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J. Moncrieff 6, J. Necki7, M. Ramonet1, M. Schmidt1, M. Steinbacher8, and J. Tarniewicz1

1Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, UMR8212, IPSL, Gif-sur-Yvette, France
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Abstract. We adapt general statistical methods to estimate
the optimal error covariance matrices in a regional inver-
sion system inferring methane surface emissions from atmo-
spheric concentrations. Using a minimal set of physical hy-
potheses on the patterns of errors, we compute a guess of
the error statistics that is optimal in regard to objective sta-
tistical criteria for the specific inversion system. With this
very general approach applied to a real-data case, we recover
sources of errors in the observations and in the prior state of
the system that are consistent with expert knowledge while
inferred from objective criteria and with affordable compu-
tation costs. By not assuming any specific error patterns, our
results depict the variability and the inter-dependency of er-
rors induced by complex factors such as the misrepresen-
tation of the observations in the transport model or the in-
ability of the model to reproduce well the situations of steep
gradients of concentrations. Situations with probable signif-
icant biases (e.g., during the night when vertical mixing is
ill-represented by the transport model) can also be diagnosed
by our methods in order to point at necessary improvement
in a model. By additionally analysing the sensitivity of the
inversion to each observation, guidelines to enhance data se-
lection in regional inversions are also proposed. We applied
our method to a recent significant accidental methane re-
lease from an offshore platform in the North Sea and found

methane fluxes of the same magnitude than what was offi-
cially declared.

1 Introduction

Quantifying the methane (CH4) fluxes between the surface
and the atmosphere, establishing their temporal variability
and spatial distribution, and estimating the anthropogenic
and natural contributions to these fluxes is critical for closing
the present-day methane budget. One of the approaches used
for this purpose, called the atmospheric inversion, assimilates
information about atmospheric composition to infer surface
fluxes. This type of top-down estimation relies on the assim-
ilation of in-situ observations of atmospheric concentrations
(Houweling et al., 1999, 2006; Hein et al., 1997; Pison et al.,
2009; Bousquet et al., 2011, 2006; Bergamaschi et al., 2005)
and/or of remote-sensing data from satellite-based instru-
ments (e.g.,Bergamaschi et al., 2009). Using observations
for inversions at the global scale reduces the uncertainties
on the mean CH4 flux balances on large regions (typically a
few millions of km2 large). At the regional and mesoscales,
high-resolution inversions potentially provide the spatial dis-
tribution of the fluxes, so that the characterisation of the pro-
cesses involved can be improved (Bergamaschi et al., 2010).
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7116 A. Berchet et al.: Error statistics for atmospheric inversion

Inversions at any scale depend on simulations of the atmo-
spheric mixing and advection by Chemistry-Transport Mod-
els (CTMs) to estimate the influence of emissions and sinks
on the atmospheric concentrations where they are measured.
Whether they are based on coarse (Chen and Prinn, 2006;
Hein et al., 1997), varying (Peylin et al., 2005) or high (Lau-
vaux et al., 2008; Sarrat et al., 2007) resolutions, all the
CTMs suffer to a certain extent from uncertainties in repro-
ducing the atmospheric concentrations. The uncertainties are
due to the transport errors (Baker et al., 2006; Geels et al.,
2007; Peylin et al., 2002; Ahmadov et al., 2007; Prather
et al., 2008), to the assumption that a point observation can
be compared to the mean simulated concentration on the cor-
responding grid box, i.e., the representation errors (Gerbig
et al., 2003; Tolk et al., 2008), or to the errors from aggregat-
ing the fluxes on large regions (Kaminski et al., 2001).

In the framework of Bayesian atmospheric inversion (Ent-
ing et al., 1993; Tarantola, 1987), the implementation of a
system requires obtaining an advanced understanding of the
statistics of the observational and instrumental errors, the
transport errors, the representation errors, and the errors of
the prior distribution and magnitude of the fluxes prescribed
in the system. Most of the cited works empirically assigned
these error statistics. Objective methods of tuning the errors
in the system also exist (Wahba et al., 1994; Dee, 1995;
Desroziers and Ivanov, 2001) and have been applied to get
the general structure of the errors (Michalak et al., 2005;
Winiarek et al., 2012). But these methods rely on subjective
prior knowledge on the error structure (e.g., isotropic spatial
correlation or temporal decay in the correlations), which can
limit the generality of the results.

In this study, we apply three different methods based on
the statistical and algebraic properties of the errors, but with
a minimum of additional physical assumptions on the error
patterns. In inversion systems typically solving fluxes at the
model resolution (e.g.,∼ 0.5◦

×0.5◦ each week during a sea-
son or a year in regional scale studies), this approach would
require the handling of matrices of error covariances the to-
tal size of which exceeds billions or even trillions of compo-
nents. To embrace memory limitations and reduce the com-
putation costs, we have chosen a short window of inversion
and have aggregated the surface fluxes on synoptic-scale re-
gions. This simplification allows applying powerful generic
methods, but induces limitations (Kaminski et al., 2001; Boc-
quet et al., 2011) that have to be taken into account when
moving to a full-resolution inversion system.

Our study exploits a recent unexpected release of CH4 in
the North Sea in spring 2012 to apply this statistical approach
and test the ability of a European network of atmospheric
observations to detect the leak. On 25 March 2012, an off-
shore oil platform on the Elgin field, located 200 km east
of Scotland shores (57◦ N, 1.53◦ E), was evacuated due to
a gas leak. The company operating the platform gave a rough
evaluation of the flux reaching 200 000 m3 d−1 or 140 met-
ric tons per day (t d−1) for CH4, which accounts for less

than 1 % of the daily regional emissions (within a radius of
∼ 750 km around the leak point) according to the Emission
Database for Global Atmospheric Research (EDGAR v4.2;
http://edgar.jrc.ec.europa.eu) for the year 2008. The leak was
stopped two months after. The methane plume emitted by
this point source is difficult to extract from the observation
noise and from the variability of the other sources, which
makes the assignment of error statistics particularly critical
(Winiarek et al., 2012). We develop and apply a regional in-
version framework based on CHIMERE CTM simulations
(Vautard et al., 2001) on a domain covering the European
continent (Fig.1). Relying on objective statistical criteria, we
optimise the covariance matrices of the errors of the obser-
vations and of the prior state vector (surface fluxes, initial
and lateral boundary conditions) for two independent time
windows of inversion: the 2 weeks before the beginning of
the leak and the 2 weeks after. The three methods of optimi-
sation are implemented with acceptable computation times.
They managed to produce error covariance matrices, which
are specifically suited to the system and the inversion win-
dow, and that are a best guess of the optimum in regard to the
objective criteria of each method. Complex error structures
are then retrieved. And within the framework of the under-
lying assumptions, every piece of information provided by
the observations and the prescribed fluxes is entirely used.
We then use the computed matrices to invert the European
fluxes before and after the leak start and test whether or not
the atmospheric network detected this methane plume.

In Sect. 2, we describe the inversion methods and the
dataset used in the study. We also present the algorithms that
we implemented following the literature to specify the inver-
sion system configuration. In Sect.3, the results of these tun-
ing methods are presented. The inversion results from these
sets are analysed in Sect.4 and their limitations and possible
adaptation to larger systems are discussed in Sect.5.

2 Methods

2.1 Inversion system

2.1.1 Theory: analytical framework

We apply classical data assimilation methods based on the
Bayesian formalism (Courtier et al., 1994; Enting et al.,
1993, 1995; Tarantola, 1987). In the following we use the
unified notation byIde et al.(1997). Assuming a Gaussian
nature for all the errors, the method basically relies on the
minimisation of the cost function:

J (x) =
1
2(y0

− H(x))TR−1(y0
− H(x))

+
1
2(x − xb)TB−1(x − xb)

= J o(x) + J b(x)

(1)

J o (resp.J b) is the contribution of the observations (resp.
the background) to the total cost function.y0 accounts
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Fig. 1: Spatial extension of the simulations with the CTM CHIMERE: observation sites marked by

yellow diamonds and white legends; the leak position in the northern part of the North Sea is pointed

by the green pentagon. The fluxes, the spatial distribution of which is interpolated from EDGAR

v4.2 inventory, are aggregated by regions figured by the coloured area. The red edges of the domain

denote the spatial distribution of the lateral boundary condition components.

Fig. 2: Comparison of the observation errors calculated by the 3 methods presented in Sect. 2.2 for

the inversion window after the leak start (25/03/2012). The errors are averaged on two periods each

day: “day” (12:00 to 5:00 p.m.) and “night” (the remaining hours of the day) for comparison to DS

method. Values out of the graph window are printed on the matching bar.

31

Fig. 1. Spatial extension of the simulations with the CTM
CHIMERE: observation sites marked by yellow diamonds and
white legends; the leak position in the northern part of the North
Sea is pointed by the green pentagon. The fluxes, the spatial dis-
tribution of which is interpolated from EDGAR v4.2 inventory, are
aggregated by regions figured by the coloured area. The red edges
of the domain denote the spatial distribution of the lateral boundary
condition components.

for the observation vector (dimy0
∼ 5000; description in

Sect.2.1.4); x is the state vector (i.e., the series of the vari-
ables to optimise),xb the background vector including the
prior knowledge on the state of the system (dimx ∼ 100;
description in Sect.2.1.2).

H is the observation operator converting the informa-
tion in the state vector to the observation space. The atmo-
sphere advects and mixes the emissions and the initial and
lateral boundary conditions. Since the time of residence of
air masses within our domain is of typically two weeks, to
be compared to the mean CH4 lifetime in the atmosphere
of about nine years (e.g.,Dentener et al., 2003), the chem-
istry along the transport is neglected in all the following.
For each observation(y0)i at a specified place and time, an
equivalentH(x)i is induced from the state vectorx with a
CTM (description in Sect.2.1.3). Throughout the study,H is
supposed linear: the operator is represented by its Jacobian
matrix H andH(x) is identified toHx. With our relatively
low-dimensional system, it is possible to explicitly estimate
the observation operator with so-called “response functions”.
Response functions (Bousquet et al., 1999) are calculated for
each component of the state vector by running the CTM in
forward mode and extracting the simulated concentration at
each point where a corresponding observation is available.

The covariance matrixR describes the errorsε = y0
−Hx

between the observations and their reconstruction from the
state vector with the model. We assume that the errors are
unbiased, i.e.,ε ∼N (0,R). R then encompasses the errors
directly related to the measurement process, but also to the

transport model (Ahmadov et al., 2007; Peylin et al., 2002),
to the model representation, i.e., its inability to represent the
local variability within the grid cells (Tolk et al., 2008; Geels
et al., 2007) and to the aggregation process (Kaminski et al.,
2001; Bocquet et al., 2011). B is the covariance matrix of the
errors on the background vectorxb (details in Sect.2.1.2).

For this linear problem, the cost functionJ admits a global
minimum reached for the optimum state vectorx̂a such that:

x̂a
= xb

+ K(y0
− Hxb) (2)

whereK = BHT(R + HBHT)−1 is the Kalman gain matrix.
The associated covariance matrix of errors, representing

the a posteriori uncertainties in Gaussian assumptions, is
given by:

Pa
= B − KHB . (3)

2.1.2 The state vector

In Eq. (1), x stands for the state vector which is optimised
by the inversion andxb figures the assumed state (called the
“background”) before the assimilation of the observations.
The vectorx contains all the information on all the degrees
of freedom of the system, e.g., on the emissions (spatial and
temporal distribution), boundary conditions (all CH4 concen-
tration fields at the edges of the domain) and initial condi-
tions (3-dimensional distribution of the CH4 concentrations
at the first step of the period of interest). In most realis-
tic systems, dealing with the complete state vector implies
prohibitive computational costs and/or unaffordable memory
needs. Solving a high dimension system needs the implemen-
tation of variational algorithms (Chevallier et al., 2005). An
alternative is to reduce the size of the inverse problem.

We drastically simplify the state and background vectors
in order to allow the manipulation of the matrixB. For each
of the two windows of inversion (the two weeks before and
the two after the leak start), computed independently, the
simplified vector has a dimension of 99 and contains coef-
ficients of linear corrections on: (1) the aggregated emissions
on 12 regions (see Fig.1); the spatial and temporal distribu-
tions of the emissions in each region are interpolated from
the EDGARv4.2 database (http://edgar.jrc.ec.europa.eu); (2)
the concentrations on the boundaries of the domain; bound-
aries are divided into 17 sub-parts: one for the top side, 16
for the lateral sides (8 horizontal parts× 2 vertical com-
ponents per part; spatial horizontal distribution in Fig.1;
the vertical partition is situated at the half of the domain
in pressure coordinates, i.e., at∼ 700 hPa); one coefficient
is attributed per sub-part per period of 3 days; for each sub-
part, boundary concentrations are supposed constant and uni-
form; the lateral boundary conditions (LBC) are then fixed
by (8× 2+ 1) × 5 periods= 85 coefficients; (3) the initial
condition 3-dimensional concentration field (IC); the model

www.atmos-chem-phys.net/13/7115/2013/ Atmos. Chem. Phys., 13, 7115–7132, 2013
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is first vented with background boundary concentrations (ex-
tracted from global simulations with the CTM LMDz;Bous-
quet et al., 2011) and EDGAR emissions during 10 days be-
fore the period of inversion; and (4) an offset, constant and
uniform along the whole domain; the prior offset was calcu-
lated from the available observations as an estimation of the
background concentrations during the window of inversion;
the initial and boundary concentrations are expressed as per-
turbations from this offset.

This simplification implicitly implies the hypothesis of
pure correlation of the information within each aggregated
region of the state vector (see Sect.5.1). We chose an ex-
tended domain compared to the network coverage in order to
cope with the spatial and temporal ill-representation of the
LBC (Lauvaux et al., 2012).

2.1.3 Atmospheric transport model

We use the Eulerian mesoscale non-hydrostatic chemistry
transport model CHIMERE for this study (Vautard et al.,
2001). This model was developed in a framework of pollu-
tion simulations (Schmidt et al., 2001; Pison et al., 2007),
but is also used for greenhouse gas studies (Broquet et al.,
2011). We use here a regular horizontal grid of 50 km-side
cells with 25 layers geometrically spaced from the surface to
450 hPa (∼ 6000 m). The model time step varies dynamically
from 4 to 6 min depending on the maximum wind speed in
the domain. The model is an off-line model which needs me-
teorological fields as forcing. The forcing fields are deduced
from interpolated meteorological fields from the European
Centre for Medium-range Weather Forecast (ECMWF) with
a horizontal resolution of 0.5◦

×0.5◦ every 3 h. The model is
operated in a domain of limited area spanning over the whole
continental Europe (roughly 24× 106 km2; see Fig.1).

2.1.4 Observations

The study is based on the assimilation of measurements
of the atmospheric composition. Concentrations of CH4 are
measured in-situ in 13 European sites (see Fig.1; details in
Table1) at altitudes from sea level up to 3580 m a.s.l. and
with different instrumentation and time resolution. Some sta-
tions are equipped with CRDS analysers (frequency of up to
1 Hz magnitude), whereas others are Gas Chromatographs.
Hourly aggregates were used as input iny0 for the inversion.
The observation sites can be split into three categories: (1)
mountain sites which monitor almost all the time the free tro-
posphere; they are scarcely influenced by the local emissions
and are representative of the continental and global budget;
(2) coastal sites with primary influence from the ocean when
the air flows towards lands; as mountain sites, they are rep-
resentative of global patterns; and (3) rural sites, inland but
remote from anthropogenic emissions hot spots. All instru-
ments are calibrated by tanks traceable to the NOAA 2004

CH4 scale (Dlugokencky et al., 2005) with a calibration pre-
cision of±2 ppb.

2.2 Error configuration: description of the algorithms

In order to apply the Bayesian inversion framework, a perfect
knowledge of the background and observation error statis-
tics is needed. The tuple of covariance matrices (R, B) must
then be established. Tuning and calculating optimal covari-
ance matrices has long been of interest in data assimilation
(e.g.,Talagrand, 1998; Desroziers and Ivanov, 2001; Chap-
nik et al., 2004). Statistical studies on large sets of data are
required to reach a sufficient threshold of information to get a
reliable approximation ofR andB. In most cases, the sets of
data are not available and the covariance matrices are built re-
lying on physical considerations and an expertise on the ob-
servation and model behaviours (Bergamaschi et al., 2010).
In this section, we describe different objective methods to in-
fer the best tuple ofR andB matrices: first, the Desroziers’
scheme, second, the maximisation of the likelihood, third,
observation space diagnostics. The Desroziers’ scheme and
the maximisation of the likelihood are computed on the sub-
space of the diagonal matrices for bothR andB, while the
observation space diagnostics allow the recovery of full ma-
trices.

Before further discussion in Sects.3 and4, the relevance
of the 3 proposed methods is validated by aχ2 test (see
Sect.2.2.1), used in many studies (e.g.,Lauvaux et al., 2012;
Winiarek et al., 2012; Peylin et al., 2002; Rayner et al., 1999).

2.2.1 Validation test:χ2 distribution

It can be shown, within Gaussian assumptions, that for the
state vectorx̂a minimising the cost functionJ , J (x̂a) =

J o(x̂a) + J b(x̂a) has the statistics of aχ2 distribution with
a mean equal tod/2, d being the total number of available

observations. We then define aχ2 index 2J (x̂a)
d

that shall be
close to 1.

The index can be written:

χ2(R̃, B̃) =
1
d

[
(y0

− H(x̂a))TR̃
−1

(y0
− H(x̂a))

+(x̂a
− xb)TB̃

−1
(x̂a

− xb)
] (4)

Though insufficient, this test provides a low-cost insurance
that we got a well-defined tuple of covariance matrices. The
three methods presented below are tested and validated in
regard to this test. A deeper analysis of the algorithms’ results
is presented in Sect.3.

2.2.2 Desroziers’ scheme: subsets application

We describe here a method to roughly infer the shapes ofR
andB covariance matrices with a very low computation cost.
It has been shown byTalagrand(1998) andDesroziers and
Ivanov (2001) that for a given (xb, y0), for any subspacej

Atmos. Chem. Phys., 13, 7115–7132, 2013 www.atmos-chem-phys.net/13/7115/2013/
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Table 1.Site characteristics. The altitudes of the sites are given as m above sea level (a.s.l.) and the inlet height is in m above ground level
(a.g.l.). The sites are grouped into three categories relatively to the topography and their close environment: rural (R), mountain (M), coastal
(C). ∗ These sites are recent and still do not have related publications.1 Observatoire Ṕerenne de l’Environnement.

Station ID Location Inlet Site Reference
Lon Lat Alt height type

(◦ E) (◦ N) (m) (m)

Bialystok BIK 23.0 53.2 183 300 R Popa et al.(2010)
Biscarosse BIS −1.2 44.4 120 47 C Ahmadov et al.(2009)
Carnsore
Point

CRP −6.4 52.2 9 4 C ∗

Gif-sur-
Yvette

GIF 2.2 48.7 160 7 R Lopez et al.(2012)

JungfraujochJFJ 8.0 46.6 3580 5 M Reimann et al.(2008)
Kasprowy KAS 19.6 49.1 1989 0 M Necki et al.(2003)
Mace
Head

MHD −9.9 53.3 25 15 C Ramonet et al.(2010)

Obs. Ṕer.
Environ.1

OPE 5.5 48.6 390 10 50 120 R Ramonet et al.

Puijo PUJ 27.0 62.0 232 84 R Ramonet et al.
Puy-de-
Dôme

PUY 3.0 45.8 1465 10 M Lopez(2012)

Ridge Hill RGL −2.5 52.0 199 45 90 R ∗

Trainou TRN 2.11 48.0 131 5 50 100 180 R Lopez et al.(2012)
Angus TTA −3.0 56.6 254 222 R Vermeulen et al.(2005)

independent of the complementary space in the observation
or state space, the optimal tuple of matrices (R, B) follows
the expression below:

E[J o
j ] =

1
2

[
pj − tr(Pj (HK )PT

j )
]

E[J b
j ] =

1
2

[
nj − tr(Pj (In − KH )PT

j )
] (5)

where tr(.) stands for the trace operator, E[J o
j ] (resp. E[J b

j ])

is the expectation of the contribution at the maximumx̂a to
the cost functionJ of the independent subspacej of the ob-
servation (resp. state) space,Pj is a projector from the whole
observation (resp. state) space to the subspacej andpj (resp.
nj ) the dimension of the subspacej . In stands for the identity
matrix in the background space.

One cannot ascertain statistical independence between
subspaces of the observation or of the state space before run-
ning the algorithm. To apply the method, we then make the
following assumptions to divide the observation and the state
spaces into 41 independent subspaces: (1) each measurement
site is independent from all others, (2) at each site, all the ob-
servations during the afternoon (12:00–17:00) are gathered in
one subspace (named “day” period in the following) and all
the remaining observations during the morning and the night
in a second subspace (named “night”); the planetary bound-
ary layer (PBL) during the night is ill-represented by models;
ensuing erroneous vertical mixing is expected to deteriorate
the ability of the CTM to simulate realistic concentrations
during the night; the shared cause of the enhanced errors jus-

tifies the assumed dependency of night-time observations; for
similar reasons, we group the remaining observations during
the afternoon with well-mixed PBL. (3) the LBC are inde-
pendent from other state dimensions, (4) same with the IC,
(5) same with the offset, (6) every aggregated region of emis-
sions is independent from the others.

Doing so, we have 26 independent subspaces within the
observation space (13 sites x day/night) and 15 for the state
space (12 regions + LBC + IC + offset).Desroziers and
Ivanov (2001) proposed an iterative tuning procedure that
converges to a tuple that satisfies Eq. (5); we refer to this pro-
cedure as Desroziers’ scheme (DS). Let us rewrite the cost
function:

Jk(x) =

∑
j

1

(sb
j,k)

2
J b

j,k(x) +
1

(so
j,k)

2
J o

j,k(x) (6)

wheresb
j,k andso

j,k denote the adapted weights for the sub-
spacej at stepk of the iterative procedure to balance the
observations and the background in the cost function.

Desroziers’ scheme is described by the following system
of equations for every stepk:

(sb
j,k+1)

2
=

2J b
j,k(x̂

a)

nj −tr(Pj (In−K kH)PT
j )

(so
j,k+1)

2
=

2J o
j,k(x̂

a)

pj −tr(Pj (HK k)PT
j )

Bj,k+1 = sb
j,k+1Bj,0

Rj,k+1 = so
j,k+1Rj,0

(7)

www.atmos-chem-phys.net/13/7115/2013/ Atmos. Chem. Phys., 13, 7115–7132, 2013
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Bj andRj stand for the diagonal sub-matrices associated to
the subsetj . K k is the Kalman gain matrix calculated with
(Rk,Bk) (see Eq.2). The method implicitly relies on theχ2

distribution of the cost function. The computed tuples then
converges to a tuple filling theχ2 criterion.

We start this algorithm from a tuple(R0,B0) with no phys-
ical assumption, i.e.,R0 = Id andB0 = In. We then stop the
iterative scheme when every subset contribution to the cost
functionE[J o

j ] or E[J b
j ] is less than 1 % away from its theo-

retical expected value (right member of Eq.5); this is equiv-
alent to get aχ2 test greater than 99 %. The algorithm con-
verges in no more than 15 steps (i.e., a couple of minutes on
a standard office computer).

2.2.3 Maximum of likelihood

Desroziers’ scheme (DS) relies on coarse approximations
and, for example, cannot extract the variability of the obser-
vational errors day-by-day and hour-by-hour. The following
method allows the computation of a tuple (R, B) which is
tuned not by block but by component individually. This im-
provement implies computational cost drastically higher than
for DS method, but still affordable (less than a day) in our
case study. In Gaussian assumptions, the likelihood of the
observationsy0 for givenR andB can be written as follows
(Michalak et al., 2005):

p(y0
|R,B) =

e−
1
2 (y0

−Hxb)T(R+HBHT)−1(y0
−Hxb)√

(2π)d |R + HBHT
|

The function diverges to infinity whenR+HBHT
∼ (y0

−

Hxb)(y0
− Hxb)T. But when supposing thatR and B are

diagonal definite positive,S cannot be written as a matrix
R + HBHT. Hence, in these assumptions, one can prove that
the function is bounded and admits a computable maximum
(Burg et al., 1982). A proper (R,B) tuple for the inver-
sion system is necessarily a maximum of the function (Dee,
1995).

For memory limitation reasons, we do not maximise the
function itself, but equivalently its logarithm:

ln p(y0
|R,B) = −

1

2
tr(S−1

R,BS) −
1

2
ln |SR,B| +C

with SR,B = R+HBHT, S= (y0
−Hxb)(y0

−Hxb)T andC

a constant not relevant for computing the maximum of the
function.|.| stands for the determinant operator.

The function maximum cannot be easily computed ana-
lytically in general. Hence, we use an ascending pseudo-
Newtonian method based on the calculation of the gradient of
the log-likelihood. The algorithm converges to a local maxi-
mum (Chapnik et al., 2004), but we have no insurance of con-
verging to the global maximum. The result of the algorithm
can be very dependent from the(R,B) tuple chosen as a start-
ing point. To ensure the robustness of the result, we test this
method with 2 different starting tuples: (1) one constructed

relying on expert knowledge (e.g., diagonal background ma-
trix with variances consistent with inventories specification),
(2) the other with uniform errors of 50 ppb for observations,
the LBC and the offset and 10 % for the emissions. The re-
sults are very similar: the difference between the two errors
related to an observationj does not exceed 5 % and is less
than 1 % in average.

Additionally, to accelerate the convergence of the algo-
rithm, one can notice (details inBurg et al., 1982) that the
log-likelihood is maximum only if(R,B) satisfies:

α =
tr(S−1

R,BS)

d
= 1

Consequently, we forceα to stay close to 1 at each step of
the algorithm by rescaling(R,B) by α. This normalisation is
equivalent to theχ2 test; hence the constrained maximum of
likelihood algorithm necessarily fulfills theχ2 test.

This method makes the observation and background er-
ror variances statistically consistent with the prior difference
betweeny0 andHxb. When assuming thatR andB are di-
agonal, a unique set of variances matches this criterion on
y0

− Hxb. Hence, a maximum total amount ofd pieces of
information is used in the algorithm, while more are avail-
able in the background and the observation operator for the
subsequent computation ofx̂a. A more precise and complete
quantification of the balance between the information used
for the optimisation of the matrices and for the inversion it-
self is difficult in a real case study. A dedicated OSSE (Ob-
serving System Simulation Experiment) could improve our
knowledge in this direction.

2.2.4 Observation space diagnostics

With the two previous methods,R andB are confined to the
sub-space of diagonal matrices. But the errors on the obser-
vations are known to be correlated through theH operator
errors amongst others. Errors on the background are also
correlated, mainly because of shared errors in the inventory
methods and in flux process modelling. We carry out in this
section an algorithm to produce a setup of non-diagonal ma-
tricesR andB.

Inquiring into error correlations requires a huge amount
of information. The available information is not sufficient to
characterise deterministically the full non-diagonal matrices
R andB. This section must then be seen as a way to infer
guidelines for covariance building.

Design on R

Desroziers et al.(2005) showed that the innovation vectors

d̂o
a =

ˆy0
−Hx̂a andd̂o

b =
ˆy0

−H ˆxb should fulfill the follow-
ing equation:

E[d̂o
a(d̂

o
b)

T
] = R (8)
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Equation (8) is valid if and only if (1) the observation op-
erator is linear, (2) the errors are Gaussian and unbiased, and
(3) the matrixHBHT(R + HBHT)−1 is consistent with the
statistics of the background and observation errors.

In order to build a matrixR consistent with Eq. (8), we test
an iterative algorithm similar to Desroziers’ scheme using the
following instruction for everyk:R′

k+1 = E[d̂o
a(d̂

o
b)

T
]

Rk + 1 = χ2(R′
k+1,Bk) · R′

k+1

Bk + 1 = χ2(R′
k+1,Bk) · Bk

(9)

The tuple is normalised by the associatedχ2 test in order
to constrain better the algorithm.

The expectation could be calculated explicitly as a combi-
nation ofRk, Bk andH. However, as suggested byDesroziers
et al. (2005), the exact iterative scheme is not expected to
converge. In our case, we indeed found no convergence.
Therefore, we use a Monte Carlo evaluation of the expec-
tation with 50 000 perturbations ofy0 and xb with Gaus-
sian distribution of covariancesRk and Bk. The tuples of
covariance matrices generated with the Monte-Carlo algo-
rithm have likelihood values bigger (hence closer to the
maximum of likelihood) that the one inferred from the ex-
plicit algorithm. Their likelihood (−480) is also significantly
higher than with the diagonal tuple calculated in Sect.2.2.3
(∼ −15 000). The non-diagonal tuple is then more ‘likely’ in
the sense of Sect.2.2.3compared with the diagonal one.

Any inconsistency in the requirements of Eq. (8) will make
the expectation non-symmetric positive definite. In particu-
lar, biases in the observations carry information that is con-
sidered by the algorithm as random errors. The built matrices
are then partly influenced by the intrinsic biases in the sys-
tem. However, a simple diagnostic on the spectrum shows
that after 50 000 perturbations, only less than 0.1 % of the
Eigen values are negative. The biases that create asymme-
try in the matrix then do not seem to significantly impact
our case. This could not always apply to other frameworks.
The limitation of the algorithm is to build up statistics from

a single occurrence ofˆy0 and ˆxb and therefore is not fully
generic.

But since asymmetry does not seem to be critical in our
case, we rebuild a symmetric semi-definite positive matrix
by correctingR′

k+1 spectrum. We start the algorithm from
two different tuples of matrices: the one which maximises
the log-likelihood in the diagonal assumption, and another
with the sameB but with R = Id. The convergence is slower
with the second starting tuple but the two optimum tuples are
similar.

Calculating a matrix expectation of dimension 5000×5000
with only 50 000 Monte-Carlo perturbations is very unstable.
Additionally, the perturbations on the observations are gen-
erated fromy0, whereas it should be computed from the un-
known perfect unperturbed observation vectorỹ. Hence, the
closerRk gets to the optimal value, the weaker is the approx-

imation based ony0. For this reason, after a few steps of im-
provement of the log-likelihood value, the algorithm quickly
diverges. We then keep the last step before the beginning of
the divergence as a guess for the true covariance matrices tu-
ple.

Design on B

Desroziers et al.(2005) also reported an equation constrain-
ing B in the observation space:

E[d̂a
b(d̂

o
b)

T
] = HBHT (10)

with the innovation vector̂da
b = H(x̂a

−
ˆxb). The expectation

is again based on a Monte-Carlo estimation. We compute an
iterative scheme similar to that developed in Eq. (9) with also
a normalisation by theχ2 test. We use the tuple calculated
above as a starting point.

Equation (10) relies on the same assumptions as Eq. (8).
In particular, bias and other mismatches betweenHBHT(R+

HBHT)−1 and the correct statistics can induce inconsistent
asymmetries that must be corrected. Another critical point
in building B from constraints in the observation space is
that the computed expectation could be outside the ensem-
ble{HBHT / B symmetric definite positive}. We then project
the expectation onto this structure to recover a compatibleB
matrix.

Because of the Monte Carlo and the indirect estimation of
B, the instability is even sharper than for the computation of
R. We then do a unique iteration of the algorithm to get an
evaluation of the potential optimal correlation coefficients in
B.

3 Results

We run the three algorithms described in Sect.2.2 to infer
a best guess for the optimum tuple (R, B) of the error co-
variance matrices. In the following section, we describe the
shape of the calculated matrices in regard to known physical
patterns of errors. We will refer to the diagonal tuple com-
puted from the Desroziers’ Scheme (resp. the Maximum of
log-likelihood) as (RDS, BDS) (resp. (RML , BML )); the non-
Diagonal tuple from the observation space algorithm will be
referred to as (RND, BND).

3.1 Patterns in the error variances for the 3 methods

In Fig. 2, the variances of the observation errors in the 3
methods are compared for the period after the leak start. For
the ML and ND algorithms, the variances of the observa-
tion errors are averaged along the same subspaces as in DS
method (see Sect.2.2.2) to be comparable. Most of the obser-
vation errors remain within the same interval (5–20 ppb) with
the 3 methods. Their magnitudes are comparable with other
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Fig. 1: Spatial extension of the simulations with the CTM CHIMERE: observation sites marked by

yellow diamonds and white legends; the leak position in the northern part of the North Sea is pointed

by the green pentagon. The fluxes, the spatial distribution of which is interpolated from EDGAR

v4.2 inventory, are aggregated by regions figured by the coloured area. The red edges of the domain

denote the spatial distribution of the lateral boundary condition components.

Fig. 2: Comparison of the observation errors calculated by the 3 methods presented in Sect. 2.2 for

the inversion window after the leak start (25/03/2012). The errors are averaged on two periods each

day: “day” (12:00 to 5:00 p.m.) and “night” (the remaining hours of the day) for comparison to DS

method. Values out of the graph window are printed on the matching bar.

31

Fig. 2. Comparison of the observation errors calculated by the 3
methods presented in Sect.2.2 for the inversion window after the
leak start (25 March 2012). The errors are averaged on two periods
each day: “day” (12:00 to 17:00) and “night” (the remaining hours
of the day) for comparison to DS method. Values out of the graph
window are printed on the matching bar.

studies which build the errors from physical considerations
(e.g.,Bergamaschi et al., 2010). At most sites (GIF, JFJ and
KAS excepted), the 3 methods attribute averaged observa-
tion errors that follow the same order: DS> ML > ND. The
errors fromRML are in average 34 % smaller than the errors
in RDS. The error variances inRND are calculated to be even
smaller (54 % less than inRDS in average). In the Bayesian
unbiased framework, the inversion with the tuple from the
maximum of likelihood is then expected to be more con-
strained by the observations than the one from Desroziers’
scheme. The non-diagonal tuple seems more constrained by
the observations than the other two, but the covariances make
it difficult to precisely compare only the variances. The 3
methods share the same day/night patterns at all sites apart
from the 3 mountain sites (JFJ, KAS and PUY) and the two
sites BIS and BIK: compared to the errors during the “night”
(17:00–00:00 plus 00:00–12:00), the errors during the “day”
(12:00–17:00) are 25 % (resp. 23 % and 31 %) smaller for
the DS (resp. ML and ND) method. The errors are consis-
tently smaller when the PBL is well developed, i.e., when
the local emissions are quickly mixed in the atmosphere, and
hence when the CTM more realistically simulates the atmo-
spheric concentrations. At the mountain sites (JFJ, KAS and
PUY; see Table1), the rough DS method does not calculate
the same patterns as the other two; this primarily suggests
that, for the sites mostly located in the free troposphere in
spring (characterised by synoptic variability), the averaging
on “day” and “night” intervals is less relevant than for the
sites influenced by the PBL. Additionally, in mountain sites,
the low-precision DS method disagrees with the other two
because it cannot compute the errors that occur when the
PBL height is close to the site altitude and when polluted air
masses can be locally uplifted to the site. This phenomenon
occurs at time scales that are smaller than and not synchro-
nized with the partitioning made in Desroziers’ scheme, that

makes the DS method unable to accurately detect this source
of error. On the opposite side, the two other methods which
are handled individually each observation can detect this
phenomenon and take it into account in the error modelling,
giving averaged errors that are consistent with each other.

Regarding the background, the attributed errors partly bal-
ance the confidence attributed to the observations. For the
two comparable diagonal algorithms (ML and DS), the ML
method better optimises the use of the observations than DS
does on large subspaces. To avoid corrections dominated by
the observations, background errors 7 times smaller than for
the DS algorithm are then computed by the ML algorithm.
On the other hand, no clear general pattern appears with the
tuple (RND, BND), compared with the other two. While the
errors on the observations are on average smaller than the
ones calculated with the ML method, the background errors
with the ND method are of the same magnitude as the DS
ones, i.e., higher than the ML ones. With non-diagonal co-
variance matrices, the variances by themselves are insuffi-
cient to identify all the properties of the errors. The non-
diagonal elements inRND andBND, characterising correla-
tions of errors, must be taken into account to understand the
error patterns. Strong negative (resp. positive) correlations
are expected to increase (resp. decrease) the average confi-
dence in the background. We analyse the effects of these cor-
relations more precisely in Sect.3.3.

3.2 Temporal variability and diurnal cycle of the
observation errors

We focus here on the hour-by-hour variability of the ob-
servation errors; as a consequence, the DS method is not
commented in this section. The variability in the variances
is comparable inRML andRND (r = 0.89; linear regression
coefficient:λ = 0.97). While no physical assumptions have
been added to the algorithms, we notice that the observation
errors follow known physical patterns for both algorithms.
One of these is the source of errors related to the PBL height
mis-estimation and the vertical mixing parameterization in
CTMs. In Table2, we show for each station the linear corre-
lations between the modelled PBL heights and the calculated
error variances for ML method. We also compute a loga-
rithm transformation that shows that some PBL errors follow
an exponential decay: exp(−hPBL/h0), with hPBL the mod-
elled PBL height andh0 a reference height. The magnitude of
these calculated reference heights is 1000 m for the sites with
significant correlations; above this reference threshold, the
PBL can be approximately considered as well mixed. Loga-
rithmic correlations are of the same magnitude in ND method
at the sites with smallp values (p < 10−2; e.g., logarithm
correlation: at CRPr = −0.64, at GIFr = −0.57, at MHD
r = −0.37). The logarithm correlations are stronger than the
linear ones in the sites where thep value is small (< 10−2),
except at RGL where the linear fit is better. For these sites (in-
cluding RGL), we approximate the errors by the exponential

Atmos. Chem. Phys., 13, 7115–7132, 2013 www.atmos-chem-phys.net/13/7115/2013/



A. Berchet et al.: Error statistics for atmospheric inversion 7123

Table 2.Linear and logarithmic correlations (r) between calculated
error standard deviation and the simulated PBL height (given by
ECMWF). At each site, the calculation ofr and thep value are car-
ried out withR from ML method. Somep values are very small
because calculated on large samples of observations. Error contri-
bution (µ) for log-regression is the mean ratio between the fit and
the computed errors, when the correlation is significant.

Stat
Linear regression Log-regression

r p r p µ

BIK 0.10 0.06 0.8 0.16 –
BIS 0.13 0.01 0.11 0.04 –
CRP −0.33 2.6× 10−10

−0.60 1.7× 10−35 60 %
GIF −0.34 1.3× 10−8

−0.50 4.3× 10−18 50 %
JFJ −0.04 0.5 −0.05 0.36 –
KAS −0.01 0.8 −0.10 0.08 –
MHD −0.41 2.9× 10−15

−0.47 2.1× 10−19 52 %
OPE −0.31 5.6× 10−22

−0.36 1.5× 10−28 54 %
PUJ −0.04 0.5 0.05 0.33 –
PUY 0.06 0.5 0.01 0.84 –
RGL −0.17 9.1× 10−6

−0.12 0.002 58 %
TRN 0.21 7.9× 10−11 0.02 0.59 –
TTA −0.64 2.1× 10−22

−0.72 2.3× 10−29 41 %

fit and estimate the relative contribution of the PBL error as
the ratio between the fit error and the total error. The PBL
error then seems to account for about half of the total error.

The strong correlations between the PBL height and the er-
rors on the observations can also be partly related to system-
atic errors (especially during the night) in the CTM, which
are difficult to distinguish from random ones based on the
available data. The systematic nature of some errors can con-
flict with the hypothesis of random unbiased errors in the
inversion framework:ε = y0

− Hx ∼N (0,R) in the unbi-
ased framework would becomeε ∼N (η,R′) with a system-
atic biasη. Our methods will then try to findR such as
R ∼ R′

+ ηηT. Though statistically consistent with all the
available pieces of information, such a biased formulation of
the problems will have critical effect on the inversion results
(e.g.,Dee, 1995). Therefore, the biases have to be taken into
account and our method seems to provide an efficient tool to
detect them (e.g., high redundant errors associated to night-
time vertical mixing) in order to potentially fix them before
the inversion.

In Fig. 3, the statistics (median and interquartile range)
of the errors are displayed by layers of 250 m forhPBL for
the sites with significant correlations as calculated in Ta-
ble 2 on the one side and for the mountain sites on the other
side. The anti-correlation betweenhPBL and the errors is con-
firmed and a more complex behaviour appears for mountain
sites. For example, the relation to the PBL is inverted for the
Kasprowy mountain site (KAS; see Fig.3): the site is set on
the summit of a mountain ridge in vicinity of a region with
high CH4 emissions due to coal mining. The resolution of

Fig. 3: Statistics of the errors projected along ECMWF-simulated PBL height for ML method: me-

dian and inter-quartile gap per 250m-high layer. (Left) sites with strong correlations as calculated in

Table 2; not displayed site RGL exhibits the same patterns but with higher errors. (Right) Mountain

sites with influence from the PBL less prevailing. Dashed lines refer to the station altitude in the

model; JFJ is above the maximum simulated PBL height.

Fig. 4: Mean temporal auto-correlation. For each site, are figured the average correlations of all the

observations from 12:00 to 7:00 p.m. with the following 48 h. Only the sites with a local maximum

at 24h are figured: the 6 sites with strong correlation with the PBL (in Table 2) and KAS mountain

site. Solid lines for rural sites; dashed (resp. dotted) lines for coastal (resp. mountain) sites.
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Fig. 3. Statistics of the errors projected along ECMWF-simulated
PBL height for ML method: median and inter-quartile gap per
250 m-high layer. (Left) sites with strong correlations as calculated
in Table2; not displayed site RGL exhibits the same patterns but
with higher errors. (Right) Mountain sites with influence from the
PBL less prevailing. Dashed lines refer to the station altitude in the
model; JFJ is above the maximum simulated PBL height.

the model makes the simulation of the upward winds from
the valley impossible. Then, an observation can be notice-
ably influenced by polluted air masses from the PBL while
the model considers the observation to be in the free tropo-
sphere, and inversely; that explains the peak in errors when
the modelledhPBL is close to the altitude of the site in the
CHIMERE model:∼ 1400 m above the local pixel orogra-
phy level. The mountain site at Puy-de-Dôme (PUY) appears
to pose the same problem in other studies (Broquet et al.,
2011); but in the particular meteorological situation of our
window of inversion (2 weeks in spring), the issue does not
clearly appear.

Another identified source of errors (not shown in the fig-
ures) is the temporal and spatial mismatches which can oc-
cur in situations of steep gradients of concentrations when
the air masses are changing, like in frontal systems. Air mass
changes occur 0 to 3 times during each inversion window of
two weeks at the sites. The quantification of these errors is
uncertain during night-time since it is difficult to separate the
errors related to the PBL and the errors due to the gradients
(e.g., mismatches or numerical diffusion). So, we focus on air
mass changes occurring during daytime. In these cases, the
computed errors exceed 4 times the mean error during day-
time; the increased errors are then directly attributable to the
inability of the model to simulate high-resolution phenom-
ena. The relationship between the observation errors and the
temporal evolution of the 3-D meteorological fields can be
complex; our method allows a relevant estimation of the er-
rors specifical to the meteorological conditions at each site.
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Fig. 3: Statistics of the errors projected along ECMWF-simulated PBL height for ML method: me-

dian and inter-quartile gap per 250m-high layer. (Left) sites with strong correlations as calculated in

Table 2; not displayed site RGL exhibits the same patterns but with higher errors. (Right) Mountain

sites with influence from the PBL less prevailing. Dashed lines refer to the station altitude in the

model; JFJ is above the maximum simulated PBL height.

Fig. 4: Mean temporal auto-correlation. For each site, are figured the average correlations of all the

observations from 12:00 to 7:00 p.m. with the following 48 h. Only the sites with a local maximum

at 24h are figured: the 6 sites with strong correlation with the PBL (in Table 2) and KAS mountain

site. Solid lines for rural sites; dashed (resp. dotted) lines for coastal (resp. mountain) sites.
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Fig. 4. Mean temporal auto-correlation. For each site, are figured
the average correlations of all the observations from 12 to 7 p.m.
with the following 48 h. Only the sites with a local maximum at
24 h are figured: the 6 sites with strong correlation with the PBL (in
Table2) and KAS mountain site. Solid lines for rural sites; dashed
(resp. dotted) lines for coastal (resp. mountain) sites.

3.3 Correlations in the observation errors

If we focus on the non-diagonal terms ofRND, a large part
(64 %) of the correlation coefficients are very large (|r| > 0.9
with even positive and negative repartition). Strong posi-
tive and negative correlations mark a redundancy of the in-
formation provided by the observations. We then group the
available observations into classes of redundant information.
Amongst each class, we chose|ri,j | > 0.9 between every tu-
ple (i,j) of observations. Following this criterion, we divide
the set of observations into 625 balanced classes, figuring
625 independent pieces of information given by the observa-
tions. This figure can be compared to other studies which fil-
ter out part of the data before the assimilation. For example,
Bergamaschi et al.(2010) proposed to keep one observation
per day and per site only, to avoid an over-constraining due to
spatial and temporal correlations; in our case, it would have
meant keeping 195 observations (i.e., 3 times less than the
result of ND algorithm). Our method suggests keeping more
independent pieces of information but the amount remains
low compared to the total set of observations (∼ 15 % of the
∼ 5000 observations). Then, in our system with a drastically
reduced state space dimension, the network over-constrains
the fluxes; but this result is very dependent of the analytical
framework with aggregated regions and is unlikely to apply
to full-resolution configurations. In systems with state vec-
tors larger than the observation vector, one would expect that
the operatorH will not reduce the amount of independent
pieces of information that can be assimilated so much.

The temporal structure of the error correlations is shown
in Fig. 4. At each site, the mean time auto-correlations of
the errors at lags 0 to 48 h are calculated. The average auto-
correlations are computed with starting hours from 12:00 to
19:00 only; the patterns for the other hours of the day are
the same, but with mean correlations that are closer to 0. It

appears that the absolute correlations quickly decrease be-
low |r| < 0.25 in about 5 h at each site. In Fig.4, we display
the sites with a day-to-day significant correlation. For these
sites, we observe a maximum of correlation at 24 h, related
to processes with a diurnal cycle. But this is not necessarily
the PBL diurnal cycle since every site with strong correla-
tions between the PBL height and the errors does not exhibit
the 24 h peak. The 24 h periodic correlation could be related
to the surface temperature diurnal cycle for instance or any
other diurnal cycle in the atmospheric state.

A spatial structure of the observation covariances could
also have been expected (Lauvaux et al., 2009) at sites close
to each other such as GIF and TRN, which are about 100 km
distant. But the calculatedRND covariance matrix does not
exhibit any global spatial patterns. Distant observations can
be strongly correlated, but the dominant underlying process
is likely related to the PBL height.

3.4 Correlations in the background errors

3.4.1 The lateral boundary conditions (LBC)

In BND, the components related to the LBC are found to
be independent (|r| < 0.1) from the ones of the aggregated
fluxes. Amongst the LBC, two independent groups of regions
appear. Within each group, the components are very strongly
correlated or anti-correlated (|r| > 0.9) with the other com-
ponents of the group and are independent from the ones not
in the group. About 10 % of the LBC cannot be attributed
to any of the two groups. In Fig.5, the boundary regions
have been sorted accordingly to these groups. The colours in
the figure denotes this classification: blue and red for the two
groups and green for the few remaining boundaries with mild
correlations with other regions. The boundaries have also
been sorted according to the influence of the assimilation of
the observations on them. We quantified this influence by us-
ing the diagonal elements of the matrixKH (see Eqs.2 and3
in Sect.2.1.1) which are necessarily in the interval[0,1]. We
highlight the regions strongly influenced (KH i,i > 0.9; “+”
sign) against the others (“o” sign). Then it comes that the re-
gions unseen (resp. constrained) by the inversion are strongly
correlated with each other and not correlated with the con-
strained (resp. unseen) regions.

Drawing conclusions about the signs of the correlations
between the boundary components is more difficult. Within
the “unseen” group, none of the three algorithms can re-
trieve information about these components of the state vector
since the corresponding elements inH are negligible com-
pared to the others. Thus, the positive and negative correla-
tions are likely to be numerical artifacts in the algorithms.
For the constrained group, a large negative correlation be-
tween two regions means that the prior mean contribution
of the two regions is well constrained. Equivalently, the two
LBC components are well known on average but the two in-
dividual contributions are not separated from each other; this
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Fig. 5: Correlations between the errors on the LBC elements of the background vector for the two

weeks after the leak start, calculated from BND. Dates are the starting dates of every 3-day window

of uniform constant boundary concentrations. The bottom boundaries span from the surface to

∼700 hPa; up is the remaining part of the vertical direction. Red and blue highlight 2 classes of

boundaries very strongly correlated (|r|> 0.9). Green boundaries are not significantly correlated to

any other regions. “+” (resp. “o”) signs corresponds to boundaries strongly (resp. lightly) influenced

by the inversion (criterion of selection described in Sect. 3.4.1).

Fig. 6: Correlations between the errors of the background aggregated regions for the non-diagonal

matrix BND for the two weeks after the leak start. Refer to Fig. 1 for the region names, location and

extension.
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Fig. 5. Correlations between the errors on the LBC elements of the
background vector for the two weeks after the leak start, calculated
from BND. Dates are the starting dates of every 3 day window of
uniform constant boundary concentrations. The bottom boundaries
span from the surface to∼ 700 hPa; up is the remaining part of
the vertical direction. Red and blue highlight 2 classes of bound-
aries very strongly correlated (|r| > 0.9). Green boundaries are not
significantly correlated to any other regions. “+” (resp. “o”) signs
corresponds to boundaries strongly (resp. lightly) influenced by the
inversion (criterion of selection described in Sect.3.4.1).

may indicate that the contributions are similar in magnitude
with simultaneous transitions observed at the sites, hence not
discernible. On the opposite, a positive correlation reveals a
constraint on the difference of the contributions, hence on the
spatial and/or temporal gradients in the LBC. For example,
for two LBC regions positively correlated and upwind the
observations, if a clear transition between the contribution
of one region and the other is observable from the network,

Fig. 5: Correlations between the errors on the LBC elements of the background vector for the two

weeks after the leak start, calculated from BND. Dates are the starting dates of every 3-day window

of uniform constant boundary concentrations. The bottom boundaries span from the surface to

∼700 hPa; up is the remaining part of the vertical direction. Red and blue highlight 2 classes of

boundaries very strongly correlated (|r|> 0.9). Green boundaries are not significantly correlated to

any other regions. “+” (resp. “o”) signs corresponds to boundaries strongly (resp. lightly) influenced

by the inversion (criterion of selection described in Sect. 3.4.1).

Fig. 6: Correlations between the errors of the background aggregated regions for the non-diagonal

matrix BND for the two weeks after the leak start. Refer to Fig. 1 for the region names, location and

extension.
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Fig. 6. Correlations between the errors of the background aggre-
gated regions for the non-diagonal matrixBND for the two weeks
after the leak start. Refer to Fig.1 for the region names, location
and extension.

the gradient between the two will be well fixed, whereas the
total balance will be unclear and biased by all the other com-
ponents of the state vector. The sign of the correlation then
mainly depends on the meteorological conditions at the site
and of the air mass history when it is observed. It can be very
variable and virtually unpredictable with a general formula.
Our method gives an objective estimation of the issue.

3.4.2 The aggregated emissions

The error correlations for the aggregated regions of emis-
sions are displayed in Fig.6. Negative correlations occur
only between regions that are not upwind any sites (i.e., in
Fig.6, for the period after the leak start: “ATL”, “SCA”, “SE”,
and “SOU”; see Fig.1; e.g.,r = −0.36 between “SOU” and
“SE”). As for LBC, interpreting the correlations between un-
constrained regions is hazardous. On the opposite, the posi-
tive error correlations between the regions close and upwind
the sites (for example,r = 0.45 between the neighbouring
regions NSS and MGP) denote the confidence in the back-
ground flux gradients amongst these regions but not neces-
sarily in the total flux balance. The confidence in the pre-
scribed gradients in emissions is consistent with the method-
ology used to build the inventory maps. Activity maps by
sectors are convolved with emission factors. In Europe, the
declared activity is considered reliable. Then, the emission
factors, hence the overall magnitude of the emission, is a
more critical source of uncertainties than the spatial distri-
bution.

4 Flux inversion: the Elgin leak case

From here, we use the optimised tuples of matrices to actu-
ally compute the inversion with Eqs. (2) and (3).
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4.1 Physical relevance of the inverted fluxes

In this study we have selected a domain for the simulations
which spans over a region much bigger than the network cov-
erage area. This choice is expected to decrease the errors due
to the coarse approximations made on the LBC. But, in re-
turn, we do not expect the results to be accurate on the outer
regions because of the inability of the inversion to either con-
strain unobserved regions, or distinguish the contributions
from these regions and from the LBC when they are all up-
wind the observations.

The three methods rely on the assumption of the Gaus-
sianity of all the errors. In particular, this assumption theo-
retically allows surface fluxes to be negative. With the opti-
mised state vectorxa calculated with (RDS, BDS), increments

(defined as
(x̂a)j −(xb)j

(xb)j
) of −150 % and below appear on the

emissions in regions close to the sides of the domain. Hence
the inversion generates strongly negative surface fluxes, due
to inaccurate separations between emissions and boundary
condition signals. Net surface uptake is physically not ac-
ceptable for CH4 in Europe where anthropogenic emissions
are largely prevailing (Bergamaschi et al., 2010) compared
to soil uptake. Then, despite its very low-computation cost, a
simple DS can not be applied unless one uses it on a larger
number of subsets and with additional physical constraints.

In regard of the LBC issue, the other two algorithms (ML
and ND) seem reliable. The ML algorithm does not compute
absolute increments over 35 % for these regions and keeps
posterior uncertainties compatible with a 0 % increment (i.e.,
no change from the prior flux). The non-diagonal tuple (RND,
BND) leads to increments incompatible with the positivity of
the fluxes in some of the outer regions but in an acceptable
range (> −10 %) considering the posterior errors in the ma-
trix Pa for these regions.

Moreover, the diagonal algorithm DS and ML do not com-
pute any significant posterior error correlation (r2 < 0.1) be-
tween outer regions and the LBC; inversely, the ND tuple
explicitly estimates strong posterior error correlations for
these components (numerous correlation coefficientsr2 >

0.5). Hence, ND method can account for the erroneous sepa-
ration from the outer emissions and the LBC.

4.2 Using the optimised tuples (RND, BND) for flux
inversion

The non-diagonal tuple reliably takes the LBC ill-separation
into account. We then use the inversion carried out with this
tuple to analyse the posterior fluxes on the regions close to
the network that are better constrained than the outer ones.
The increments for the two periods (15-day long each) before
and after the leak start are shown in Fig.7. The posterior
errors are not displayed because they do not exceed 1 % for
most regions (maximum of 1.1 % for “NSN” region before
the leak start).

Fig. 7: Increments on the emissions for the regions not contiguous to the boundaries in t d−1 (large

bars) and in % (thin bars) of the initial total with the non-diagonal tuple (RND, BND). The two

temporal windows of inversion are the two weeks before (blue) the leak start and the two weeks

after (red). Acronyms in Fig. 1.

Fig. 8: Sensitivity of the inversion to each site as the sum of the diagonal elements of the sensitivity

matrix S (details in Sect. 5.2) associated to the site. The figures are normalized by the total influence

of the observations, i.e. the trace of S.
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Fig. 7.Increments on the emissions for the regions not contiguous to
the boundaries in t d−1 (large bars) and in % (thin bars) of the initial
total with the non-diagonal tuple (RND, BND). The two temporal
windows of inversion are the two weeks before (blue) the leak start
and the two weeks after (red). Acronyms in Fig.1.

These surprisingly small posterior uncertainties can seem
physically inconsistent. But the figures apply to very large
regions. Hence, uncertainties on pixels are expected to be
smoothed by the aggregation. Moreover, as CH4 emissions
in spring in Europe are mainly anthropogenic and well doc-
umented, even the pixel errors could be relatively low.

Before the leak start, the total emissions from these in-
ner regions (“NSS”, “NSN”, “MGB”, “FRA” and “CTR”) are
corrected from 52 455± 16 838 t d−1 to 51262± 1999 t d−1,
that is to say an increment of−2.3± 3.9 %. After the
leak start, the correction to the inner budget is from
52 455± 12 431 t d−1 to 48 062± 48 t d−1, i.e. an increment
of −8.4± 0.1 %. The inversion of the CH4 emissions over
the inner regions suggests an over-estimation in the invento-
ries which actually were not designed for year 2012 but for
2008. The decrease in the emissions by 3200± 2000 t d−1

(i.e., −6.1± 3.8 % reported to the prior total balance) be-
tween the two inversion windows remains consistent with the
uncertainties of the inventories and can be explained by the
typical variability of the emissions. But one should recall that
the results are averaged on aggregated regions, whereas the
areas of influence of the sites do not necessary overlay the
whole region (see Sect.5.1). The inversion corrects simu-
lated concentrations, not considering the implications in re-
gards to absolute emissions. The increments can be amplified
and suffer from aggregation errors and sampling heterogene-
ity (Kaminski et al., 2001). More critically, the aggregation
errors on the areas that are not within the footprint of the
network cannot be recovered from our methods since the op-
eratorH and the covariance matrixB are aggregated before
the algorithms are run.

Focusing on the estimation of the CH4 release from the
Elgin platform, the inversion suggests an increase in the re-
gional emission where the leak occurred (“NSS” region) of
+1472± 30 t d−1 (the errors on the difference is calculated
assuming that the two inversion windows are independent).
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But the two parts of the North Sea are expected to be ill-
distinguished by the system, as confirmed by a posterior cor-
relation coefficientr of −0.78 between the errors in the two
regions after the leak start. Then the flux that can be at-
tributed to the leak is defined as the difference of the emis-
sions after and before the leak start over the whole North Sea
area. Our inversion computes a flux of+406± 33 t d−1. The
inversion detects an increase of emissions from the direction
of the leak, but fails to unambiguously affect the increased
flux to the proper region. The figure we compute is of the
same magnitude (3 times higher) than the estimation given
by the operator and does not exceed 18 % of the background
emissions related to oil and gas extraction in the North Sea.

Our results also reveal a high dependency to the meteoro-
logical situation during an inversion window. The ratio be-
tween the increment and the posterior errors on the emis-
sion budget in the inner regions is very different for the
two periods (∼ 1 before and� 1 after the leak start). The
reconstructed error on the total budget largely depends on
the correlation coefficients inPa. For the period before the
leak start, most posterior correlations are large and positive
(r > 0.9). The gradients are then well constrained while the
total budget stays uncertain. On the opposite, after the leak
start, neighbouring regions exhibit negative correlations by
pair (e.g., “NSN” – “NSS”, “MGP” –“GBT”). The assimila-
tion of the observations cannot separate the contribution from
these close regions, but it leads to a good reduction of the er-
ror on the total balance. These two different behaviours may
be related to different synoptic regimes during each inversion
window: before the leak start, an anticyclone was laying on
central and western Europe; after the leak start, air masses
coming from North Europe vented the domain.

5 Discussion

5.1 Limitations and hypothesis probation

All the results depend on strong statistical and physical hy-
potheses, which may not all be robust. First, we show in
Sect.3.1that the assumed Gaussian errors of the background
can produce physically inconsistent inverted fluxes. Adding
Lagrangian correcting factors (e.g.,Göckede et al., 2010) to
the cost function (Eq.1) can ensure physically consistent
fluxes. But that would alter the algebraic properties of the
problem and make the implementation of our methods more
complex. With regions that act as buffers against the uncer-
tainties on the LBC, the ND methods proved to acceptably
deal with the issue.

Second, all CTMs suffer from weaknesses and errors in
their parameterizations and numerical scheme. The induced
errors can be systematic and not only random, as suggested
in Sect.3.2. They should then be considered as a biasη in the
observational errorsε = y0

−Hx ∼N (η,R′). Further inves-
tigations on the effects of the parameterizations, the resolu-

tion and the inputs to the CTM shall be carried out to quan-
tify and fix as much as possible the biasη. More specifically,
in Sect.3.2, we showed that very high diagnosed error vari-
ances during the night could be related to systematic state-
dependent biases in the CTM vertical mixing and in PBL
modelling.

Third, aggregating fluxes within bigger regions implicitly
implies full correlations of the errors on the background in
each region. Despite this strong assumption, our methods are
supposed to diagnose the error on the aggregated fluxes that
are within the footprint of the network. On the opposite, the
aggregated regions that are partly within and partly outside
the network footprint will exhibit strongly biased diagnosed
errors and increments.

Kaminski et al.(2001) studied the issue and found poten-
tial errors of the same magnitude as the fluxes themselves.
A better choice of the resolution and of aggregated regions
considering the prior fluxes and the transport patterns (e.g.,
Wu et al., 2011) during the window of inversion should sig-
nificantly improve the results of the methods.

Despite these weaknesses in our methods, the optimal tu-
ple of covariance matrices gives better results than a tuple
built on expert considerations: either these expert-built tu-
ples, which are most of the time diagonal, are similar to
(RDS,BDS) that causes inconsistent negative CH4 fluxes, or
the observation errors are enhanced to reduce their impact
on the inversion; but in this latter configuration applied to
our inversion windows, the corresponding inverted fluxes re-
main close to the prior ones and the flux uncertainties are not
noticeably reduced. Our objectively calculated tuple gives
better inversion results, with reduced posterior uncertainties.
Moreover, some of the computed error patterns are generic
and are transferable to other larger systems. In this study,
we chose a particular representation of the complete full-
resolution state vector. Most errors represented by the covari-
ance matrixR are independent of this representation (Boc-
quet et al., 2011). As a consequence most results onR will re-
main valid in the framework of a full-resolution state vector.
The recovery of the errors of the non-aggregated background
vector are more ambiguous and only large patterns could be
inferred for finer resolutions. Additional hypotheses must be
made on the shape of the full-resolution background errors to
deduce their values from the aggregated matrix. Our methods
can then be seen as a way to simplify and project problems
with large state vectors in order to infer the patterns of the
errors with relatively small computation costs.

5.2 Implications for data selection

The framework we chose allows the explicit computation of
the sensitivity of the inversion to each observation. We fol-
low Cardinali et al.(2004) and calculate the influence ma-
trix, which gives the effect of a small change ofy0 on Hx̂a:
S= (R + HBHT)−1HBHT. For every observationy0

j , high
observation errors reduce the contribution of the observation
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Fig. 7: Increments on the emissions for the regions not contiguous to the boundaries in t d−1 (large

bars) and in % (thin bars) of the initial total with the non-diagonal tuple (RND, BND). The two

temporal windows of inversion are the two weeks before (blue) the leak start and the two weeks

after (red). Acronyms in Fig. 1.

Fig. 8: Sensitivity of the inversion to each site as the sum of the diagonal elements of the sensitivity

matrix S (details in Sect. 5.2) associated to the site. The figures are normalized by the total influence

of the observations, i.e. the trace of S.
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Fig. 8. Sensitivity of the inversion to each site as the sum of the
diagonal elements of the sensitivity matrixS (details in Sect.5.2)
associated to the site. The figures are normalised by the total influ-
ence of the observations, i.e., the trace ofS.

j to the total inversion. On the opposite, high local contribu-
tions tend to enhance the amount of information the inversion
can extract from a single observation. The sensitivity matrix
S encompasses both these compensating effects. In Fig.8,
each site is colored according to its contribution to the inver-
sion, calculated by adding all the diagonal terms ofS asso-
ciated to the site. KAS and JFJ have contributions 2.5 times
higher than the average contribution, related to their situa-
tions in the free troposphere and the constraints they give on
the LBC. As a site filling a gap in the observations, PUJ also
has a strong contribution (1.5 times the average). On the other
hand, GIF, TTA and PUY are very close to the core of the
network. The algorithm attributes negligible contributions to
these sites in favour of the other sites. Totaling the influence
of the whole set of observations, we get the figure of about
50 % of the posterior state vector fixed by the observation;
the other half comes from the background.

Usually, inversion systems assimilate only a few hours of
observations per day, while efforts are made to monitor the
atmospheric composition continuously. For example,Berga-
maschi et al.(2010) chose to average 3 h of observation per
day and per site (bands in Fig.9a). This choice is justified by
the confidence given to the model during the afternoon when
the vertical mixing in the PBL is strong. Flagging out the
other data may be acceptable when inquiring into patterns at
the continental scale, but one needs more information at the
local and regional scales. In Sect.3.1, we show that the obser-
vation errors during the day are only 30 % lower than during
the night, though this figure is mitigated by non-negligible
systematic biases during the night. This small difference sug-
gests that night observations could reasonably be assimilated
if the biases had a smaller impact.

In Fig. 9a, the sensitivity by site of each hour of the day is
shown. Apart from MHD, the usual intervals of selected data

(a) Diurnal cycle of sensitivity for all sites.

(b) The same as Fig. 9a for 5 plain sites.

Fig. 9: Total sensitivity per site computed for each hour of the day (time UTC). Details on the

sensitivity computation are described in Sect. 5.2. A sensitivity of 1 roughly corresponds to the

constraint on 1 degree of freedom of the system. The green (resp. red) band highlights the interval

of data selection generally used in most global inversion systems for the plain (resp. mountain)

observation sites. Solid lines for rural sites; dashed (resp. dotted) lines for coastal (resp. mountain)

sites.
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Fig. 9. Total sensitivity per site computed for each hour of the day
(time UTC). Details on the sensitivity computation are described in
Sect.5.2. A sensitivity of 1 roughly corresponds to the constraint on
1 degree of freedom of the system. The green (resp. red) band high-
lights the interval of data selection generally used in most global
inversion systems for the plain (resp. mountain) observation sites.
Solid lines for rural sites; dashed (resp. dotted) lines for coastal
(resp. mountain) sites.

(green band for the plain site, blue for the mountain ones)
do not exhibit significantly higher sensitivity in the inversion
system than the other hours of the day. This selection then
leads to a global loss of more than 85 % of information: the
sum of the diagonal elements of the sensitivity matrixS re-
lated to the observations in the selection band reaches 15 %
of the total trace. The mountain stations are known to suffer
from the issue of ascendant polluted streams from the PBL
as developed in Sect.3.2. Our method implicitly automati-
cally filters out these air masses. Then, the usable observa-
tions are not confined to the middle of the night. Moreover,
concerning the plain sites (see Fig.9b), the selected band
corresponds to the minimum of sensitivity, that is to say the
data that least constrain the local and regional fluxes we in-
quire into. The most influential observations are situated just
before the beginning of the day, when the high errors of the
night start decreasing and the local contributions are still sig-
nificant. The end of the afternoon (at about 18:00) is also
more influent that the middle of the day, but less than early
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morning. One should expect a better confidence in late after-
noon results from the CTM, when the vertical mixing is still
active (though reduced), than early morning.

We emphasised in Sect.3.2 the diurnal patterns of the er-
rors on the observations. Further efforts have to be made in
modelling the PBL height and the vertical mixing to ensure
better quality and reduced bias in the simulations at the end
of the night. Our method would then allow a better use of the
observations for local and regional inversions.

6 Conclusions

We inquired into the possibility of precisely and objectively
estimating the covariance matrices of the errors on the ob-
servations and the background (R and B) that best fit in-
version system requirements. A best guess of these matrices
with regard to objective criteria is needed in the Bayesian in-
version framework, especially for regional studies. To do so,
we used algorithms developed in a theoretical framework,
but too complex to be tested in full-resolution systems. The
translation to a regional configuration was carried out by sim-
plifying the system and reducing the total size of the covari-
ance matrices to allow an algorithmic tuning ofR andB that
estimates optimum tuples (R, B) in terms of statistical prop-
erties.

We tested 3 algorithms of growing complexity (and com-
putational costs) to estimate the optimal tuple (R, B). Unlike
other studies, which make strong physical assumptions, such
as isotropic spatial correlations in the observation errors or
temporal decay of the correlations, we minimised the num-
ber of assumptions to keep a better objectivity in our results.
In principle, all the patterns of errors can then be recovered
specifically to the system during the window of the inversion
we focused on.

Amongst other noteworthy patterns, our algorithms re-
trieved the errors due to the mis-estimation of the plane-
tary boundary layer height in global circulation models, i.e.,
large errors during the night and lower during the day when
the CTM reproduces the atmospheric transport better. This
source of errors contribute in a large part (50 % in most plain
sites) to the diurnal variability of the observation errors and
also causes significant temporal correlations within a 24 h pe-
riod.

Additionally, our approach does not require a prior filter-
ing of the observations we could consider as ill-simulated
by the model. In theory, all the available observations can
then be assimilated in the inversion system and not only the
ones during early afternoon. However, our study points at
probable significant systematic bias in the CTM during the
night. The night observations should then be excluded. But
the algorithms give objective tools to diagnose the need for
efforts to better simulate the atmospheric behaviour during
the late night when the observations seem to have the biggest
impact on the inversion results. Late afternoon observations

were also computed to have a significant influence on the
inversion results. A cautious implementation of these obser-
vations into an inversion system is expected to enhance the
efficiency of the system.

The prospects from this work will be to quantify the un-
certainties in our methods and their impact on the optimised
fluxes. A dedicated Observing System Simulation Experi-
ment could be carried out in that sense. The computational
costs should also be reduced by running our scripts in paral-
lel. In the framework of an inversion system with full tem-
poral and spatial resolution, when variational algorithms are
necessary to compute the optimal fluxes, our general method
may overburden the computer and memory capacity. Indeed,
the limiting factor in our algorithms comes from the diag-
onal maximisation of the log-likelihood needed to compute
the non-diagonal optimal tuple. The maximising algorithm
induces computational costs limited by the size of the ‘back-
ground’ vectorxb. The computational complexity is at least
O

(
[dim(xb)]3

)
while full-resolution state space dimension is

of several orders of magnitude larger than our reduced state
space. Nevertheless, the method could be tested in systems
of intermediate complexity to infer additional knowledge on
the statistics of the errors.
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Göckede, M., Turner, D. P., Michalak, A. M., Vickers, D., and Law,
B. E.: Sensitivity of a subregional scale atmospheric inverse CO2
modeling framework to boundary conditions, J. Geophys. Res.,
115, D24112,doi:10.1029/2010JD014443, 2010.

Atmos. Chem. Phys., 13, 7115–7132, 2013 www.atmos-chem-phys.net/13/7115/2013/

http://dx.doi.org/10.1029/2004GB002439
http://dx.doi.org/10.5194/acp-5-2431-2005
http://dx.doi.org/10.1029/2009JD012287
http://dx.doi.org/10.1029/2010JD014180
http://dx.doi.org/10.5194/acp-11-3689-2011
http://dx.doi.org/10.1029/2011JD016202
http://dx.doi.org/10.1029/2005JD006058
http://dx.doi.org/10.1029/2005JD006390
http://dx.doi.org/10.1029/2002JD002916
http://dx.doi.org/10.1029/2005JD006035
http://dx.doi.org/10.5194/acp-7-3461-2007
http://dx.doi.org/10.1029/2002JD003018
http://dx.doi.org/10.1029/2010JD014443


A. Berchet et al.: Error statistics for atmospheric inversion 7131

Hein, R., Crutzen, P. J., and Heimann, M.: An inverse modeling
approach to investigate the global atmospheric methane cycle,
Global Biogeochem. Cy., 11, 43–76, 1997.

Houweling, S., Kaminski, T., Dentener, F., Lelieveld, J., and
Heimann, M.: Inverse modeling of methane sources and sinks
using the adjoint of a global transport model, J. Geophys. Res.,
104, 26137–26160, 1999.

Houweling, S., R̈ockmann, T., Aben, I., Keppler, F., Krol, M. C.,
Meirink, J. F., Dlugokencky, E. J., and Frankenberg, C.: Atmo-
spheric constraints on global emissions of methane from plants,
Geophys. Res. Lett., 33, L15821,doi:10.1029/2006GL026162,
2006.

Ide, K., Courtier, P., Ghil, M., and Lorenc, A. C.: Unified notation
for data assimilation: operational, sequential and variational, J.
Meteorol. Soc. Jpn., 181–189, 1997.

Kaminski, T., Rayner, P. J., Heimann, M., and Enting, I. G.: On ag-
gregation errors in atmospheric transport inversions, J. Geophys.
Res., 105, 4703–4715, 2001.

Lauvaux, T., Uliasz, M., Sarrat, C., Chevallier, F., Bousquet, P.,
Lac, C., Davis, K. J., Ciais, P., Denning, A. S., and Rayner,
P. J.: Mesoscale inversion: first results from the CERES cam-
paign with synthetic data, Atmos. Chem. Phys., 8, 3459–3471,
doi:10.5194/acp-8-3459-2008, 2008.

Lauvaux, T., Pannekoucke, O., Sarrat, C., Chevallier, F., Ciais, P.,
Noilhan, J., and Rayner, P. J.: Structure of the transport uncer-
tainty in mesoscale inversions of CO2 sources and sinks us-
ing ensemble model simulations, Biogeosciences, 6, 1089–1102,
doi:10.5194/bg-6-1089-2009, 2009.

Lauvaux, T., Schuh, A. E., Uliasz, M., Richardson, S., Miles, N.,
Andrews, A. E., Sweeney, C., Diaz, L. I., Martins, D., Shep-
son, P. B., and Davis, K. J.: Constraining the CO2 budget of
the corn belt: exploring uncertainties from the assumptions in
a mesoscale inverse system, Atmos. Chem. Phys., 12, 337–354,
doi:10.5194/acp-12-337-2012, 2012.
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W., Ṕerez-Landa, G., and Donier, S.: Atmospheric CO2 modeling
at the regional scale: an intercomparison of 5 mesoscale atmo-
spheric models, Biogeosciences, 4, 1115–1126, doi:10.5194/bg-
4-1115-2007, 2007.

Schmidt, H., Derognat, C., Vautard, R., and Beekmann, M.: A com-
parison of simulated and observed ozone mixing ratios for the
summer of 1998 in Western Europe, Atmos. Environ., 35, 6277–
6297, 2001.

Talagrand, O.: A posteriori evaluation and verification of analysis
and assimilation algorithms, in: Workshop on Diagnosis of Data
Assimilation Systems, 2–4, 1998.

Tarantola, A.: Inverse Problem Theory, Elsevier, New York, USA,
613 pp., 1987.

Tolk, L. F., Meesters, A. G. C. A., Dolman, A. J., and Peters, W.:
Modelling representation errors of atmospheric CO2 mixing ra-
tios at a regional scale, Atmos. Chem. Phys., 8, 6587–6596,
doi:10.5194/acp-8-6587-2008, 2008.

www.atmos-chem-phys.net/13/7115/2013/ Atmos. Chem. Phys., 13, 7115–7132, 2013

http://dx.doi.org/10.1029/2006GL026162
http://dx.doi.org/10.5194/acp-8-3459-2008
http://dx.doi.org/10.5194/bg-6-1089-2009
http://dx.doi.org/10.5194/acp-12-337-2012
http://dx.doi.org/10.1029/2012JD017703
http://dx.doi.org/10.1029/2005JD005970
http://dx.doi.org/10.1029/2001JD000857
http://dx.doi.org/10.5194/acp-5-3173-2005
http://dx.doi.org/10.1029/2007JD008871
http://dx.doi.org/10.5194/acp-9-5281-2009
http://dx.doi.org/10.5194/amt-3-407-2010
http://dx.doi.org/10.5194/bg-4-1115-2007
http://dx.doi.org/10.5194/bg-4-1115-2007
http://dx.doi.org/10.5194/acp-8-6587-2008


7132 A. Berchet et al.: Error statistics for atmospheric inversion

Vautard, R., Beekmann, M., Roux, J., and Gombert, D.: Validation
of a hybrid forecasting system for the ozone concentrations over
the Paris area, Atmos. Environ., 35, 2449–2461, 2001.

Vermeulen, A. T., Team, T. C., and Pieterse, G.: Tall tower obser-
vations of greenhouse gases in Europe: possibilities for emission
verification, 7th International CO2 Conference, 25–30 Septem-
ber 2005.

Wahba, G., Johnson, D. R., Gao, F., and Gong, J.: Adaptive tun-
ing of numerical weather prediction models: Part I: randomized
GCV and related methods in three and four dimensional data as-
similation, Tech. rep., Citeseer, 1994.

Winiarek, V., Bocquet, M., Saunier, O., and Mathieu, A.: Es-
timation of errors in the inverse modeling of accidental re-
lease of atmospheric pollutant: Application to the reconstruc-
tion of the cesium-137 and iodine-131 source terms from the
Fukushima Daiichi power plant, J. Geophys. Res., 117, D05122,
doi:10.1029/2011JD016932, 2012.

Wu, L., Bocquet, M., Lauvaux, T., Chevallier, F., Rayner, P.,
and Davis, K.: Optimal representation of source-sink fluxes for
mesoscale carbon dioxide inversion with synthetic data, J. Geo-
phys. Res, 116, D21304,doi:10.1029/2011JD016198, 2011.

Atmos. Chem. Phys., 13, 7115–7132, 2013 www.atmos-chem-phys.net/13/7115/2013/

http://dx.doi.org/10.1029/2011JD016932
http://dx.doi.org/10.1029/2011JD016198

