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Abstract

In most developed countries, HCV is primarily transmitted by injecting drug users (IDUs). HCV antiviral treatment is effective,
and deemed cost-effective for those with no re-infection risk. However, few active IDUs are currently treated. Previous
modelling studies have shown antiviral treatment for active IDUs could reduce HCV prevalence, and there is emerging
interest in developing targeted IDU treatment programmes. However, the optimal timing and scale-up of treatment is
unknown, given the real-world constraints commonly existing for health programmes. We explore how the optimal
programme is affected by a variety of policy objectives, budget constraints, and prevalence settings. We develop a model of
HCV transmission and treatment amongst active IDUs, determine the optimal treatment programme strategy over 10 years
for two baseline chronic HCV prevalence scenarios (30% and 45%), a range of maximum annual budgets (»50,000–300,000
per 1,000 IDUs), and a variety of objectives: minimising health service costs and health utility losses; minimising prevalence
at 10 years; minimising health service costs and health utility losses with a final time prevalence target; minimising health
service costs with a final time prevalence target but neglecting health utility losses. The largest programme allowed for a
given budget is the programme which minimises both prevalence at 10 years, and HCV health utility loss and heath service
costs, with higher budgets resulting in greater cost-effectiveness (measured by cost per QALY gained compared to no
treatment). However, if the objective is to achieve a 20% relative prevalence reduction at 10 years, while minimising both
health service costs and losses in health utility, the optimal treatment strategy is an immediate expansion of coverage over
5–8 years, and is less cost-effective. By contrast, if the objective is only to minimise costs to the health service while attaining
the 20% prevalence reduction, the programme is deferred until the final years of the decade, and is the least cost-effective
of the scenarios.
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Introduction

Hepatitis C virus (HCV) is a comparatively common blood-

borne disease with 130–170 million people (2–3%) globally

infected [1]. It is one of the leading causes of chronic liver disease

worldwide, and is the fastest growing cause of liver transplantation

in developed countries [2]. If left untreated, about 7–18% progress

to liver disease within 20 years, which can result in liver failure,

cirrhosis, hepatocellular carcinoma, and death [3].

The primary mode of transmission in developed countries is

amongst active injecting drug users (IDUs) where it is easily

transmitted through needle and syringe sharing. In the UK, most

developed countries, and many other developing countries without

marked iatrogenic HCV risk (such as South Asia), over 80% of

new cases are attributed to injecting drugs, with 15–90% of IDUs

testing positive for HCV antibodies [4–7]. Public health

interventions such as health education and advice, needle and

syringe exchange, and opiate substitution therapy aim to prevent

transmission by reducing unsafe injecting [4]. However, despite

increases in intervention exposure, public health surveillance

indicates that substantial decreases in HCV prevalence have not

been achieved [8].

Antiviral treatment (peginterferon-alfa and ribavirin) for HCV

has been established as effective and results in viral clearance in

about 45–80% of cases, depending on genotype [9–11]. Economic

evaluations have found treatment cost-effective for a population

with no re-infection risk [12]. Since 2002, guidelines in the US and

UK do not exclude active IDUs from treatment eligibility, given

the growing evidence that IDUs exhibit a similar response to

treatment, and could be just as compliant with treatment as ex- or

non-IDUs [11–13]. Despite these recommendations and the high

proportion of IDUs infected, very few (v3–4%) active IDUs have

ever been treated [14,15]. Recent mathematical modelling has

predicted that antiviral treatment can be an effective prevention

PLoS ONE | www.plosone.org 1 August 2011 | Volume 6 | Issue 8 | e22309



measure amongst IDUs, with modest and achievable levels of

treatment resulting in substantial reductions in infected prevalence

[16–19]. Hence, treatment of injectors could have substantial

benefits in relation to reducing ongoing transmission (despite some

of the difficulties in delivering the treatment and potential loss of

sustained viral response (SVR)).

Ideally, from an economic perspective, any intervention, such as

HCV treatment, that has been found to be cost-effective would be

fully funded immediately. In reality, however, funding and access

to treatment may not be provided as programmes are always faced

with a number of constraints. Globally, there are many

interventions that fall under the WHO willingness to pay

thresholds, but remain underfinanced by countries and face

substantial budget constraints. For example, in Australia free HCV

treatment is available under the national health care system, but

the government acknowledges a capacity limit within the specialist

hepatitis C treatment services which restricts the numbers that can

undergo treatment each year [20]. In the UK, NICE (National

Institute for Health and Clinical Excellence) issues guidelines on

which treatments should be offered, but different regions

frequently offer different levels of treatment. Global (and

sometimes national) institutions frequently respond to this issue

by setting targets, either for coverage or to achieve specific

reductions in prevalence. Indeed, the low coverage of HCV

treatment across the UK has resulted in the development of a

number of national action plans (Scotland, Wales, and England)

which aim to expand treatment coverage over the next 5 years

[20–22]. These action plans do not specifically target current

IDUs, despite the growing interest in targeting antiviral treatment

to IDUs as a means of prevention, and general movements for

more active IDUs to be treated [20,23]. This study examines how

constraints (annual maximum budgets) and objectives (prevalence

targets, desire to minimise health utility losses) are likely to

influence optimal timing and intensity of scale-up, and the

subsequent costs, impact, and cost per QALY (quality-adjusted

life year) gained in each scenario.

As such, our aim is not to perform an economic evaluation of

antiviral treatment, but to inform policy makers on how the

optimal treatment strategy and programme cost-effectiveness

(measured by cost per QALY gained) may be affected when

different constraints are applied. This type of analysis (using

optimal control theory to determine the optimal resource

allocation as an epidemic progresses) has been used before in

infectious disease prevention [24–27]. Hence, our aims and

mathematical techniques are well established in infectious disease

literature, although its specific application to HCV is novel.

Importantly, few have managed to present this technique to a

broader audience (outside of mathematical modellers) and with

real-world budget constraints and objectives.

We parameterise our epidemic model with recent data from the

UK, and our cost coefficients with current UK costs of antiviral

treatment and HCV infection. We then examine the optimal

treatment strategy for different economic and policy objectives,

which range from ‘ideal’ public health objectives (where health

service costs and HCV health utility loss or just prevalence is

minimised) to ‘less ideal’ but perhaps more realistic scenarios with

a specific policy objective of reducing prevalence by a specific

percentage by the end of the 10 year timeframe. The specific

scenarios we examine are: 1) minimising health service costs and

health utility (QALY) loss; 2) minimising prevalence; 3) minimising

health service costs and health utility loss while achieving a final

time prevalence reduction of 20%; 4) minimising health service

costs while achieving a final time prevalence reduction of 20%

(and neglecting health utility loss). This is done for a variety of

annual budget constraints and two baseline prevalences (30% and

45%).

Methods

Model background and assumptions
Infection with HCV leads to a relatively short (weeks to

months) acute stage, which may lead to a prolonged chronic stage

lasting for decades [28]. A fraction (about 26%) of acute

infections are spontaneously cleared by the individual [29]. Due

to the short duration of the acute stage, the number of infections

caused by people with acute HCV who spontaneously clear is

small, and we neglect it for model simplicity. Those who

spontaneously clear become susceptible again, and the remaining

fraction who do not spontaneously clear progress to the chronic

infection stage. There is controversy around the possibility of

sterilising immunity following exposure to HCV. However, given

that immunity following exposure to HCV is uncertain, and

previous models have shown that, if present, this population is

relatively small, we neglect it for the purposes of this model

[16,17].

Antiviral treatment leads to a substantial reduction in viral load

in the first few weeks (even among some eventual nonresponders)

[30]. Hence, we assume that active IDUs currently on treatment

are non-infectious. Due to the lack of definitive evidence to suggest

otherwise, we assume that the chances of spontaneous clearance

are equal for naı̈ve (those who have never been infected) and re-

infected IDUs. Furthermore, we assume that the probability of

treatment success is the same between naı̈ve and re-infecteds,

which is supported by experimental evidence [31]. Finally, we

assume that treatment failures return to the chronically infected

population and are eligible for retreatment as a simplifying

assumption, as alternative dosing and treatment durations are

available for this group [32]. Nonetheless, over our relatively short

timescale (10 years) and with the low level of treatment examined

in this manuscript, simulations tracking nonresponders show that

negligible levels of infecteds are retreated [16].

Details and explanation of the model
We model the transmission of HCV amongst active IDUs, using

a system of ordinary differential equations simplified from [16,17].

We utilise a three compartment model, tracking susceptible,

chronically infected, and treated IDUs. Susceptible IDUs become

infected through sharing needles with infected IDUs. About one

quarter spontaneously clear the infection, and become susceptible

again. The remaining three-quarters progress to chronic infection.

Chronic infecteds can be treated, with a certain chance of success,

and either fail treatment and return to the infection compartment,

or clear the disease and become susceptible again.

In our model, X denotes the number of susceptible IDUs

(including those who have cleared the infection), C denotes the

number of both chronically infected and acutely infected IDUs

which will proceed to chronic infection, and T denotes the

number of IDUs in treatment, t is time in years, and where

N~total population~XzCzT . The equations describing the

HCV transmission are:

dX

dt
~h{p(1{d)

C

N
XzvaT{mX , ð1Þ

dC

dt
~p(1{d)

C

N
X{uCzv(1{a)T{mC, ð2Þ
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dT

dt
~uC{vT{mT , ð3Þ

with initial conditions X (0)~X0, C(0)~C0, T(0)~0. For the

initial conditions, we assume that the epidemic is at steady state

with no treatment, as is the case in most places in the UK [8].

Equation (1) represents the rate of change of the size of the

susceptible population, where new IDUs enter at a fixed rate h.

The second term in Equation (1) models the infection of

susceptible IDUs, which is proportional to the number of

susceptibles, the fraction of the population chronically infected,

and the infection rate p. The acute infection spontaneously clears

in a proportion d, who return to the susceptible pool. The

remaining infected fraction which do not spontaneously clear,

1{d, progress to chronic infection. The third term in Equation (1)

represents IDUs who exit treatment at a rate v, with successful

treatment proportion a.

Equation (2) models the rate of change of the number of

chronically infected IDUs. The first term represents those who

enter from the susceptible pool, which is proportional to the

number of susceptibles, the fraction of the population chronically

infected, the infection rate (p), and the fraction who do not

spontaneously clear the acute infection (1{d). The fraction of

nonresponders to treatment, (1{a), return from treatment

proportional to rate v.

The second term in Equation (2), {uC, represents the

movement of infected IDUs into treatment. The proportion of

infecteds put on treatment per year as an instantaneous rate

represented by u, can vary through time and is the function we

would like to optimise with respect to, given the constraints

described later.

Equation (3) represents the rate of change of the number of

IDUs currently in treatment. Infected IDUs enter treatment at the

rate u as discussed for Equation (2). IDUs exit treatment

proportional to the rate v.

In each of the populations, IDUs leave (due to death or ceasing

injection) proportional to the rate m.

System and Objective Functional

If we let x~
X

N
, c~

C

N
, t~

T

N
, so that the state variables are now

the fraction of the population in each compartment, then

Equations (1)–(3) become

dx

dt
~

h(1{x)

N
{p(1{d)cxzvat, ð4Þ

dc

dt
~p(1{d)cx{uczv(1{a)t{

hc

N
, ð5Þ

dt

dt
~uc{vt{

ht

N
, ð6Þ

where N evolves according to the equation

dN

dt
~h{mN: ð7Þ

Since the population is assumed to be in steady state, then

N~h=m. Making this substitution, Equations (4)–(6) become

dx

dt
~m(1{x){p(1{d)cxzvat, ð8Þ

dc

dt
~p(1{d)cx{uczv(1{a)t{mc, ð9Þ

dt

dt
~uc{vt{mt: ð10Þ

Since xzczt~1, we can substitute t~1{x{c into Equations

(8) and (9) and get rid of (10) so that we are left with the smaller

system

dx

dt
~mzva{(mzva)x{vac{p(1{d)cx, ð11Þ

dc

dt
~v(1{a)(1{x{c){uczp(1{d)cx{mc, ð12Þ

with initial conditions

x(0)~x0w0, ð13Þ

c(0)~c0w0, ð14Þ

where x0~mX0=h, c0~mC0=h and x0zc0~1. We wish to find

the function u(t) over the time horizon 0ƒtƒtf such that we

minimise the objective functional

J(u) : ~

ðtf

0

½(b1zb2)ucNz(f1zf2)cNzcu2�dt, ð15Þ

subject to the constraints

0ƒuƒ1, ð16Þ

b1ucNzcu2
ƒM, ð17Þ

where M is a positive constant representing the maximum

programme spend rate, and b1, b2, f1, f2 and c are the following

decreasing functions of time:

b1(t)~b10e{rt, ð18Þ

b2(t)~b20e{rt, ð19Þ

c(t)~c0e{rt, ð20Þ

f1(t)~f10e{rt, ð21Þ

Optimal Control of Hepatitis C Treatment
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f2(t)~f20e{rt: ð22Þ

The parameters b10, b20, c0, f10, f20 and r are positive constants.

The constant r is the instantaneous discount rate and can be

calculated using the formula

r~{log(1{r), ð23Þ

where r is the annual effective discount rate.

We divided the cost associated with HCV into two types. First,

we have the programme costs. These are the costs required to

search for and treat patients. Secondly, we have the costs

associated with infection. These are the costs incurred by the

health service when managing patients who are untreated and

remain infected. Together, programme (antiviral treatment and

search) and infection costs add up to the health service costs

associated with HCV. More precisely, the function b1 represents

the average cost of antiviral treatment per person. The search costs

related to finding, diagnosing, and recruiting active IDUs onto

treatment are represented by the term cu2. As is commonly done

in optimal control models of infectious diseases, we use a quadratic

function of the control to represent increasing marginal costs

associated with achieving high treatment coverage levels [24,33].

The function f1 represents the average annual infection cost per

chronically infected IDU.

To be able to incorporate health utility losses into the optimal

control framework, we monetarise the QALY losses associated

with HCV infection and antiviral treatment. We detail this

approach fully in the section ‘Economic parameters’. In particular,

b2 represents the monetarisation of the QALY loss per antiviral

treatment, and f2 represents the monetarisation of the QALY loss

per year associated with HCV. The parameters b10, b20, f10, and

f20 represent the initial values of these costs at t~0.

The first constraint 0ƒuƒ1 means that we cannot treat at a

rate higher than 100% of the infected population per year, and the

treatment rate cannot be negative. The second constraint

b1ucNzcu2
ƒM limits the spending rate of the treatment

programme (antiviral treatment and search costs) so that the

programme spending rate can never be greater than »M per year.

M will be referred to as the annual or yearly budget. As health

service costs related to infection, f1cN , are unrelated to the direct

programme budget, we do not incorporate these into the budget

constraint.

With our model, we project the optimal treatment programme

over time, the corresponding prevalence reductions and infections

averted with each programme, total programme costs, and total

infection costs. We divide our total programme costs by the

number of infections averted to calculate cost per infection

averted. We also calculate net monetary benefit (monetarised

benefits associated with QALYs gained minus net health services

costs) related to each programme compared to no treatment.

Finally, we calculate the health service cost per QALY gained for

each programme. Due to the prevention impact of antiviral

treatment, it is important to capture the future benefits of the

treatment programme. For these calculations, we simulate each 10

year treatment programme, and then continue calculating

discounted health service costs and QALYs for a further 40 years,

in order to determine the onward prevention impact of the

different 10 year treatment programmes. Hence, the total time

horizon in the cost per QALY gained calculation is 50 years. We

calculate the cost per QALY gained as compared to a baseline of

no treatment.

Optimal control
The optimal control problem is minu J(u) subject to (11)–(14),

(16) and (17). In other words, we seek the function u(t) such that

J(u) is minimised subject to the state equations (11) and (12), the

initial conditions (13) and (14) and the constraints (16) and (17).

We employ Pontryagin’s minimum principle [34] to determine

necessary conditions that must be satisfied by an optimal control, if

one exists. The existence of an optimal control and corresponding

optimal states is guaranteed for this optimal control problem as

criteria (a),(b),(c) of Theorem 4.1 and criteria (d’) and (e’) of

Corollary 4.1 found in [35, chap.3] are satisfied.

The optimal control theory associated with various types of

inequality constraints, including the ones considered here, can be

found in [36]. For a general introductory text on optimal control

methods applied to biological systems, we direct interested readers

towards the text by Lenhart and Workman [37]. The first step is to

form the Hamiltonian associated with this optimal control

problem, i.e.

H~(b1zb2)ucNz(f1zf2)cNzcu2H

zlx(mzva{(mzva)x{vac{p(1{d)cx)

zlc(v(1{a)(1{x{c){uczp(1{d)cx{mc)

zL(b1ucNzcu2{M),

ð24Þ

where lx, lc and L are functions of t. The multiplier L is an

adjoining Lagrange multiplier that must satisfy

L(t)§0, if b1ucNzcu2~M, ð25Þ

L(t)~0, if b1ucNzcu2
vM: ð26Þ

To find the characterisation of the optimal control, by Pontrya-

gin’s minimum principle we just need to find the u that minimises

the Hamiltonian. Since the control u appears quadratically in the

Hamiltonian, then to do this we simply set

LH

Lu
~0, ð27Þ

which gives the equation

(b1zb2)cNz2cu{clczb1cNLz2cuL~0: ð28Þ

If b1ucNzcu2
vM, then (28), with L~0 and the constraint (16),

provides the optimal control characterisation (call it u�):

u�~minfmaxf0,
clc{(b1zb2)cN

2c
g,1g: ð29Þ

If b1ucNzcu2~M, then the optimal control characterisation is

derived by simply solving this quadratic equation for u to obtain

u�~minfmaxf0,
{b1cNz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(b1cN)2z4cM

q
2c

g,1g, ð30Þ

where we have taken the positive root because the negative root

always yields a negative value of the fraction in (30) since the

parameters are all positive. Due to the control constraint (16), the

Optimal Control of Hepatitis C Treatment
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optimal control is forced to lie within its admissible bounds 0 and

1.

We know from (26) that L~0 when the constraint (17) is not

tight. When the budget constraint is tight, the function L can be

determined from (28) with u~u� as defined in (30), so that

L~
clc{2cu�{(b1zb2)cN

b1cNz2cu�
: ð31Þ

It is important to keep in mind that the search cost coefficient c
cannot at anytime be zero or else the optimal control problem is

singular. Singular optimal control problems require different

solution methods (see [38–40], and [37]).

The corresponding differential equations for the adjoint

variables (lx and lc) are determined from partial derivatives of

the Hamiltonian:

dlx

dt
~{

LH

Lx
, ð32Þ

dlc

dt
~{

LH

Lc
, ð33Þ

from which we obtain the adjoint equations

dlx

dt
~(mzva)lxzp(1{d)clxzv(1{a)lc{p(1{d)clc, ð34Þ

dlc

dt
~{(b1zb2)u�N{b1u�NL{(f1zf2)Nzvalx

zp(1{d)xlxzv(1{a)lc{p(1{d)xlczu�lczmlc:

ð35Þ

The adjoint equations have the final conditions

lx(tf )~0, ð36Þ

lc(tf )~0: ð37Þ

The state and adjoint equations and their four associated

boundary conditions constitute a two-point boundary value

problem which we solve in MATLAB using the forward-backward

sweep numerical method [37].

In order to force a specific final time prevalence, we must

remove the final time condition lc(tf )~0. Instead, an iterative

bisection method is used to find the value of lc(tf ) that yields the

desired final time target prevalence c(tf ).

Numerical solutions with a final time prevalence specified are

run with tf ~10 years. Numerical solutions without a final time

prevalence specified are run with tf ~50 years, and results

presented for the first 10 years. The use of an expanded time range

(tf ~50) when there is no final time prevalence specified is

necessary to ensure that premature termination of treatment is not

recommended due to the lack of consideration for onward

transmission after the initial decade of interest. As new treatments

will likely be introduced in the next decade (with different cost

implications), it is reasonable to focus on a 10 year timeframe.

If instead we wish to simply minimise final time prevalence

subject to our budget constraint, we can do this by adding the term

wc(tf ) to the objective functional and making the positive constant

w very large, e.g. w~1010 so that the other terms in the objective

are negligible by comparison. Mathematically, this addition to the

objective functional leads to a different final time boundary

condition on lc, i.e. lc(tf )~w.

Uncertainty analysis
To examine how the uncertainty in the biological and cost

parameters alters the optimal control solution, we perform a Latin

Hypercube Sampling (LHS) of the cost parameters (b10, b20, f10,

f20, c0) and biological parameters (a1, a2=3, m and d) over a

uniform range of values. For each of the 100 parameter sets in our

sampling, we calculate the corresponding infection rate (p) and

new injector rate (h) which gives the desired untreated endemic

prevalence (30% or 45%), and retains a total of 1,000 IDUs in the

population. With each of these parameter sets, we calculate the

corresponding optimal control solution and infected prevalence

reduction.

Sensitivity analysis
A sensitivity analysis was performed to determine how sensitive

the infected prevalence is to variations in the epidemiological

parameters and in the presence of treatment. This allows us to

identify which parameters play the most significant role in the

disease dynamics, as well as how the prevalence sensitivity varies

between baseline prevalence scenarios. For the analysis, the

control function u is considered a constant function of time

ranging from zero to one. We then assess the variability in our

prevalence at 10 years (the timescale under consideration). We do

this by again utilising LHS to select 1,000 combinations of the

input parameters d, m, a1, a2 and u. For each set of parameters, the

infection rate, p, is then calculated given the untreated endemic

prevalence. The value for h is calculated from m to retain a total of

1,000 IDUs. We then solve the system of ordinary differential

equations using MATLAB, and track the projected prevalence at

year 10 with each parameter set. We then calculate a Partial Rank

Correlation Coefficient (PRCC) to assess the relative importance

of each parameter in determining infected prevalence. PRCCs are

widely used in sensitivity analyses in systems biology and disease

transmission models to determine the importance of a parameter

on a given output while fixing the other parameters at their

expected value [24,41–43]. The larger the absolute value of the

PRCC, the more influence a parameter has on prevalence, with a

PRCC magnitude greater than 0.5 and a p-value of v0.05

indicating the output is sensitive to changes in the input

parameter.

Discussion of parameter estimates
Biological parameters. We obtain the model parameters

from the relevant literature on injecting drug use and HCV

treatment as well as epidemiological data collected in the UK

(Table 1). We present results for two common baseline chronic

prevalences: 30% and 45% (approximately equivalent to 40% and

60% antibody prevalences, respectively). The exit rate is

determined by the sum of the cessation of injecting rate (calcu-

lated by using the average injecting duration) and the IDU death

rate. We use an average injecting duration of 11.5 years

(corresponding to a cessation rate of 8.7% per year) found in

[44]. This estimate for injecting duration is similar to an average

estimate across England and Wales, and so is likely to be

representative of many areas in the UK [45]. A recent study found

an IDU mortality rate (due to overdose, suicide, and other causes)

Optimal Control of Hepatitis C Treatment
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of 0.75% per year [46]. The rate of IDUs entering the population

is calculated from the exit rate to retain 1,000 IDUs in the

population.

Treatment duration and success depends on the specific genotype

of HCV being treated. In general, SVR is high for IDUs with

genotype 2 or 3 (75–85%), and lower for genotype 1 (40–50%)

[9,11,13,47]. The recommended duration of treatment for genotype

2/3 is 24 weeks for both responders or nonresponders, and for

genotype 1 the duration is 48 weeks for responders and 12 weeks for

nonresponders [11,13]. In the United Kingdom, about half of the

infections are genotype 1, with the remaining half 2 or 3 [11].

Hence, we take an average between the genotype 1 and 2/3

parameters for the treatment success parameter (a), as well as the

treatment duration (1=v). Finally, [29] performed a meta-analysis

and found that 26% of infections lead to spontaneous clearance,

which we use for the parameter d. The parameter p is determined

for the two different prevalence scenarios by assuming that HCV

amongst IDUs is in steady state, a reasonable assumption for HCV

amongst IDUs the UK [44].

Economic parameters. A summary of the economic

parameters can be found in Table 2, with the specific maximum

annual budgets considered shown in Table 3. Programme treatment

costs are constructed from current drug price estimates and costing

studies. Depending on the type of peginterferon alfa used (2a or 3b)

and body weight, the drug costs of combination peginteferon and

ribvirin treatment is between »12,496–14,221 per person [11]. In

addition to drug costs, we include patient evaluation, tests,

screening, and consultations during and after treatment. Cost-

effectiveness analyses for HCV treatment have estimated these total

costs to be »760 (in 2008/2009 GBP) for investigations of a patient

who is considered for treatment, and »810.32–1,084.30 for

consultations depending on treatment length [12]. Therefore, the

total costs of delivering antiviral treatment are »14,066–16,064 per

year, and we use a mean value of »15,065 per year, varying this in

the uncertainty analysis. We calculate the cost per treatment by

multiplying the yearly treatment cost (which we denote byr) and

average treatment duration (1/v).

The parameter c0 represents the cost of ensuring 100%

treatment coverage in the first year, which would involve an

extensive testing and recruitment programme. Programme search

costs are difficult to estimate, as there is no published literature on

cost analysis of IDU recruitment to services by coverage level.

Systemic reviews examining costs of vaccination scale-up pro-

grammes show a lack of good methodological studies and rigorous

cost analyses [48–50]. Nevertheless, it is reasonable to assume

increasing marginal cost when attempting to increase coverage to

high coverage rates, due to the assumed increased difficulty in

recruitment and uptake [33]. All IDUs would need to be antibody

tested. The cost of a dried blood spot antibody test is

approximately »19.84, so »19,840 in a population of 1000 IDUs.

The additional cost of RNA PCR for those who are chronically

infected and will enter treatment is incorporated in the antiviral

treatment costs. About one quarter of those who are antibody

positive have spontaneously cleared the acute disease, and would

need a PCR test to confirm their negative status. At worst, in our

population of 30–45% prevalence, this amounts to about 150

IDUs per year. At a cost of »70.77 for the PCR test, the maximum

cost of PCR testing is »10,615.

With current dried blood spot testing technology, HCV testing

can be implemented by local outreach services (such as needle and

syringe programmes), however the implementation of an intensive

testing programme would likely require staff and training, and

potentially overheads. There is no published cost estimation for

needle and syringe programmes (in particular training and staffing)

in the UK [51] so estimates were taken from two other countries

(Canada and Ukraine) and costs translated to the UK using the

2009 Purchasing Power Parity (PPP) Index provided by the World

Bank [52]. Jacobs et al. [53] reported the yearly cost to run a local

needle and syringe exchange programme (including staff, training,

and overheads, but excluding syringe costs) in Edmonton, Canada

as $253,553 CAD (2009). The programme distributed 565,754

needles in a year, but did not document the number of visits per

year. No estimates were given for the number of needles distributed

at a time, however the mean number of syringes collected per

contact has been estimated at around 20 [54], leading to

approximately 28,288 contacts per year, or $8.96 CAD per contact.

Using the 2009 PPP conversion factor (approx. 1.76) [52] and the

average exchange rate in 2009 (1.78 CAD to 1 GBP, www.x-rates.

com), this results in an average cost per contact of »8.86 (2009). In

this study, a local van was used for outreach, which is likely similar

to the kind of programme which would be used in the UK if the aim

was to attain high coverage. We therefore use it as the base for our

programme cost estimation.

A similar analysis on data from the first year of a needle and

syringe programme in Ukraine [55] includes building purchase and

construction costs, giving a higher cost per contact of »22.10 (2009).

Of this amount, nearly 25% is comprised of the first year capital

non-reoccurring costs. However, this is likely to be an appropriate

upper bound as in subsequent years, especially in situations

targeting high coverage or with low prevalence, a media campaign

might be necessary. Hence, the repeated inclusion of this 25%

excess cost (for capital, media, or other) seems appropriate.

Table 1. Biological parameter values used in the numerical simulations.

Parameter Definition Value Units Source

a Proportion infections cured by treatment 0.625a - [11,13]

v 1/treatment duration 1.992b per year [11,13]

d Proportion infections spontaneously clear 0.26 - [29]

p Infection rate 0.1834–0.2334 per year Fit to 30% and 45% infection prevalences [44]

m Exit rate (through death or cessation) 0.095c per year [44–46]

h New injector entrance rate 95 per 1,000 IDUs annually Given value to retain population of 1,000 IDUs

aAverage of the genotype 1 cure rate (a1~0:45) and the genotype 2/3 cure rate (a2=3~0:8).
bExit rate calculated from the average of the genotype 1 treatment length for responders and nonresponders: (a1|48z(1{a1)|12) weeks and the genotype 2

treatment length, 24 weeks.
cBased on a cessation rate of 8.7% per year, and an IDU death rate of 0.75% per year.
doi:10.1371/journal.pone.0022309.t001
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In total, for u~1 (treating at a rate of 100% of the IDU

population per year), the total cost of programme outreach and

testing of 1,000 IDUs would be »39,315, with a maximum

estimate of »52,555. We therefore use c0~»40,000 and vary this

from »39,000 to »53,000 in the uncertainty analysis.

The infection costs (f10) associated with a person with mild to

moderate chronic HCV are approximately »657 per year [12,56].

These costs escalate markedly in the later stages of disease, but

given the long timescale of disease progression to cirrhosis

(decades) and the average injecting duration (approximately 11

years) it is assumed all infected active IDUs are either in the mild

or moderate stage.

In order to quantify the quality of life reduction for active IDUs

with HCV and for active IDUs with HCV undergoing treatment,

Table 2. Economic parameters.

Parameter Definition Scenario Value Source

b10 Antiviral treatment costs per treatment all »15,065=v [12,56,73]

b20 Monetarised QALY loss per treatment A, B »5,800=v See text

C »0 -

f10 HCV infection costs per year all »657 [12,56,73]

f20 Monetarised QALY loss for HCV per year A, B »3,800 See text

C »0 -

c0 Recruitment and testing cost (per year per unit u2) all »40,000 Little data, see text [53,55]

r Discounting rate for costs and health utility losses (annual) all 3.5% [60]

M Maximum annual budget (per 1,000 IDUs) all »50,000–300,000 -

Scenario A: minimising health service costs and HCV health utility losses (measured in monetarised QALY loss). Scenario B: minimising health service costs and HCV
health utility losses with a final time prevalence target. Scenario C: minimising only health service costs with a final time prevalence target.
doi:10.1371/journal.pone.0022309.t002

Table 3. Net costs, net QALYs gained, and cost per QALY gained as compared to no treatment programme for the 30% and 45%
HCV prevalence scenarios and various optimisation programmes.

30% HCV prevalence 45% HCV prevalence

Scenario
Max annual
budget (»)

Net
costs1 (»)

Net QALY
gain2

Cost (») per
QALY gained

Net
costs1 (»)

Net QALY
gain2

Cost (») per
QALY gained

A 50,000 220,028 135 2148 - - -

100,000 299,210 287 2346 - - -

150,000 2256,459 462 2555 327,996 293 1,120

200,000 2520,789 668 2780 359,397 413 870

250,000 - - - 332,703 550 605

300,000 - - - 227,253 710 320

B 50,000 - - - - - -

100,000 249,338 203 2243 - - -

150,000 246,459 216 2215 288,304 233 1,237

200,000 244,793 224 2200 316,510 251 1,263

250,000 - - - 335,742 263 1,277

300,000 - - - 349,527 272 1,285

C 50,000 - - - - - -

100,000 240,348 159 2254 - - -

150,000 233,130 145 2228 213,173 179 1,192

200,000 223,268 137 2169 190,679 163 1,167

250,000 - - - 183,950 154 1,192

300,000 - - - 183,212 148 1,239

The optimal 10 year programme is determined for each scenario, and then costs and QALYs are calculated for a further 40 years (for a 50 year time horizon) in order to
account for the onward prevention benefits of the treatment programme. Scenario A: minimising health service costs and HCV health utility losses (measured in
monetarised QALY loss). Scenario B: minimising health service costs and HCV health utility losses with a final time prevalence target. Scenario C: minimising only health
service costs with a final time prevalence target.
1Net costs = health care costs over 50 years with the 10 year treatment programme - health care costs over 50 years with no treatment. Health care costs are defined as
programme (antiviral treatment and search) costs as well as HCV infection related costs.

2Net QALY gain = QALYs gained over 50 years with the 10 year treatment programme - QALYs gained over 50 years with no treatment.
doi:10.1371/journal.pone.0022309.t003
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we monetarise the QALY loss in each case. This approach

excludes non-health benefits associated with the intervention (such

as impact on productivity), but nonetheless allows us to arrive at an

estimate of the net monetary benefit of the programme. In the

UK, this is possible using the ‘willingness-to-pay’ threshold defined

by NICE, which essentially determines the amount the UK’s

National Health Service is willing to pay for a treatment. The

current willingness-to-pay threshold (i.e. the UK’s monetarised

value of a QALY) is approximately »20,000 per QALY gained

[57]. Estimates for the health state for a non- or ex-IDU with mild

chronic HCV infection are around 0.78 QALYs per year,

depending on the evaluation method [12]. Healthy active IDUs

tend to have a lower baseline quality of life than non- or ex-IDUs,

with estimates at around 0.85 QALYs per year [56], i.e. a 15%

reduction in quality of life from the healthy non-IDU state. We use

this 15% reduction to calculate the health state reduction for active

IDUs with HCV, in line with other economic evaluations of HCV

in active IDUs [56]. Hence, we estimate that the health state for

an active IDU with HCV is 0.66 QALYs per year, i.e. an absolute

reduction of 0.19 QALYs per year from the healthy active IDU

state, meaning that the (monetary) benefit from successfully

treating a chronically infected IDU is approximately »3,800 per

year (0.19 QALYs/year|»20,000/QALY). In other words,

»3,800 is the estimated monetary benefit foregone per year by

not treating an infected IDU, hence it is essentially an opportunity

cost, represented by the monetarised value of QALYs lost due to

non-treatment. On the other hand, being on HCV antiviral

treatment also results in a QALY reduction (from infection level)

of about 0.10 QALYs per year for the duration of treatment [12],

hence we assume the net reduction from the healthy active IDU

state to an active IDU with HCV on treatment is approximately

0.29 QALYs per year, and therefore the cost in terms of

monetarised value of QALYs lost due to treatment is approxi-

mately »5,800 per year. These monetarised values of QALYs lost

due to either infection or treatment make up the HCV health

utility losses. Due to the lack of evidence surrounding utility values

following treatment of those with mild (in particular, asymptom-

atic) HCV, we use published estimations that SVR from mild

HCV results in a return to the normal health state [58,59].

Health costs and utility losses are discounted at an annual

effective rate of 3.5% per year, meaning that our cost weights

decrease through time [60]. This allows for the correct cost

adjustment when using a maximum implementation yearly

budget. All costs are presented in UK pounds (GBP, ») in fiscal

year 2008/2009 values and updated with the Hospital and

Community Health Services Pay and Prices Index [61]. We

examine several budget scenarios, from a maximum yearly budget

of »50,000 to »300,000 per 1,000 IDUs.

Parameter ranges for the uncertainty analysis. During

the uncertainty analysis, each parameter is taken to be uniformly

distributed, with ranges as shown in Table 4 for the biological

parameters varied. For the cost parameters, the ranges for b10, b20,

f10, and f20 were taken to be plus and minus 10% of the values

given in Table 1. Due to the high uncertainty in c0, the range used

was from »39,000 to »53,000.

Results

If only health service costs are minimised (with no requirement

to reduce health utility losses or reach a final time prevalence

reduction), the optimal solution is to treat no one. In each of the

scenarios considered below, we add further considerations to this

baseline case.

Scenario A: Minimising health service costs and HCV
health utility losses (f2,b2w0)

This scenario represents an ‘ideal’ situation, where policymakers

are motivated to minimise health service costs and health utility

losses associated with HCV, limited only by budget restrictions.

The optimal programme is to spend the maximum possible

amount each year on the treatment programme, which succeeds in

reducing infections and QALY losses.

If the objective is to minimise health service costs and health

utility loss related to HCV infection, Figure 1 shows the potential

impact of the optimal treatment programmes for various

maximum yearly programme budgets with a 30% baseline

prevalence. In all budget scenarios, the optimal number treated

increases over time, due to the discounting treatment costs and

subsequent ability to increase treatment allocation. Figure 1 shows

that depending on the maximum annual budget (»50,000 to

»200,000 per 1,000 IDUs annually), the number of treatments

allocated yearly varies from 7 to 37. With a »100,000 maximum

annual programme budget, the prevalence decreases from 30% to

about 21% at year 10 with a total of 43 cases (per 1,000 IDUs)

averted. This equates to a total programme spend per infection

averted of »23,597. The infection related costs reach »1.42 million

by 10 years. Net monetary benefit at 10 years is »291,088. The

cost per QALY gained with a 50 year time horizon is 2»346, with

negative net costs and positive net QALYs gained as compared to

no treatment, indicating that the programme is cost saving

(Table 3).

Table 4. LHS sensitivity analysis on the model with constant control (n~1,000).

Parameter Range (Min, Max) Source PRCCa 10 yr prevalence (30% baseline) PRCCa 10 yr prevalence (45% baseline)

a1 (0.40, 0.50)b [11,13,47] 20.6839* 20.6904*

a2=3 (0.75, 0.85)b [9,11,13] 20.7153* 20.6762*

m (0.05, 0.1429)c [44–46,74] 0.4271* 0.7234*

u (0, 1) - 20.9992* 20.9990*

d (0.22, 0.29) [29] 20.0387 20.0338

aPartial Rank Correlation Coefficient,
ba is calculated as an average of the genotype treatment success rates, a1 and a2=3 .
cThe exit rate is calculated from the range of the genotype 1 treatment length for responders and nonresponders: (a1|48z(1{a1)|12) weeks and the genotype 2
length: 24 weeks.

*denotes a p-value of below 0.05.
doi:10.1371/journal.pone.0022309.t004
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When the budget constraint is increased to »200,000 per year,

the prevalence decreases to below 12% within a decade.

Additionally, 96 infections are averted by 10 years, resulting in a

reduction in cost per infection averted to »20,945. As compared to

the lower budget scenario, the increased programme costs are

partly offset by reduced infection-related costs of »1.17 million at

10 years. Net monetary benefit increases to »630,111. Addition-

ally, increasing the budget saves more in terms of cost over a 50

year time horizon and gains more QALYs, resulting in a cost per

QALY gained of 2»780, indicating that this programme is more

cost-effective than one with a lower budget (Table 3). Results are

qualitatively similar for the 45% baseline prevalence scenarios,

however with the same yearly budget the relative reduction in

prevalence is smaller, there are fewer infections averted, and the

cost per averted infection is higher (Supporting Information Figure

S1). Furthermore, the programme results in fewer QALY gains,

and the cost per QALY gained is higher, at »870 (Table 3).

Overall, increasing the yearly budget results in greater short-

term reductions in prevalence, increased infections averted, lower

programme cost per infection averted, and substantial reductions

in infection related costs at year 10 due to the subsequent

prevention effect. For a given yearly budget, the impact is higher

in lower prevalence areas.

The optimal programme strategy and results presented above are

identical if the objective is instead to minimise prevalence at the end

of year 10 while being constrained by the same budget restrictions.

In other words, the programme which minimises prevalence at the

end of year 10 is the one where the entire budget is spent every year,

and this strategy also has the lowest cost per QALY gained.

Scenario B: Minimising health service costs and HCV
health utility losses with a final time prevalence target
(f2,b2w0, c(tf )~0:8c0)

In a less ‘ideal’ scenario, policymakers could be motivated by a

political constraint as well, and specify a need to reduce prevalence

by a specific amount within 10 years. Therefore, in this case we

examine the optimal timing and intensity of a programme where

the desire is to achieve a specific prevalence reduction by the final

time, while also minimising total health service costs and HCV

health utility losses. These objectives are again constrained by

yearly budget restrictions. In these simulations, the final time

prevalence is specified as a necessary condition, such that the

prevalence at tf ~10 years is reduced by a relative 20% (so, from

30% to 24% or 45% to 36%).

Numerical solutions indicate that the best strategy with a final

time target including costs related to health state reductions is an

initial, intense programme (Figure 2). In the 30% baseline

prevalence scenario, the »50,000 maximum budget scenario is

not sufficient to result in a 20% relative reduction in prevalence.

With an annual budget of »100,000, the optimum is an 8 year

programme of increasing treatment coverage (expanding from 4%

to 8% of infected IDUs), treating 13–17 people per year in the first

seven years where the full budget is spent, and 7 people in the

eighth year (Figure 2). This programme results in an initial swift

decrease in prevalence, slightly overshooting the 10 year target

prevalence in year 8, and eventually rebounding to the target by

the end of year 10. The programme averts 37 infections resulting

in a programme cost per infection averted of »19,888. The total

costs of the programme (treatment and search) reaches just over

»740,803 with the infection related costs reaching »1.44 million. In

this scenario, net costs as compared to no treatment are still

negative, but fewer QALYs are averted as compared to Scenario

A, and cost per QALY gained is higher at 2»243, however the

programme is still cost-saving (Table 3).

Increasing the budget to »200,000 decreases the duration of the

optimal programme to five years, with a lower level of treatments

(26–30) for the first four years, tailing off with 5 treatments in the

fifth year. This strategy increases the programme cost to »830,051,

but averts more infections (50 by year 10), resulting in a lower

programme cost per infection averted of »16,737. Furthermore,

the infection related costs are reduced to »1.36 million. However,

the cost per QALY gained is slightly higher than in the lower

budget scenario, at 2»200 due to the higher programme cost

(Table 3).

With a 45% baseline prevalence scenario, the optimal pro-

gramme is still an initial programme, but the programme duration

to reduce prevalence by 20% is longer (Supporting Information

Figure S2). With an annual budget of »200,000, the programme

spans 7 years instead of the 5 years in the lower prevalence scenario.

Total programme and infection costs are substantially higher, at

»1.35 million and »2.1 million, respectively. Additionally, fewer

infections are averted (40 in 10 years), and the cost per infection

averted is nearly double that of the 30% prevalence scenario.

Similarly, the cost per QALY increases to »1,263 (Table 3).

Scenario C: Final time prevalence reduction only
(f2~b2~0, c(tf )~0:8c0)

In the least ‘ideal’, but perhaps most relevant and ‘real-world’

scenario, policymakers may be motivated solely by a political

commitment to reduce prevalence by a specific amount, neglecting

the loss of health utilities associated with infection. As compared to

Scenario B, where there is a bias towards early and intensive

treatment to reduce the cumulative number of infections,

neglecting health utility losses results in very different optimal

programmes (Figure 3). In the 30% prevalence scenario, with a

maximum budget at »200,000 per year, the optimal programme is

implemented in the final three years only, increasing treatment

coverage from 11% to 16%. This results in treating 13–36 people

per year, costing the programme only »478,369, but infection costs

reach »1.62 million. Since the costs associated with infections are

much lower when neglecting loss of health utility, the optimal

strategy shifts toward achieving the target prevalence with fewer

treatments, whereas with health utility losses included in the

objective, the optimal strategy seeks to decrease a greater number

of the infections by treating earlier instead of later. Hence, the

number of infections averted is only 8 per 1,000 IDUs at year 10,

and the cost per infection averted is substantially increased to over

»62,324. Importantly, in this scenario, the programme does not

result in a net monetary benefit at 10 years, with costs exceeding

benefits throughout the decade. The cost per QALY gained

(2»169) is slightly higher than Scenarios A and B, with fewer

QALYs gained, and higher costs (Table 3).

Decreasing the yearly budget to »100,000 results in a longer

programme, lasting years 5 through 10, increasing treatment

coverage from 5% to 8%. Reducing the budget increases pro-

gramme costs (to »560,241), but decreases infection costs to »1.57

million. Furthermore, decreasing the maximum annual budget

increases the treatment programme duration, resulting in more

infections averted (nearly 16 per 1,000 IDUs by year 10).

Additionally, the cost per infection averted is substantially less,

at just over »35,087. This indicates that although a higher annual

budget can achieve the same prevalence reduction with a shorter

programme duration, achieving earlier prevalence reductions (for

example, by treating fewer but initiating the programme earlier)

results in more infections averted and a reduced cost per infection

averted. The qualitative shape of the programme (delayed until

final years) is unchanged if discounting is neglected.
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For the 45% prevalence scenario, the optimum is also a late

initiated programme, but with a longer programme duration to

achieve the target prevalence (Supporting Information Figure S3).

The programmes begin in years 4–8 and escalate until the final year.

Cumulative programme costs are roughly equal (at the »200,000

annual budget) and 15% higher (at the »150,000 annual budget) than

in the 30% prevalence scenario, and the cost per QALY gained is

higher than in scenarios A and B, or for any of the low prevalence

scenarios, at about »1,200.

Uncertainty analysis of optimal control solution
The impact of uncertainty of our parameters on the optimal control

and prevalence reductions for various maximum budget scenarios are

Figure 1. Scenario A: Minimising health service costs and HCV health utility losses. Simulations are with a 30% baseline prevalence,
showing (A) programme coverage, (B) prevalence reductions, (C) number of treatments, (D) total health service costs (comprised of programme costs
and infection costs), (E) infections averted, and (F) net monetary benefit. Parameters used are as shown in Tables 1–2, with f20~3,800,
b20~5,800|(1=v), tf ~50, and with no final time prevalence constraint.
doi:10.1371/journal.pone.0022309.g001
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shown in Figure 4 for 30% baseline prevalence and maximum yearly

budget of M~»150,000 with and without the final time prevalence

target (including monetarisation of QALYs). The results for 45%

baseline prevalence with a maximum annual budget of M~»200,000

are shown in Figure S4 of the Supporting Information. Despite the

uncertainty in both the biological and economic cost parameters, the

qualitative results remain unchanged, with only small variations of at

most two years in the duration of treatment programme.

Sensitivity analysis
The results of the sensitivity analysis are found in Table 4,

which shows how sensitive the 10 year prevalence is to changes in

Figure 2. Scenario B: Minimising health service costs and HCV health utility losses with a final time prevalence target. Simulations are
with a 30% baseline prevalence, showing (A) programme coverage, (B) prevalence reductions, (C) number of treatments, (D) total health service costs
(comprised of programme costs and infection costs), (E) infections averted, and (F) net monetary benefit. Parameters used are as shown in Tables 1–2,
with f20~3,800, b20~5,800|(1=v), and a final time prevalence constraint.
doi:10.1371/journal.pone.0022309.g002
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the epidemiological parameters. Here, we assume the treatment

rate is constant through time. This allows for the assessment of

which parameters to which the prevalence is most sensitive. In

both prevalence scenarios, the endemic prevalence is most

sensitive to the treatment rate, which indicates that treatment

could play an important role in reducing prevalence. The 45%

prevalence scenario is then most sensitive to the exit rate (m),

followed by the treatment cure rates (a1,2=3). By contrast, the 30%

prevalence scenario is more sensitive to the treatment cure rates

than exit rate. This indicates that at higher prevalences, variations

in injecting duration between sites can significantly alter impact

projections; at lower prevalences variation in injecting duration

Figure 3. Scenario C: Minimising only health service costs with a final time prevalence target. Simulations are with a 30% baseline
prevalence, showing (A) programme coverage, (B) prevalence reductions, (C) number of treatments, (D) total health service costs (comprised of
programme costs and infection costs), (E) infections averted, and (F) net monetary benefit. Here, we neglect health utility losses. Parameters used are
as shown in Tables 1–2, with f20~0, b20~0, and a final time prevalence target constraint.
doi:10.1371/journal.pone.0022309.g003
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would have less of an impact on prevalence at 10 years. As the

sensitivity coefficient of the exit rate is positive, increasing the

injecting duration would lead to an increase in prevalence.

Conversely, increasing treatment cure rates lead to decreasing

prevalence. The sensitivity results indicate that in high prevalence

scenarios, aside from antiviral treatment, initiatives reducing

injecting duration would have the most effect on reducing

prevalence. Notably, in both prevalence scenarios the 10 year

prevalence is not sensitive to the variation in the spontaneous

clearance rate. Hence, for example, a 10% change in spontaneous

clearance would have substantially less of an impact on prevalence

than the same percent change in injecting duration.

Discussion

Main Findings
We use optimal control theory to determine the optimal timing

and intensity of an HCV antiviral treatment programme for active

IDUs with a variety of policy objectives, budget constraints, and

prevalence settings. The aim is to aid in the design and

implementation of treatment programmes aimed at targeting

active IDUs and utilising antiviral treatment as a prevention

strategy. From a public health and economic perspective, if there is

a fixed yearly budget then the ideal strategy is an immediate

programme of maximum intensity, with the maximum budget

constraint spent each year on treatment. This minimises health

service costs and HCV health utility losses. This results in high

health service costs, but high numbers of infections averted (up to

90 per 1,000 IDUs for the budgets considered) and substantial (up

to 60%) reductions in prevalence at 10 years, depending on annual

programme budget and prevalence. At an HCV chronic

prevalence of 30%, the 10 year programme is cost-saving over a

50 year time horizon, and has the lowest cost per QALY gained as

compared to other scenarios due to the substantial prevention

benefit. For the same annual budget, a higher baseline prevalence

results in higher costs per QALY gained, and the programme is no

longer cost saving (though well below the willingness-to-pay

threshold), as the prevention impact is less. Increasing the annual

programme budget results in greater short-term (10 years)

reductions in prevalence, reduced cost per infection averted,

substantial reductions in infection-related costs, and greater cost-

effectiveness (lower costs per QALY gained) due to the subsequent

prevention effect. Since the costs per QALY gained are below the

current willingness-to-pay thresholds for the UK and elsewhere

(»20,000–30,000 per QALY gained), these results suggest that

increasing the budget allocated to HCV treatment amongst IDUs

would be an improved strategy.

A programme may have a policy objective of reducing HCV

prevalence by a certain amount over 10 years. In this case, the

optimal programme implementation strategy changes substantially

depending on whether or not there is a further objective of

minimising the health impact of the disease (measured by

monetarised QALY loss). If the policymaker desires to minimise

the loss of health utility related to HCV infection in addition to

Figure 4. Uncertainty analysis results for optimal control. Simulations are shown for Scenario A (top) and Scenario B (bottom). The baseline
prevalence is 30%, and maximum yearly budget is limited to M = »150,000. The cost coefficients b10, b20, f10, f20 are uniformly distributed with means
given in Table 1 and the ranges given by plus and minus 10% of the means. The range for c0 is »39,000–53,000. The parameters a1, a2=3 , m and d are
uniformly distributed with the ranges given in Table 4.
doi:10.1371/journal.pone.0022309.g004
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health service costs, the optimal strategy is to gradually increase

coverage over the first part of the decade and then stop after the

desired prevalence is reached. This immediate, but shorter

programme reduces the cost of the treatment programme, but

increases HCV infection hospital costs and averts fewer infections.

Therefore, although the programme achieves its policy objective

(to reduce prevalence by 20%), it fails to have the full prevention

impact and is less cost-effective (though still well below the cost-

effectiveness willingness-to-pay threshold) than the previous

scenario which did not have a prevalence target. With this

programme, increasing the annual budget results in more

infections averted, but a higher cost per QALY gained due to

the slightly higher programme costs.

However, where policymakers are motivated only by achieving

the target prevalence reduction with minimum health service costs

(and do not consider HCV health utility losses) then the optimal

timing of scale-up changes substantially. In this case, the ‘optimal’

programme is to delay initiating the treatment programme until

the final few years, resulting in the desired prevalence reduction

but with lower programme costs. However, this delayed

programme results in many fewer infections averted, higher costs

per infection averted, and higher HCV infection-related costs.

This indicates that implementers who neglect the loss of health

utilities associated with being HCV infected but only consider

health service costs may plan the programme in such a way that it

reduces its cost-effectiveness. The ‘optimal’ programme includes

treatment only because of the required prevalence reductions.

Moreover, in this scenario, increasing the maximum budget

reduces programme duration and decreases health services costs

but results in fewer infections averted, and increased cost per

infection averted. Hence, in this scenario a lower budget

programme results in greater impact and programme cost-

effectiveness. Finally, all our scenarios show, with a fixed annual

budget, greater impact (measured by infections averted, or

prevalence reductions) and cost-effectiveness will be achieved in

lower prevalence areas.

Strengths and limitations
The use of optimal control theory in public health programme

delivery and design is still relatively unexplored. As such, there are

a number of methodological issues mentioned in this paper which

need to be addressed before real-world implementation of this

technique. First, we assume a quadratic search cost function, to

reflect the increasing unit costs related to recruitment and testing

with higher programme coverage. Although studies have shown

that in many cases these unit costs are not linear [62–65], the

precise shape of this curve (be it quadratic, cubic, or other) is still

unclear, and likely varies between situations. We assume that costs

for a given coverage level are equal for different baseline

prevalence scenarios, although it is possible that search costs for

a given treatment coverage could be lower in different settings.

Further research into the most accurate form of this cost function,

as well as how it varies in real-world settings, would strengthen the

confidence in the specific predictions of the model.

Second, the actual costs associated with the scale-up of

treatment coverage are difficult to estimate, and likely vary

considerably depending on target population and current coverage

level. Most traditional cost analyses neglect the additional costs

related to increased coverage and recruitment, but these costs can

often be significant. Proper quantification of costs related to media

campaigns, outreach networks, and testing coverage would

strengthen this analysis. In particular, it is likely that the costs of

increasing coverage vary depending on baseline coverage level,

target population, and population size. Additional studies

quantifying costs related to identifying a greater proportion of

the hidden IDU community, and expanded testing and treatment

recruitment would aid in parameterising future economic models.

Third, given the lack of clinical studies examining the potential

effect of antiviral treatment to prevent transmission of HCV

amongst active IDUs, our study is based on a previously developed

mathematical model. Therefore, the findings are based on model

projections of the treatment effect and not experimental evidence.

Furthermore, the underlying disease transmission model neglects

heterogeneity within the injecting drug user population, which

may alter the efficacy of a treatment programme and the

quantitative projections presented here. For example, shifts in

genotype distribution may serve to increase/decrease programme

efficacy. Additionally, it is highly likely there will be heterogene-

ities in treatment presentation, completion, and post-treatment

behaviour and risk, among individual IDUs and also at different

times during an individual’s injecting career. Unfortunately, there

is insufficient evidence to parameterise this heterogeneity, which

can only be incorporated once additional clinical evidence has

been collected.

Fourth, it is also important to note that we assume a constant

population of active IDUs, which is an appropriate approxima-

tion in the UK, but may not apply to settings such as the

Netherlands, which has a shrinking IDU population due to a

reduction in incidence of new injectors. However, many countries

do not have a declining population, primarily because given the

prolonged duration of injecting, changes in incidence take a long

time to be observed in changes in prevalence [66]. Nevertheless,

further studies could explore the impact of relaxing this

assumption and apply the model to areas with a nonconstant

population size.

Fifth, the cost per QALY gained estimates have several

limitations. Most notably, the model does not track former IDUs,

and therefore underestimates the QALYs gained after cessation of

drug use by those who are treated or prevented from infection

while active IDUs. A detailed economic evaluation aimed at

evaluating the cost-effectiveness of treating active IDUs would

therefore include subsequent HCV disease states often reached

after cessation of drug use (cirrhosis, hepatocellular carcinoma,

liver transplant, etc.) and calculate detailed costs and QALYs for

each state. There is also considerable uncertainty surrounding

QALY fractions for active IDUs (either uninfected or HCV

infected), and a full economic evaluation of treatment in active

IDUs would need to address this uncertainty, which we have

neglected.

Finally, we neglect any additional health costs due to non-HCV

related illness resulting from increased lifespan from successful

HCV antiviral treatment. Previous economic evaluations of HCV

antiviral treatment have neglected additional costs or QALY losses

due to non-HCV related diseases which may occur due to

increasing lifespan, and we make a similar assumption [12].

However, if these costs and QALYs could be quantified, the

inclusion would provide a fuller picture of cost-effectiveness.

Furthermore, due to the focus on current IDUs only, we neglect

costs and utilities associated with HCV progression past the mild

or moderate state. We believe this is an appropriate first

assumption, as any programme targeting IDUs who are actively

injecting is likely to treat the disease at the mild stage which would

result in minimal future HCV-related health service costs.

However, it is possible that an increase in life-expectancy could

accrue additional costs, particularly if broader societal costs (such

as those related to injecting drug use) are included. Unfortunately,

the lack of data relating to how antiviral treatment of IDUs alters

injecting behavior and subsequent societal costs makes this difficult
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to include in an analysis. Future work quantifying the cost and

impact of treatment on IDU behaviour would enable a more

detailed study than the work presented here.

Evidence from other studies
There is an established body of literature describing the use of

optimal control theory on biological systems [67–72], with some

applications towards control measures for infectious diseases [24–

27]. To our knowledge, this is the first application of this

technique to the control of HCV amongst injecting drug users.

The use of antiviral treatment as prevention of HCV amongst

IDUs has been proposed by several modelling studies [16–19],

but the experimental or clinical data are limited and probably

subject to considerable selection bias. Nevertheless, the available

evidence suggests that IDUs can be treated successfully,

indicating the potential for using antiviral treatment as a control

measure.

Implications and future work
Despite the application of a number of prevention measures,

HCV remains an important public health concern in the IDU

population. Antiviral treatment for HCV has been established as

effective and cost-effective, but uptake of therapy remains low

among active IDUs, and is rarely encouraged. Our previous

modelling work has shown that antiviral therapy could play a

valuable role in controlling the HCV epidemic amongst IDUs.

Despite this, treatment rates among IDUs remain low (less than

1%) even in countries such as the UK and Australia where

treatment is recommended under a national health care system.

Recently, several action plans have been developed which aim to

allocate specific resources to initiating HCV treatment pro-

grammes [20–22], though none specifically aimed at active IDUs

and for the expressed purpose of prevention. There is increasing

interest in developing treatment programmes aimed at treating

active IDUs for prevention [23], and as such we aimed to

determine the optimal timing and intensity of an HCV antiviral

treatment programme for active IDUs, given various resource,

policy, and prevalence constraints and objectives as could be

seen in the real world. We find that incorporating different

budget constraints and policy objectives plays an important role

in determining the optimal programme structure, and subse-

quent programme cost-effectiveness (measured by cost per

QALY gained). Extensions of our current model will explore

the optimal allocation of the currently available prevention

options (such as needle and syringe programmes and opiate

substitution therapy) given resource constraints, in order to best

combat the spread of HCV amongst injecting drug users. This

could inform policymakers on which interventions to spend

money first, if alternating interventions is the best strategy, or

how specific combinations of interventions at different stages

could best combat the disease.

Though used widely in other disciplines, the use of optimal

control theory with reference to public health programme

implementation and resource allocation is fairly limited. Most

optimal resource allocation models only focus on optimal

allocation at a single timepoint, while optimal control theory

allows for the optimal allocation to change continuously over time.

We believe this powerful technique could play a key role in guiding

policy decisions and programme design, especially in limited

resource scenarios. Future research in this field should focus on

properly quantifying costs related to increased programme

coverage and scale-up, which are currently difficult to estimate.

Supporting Information

Figure S1 Scenario A: Minimising health service costs
and HCV health utility losses. Simulations are with a 45%

baseline prevalence, showing (A) programme coverage, (B)

prevalence reductions, (C) number of treatments, (D) total health

service costs (comprised of programme costs and infection costs),

(E) infections averted, and (F) net monetary benefit. Parameters

used are as shown in Tables 1–2, with f20~3,800, b20~

5,800|(1=v), tf ~50, and with no final time prevalence target

constraint.
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Figure S2 Scenario B: Minimising health service costs
and HCV health utility losses with a final time
prevalence target. Simulations are with a 45% baseline

prevalence, showing (A) programme coverage, (B) prevalence

reductions, (C) number of treatments, (D) total health service costs

(comprised of programme costs and infection costs), (E) infections

averted, and (F) net monetary benefit. Parameters used are as

shown in Tables 1–2, with f20~3,800, b20~5,800|(1=v), and a

final time prevalence target constraint.
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Figure S3 Scenario C: Minimising only health service
costs with a final time prevalence target. Simulations are

with a 45% baseline prevalence, showing (A) programme

coverage, (B) prevalence reductions, (C) number of treatments,

(D) total health service costs (comprised of programme costs and

infection costs), (E) infections averted, and (F) net monetary

benefit. Here, we neglect the health utility losses. Parameters used

are as shown in Tables 1–2, with f20~0, b20~0, and a final time

prevalence target constraint.
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Figure S4 Uncertainty analysis results for optimal
control. Simulations are shown for Scenario A (top) and Scenario

B (bottom). The baseline prevalence is 45%, and maximum yearly

budget is limited to M = »200,000. The cost coefficients b10, b20,

f10, f20 are uniformly distributed with means given in Table 2 and

the ranges given by plus and minus 10% of the means. The range

for c0 is »39,000–53,000. The parameters a1, a2=3, m and d are

uniformly distributed with the ranges given in Table 3.

(TIFF)

Acknowledgments

We would like to thank the referees for their insightful comments which

lead to significant improvements in the manuscript.

Author Contributions

Conceived and designed the experiments: NKM ABP PV AV MH.

Performed the experiments: NKM ABP. Analyzed the data: NKM ABP

PV AV MH. Wrote the paper: NKM ABP PV AV MH.

References

1. Alberti A, Benvegnu L (2003) Management of hepatitis C. Journal of

Hepatology 38: 104–118.

2. Shepard CW, Finelli L, Alter MJ (2005) Global epidemiology of hepatitis C virus

infection. The Lancet Infectious Diseases 5: 558–567.

Optimal Control of Hepatitis C Treatment

PLoS ONE | www.plosone.org 15 August 2011 | Volume 6 | Issue 8 | e22309



3. Seeff LB (2009) The history of the ‘‘natural history’’ of hepatitis C (1968–2009).

Liver International 29: 89–99.

4. ACMD (2009) The primary prevention of hepatitis C among injecting drug

users. Technical report.

5. Page-Shafer K, Pappalardo BL, Tobler LH, Phelphs BH, Edlin BR, et al.

(2008) Testing strategy to identify cases of acute hepatitis C virus (HCV)
infection and to project HCV incidence rates. Journal of Clinical Microbiology

46: 499–506.

6. Judd A, Hickman M, Jones S, McDonald T, Parry JV, et al. (2005) Incidence of

hepatitis C virus and HIV among new injecting drug users in London:

prospective cohort study. British Medical Journal 330: 24–25.

7. Hahn JA, Page-Shafer K, Lum PJ, Bourgois P, Stein E, et al. (2002) Hepatitis C

virus seroconversion among young injection drug users: Relationships and risks.

The Journal of Infectious Diseases 186: 1558–1564.

8. Sweeting M, Hope V, Hickman M, Ncube F, Ramsay M, et al. (2009) Hepatitis

C infection among injecting drug users in England and Wales 1992–2006: there

and back again? American Journal Epidemiology 170: 352–60.

9. Hoofnagle J, Seeff L (2006) Peginterferon and ribavirin therapy for chronic

hepatitis C. New England Journal of Medicine 355: 2444–51.

10. NICE (2000) Inteferon alfa (pegylated and non-pegylated) and riabirin for the

treatment of chronic hepatitis C.

11. NICE (2006) Peginterferon alfa and ribavirin for the treatment of mild chronic

hepatitis C.

12. Shepherd J, Jones J, Hartwell D, Davidson P, Price A, et al. (2007) Interferon

alfa (pegylated and non-pegylated) and ribavirin for the treatment of mild

chronic hepatitis C: a systematic review and economic evaulation. Health

Technology Assessment 11: 1–224.

13. NIH (2002) Management of hepatitis C. 2002. NIH consensus statement.

14. Grebely J, Conway B, Raffa J, Lai C, Krajden M, et al. (2006) Uptake of

hepatitis C virus (HCV) treatment among injection drug users (IDUS) in

Vancouver, Canada. Journal of Hepatology 44: S214–S215.

15. Seal K, Kral A, Lorvick J, Gee L, Tsui J, et al. (2005) Among injection drug

users, interest is high, but access low to HCV antiviral therapy. Journal General

Internal Medicine 20: 171.

16. Martin NK, Vickerman P, Foster GR, Hutchinson SJ, Goldberg DJ, et al. (2011)
Can antiviral therapy for hepatitis C reduce the prevalence of HCV among

injecting drug user populations? A modelling analysis of its prevention utility.

Journal of Hepatology 54: 1137–1144.

17. Martin NK, Vickerman P, Hickman M (2011) Mathematical modelling of

hepatitis C treatment for injecting drug users. Journal of Theoretical Biology
274: 58–66.

18. Zeiler I, Langlands T, Murray J, Ritter A (2010) Optimal targeting of hepatitis C

virus treatment among injecting drug users to those not enrolled in methadone

maintenance programs. Drug and Alcohol Dependence 110: 228–233.

19. Vickerman P, Martin N, Hickman M (2010) Can hepatitis C virus treatment be

used as a prevention strategy? Additional model projections for Australia and

elsewhere? Drug and Alcohol Dependence 113: 83–85.

20. Australian Government, Department of Health and Aging (2010) Third

National Hepatitis C Strategy 2010–2013. Technical report.

21. The Scottish Government (2008) Hepatitis C Action Plan for Scotland: Phase II:

May 2008–March 2011. Technical report.

22. Public Health Wales (2008) Blood Bourne Viral Hepatitis Action Plan for Wales:
2010–2015. Technical report.

23. The London Joint Working Group for Substance Misuse and Hepatitis C (2011)

Tackling the problem of hepatitis C, substance misuse and health inequalities:

delivering a consensus for London. Technical report.

24. Miller-Neilan R, Schaefer E, Gaff H, Fister KR, Lenhart S (2010) Modeling

optimal intervention strategies for cholera. Bulletin of Mathematical Biology 72:

2004–18.

25. Jung E, Lenhart S, Feng Z (2002) Optimal control of treatments in a two-strain

tuberculosis model. Discrete and Continuous Dynamical Systems Series B 2:
473–482.

26. Caetano M, Yoneyama T (2001) Optimal and sub-optimal control in dengue

epidemics. Optimal Control Applications and Methods 22: 63–73.

27. Ambruster B, Brandeau M (2010) Cost-effiective control of chronic viral
diseases: Finding the optimal level of screening and contact. Mathematical

Biosciences 224: 35–42.

28. ECMDDA (2004) Hepatitis C and injecting drug use: Impact, costs and policy

options. Luxembourg, Office for Official Publications of the European

Communities.

29. Micallef J, Kaldor JM, Dore GJ (2006) Spontaneous viral clearance following

hepatitis C infection: a systematic review of longitudinal studies. Journal of Viral

Hepatitis 13: 34–41.

30. Neumann AU, Lam NP, Dahari H, Gretch DR, Wiley TE, et al. (1998) hepatitis

C viral dynamics in vivo and the antiviral efficacy of interferon- therapy. Science

282: 103–107.

31. Litwin AH, Harris Jr. KA, Nahvi S, Zamor PJ, Soloway IJ, et al. (2009)

Successful treatment of chronic hepatitis C with pegylated interferon in
combination with ribavirin in a methadone maintenance treatment program.

Journal of Substance Abuse Treatment 37: 32–40.

32. Chack E, Saab S (2010) Pegylated interferon and ribavirin dosing strategies to

enhance sustained virological response. Current Hepatitis Reports 9: 147–54.

33. Noah N (1983) The strategy of immunization. Journal of Public Health 5: 140.

34. Pontryagin LS, Boltyanskii VG, Gamkrelize RV, Mishchenko EF (1962) The
Mathematical Theory of Optimal Processes Interscience Publishers.

35. Fleming WH, Rishel RW (1975) Deterministic and Stochastic Optimal Control
Springer Verlag.

36. Bryson AE, Ho YC (1969) Applied Optimal Control Blaisdell Publishing
Company.

37. Lenhart S, Workman JT (2007) Optimal Control Applied to Biological Models.
Mathematical and Computational Biology Series Chapman & Hall/CRC.

38. Kopp RE, Moyer HG (1965) Necessary conditions for singular extremals. AIAA
Journal 3: 1439–1444.

39. McDanell JP, Powers WF (1971) Necessary conditions for joining optimal
singular and nonsingular subarcs. SIAM Journal on Control and Optimization

9: 161–173.

40. Vincent TL, Grantham WJ (1997) Nonlinear and Optimal Control Systems
Wiley-Interscience.

41. Blower S, Dowlatabadi H (1994) Sensitivity and uncertainty analysis of complex
models of disease transmission: an HIV model, as an example. International

Statistical Review 62: 229–243.

42. Marino S, Hogue I, Ray C, Kirschner D (2008) A methodology for performing

global uncertainty and sensitivity analysis in systems biology. Journal of
Theoretical Biology 254: 178–196.

43. Blower SM, Gershengorn HB, Grant RM (2000) A tale of two futures: HIV and
antiretroviral therapy in San Francisco. Science 287: 650–654.

44. Hickman M, Hope V, Brady T, Madden P, Jones S, et al. (2007) Hepatitis C
virus (HCV) prevalence, and injecting risk behaviour in multiple sites in England

in 2004. Journal of Viral Hepatitis 14: 645–652.

45. Sweeting MJ, De Angelis D, Ades AE, Hickman M (2009) Estimating the

prevalence of ex-injecting drug use in the population. Statistical Methods in

Medical Research 18: 381–395.

46. Hickman M, Hope V, Coleman B, Parry J, Telfer M, et al. (2009) Assessing IDU

prevalence and health consequences (HCV, overdose and drug-related
mortality) in a primary care trust: Implications for public health action. Journal

of Public Health (Oxf) 31: 374–82.

47. Hadziyannis S, Sette Jr. H, Morgan T, Balan V, Diago M, et al. (2004)

Peginterferon-alpha2a and ribavirin combination therapy in chronic hepatitis C:
a randomized study of treatment duration and ribavirin dose. Annals of Internal

Medicine 140: 346–55.

48. Pegurri E, Fox-Rushby J, Damian W (2005) The effects and costs of expanding
the coverage of immunisation services in developing countries: A systematic

literature review. Vaccine 23: 1624–1635.

49. Batt K, Fox-Rushby J, Castillo-Riquelme M (2004) The costs, effects and cost-

effectiveness of strategies to increase coverage of routine immunizations in low-
and middle-income countries: systematic review of the grey literature. Bulletin of

the World Health Organization 82: 689–696.

50. Corluka A, Walker D, Lewin S, Glenton C, Scheel I (2009) Are vaccination

programmes delivered by lay health workers cost-effective? A systematic review.

Human Resources for Health 7: 81.

51. NICE (2009) Costing statement: Needle and syringe programmes. Technical

report.

52. World Bank (2009) Gross domestic product PPP. Technical report. URL http://

siteresources.worldbank.org/DATASTATISTICS/Resources/GDP PPP.pdf.

53. Jacobs P, Calder P, Taylor M, Houston S, Saunders LD, Albert T (1999) Cost

effectiveness of Streetworks’ needle exchange program of Edmonton, Alberta.
Technical report. URL http://www.ihe.ca/documents/1998 10paper.pdf.

54. Health Protection Scotland (2010) Needle exchange surveillance initiative
(NESI): Prevalence of HCV and injecting risk behaviours among injecting drug

users attending needle exchanges in Scotland, 2008/2009. Technical report.

55. Vickerman P, Kumaranayake L, Balakireva O, Guinness L, Artyuck O, et al.

(2006) The coste effectiveness of expanding harm reduction activities for
injecting drug users in Odessa, Ukraine. Sexually Transmitted Diseases 33:

S89–S102.

56. Vickerman P, Miners A, Williams J (2008) Assessing the cost-effectiveness of
interventions linked to needle and syringe programmes for injecting drug users.

Technical report, London. URL http://www.nice.org.uk/nicemedia/live/
11829/40965/40965.pdf.

57. NICE (2009) The guidelines manual 2009 - Chapter 7: Assessing cost
effectiveness. Technical report.

58. Davis G, Beck J, Farrell G, Poynard T (1998) Prolonged treatment with
interferon in patients with histologically mild chronic hepatitis C: A decision

analysis. Journal of Viral Hepatitis 5: 313–321.

59. Grieve R, Roberts J (2002) Economic evaluation for hepatitis C. Acta

Gastroenterolgica Belgica 65: 104–9.

60. NICE (2004) Guide to the methods of technology appraisal. Technical report.

61. Personal Social Services Research Unit (2009) Unit Costs of Health and Social
Care 2009. Technical report.

62. Guinness L, Kumaranayake L, Rajaraman B, Sankaranaraya G, Vannela G,

et al. (2005) Does scale matter? The costs of HIV-prevention interventions for
commerical sex workers in India. Bulletin of the World Health Organization 83:

747–755.

63. Guinness L, Kumaranayake L, Hansen K (2007) A cost function for HIV

prevention services: Is there a ‘u’ - shape? Cost Effectiveness and Resource
Allocation 5: 13–25.

64. Johns B, Baltussen R (2004) Accounting for the cost of scaling-up health
interventions. Health Economics 13: 1117–1124.

Optimal Control of Hepatitis C Treatment

PLoS ONE | www.plosone.org 16 August 2011 | Volume 6 | Issue 8 | e22309



65. Kumaranayake L (2008) The economics of scaling up: Cost estimation for HIV/

AIDS interventions. AIDS 22: S23–S33.
66. DeAngelis D, Hickman M, Yang S (2004) Estimating long-term trends in the

incidence and prevalence of opiate use/injecting drug use and the number of

former users: Back-calculation methods and opiate overdose deaths. American
Journal of Epidemiology 160: 994–1004.

67. Nanda S, Moore H, Lenhart S (2007) Optimal control of treatment in a
mathematical model of chronic myelogenous leukemia. Mathematical Biosci-

ences 210: 143–156.

68. Panetta J, Fister K (2000) Optimal control applied to cell-cycle-specific cancer
chemotherapy. SIAM Journal on Applied Mathematics 60: 1059.

69. Burden T, Ernstberger J, Fister K (2004) Optimal control applied to
immunotherapy. Discrete and Continuous Dynamical Systems Series B 4:

135–146.

70. Joshi H (2002) Optimal control of an HIV immunology model. Optimal Control

Applications and Methods 23: 199–213.

71. Kirschner D, Lenhart S, Serbin S (1997) Optimal control of the chemotherapy

of HIV. Journal of Mathematical Biology 35: 775–792.

72. Ledzewicz U, Schättler H (2007) Optimal controls for a model with

pharmacokinetics maximizing bone marrow in cancer chemotherapy. Mathe-

matical Biosciences 206: 320–342.

73. Sutton AJ, Hope VD, Mathei C, Mravcik V, Sebakova H, et al. (2008) A

comparison between the force of infection estimates for blood-borne viruses in

injecting drug user populations across the European Union: A modelling study.

Journal of Viral Hepatitis 15: 809–816.

74. Nordt C, Stohler R (2006) Incidence of heroin use in Zurich, Switzerland: A

treatment case register analysis. The Lancet 367: 1830–1834.

Optimal Control of Hepatitis C Treatment

PLoS ONE | www.plosone.org 17 August 2011 | Volume 6 | Issue 8 | e22309


