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Abstract. We adapt general statistical methods to estimatemethane fluxes of the same magnitude than what was offi-
the optimal error covariance matrices in a regional inver-cially declared.

sion system inferring methane surface emissions from atmo-
spheric concentrations. Using a minimal set of physical hy-
potheses on the patterns of errors, we compute a guess of

the error statistics that is optimal in regard to objective sta-1 ~Introduction

tistical criteria for the specific inversion system. With this

very general approach applied to a real-data case, we recov&uantifying the methane (Ghi fluxes between the surface
sources of errors in the observations and in the prior state ond the atmosphere, establishing their temporal variability
the system that are consistent with expert knowledge whileand spatial distribution, and estimating the anthropogenic
inferred from objective criteria and with affordable compu- and natural contributions to these fluxes is critical for closing
tation costs. By not assuming any specific error patterns, oufh€ present-day methane budget. One of the approaches used
results depict the variability and the inter-dependency of er-for this purpose, called the atmospheric inversion, assimilates
rors induced by complex factors such as the misrepreser{nformation about atmospheric composition to infer surface
tation of the observations in the transport model or the in-fluxes. This type of top-down estimation relies on the assim-
ability of the model to reproduce well the situations of Steepilation of in-situ observations of atmospheric concentrations
gradients of concentrations. Situations with probable signif-(Houweling et al. 1999 2006 Hein et al, 1997 Pison et al.

icant biases (e.g., during the night when vertical mixing is 2009 Bousquet et al2011, 2006 Bergamaschi et 812009
ill-represented by the transport model) can also be diagnose@nd/or of remote-sensing data from satellite-based instru-
by our methods in order to point at necessary improvementents (e.g.Bergamaschi et 412009. Using observations

in a model. By additionally analysing the sensitivity of the for inversions at the global scale reduces the uncertainties
inversion to each observation, guidelines to enhance data s&" the mean Chiflux balances on large regions (typically a
lection in regional inversions are also proposed. We appliedew millions of kn? large). At the regional and mesoscales,
our method to a recent significant accidental methane rehigh-resolution inversions potentially provide the spatial dis-

lease from an offshore platform in the North Sea and foundtribution of the fluxes, so that the characterisation of the pro-
cesses involved can be improvdgkefgamaschi et g12010.
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7116 A. Berchet et al.: Error statistics for atmospheric inversion

Inversions at any scale depend on simulations of the atmothan 1 % of the daily regional emissions (within a radius of
spheric mixing and advection by Chemistry-Transport Mod-~ 750 km around the leak point) according to the Emission
els (CTMs) to estimate the influence of emissions and sinkatabase for Global Atmospheric Research (EDGAR v4.2;
on the atmospheric concentrations where they are measuretttp://edgar.jrc.ec.europa)dor the year 2008. The leak was
Whether they are based on coar§thén and Prinn2006 stopped two months after. The methane plume emitted by
Hein et al, 1997, varying Peylin et al, 2005 or high (Lau- this point source is difficult to extract from the observation
vaux et al, 2008 Sarrat et al. 2007) resolutions, all the noise and from the variability of the other sources, which
CTMs suffer to a certain extent from uncertainties in repro- makes the assignment of error statistics particularly critical
ducing the atmospheric concentrations. The uncertainties ar@Niniarek et al, 2012. We develop and apply a regional in-
due to the transport error8gker et al. 2006 Geels et al.  version framework based on CHIMERE CTM simulations
2007 Peylin et al, 2002 Ahmadov et al. 2007 Prather  (Vautard et al. 2001) on a domain covering the European
et al, 2008, to the assumption that a point observation cancontinent (Figl). Relying on objective statistical criteria, we
be compared to the mean simulated concentration on the coeptimise the covariance matrices of the errors of the obser-
responding grid box, i.e., the representation err@serbig  vations and of the prior state vector (surface fluxes, initial
et al, 2003 Tolk et al, 2008, or to the errors from aggregat- and lateral boundary conditions) for two independent time
ing the fluxes on large regionK@&minski et al, 2007). windows of inversion: the 2 weeks before the beginning of

In the framework of Bayesian atmospheric inversigntf the leak and the 2 weeks after. The three methods of optimi-
ing et al, 1993 Tarantola 1987, the implementation of a sation are implemented with acceptable computation times.
system requires obtaining an advanced understanding of th€hey managed to produce error covariance matrices, which
statistics of the observational and instrumental errors, there specifically suited to the system and the inversion win-
transport errors, the representation errors, and the errors afow, and that are a best guess of the optimum in regard to the
the prior distribution and magnitude of the fluxes prescribedobjective criteria of each method. Complex error structures
in the system. Most of the cited works empirically assignedare then retrieved. And within the framework of the under-
these error statistics. Objective methods of tuning the errordying assumptions, every piece of information provided by
in the system also existMahba et al. 1994 Dee 1995 the observations and the prescribed fluxes is entirely used.
Desroziers and lvangw001) and have been applied to get We then use the computed matrices to invert the European
the general structure of the erromgliChalak et al, 2005 fluxes before and after the leak start and test whether or not
Winiarek et al, 2012). But these methods rely on subjective the atmospheric network detected this methane plume.
prior knowledge on the error structure (e.g., isotropic spatial In Sect.2, we describe the inversion methods and the
correlation or temporal decay in the correlations), which candataset used in the study. We also present the algorithms that
limit the generality of the results. we implemented following the literature to specify the inver-

In this study, we apply three different methods based onsion system configuration. In Se8t.the results of these tun-
the statistical and algebraic properties of the errors, but withing methods are presented. The inversion results from these
a minimum of additional physical assumptions on the errorsets are analysed in Seétand their limitations and possible
patterns. In inversion systems typically solving fluxes at theadaptation to larger systems are discussed in Sect.
model resolution (e.g= 0.5° x 0.5° each week during a sea-
son or a year in regional scale studies), this approach would
require the handling of matrices of error covariances the to
tal size of which exceeds billions or even trillions of compo- 21 Inversion svstem
nents. To embrace memory limitations and reduce the com-" Y
putation costs, we have chosen a short window of. inversiorE_ 1.1 Theory: analytical framework
and have aggregated the surface fluxes on synoptic-scale re-

gions. This simplification allows applying powerful generic \we apply classical data assimilation methods based on the

Methods

methods, butinduces limitationgminski etal, 2001 Boc-  Bayesian formalism Gourtier et al, 1994 Enting et al,
quet et al. 201]) that have to be taken into account when 1993 1995 Tarantola 1987). In the following we use the
moving to a full-resolution inversion system. unified notation bylde et al.(1997. Assuming a Gaussian

Our study exploits a recent unexpected release of @H  nature for all the errors, the method basically relies on the
the North Sea in spring 2012 to apply this statistical approachninimisation of the cost function:

and test the ability of a European network of atmospheric

observations to detect the leak. On 25 March 2012, an off-J (x) = 3(y° — H(x))TR™1(y* — H(x))

shore oil platform on the Elgin field, located 200 km east +30 —x®)TB1(x — xP) (1)

of Scotland shores (3N, 1.53 E), was evacuated due to = Jox) + JP(x)

a gas leak. The company operating the platform gave a rough

evaluation of the flux reaching 200008 dr? or 140 met-  J° (resp..JP) is the contribution of the observations (resp.
ric tons per day (tdl) for CH4, which accounts for less the background) to the total cost function® accounts
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transport modelAhmadov et al.2007 Peylin et al, 2002,
to the model representation, i.e., its inability to represent the
local variability within the grid cellsTolk et al, 2008 Geels
et al, 2007 and to the aggregation procesaminski et al,
2001 Bocquet et a.2011). B is the covariance matrix of the
errors on the background vecte? (details in Sect2.1.2).

For this linear problem, the cost functigradmits a global
minimum reached for the optimum state vectrsuch that:

x2=xP 4+ K(y° — HxP) )

whereK = BHT(R+HBHT)~1is the Kalman gain matrix.
The associated covariance matrix of errors, representing
the a posteriori uncertainties in Gaussian assumptions, is
given by:
Fig. 1. Spatial extension of the simulations with the CTM
CHIMERE: observation sites marked by yellow diamonds and P? =B — KHB. 3)
white legends; the leak position in the northern part of the North
Sea is pointed by the green pentagon. The fluxes, the spatial dis?2.1.2 The state vector
tribution of which is interpolated from EDGAR v4.2 inventory, are
aggregated by regions figured by the coloured area. The red edgap Eq. (1), x stands for the state vector which is optimised
of thg _domain denote the spatial distribution of the lateral boundaryby the inversion ana? figures the assumed state (called the
condition components. “background”) before the assimilation of the observations.
The vectorx contains all the information on all the degrees
of freedom of the system, e.g., on the emissions (spatial and
for the observation vector (ding® ~ 5000; description in  temporal distribution), boundary conditions (all gebncen-
Sect.2.1.9; x is the state vector (i.e., the series of the vari- tration fields at the edges of the domain) and initial condi-
ables to optimise)x® the background vector including the tions (3-dimensional distribution of the GHoncentrations
prior knowledge on the state of the system (dim- 100; at the first step of the period of interest). In most realis-
description in Sec.1.2. tic systems, dealing with the complete state vector implies
H is the observation operator converting the informa- prohibitive computational costs and/or unaffordable memory
tion in the state vector to the observation space. The atmoneeds. Solving a high dimension system needs the implemen-
sphere advects and mixes the emissions and the initial anthtion of variational algorithmsGhevallier et al.2005. An
lateral boundary conditions. Since the time of residence ofalternative is to reduce the size of the inverse problem.
air masses within our domain is of typically two weeks, to  We drastically simplify the state and background vectors
be compared to the mean GgHffetime in the atmosphere in order to allow the manipulation of the mati For each
of about nine years (e.gQentener et al.2003, the chem-  of the two windows of inversion (the two weeks before and
istry along the transport is neglected in all the following. the two after the leak start), computed independently, the
For each observatiofy®); at a specified place and time, an simplified vector has a dimension of 99 and contains coef-
equivalentH (x); is induced from the state vecterwith a  ficients of linear corrections on: (1) the aggregated emissions
CTM (description in SecR.1.3. Throughout the studyy is on 12 regions (see Fid); the spatial and temporal distribu-
supposed linear: the operator is represented by its Jacobidions of the emissions in each region are interpolated from
matrix H and H (x) is identified toHx. With our relatively  the EDGARv4.2 databasét(p://edgar.jrc.ec.europaey?)
low-dimensional system, it is possible to explicitly estimate the concentrations on the boundaries of the domain; bound-
the observation operator with so-called “response functions”aries are divided into 17 sub-parts: one for the top side, 16
Response function8pusquet et a] 1999 are calculated for  for the lateral sides (8 horizontal parts 2 vertical com-
each component of the state vector by running the CTM inponents per part; spatial horizontal distribution in Flg.
forward mode and extracting the simulated concentration athe vertical partition is situated at the half of the domain
each point where a corresponding observation is available. in pressure coordinates, i.e., at700 hPa); one coefficient
The covariance matriR describes the erroes= y° —Hx is attributed per sub-part per period of 3 days; for each sub-
between the observations and their reconstruction from thepart, boundary concentrations are supposed constant and uni-
state vector with the model. We assume that the errors aréorm; the lateral boundary conditions (LBC) are then fixed
unbiased, i.e.e ~ N (0,R). R then encompasses the errors by (8 x 2+ 1) x 5 periods= 85 coefficients; (3) the initial
directly related to the measurement process, but also to theondition 3-dimensional concentration field (IC); the model
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is first vented with background boundary concentrations (ex-CH4 scale Dlugokencky et al.2005 with a calibration pre-
tracted from global simulations with the CTM LMDBpus-  cision of+2 ppb.

quet et al. 2017 and EDGAR emissions during 10 days be-

fore the period of inversion; and (4) an offset, constant and2.2  Error configuration: description of the algorithms
uniform along the whole domain; the prior offset was calcu- o )

lated from the available observations as an estimation of thdn order to apply the Bayesian inversion framework, a perfect
background concentrations during the window of inversion; knowledge of the background and observation error statis-

the initial and boundary concentrations are expressed as pefi°S IS needed. The tuple of covariance matrides®) must
turbations from this offset. then be established. Tuning and calculating optimal covari-

This simplification implicitly implies the hypothesis of ance matrices has long beeq of interest in data assimilation
pure correlation of the information within each aggregated(€-9-» Télagrand 1998 Desroziers and Ivano2001, Chap-
region of the state vector (see SeBtl). We chose an ex- nik et al, 2004). Statistical studies on large sets of data are
tended domain compared to the network coverage in order tgequired to reach a sufficient threshold of information to get a

cope with the spatial and temporal ill-representation of the'€liable approximation oR andB. In most cases, the sets of
LBC (Lauvaux et a}.2012. data are not available and the covariance matrices are built re-

lying on physical considerations and an expertise on the ob-
servation and model behaviouBBgrgamaschi et a12010.

In this section, we describe different objective methods to in-
fer the best tuple oR andB matrices: first, the Desroziers’
We use the Eulerian mesoscale non-hydrostatic chemistrgcheme, second, the maximisation of the likelihood, third,
transport model CHIMERE for this studydutard et al.  opservation space diagnostics. The Desroziers’ scheme and
200]). This model was developed in a framework of pollu- the maximisation of the likelihood are computed on the sub-
tion simulations $chmidt et al. 200L Pison et al. 2007,  space of the diagonal matrices for bdhand B, while the

but is also used for greenhouse gas studBrsquet et al.  gbservation space diagnostics allow the recovery of full ma-
2011). We use here a regular horizontal grid of 50 km-side trices.

cells with 25 layers geometrically spaced from the surface to  Before further discussion in Sec&and4, the relevance
450 hPa{- 6000 m). The model time step varies dynamically of the 3 proposed methods is validated by test (see
from 4 to 6 min depending on the maximum wind speed in Sect.2.2.1), used in many studies (e.gauvaux et al.2012

the domain. The model is an off-line model which needs me-\yjiniarek et al, 2012 Peylin et al, 2002 Rayner et a].1999.
teorological fields as forcing. The forcing fields are deduced

from interpolated meteorological fields from the European2.2.1 Validation test: x 2 distribution
Centre for Medium-range Weather Forecast (ECMWF) with
a horizontal resolution of.8° x 0.5° every 3h. The model is It can be shown, within Gaussian assumptions, that for the

operated in a domain of limited area spanning over the wholestate vectorx?@ minimising the cost function/, J(x®) =

2.1.3 Atmospheric transport model

continental Europe (roughly 24 10° km?; see Fig1). JO(x® + JP(x?) has the statistics of a2 distribution with
a mean equal td/2, d being the total nunjber of available
2.1.4 Observations observations. We then definexd@ indexzjfoa) that shall be
close to 1.

The study is based on the assimilation of measurements The index can be written:

of the atmospheric composition. Concentrations of,Gire 5 = 1T, 0 e Te—1 0o N
measured in-situ in 13 European sites (see Eigletailsin X" (R,B) = 3[ O —HxY'R (" H(x%)
Table 1) at altitudes from sea level up to 3580 m a.s.l. and _i_(an_xb)Té_l(an_xb)

with different instrumentation and time resolution. Some sta-

tions are equipped with CRDS analysers (frequency of up 0 oy gh insufficient, this test provides a low-cost insurance
1Hz magnitude), whereas others are Gas Chromatographg, s we got a well-defined tuple of covariance matrices. The
Hourly aggregates were used as inpu‘rfor the inversion.  three methods presented below are tested and validated in

The observation sites can be split into three categories: (1)ggard to this test. A deeper analysis of the algorithms’ results
mountain sites which monitor almost all the time the free tro- is presented in Secs.

posphere; they are scarcely influenced by the local emissions

and are representative of the continental and global budget? 2.2 Desroziers’ scheme: subsets application

(2) coastal sites with primary influence from the ocean when

the air flows towards lands; as mountain sites, they are rep¥We describe here a method to roughly infer the shapés of
resentative of global patterns; and (3) rural sites, inland butandB covariance matrices with a very low computation cost.
remote from anthropogenic emissions hot spots. All instru-It has been shown byalagrand(1998 and Desroziers and
ments are calibrated by tanks traceable to the NOAA 2004vanov (2007) that for a given £°, y°), for any subspacg

(4)
]

Atmos. Chem. Phys., 13, 7115132 2013 www.atmos-chem-phys.net/13/7115/2013/
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Table 1. Site characteristics. The altitudes of the sites are given as m above sea level (a.s.l.) and the inlet height is in m above ground level
(a.g.l.). The sites are grouped into three categories relatively to the topography and their close environment: rural (R), mountain (M), coastal
(C). * These sites are recent and still do not have related publicaﬂidmsservatoire Brenne de 'Environnement.

Station ID Location Inlet Site Reference

Lon Lat Alt height type

(°E) CN) (m) (m)
Bialystok  BIK 23.0 53.2 183 300 R Popaetal(2010
Biscarosse BIS —12 444 120 47 C  Ahmadov et al(2009
camsore  opp 64 522 9 4 c
Point
Gif-sur-
Yvette GIF 22 487 160 7 R Lopezetal(2012
JungfraujochJFJ 8.0 46.6 3580 5 M Reimann et al(2008
Kasprowy KAS 19.6 49.1 1989 0 M Neckietal(2003
m:;s MHD -99 533 25 15 C  Ramoneteta2010
Obs_. F?r. OPE 55 486 390 1050120 R Ramonetetal.
Environ:
Puijo PUJ 27.0 62.0 232 84 R Ramonetetal.
Puy-de- o,y 30 458 1465 10 M Lopez(2012
Dome
Ridge Hil RGL —-25 52.0 199 4590 R *
Trainou TRN 2.11  48.0 131 550100180 R Lopezetal(2012
Angus TTA -3.0 566 254 222 R Vermeulen et al(2005

independent of the complementary space in the observatiotifies the assumed dependency of night-time observations; for
or state space, the optimal tuple of matricBs B) follows similar reasons, we group the remaining observations during

the expression below: the afternoon with well-mixed PBL. (3) the LBC are inde-
pendent from other state dimensions, (4) same with the IC,
E[J]Q] = % [pj — tr(Pj(HK)P})] (5) same with the offset, (6) every aggregated region of emis-

(5)  sions is independent from the others.
Doing so, we have 26 independent subspaces within the

observation space (13 sites x day/night) and 15 for the state
where tK.) stands for the trace operatorLJPT?] (resp. EEJ;?]) space (12 regions + LBC + IC + offsetlpesroziers and
is the expectation of the contribution at the maximufrto Ivanov (2001) proposed an iterative tuning procedure that
the cost function/ of the independent subspag®f the ob-  converges to a tuple that satisfies Es); (ve refer to this pro-
servation (resp. state) spaég,is a projector from the whole cedure as Desroziers’ scheme (DS). Let us rewrite the cost
observation (resp. state) space to the subspacelp; (resp.  function:
n ;) the dimension of the subspagd ,, stands for the identity 1 1
matrix in the background space. Jr(x) = Z ]k(x)+ o3 ]k(x) (6)

One cannot ascertain statistical independence between j ( )2 (s5.4)

subspaces of the observation or of the state space before run-
ning the algorithm. To apply the method, we then make thewheres Pk ands© e denote the adapted weights for the sub-
following assumptions to divide the observation and the statespace;j at stepk of the iterative procedure to balance the
spaces into 41 independent subspaces: (1) each measuremebskervations and the background in the cost function.
site is independent from all others, (2) at each site, all the ob- Desroziers’ scheme is described by the following system
servations during the afternoon (12:00-17:00) are gathered inf equations for every step
one subspace (hamed “day” period in the following) and all

the remaining observations during the morning and the night P 2= 2/°, (%

in a second subspace (named “night”); the planetary bound “"J/4+1" ™ n;—tr(P;( :KkH)P}—)

ary layer (PBL) during the night is ill-represented by models; )2 = 2772, (x% 7
ensuing erroneous vertical mixing is expected to deteriorate 5, 1 pj—tr(P;(HK )P) (7)
the ability of the CTM to simulate realistic concentrations | Bjx+1 = ?HlBj,o

during the night; the shared cause of the enhanced errors just R; x41 = =5 k+1Rj,o

www.atmos-chem-phys.net/13/7115/2013/ Atmos. Chem. Phys., 13, 77152 2013
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B, andR; stand for the diagonal sub-matrices associated taelying on expert knowledge (e.g., diagonal background ma-

the subsey. K, is the Kalman gain matrix calculated with trix with variances consistent with inventories specification),

(R, By) (see Eq2). The method implicitly relies on thg?2 (2) the other with uniform errors of 50 ppb for observations,

distribution of the cost function. The computed tuples thenthe LBC and the offset and 10 % for the emissions. The re-

converges to a tuple filling thg? criterion. sults are very similar: the difference between the two errors
We start this algorithm from a tupl®o, Bp) with no phys-  related to an observatioh does not exceed 5% and is less

ical assumption, i.eRo = I; andBg = |,,. We then stop the than 1% in average.

iterative scheme when every subset contribution to the cost Additionally, to accelerate the convergence of the algo-

function E[J]‘?] or E[Jjb] is less than 1% away from its theo- rithm, one can notice (details Burg et al, 1982 that the

retical expected value (right member of K, this is equiv-  log-likelihood is maximum only i{R, B) satisfies:

alent to get g2 test greater than 99 %. The algorithm con-

verges in no more than 15 steps (i.e., a couple of minutes on tf(Sﬁ}BS)

a standard office computer). “=—4 =

2.2.3 Maximum of likelihood Consequently, we force to stay close to 1 at each step of
the algorithm by rescalingR, B) by «. This normalisation is
Desroziers’ scheme (DS) relies on coarse approximationgquivalent to the? test; hence the constrained maximum of
and, for example, cannot extract the variability of the obser-likelihood algorithm necessarily fuffills thg? test.
vational errors day-by-day and hour-by-hour. The following This method makes the observation and background er-
method allows the computation of a tuple,(B) which is  ror variances statistically consistent with the prior difference
tuned not by block but by component individually. This im- betweeny® andHxP. When assuming th®& andB are di-
provement implies computational cost drastically higher thanagonal, a unique set of variances matches this criterion on
for DS method, but still affordable (less than a day) in our y° — HxP. Hence, a maximum total amount dfpieces of
case study. In Gaussian assumptions, the likelihood of thénformation is used in the algorithm, while more are avail-
observationg? for givenR andB can be written as follows able in the background and the observation operator for the
(Michalak et al, 2005: subsequent computation of. Amore precise and complete

B guantification of the balance between the information used
*%(yO*be)T(R+HBHT) 1(_)’0*be)

(R, B) = e for the optimisation of the matrices and for the inversion it-
' V@7)d|R+HBHT self is difficult in a real case study. A dedicated OSSE (Ob-
serving System Simulation Experiment) could improve our

The function diverges to infinity wheR+HBH T ~ (y0— knowledge in this direction.

HxP)(y° — Hx?)T. But when supposing th&® andB are . . _
diagonal definite positiveS cannot be written as a matrix 2.2.4 Observation space diagnostics

R+HBHT. Hence, in these assumptions, one can prove that

the function is bounded and admits a computable maximumVith the two previous method®& andB are confined to the
(Burg et al, 1982. A proper (R, B) tuple for the inver- sub-space of diagonal matrices. But the errors on the obser-

sion system is necessarily a maximum of the functidae vations are known to be correlated through theoperator
1995. errors amongst others. Errors on the background are also

For memory limitation reasons, we do not maximise the correlated, ma_linly because of share_d errors in the in\(ento_ry
function itself, but equivalently its logarithm: methods and in _flux process modelling. We carry out in this
section an algorithm to produce a setup of non-diagonal ma-
tricesR andB.

Inquiring into error correlations requires a huge amount
. T 0 by, 0 b T of information. The available information is not sufficient to
withSg g =R+HBH', S= (y"—Hx")(y"—Hx")" andC . 5racterise deterministically the full non-diagonal matrices

? constant not relefvanrt] for computing the maximum of theg 5n4B. This section must then be seen as a way to infer
unction. .| stands for the determinant operator. guidelines for covariance building.

The function maximum cannot be easily computed ana-
Iytically in general. Hence, we use an ascending pseudo-
Newtonian method based on the calculation of the gradient oDesign on R
the log-likelihood. The algorithm converges to a local maxi-
mum (Chapnik et al.2004), but we have no insurance of con- Desroziers et al(2009 showed that the innovation vectors
verging to the global maximum. The result of the algorithm d3 = y° — Hx2 andd? = y° — Hx® should fulfill the follow-
can be very dependent from tfR, B) tuple chosen as a start- ing equation:
ing point. To ensure the robustness of the result, we test this
method with 2 different starting tuples: (1) one constructedE[d3(dD)"]1 =R (8)

1 1
In p(°IR.B) = —Str(SF5S) — 5 ISk 8l +C

Atmos. Chem. Phys., 13, 7115132 2013 www.atmos-chem-phys.net/13/7115/2013/
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Equation B) is valid if and only if (1) the observation op- imation based on°. For this reason, after a few steps of im-
erator is linear, (2) the errors are Gaussian and unbiased, amfovement of the log-likelihood value, the algorithm quickly
(3) the matrixHBHT(R+HBHT)~1 is consistent with the  diverges. We then keep the last step before the beginning of
statistics of the background and observation errors. the divergence as a guess for the true covariance matrices tu-

In order to build a matriR consistent with Eq.§), we test  ple.
an iterative algorithm similar to Desroziers’ scheme using the
following instruction for every:

Designon B
R4 = E[d3@D)T] . : :
Ri+1 = x2(Rt41,Be) - Rkt 9) Desroziers et al2005 also reported an equation constrain-
By +1 = x2(R't11,Br) - By ing B in the observation space:
The tuple is normalised by the associajedtest in order ~ Eldp(dp)T1=HBHT (10)

to constrain better the algorithm. . A

The expectation could be calculated explicitly as a combi-with the innovation vectodg =H(x2—xP). The expectation
nation ofRy, B; andH. However, as suggested Bgsroziers s again based on a Monte-Carlo estimation. We compute an
et al. (2009, the exact iterative scheme is not expected toiterative scheme similar to that developed in EX)with also
converge. In our case, we indeed found no convergencea normalisation by the? test. We use the tuple calculated
Therefore, we use a Monte Carlo evaluation of the expec-above as a starting point.
tation with 50000 perturbations of° and x? with Gaus- Equation (0) relies on the same assumptions as Bj}. (
sian distribution of covarianceR; and B;. The tuples of In particular, bias and other mismatches betwdBiH T (R+
covariance matrices generated with the Monte-Carlo algoHBHT)~! and the correct statistics can induce inconsistent
rithm have likelihood values bigger (hence closer to theasymmetries that must be corrected. Another critical point
maximum of likelihood) that the one inferred from the ex- in building B from constraints in the observation space is
plicit algorithm. Their likelihood {480) is also significantly  that the computed expectation could be outside the ensem-
higher than with the diagonal tuple calculated in S8c2.3  ble{HBH T / B symmetric definite positiye We then project
(~ —15000). The non-diagonal tuple is then more ‘likely’ in the expectation onto this structure to recover a compaible
the sense of Sec2.2.3compared with the diagonal one. matrix.

Any inconsistency in the requirements of Eg).\ill make Because of the Monte Carlo and the indirect estimation of
the expectation non-symmetric positive definite. In particu- B, the instability is even sharper than for the computation of
lar, biases in the observations carry information that is con-R. We then do a unique iteration of the algorithm to get an
sidered by the algorithm as random errors. The built matricesvaluation of the potential optimal correlation coefficients in
are then partly influenced by the intrinsic biases in the sys-B.
tem. However, a simple diagnostic on the spectrum shows
that after 50000 perturbations, only less than 0.1 % of the
Eigen values are negative. The biases that create asymma- Results
try in the matrix then do not seem to significantly impact
our case. This could not always apply to other frameworks.
The limitation of the algorithm is to build up statistics from

We run the three algorithms described in S&cR to infer
a best guess for the optimum tuplg, (B) of the error co-
] 5 b ] variance matrices. In the following section, we describe the
a single occurrence of” andx” and therefore is not fully  ghape of the calculated matrices in regard to known physical
generic. o patterns of errors. We will refer to the diagonal tuple com-
But since asymmetry does not seem to be critical in oury ted from the Desroziers’ Scheme (resp. the Maximum of
case, we rebuild a symmetric semi-definite positive matrixlog-likelihood) as Rps, Bps) (resp. RmL, Bumi)); the non-

by correctingR’;11 spectrum. W_e start the algorithm from  pjag0nal tuple from the observation space algorithm will be
two different tuples of matrices: the one which maximises ;oferred to asRnb, Bap).

the log-likelihood in the diagonal assumption, and another

with the sameB but with R = 14. The convergence is slower 3.1 Patterns in the error variances for the 3 methods

with the second starting tuple but the two optimum tuples are

similar. In Fig. 2, the variances of the observation errors in the 3
Calculating a matrix expectation of dimension 56000  methods are compared for the period after the leak start. For

with only 50 000 Monte-Carlo perturbations is very unstable.the ML and ND algorithms, the variances of the observa-

Additionally, the perturbations on the observations are gention errors are averaged along the same subspaces as in DS

erated fromy?, whereas it should be computed from the un- method (see Se@.2.2 to be comparable. Most of the obser-

known perfect unperturbed observation vegioHence, the  vation errors remain within the same interval (5-20 ppb) with

closerR; gets to the optimal value, the weaker is the approx-the 3 methods. Their magnitudes are comparable with other
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makes the DS method unable to accurately detect this source
of error. On the opposite side, the two other methods which
are handled individually each observation can detect this
phenomenon and take it into account in the error modelling,
giving averaged errors that are consistent with each other.
Regarding the background, the attributed errors partly bal-

ance the confidence attributed to the observations. For the
two comparable diagonal algorithms (ML and DS), the ML
method better optimises the use of the observations than DS
< does on large subspaces. To avoid corrections dominated by
the observations, background errors 7 times smaller than for
the DS algorithm are then computed by the ML algorithm.
Fig. 2. Comparison of the observation errors calculated by the 30n the other hand, no clear general pattern appears with the
methods presented in Se2t2 for the inversion window after the  typle Ryp, Bnp), compared with the other two. While the
leak start (25 March 2012). The errors are averaged on two periodgrors on the observations are on average smaller than the
each day: “day” (12:00 to 17:00) and "night” (the remaining hours o5 caicylated with the ML method, the background errors
Of. the day) for. comparison to DS. method. Values out of the glralohwith the ND method are of the same magnitude as the DS
window are printed on the matching bar. . . . .

ones, i.e., higher than the ML ones. With non-diagonal co-

variance matrices, the variances by themselves are insuffi-

cient to identify all the properties of the errors. The non-
studies which build the errors from physical considerationsdiagonal elements iRyp andByp, characterising correla-
(e.g.,Bergamaschi et al2010. At most sites (GIF, JFJ and tions of errors, must be taken into account to understand the
KAS excepted), the 3 methods attribute averaged observeaerror patterns. Strong negative (resp. positive) correlations
tion errors that follow the same order: BSVIL > ND. The  are expected to increase (resp. decrease) the average confi-
errors fromRy are in average 34 % smaller than the errors dence in the background. We analyse the effects of these cor-
in Rps. The error variances iRyp are calculated to be even relations more precisely in Se®&.3.
smaller (54 % less than iRps in average). In the Bayesian
unbiased framework, the inversion with the tuple from the 3.2 Temporal variability and diurnal cycle of the
maximum of likelihood is then expected to be more con- observation errors
strained by the observations than the one from Desroziers’
scheme. The non-diagonal tuple seems more constrained Byfe focus here on the hour-by-hour variability of the ob-
the observations than the other two, but the covariances maksgervation errors; as a consequence, the DS method is not
it difficult to precisely compare only the variances. The 3 commented in this section. The variability in the variances
methods share the same day/night patterns at all sites apas comparable iRy andRynp (r = 0.89; linear regression
from the 3 mountain sites (JFJ, KAS and PUY) and the twocoefficient:» = 0.97). While no physical assumptions have
sites BIS and BIK: compared to the errors during the “night” been added to the algorithms, we notice that the observation
(17:00—-00:00 plus 00:00-12:00), the errors during the “day”errors follow known physical patterns for both algorithms.
(12:00-17:00) are 25% (resp. 23% and 31 %) smaller forOne of these is the source of errors related to the PBL height
the DS (resp. ML and ND) method. The errors are consis-mis-estimation and the vertical mixing parameterization in
tently smaller when the PBL is well developed, i.e., when CTMs. In Table2, we show for each station the linear corre-
the local emissions are quickly mixed in the atmosphere, andations between the modelled PBL heights and the calculated
hence when the CTM more realistically simulates the atmo-error variances for ML method. We also compute a loga-
spheric concentrations. At the mountain sites (JFJ, KAS andithm transformation that shows that some PBL errors follow
PUY; see Tabldl), the rough DS method does not calculate an exponential decay: egphpgL/ ko), wWith hpgL the mod-
the same patterns as the other two; this primarily suggestelled PBL height andg a reference height. The magnitude of
that, for the sites mostly located in the free troposphere inthese calculated reference heights is 1000 m for the sites with
spring (characterised by synoptic variability), the averagingsignificant correlations; above this reference threshold, the
on “day” and “night” intervals is less relevant than for the PBL can be approximately considered as well mixed. Loga-
sites influenced by the PBL. Additionally, in mountain sites, rithmic correlations are of the same magnitude in ND method
the low-precision DS method disagrees with the other twoat the sites with smalp values p < 10~2; e.g., logarithm
because it cannot compute the errors that occur when theorrelation: at CRR = —0.64, at GIFr = —0.57, at MHD
PBL height is close to the site altitude and when polluted airr = —0.37). The logarithm correlations are stronger than the
masses can be locally uplifted to the site. This phenomenotiinear ones in the sites where thevalue is small &£ 1072),
occurs at time scales that are smaller than and not synchraexcept at RGL where the linear fit is better. For these sites (in-
nized with the partitioning made in Desroziers’ scheme, thatcluding RGL), we approximate the errors by the exponential

Mean errors (ppb)

JF)
S

BIK
BIS)
CRP}
GIF
KA
MHD
OPE|
PUJ
PUY
RGL
TRN;
TT
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Table 2.Linear and logarithmic correlations)(between calculated

error standard deviation and the simulated PBL height (given by

ECMWEF). At each site, the calculation ofind thep value are car-
ried out withR from ML method. Somep values are very small

because calculated on large samples of observations. Error contri-

bution () for log-regression is the mean ratio between the fit and
the computed errors, when the correlation is significant.

Linear regression \ Log-regression

Stat
p | r p n
BIK 0.10 0.06 0.8 0.16 -
BIS 0.13 0.01| 0.11 0.04 -
CRP -033 26x10710| _060 1.7x103% 60%
GIF -034 13x10°8 | —050 4.3x10°18 50%
JFJ —-0.04 0.5| —0.05 0.36 -
KAS —0.01 0.8| —0.10 0.08 -
MHD —0.41 29x10°15 | —047 21x10719 529
OPE -0.31 56x1022 | —0.36 15x1028 54%
PUJ —0.04 0.5| 0.05 0.33 -
PUY 0.06 05| 0.01 0.84 -
RGL -0.17 9.1x10% | —0.12 0.002 58%
TRN 021 7.9x10°11 0.02 0.59 -
TTA  —-0.64 21x10722 | —0.72 2.3x10°2° 41%

fit and estimate the relative contribution of the PBL error as

the ratio between the fit error and the total error. The PBL

error then seems to account for about half of the total error.

The strong correlations between the PBL height and the er

atic errors (especially during the night) in the CTM, which

are difficult to distinguish from random ones based on the

available data. The systematic nature of some errors can co
flict with the hypothesis of random unbiased errors in the
inversion frameworke = y° — Hx ~ AV (0,R) in the unbi-
ased framework would beconee~ N (5, R’) with a system-
atic biasy. Our methods will then try to findR such as
R~R +3y'. Though statistically consistent with all the

available pieces of information, such a biased formulation of

the problems will have critical effect on the inversion results
(e.g.,Dee 1995. Therefore, the biases have to be taken into
account and our method seems to provide an efficient tool t
detect them (e.g., high redundant errors associated to nigh
time vertical mixing) in order to potentially fix them before
the inversion.

In Fig. 3, the statistics (median and interquartile range)
of the errors are displayed by layers of 250 m fgiz| for

the sites with significant correlations as calculated in Ta-

ble 2 on the one side and for the mountain sites on the othe
side. The anti-correlation betwegpg_ and the errors is con-

n_

7123

2000 PUY IZOOO

1500 1500

-
o
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Fig. 3. Statistics of the errors projected along ECMWF-simulated
PBL height for ML method: median and inter-quartile gap per

250 m-high layer. (Left) sites with strong correlations as calculated
in Table2; not displayed site RGL exhibits the same patterns but
with higher errors. (Right) Mountain sites with influence from the

PBL less prevailing. Dashed lines refer to the station altitude in the
model; JFJ is above the maximum simulated PBL height.

the model makes the simulation of the upward winds from
the valley impossible. Then, an observation can be notice-
ably influenced by polluted air masses from the PBL while
the model considers the observation to be in the free tropo-
sphere, and inversely; that explains the peak in errors when
the modelledipp is close to the altitude of the site in the
CHIMERE model:~ 1400 m above the local pixel orogra-
phy level. The mountain site at Puy-dée (PUY) appears

to pose the same problem in other studiBsofjuet et al.

rT501]); but in the particular meteorological situation of our

window of inversion (2 weeks in spring), the issue does not
clearly appear.
Another identified source of errors (not shown in the fig-
ures) is the temporal and spatial mismatches which can oc-
cur in situations of steep gradients of concentrations when
the air masses are changing, like in frontal systems. Air mass
changes occur 0 to 3 times during each inversion window of
two weeks at the sites. The quantification of these errors is
uncertain during night-time since it is difficult to separate the
errors related to the PBL and the errors due to the gradients
(e.g., mismatches or numerical diffusion). So, we focus on air
ass changes occurring during daytime. In these cases, the
lifomputed errors exceed 4 times the mean error during day-
time; the increased errors are then directly attributable to the
inability of the model to simulate high-resolution phenom-
ena. The relationship between the observation errors and the
temporal evolution of the 3-D meteorological fields can be
complex; our method allows a relevant estimation of the er-
fors specifical to the meteorological conditions at each site.

firmed and a more complex behaviour appears for mountain
sites. For example, the relation to the PBL is inverted for the

Kasprowy mountain site (KAS; see Fig): the site is set on
the summit of a mountain ridge in vicinity of a region with
high CH; emissions due to coal mining. The resolution of

www.atmos-chem-phys.net/13/7115/2013/
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appears that the absolute correlations quickly decrease be-
low |r| < 0.25in about 5 h at each site. In Fij.we display
the sites with a day-to-day significant correlation. For these
sites, we observe a maximum of correlation at 24 h, related
to processes with a diurnal cycle. But this is not necessarily
the PBL diurnal cycle since every site with strong correla-
tions between the PBL height and the errors does not exhibit
the 24 h peak. The 24 h periodic correlation could be related
to the surface temperature diurnal cycle for instance or any
- - - - other diurnal cycle in the atmospheric state.
Lag-time (h) A spatial structure of the observation covariances could
also have been expectddalivaux et al.2009 at sites close
Fig. 4. Mean temporal auto-correlation. For each site, are figuredto each other such as GIF and TRN, which are about 100 km
the average correlations of all the observations from 12 to 7 p.mdistant. But the calculateBpyp covariance matrix does not
with the following 48 h. Only the sites with a local maximum at exhibit any global spatial patterns. Distant observations can

24 h are figured: the 6 site; W?th strong f:orrelation With the PBL (in o strongly correlated, but the dominant underlying process
Table2) and KAS mountain site. Solid lines for rural sites; dashed is likely related to the PBL height.

(resp. dotted) lines for coastal (resp. mountain) sites.

BIK GIF OPE — RGL

1.0

0.8%}
06
0.4

0.2

Correlation coeficients

0.0

0% 6 12 18

3.4 Correlations in the background errors
3.3 Correlations in the observation errors 3.4.1 The lateral boundary conditions (LBC)

If we focus on the non-diagonal terms Bfp, a large part In Bnp, the components related to the LBC are found to
(64 %) of the correlation coefficients are very large & 0.9 be independentK| < 0.1) from the ones of the aggregated
with even positive and negative repartition). Strong posi-fluxes. Amongst the LBC, two independent groups of regions
tive and negative correlations mark a redundancy of the in-appear. Within each group, the components are very strongly
formation provided by the observations. We then group thecorrelated or anti-correlated( > 0.9) with the other com-
available observations into classes of redundant informationponents of the group and are independent from the ones not
Amongst each class, we chosg;| > 0.9 between every tu- in the group. About 10 % of the LBC cannot be attributed
ple (i, j) of observations. Following this criterion, we divide to any of the two groups. In Fig, the boundary regions
the set of observations into 625 balanced classes, figurinpave been sorted accordingly to these groups. The colours in
625 independent pieces of information given by the observathe figure denotes this classification: blue and red for the two
tions. This figure can be compared to other studies which fil-groups and green for the few remaining boundaries with mild
ter out part of the data before the assimilation. For examplecorrelations with other regions. The boundaries have also
Bergamaschi et a{2010 proposed to keep one observation been sorted according to the influence of the assimilation of
per day and per site only, to avoid an over-constraining due tdhe observations on them. We quantified this influence by us-
spatial and temporal correlations; in our case, it would haveing the diagonal elements of the matkild (see Egs2 and3
meant keeping 195 observations (i.e., 3 times less than tha Sect.2.1.7) which are necessarily in the interjal 1]. We
result of ND algorithm). Our method suggests keeping morehighlight the regions strongly influencetii; ; > 0.9; “+”
independent pieces of information but the amount remainsign) against the others (“0” sign). Then it comes that the re-
low compared to the total set of observationsl6 % of the  gions unseen (resp. constrained) by the inversion are strongly
~ 5000 observations). Then, in our system with a drasticallycorrelated with each other and not correlated with the con-
reduced state space dimension, the network over-constrairgrained (resp. unseen) regions.
the fluxes; but this result is very dependent of the analytical Drawing conclusions about the signs of the correlations
framework with aggregated regions and is unlikely to apply between the boundary components is more difficult. Within
to full-resolution configurations. In systems with state vec-the “unseen” group, none of the three algorithms can re-
tors larger than the observation vector, one would expect thatrieve information about these components of the state vector
the operatorH will not reduce the amount of independent since the corresponding elementsHnare negligible com-
pieces of information that can be assimilated so much. pared to the others. Thus, the positive and negative correla-
The temporal structure of the error correlations is showntions are likely to be numerical artifacts in the algorithms.
in Fig. 4. At each site, the mean time auto-correlations of For the constrained group, a large negative correlation be-
the errors at lags 0 to 48 h are calculated. The average autdween two regions means that the prior mean contribution
correlations are computed with starting hours from 12:00 toof the two regions is well constrained. Equivalently, the two
19:00 only; the patterns for the other hours of the day areL BC components are well known on average but the two in-
the same, but with mean correlations that are closer to 0. Itlividual contributions are not separated from each other; this
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Fig. 6. Correlations between the errors of the background aggre-
gated regions for the non-diagonal matBxp for the two weeks
after the leak start. Refer to Fid.for the region names, location
and extension.

the gradient between the two will be well fixed, whereas the
total balance will be unclear and biased by all the other com-
ponents of the state vector. The sign of the correlation then
mainly depends on the meteorological conditions at the site
and of the air mass history when it is observed. It can be very
variable and virtually unpredictable with a general formula.
Our method gives an objective estimation of the issue.

31/03/2012

03/04/2012

3.4.2 The aggregated emissions

The error correlations for the aggregated regions of emis-
sions are displayed in Fig. Negative correlations occur
only between regions that are not upwind any sites (i.e., in
Fig. 6, for the period after the leak start: “ATL", “SCA’", “SE”,
and “SOU"; see Figl; e.g.,r = —0.36 between “SOU” and
“SE"). As for LBC, interpreting the correlations between un-
constrained regions is hazardous. On the opposite, the posi-
tive error correlations between the regions close and upwind
Fig. 5. Correlations between the errors on the LBC elements of thethe sites (for example; = 0.45 between the neighbouring
background vector for the two weeks after the leak start, calculatedegions NSS and MGP) denote the confidence in the back-
from Bnp. Dates are the starting dates of every 3 day window of ground flux gradients amongst these regions but not neces-
uniform constant boundary concentrations. The bottom boundariesarily in the total flux balance. The confidence in the pre-
span from the surface to-700hPa; up is the remaining part of scribed gradients in emissions is consistent with the method-
thg vertical direction. Red and blue highlight 2 cIassz_es of bound-0|Ogy used to build the inventory maps. Activity maps by
aries very strongly correlated( > 0.9). Green boundaries are not - geci65 are convolved with emission factors. In Europe, the
significantly correlated to any other regions. *+” (fesp. *0") SIgNS e 2 re 4 activity is considered reliable. Then, the emission
_corres_ponds_to _boundarles _strongly (_resp._ lightly) influenced by thefactors hence the overall magnitude of the emission, is a
inversion (criterion of selection described in S&:4.1). b o Do
more critical source of uncertainties than the spatial distri-
bution.

06/04/2012

may indicate that the contributions are similar in magnitude

with simultaneous transitions observed at the sites, hence nét  Flux inversion: the Elgin leak case

discernible. On the opposite, a positive correlation reveals a o _

constraint on the difference of the contributions, hence on thd oM here, we use the optimised tuples of matrices to actu-
spatial and/or temporal gradients in the LBC. For example,a/ly compute the inversion with Eq2)(and @).

for two LBC regions positively correlated and upwind the

observations, if a clear transition between the contribution

of one region and the other is observable from the network,
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4.1 Physical relevance of the inverted fluxes
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In this study we have selected a domain for the simulations
which spans over a region much bigger than the network cov-
erage area. This choice is expected to decrease the errors due
to the coarse approximations made on the LBC. But, in re-
turn, we do not expect the results to be accurate on the outer
regions because of the inability of the inversion to either con-
strain unobserved regions, or distinguish the contributions
from these regions and from the LBC when they are all up-
wind the observations. NSS— NSN— MGP — GBT  FRA oF R
The three methods rely on the assumption of the Gaus-

sianity of all the errors. In particular, this assumption theo- gig 7. increments on the emissions for the regions not contiguous to
retically allows surface fluxes to be negative. With the opti- the boundaries in e (large bars) and in % (thin bars) of the initial
mised state vector® calculated with Rps, Bps), increments  total with the non-diagonal tupleRgyp, Bnp). The two temporal

(defined as(fa)jf(xb),/) of —150 % and below appear on the windows of inversion are the two weeks b_efore (blue) the leak start
o @) ) . and the two weeks after (red). Acronyms in Fig.
emissions in regions close to the sides of the domain. Hence

the inversion generates strongly negative surface fluxes, due

to inaccurate separations between emissions and boundary - . -

condition signals. Net surface uptake is physically not ac- Th_ese sgrprlsmgly small poste_rlor uncertainties can seem
ceptable for CH in Europe where anthropogenic emissions phy_S|caIIy Inconsistent. BUt the f|gu_res apply to very large
are largely prevailingBergamaschi et al2010 compared regions. Hence, uncerta|nt_|es on pixels are expt_actg:-d to be
to soil uptake. Then, despite its very low-computation cost, asmoo@heq by the aggregat!on. Moreover, a_s4©||=h|ssmns
simple DS can not be applied unless one uses it on a IargéF1 spring in Europe are mainly anthropogem(_: and well doc-
number of subsets and with additional physical constraints. umented, even the pixel errors could pe relatlvely low. .

In regard of the LBC issue, the other two algorithms (ML Befo_re thei Ieak” s“tart, the totaI” e‘z‘mlss’!ons f‘rom Ehese n-
and ND) seem reliable. The ML algorithm does not compute™®' regions ("NSS”, "NSN", MGBl’ FRA'and"CTR )alre
absolute increments over 35 % for these regions and keep orre_cted from 52 4.55 16838td " to 51262+ 19991d ™,
posterior uncertainties compatible with a 0 % increment (i.e.,t at is to say an increment “2'3.:‘:3'9 %. After_ the
no change from the prior flux). The non-diagonal tuitg, leak start, the cc?erectlon to the mlngr budget is from
Bnp) leads to increments incompatible with the positivity of 52455+124311d " to 48062+ 48td™", i.e. an increment

— 0, i i iSSi
the fluxes in some of the outer regions but in an acceptablé)f _8'4i0'1_ %. The inversion of the 9**3?“'5?'0”5 over
range & —10%) considering the posterior errors in the ma- the inner regions suggests an over-estimation in the invento-
trix P2 for these regions ries which actually were not designed for year 2012 but for

. . . 1
Moreover, the diagonal algorithm DS and ML do not com- 2008. The decrease in the emissions by 32@D00td

S : ! ie. — 0 i -
pute any significant posterior error correlatie & 0.1) be- E"e" t?]lti 3'8 % reportgd dto the prior total patlan::e)t: teh
tween outer regions and the LBC; inversely, the ND tuple Ween e two INversion windows remains consistent wi €

explicitly estimates strong posterior error correlations for unc_ertamt!es_(_)f the inventories and can be explained by the
these components (numerous correlation coefficiefts typical variability of the emissions. But one shpuld recall that
0.5). Hence, ND method can account for the erroneous sepaf—he result_s are averaged on aggregated regions, whereas the
ration from the outer emissions and the LBC. areas of influence of the sites do not necessary overlay the
whole region (see Seck.1). The inversion corrects simu-
4.2 Using the optimised tuples (Rp, Bnp) for flux lated concentrations, not considering the implications in re-
inversion gards to absolute emissions. The increments can be amplified
and suffer from aggregation errors and sampling heterogene-
The non-diagonal tuple reliably takes the LBC ill-separationity (Kaminski et al, 2001). More critically, the aggregation
into account. We then use the inversion carried out with thiserrors on the areas that are not within the footprint of the
tuple to analyse the posterior fluxes on the regions close taetwork cannot be recovered from our methods since the op-
the network that are better constrained than the outer onegratorH and the covariance matrB are aggregated before
The increments for the two periods (15-day long each) beforghe algorithms are run.
and after the leak start are shown in Fity.The posterior Focusing on the estimation of the Glielease from the
errors are not displayed because they do not exceed 1 % fdelgin platform, the inversion suggests an increase in the re-
most regions (maximum of 1.1 % for “NSN” region before gional emission where the leak occurred (“NSS” region) of
the leak start). 41472430 td™! (the errors on the difference is calculated
assuming that the two inversion windows are independent).
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But the two parts of the North Sea are expected to be ill-tion and the inputs to the CTM shall be carried out to quan-
distinguished by the system, as confirmed by a posterior cortify and fix as much as possible the bipdMore specifically,
relation coefficient of —0.78 between the errors in the two in Sect.3.2, we showed that very high diagnosed error vari-
regions after the leak start. Then the flux that can be atances during the night could be related to systematic state-
tributed to the leak is defined as the difference of the emis-dependent biases in the CTM vertical mixing and in PBL
sions after and before the leak start over the whole North Seaodelling.
area. Our inversion computes a fluxp#06+ 33td-1. The Third, aggregating fluxes within bigger regions implicitly
inversion detects an increase of emissions from the directiommplies full correlations of the errors on the background in
of the leak, but fails to unambiguously affect the increasedeach region. Despite this strong assumption, our methods are
flux to the proper region. The figure we compute is of the supposed to diagnose the error on the aggregated fluxes that
same magnitude (3 times higher) than the estimation giverare within the footprint of the network. On the opposite, the
by the operator and does not exceed 18 % of the backgroundggregated regions that are partly within and partly outside
emissions related to oil and gas extraction in the North Sea.the network footprint will exhibit strongly biased diagnosed
Our results also reveal a high dependency to the meteorcerrors and increments.
logical situation during an inversion window. The ratio be-  Kaminski et al.(2007) studied the issue and found poten-
tween the increment and the posterior errors on the emistial errors of the same magnitude as the fluxes themselves.
sion budget in the inner regions is very different for the A better choice of the resolution and of aggregated regions
two periods ¢ 1 before and> 1 after the leak start). The considering the prior fluxes and the transport patterns (e.g.,
reconstructed error on the total budget largely depends owWu et al, 2011) during the window of inversion should sig-
the correlation coefficients iR2. For the period before the nificantly improve the results of the methods.
leak start, most posterior correlations are large and positive Despite these weaknesses in our methods, the optimal tu-
(r > 0.9). The gradients are then well constrained while theple of covariance matrices gives better results than a tuple
total budget stays uncertain. On the opposite, after the leakuilt on expert considerations: either these expert-built tu-
start, neighbouring regions exhibit negative correlations byples, which are most of the time diagonal, are similar to
pair (e.g., “NSN” — “NSS”, “MGP” —“GBT"). The assimila- (Rps, Bps) that causes inconsistent negative {ftixes, or
tion of the observations cannot separate the contribution fronthe observation errors are enhanced to reduce their impact
these close regions, but it leads to a good reduction of the eren the inversion; but in this latter configuration applied to
ror on the total balance. These two different behaviours mayour inversion windows, the corresponding inverted fluxes re-
be related to different synoptic regimes during each inversiormain close to the prior ones and the flux uncertainties are not
window: before the leak start, an anticyclone was laying onnoticeably reduced. Our objectively calculated tuple gives
central and western Europe; after the leak start, air massedsetter inversion results, with reduced posterior uncertainties.
coming from North Europe vented the domain. Moreover, some of the computed error patterns are generic
and are transferable to other larger systems. In this study,
we chose a particular representation of the complete full-

5 Discussion resolution state vector. Most errors represented by the covari-
ance matrixR are independent of this representati®og-
5.1 Limitations and hypothesis probation quetetal.2011). As a consequence most resultFowill re-

main valid in the framework of a full-resolution state vector.
All the results depend on strong statistical and physical hy-The recovery of the errors of the non-aggregated background
potheses, which may not all be robust. First, we show invector are more ambiguous and only large patterns could be
Sect.3.1that the assumed Gaussian errors of the backgrounihferred for finer resolutions. Additional hypotheses must be
can produce physically inconsistent inverted fluxes. Addingmade on the shape of the full-resolution background errors to
Lagrangian correcting factors (e.@ockede et a).2010 to deduce their values from the aggregated matrix. Our methods
the cost function (Eql) can ensure physically consistent can then be seen as a way to simplify and project problems
fluxes. But that would alter the algebraic properties of thewith large state vectors in order to infer the patterns of the
problem and make the implementation of our methods moreerrors with relatively small computation costs.
complex. With regions that act as buffers against the uncer-
tainties on the LBC, the ND methods proved to acceptably5.2 Implications for data selection
deal with the issue.

Second, all CTMs suffer from weaknesses and errors inThe framework we chose allows the explicit computation of
their parameterizations and numerical scheme. The inducethe sensitivity of the inversion to each observation. We fol-
errors can be systematic and not only random, as suggestddw Cardinali et al.(2004 and calculate the influence ma-
in Sect.3.2 They should then be considered as a hiasthe  trix, which gives the effect of a small change yft on Hx?:
observational errors = y°—Hx ~ N (, R)). Furtherinves- S=(R+HBHT)"IHBHT. For every observatiogv(j’., high
tigations on the effects of the parameterizations, the resoluebservation errors reduce the contribution of the observation
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(a) Diurnal cycle of sensitivity for all sites.

Fig. 8. Sensitivity of the inversion to each site as the sum of the
diagonal elements of the sensitivity mat®(details in Sect5.2)

associated to the site. The figures are normalised by the total influ- Eo1s
ence of the observations, i.e., the trac&of

Jj to the total inversion. On the opposite, high local contribu-
tions tend to enhance the amount of information the inversion .
can extract from a single observation. The sensitivity matrix 0 3 B % Time UTC 15 18 2z
S encompasses both these compensating effects. In8Fig.
each site is colored according to its contribution to the inver-
sion, calculated by adding all the diagonal terms$Safsso- _ I .
ciated to the site. KAS and JFJ have contributions 2.5 time Fig. 9. Total sensitivity per site ‘?‘_’"_‘p“‘ed for e‘f"Ch hour of the da_y
S(tlme UTC). Details on the sensitivity computation are described in

higher than the average contribution, related to their Sltua'Sect.S.Z A sensitivity of 1 roughly corresponds to the constraint on

tions in the free'tropo.sphere and the constralnts they give op degree of freedom of the system. The green (resp. red) band high-
the LBC. As a site filling a gap in the observations, PUJ alsojights the interval of data selection generally used in most global
has a strong contribution (1.5 times the average). On the oth@hversion systems for the plain (resp. mountain) observation sites.
hand, GIF, TTA and PUY are very close to the core of the Solid lines for rural sites; dashed (resp. dotted) lines for coastal
network. The algorithm attributes negligible contributions to (resp. mountain) sites.
these sites in favour of the other sites. Totaling the influence
of the whole set of observations, we get the figure of about
50 % of the posterior state vector fixed by the observation;(green band for the plain site, blue for the mountain ones)
the other half comes from the background. do not exhibit significantly higher sensitivity in the inversion
Usually, inversion systems assimilate only a few hours ofsystem than the other hours of the day. This selection then
observations per day, while efforts are made to monitor theleads to a global loss of more than 85 % of information: the
atmospheric composition continuously. For examBlerga-  sum of the diagonal elements of the sensitivity maSire-
maschi et al(2010 chose to average 3 h of observation per lated to the observations in the selection band reaches 15 %
day and per site (bands in Fi@gp). This choice is justified by  of the total trace. The mountain stations are known to suffer
the confidence given to the model during the afternoon wherfrom the issue of ascendant polluted streams from the PBL
the vertical mixing in the PBL is strong. Flagging out the as developed in Sec8.2 Our method implicitly automati-
other data may be acceptable when inquiring into patterns atally filters out these air masses. Then, the usable observa-
the continental scale, but one needs more information at théions are not confined to the middle of the night. Moreover,
local and regional scales. In Se8tl, we show that the obser- concerning the plain sites (see F&p), the selected band
vation errors during the day are only 30 % lower than duringcorresponds to the minimum of sensitivity, that is to say the
the night, though this figure is mitigated by non-negligible data that least constrain the local and regional fluxes we in-
systematic biases during the night. This small difference sugquire into. The most influential observations are situated just
gests that night observations could reasonably be assimilateloefore the beginning of the day, when the high errors of the
if the biases had a smaller impact. night start decreasing and the local contributions are still sig-
In Fig. 9a, the sensitivity by site of each hour of the day is nificant. The end of the afternoon (at about 18:00) is also
shown. Apart from MHD, the usual intervals of selected datamore influent that the middle of the day, but less than early

(b) The same as Fig. 9a for 5 plain sites.
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morning. One should expect a better confidence in late afterwere also computed to have a significant influence on the
noon results from the CTM, when the vertical mixing is still inversion results. A cautious implementation of these obser-
active (though reduced), than early morning. vations into an inversion system is expected to enhance the
We emphasised in Se@.2the diurnal patterns of the er- efficiency of the system.
rors on the observations. Further efforts have to be made in The prospects from this work will be to quantify the un-
modelling the PBL height and the vertical mixing to ensure certainties in our methods and their impact on the optimised
better quality and reduced bias in the simulations at the endluxes. A dedicated Observing System Simulation Experi-
of the night. Our method would then allow a better use of thement could be carried out in that sense. The computational
observations for local and regional inversions. costs should also be reduced by running our scripts in paral-
lel. In the framework of an inversion system with full tem-
poral and spatial resolution, when variational algorithms are
6 Conclusions necessary to compute the optimal fluxes, our general method
may overburden the computer and memory capacity. Indeed,
We inquired into the possibility of precisely and objectively the limiting factor in our algorithms comes from the diag-
estimating the covariance matrices of the errors on the obenal maximisation of the log-likelihood needed to compute
servations and the backgroun @nd B) that best fit in-  the non-diagonal optimal tuple. The maximising algorithm
version system requirements. A best guess of these matricésduces computational costs limited by the size of the ‘back-
with regard to objective criteria is needed in the Bayesian in-ground’ vectorx?. The computational complexity is at least
version framework, especially for regional studies. To do so,0 ([dim(xb)]3) while full-resolution state space dimension is
we used algorithms developed in a theoretical framework,of several orders of magnitude larger than our reduced state
but too complex to be tested in full-resolution systems. Thespace. Nevertheless, the method could be tested in systems
translation to a regional configuration was carried out by sim-of intermediate complexity to infer additional knowledge on
plifying the system and reducing the total size of the covari-the statistics of the errors.
ance matrices to allow an algorithmic tuningfindB that
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