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Abstract. Kleptoparasitism, the stealing of food items, is a common biological phe-

nomenon which has been modelled mathematically in a series of recent papers. Strategic

choices available to individuals are to attempt to steal or not, and to resist such steal-

ing attempts or not. In this paper we consider the evolution of mixed strategies under

adaptive dynamics. Depending on the various parameters, there are different possible

outcomes to the dynamics. One such outcome is the pure strategy where individuals both

challenge and resist at all opportunities (Hawk), and another is when they always chal-

lenge but never resist (Marauder). It is also possible that the population cycles with no

attractor. However, no stable mixed strategy is possible. Further the basin of attraction

of the Marauder strategy is generally small, perhaps indicating why it is rare in nature

despite being commonly stable in kleptoparasitism models.
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1. Introduction

The phenomenon of kleptoparasitism, the stealing of food resources from con-

specifics, frequently occurs within the context of intraspecific competition, notably

amongst seabirds, [2]. Evolutionary game theory provides an ideal set of tools with

which to examine this type of behavior. Such an approach has been the subject of

several papers within recent years (eg [1, 3, 4, 5, 14, 15]). Most recently, Broom

and Rychtář in [7] expanded on previous models of kleptoparasitism in monomor-

phic populations by allowing individuals to play mixed strategies and examining

the dynamics which occur under incremental adaptation towards improved fitness.

They considered only cases where strategies and the resultant adaptive dynamics

were restricted to mixtures of two pure strategies. We consider a more general

case, where we examine the adaptive dynamics which occur when any strategy is

allowed. We show that in this case, no mixed strategy is stable and examine under

what circumstances various pure strategies may be stable.

We follow the development in [7]. We consider a population, where, during the

course of a search for food resources, an individual may encounter either a food item

or a conspecific who has already obtained a food item, in which case the searcher

may attempt to steal from the handler. In turn, the handler may either resist the

attacker or surrender the food item and renew his own search. Each individual

thus adopts a strategy Σ = (p, r), where p is the probability that the individual

will attack a handler and r is the probability that he will retaliate when attacked

by a searcher.

1.1. Model Parameters. We make use of the same parameters and variables as

in [7]. The notation is summarized in Table 1.

We consider a population where the density of individuals is P . Food items take

a time to handle drawn from an exponential distribution with mean th (i.e. th is

the expected time for each item of food to be consumed). At the end of handling,

handlers consume the food in an instant and resume searching.



3

Individuals are able to search an area νf for food in unit time. The number

of available food items per unit area is given by f , so that the rate at which

individual searchers find food is νff . The time to find a food item is thus drawn

from an exponential distribution with mean (νff)−1. Individuals also search for

handlers, being able to search an area of size νh per unit time. Thus, the rate at

which individual searchers find a handler is νhH and the time to find a handler is

drawn from an exponential distribution with mean (νhH)−1.

When a searcher encounters a handler, it can challenge for the food item, or

not. If it challenges, then the handler can resist, or not. If it resists, then a fight

ensues (with times drawn from an exponential distribution with mean time ta

2 ). At

the end of a contest, the winner starts handling the food, and the loser resumes

searching. The probability of the challenger winning the contest is given by α.

The individuals in the populations are engaged in three different activities -

handling (H), searching (S), aggressive fighting (A) - the symbols for which will

be used to represent both the activity and the density of individuals involved in

that particular activity. The values of H, S, A can be determined from the previous

parameters, see [7] for derivation of the formulae below.

P = S + H + A,(1)

H = νffthS,(2)

A = νhHSpP rP ta = H2taνhpP rP /(νffth),(3)

0 = H2taνhpP rP + H(1 + νffth)− νffthP.(4)

1.2. Calculating fitness. The time T (Σ, ΣP ), the total time required for food

procurement from the initiation of searching to the end of handling for an individual

adopting strategy Σ in a population where all other individuals adopt strategy ΣP ,

is taken as the sole indicator of individual fitness. The higher the time T (Σ, ΣP ),

the lower the fitness of the individual. Note that we regard time as the only currency

in our model; in particular, the only cost of fights is their duration.
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Following [7], we divide T into a searching period and a handling period. The

schematic diagrams describing the periods are given on Figures 1 and 2. We write

T = TS + TH

where TS is the time needed to acquire the food item, including possible fights, and

TH , is the time needed for the consumption of the food item, including possible

fights and possible searching periods. It follows (see [7]) that

TS =
1 + νhHprP

ta

2

νff + νhHp(1− rP (1− α))
,(5)

TH = th + thνhSpP

[
TS(1− r(1− α)) + r

ta
2

]
.(6)

1.3. Adaptive dynamics. We shall consider the adaptive dynamics (see [7, 9, 10])

for the evolution of the trait ΣP . The evolution favors changes in the direction

of maximizing the fitness, i.e. minimizing the total time. Hence, the adaptive

dynamics is given by

(7)
dΣP

dt
= −∇ΣT (Σ, ΣP )

∣∣∣
Σ=ΣP

.

The dynamics in components is

dpP

dt
= − ∂

∂p
T (p, r, pP , rP )

∣∣∣
p=pP ,r=rP

= − ∂

∂p
TS − ∂

∂p
TH ,(8)

drP

dt
= − ∂

∂r
T (p, r, pP , rP )

∣∣∣
p=pP ,r=rP

= − ∂

∂r
TS − ∂

∂r
TH ,(9)

where, by (5), (6),

∂TS

∂p
=

νhH
{

rP

[
ta

2 νff + (1− α)
]
− 1

}

(
νff + νhHp

(
1− rP (1− α)

))2 ,(10)

∂TS

∂r
= 0,(11)

∂TH

∂p
= thνhSpP

(
1− r(1− α)

)∂TS

∂p
,(12)

∂TH

∂r
= thνhSpP

[ ta
2
− TS(1− α)

]
.(13)

For more on adaptive dynamics, see [8, 11, 12, 13].
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Our goal is to analyze these dynamics. In particular, we want to find all (local)

attractors. It follows from (10) and (12) that

(14) −∂T

∂p
T 0 if and only if rP S 1

ta

2 νff + (1− α)
.

Hence, for small rP , −∂T
∂p > 0 and thus the population evolves toward an increase

in attacking probability. Moreover, if ta

2 νff ≤ α, then −∂T
∂p > 0 for any rP ≤ 1.

It follows from (11) and (13) that

(15) −∂T

∂r
T 0 if and only if

ta
2
− TS(1− α) T 0.

Due to the presence of TS (which among other terms contains H as a function of

rP and pP ), the analysis of the above condition is not straightforward; in fact the

behavior of −∂T
∂r is more complicated than the behavior of −∂T

∂p , see Figures 5 and

6.

2. Results

In the next sections we show that the only possible attractors of the dynamics are

strategies (p, r) = (1, 1) and (p, r) = (1, 0). We will also investigate the bifurcation

behavior on the line {(0, r); r ∈ [0, 1]}.

2.1. No inner strategy is an attractor. In this section we show that no inner

strategy is an attractor of the dynamics. For a contradiction, assume that there is

an inner attractor Σ0 = (p0, r0), p0, r0 ∈ (0, 1). Then,

−∇ΣT (Σ, Σ0)
∣∣∣
Σ=Σ0

= 0.

As above, ∂T
∂p = 0 if and only if

(16) r0 =
1

νff ta

2 + (1− α)
;

and ∂T
∂r = 0 if and only if

(17)
ta
2
− TS(1− α) = 0.

We consider two cases.
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Case I. Assume νff ta

2 6= 1− α. Then, by (16), we have

2r0(1− α)− 1 6= 0

and from (5) and (17) we have

1 + νhHp0r0
ta

2

νff + νhHp0[1− r0(1− α)]
= TS =

ta

2

1− α

which, using (16), simplifies to

νhH
ta
2

p0[2r0(1− α)− 1] = νff
ta
2
− (1− α) = − [2r0(1− α)− 1]

r0
.

Thus, we get p0 = − 1
νhH ta

2 r0
, which contradicts p0 > 0.

Case II. If νff ta

2 = 1− α, then, by (16), r0 = 1
2(1−α) ; and, by (5),

TS(p, r, pP , rP ) =
1

νff
· νff + νhHprP (1− α)
νff + νhHp− νhHprP (1− α)

.

In particular, TS is an increasing function of rP and

TS(p, r, pP , r0) =
1

νff

for all p, r ∈ [0, 1]. By the last equality and (13),

∂TH

∂r
(p, r, pP , r0)

∣∣∣
r=r0

= 0

and consequently, all points (pP , r0) are steady points of the dynamics. But, these

points are not attractors, since ∂TH

∂r is a decreasing function of rP , i.e. if the

population has rP < r0, then rP tends to be even smaller; and if the population

has rP > r0, then rP tends to be even larger.

2.2. Conditions for a CSS on a boundary. In this section, we will consider

the behavior of the dynamics on the boundary. There are four “pure”, or corner,

strategies:

• Hawk - always challenge, always resist; (p, r) = (1, 1),

• Marauder - always challenge, never resist; (p, r) = (1, 0),

• Dove - never challenge, never resist; (p, r) = (0, 0),

• Retaliator - never challenge, always resist; (p, r) = (0, 1).
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It was established in [7] that there are no attractors on the boundary between Dove

and Marauder, Marauder and Hawk, Hawk and Retaliator. Clearly, all points on

the line between Dove and Retaliator are steady points of the dynamics (and will

be investigated later).

In this section we examine when Marauder and/or Hawk strategies are attractors.

2.2.1. Marauder. Marauder will be an attractor whenever

∂T

∂p

∣∣∣
p=pP =1,r=rP =0

< 0 and
∂T

∂r

∣∣∣
p=pP =1,r=rP =0

> 0.

By (5),(10),(11),(12), and (13), this occurs whenever

(18)
ta
2

νhH > (1− α)− ta
2

νff,

where

H =
νffthP

1 + νffth
,

following (4).

2.2.2. Hawk. Hawk will be an attractor whenever

∂T

∂p

∣∣∣
p=pP =1,r=rP =1

< 0 and
∂T

∂r

∣∣∣
p=pP =1,r=rP =1

< 0.

By (5),(10),(11),(12), and (13), this occurs whenever

ta
2

νff < α(19)

ta
2

νff − (1− α) < νhH
ta
2

(1− 2α)(20)

where H solves (4).

2.2.3. Dove. As follows from the general analysis of the adaptive dynamics, we have

−∂T
∂p

∣∣∣
p=pP =0,r=rP =0

> 0 and thus Dove is never CSS. In other words, in the popu-

lation of Doves only, it is always beneficial to increase the probability of attacking.

Moreover, once the population is on the Dove-Retaliator line (i.e. in the state

ΣP = (0, rP ), for any rP ∈ [0, 1]), then there are no fights and, by (5), (6),

T =
1

νff
+ th
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with ∂T
∂r = 0.

2.2.4. Retaliator. Retaliator is never an attractor because, as with Dove, ∂T
∂r = 0.

On the other hand, unlike in the Dove case, the population can reach Retaliator

through the evolution along the adaptive dynamics. For that, one needs

−∂T

∂p

∣∣∣
p=pP =0,r=rP =1

< 0 and − ∂T

∂r

∣∣∣
p=pP =0,r=rP =1

> 0

for 0 < p = pP ≈ 0 and r = rP = 1. The above conditions are equivalent to

(21)
ta
2

νff > α and
ta
2

νff < (1− α).

2.3. Behavior on the Dove-Retaliator line. In this section, we investigate the

behavior on the Dove-Retaliator line. Since there are no fights in the population,

the total time T does not depend on the probability of resisting an attack. Once the

population reaches any point on this line, the population can become a polymorphic

mixture of birds using any strategy Σ = (0, r). Hence, it is not governed by the

adaptive dynamics anymore.

The necessary condition for reaching the line is to have −∂T
∂p < 0 for some pP ≈ 0

and some rP . Exactly as in the Retaliator case, this happens if and only if

r > r0 =
1

νff ta

2 + (1− α)
,

i.e. if and only if

ta
2

νff > α.

A population can leave the line as soon as the average probability to resist r is

less then r0, because then ∂T
∂p < 0 in the “left” neighborhood of (0, r).

Strictly speaking, a population can be polymorphic and the adaptive dynamics

no longer rules its evolution. On the other hand, individuals can differ only in their

resisting probability, and thus there are still no fights. For a potential invader of

such a population, a polymorphic mixture of birds with average resistance r will

have the same effect as a monomorphic population with rP = r. So we can still use

the calculations we developed for the adaptive dynamics.
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Since close to Dove (rP ≈ 0) one always has ∂T
∂p < 0, the population can always

leave the line.

Let us now investigate ∂T
∂r . On the Dove-Retaliator line ∂T

∂r = 0, i.e. there is no

pressure to change the level of resistance and the population can freely drift along

the line. But, by (5), for 0 ≈ p = pP > 0, one has

TS ≈ 1
νff

and thus, by (15), if ta

2 νff < (1−α) then there is a tendency to increase resistance

(close to the Dove-Retaliator line).

The singular case ta

2 νff = (1−α) was already investigated (Section 3, Case II),

and the results are that for rP < r0 there is a tendency to decrease resistance and

for rP > r0 there is a tendency to increase it.

If ta

2 νff > (1 − α) there is a tendency to decrease the resistance even further

(see for example Figure 4). By (18), Marauder is a CSS and thus the population

will eventually leave the Dove-Retaliator line permanently and end at Marauder.

Possible scenarios. There is the possibility of cycling behavior if

ta
2

νff > α and
ta
2

νff < (1− α).

Under these conditions, the population can reach Retaliator. At this very moment,

the population can become polymorphic. As soon as the average resistance falls

below r0, then fights appear and the population becomes monomorphic again. Due

to the condition ta

2 νff < (1 − α), the resistance will increase above the critical

value r0 and then the willingness to fight will start to fall as well. This is the case

in Figure 6a.

Figure 6b depicts the same behavior and with the same parameters, with the

exception that the density of the population is higher. Thus, Marauder emerges as

another CSS. Although we do not have an analytical proof of this fact, numerical

simulations suggest that once the population is around the Dove-Retaliator line, it

will cycle forever and will never depart toward Marauder.
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Figure 4 depicts behavior under the conditions

ta
2

νff > α and
ta
2

νff > (1− α).

For such a set of parameters, the population can reach the Dove-Retaliator line and

theoretically could stay somewhere around Retaliator drifting a little bit up and

down. However, this is a highly unstable state since the population can drift along

the line below the r0 level and then will move permanently towards Marauder.

2.4. Results summary. There are three possible outcomes of the adaptive dy-

namics: Marauder is a CSS, Hawk is a CSS, or there is indefinite cycling through

Retaliator. No other CSS, in particular a mixed CSS, is possible.

By (18), Marauder is a CSS whenever

ta
2

νh
νffthP

1 + νffth
> (1− α)− ta

2
νff.

Thus, Marauder is a CSS for any parameters provided P is large enough. Moreover,

Marauder is a CSS (for any value of P ) if

(1− α) <
ta
2

νff.

The condition means at least one of the following

M1) fights are long,

M2) there is enough food,

M3) a defender has only a small chance of winning a fight.

Hawk is a CSS if

ta
2

νff < α and(22)

ta
2

νff − (1− α) < νhH
ta
2

(1− 2α).(23)

The first condition says that it is better to attack if at least one of the following

happens

H1) fights are not long,

H2) there is not enough food,

H3) an attacker has a big chance of winning a fight.
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One can see that while H1 complements M1 and H2 complements M2, H3 and M3

are identical.

The cycling behavior occurs (and also Retaliator can be reached) if

ta
2

νff > α and
ta
2

νff < (1− α).

Notice that the first condition is opposite to one of the conditions for Hawks. The

two conditions hold together only if α < 1 − α and thus they mean that cycling

occurs only if

C1) the chances of winning the fight as a defender are higher than the chances

of winning the fight as an attacker,

C2) there is enough food in order to not attempt to steal it, but not enough to

afford to not defend it.

3. Discussion

We have investigated the adaptive dynamics for an unrestricted set of strategies

of kleptoparasitic behavior. We have identified three possible outcomes of the

adaptive dynamics: namely that Marauder is a CSS, Hawk is a CSS, or that there

is indefinite cycling through Retaliator. There are no other CSSs of the dynamics.

In particular, a mixed CSS is not possible.

Furthermore, these outcomes are not mutually exclusive because Marauder emerges

as a CSS for any parameter values as long as P is high enough and can occur with

either of the other two possibilities. However Hawk is never a CSS at the same

time as the cycling behavior occurs.

The last and most interesting outcome of the dynamics is that the population can

evolve in cycles going through Retaliator. This happens under the same conditions

as for Retaliator being accessible. This cycling behavior involves going through

periods of polymorphic mixtures on the Dove-Retaliator line and thus this behavior

cannot be predicted for the following reasons. First, it is not clear how long the

population will stay on the Dove-Retaliator line (specifically, how long it will take

for a population to evolve by a drift to the state where the average resistance drops
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below the critical value r0). Second, it is not clear where exactly the population

leaves the Dove-Retaliator line (other than it has to be below r0). Thus, the cycles

may take a different amount of time and may be even of a different shape.

This paper brings new insights in the evolution of kleptoparasitic behavior. It

provides a way to predict where the populations will end if it started in a known

mixture. For example, we can see that Dove will evolve to Hawk rather than

to Marauder although the rule in Dove populations is to increase the attacking

probability leaving the resistance unchanged.

The paper may also explain why the Marauder strategy, despite being quite

common in models of kleptoprasitism (see [5, 6, 7]), is not so commonly found in

nature. Marauder emerges in all models for any parameter values whenever P is

big enough. However, numerical simulations suggest that the region of attraction

to Marauder is relatively small when Marauder emerges as a second CSS due to

the high population density (see for example Figures 5b and 6b).

Furthermore, this paper also predicts the existence of cycling behavior, i.e. an

evolution towards no particular attractor. This behavior was not captured by any

of the preceding models. Each of the kleptoparasitism models starting with [3]

considers behavior on a number of different timescales. 1) Short term changes in

state (e.g. from handler to searcher) leading to convergence to equilibrium, which

is typically a matter of minutes. 2) The contest between a resident population and

a mutant to elimination or fixation of the mutant, which constitutes a small step

in the adaptive dynamics of the population, strongly affected by the relative fitness

of mutant and resident. This will typically take a significant number of generations

to decide. 3) The time between the emergence of successive potentially viable

mutations to compete with the resident population as in 2) above. It is assumed

that this timescale is longer than that in 2). In this paper we describe a fourth,

even longer timescale, where the speed of events is slower yet. This is drift along

the Dove-Retaliator line, when there is no fitness advantage to aid either mutant

or resident, and a succession of steps along the line following contests of type 2)
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and new mutations from 3) occur. This is central to the cycling behavior, which

indicates this behavior happens very slowly indeed.
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Table 1

The model parameters and their definitions.

The top seven are the fundamental natural parameters, the next six terms rep-

resent the strategies played and the final terms are useful expressions which can be

derived from the fundamental parameters and the strategies played

Symbol Meaning

P total density of individuals in the population

f density of food items per unit area

νf area that can be searched for food per unit time

νh area that can be searched for handlers per unit time

th expected handling time (if unchallenged)

ta/2 expected duration of an aggressive contest

α probability of the challenger winning the contest

p probability that a (specific) searcher will attack a handler

r probability that a (specific) handler will resist an attack

Σ strategy of a specific individual Σ = (p, r)

pP probability that an average searcher will attack a handler

rP probability that an average handler will resist an attack

ΣP strategy of an average individual ΣP = (pP , rP )

S density of individuals which are searching for food

H density of individuals which are handling a food item

A density of individuals involved in a contest over food

TS expected time for a searcher to acquire a food item

TH expected handling time (allowing for challenges)

T expected time to acquire and consume a food item
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Figure 1

Searching for a food item.
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Figure 2

Handling a food item.
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Figure 3

Adaptive dynamics in the case νff ta

2 = 1− α. In particular, parameter values are

ta = 4/3, νff = 1, th = 2, νh = 2, α = 1/3, P = 3.
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Figure 4

Marauder as an attractor. Parameter values are ta = 2, νff = 1, th = 1, νh =

1, α = 0.5, P = 1. For this particular set of parameters, the population can reach

Retaliator, but Retaliator is not stable.
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Figure 5

a) Hawk as an attractor. Parameter values are ta = 1, νff = 0.4, th = 1, νh =

1, α = 0.5, P = 1; b) Marauder emerging as a second attractor together with Hawk,

all parameters same but P = 5.
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Figure 6

a) Cycling to Retaliator. Parameter values are ta = 2, νff = 0.5, th = 1, νh =

0.5, α = 0.3, P = 1; b) Marauder emerging as an attractor; all parameters are as in

a) except P = 5.

a)
0

0.2

0.4

0.6

0.8

1

r

0.2 0.4 0.6 0.8 1
p b)

0

0.2

0.4

0.6

0.8

1

r

0.2 0.4 0.6 0.8 1
p


