection of data

objects, operations, and representation schemes. Two kinds of

abstractions useful during the construction of programs are

procedural and data abstractions.

A) The Procedure Abstraction :

Procedure abstraction is better known as a subroutine or a

function, and has been used in computer programming f~r a long

time. The purpose of procedure abstraction is to permit the

use of operations (algorithms) without specifying the details
-

of implementation. What this involves is distinguishing ..
between the use and implementation of objects in programming,

which are referred to as the specification and the

implementation phases. Over the years, most programmers

realize that the degree of complexity which the human mind can

cope with, at any one time, is considerably less than that

embodied in much of the software that one might wish to

build[63]. One way to overcome this limitation is by means of

top-down design[64], which is known to some people as

"structured programming11 [65] or 11modularity11 [66,67], that

organizes computer programs in hierarchical structured

procedures regardless of their detailed implementations in the

first instance, and then builds them up in the later stage by

stepwise refinement in the direction of instructions and

predicates available in the programming language[68).

144

B) The Data Abstraction :

The top-down design approach for the abstraction of operations

achieved by procedure abstraction, can be extended to cover

the structuring of data. The purpose of data abstraction is

to permit the use of data objects without specifying the

detailed structure of the data, and again it can be organized

in two phases: the specification and the implementation

phases. Normally, programs operate on data structures, which

are aggregates of information with important structural

relationships. These data structures might be a vector, a

matrix, a list, a tree, a graph, or almost any structure that

can be built upon on the primitive data types and other

existing user-defined data structures.

3) Abstraction from the computer program to the underlying hardwares

that support it. This is the abstraction of hardware onto the

virtual machine of a particular language: implemenation of

instructions and data types of that language which could be

executed by the hardware.

Generally, it is these three levels of abstractions that constitute

the life cycle of a program construction. In the development of programs

by stepwise refinement[68), the programmer is encouraged to postpone the

decision on data representation until after he has designed his algorithm

and has expressed it as an "abstract" program operating on "abstract" data.

He then chooses for the abstract data in some convenient and efficient

concrete representation in the store of a computer; and finally programs

the primitive operations required by his abstract program designed during

the specification phase in terms of this concrete representation. In other

words, the success of an algorithm depends almost always on the choice of a

suitable data representation in the light of the ease in which this

representation allows the necessary operations to be expressed.

145

However, a commom difficulty in program design lies in the unfortunate

fact that at the stage where decisions about data representations have to

be made, it often is still difficult to foresee the details of the

necessary instructions operating on the data, and often quite impossible to

estimate the advantages of one possible representation over another, due to

the shortage of powerful built-in data types in the language for complex

modelling. This situation has become even more horrifying in the case of

artificial intelligence where the data structures involved are so complex

and the size of their knowledge bases are so large that a combinational

explosion has resulted. Hence, it is in the light of bridging this gap

between built-in data types and user-defined data structures that has

motivated us in a search for the means to support powerful and well

established data structures such as string, list, tree, set etc., at the

programming language level thus enhancing the existing primitive data

types.

Before coming to the definition of data types, it is perhaps necessary

to discuss the meaning of the abstraction in computer science. It has been­

used in at least two ways which are distinct but related[69]:

1) The Abstract Model :

This is the meaning common to most of science: "abstraction"

covers the creation of a model, usually a mathematical model, to

describe certain behaviour or characteristics of a object, as

opposed to the real object as a whole.

2) The Abstract Machine :

The second meaning is closely related to the first, but projected

onto the computer science perspective. It refers to process of

generalizing, so that certain detailed features can be ignored at

the higher levels. There are many examples in computer science,

in particular, finite state machine models of hardware, procedure

and data abstractions of computer programs.

146

In programming--especially in high-level programming languages--the

concept of a data type is referred to as:

1) abstraction of data representations from hardware storage

2) operations applicable to objects in the data abstraction

However, it is the semantics of these operations as the definition of

the data type that is of greatest importance. Cliff Jones has gone even

further in saying "data types are characterized by their operations

alon~'[70], as what one wants to do with data types is to manipulate them,

and the essential information about the operations is their inter­

relationships. In other words, the data type itself is like a black box

and its representation or implementation is of no concern to its user.

The difference between a data structure, which is an interconnection

of the various data elements, and a data type, which separates the

specification and the implementation of a data structure, is a matter of

the organization of the contents of a data structure. This point can also

be understood in terms of the external and internal behaviour of a data:

structure. In a data structure, there is no concept of the black box,.

every part is visible to all users who could write their own software to

manipulate any part of the data structure. On the other hand, users never

have any direct access to the implementation part of the data type.

Instead, they are forced to access them indirectly through a set of

predefined procedures. There are two kinds of data types: the built-in

data type which the language supports as a primitive, or a user-defined

data type which is sometimes referred to as an abstract data type[71].

Nevertheless, only recent languages, such as CLU and ADA , have provided

facilities to define and enforce the implementation of abstract data types.

Physically, the ultimate components in the construction of data

objects are bits. Higher level data structures are then constructed using

bits as basic building blocks, eventually to be mapped upon the memory

structure of the machine. This is the process referred to as finite

mapping[72], which in the mathematician's sense is a function defined

147

within a finite range of arguments of type A which maps each argument onto

a value from type B.

A--> B

Conceptually, the finite mapping is similar to the symbol table in a

compiler, but instead of mapping identifiers onto its decode (type,

address, etc.), finite mapping maps defined ranges of data structures onto

the hardware memory structure. Theoretically, a one bit memory can be

mapped onto a Boolean type data, but in order to represent a greater

variety of data structures, a larger collection of bits is necessary, and

the first meaningful structure one can build is to collect 8 bits to form a

byte. Using bytes one can now represent character structures in the memory

hardware, and then a string of characters. It is from here as a starting

point that, we will begin the investigation of the construction of data

structures on the Byte-Organized Associative Processor.

The idea of "pattern" type structure for strings integrated with a

powerful pattern matching system originated from the string processing

language SNOBOL4. Recognition of this fact has led us to abstract most of

the SNOBOL4 constructs into nine string algorithms for investgation into

efficient implementation of string structures on BOAP. However, we shall

only be concerned with the underlying concepts common to such system rather

than remaining completely faithful to a particular language. Our approach

in this chapter is to develop only the specification of string patterns and

their use in structuring collections of strings. Nonetheless, the detailed

implementation phase of these algorithms is presented separately in

Appendix E.

A character string, or string for short, is a sequence of zero or more

characters which can be mapped directly on a byte organized memory

structure. The string algorithms mainly involve a SEARCH plus some kind of

structuring operations[72):

148

1) Sequence :

The first and simplest structuring method is called the sequence.

A sequence consists of zero or more components of data, arranged

in some meaningtul order. In mathematical notation a sequence is

frequently denoted by an asterisk, as follows

* STRING = Character ,

A sequence corresponds to the iterative program structure in

procedure abstraction, using the WHILE statement:

WHILE condition true DO loop

The computation of this structure consists of a sequence of zero

or more computations of the program component loop; the sequence

is not bounded in advance, but its length on any given occasion

must be finite.

2) Discriminated Union :

The next simple structuring method is the discriminated union,

which specifies that a choice is to be made from a selection of

alternative structures. In the simplest case, the alternatives

are just indicators of some condition such as SEARCH

SEARCH(object) = SUCCESS \ FAILURE

This states that the SEARCH operation will proceed with either the

sequence SUCCESS or the sequence FAILURE pending the outcome of

SEARCH on those data structures. A more complicated example is as

follows

ANY(PATTERN_! PATTERN 2 PATTERN_3) = SUCCESS I FAILURE

149

This discriminated union differs from the mathematical union of

sets, and is closely analogous to the conditional or case

construction of program control structure.

IF condition true THEN statement 1 ELSE statement 2

CASE identifier OF
option 1 function 1;
option 2 function 2;

END; {CASE}

3) Direct Product :

The third major data structing methods is known by mathematicians

as direct or Cartesian product, which involves a compound

operation. For example, REPLACE operation can be defined as

REPLACE = DELETE x INSERT

By this definition, it is stated that each operation of the type

REPLACE is a structure with exactly two components, a DELETE

operation followed by a INSERT operation. The close analogy of

the direct product in program control structures is program by

composition (the compound statement). For example a procedure

which composed of a number of disjoint statements.

A formal string data organization on BOAP is shown in Fig. 6.1, which

included three different fields:

1) The Identifier of the String

A string identifier is the label used by progrmmers to locate the

string of characters, it uses a label name terminated by a $ sign.

150

2) The Value of the String

The second field contains the value of the string which is

terminated by a U sign.

3) The Link_Name of the String

The Link Name field is used to signify the continuation of the

string which is due to the REPLACE or CONCATENATE operation. A

Link_Name usually has a value of 0 (or [10000000] which means end

of this string), otherwise, it provides the linking identifier for

the next part of the string. For example, the String_Name_1 which

has a value of 'abc' is to be linked up (or concatinated) with the

other string 'de' which has the Link_Name of [10000001] as its

identifier. In other words, String_Name_1 actually has a value of

'abcde'.

L 1 I ,. 0 0 0 0 0 0 1] ,.

I
Marker set

I
to 1 The actual Link Name

to mean this is

a Link Name

Since only 7 bits are used by the ASCII code in the character

field, the Most Significant Bit (MSB) is used, in this case, as a

marker to distinguish Link Names from the other string names.

151

---Ch. Spec CB Spec
-----------------------IDR I I I I I -----------------------

BSU I I I I I -------
c c c c
B B B B

7 6 5 4 3 2 l 0 l 2 3 4
Str ng -----------------------

Identifier-> String Name l Ill I I
I -------=----=------~---Delimiter -> $ I I I I

a I Ill I

b I I I I

c I I I I

-----------------------Delimiter -> U I I I I
I -----------------------Link Name -> l 0 0 0 0 0 0 ll I I I

String_Name_2 Ill I I

$ I I I I

h I Ill I

i I I I I

11 I I I I

1 0 0 0 0 0 0 OJ I I I
-----------------------1 o o o o o o 1111 I I

$ I I I I

d I Ill I

e I I I I

11 I I I I
-----------------------End of String -> 1 0 0 0 0 0 0 OJ I I I

? I I I I

? I I I I

? I I I I

? I I I I
--ODR I I I I I -----------------------

IDR

BSU

TRl TR2 wsu

MRR

Fig. 6.1 The Organization of String Data on BOAP

152

<-

The Associative Memory Array must be initialized before any processing

can actually take place. It is done by being filling in with '?' at every
word-row.

---Ch. Spec

!DR

BSU

ODR

CB Spec

? 1o1o1o1o1

I I I -I I

c c c c
B B B B

7 6 5 4 3 2 1 0 1 2 3 4

? I I I I

? I I I I

? I I I I

? I I I I

? I I I I

? I I I I

? I I I I

? I I I I

? I I I I

? I I I I

? I l I I

? I I I I

? I I I I

1 I I I I

? I I I I

? l l l I

? I I l I

? I I l I

1 I l I I

1 I I l I

? I l l I
--

I I I I I -----------------------

!DR

BSU

TR1 wsu

MRR

153

6.1 THE ALGORITHM : ASSIGN

The ASSIGN algorithm uses the Cartesian product for its data

structuring method.

ASSIGN = String_Identifier x String_Value x Link Name

By this definition, it states that each.content of the type ASSIGN is a

structure with exactly three components: a String_Identifier, a

String_Value and a Link Name. However, syntactically, it has the form

Variable := Value;

String! :• 'abc';

The assignment statement may be said to have the following meaning:

"Let Variable have the given Value". In the later section, we will

generalize this assignment statement to include expression such as

concatenation.

Variable := Expression;

Variable :• Valuel + Value2 (Concatenation);

String! := String2 + String3;

154

---Ch. Spec CB Spec

IDR 11 o o o o o o otxlxlxlxl

BSU

ODR

I I I I I -------
c c c c
B B B B

7 6 5 4 3 2 1 0 1 2 3 4

s Ill I I
------------------~----

t I I l I

r I I I I

1 I I I I

n I I l I

& I I l I

1 I I I I

$ I I l I

a I l l I

b I I l I

c I I I I

11 I I I I

1 0 0 0 0 0 0 Ol I I I

? I I I I

? I I I I

1 I I I I

? l I I l

? I I I I

? I I I I

? I I I l

1 I I l I

? I I I I

? I I I l
-----------------------1 I I l I
--

I I I I l -----------------------

IDR

BSU

TR1 wsu

1 *
1

1

1

1

1

1

1

1

1

1

1

1 MRR

155

6.2 SEARCH (SUCCESS AND FAILURE) :

The string processing algorithms are characterized by searching

through strings of characters followed by state transformation on the

chosen string. Therefore, the whole of string processing is centered round

the SEARCH operations. The notions of SEARCH (success or failure) are

shown as follows:

IF 'Pattern' IN Variable
THEN Function 1
ELSE Function 2;

To illustrate this, let us consider to search through a string for a

pattern 'err'.

Stringl := 'ferry'

IF 'err' IN String1
THEN Function 1
ELSE Function 2;

In this example, the program control sequence will go to execute

Function_l, as the condition which it is searching for is satisfied. The

SEARCH algorithm forms the precondition of "Discrimination Union" in which

a choice is to be made from a selection of alternative structures pending

the outcome of some condition. Frequently, it is necessary to know whether

a pattern matches with its origin at the first character of the reference

string, if so, it is known to be Anchored at the beginning of the reference

string. Sometimes, the outcome of the pattern matching will be quite

different subject to different settings of Anchored Mode. Anchored Mode

defines the marker within the reference string, and all subsequent

processing& will start from the marker onward to the first character (or

the last character) of the reference string. If Anchor is not set, then

the default setting is the first character of the reference string.

However, the Anchored Mode will be discussed in more detail in Section 6.7.

156

---Ch. Spec

IDR

BSU

ODR

CB Spec

I I I I I -------c c c c
B B B B

7 6 5 4 3 2 1 0 1 2 3 4

s Ill I I -----------------------
t I I -I I

r I I I I

1 I I I I

n I I I I

& I I I I

1 I I I I

$ I I I I

f I 111 I

e I I I 11

r I I I I

r I I I I

y I I Ill

11 I I I I

1 o o o o o o o1 I I I

1 I I I I

1 I I I I

1 I I I I

1 I I I I

1 I I I I

1 I I I I

? I I I I

? I I I I

? I I 1 1

1 I I I I
--

I I I I I -----------------------

!DR

BSU

TRl TR2 wsu

1 *

1 MRR

157

6.3 THE ALGORITHM : REPLACE

The REPLACE algorithm is a string processing function that uses the

Cartesian Product structuring method

REPLACE = DELETE x INSERT

By this definition, it means that every computation evoked by this string

function REPLACE always consists of two disjoint parts; the function DELETE

followed by function INSERT.

The string function REPLACE has the following syntax which means

taking a substring out of the reference string, as determined by the

pattern, and replacing it by the object_string.

REPLACE 'Subject_String' BY 'Object_String' IN Variable

Stringl :='ferry';

REPLACE 'err' BY 'uzz' IN Stringl;

will cause the reference string(Stringl) to be scanned for the su~ject

string ('err'), and replace it by the object string ('uzz').

158

---Ch. Spec

IDR

BSU

ODR

CB Spec
-----------------------?

I I I I I
c c c c
B B B B

7 6 5 4 3 2 1 0 1 2 3 4

s Ill 1 I

t I I ·1 I

r I I I I

1 I I I I

n I I I I

g I I I I

1 I I I I

$ I I I I

£ I 111 I

? I Ill I

1 Ill

? I 111

y I I Ill

11 I I I I

1 0 0 0 0 0 0 Ol I I I

1 I I I I

? I I I I

? I I I I

? I I I I

? I I I I

? I I I I

? I I I I

? I I I I

? I I I I
-----------------------? I I I I --

I I I I I -----------------------

IDR

BSU

TRl TR2 wsu

1 *
*

1 *

1 MRR

159

---Ch. Spec

IDR

BSU

ODR

CB Spec
-----------------------z IXIOIXIXI

I I I I I -------
c c c c
B B B B

7 6 5 4 3 2 1 0 1 2 3 4

s 111 .I I

t I I I I

r I I I I

1 I I I I

n I I I I

g I I I I

1 I I I I

$ I I I I

£ I 111 I

u I I I I

z I I I I

. z 1 I I I

Y I I Ill

11 I I I I

1 0 0 0 0 0 0 Ol I I I
-----------------------? I I I I -----------------------

? I I I I

? I I I I

? I I 1 I

? I I I I

? I I I I

? I I I I

? I I I I

? I I I I
--

I I I I I -----------------------

IDR

BSU

TR1 TR2 wsu

1 *

1 MRR

160

Furthermore, any string could be replaced in this way by any other

string; without the pre-condition that both strings must have the same

length. For instance, if we execute

REPLACE 'err' BY '1' IN Sting!;

then the new value of String! will be 'fly'.

---Ch. Spec CB Spec

IDR to o o o o o o otolololol IDR

BSU -------
I I I I I BSU -------
c c c c
B B B B

7 6 5 4 3 2 1 0 1 2 3 4

s Ill I I

t I I I I -----------------------
r I I I I

1 I I I I

n I I I I

g I I I I

1 I I I I

$ I I I I

t I Ill I

1 I I l I

y I I I I

11 I I I I

1 o o o o o o o1 1 l 1

0 0 0 0 0 0 0 Ol I I I

0 0 0 0 0 0 0 Ol I I I

s 111 I I

t I I I I

TRl TR2

1

1

ODR I I I I I I I 1 I MRR

wsu

*
*

161

But, if we execute

REPLACE 'err' BY 'alsit' IN Stringl;

then the new value of Stringl will be 'falsity'.

---Ch. Spec CB·Spec

IDR 11 o o o o 0 0 liXIOIXIXI IDR

BSU

ODR

I I I I I -------
c c c c
B B B B

7 6 5 4 3 2 1 0 1 2 3 4

s 111 I I

t I I I I

r I I I I

1 I I r I

n I I I I

& I I I I -----------------------
1 I I I I

$ I I I I

f I Ill I

a I I I I

1 I I I I

8 I I I I

1 I I I I

11 I I I I

1 o o o o o o 11 I I I

5 I I I l

t I I I I

r I I I I

i I I I I
--

BSU

TRl TR2

1

IIIII lliMRR -----------------------

wsu

*

162

---Ch. Spec CB Spec

IDR 11 0 0 0 0 0 0 OIOIOIOIOI IDR

BSU

I I I I I
c c c c
B B B B

7 6 5 4 3 2 1 0 1 2 3 4

1 o o o o o o 1111.1 I

$ I I I I

t I I I I

y I I I I

11 I I I I
-----------------------End of String -> 1 0 0 0 0 0 0 Ol I I I

1 I I I I

1 I I I I

1 I I I I

? I I I I

1 I I I I

? I I I I

1 I I I I

1 I I I I

? I I I I

1 I I I I

1 I I I I

1 I I I I

1 I I I I

1 I I I I

1 I I I I

? I I I I

1 I I I I

1 I I I I
--

BSU

TR1 TR2

1

1

1

1

1

1

1

1
1
1

1
1
1
1

1

1

1

1
1

-----------------------IIIII I1IMRR ODR

wsu

*

163

<-

Since the two component parts of the function REPLACE are disjoint,

either one of these functions can be bypassed. For instance, using a null

string as a subject_string will turn the function REPLACE into a DELETE

function. Similarly, a null object_string will turn the function REPLACE

into the function INSERT.

However, what happens if the pattern (subject_string) occurs more than

once in the given reference string? Suppose that the value of String2 is

'I TOOK A VACATION WITH MY CAr, and we now execute

REPLACE 'CAT' WITH 'DOG' IN String2;

the new value of String2 will not be

'I TOOK A VACATION WITH MY DOG'

but rather

'I TOOK A VADOGION WITH MY DOG'

This is because all searching in BOAP is done quite differently from the

conventional SISD processor; every word_row in AMA is searched in parallel

for the pattern concerned, and all matched word rows are then tagged and

enabled for subsequent reading/writing, yield, 'VADOGION' and 'DOG'. For

certain kinds of applications, this may be hazardous, but with a more

carefully thought out algorithm one could easily get round this problem by

resolving them into groups and then updating (or read) them one by one.

REPLACE 'CAT' BY 'DOG' WITH RESOLVE(LEFT)

164

will give us

'I TOOK A VACATION WITH MY DOG'

and by executing

REPLACE 'CAT' BY 'DOG' WITH RESOLVE(RIGHT)

will instead give us

'I TOOK A VADOGION WITH MY CAr

REPLACE 'Subject_String' BY 'Object_String' WITH RESOLVE(Direction)

A "number factors" can also be included with Direction option, for

Replace operation, to isolate a particular substring with reference from

either the left or right hand end of the reference string,

REPLACE 'CAT' BY 'DOG' WITH RESOLVE(2LEFT)

will have the same effect as

REPLACE 'CAT' BY 'DOG' WITH RESOLVE(RIGHT)

since CAT is the second substring from the left that matched the pattern.

In addition, perhaps a verification routine could also be included to

interact with the user, of which those word_rows are to be updated (or

read). However, this is already outside the scope of this chapter.

165

6.4 THE ALGORITHM : CONCATENATE

The algorithm Concatenate is the basic operation for combining two

strings to form a third. In other words, it is an 'ADD' operator in the

context of string processing. It uses the Cartesian Product to structure

the data.

CONCATENATE = Stringl x String2

This states that the type "Concatenate" is a structure with two components,

and its associated function is to add two strings together. The following

statement illustrates the format of an expression involving concatenation.

String3 := Stringl + String2;

If (Stringl ='very') and (String2 ='good'), then the content of the

concatenated string3 will be 'very good';

166

---Ch. Spec

!DR

BSU

ODR

CB Spec

IXIXIXIOI

I I I I I -------
c c c c
B B B B

7 6 5 4 3 2 1 0 1 2 3 4

s Ill ·I I

t I I I I

r I I I I

1 I I I I

n I I I I

& I I I I

1 I I I I

$ l I I I

v I I I I

e I I I I

r I I I I

y I I I l

I I I l

II I I l I

1 0 0 0 0 0 0 Ol I l I

? I I I I

? I I I I

? I I I I

? I I I I

? l I l I

? I I I I

? I I I I

? I l I I

? I I I I
--

!DR

BSU

TRl TR2

1

1x1x1x1o1 I 1 I MRR

wsu

*

167

---Ch. Spec

IDR

BSU

ODR

CB Spec

lxlxlxlxl

I I I I I -------
c c c c
B B B B

7 6 5 4 3 2 1 0 1 2 3 4

s 111 .I I

t I I I I

r I I I I

1 I I I I

n I I I I

g I I I I

2 I I I I

$ I I I I

g I I I I

o I I I I

0 I I I I

d I I I I
-----------------------u I I I I

1 o o o o o o o1 I I I

1 I I I I

? I I I I

1 I I I I

? I I I I

? I I I I

? I I I I

1 I I I I

? I I I I

1 I I I I
-----------------------1 I I I I --d lxlxtxlol

IDR

BSU

TRl TR2 wsu

1 *

1 MRR

168

---Ch. Spec CB Spec

IDR II 0 0 0 0 0 0 OIXIXIXIXI

BSU

ODR

I I I I I -------
c c c c
B B B B

7 6 5 4 3 2 1 0 1 2 3 4

s 111 .1 I

t I I I I

r I I I I

1 I I I I

n I I I I

8 I I I I

3 I I I I

$ I I I I

v I I I I
-----------------------e I I I I -----------------------

r I I I I

y I I I I

1 I I I -----------------------
g I I I I

0 I I I I

0 I I I I -----------------------
d I I I I

11 I I I I

1 0 0 0 0 0 0 Ol I I I

? I I I I

? I I I I

? I I I I

? I I I I

? I I I I
--

I I I I I -----------------------

IDR

BSU

TRl TR2 wsu

1 *
1

1

1

1

1

1 MRR

169

6.5 THE ALGORITHM : UNION

The algorithm UNION is again a Cartesian Product that brings together

a collection of two or more string components under one string identifier.

UNION = String! x String2

It is the "union of sets" in the logical sense: a union of strings contains

the values of all its member strings.

---Ch. Spec CB Spec

IDR ll 0 0 0 0 0 0 OIXIXIXIXI IDR
-----------------------. -------BSU I I I I I BSU -------

c c c c
B B B B

7 6 5 4 3 2 1 0 1 2 3 4

s 111 I I

t I I I I

r I I I I

1 I I I I

n I I I I

g I I I I

3 I I I I

$ I I I I
-----------------------1 o o o o o o 11 1 1 1

1 o o o o o 1 o1 1 1 1

11 I I I I

1 0 0 0 0 0 0 Ol I I I

1 I I I I

1 I I I I
--

ODR I I I I I I

TRl

1

1

1

wsu

*

170

In general, UNION statements can be expressed two ways.

1) UNION by Name :

String3 := Stringl I String2;

By this definition, it causes the building of a new structure

String3 and assigns to it the values of both member strings,

String! and String2. Since the assignment of String3 is carried

out by means of the strings' identifiers rather than the strings'

values, it is referred to as "UNION by Name".

---Ch. Spec CB Spec

!DR It 0 0 0 0 0 0 liXIXIXIXI IDR

BSU

ODR I

I I I I I -------
c c c c
B B B B

7 6 5 4 3 2 l 0 1 2 3 4

s Ill I I

t I I I I

r I I I l

i I I I I

n I I l l

8 I I I l

1 I I l I

1 o o o o o o tl 1 l 1

c I I I I

A I I I I

T I I I I

11 I I I I

1 0 0 0 0 0 0 Ol I I I
--

I I I I I -----------------------

BSU

TRl

1

wsu

*

171

---Ch. Spec CB Spec

!DR 11 0 0 0 0 0 1 OIXIXIXIXI

BSU

ODR

I I I I I
c c c c
B B B B

7 6 5 4 3 2 1 0 1 2 3 4

s Ill _I I

t I I I I

r 1 I I I

1 I I I I

n I I I I

& I I I I

2 I I I I

1 0 0 0 0 0 1 Ol I I I

D I I I I

I I I I -----------------------
0

1 I I I

G

11 I I I I

1 0 0 0 0 0 0 Ol I I I

1 I I I ?

-----------------------1 I I I I

? I I I I

? I I I I

? I I I I

? I I I I

? I I I I

? I I I I

? I I I I

? I I I I
-----------------------? I I I I

I I I I I

!DR

BSU

TR1 wsu

1 *

1 MRR

172

2) UNION by Value :

In this case, the values are used as the union of String3.

String3 := 'cat' I 'dog';

---Ch. Spec CB.Spec

IDR 11 0 0 0 0 0 0 OIXIXIXIXI !DR

BSU

ODR

I I I I I -------
c c c c
B B B B

7 6 5 4 3 2 1 0 1 2 3 4
-----------------------1 o o o o o o 1111 I I

$ I I I I

c I I I I

a I I I I

t I I I I

11 I I I I

1 o o o o o o o1 I I I

1 I I I 1

1 I I I I

? I I I ·1

1 I I I I

1 I I I I

1 I I 1 1

1 I I I I

? I I I I

1 I I I I

? I I I I

? I I 1 1
--

I I 1 I I -----------------------

BSU

TR1

1

1

1

1

1

1

1

1

1

1

1

1

I 1 I

wsu

*

MRR

173

---Ch. Spec CB Spec
-----------------------IDR 11 0 0 0 0 0 0 OIXIXIXIXI IDR

BSU

ODR I

I I I I I
c c c c
B B B B

7 6 5 4 3 2 1 0 1 2 3 4

10000010ill.ll

$ I I I I

d I I I I

0 I I I I

g I I I I

11 I I I I
-----------------------1 0 0 0 0 0 0 Ol I I I

? I I I I

1 I I I I

? I I I I

1 I I I I

? I I I I

1 I l I I

? I I l I

1 I I I l

BSU

TRl

1

1

1

1

1

1

1

1

1

1 I I I I 1

? I I I I 1

? I I I I 1

? I I I I 1

? I I I I 1

? I I I I 1

? I I I I 1

1 I I I I 1

1 I I I I 1
--

l I l I I -----------------------

wsu

*

174

6. 6 THE ALGORITHM : ANY & NOT ANY

The algorithm ANY & NOTANY are organized in a "Discriminated Union"

structure, which specifies a choice to be made from a selection of

alternative structures such as a UNION structure.

ANY(UNION) = Success \ Failure

Suppose that, instead of searching through the word 'ferry' to find if

it contains the pattern 'err', we want to know of whether it contains any

vowel. Obviously, we could do five separate searches using SEARCH

statement; one each for a, for e, for i, for o and for u. However, this

process would be inefficient, instead we can use the ANY statement as shown

in the following

Stringl :='ferry';

IF ANY('a' \ 'e' \ 'i'
THEN Function 1
ELSE Function 2;

'o' \ 'u') IN Stringl

This states that "If Stringl contains any character of 'a' I 'e' I 'i' I 'o' I 'u',

then execute Function 1 else Function 2."

ANY(string) and NOTANY(string) are primitive pattern matching

functions whose arguments are pattern structures that match single

characters or strings. ANY will match any character or string appearing in

its argument, whereas, NOTANY will match any character or string not

appearing in its argument.

ANY and NOTANY are the operations of the UNION string structure: with

the UNION statement collecting the set of values of the alternative

strings, the ANY or NOTANY statement takes these values to examine whether

or not any of these values exist in the reference string concerned. The

argument of ANY may be any string either in the form of a string value or

175

string identifier, which is similar to the case of the UNION structure

(section 6.5). Hence we will call the first 'ANY by Value', and the second

'ANY by Name'.

1) ANY by Value

IF ANY('Patterns') IN String_Variable
THEN Function 1
ELSE Function 2;

IF NOTANY('Patterns') IN String_Variable
THEN Function 1
ELSE Function 2;

'Patterns' := 'Pattern 1' 'Pattern 2' I 'Pattern_3';

ANY or NOTANY can be further extended to match a sequence of

characters or strings instead of terminating the search operation

after the first match.

'Patterns' :• 'Pattern 1' ->'Pattern 2 -> 'Pattern_3';

For instance, we would like to look for any strings that.consists

of '£' 'e' and 'y' in that order, without worrying about other

_possible characters in between, we could write

ANY('£' -> 'e' -> 'y') IN String1
THEN Function 1
ELSE Function 2;

Now, if String1 were 'ferry', the flow of control would certainly

switch to Function 1. Arguments of ANY and NOTANY must be non­

null strings when pattern matching is performed.

'

176

1) ANY by Name :

Since the pattern structure for ANY('a' I 'e' I 'i' I 'o' I 'u') matches

any vowel, and the pat tern for NOT ANY(' a' I' e' I' i' I' o' \ 'u') matches

any character that is not a vowel, it could equally be legitimate

to use ANY(Vowel) or NOTANY(Vowel) to mean the same operation, if

Vowel := 'a'\'e'\'i'\'o'\'u'.

Vowels :='a' I 'e' \ 'i' \ 'o' I 'u';

IF ANY(Vowels) IN String1
THEN Function 1
ELSE Function 2;

The syntax of ANY by Name is shown as follows

IF ANY(Variables) IN String_Variable
THEN Function 1
ELSE Function 2;

IF NOTANY(Variables) IN String_Variable
THEN Function 1
ELSE Function 2;

Bearing in mind that

<Variables) ::= <Stringl) \ <String2);

<Variables) ::= <String1) -> <String2>;

The ANY and NOTANY which we have just described is the superset of

their counterparts in SNOBOL4; they are in fact, the combination of ANY,

NOTANY, SPAN, BREAK, ARB and FENCE. This is due to the changes of

hardware; as a matter of fact, we have found that it is very

straightforward to remove the restrictions of the SNOBOL4 instructions

mentioned above, and merge them together to form the ANY/NOTANY statements.

J 177

6.7 THE ALGORITHM : POSITION

.
The algorithm POSITION is a string function to position either the

cursor or anchor within the reference string. Position, in this sense, is

perhaps best thought of as occuring between the characters of a string. In

the string 'ferry', "position 2" occurs between thee and the first r. If

we are at position 2, then r is the next character.

f e r r y

1) POSITION CURSOR :

The function POSITION (N) refers to "POSITION CURSOR AT N'' within

the reference string.

POSITION (Number) WITHIN Variable;

will Ca.use a marker (cursor) to be set at the position specified

by Number within the reference string (Variable). For readers who

are familiar with a screen editor, the function POSITION is

nothing more than a cursor positioning instruction that moves the

cursor around the reference string. For the case of the string

"ferry".

POSITION (2) WITHIN "ferry";

will set the cursor at position 2 with reference from the first

character of the reference string.

f e r r y ..

178

The Number here is a absolute number referred from the beginning

of the reference string and has a default implication of "from

left to right". This is sometimes referred to in SNOBOL4 as

Anchored mode, which means anchored at the first character of the

reference string for any subsequent pattern matching. However,

the definition of Number can be extended to include Relative

Number which takes reference from either the anchor or the cursor,

set by the previous POSITION instruction, at any position within

the reference string.

A) POSITION CURSOR With Reference from the Cursor

A pair of diamond brackets is used here to imply "with

reference from the Cursor". If the Cursor is not preset by

any previous POSITION instruction, then this <number) will be

the same as the absolute number which refers from the

beginning of the reference string.

POSITION (Number) WITHIN Variable;

POSITION (2) WITHIN "ferry";

Since this positioning operation is performed with reference

from the previous setting of the cursor, it will therefore,

cause the cursor to be positioned beyond the second r.

f e r r y ...

B) POSITION CURSOR With Reference from the Anchor

A pair of square brackets, in this case, is used to mean refer

from the Anchor position. If the Anchor is not preset by any

previous POSITION instruction, then this (number) will take

reference from the beginning of the reference string.

179

POSITION [Number] WITHIN Variable;

POSITION [2] WITHIN "ferry11
;

In this case, since no Anchor has been set so far, the

positioning will take reference from the first character of

the reference string.

f e r r y

Extension of the definition of POSITION is possible by diverging

from conventional "from left to right" to "from right to left".

RPOSITION (Number) WITHIN Variable;

RPOSITION [Number] WITHIN Varaible;

RPOSITION <Number) WITHIN Variable;

• Hence, the position in the reference string that is before the

first character is POSITION(O), whereas, the rightmost position to

the right of the last character is RPOSITION(O).

2) POSITION ANCHOR

Apart from the positioning of the cursor within the reference

string, the anchor can also be positioned in accordance to a

similar set of POSITION instructions.

POSITION_ANCHOR {Number} WITHIN Variable;

POSITION_ANCHOR [Number] WITHIN Variable,

POSITION_ANCHOR <Number) WITHIN Variable;

RPOSITION_ANCHOR (Number) WITHIN Variable;

RPOSITION_ANCHOR [Number] WITHIN Variable;

RPOSITION_ANCHOR <Number) WITHIN Variable;

180

In the previous section, the content of substring was used as a means

to locate a position within the reference string, whereby processing could

take place. In this section, we will introduce another way of marking the

beginning of substring (HEAD of block) and the end of substring (TAIL of

block) by locating their positions within the reference string regardless

of its content. The function POSITION_HEAD (N) refers to "position the

beginning of substring at ~· within the reference string, and POSITION TAIL

(N) refers to "position the end of substring at N within the reference

string".

3) POSITION HEAD :

The function "POSITION HEAD" will cause the "HEAD MARKER" to be

placed at the position specified by Number within the reference

string (Variable).

POSITION HEAD (Number) WITHIN Variable;

POSITION HEAD [Number] WITHIN Variable;

POS~TION_HEAD <Number) WITHIN Variable;

RPOSITION_HEAD (Number) WITHIN Variable;
•

RPOSITION HEAD [Number] WITHIN Variable· - '
RPOSITION_HEAD <Number) WITHIN Variable;

4) POSITION TAIL :

Whereas the function "POSITION_TAIL" will cause the "TAIL MARKE~'

to be placed within reference string in according to Number.

POSITION TAIL (Number) WITHIN Variable· - '
POSITION TAIL [Number) WITHIN Variable;

POSITION TAIL <Number) WITHIN Variable· - '
RPOSITION_TAIL (Number) WITHIN Variable;

RPOSITION TAIL [Number] WITHIN Variable;

RPOSITION TAIL <Number) WITHIN Variable· - ,

181

6.8 THE ALGORITHM : REMAINDER

The algorithm REMAINDER is an assignment statement by which the

remainder of the value of the reference string, which is marked by markers,

is assigned to a string identifier.

1) REMAINDER ANCHOR

Variable := REMAINDE~ANCHOR,

will assign the value bounded by the Anchor and the end or

beginning of the reference string, to the string identifier. The

directional convention was preset by the POSITION statement. In

other words, any remainder statement must be preceded by a

POSITION statement. For instance,

POSITION ANCHOR (6) WITHIN "transfer";

Temp ~tring := REMAINDER ANCHOR· - - ,

will assign "fer" as the value of Temp_String, whereas

RPOSITION_ANCHOR (3) WITHIN "ferry";

Temp_String := REMAINDER_ANCHOR;

will assign "fer" as the value of Temp_String.

2) REMAINDER CURSOR :

REMAINDER could also use the cursor as the marker, instead of the

anchor.

Variable := REMAINDER_CURSOR;

182

3) REMAINDER_BLOCK :

For the case of the value bounded by the head and tail markers,

within the reference string, it takes the following form:

Variable := REMAINDER_BLOCK;

---Ch. Spec CB-Spec

IDR 11 o o o o o o otxtxtxlxl IDR

BSU I I I I I
c c c c
B B B B

7 6 5 4 3 2 1 0 1 2 3 4

T Ill I I

e I I I I

m I I I I

p I I I I -----------------------
- _ I I I I

5 I I I I

t t I I I I

r I I I I

1 I I I I

n I I I I

s I I I I

$ I I I I

t I I I I

e I I I I

r I I I I

11 I I I I

1 0 0 0 0 0 0 Ol I I I

1 I l I I

1 I I I I
--

BSU

TRl

1

1

1

TR2

ODR I I I I I I 1 I MRR

WCL

*

183

6.9 THE ALGORITHM : LENGTH

The algorithm LENGTH is a string processing function, which has a

single string argument and returns as value an integer that is the length

of the string.

Example String := 'ferry';

WRITELN('The number of characters is ',LENGTH(Stringl));

will print:

The number of characters is 5

184

6.10 SUMMARY :

The evolution of programming languages has seen a steady development

in the use of data types, various kinds of data structures are used in all

areas of computer science. Compilers use stacks, symbol tables, and parse

trees; operating systems maintain lists of processes and files, and employ

memory management schemes that use lists or tables of available space;

programs in artifical intelligence use stacks, queue sets, search trees,

tables and graphs; and database sys terns use strings, 1 is ts, trees, rings

and tables. As a matter of fact, part of the art of programming is the art

of organizing data representations. In examining the specification of

contemporary computer programs of substantial size, one often finds that

they tend to contain layers of separate representations that span the gap

from the naked machine upwards to the problem domain. For example, in a

data base system, one may include name field, address field, room_number

field and fields for internal/external phone numbers, at the problem domain

level. However, at the intermediate levels one might use strings, tables,

lists, trees, queues and other data types to support the problem domain,

while at the lowest levels, one might find that these data structures are

constructed from bits, bytes, and serially arranged sequences of machine

' words. Some authors[68,72] refer to the layers in such a representation

cascade as levels of abstraction. This concept of mapping offers a very

abstract way for the programmer to specify the system in the early stages

of his design, without being confused by the details of the representation

and implementaion of his data. However, all data structures or data types

are ultimately mapped on to the physical organization of hardware storage

such as byte. Higher level data objects are then constructed using the

byte as a basic building block and the first meaningful structure, which

one can build, is the ordered collection of bits to form a bit string.

Our purpose in this chapter is to deal in some detail, and in a fairly

formal manner, with the semantics of the string patterns at the

specification level and their use in structuring collections of strings.

Orginally, the SNOBOL4 language integrated the idea of a "pattern" in

string algorithms with a very powerful pattern matching system.

lBS

Recognition of this fact has led us to abstract most of the string

constructs from SNOBOL4 for the investigation of the implementation of

string algorithms on the Byte-Organized Associative Processor: examining

the mapping of string objects onto the memory structure of BOAP, and

investigating how string functions can be efficiently implemented on ocs.

Hopefully, this detailed exploration of string structure implementation

will provide us with the insight and confidence we need to do a superficial

but convincing coverage of other data structures on DCS.

In the next chapter, we will expand from the basis of string

algorithms to look into the structural organization of other data

structures, and examine their mapping onto BOAP: a single linked list can

be formed out of a string with a single pointer; similarly a binary tree

can be formed from a linked list with double pointers ••• etc. However, due

to the triviality and length that it may involve, the detailed

implementation phase of their associated functions will not be discussed.

186

CHAPTER SEVEN

THE OTHER DATA STRUCTURES

7.1 The Singly Linked-List Data Structures

1.2 The Doubly Linked-List Data Structures

7.3 The MultiLinked-List Data Structures

7.4 Summary

In Chapter Six, only small and relatively simple structures (i.e

Strings) have been dealt with. However, the String structure has its

serious shortcoming of being bounded, and has a maximum allocation of

whatever number of bytes the compiler designer may decide. Although an

array structure can often be used to collect together a number of

individual strings, the storage allocation still remains static at compile

time, so much so, that this has become very inflexible if the program has

to deal with dynamic data structures which may grow and shrink at run time.

However, for a great many applications, a suitable compromise can be found

by employing the so called "linked-memory philosophy"[73):

If there is~t room for the information here, let's put it

somewhere else and plant a link to it.

As a result, since the late fifies, a great deal of effort has gone

into the development of dynamic memory management. In a dynamic memory

allocation environment a data structure is a block of information with one,

two or more pointers by which next records can be found. However, we will ..
start with the data structures with only one pointer.

I Data Block \-------> Next Data Block

1) Dynamic Memory Management using Indirect Addressing:

This is a very simple dynamic memory management system widely used

by FORTRAN type programming languages for simulating pointer type

records. It is basically a fixed size array of addresses pointing

to the beginning of each record concerned, where a fixed length of

address is used in the system, this is, in fact, a very convenient

way of organizing dynamic data structures in those First

Generation high-level programming languages such as FORTRAN.

Nonetheless, the array still remains static.

187

~------->

Record Address --------- --->
I ----------------

Record Address -------------
----------------.

Record Address

I
-------->

--->
I

Record Address -------------

Head of the Record

.
Head of the Record

.
Head of the Record

Head of the Record

.

2) Dynamic Memory Management using a Linked-List:

The Linked-List approach is a more modern way of organizing

dynamic memory which is supported by most of the Second Generation

programming languages such as PASCAL, c, BCPL ••• etc. A List is

defined (recursively) as a finite sequence of zero or more

atoms/Lists. Here, an "atom" is an undefined concept referring to

elements from any universe of objects as may be desired, so long

as it is posssible to distinguish an atom from a List.

Nonetheless, in the implementation phase, Lists are o~ganized as

ordered collections of an arbitrary number of elements which can

be accessed by pointers.

------------------ ------------------\ Data Block I PTR \---> : : : : \ Data Block I PTR 1---> NULL
------------------ ------------------

The Linked-List provides a much more flexible and efficient scheme

organising dynamic memory management for data expansion and data

manipulation : for example, INSERT and DELETE operations are

simplified to just altering pointers.

188

7 .1 THE SINGLY LINKED-LIST DATA STRUCTURES :

The Singly Linked-List is sometimes referred to as a linear list[73],

or one-way linked list[74), which is a set of N nodes whose structural

properties essentially involve only the linear (one-dimensional) relative

positions of the nodes. The Singly Linked-List da'ta structures, like all

other linked-list data structures, use RECURSION for data structuring.

List = Atom I List x List;

In other words, a list is either an atom (defined elsewhere) or an ordered

pair, whose first and second components are themselves lists. RECURSION is

a structuring mechanism that can be used to defined aggregates whose size

can grow arbitrarily and whose structure can have arbitrary complexity. As

opposed to SEQUENCING, it allows the programmer to create arbitrary access

paths for the selection of components. Data objects of recursive type are

implemented by use of pointers. Each component specified as be~onging to

the recursive type is represented by a location containing a pointer to the

data object, rather than the data object itself. In the case of a Singly

Linked_List Data Structure, the formal list data organization o~ BOAP is

shown in Fig. 7.1, which includes five different parts:

1) The Identifier of the List

Similar to string identifier, list identifier is the label used by

programmers to locate the list by name.

2) The Link Name of the List

But in the usual case, the Link Name is used instead to chain from

one list to the other.

3) The Data Objects of the List

The is the part of the list where the actual data can be found.

In theory, data objects may be of any size.

4) The delimiter of Data Object Fields

The delimiter # is used in the list structure to terminate the

data object fields.

5) The Pointer of the List

This is the part where the Link Name of the next list is kept.

189

---Ch. Spec CB Spec
-----------------------IDR I I I I I I IDR

BSU I I I I I BSU

c c c c
B B B B

7 6 5 4 3 2 1 0 1 2 3 4
List --------~--------------

TRl TR2

Identifier-> List_Name_l Ill I I
I -----------------------Ltnk_Name -> 1 0 0 0 0 0 0 1111 I I

Record_Field_l I Ill I

Record_Field_2 I Ill I

Record_Field_3 I Ill I
-----------------------Delimiter -> U I I I I

I -----------------------
Pointer-> 1 0 0 0 0 0 1 Ol Ill I

List_Name_2 Ill I I

1 0 0 0 0 0 1 Olll I I
-----------------------Record_Field_l I Ill I
-----------------------Record_Field_2 I Ill I
-----------------------Record_Field_3 I Ill I

11 I I I I

1 o o o o o 1 11 111 I

List~ame_3 Ill I I

1 o o o o o 1 1111 I I
-----------------------Record_Field_l I Ill I
-----------------------Record_Field_2 I Ill I
-----------------------Record_Field_3 I Ill I

{1 I I I I
-----------------------Null Pointer-> 1 0 0 0 0 0 0 ot Ill I

? I I I I

? I l I I

? I I I I
--ODR I I I I I I
----------------------- MRR

wsu

<-

--t

<-

Fig. 7.1 The Data Organization of a Singly Linked-List Data Structure

190

The data organization of a Singly Linked-List only provides the

declaration part of the data structure, and the operational part still has

to be defined. The operations we might want to perform on a singly linked­

list are as follows:

1) Gain access to the Kth node of the list to examine and/or to

change the contents of its fields.

2) Insert a new node just before the Kth node.

3) Delete the Kth node.

4) Combine two or more Singly Linked-Lists into a single list.

5) Split a Singly Linked-List into two or more lists.

6) Make a copy of a Singly Linked-List.

7) Determine the number of nodes in a list.

8) Sort the nodes of the list into ascending/decending order based

on certain fields of the nodes.

9) Search the list for the occurrence of a node with a particular

value in some field.

A computer application rarely calls for all nine of the above

operations in the full generality, therefore, we may distingish between:

types of Singly Linked-Lists depending on the principal operations to be•

performed.

1.1.1 The Stack Structure:

A Stack is a Singly Linked-List for which all insertions and

deletions (and usually all accesses) are made at one end of the

list.

BOTTOM TOP -------- --------1 Data \ \->\ Data \ \->\ Data \ \->\ Data \ \->\ Data \ \-> -------- -------- -------- -------- --------...

Insert} Delete

191

Stacks arise quite frequently in practice, and people have given

them a number of names: push-down list, Last-In-First-Out (LIFO)

list, and even yo-yo list! Stacks are particularly useful for

implementing nested structures, like procedure calls, Reverse

Polish and recursive algorithms.

1.1.2 The Queue Structure:

A Queue is a Singly Linked-List for which all insertions are

made at one end of the list; all deletions (and usually all

accesses) are made at the other end.

QUEUE END QUEUE FRONT -------- -------- -------- -------- --------
1 Data 1 1->1 Data 1 1->1 Data 1 1->1 Data 1 1->1 Data 1 1->
--------...

1
Insert

1
Delete

Queues are sometimes called circular stores or First-In-First­

Out (FIFO) lists. With the Queue structure, data blocks are

entered at the end of the queue and are removed when they

ultJ.mately reach the front of the queue.

7.1.3 The Circular List Structure:

A circularly-linked list (Briefly : a Circular List) has the

property that its last node links back to the first instead of

to NULL. It is then possible to access all of the list starting

at any given point for either insertion or deletion.

---­' -------- -------- -------- -------- -------- ' ->1 Data 1 1->1 Data 1 1->1 Data 1 1->1 Data 1 1->1 Data 1 1->
-------- -------- -------- -------- ·--------

192

In view of the circular symmetry, there is no NULL link to

signal the end of list. Consequently, a special and

recognizable node is put into the list, as a convenient stopping

place. This special node is called the list head, and in

applications, it is often found that it is quite convenient to

insist that every circular list have exactly one node which is

its list head.

7.1.4 The Dynamic Array Structure:

In the absence of special information about the expansional

patterns of array, the static array scheme has to define the

maximum possible storage to cater for the worst case, which

often means inefficient memory management. The Dynamic Array

scheme which sometimes known as the extendible array[75), offers

a better solution by defining a one dimensional array: an open

ended array.

I Base I 1--->1 Data I \->1 Data I 1->1 Data I 1-> NULL

' Insert

Usually, insertions are done in front of the list, but, other

conventions could always be adopted. Deletions are done more

efficiently than in the static arrray scheme by just

manipulating pointers.

Apart from Stack, Queue, Circular List and Dynamic Array, there are

many other ways in which operations on Singly-Linked Lists can be definded.

Nevertheless, there is one common feature that each of them shares: all

functions must only operate on the one-dimensional lists.

193

7.2 THE DOUBLY LINKED-LIST DATA STRUCTURES :

For even greater flexibility in the manipulation of Linked-Lists, we

can include two links in each node, pointing to the items on either side of

that node.

LEFT RIGHT

II DATA II--> II DATA II--> II DATA II--> I DATA I

NULL <- <-- <-- <--

--> NULL

In the Doubly Linked-Lists, Manipulation of data items becomes much

easier: in the Singly Linked-List, we cannot perform a deletion without

knowing which node precedes it in the chain, since the preceding node needs

to have its link altered when the unwanted node is deleted. However, in

the Doubly Linked-List, data blocks are chained together with a two-way

pointer, by which deletion or insertion can be done very easily.

LEFT RIGHT

ll DATA ~~--)~~ DATA ~~--> l DATA ~~--> l DATA ~~-->
NULL <- <-- <-- <--

NULL

I

To be deleted

NULL

...
I

Deleted

The formal Doubly Linked-List data organization on BOAP is shown in

Fig. 7.2, which is virtually the same as the Singly Linked-List data

structure, except the inclusion of one extra pointer field.

194

---Ch. Spec CB Spec
-----------------------IDR I I I I I I IDR

BSU I I I I I BSU

c c c c
B B B B

7 6 5 4 3 2 1 0 1 2 3 4
List -----------------------

TRl TR2

Identifier-> List Name 1 Ill I I
I ------=----=-----------

tink_Name -> 1 0 0 0 0 0 0 llll I I

Record_Field_l I Ill I

Record_Field_2 I lll l

Record_Field_3 1 Ill I
-----------------------Delimiter -> II I l I I

I -----------------------Left Pointer-> 1 0 0 0 0 0 1 ot Ill I
I -----------------------Right Pointer-> 1 0 0 0 0 0 1 11 Ill I

List_Name_3 Ill I I

1 o o o o o 1 1111 I I
-----------------------Record_Field_l I Ill I

Record_Field_2 I Ill I
-----------------------Record_Field_3 I Ill I

11 I I I I

1 o o o o 1 o ol 111 I

lOOOOlOlj Ill I

List_Name_2 Ill I I

1 0 0 0 0 0 1 Olll I I
-----------------------Record_Field_l I Ill I
-----------------------Record_Field_2 I Ill I
-----------------------Record_Field_3 I Ill I

11 I I I I

1 0 0 0 0 1 1 Ol Ill I
--------~--------------
lOOOOllllllll

-----------------------ODR 1 1 1 1 I I
----------------------- MRR

wsu

<-

<--

Fig. 7.2 The Data Organization of a Doubly Linked-List Data Structure

195

The operational parts of a Doubly Linked-List are shown as follows:

1.2.1 The Deque Structure:

A Deque ("double-ended queue") is a linear list for which all

insertions and deletions (and usually all accesses) are made at

the ends of the list.

LEFT RIGHT

NULL <-1 I DATA I 1:=:1 I DATA I 1:=:1 I DATA I 1:=:1 I DATA I ~-->

NULL

----------...

\
Insert/Delete InsertlDelete

A deque is therefore more general than a Stack or a Queue; it

has some properties in common with a deck of cards, which in a

way can also further distinguish between output-restricted or

input-restricted deques, in which insertions or deletions are

allowed to take place at only one end respectively.

7.2.2 The Ring Structure:

If orthogonal Circular Lists are used, we have what is called a

Ring Structure.

I I
-- v --------------------------------- v ----------

1 ---------- ---------- \ ->I I DATA I 1-----------------------> I I DATA I 1-
---------- ----------
1 I

-- v --------------------------------- v ----------
1 ---------- ---------- ' ->' \ DATA ' '----------------------->I I DATA I 1-

---------- ----------\ I
-- v --------------------------------- v ----------

1 ---------- ' ----------->1 ' DATA ' 1----------------------->1 I DATA I 1-
---------- ----------
' I -------------

196

Ring Structures have proved to be quite flexible in a number of

applications. The proper choice of representation depends, as

always, on the type of insertions, deletions, and traversals

that are needed in the algorithms that manipulate these

structures. For instance, in the representation of sparse

matrices (matrices of large order in which most of the elements

are zero), the goal is to operate on these matrices as though

the entire matrix were present, but ignore the zero entries in

order to save memory. For example, the matrix

a
0
0

0
b
0

0
0
c

~-------------~ I ~-----~
---> l

ROW COL V

l
llllal -----------<------ LEFT I DOWN <-----------------------------------

\ --------,-- \ \ \

--------------------------------,---------------------\->\
ROW COL V

<----------------------lLiF~T-~~~1<-------------------I I ----------- I I

~-~------------~-------------~------~~~i~~----1->1
<-------------------------------------ILEFT I DOWNI<----I _____________ t I ------~ I

v ----

197

7.2.3 The Binary Tree Structure:

Tree structures have been the object of extensive mathematical

investigations for many years, long before the advent of

computers, and many interesting facts have been discovered about

them. Generally speaking, tree structure means a"branching"

relationship between nodes, much like that found in the trees of

nature. Let us define a tree formally as a finite set T of one

or more nodes such that

A) There is one specially designated node called the root of

the tree.

B) The remaining nodes (excluding the root) are partitioned

into m L 0 disjoint sets Tp•••• Tm, and each of these sets

in turn is a subtree of the root.

The simplest form of tree structure is a Binary Tree, which is

an important type of tree, in the sense that a Binary Tree is

not a special case of an ordinary tree, but it is another

concept entirely (although we will see many relations between

ordinary tree and Binary Tree). For example, conventionally,

general trees are conveniently representable as Binary Trees,

many trees that arise in applications are themselves inherently

binary. A Binary Tree is defined as a finite set of nodes that

is either empty, or consists of a root together with two binary

trees. This definition suggests a natural way to represent

binary tree with a Doubly Linked-List structure.

--\ \ DATA \ \--' ---------- l
v v

- \ ' DATA \ 1- -I I DATA I 1-
\ ---------- \ \ ---------- \
v v v v

198

This simple and natural memory representation accounts for the

special importance of Binary Tree structure, by which any Binary

Tree can be contructed with the recursive data structure. There

are many algorithms for the manipulation of Binary Tree

structures, and one idea that occurs repeatedly in these

algorithms is the notion of traversing or "walking through" a

tree. A complete traversal of the tree gives us a sequence of

movements of the nodes. Three principal ways may be used to

traverse a Binary Tree:

1) The Preorder Traversal

Visit the root

Traverse the left subtree

Traverse the right subtree

2) The lnorder Traversal

Traverse the left subtree

Visit the root

Traverse the right subtree

3) The Postorder Traversal

Traverse the left subtree

Traverse the right subtree

Visit the root

These three ways of arranging the nodes of a Binary Tree into a

sequence are extremely important, as they are intimately

connected with most of the computer methods dealing with trees.

In many applications of Binary Tree, there is more symmetry

between the meanings of the left subtrees and right subtrees,

and in such cases, the Inorder is used, which puts the root in

the middle, is essentially symmetric between left and right.

There is an important alternative representation of Binary Tree

to replace the NULL links (to terminal links) by "threads" to

other parts of the tree, as an aid to traversing the tree.

199

List Head <-

----->
------- I

-I I I 1---
l -------
v

I
I / _,-r~-,-,_ '- \

II II ------- ', \

1 I \ \ I \ I v v \
------- I I ------- \

/ -1 I B I l- I -1 l c I l- \
I I ------- I I ------- \ \

I I A I I A \ \

I __ _!___ I 1

1
---~--! I ---~--- ',,

-l_l_~_l_l-- -1_!_:_!_1-- 1-l_l_:_!_l-, ',
I AA I \

\ ---~--- \\ ---~--- ',
---1 I G I 1- -\ I H I 1-

The great advantage of threaded trees is that the traversal

algorithms become simpler. So a threaded Binary Tree is

decidedly superior to an unthreaded one, with respect to

traversal. However, these advantages are sometimes offset by

the slightly increased time needed to insert and delete nodes in

a threaded tree.

7.2.4 The Binary Tree Representation of Ordinary Tree Structure:

The problem in implementing ordinary trees is the nodes may have

a different number of children and the maximum number of

children may be much larger than the minimum or may be unknown

prior to the generation of the tree. One solution to this

problem is to use a dynamic tree structure implemented by Binary

Tree, in which the left pointer points to its first (leftmost)

son, and the right pointer points to its brothers in the same

generation.

--1 I DATA I \---> Brother
I ------------
1 v

Son

200

\ A \ ---
\

-l B I
I ---

/ \

1 F \ \ G \

\ c I

\ H \

I D \ -\ F \-
1 --- \

/ \ ', --- ---
\I\ \J\ \K\

For example, the above ordinary tree could be mapped into a form

of Binary Tree as shown in the following.

--l l A l l
-I -------

\ v

--I l B l 1----> I l c ' 1----> I l D l 1----> l l F I l
I ------- I ------- ------- I -------
\ l_l I I
v v v ------- -------

\ \ F \ \->\ \ G \ \ \ l H \ \ \ \ I \ \->\ \ J \ \->\ \ K \ \ -------

With this method of dynamic tree structuring, all types of

ordinary trees could be implemented by Binary Tree.

7.2.5 The Binary Tree Representation of Forest Structure:

A Forest is a set (usually an ordered set) of zero or more

disjoint trees, or in other words, the nodes of a tree

excluding the root'form a Forest. There is a natural way to

represent any forest as a Binary Tree. Consider the following

Forest of two trees:

201

I A I
I

I

I B I

\
\

I c l

' I K I

-1 D \-
1 --- \

/ \ ', --- ---
IE\ \F\ \G\

I I
I H I I J I

The corresponding Binary Tree representation is obtained by

linking the roots(fathers) of each family, and removing all

vertical links except from a father to his son:

I A 1-------------------->1 D I --- <-- <---- --- <---------------1 \ \ I \
v ----- v \ --- \

I B 1---> I c 1--
--> --- <-

1 I I
\ -~-
------------1 K \--

\ --- --- --- I

I '-T-~<=-1>'-T-~<=~>',~-~--~-'-~ -~-~-,
---\ H \- -\ J 1-

The above transformation gives the natural correspondence

between Forests and Binary Trees. Note that right thread links

go from the rightmost son of a family to the father. The ideas

about traversal expressed in the previous section can be recast

in terms of Forests. However, there is no simple analog of the

"Inorder" sequence, since there is no obvious place to insert a

root among its descendants; but "Preorder" and "Postorder" carry

over in an obvious manner. Given any nonempty Forest, the two

basic ways to traverse it may be defined as follows:

202

1) The Preorder Traversal

Visit the root of the first tree;

traverse the subtrees of the first tree (in Preorder);

traverse the remaining tress (in Preorder).

2) The Postorder Traversal

Traverse the subtrees of the first tree (in Postorder);

visit the root of the first tree;

traverse the remaining tress (in Postorder).

One of the most important application of Forest is the

implementation of Set structures. Sets differ from Trees in

that the members of a Set must be distinct, a condition not

necessarily imposed on Tree structures. .For example, in a

special case of a nested set, which is a collection of sets in

which any pair of sets is either disjoint or one contains the

other:

(A (B (H) (J))(C (D) (E (G)) (F)))

--

\ H \ \ J \ \D\ C \F\

A

I B
E

--

203

7.2.6 The Connected Graph Structure:

Intuitively, a Graph is a data structure used to represent

relationships among objects. It is generally defined to be a

set of points (called vertices) together with a set of lines

(called edges) joining certain pairs of distinct v~rtices.

There is at most one edge joining any pair of vertices, and two

vertices are called adjacent if there is an edge joining them.

By this definition, it is obvious that trees, in general,

belong to a class of Graph structures with hierarchical

relationships among items of data, which are sometimes referred

to as connected Graphs without cycles.

A graph is connected if there is path between any vertices of

the graph. Therefore, Circular List and Ring structures can

both be considered as connected graphs. However, there is a

good deal more significance if the direction of each edge is

taken into account in the interpretation of a graph, and in this

case we have what is called a "direct graph" or "digraph". The

main feature of a direct graph from the modelling standpoint is

that it indicates precedence constraints. If two nodes X and Y

are linked by an arc from X toY that this implies an activity

to happen at node X must precede those of node Y. This

constraint can be extended to be related to time, for example

when X and Y are the Fetch and Execute sequences of the Control­

Flow architecture. This key idea has found numerous

applications in computer science, such as task scheduling,

Semaphore, state graph diagram, program flowcharts, ••• etc.

However, it is not the purpose of this section to review them

all exhaustively, instead we will concentrate on the Linked-List

representation of Graphs. This is done by providing for each

vertex two "vertex-edge lists" of its adjacent vertices: one for

in-pointing edges, the other for out-pointing edges.

204

__ , 1 , __

I --- \
I ... \

-~- I -~-<-\ 2 l<- ____ , 3 , __

~ --- \ --- ~
\ - I
\ \ I \ I

\ I
--->1 4 \--->

For instance, the above graph can be represented in the

following Doubly Linked-List.

In-Pointing Edges <--\ Node \--> Out-Pointing Edges
Directory

l ' 3 ' \--> ' 1 ' --> ' ' 2 ' ' --> ' ' 3 ' l
----~--

l \ 4 l \ --> ' ' 1 ' ' --> ' 2 ' --> ' ' 4 ' '

l l 4 I 1--> \ l 1 l l --> l 3 l -->I I 1 \ \

' ' 2 ' '--> ' 4 ' -->' ' 2 ' '-->' ' 3 ' '

As a matter of fact, this Doubly Linked-List representation is

the mapping of Graph Connectivity Matrix[76].

1 2 3 4

1 Out Both

2 In Both

3 Both In

4 Both Out

205

7.3 THE MULTILINKED-LIST DATA STRUCTURES :

A Multilinked-List data structure involves nodes with several linked

fields in each node, not one or two as in most of our previous examples.

---Ch. Spec CB Spec
-----------------------!DR I I I I I I IDR
------------------------------BSU I I I I I BSU -------

c c c c
B B B B

7 6 5 4 3 2 1 0 1 2 3 4
List -----------------------Identifier-) List Name 1 Ill I I

I -----------------------Link Name-> 1 0 0 0 0 0 0 1{1(I I

Record_Field_l I Ill I

Record_Field_2 I Ill I
-----------------------Record_Field_3 I Ill I

11 I I , I I Delimiter ->
I -----------------------

1st Poilter -> :-~-~-~-~-~-:-~!_!:!_!_
2nd Pointer-> 1 0 0 0 0 0 1 11 1~1 I

I -----------------------Jrd Pointer-> 1 0 0 0 0 1 0 01 1{1 I
--11;~-N~~~-4--Iil"l_l_

1 0 0 0 0 1 0 Olll I I

Record_Field_l I Ill I

Record_Field_2 I Ill I

Record_Field_3 I Ill 1

11 I I I I

1 o o o o 1 o 11 111 1

lOOOOllOIIlll

1000011111111

List_Name_3 Ill I I

1 o o o o o 1 1111 1 1

TRl TR2

ODR I I I 1 1 I MRR

wsu

-->

<-

<--

Fig. 7.3 The Data Organization of a Triply Linked-List Data Structure

206

Theoretically speaking, the number of pointers in the Multilinked-List

structures can be increased to as many as desired. Nevertheless, in view

of the implementation of most of the known data structures, they can all be

accomplished by two pointer Doubly Linked-Lists. Because of its

associative properties, all pointers on BOAP are implemented as

bidirectional pointers, instead of unidirectional, as in conventional

implementations. Hence, some of the Doubly Linked-List data structures

previously discussed could in fact be implemented in Singly Linked-List on

BOAP, i.e. Deque could be implemented in a Singly Linked-List shown as

follows:

LEFT RIGHT

NULL <--1 I DATA I 1<->1 DATA I 1<->1 I DATA I 1<->1 I DATA I 1--> NULL

_!"-_______ _

The following Associative Computation Cycle shows how a "father"
t

link can be traced when necessary.

207

S[lXXXXXXX XlXl]BMR
GRS[lXXXXXXX lXXX}
RSGSD(U)
R(lOlO)BRN

+1 ,+2 ,
,
,

@NEXT ;

SEARCH FOR PTR
SEARCH FOR FATHER
ACTIVATE FATHER PTR
MARK. FATHER PTR

---Ch. Spec CB Spec
-----------------------IDR I Ill 0 Ill 0 I IDR

BSU I I I I I BSU

c c c c
B B B B

7 6 5 4 3 2 1 0 1 2 3 4
List -----------------------

TRl TR2

Identifier-> List_Name_l Ill I I
I -----------------------Link Name-> l 0 0 0 0 0 0 1111 Ill 1

-----------------------Record_Field_l I Ill I

Record_Field_2 I Ill I
-----------------------Record_Field_3 I Ill I
-----------------------Delimiter -> U I I I I

I -----------------------Pointer-> 1 0 0 0 0 0 1 Ol Ill 11 1

List_Name_2 Ill I I

1 0 0 0 0 0 1 Olll I I
----------------------- 1

Record Field 1 I Ill I
-----------------------Record_Field_2 I Ill I
-----------------------Record_Field_3 I Ill I

0 I I I I

1000001111111
----------------------- 1

List_Name_3 Ill I I
-----------------------lOOOOOlllllll
-----------------------Record Field_l I Ill I
-----------------------Record Field 2 I Ill I
-----------------------Record_Field_3 I Ill I

' I 1 1 1 Delimiter ->

' Pointer-> 1 0 0 0 0 0 0 01 111 l -----------------------

ODR I -----------------------
-----------------------111lllliMRR

wsu

*

208

7.4 SUMMARY:

Data type encapsulation is now a widely accepted method of program

development and structuring[66,78,79]. Indeed, it is one of our chief

programming paradigms[80]:

one is encouraged to write programs as algorithms operating on

abstract data types, then gradually refine the data

representation, applying this method recursively, until a

concrete representation is found[68].

At each stage, the abstract data being operat~d upon present themselves as

the objects of certain operations, which may be observed to behave in

particular ways but whose precise internal structure is hidden.

In this chapter, models of data structures have been developed based on

linked-list structures, which in effect, create a mapping between abstract

data types and the memory organization of BOAP. Briefly, every data type

has a structure after refinement and all typed variables have a structure

·corresponding to that type. Nevertheless, we have not yet mentioned

anything about the relational operations to be performed on these data

structures, and how data items communicate with each other1 It is well

known that the concept and the use of relations are very important in data

structures[4,81,82,83], so much so that, one can approach various data in a

unified way via relations[77]. This unified approach seems especially

attractive when data to be handled are diverse and heterogeneous[84].

1) UNION(Rl'R2, •••, Rk)

2) INDEXED_UNION(I) : UNION(RELATION(!))

3) INTERSECTION(R1 ,R2 , ••• , ~)

4) INDEXED_INTERSECTION(I) : INTERSECTION(RELATION(!))

5) SYMMETRIC_DIFFERENCE(R1 ,R2) : exclusive OR operation

6) RELATIVE COMPLEMENT : Rl - R2
7) COMPLEMENT : R

8) CARTESIAN PRODUCT(S1 , s2)

209

9) INVERSE : R- 1

10) CARDINALITY(S) : the number of members in the set S

11) PROJECTION(L,R) : projection of R by L

12) PERMUTATION(A,B) : permutation of B by A

13) RANK(R) : rank of R

14) RELATION(E1 , E2, ••• , E k)

15) SUBSET(A,B) : true if A is a subset of B, false otherwise

16) EQUAL(A,B) : true if A= b, false otherwise

17) EQUIVALENT(A,B) true if \A\= \B\, false otherwise

18) DISJOINT(A,B) : true if UNION(A,B) = 0, false otherwise

The relational data structure described above is general enough to

handle operations of String, List, Tree, Set, Graph and all other data

structures that we have discussed in this chapter. In BOAP, relations

between data items are established by first searching for the data

concerned, examining the Data Fields and/or Pointer Fields for the

identities of data items, before building a relationship between them by

means of marking Control Bits (communication links). There are many of

these examples in Chapter Six's algorithms: the String UNION algorithm to

form a union of set, the String ANY algorithm to check for set membership.

Finally, the point that we want to make here is that, the material

which we present so far is not just '~et another way of implementing data

s true tures", but in contrast, it is an expedition to a better and more

efficient way of organizing; representing; accessing and manipulating data,

so much so that the burden of searching and sorting [85], which has been

predominating the field of data structuring for so long, can be eliminated.

210

CHAPTER EIGHT

CONCLUSION

Having contructed the Distributed Computer System, we now have a

string processor, a list processor, a tree processor, a set and a graph

processor within the computer system, to oversee the implementation of data

structures and mathematical dictions.

----------- ----------- ----------- ----------- -----------
\

String l l List l l Tree l l Graph l l Set l Processor Processor Processor Processor Processor

----------- ----------- ----------- ----------- -----------
I \ I \ I \ I \ I \

,I 17 ,I 17 ,I 17 ,I 17 ,I 17
--

INTERCONNECTION NETWORK

--

1
HOST 1

Processor

Fig. 8.1 The Model of the Distributed Computer System

In this transformation, the burden of program coding, the size and

overhead of the compilation/interpretation process have been greatly

reduced. Hence, the machine has now not only been equipped with various

useful data structures and powerful mathematical dictions at the HLL level,

but is actually running much more quickly and efficiently with a smaller.

compiler/interpreter at the system translation level, and the wishful

thinking of Rex Rice[86,87] can now really come true. The Rice's Symbol

IIRcomputer architecture was proposed in 1966 at Fairchild's research

facility in Palo Alto, California, as a "blue print" to build a HLL

machine. Although this machine was built and delivered to Iowa State

University in 1971, the termination of funding and the hardware failures

have forced it to be permanently decommissioned in 1978. Nevertheless, it

had taught us a great deal about building HLL machines. Summing up the

211

experience of the Symbol computer, and with the aids of present VLSI

technology, we could now build a even more powerful machine based on the

model of our Distributed Computer System.

Specification

,117
"V11 HLL Program

-------------------------------"V11 HLL Image Machine

\ \

Moderately Simple \ \
Compilation

--

,117
Image Program

--------------------------------------Image Machine

\ \
Moderately Simple \ \

Interpretation/Emulation
--

I Distributed Computer System l

With the Distributed Computer System (DCS), we bring together two very

distinct processors, each performs what it is best capable of doing: The

Von Neumann machine (SISD processor) for SISD operations, and the BOAP

(SIMD processor) for SIMD operations. Nevertheless, this level of

212

specialization could be further extended, by bringing in more special

purpose processors into the DCS.

---------------- -------------

1

Byte-Organized I I Distributed
Associative Array

Processor Processor I Systolic I ----------- -----------
Array Data-Flow Reduction

Processor I Processor \ I Processor I
---------------- -------------

I \ I \ I \ I \ I \

DISTRIBUTED LOCAL COMPUTER NETWORK

I \

I Conventional I
Von Neumann

Processor

I \

Carry I Look
Ahead
Adder·

I \

Serial­
Parallel

Multiplier/
Divider

I \

I Floating I
Point

Processor

I

R
0
M

Fig. 8.2 The Extended Distributed Computer System

\ I

A
L
u

\

In this extended DCS, the Von Neumann processor is still remains the

Host of the system, to oversee the program sequencing, scheduling, task

allocation, I/O control and system reconfiguration[88,89], and as many

special purpose SISD processors as necessary are integrated into the system

for implementations of arithmeic and logic operations: the carry-look-ahead

adder[90}, the serial-parallel multiplier/divider[91] and the floating­

point processor[92] for arithmetic processings; the look-up-table in

ROM[91] for trigonometric functions; the single chip ALU[90] for logic

operations. On the other hand, the byte-organized associative processor

(BOAP) is used here to facilitate all SIMD non-numerical processing, and

the ICL Distributed Array Processor[93], or Kung's Systolic Array[94] type

of hardwares are used for implementation of those SIMD "number crunching"

operations such as matrix operations, radar image processing, FFT and

signal processing etc. Data-flow[46-54 ,95] and reduction[SS-60] types of

213

MIMD processors can also be included for the implementation of mathematical

expressions and recursive operations respectively. All processors are

connected together via the interconnection network[39-45,96-99], which

provides data (and control) communications between the various processors.

so what is the next step forward after this extended Distributed

Computer System? Apart from the consolidation and expansion of the

existing system, we think that it is perhaps the time to start thinking

about a more higher level machine on which natural languages could be used

to program the machine. For many years, Jean Sammet[100] has been

preaching the virtues of allowing ordinary individuals to communicate with

a computer in their own natural language (which is simply meant to be the

language native to the group that using it, e.g., English, French, German,

and which also contains scientific notation wherever it is appropriate).

One of the primary advantages of this concept is to make it easier for any

non-computer minded person to communicate with a computer to get his/her

task done.

Work on natural languages has been at the center of A. I. research

into the ways in wldch concepts can be represented and cognitive processes

organized. Since language is vital to our thought, any theories concerning

memory or reasoning are strongly ·intertwined with the attempt to understand

how language works. It is believed that a deep understanding of the

context is vital to all uses of .language. Applied to machine translation,

this means that before one can translate material about a subject, one must

first have a program that "understands" the subject. However, in writing a

program for understanding natural languages, one is faced with all the

problems of artificial intelligence, problems of coping with huge amounts

of knowledge, problems of finding ways to represent and describe complex

cognitive structures, as well as problem of finding an appropriate

structure in a gigantic space of possibilities. Among the areas in which

research on the application of natural language understanding systems[101]

is currently active are machine translation[102], information retrieval

[103,104), and interactive interfaces to computer systems[l05,106,107].

214

Like all the other programming languages, natural language would have

to go through a translation process, similar to the compilation/

interpretation process of the HLLs, except that it would have to be

strictly interpretive:

1) Lexical Analysis

2) Syntax Analysis

3) Semantic Analysis

4) Pragmatics Analysis

5) Code Generation

In the Syntax Analysis, the parsing problem consists of finding the

structure of an input string, based on a given grammar. This is a common

problem on the analysis of natural language and HLLs. Whereas the

designers of HLLs hope to aviod ambiguity, the designers of natural

languages must accept it. The grammatical component used most is a

context-free grammar augmented by conditions, constraints, restriction, or

transformations, and the result is determined by how the context-free

system is augmented[l08):

A parse tree is produced according to a formal grammar expressed

as an Augmented Transition Network (ATN). The ATN, which is a

general representation of a phrase-structure grammar, retains

some of the simplicity of a finite-state machine but is extended

to context-free power by allowing recursion. It is further

enhanced by allowing the use of registers, arbitrary conditions

and actions. Parsers for ATN grammars can incorporate advances

made in the general theory of context-free parsing.

On the whole, semantics interpretation has had the greatest impact of

understanding on natural language. In order to represent the meaning of

words and sentences, it is necessary to have a formalism for representing

facts, concepts, and ideas. Work in the semantics of natural language has

followed two general lines: using formal logic and developing new

215

representations. Several standard techniques exist for representing

knowledge in natural language systems, namely, semantic networks[109,110],

procedural semantics[l08], and frames[lll]. Based on these systematic set

of representations, problem-solving and reasoning could then proceed by

means of formal logic. In all these systems the existence of prototype

frames makes possible the use of "expectations" in analysis. When an

ambiguous or underspecified phrase or sentence occurs, it can be compared

with a description of what would be expected, based on the prototype; if

there is a plausible fit to the expectation, assumptions can be made as to

what was meant. Researchers are currently involved in developing tools to

cope with the complexities of these data structures and control--"VHLL"

programming constructs. This would enable programmers to concentrate on

the complexities more closely connected to the structure of language and

thought, rather than the details of programming constructs.

Pragmatics is the study of the use of language in context which some

people refer to as "common-sense". For example, when you talk to someone,

you have a prior understanding that you and he/she have much in common.

You share a large· body of what might be called common-sense knowledge of

the human world--physical objects, events, thoughts, motivations. In

asking a question, stating a desire, or giving information, you include

just enough detail for the other person to be able to understand what you

are saying. Moreover, information about the communication itself, as well

as its context in a conversation, are vital to understanding of what is

being said. These is the subjects of fuzzy logic and inexact reasoning.

Anyway, this aspect of language is one that is just beginning to be dealt

with in current systems. Although most large systems in the past had

specialized ways of dealing with a subset of pragmatic problems, there is

as yet no theoretical approach. However, as people look to interactive

system for teaching and explanation, it seems likely that this will be the

major focus of research in the 1980s.

Summing-up the above disscussion on natural language, it has become

apparent that "problem solving" is the key issue in the natural language

processing. By problem solving, we mean a large corpus of basic ideas

216

having to do with the pocesses of deduction, inference, planning, "commom

sense" reasoning, and theorem-proving, ideas that have been applied in

programs for understanding natural languages, information retrieval,

automatic programmming, robotics, scene analysis, game-playing, and

mathematical theorem-proving. Here we examine some ideas concerning

problem solving.

The problem solver has two requirements that are logically

indepentent. One defines the allowable configurations for the class of

problem (representation), while the other defines the solution for a

problem of that class (reasoning). Problem-solving methods are

characterized by searching through a state, or situation space or through a

space of alternatives. A solution of a sequence of state transitions from

an initial state or states given in the problem specification, to a final,

or goal state. A solution sequence is any succession of states such that

the transition is consistent with the problem specification and the

operators provided by the method. The term search emphasizes the

teleological nature of the solution sequence; it need not involve much

trial-and-error seaching, although some searching is as inevitable in

machine problem-solving as in human problem-solving.

Research in natural languages is usually conducted by building large­

scale systems, by intensively studying subproblems and algorithms, and by

formally analyzing these systems. The state of the art is exemplified by

the large-scale systems. These systems have become the c~ntext for

developing and exploring algorithms, as well as for additional research.

In them are evident the subproblems of designing representations of

knowleuge, developing organized bodies of linguistic knowledge, and

designing algorithms for processing natural languages. By formally

analyzing mathematical models of natural languages, it will become possible

to study the power of and limitations on various approaches. Therefore, it

is apparent that in such a system, it needs not only a knowledge of the

structure of the language, but a body of "world knowledge" about the domain

discussed in the language. Thus a comprehensive, language understanding

217

system presupposes an extensive reasoning system, one with a base of

commom-sense and domain-specific knowledge.

Natural Languages

---Natural Language Image Machine
(Expert System)

l

I Compilation I l

Knowledge Base Mechanism

\J 17
Image Program

Image Machine

------------~-----------------

\ \
Moderately Simple 1 1

Interpretation/Emulation

I Extended Distributed Computer System I

In the fall of 1981, Japan had called a international conference on

Fifth Generation Computer Systems [112], which has sent a great pulse of

excitement across the whole computing community. These "fifth generation"

plans are centred on knowledge-based systems, which embody the specialised

knowledge and experience of a human expert, so much so that one could

simply "talk" to the machines to tell them what to do. Although a lot of

ideas presented in the conference are not new to us; some of them could

218

even be traced back a few decades ago, the whole world was impressed by the

determination and the schedule for the realisation of this radical plans:

it was reported that the Japan's Ministry of International Trade and

Industry (MITI) had set up a institute for new generation computer

technology, and would be spending 20 million pounds over the first three

years on the project. Together with government contributions later in the

programme, and with those from big companies such as Fujitsu, Hitachi and

NEC, the total outlay over 10 years could amount to between 500 million and

1000 million pounds. But, it is not just the funding that is impressive,

in the two years leading to the conference, the Japanese had spent 100 man­

years in identifying their research priorities--before setting out this ten

year programme, which set targets for key technology and software advances,

merging hardware and software to an unprecedented degree. Since the plan

was published and discussed in the FGCS conference at Tokyo in October,

1981, Western governments and industry have been taking this programme very

seriously.

Semantically, the "Fifth Generation Computer System" (FGCS) is a very

misleading term as the aim of the programme is to produce a radically new

family of the computers (A. I. machines) of the 1990s. But, in our

opinion, the A. I. machine will not be the only type of machine in the next

generation of computer systems, other new generation systems such as

weather forecasting machines, air traffic control systems, VLSI development

tools ••• etc may themselves not be related to A. I., yet could be

classified under the fifth generation computer system. Traditionally, the

term "generation" is used to describe the advance of computer

technology[l13]. As stated by Bell and Newell, "The generations are best

definded solely in terms of logic technology"[l14]:

1) The First Generation is that of vacuum tubes (1945 - 58)

2) The Second Generation is that of transistors (1958 - 66)

3) The Third Generation is that of res (1966 - 72)

219

4) The Fourth Generation is that of LSI circuits (197~- 82)

The LSI circuitry is a integrated subsystem on a

chip[28}. The Intel 4004 chip set was the first

commercially available microprocessor that marked the

beginning of the Fourth Generation computers[115].

S) The Fifth Generation is that of VLSI circuits (1982 - ?)

The VLSI is a complete digital system on a chip[116].

Therefore, we think that it may be more appropriate to refer to the

Japanese FGCS as expert systems. Nevertheless, we do agree that A. I.

would be the dominant force of the next generation of computer systems.

Basically, the areas of research and development targeted in the

Japanese FGCS are as follows:

1) The Hardware Level

The "System SG" is proposed--a VLSI CAD system, on which any design

from basic VLSl architecture to mask pattern in a uniform manner

can be performed[117]. The personal logic p~ogramming station with

LISP and PROLOG will be served as the standard inference terminal

in the System SG.

2) The Architecture Level :

Since the FGCS are designed as Knowledge Information Processing

System (KIPS) which realize a very high level and flexible man­

machine interface based on generalized or special~zed knowledge

data, abstract data type, relational algebra, and database support

mechanisms, have to be integrated into the systems [118-121]. In

these respects, the Japanese had concluded that the data-flow

machine and database machines are the most promising candidates for

the basic architecture of the KIPS[122].

220

3) The HLL Level :

The Japanese had adopted PROLOG as the starting point [123-128] and

working towards the definition of the SG-Kernel Language[129], or

·~ core languag~' for short, to serve as a nucleus of the software

systems and a fundemental specification for the architecture of

FGCS[119]. This proposed language will be a type of logic

programming language designed on the basis of a simple inference

like a syllogism in logic. It is expected to incorporate the

capability to specify parallel processing and to express more

advanced functions perta~ning to knowledge or meta-inference

mechanisms.

4) The Natural Language Level :

The expectation for the FGCS is as Karaisu has statedl130]:

"••• non pro~essional without training can handle the

new machines.

position."

This must be placed at the first

With this requiDement, natural language processing, speech

processing, and image processing are three fundamental categories

of research into intelligent man-machine interfaces[131].

5) The Expert System Level :

The expert systems are the final goal of the FGCS plan, all points

mentioned so far are the foundation lain down for the ultimate

building of 'expert systems. Hence, the heart of the FGCS project

is to develop ~ methodology for building knowledge information

processing systems which will provide people with the intelligent

agents[l32,133]--field of A. I. currently starting to yield

significant commercial results in expert systems.

221

I

Natural Language,
High Level Enquiry Speech,

LanJuage Picture

1 ----- 1--------~-~~~iii~~~~-----, I
I \ T I Interface I I

I Knowledge Base I System I I Core
I Management I --------------- I I Language

I System I Problem-Solving //I I \
I I & Inference I --

1 I System I 1\l
---------------------------------- I

~-~~~;------------,-,-------------1',1 17
------------------- \ T ------------------

I \ ----------- I \
Knowledge based \ I \ I Intelligent

Management System I \ \ \ Interface System

I \ I

ll\1 _ _, '-----1~11 \I\
Problem-Solving &

-II
\ } ~

J \7
---------- I

I
I Knowledge

I Based \
I Machine

I

Inference System

Problem-Solving &
Inference System

\I-ll
} ~

I\
I

I

Intelligent
Interface
Machine

I

\
Relational \

Algebra

-----------\l--11
I

\

I Relational I
Database

Mechanism

Abstract
Data-Type

Support
Mechanism

Data Flow
Processing
Mechanism

Innovative
Von Neumann

Mechanism

I

I
I

I

7

--I

t VLSI ARCHITECTURE

--

Fig. 8.3 The Japanese Fifth Generation Computer Systems

222

\
}

The Japanese FGCS plan is divided into three stages and at the end of

each stage there appears to be a short term marketing opportunity to

develop products. For example, the first stage examines mechanisms of

inference machines, including the use of data-flow machines for symbol

processing; the second stage aims to build a sequential inference machine,

at the end of which the machine would be integrated with a knowledge base

machine; the third and final stage would build an integrated prototype of

an expert system. In this plan, the Japanese has certainly presented to

the world their views of FGCS, but the author does not think that they have

taken the right approach for the realisation of their program. Our

criticisms are as follows:

1) The First Stage of the FGCS Plan

By analysing the five different level of activities, it has become

apparent that interrelations do exist between them: on the one

hand; the FGCS Architecture has to be equipped with facilities to

support HLL and expert systems, yet, on the other hand, the

specification of program~ing contructs are difficult to establish

without a host machine fo-r natural language and expert systems to

develop ideas.

Expert Systems

Natural Languages

HLL

l FGCS Architecture I

However, we have concluded that the host machine of FGCS has to be

designed and built in the first stage of the program. In other

words, the architecture and HLL are the two levels of activities

223

that ought to be dealt with first before all other activities.

Using the top down approach, it is not difficult to estabish the

programming constructs needed to support the processing of natural

languages and expert systems. This information could then be used

as a guidance to draw up the specifications for the architecture

and HLL of the host machine. In this respect, we think that the

Japanese have made a very serious mistake, by wrongly identifying

the data-flow machine (a MIMD machine) as the solution for symbol

processing, abstract data types, relational algebra, and data base

support mechanisms, which are mostly of SIMD type architecture.

Undoubtedly, the data-flow type MIMD machines will be needed in

FGCS for the processing of arithmetic expressions and

implementation of multi-tasking type operations, but it is

certainly not the answer to SIMD type programming constructs. In

our opinion, the Extended Distributed Computer System, with its

undisputable capability botp as the symbol processing and database

machines, is a more promising candidate for the first stage of a

FGCS program. This point is also supported by Edward

Feigenbaum[l34], who in ~is statement in the Tokyo conference

pointed out that the fifth• generation computer systems would be

primarily symbolic manipulation systems.

Pattern Directed Structures
Aggregate Operators

\

The Extended l
Distributed Computer System

-----------------------------Associative Referencing
Nondeterministic Programming

Futhermore, although PROLOG is a very powerful database and A. I.

language, it is still far from being as a "universal programming

language", therefore, if the Jananese proceed with PROLOG as a

standard of their "FGCS", substantial improvement will have to be

added onto the language before it could be the standard language of

224

the FGCS. It may be better to accept a more popular and well-

defined language, such as PASCAL or C, as a starting point, and

enhance it with the "VHLL" programming constructs [135). However,

it is essential to adopt an extensible modular aproach[l36) towards

the language design of FGCS, by firstly designing the core language

and a set of well-known data structures as the standard language of

the first stage of the program, and any enhancement in the later

stages will then just be an extension of this standard language.

In other words, the new architecture in the later stages should

provide for the upward compatibility that programma written in the

standard language should run on these new machines with minimum

changes.

2) The Second Stage of FGCS Plan:

Having constructed the FGCS host machine (Extended DCS), the micro­

electronic engineers, the A. I. s~ientists, the linguists, and the

database experts can then move on the host machine to develop the

System 5G, question answering sytems, natual language translating

machines, and data base machines. ·

Micro-electronic Engineers

---\

D
a
t

Data Base_l \ a

Experts -I/ B
a
s
e
I

VLSI CAD Library

Pattern Directed Structures
Aggregate Operators

l The Extended l

Distributed Computer System
-----------------------------Associative Referencing

Nondeterministic Programming
-----------------------------------Intelligent Inference Mechanism

I
D
i
c
t
i II
o - Linguists
n \I- .·.

\

a
r
y

---I \

II
A. I. scientists

(Question Answering System)

225

3) The Third Stage of FGCS Plan:

This is the final integration stage, in which all different parts

of FGCS subsystems are connected together onto an interconnection

network to form a expert system--the Japanese FGCS. (Phil

Treleaven's analysis[l37] has stated that the FGCS will represent a

unification of research into VLSI processors and into distributed

processing which will allow replicated general-purpose computing

elements, as well as special-purpose computing elements, to be

integrated into a network.)

Command language Program

--
\ Knowledge Base & Inference System I
\ /A

c I s
0 \ Relational Data Base I s

_I\ m ---------------------------- e /I Assembly
HLL Program p The FGCS Host Machine I m -Language

-II i ---------------------------- b \I- Program
1 I Dictionary \ 1
e I \ e
r/ \r
I Problem-Solving & Inference System \

--I \

11
Natural Language

Despite all these differences, we think the Japanese has certainly

made a very significant contribution toward the development of FGCS. At

the very least, they have set the world computing targets for the rest of

the decade and beyond. The natural of these targets and the timing of

their announcement omen the dawn of the second computer revolution and the

new round of races for supremacy is already beginning in earnest. However,

our choice is simple: whether to develop our own plans to escape from the

Von Neumann architecture or to be prepared to accept the Japanese

domination in the 1990s.

227

BIBLIOGRAPHY

1. s. J. Schwartz, "On Programming: An Interim Report on the SETL

Project--Installment I: Generalities," Computer Science Dept., Courant

Institute of Mathematical Sciences, New York University (1973).

2. E. F. Codd, "A Data Base Sublanguage Founded on the Relational

Calculus," Report RJ 893, IBM Research Lab., San Jose, Calif., (July

1971).

3. E. F. Codd, "Relational Completeness of Data.Base Sublanguage," Report

RJ 987, IBM Research Lab., San Jose, Calif., (March 1972).

4. E. F. Codd, "A Relational Model of Data for Large Shared Data Bank,"

CACM, Vol. 13, No. 6, (June 1970).

5. A. A. Markov, "Theory of Algorithms," Akad. Nauk, USSR, 1954 (English

edition OT8-USDC 1961).

6. K. E. Iverson, "A Programming Language," New York, Wiley, (1962).

1. R. E. Griswold, J. F. Poage and I. P. Polonsky, "The SNOBOL4

Programming Language," Prentice-Hall (1968), Englewood Cliffs. N. J.

8. W. F. Clocksin and C. S. Mellish, "Programming in Prolog," Springer­

Verlag, Germany, (1981).

9. J. McCarthy., et al., "LISP 1.5 Programmer's Manual," Cambridge, Mass,

MIT Press, (1962).

10. M. J. Flynn, "Some Computer Organizations and Their Effectiveness,"

IEEE Trans. Computer, Vol. C-21, No.9, pp.948-960, (September 1972).

11. R. w. Floyd, "Nondeterministic Algorithms," JACM, Vol. 14, (October

1967).

12. S. Golomb and L. Baumert, "Backtrace Programming," JACM, Vol. 12, No.

4, (october 1965).

228

BIBLIOGRAPHY

13. B. M. Leavenworth and J. Sammet, "An Overview of Nonprocedureal

Languages," Proc. Symp. of Very-High-Level Languages, ACM SIGPLAN

Notices, Vol. 9, No. 4, pp.1-12, ACM, New York (April 1974).

14. K. Krishna et al., "HLL Architectures: Pitfalls and Predilections,"

Proc. of 9th Annual Symp. on Computer Architecture, Austin, Texas,

USA, 26-29 April 1982, pp.18-23, (1982).

15. A. A. Hanlon, "Content-addressable and Associative Memory Systems: A

Survey," IEEE Trans. Computers EC-15, pp.509-521, (August 1966).

16. B. Parhami, "Associative Memories and Processors: An Overview and

Selected Bibliography," Proc. IEEE Vol.61, pp.722-730, (June 1973).

11. J. Minker, "An Overview of Associative or Content-addressable Memory

Systems and a KWIC Index to the Literature," Computing Reviews Vol.l2,

No.10, pp.453-504, (October 1971).

18. K. J. Thurber and L. D. Wald, "Associative and Parallel Processors,"

Computing Surveys Vol.7, No.4, pp.215-255, (December 1975).

19.· s. s. Yau and H. s. Fung, "Associative Processors Architecture--A

Survey," ACM Computing Surveys, Vol.9, No.1, pp.3-27, (march 1977).

20. T. DiGiacinto, "Airborne Associative Processor (ASPRO)," in Proc. AIAA

Comput. in Aerosp. III Conf.,pp.202-205, (October 1981).

21. J. M. Surprise, "Airborne Associative Processor (ASPRO)," in Proc. of

1981 International Conf. on Parallel Processing, IEEE, pp.l29-130

(August 1981).

22. K. E. Batcher, "Design of a Massively Parallel Processor," IEEE Trans.

Computer, Vol. C-29, pp.836-840, (September 1980).

23. R. M. Lea, "An Associative Parallel Processor for efficient and

flexible file-searching," Proceedings International

Technology for Selective Dissemination of Information,

York, pp.73-78, (1976).

229

Symposium on

1976 IEEE, New

BIBLIOGRAPHY

24. G. H. Barnes, "The Illiac IV Computer," IEEE Trans. Computer, Vol. C-

17, N0.8, pp.746-757, (August 1968).

25. D. L. Slotnick, et al, "The Solomon Computer," AFIPS Con£. Proc.,

FJCC, Vol.22, pp.97-107, (1962).

26. M. H. Lewin, "Retrieval of Order Lists From a Content-Addressed

Memory," RCA Review, Vol. 23, pp.215-229, (1962).

27. I. E. Sutherland and C. A. Mead, "Microelectronics and Computer

Science," Scientific Amercian, Vol.237, No.9, pp.210-228, (September

1977).

28. c. A. Mead and L. Conway, "Introduction to VLSI System," Addision-

Wesley Publishing Company (1980).

29. D. G. Fairbairn, "VLSI: A New Frontier for System Designers," IEEE

Computer, Vol. 15, No. 1, pp.87-96, (January 1981).

30. P. Penfield and J. Rubinstein, "Signal Delay in RC Tree Networks,"

Proc. Second Caltech Conf. Ve~y Large Scale Integration, (1981) •

..
31. W. Lattin, "The Challenge of .Microprocessor Design in the 80's," Proc.

Calthec Con£. Very Large Scale Integration, (1979).

32. M. A. Franklin, D. F. Wann, and W. J. Thomas, "Pin Limitations and

Partitioning of VLSI Interconnection Newtworks," IEEE Trans. Computer,

Vol. C-31, No. 11, pp.1109-1116, (November 1982).

33. D. K. Hsiao, "Data Base Computer," Advances in Computers, Vol.19,

pp.1-59, Academic Press (1980).

34. H. T. Kung and C. E. Leiserson, "Systolic Arrays (for VLSI)," Sparse

Matrix Proc. 1978, Society for Industrial and Applied Mathematics,

pp.256-282, (1979).

35. H. M. Ahmed, J. Delosme and M. Morf, "Highly Concurrent Computing

Structures for Matrix Arithmetic and Signal Processing," IEEE

Computer, Vol. 15, No. 1, pp.65-82, (January,1981).

230

BIBLIOGRAPHY

36. L. Snyder, "Introduction to the Configurable, Highly Parallel

Computer," IEEE Computer, Vol. 15, No. 1, pp.47-56, (January 1982).

37. D. J. Farber et al., "The Distributed Computing System," in Dig.

COMPCON'73, pp.31-34, (February 1973).

38. s. s. Yau, C. C. Yang, and S. M. Shatz, "An Approach to Distributed

Computing System Software Design," IEEE Trans. Software Eng., Vol. SE-

7, No.4, pp.427-436, (July,1981).

39. T. Y. Feng, "A Survey of Interconnection Network," IEEE Computer, Vol.

14, No. 12, pp.12-27, (December,1981).

40. G. H. Barnes and S. F. Lundstrom, "Design and Validation of a

Connection Network for Many-Processor Multiprocessor systems," IEEE

Computer, Vol. 14, No. 12, pp.30-41, (December,1981).

41. D. M. Dias and J. R. Jump, "Packet Switching Interconnection Networks

for Modular systems," IEEE Computer, Vol. 14, No. 12, pp.43-53,

(December 1981).

.
42. P. Y. Chen, D. H. Lawrie, D. A. Padua, and P. C. Yew,

•
"Interconnection Networks Using Shuffles," IEEE Computer, Vol. 14, No.

12, pp.SS-64, (December 1981).

43. H. J. Siegel and R. J. McMillen, "The Multistage Cube: A Versatile

Interconnection Network," IEEE Computer, Vol. 14, No. 12, pp.65-76,

(December 1981).

44. E. E. Swartlander and B. K. Gilbert, "Supersystems: Technology and

Architecture," IEEE Trans. Computer, Vol. C-31, No.S,pp.399-409,

(May 1982).

45. K. J. Thurber and H. A. Freeman, "Local Computer Networks," IEEE

Computer Society Press, (1981).

46. P. G. Treleaven, D. R. Brownbridge, and R. P. Hopkins, "Data-Driven

and Demand-Driven Computer Architecture," ACM .Computing Surveys,

Vol.14, No. 1, pp.93-143, (March 1982).

231

BIBLIOGRAPHY

47. K. E. Batcher, "Bit-Serial Parallel Processing Systems," Vol. C-31,

No. 5, pp.377-384, (May 1982).

48. J. B. Dennis, "The Varieties of Data Flow Computers," Proc. lst Int.

Conf. on Distributed Computing Systems, pp.430-439, (October 1979).

49. M. Cornish, "The TI Data Flow Architecture: The Power of Concurrency

for Avionics," in Proc. 3rd Con£. Digital Avionics Systems, IEEE, New

York, pp.l9-25, (November 1979).

SO. A. L. Davis, "The Architecture and System Method of DDMl: A

Recurisively Structure Data Driven Machine," in Proc. 5th Annu. Symp.

Computer Architecture, ACM, New York, pp.210-215, (April 1978).

51. K. v. Arvind and K. Pingali, "A Processing Element for a Large

Multiprocessor DataFlow Machine," in Proc. Int. Conf. Circuits and

Computers, IEEE, New York, (October 1980).

52. I. Watson and J. Gurd, "A Prototype Data Flow Computer with Token

Labeling," in Proc. Nat. Computer Con£. Vol. 48, AFIPS Press, pp.623-

628, (June 1979).

53. D. Comte and N. llifdi,

Description and Technology

Parallel and Distributed

(February 1979).

"LAU Multiprocessor:

Choices," in Proc. 1st

Processing, Toulouse,

Mircofunctional

European Con£.

France, pp.S-15

54. P. G. Treleaven, R. P. Hopkins and P. w. Rautenbach, "Combining Data

Flow and Control Flow Computing," Comput. J. Vol. 25, No. 2, pp.207-

217, (May 1982).

55. W. E. Kluge and H. Schlutter, "An Architecture for the Direct

Execution of Reduction Languages," in Proc. Int. Workshop High-Level

Language Computer Architecture, pp.l74-180, (May 1980).

56. P. G. Treleaven and G. F. Mole, "A Multi-Processor Reduction Machine

for User-Defined Reduction Languages," in Proc 7th Int. Symp. Computer

Architecture, IEEE, New York, pp.l21-130, (May 1980).

232

BIBLIOGRAPHY

57. G. A. MaGo, "A Cellular Computer Architecture for Functional

Programming," in Proc. IEEE COMPCON 80, IEEE, New York, pp.179-187,

(February 1980).

58. R. M. Keller, et al., "A Loosely Coupled Applicative Multiprocessing

system," in Proc. Nat. Computer Conf., AFIPS Press, pp.861-870,

(1978).

59. D. A. Turner, "A New Implementation Technique for Applicative

Language," Soft. Pract. Exper. No. 9, pp.31-49, (January 1979).

60. T. J. w. Clarke, P. J. S. Glandstone, C. D. Maclean and A. C. Norman,

"SKIM--The S, K, I Reduction Machine," in Proc. LISP-80 Conf. , pp .128-

135, (Augest 1980).

61. I. H. Witten and Y. H. Ng, "An Ideographic Language Front End

Processor for Accessing English Computer Systems," Comput. J. Vol. 24,

No. 1 pp.62-70, (February 1981).

62. A. s. Tanenbaum, "Structured Computer Organization," Prentice-Hall,

(1976).

63. G. A. Miller, "The Magical Number Seven, Plus or Minus two: Some

Limits on Our Capacity for Processing Information," Pschological

Review, Vol. 63, pp.81-97, (1956).

64. E. w. Dijkstra,

Programming, (ed.

(1972).

"Notes on Structured Programming," in Structured

by 0. J. Dahl), Academic Press, New York, pp.1-82,

65. R. C. Linger, H. Mills, and B. Witt, "Structured Programming: Theory

and Practice, Addison-Wesley, (1979).

66. D. Parnes, "On the Criteria to be used in Decomposing Systems onto

Modules," Comm. ACM, Vol. 15, No.2, pp.l053-1058, (December 1972).

67. D. Parnes, "On the Design and Development of Program Families," IEEE

Trans. Software Eng., Vol. SE-2, No.1, pp.l-9, (March 1976).

233

BIBLIOGRAPHY

68. N. Wirth, "Program Development by Stepwise Refinement," Comm. ACM,

Vol. 14, No. 4, pp.221-227, (April 1971).

69. J. A. Goguen, J. w. Thatcher, and E. G. Wagner, "An Initial Algebra

Approach to the Speciification, Correctness, and Implementation of

Abstract Data Types," in Current Trends in Programming Methodology,

Vol. 4, (ed. by R. T. Yeh), Prentice-Hall, Englewood Cliffs, N.J.

pp.80-149, (1978).

10. c. B. Jones, "Software Development--A Rigorous Approach," Prentice-

Hall (1980), Englewood Cliffs, N. J.

71. c. Ghezzi and M. Jazayeri, "Programming Language Concepts," John Wiley

& Sons, Inc., (1982).

72. c. A. R. Hoare, "Data Structures," in Current Trends in Programming

Methodology, Vol. 4, (ed. by R. T. Yeh), Prentice-Hall, pp.1-11,

(1978), Englewood Cliffs, N. J ••

73. D. E. Kunth, "The Art of Computer Programming Vol. 1

Algorithms," Addison-Wesley, Reading, Mass, (~968).

Fundamental

74. F. L. Bauer and H. Wossner, "Algorithmic Language and Program

Development," ed. by D. Gries, Springer-Verlag, (1982).

75. A. L. Rosenberg, "Storage Mappings for Extendible Arrays," in Current

Trends in Programming Methodology, Vol. 4, (ed. by

Prentice-Hall, pp.1-11, (1978), Englewood Cliffs, N.J.

R. T. Yeh),

76. J. L. Baer, "Graph Models in Programming Systems," Vol. 3, (ed. by K.

M. Chandy and R. T. Yeh), Prentice-Hall, pp.l68-231, (1978), Englewood

Cliffs, N. J.

77. ~· Y. Bnag and R. T. Yeh, "Notes on Relational Data Structures," in

Current Trends in Programming Methodology, Vol. 4, (ed. by R. T. Yeh),

Prentice-Hall, pp.241-262, (1978), Englewood Cliffs, N.J.

78. c. A. R. Hoare, "Notes on Data Structuring" in Structured Programming,

(ed. by 0. J. Dahl), Academic Press, New York, pp.83-174, (1972).

234

BIBLIOGRAPHY

79. o. J. Dahl and C. A. R. Hoare, "Hierarchial Program Structures," (ed.

o. J. Dahl), Academic Press, New York, pp.175-220, (1972).

80. R. w. Floyd, "The Paradigms of Programming," Comm. ACM, Vol. 22, No. 8

pp.455-460, (Augest 1979).

81. K. s. Fu, "Linguistic Approach to pattern Recognition," in Applied

Computation Theory (ed. by R. T. Yeh), Prentice-Hall, Englewood

Cliffs, N.J., (1974).

82. B. Raphael, "SIR: A Computer Program for Semantic Information

Retrieval," in Semantic Information Processing (ed. by M Minsky), MIT

Press, Cambridge, Mass, (1968).

83. w. c. McGee, "~'ile Structures for Generalized Data Management," Proc.

IEIP Congress, North Holland, Amsterdam, (1969).

84. R. T. Yeh, "Generalized Pair Algebra with Applications to Automata

Theory," JACM, Vol 15, No.2, pp.304-316, (1968).

85. D. E. Kunth, "The Art of Computer Programming Vol. 3 Sorting and .
Searching," Addison-Wesley, Reading, Mass, (1973):.

86. R. Rice and w. R. Smith, "SYMBOL--A Major Departure from Classic

Software Dominated Von Neumann Computing System," AFIPS Conf. Proc.,

SJCC, Vol. 38, pp.575-587 (1971).

87. w. R. Smith et al., "SYMBOL--A Large Experimetal System Exploring

Major Hardare Replacement of Software," AFIPS Conf. Proc., SJCC, Vol.

38, pp.601-616, (1971).

88. c. R. Vick, s. P. Kartashev, and s. I. Kartashev, "Adaptable

Architectures for Supersystems", IEEE Computer Volume 13, No.l1,

pp.l7-35 (November 1980).

89. s. I. Kartashev and s. P. Kartashev, "A Multicomputer System with

Software Reconfiguration of the Architecture," Proc. Conf. Computer

Performance, A~SIGMETRICS/CMG VIII Washingston D.C., pp.271-286

(1977).

235

BIBLIOGRAPHY

90. Texas Instruments, Inc., "The TTL Data Book for Design Engineers",

2nd. Ed. Dallas, Texas, (1976).

91. Monolithic Memories, Inc., "Bipolar LSI Data Book", Sunnyvale, CA,

(July 1978).

92. Adanced Micro Devices, Inc., "The AM29UO Family Data Book", Sunnyvale,

CA, (1976).

93. R. w. Gostick, "Software and Hardware Technology for the ICL

Distributed Array Processor", The Australian Computer Journal, Volume

13, No.1, pp.l-6 (February 1981).

94. H. T. Kung, "Why Systolic Architectures?", IEEE Computer, volume 15,

No.1, pp.37-46 (January 1982).

95. J. B. Dennis, "Data Flow Supercomputer", IEEE Computer, Volume 13,

No.ll, pp.48-56 (November 1980).

96. M. T. Liu, "Distributed Loop Computer Network," Advances in Computers,

Vol 17, pp.l63-221, (1978).

97. J. F. Shoch, Y. K. Dalal, D. D. Redell and R. c. Cr~ne, "Evolution of

the Ethernet Local Computer Network," IEEE Computer, Vol. 15, No. 8,

pp.10-27, (August 1982).

98. A. Hopper, "Local Area Computer Communication Networks", PhD

dissertation, University of Cambridge, (April 1978).

99. M. v. Wilkes and D. J. Wheeler, "The Cambridge Digital Communication

Ring", Proceeding pf the LACN Symposium, pp.47-60 (May 1979).

100. J. E. Sammet, "An Overview of High-Level Languages," Advances in

Computers, Academic Press, Vol. 20, pp.199-259, (1981).

101 T. R. Addis, "Machine Understanding of Natural Language," Int. J. Man­

Mach. Stud. (GB), Vol. 9, No.2, pp.223-231, (March 1977).

236

BIBLIOGRAPHY

102 M. Nagao, and J. Tsujii, "Some Topics of Language Processing for the

Purpose of machine Translation," Research Reports in Japan, pp.310-334

(November 1981).

103. w. J. Plath, "REQUEST: A Natural Language Question-Answering System,"

IBM J. Res. Develop., Vol. 20, pp.326-335, (1976).

104. D. L. Waltz, "An English Language Question Answering System for a

Large Relational Database," Comm. ACM 21, pp.526-539 (1978).

105. w. A. Woods, "Progress in Natural Language Understanding: An

Application to Lunar Geology," AFIPS Coference Proceedings, Vol. 42,

(1973).

106. J. s. Brown and R. Burton, "Multiple Representations of Knowledge for

Tutorial Reasoning," pp.311-349 in Representation and Understanding,

ed. D. G. Bobrow and A, M. Collins, Academic Press, New York (1975).

101. J. R. Carbonell and A. M. Collins, "Natural Semantics in Artificial

Intelligence, "Amer. J. Computational Linguistics, ·Vol. 1, No. 3,

(1974).

108. w. A. Woods, "Semantics and Quantification in Natural • Language

Question Answering," Advances in Computer, Vol. 19, (1978).

109. R. Fikes and H. Hendrix, "A Network-based Knowledge Representation and

its Natural Deduction System," Proceeding of the Fifth International

Joint Conference on Artificial Intelligence, Cambridge, pp.235-246,

(1977).

110. Roger D. Schank and Kenneth M. Colby (eds.), "Computer Models of

Thought and Language," Freeman (1973).

111. M. ~.ansky, "A Framwo rk for Representing Knowledge," in "The Psychology

of Computer Vision," edited by P. H. Winston, McGraw-Hill, New York,

(1975).

112. "Proceedings of International Conference on Fifth Generation Computer

Systems," Tokyo, (October 1981).

237

BIBLIOGRAPHY

113. J. P. Hayes, "Computer Architecture and Organization," McGraw-Hill

Computer Science Series, (1978).

114. c. G. Bell and A. Newell, "Computer Structures

Examples," McGraw-Hill, New York, (1971).

Reading and

115. J. B. Peatman, "Microcomputer-Based Design," McGraw-Hill, New York,

(1977).

116. R. c. Johnson, "32-bit Microprocessors inherit mainframe features,"

Electronics, pp.138-141, (February 1981).

117. K. Sakamura et al., "VLSI and System Architecture-- The Development of

System SG," Proceedings of FGCS (see reference 112).

118. K. Fuchi, "Aiming for Knowledge Information Processing System,"

Proceeding of FGCS (see reference 112).

119. H. Aiso, "Fifth Generation Computer Architecture," Proceedings of FGCS

(see reference 112).

120. s. Uchida et al., "New Architecture for Inference Mechanisms,"

Proceedings of FGCS (see reference 112).

121. M. Am.amiya et al., "New Architecture for Knowledge Base Mechanisms,"

Proceedings of FGCS (see reference 112).

122. Hi. Tanaka et al., "The Preliminary Research on Data Flow Machine and

Data Base Machine as the Basic Architecture of Fifth Generation

Computer," Proceedings of FGCS (see reference 112).

123. H. Tanaka and Y. Matsumoto, "PROLOG and Natural Language Processing,"

Research Reports in Japan, pp.57-63, (November 1981).

124. T. Yokoi, "PROLOG and Data-Flow Computer Mechanisms,"

Reports in Japan, pp.64-71, (November 1981).

Research

125. M. Suwa and H. Tanaka, "A PROLOG Based Production System," Research

Reports in Japan, pp.72-78, (November 1981).

238

BIBLIOGRAPHY

126. K. Furukawa, "Problem Solving with PROLOG, 11 Research Reports in

Japan, pp.79-83, (November 1981).

127. s. Uchida and T. Higuchi, "Logic Simulation in PROLOG,"

Reports in Japan, pp.84-90, (November 1981).

Research

128. K. Nitta and Koichi Furukawa, "Description of the PROLOG Interpreter

by a Concurrent Programming Language, Research Reports in Japan,

pp.91-96, (November 1981).

129. T. Yokoi et al., "Logic Programming and a Dedicated High-performance

Personal Computer," Proceedings of FGCS (see reference 112).

130. H. Karaisu, "What is Required of the Fifth Generation Computer--Social

Needs and its Impact," Proceedings of FGCS (see reference 112).

131. Ho. Tanaka et al., "Intelligent Man-Machine Interface," Proceedings

of FGCS (see reference 112).

132. K. Furukawa et al., "Problem Solving and Inference Mechanisms,"

Proceedings of FGCS (see reference 112).

133. M. Suwa et al., "Knowledge Base Mechanisms,"

reference 112).

Proceedings of FGCS (see

134. E. A. Feigenbaum, "Innovation in Symbol Manipulation in the Fifth

Generation Computer Systems," (see reference 112).

135. w. Bibel, "Logical Program Synthesis," Proceedings of FGCS (see

reference 112).

•

136. c. Prenner, "Modern Extensible Languages," 7th Annual Symposium on

Computer Science and Statistics, Oct. 18-19, 1973, pp38Q-388, (1973)

137. P. Treleaven, "Fifth Generation Computer Architecture Analysis,"

Proceedings of FGCS (see reference 112).

I

239

GLOSSARY

GLOSSARY

AAL Associative Assembly Language.

ACC Associative Computation Cycle.

ACD Tag l~nipulation code.

ALU Arithmetic and Logic Unit.

AMA Associative Memory Array.

AMI : Associative Machine Instruction.

AMil : The machine instruction of APil.

AMI234 The machine instruction of API234.

AMIAR Associative Machine Instruction Address Register.

AMIR Associative Machine Instruction Register.

APC Associative Program Counter.

API : Associative Processing Instruction.

APil : The examine phase of API in beat 1.

API234 The execute phase of API which occurring in beat 2, beat 3

and beat 4.

Architecture: A program representation that can be interpreted. Strictly

speaking, it is the instruction set and I/O connection

capabilities. Hence, the architecture of a machine is the

"blue print" used to build it.

Adaptable
Architecture An architecture which able to adjusts to computed

algorithms by mean of software.

240

GLOSSARY

Control-Flow
Architecture : The control-flow architecture has a control-driven

Data-Flow
Architecture

Reduction
Architecture

SISD

computation organization, which is characterized by the

lack of an examine phase: instructions are arbitrarily

selected, and once selected they are immediately executed.

This implies that the program has complete control control

over instruction sequencing.

An architecture which implement the data-fl·ow principles

inherent in modern program structure by allowimg each

instruction to be executed as soon as its operands arrive.

A reduction architecture has a demand-driven computation

organization, and is characterized by an outermost

computation rule coupled with the ability to coerce

arguments at the examine phase.

Architecture The single instruction, single data stream organization.

SIMD
Architecture The single instruction, multiple data stream organization.

MIMD
Architecture The multiple instruction, multiple single data stream

organization.

ATN Augmented Transition Network.

B-end : Bottom end.

Binary Tree : A binary tree is defined as a finite set of nodes that is

either empty, or consists of a root together with two binary

trees.

BOAM : Byte-Organized Associative Memory.

BOAP : Byte-Organized Associative Processor.

BSU Bit Select Unit.

241

GLOSSARY

CAD Computer Aided Design.

CAM Content Addressable Memory.

CBl Control Bit 1.

CB2 Control Bit 2.

CB3 Control Bit 3.

CB4 . Control Bit 4. .
Circular List: A circularly-linked list has the property that its last node

links back to the first instead of to NULL.

CLAB : Clear All Bits.

CLBCT Clear Bits on Complemented Tags.

CLBTT Clear Bits on True Tags.

CMOS : Complementary Metal Oxide Semiconductor.

CMB : Data Complementing Bit.

Command A function which given a particular state, determines the

next state.

Dynamic Array: An open ended one dimensional array.

DCS :

Deque

Dil :

DI2 :

Dl4 :

DOC

EIR :

Distributed Computer System.

A deque a double-ended queue in which all insertions and

deletions are made at the ends of the list.

Data Identity at beat 1.

Data Identity at beat 2.

Data Identity at beat 4.

Data Output Conflict.

End In Run.

242

FGCS

FIFO :

Forest

Floor Plan

Graph :

GRN

GRS :

GRSC

HLL

IBR

IDR :

Instructions

IQE :

IQF :

IR :

LIFO

GLOSSARY

Japanese Fifth Generation Computer System.

First In First Out queue.

A forest is a set (usually an ordered set) of zero or more

disjoint trees, or in other words, the nodes of a tree

excluding the root form a forest.

A chip floor plan is merely a block diagram with blocks

drawn to approximate scale and the routing of major buses,

clocks, power, ground, and critical signal paths specified

in terms of their location and the layer on which they run.

A graph is a set of points (called vertices) together with a

set of lines (called edges) joining certain pairs of

distinct vertices.

Group Run.

Group Run Search at beat 2.

Group Run Search with Complement tags.

High Level Language.

Input Buffer Register.

Input Data Register.

'Ihe set of all image commands, which represents the

architecture of the image machtne, 'Ihey are sometimes

referred to as image instructions.

Input Queue End (pointer).

Input Queue Front (pointer).

Instruction Register.

Last-In-First-Out.

243

List

LSI :

Machine

Machine
Organization

Machine
Realization

MCU :

GLOSSARY

List is defined (recursively) as a finite sequence of zero

or more atoms/Lists which can be accessed by means of

pointer.

Large Scale Integration.

A set of commands and a storage which is exactly the range

and domain of the commands, together with a mechanism that

causes the state transitions determined by the commands.

If the mechanism is itself a machine {i.e., has commands,

storage, and mechanism), the original machine is called the

image machine and the mechanism is called the host machine.

A implementation of the machine, shown by in the form of

block diagram.

The actual hardware interconnection and construction of the

machine with a given technology.

Microprogrammed Control Unit.

Microinstructions : The commands comprising the host machine.

MOPS Million Operation Per Second.

MOR Middle Out Run.

MR Match Reply.

MRR : Match Reply Register.

NMOS : N-Channel Metal Oxide Semiconductor.

Nonprocedural
Languages : A language is nonprocedural to the degree that it shortens

OBR :

ODR :

the distance between fomulating and solving some significant

classes of programming problems.

Output Buffer Register.

Output Data Register.

244

OQE

OQF

OVB

OVT

PC :

PEs

PF :

PCT

PLB

PLT

PLA :

Process

PTT :

Queue

RAM

Ring :

RSCTD :

RSCTU

RSFGD

RSFGU :

RSFGSD

RSFGSU :

GLOSSARY

Output Queue End (pointer).

Output Queue Front (pointer).

Overflow responses at the Bottom-end.

Overflow responses at the T~~-tnd.

Program Counter.

Processing Elements.

Pre/Post-Function selection bit.

Propagate Complement Tags.

Propagation Link at the Bottom-end.

Propagation Link at the Top-end.

Programmable Logic Array.

A sequence of commands and an initial state.

Propagate True Tags.

A queue is a Singly Linked-List for which all insertions are

made at one end of the list; all deletion (and usually all

accesses) are made at other end.

Random Addressed Memory.

A orthogonal circular list.

Resolve Complement Tags Down.

Resolve Complement Tags Up.

Resolve First Group Down.

Resolve First Group Up.

Resolve First Group Start Down.

Resolve First Group Start Up.

245

-

RSGSD

RSGSU

RSTTD

RSTTU

R/W

Set

SP :

SPA :

SPAR :

GLOSSARY

Resolve Group Start Down.

Resolve Group Start Up.

Resolve True Tags Down.

Resolve True Tags Up.

Read/Write selection bit.

A set is a collection into a whole of definite distinct

objects of our intuition or of our thought, with some common

property as directed from N-tuple. The objects are called

elements (members) of the set.

Scratch Pad Buffer.

Scratch Pad Address.

Scratch Pad Address Register.

Sparse Matrix: A matrix of large order in which most of the elements are

SPR :

Stack

State

zero.

Scratch Pad Register.

A stack is a Singly Linked-List for which all insertions and

deletion (usually all accesses) are made at one end of the

list.

A particular configuration of storage.

State Transition : A change in the storage configuation.

String

TBV :

T-end

TRl

TR2 :

A sequence of zero or more characters.

Text or Bit-Vector selection bit.

Top end.

Tag Register 1.

Tag Register 2.

246

Tree

USD :

VLSI

VHLL

wsu

GLOSSARY

A connected directed graph which is free of cycles.

Direction code for Tag Manipulation.

Very Large Scale Integration.

Very High Level Language.

Word Select Unit.

247

	253487_001
	253487_002
	253487_003
	253487_004
	253487_005
	253487_006
	253487_007
	253487_008
	253487_009
	253487_010
	253487_011
	253487_012
	253487_013
	253487_014
	253487_015
	253487_016
	253487_017
	253487_018
	253487_019
	253487_020
	253487_021
	253487_022
	253487_023
	253487_024
	253487_025
	253487_026
	253487_027
	253487_028
	253487_029
	253487_030
	253487_031
	253487_032
	253487_033
	253487_034
	253487_035
	253487_036
	253487_037
	253487_038
	253487_039
	253487_040
	253487_041
	253487_042
	253487_043
	253487_044
	253487_045
	253487_046
	253487_047
	253487_048
	253487_049
	253487_050
	253487_051
	253487_052
	253487_053
	253487_054
	253487_055
	253487_056
	253487_057
	253487_058
	253487_059
	253487_060
	253487_061
	253487_062
	253487_063
	253487_064
	253487_065
	253487_066
	253487_067
	253487_068
	253487_069
	253487_070
	253487_071
	253487_072
	253487_073
	253487_074
	253487_075
	253487_076
	253487_077
	253487_078
	253487_079
	253487_080
	253487_081
	253487_082
	253487_083
	253487_084
	253487_085
	253487_086
	253487_087
	253487_088
	253487_089
	253487_090
	253487_091
	253487_092
	253487_093
	253487_094
	253487_095
	253487_096
	253487_097
	253487_098
	253487_099
	253487_100
	253487_101
	253487_102
	253487_103
	253487_104
	253487_105
	253487_106
	253487_107
	253487_108
	253487_109
	253487_110
	253487_111
	253487_112
	253487_113
	253487_114
	253487_115
	253487_116
	253487_117
	253487_118
	253487_119
	253487_120
	253487_121
	253487_122
	253487_123
	253487_124
	253487_125
	253487_126
	253487_127
	253487_128
	253487_129
	253487_130
	253487_131
	253487_132
	253487_133
	253487_134
	253487_135
	253487_136
	253487_137
	253487_138
	253487_139
	253487_140
	253487_141
	253487_142
	253487_143
	253487_144
	253487_145
	253487_146
	253487_147
	253487_148
	253487_149
	253487_150
	253487_151
	253487_152
	253487_153
	253487_154
	253487_155
	253487_156
	253487_157
	253487_158
	253487_159
	253487_160
	253487_161
	253487_162
	253487_163
	253487_164
	253487_165
	253487_166
	253487_167
	253487_168
	253487_169
	253487_170
	253487_171
	253487_172
	253487_173
	253487_174
	253487_175
	253487_176
	253487_177
	253487_178
	253487_179
	253487_180
	253487_181
	253487_182
	253487_183
	253487_184
	253487_185
	253487_186
	253487_187
	253487_188
	253487_189
	253487_190
	253487_191
	253487_192
	253487_193
	253487_194
	253487_195
	253487_196
	253487_197
	253487_198
	253487_199
	253487_200
	253487_201
	253487_202
	253487_203
	253487_204
	253487_205
	253487_206
	253487_207
	253487_208
	253487_209
	253487_210
	253487_211
	253487_212
	253487_213
	253487_214
	253487_215
	253487_216
	253487_217
	253487_218
	253487_219
	253487_220
	253487_221
	253487_222
	253487_223
	253487_224
	253487_225
	253487_226
	253487_227
	253487_228
	253487_229
	253487_230
	253487_231
	253487_232
	253487_233
	253487_234
	253487_235
	253487_236
	253487_237
	253487_238
	253487_239
	253487_240
	253487_241
	253487_242
	253487_243
	253487_244
	253487_245
	253487_246
	253487_247
	253487_248
	253487_249
	253487_250
	253487_251
	253487_252
	253487_253
	253487_254
	253487_255
	253487_256
	253487_257
	253487_258
	253487_259
	253487_260

