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1. Introduction

The paper Broom & Rychtář (2008) analytically investigated the probability for
mutants to fixate in an otherwise uniform population on two types of heteroge-
neous graphs (lines and stars) by evolutionary dynamics. The main motivation for
concentrating on those two types of graphs only was the potentially exponential size
of the system of linear equations (see (1.1) below) yielding the fixation probability
on general heterogenous graphs. The size of the system was given by formula (4.1)
from Broom & Rychtář (2008). It turns out that formula (4.1) is in fact only a
lower bound for the size of the system and in this paper we correct this by deriving
a formula for the exact size of the system (1.1). We also solve the system (1.1) for
general heterogeneous graphs in the case of random drift.

Let G = (V,E) be an undirected graph, where V is the set of vertices and E is
the set of edges. We assume that the graph is finite, connected and simple, i.e. no
vertex is connected to itself and there are no parallel edges. The graph structure is
represented by a matrix W = (wij), where

wij =

{
d−1i , if i and j are connected,

0, otherwise,

where di is the degree of the vertex i, i.e. the number of edges incident to the vertex
i.

The evolutionary dynamics on graphs is described e.g. in Lieberman et al. (2005)
and is treated as a discrete time Markov chain. At the beginning, a vertex is chosen
at random and replaced by a mutant with fitness r, all remaining vertices hav-
ing fitness 1. At subsequent steps, a randomly chosen individual replicates with a
probability proportional to its fitness and its offspring replaces an individual at a
randomly chosen neighbouring vertex. The process stops when there are no mutants
or no resident individuals in the graph. Each state of the dynamics is described by
a set C ⊆ V , a set of vertices inhabited by mutants.

Let PC denote the probability of mutant fixation given that mutants currently
inhabit a set C. The rules of the dynamics yield (see Broom & Rychtář (2008);
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Lieberman et al. (2005)),

PC =

∑
i∈C

∑
j 6∈C

(
rwijPC∪{j} + wjiPC\{i}

)
∑
i∈C

∑
j 6∈C

(
rwij + wji

) (1.1)

with P∅ = 0 and PV = 1. This system has a unique solution following Broom &
Rychtář (2008).

For what classes of graphs can the system (1.1) be solved explicitly? Lieberman
et al. (2005) solved it for regular graphs (where wij = wji). Broom & Rychtář
(2008) solved it for stars and significantly reduced the size of the system for lines.
Below we shall solve the system for general graphs and r = 1, but first we consider
the size of the system.

2. The number of mutant-resident formations

At every vertex of a graph G there can be either a resident or a mutant; and thus
up to 2|V | potential mutant-resident formations or patterns. Let a mutant-resident
formation be represented by a function m : V 7→ {0, 1} (0 for resident, 1 for mutant).

The (finite) automorphism group Aut(G) of the graph G acts on a set of for-
mations M = {m : V 7→ {0, 1}} by

(f ◦m)(v) = m(f−1(v)) (2.1)

for every vertex v whenever f ∈ Aut(G), m ∈ M . We say that two formations m
and m′ are equivalent, if there is an automorphism f such that m′ = f ◦m (and thus
m = f−1 ◦m′). The number of unknowns in the system (1.1) is equal to the number
of equivalence classes of mutant-resident formations |M/Aut(G)|. Burnside’s orbit
counting theorem (Tucker, 1994) yields

|M/Aut(G)| = 1

|Aut(G)|

 ∑
f∈Aut(G)

|Mf |

 (2.2)

where |Mf | denotes the number of the elements of M fixed by f .
It is easy to see that if f is any permutation of vertices (this includes any

automorphism of the graph), then f ◦m = m exactly for those m that are constant
on the cycles of permutation f . Hence, if C(f) denotes the number of cycles of a
permutation f (fixed points - as elements of V - of the permutation f count as one
cycle), then every automorphism f fixes exactly 2C(f) formations m because one can
have only all 0’s or all 1’s on every cycle of f . Thus, the total count of equivalence
classes of m and thus the number of mutant-resident formations, MRF (G), is given
by

MRF (G) =
1

|Aut(G)|

 ∑
f∈Aut(G)

2C(f)

 . (2.3)

Consequently, since the number given by formula (2.3) is at least as big as the
number given by formula (4.1) from Broom & Rychtář (2008), the main point of
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that paper is still valid as formula (4.1) was shown to emphasize the large size of
the system (1.1) in a general heterogeneous graph.

3. Random drift, the case when r = 1

For the case of random drift, r = 1, the solution of (1.1) is given by

PC =

∑
i∈C

di
−1

∑
k∈V

dk
−1

. (3.1)

which can be checked by direct substitution. To derive the formula (3.1), assume
that, for disjoint sets C,D ⊂ V ,

PC∪D = PC + PD. (3.2)

By (3.2), the system (1.1) is equivalent to∑
i∈C

∑
j 6∈C

wjiP{i} =
∑
i∈C

∑
j 6∈C

wijP{j}

which is satisfied if, for all i, j,

wjiP{i} = wijP{j}.

Consequently, whenever vertices i and j are connected,

P{i}

P{j}
=

dj
di

(3.3)

Since the graph is connected, the repeated application of (3.3) along a path between
any two vertices i, j shows that (3.3) holds even when i, j are not connected by an
edge. Since, by (3.2) and (3.3),

1 = PV =
∑
j∈V

P{j} = P{i}
∑
j∈V

di
dj

, (3.4)

we get

P{i} =

(∑
k∈V

di
dk

)−1
. (3.5)

The formula (3.1) then follows from (3.5) and (3.2). The assumptions (3.2) and (3.3)
can now be justified by the uniqueness of the solution of the system (1.1). Note that
(3.2) cannot hold for general r. For example, if r is very large, PC∪D ≈ PC ≈ PD ≈ 1
which violates (3.2). Yet, as shown above, (3.2) holds when r = 1.
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4. Discussion

The two results that we have presented apply for general graphs. Previous analytical
work, including Broom & Rychtář (2008), only consider very special graphs. The
large size of the system of equations (2.3) makes it very difficult to find analytical
results in the general case, of which (3.1) is a very special example. In fact (2.3) is
very useful in considering whether an analytical approach should be made, as the
larger the value of MRF (G) the more difficult the system of equations is to deal
with in general. Two of the simplest graphs that have received the most attention
so far, the complete graph and the star, have values of MRF (G) of |V |+1 and 2|V |
respectively. Interestingly the circle and the line, which have also been investigated,
have much larger values of MRF (G), but many states cannot be accessed from the
initial state of a single mutant (it was shown in Broom & Rychtář (2008) that these
were the only graphs for which this was true).
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