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Proposed running head:

Extensions of modules for SL(2,K)

Address for correspondence:

Maud De Visscher, University College, Oxford OX14BH, U.K.

In this paper, we consider the induced modules ∇ and the Weyl modules ∆ for

the algebraic group G = SL(2,K) where K is an algebraically closed field of

characteristic p > 0. We determine the G-modules Hi(G1,∇(s)⊗∇(t)) for all

i ≥ 0, whereG1 is the first Frobenius kernel ofG. We then use it to find the Ext1-

spaces between twisted tensor products of Weyl modules and induced modules

for G. Moreover, we describe explicitly the non-split extensions corresponding

to ∇’s.

Key words: special linear group, symmetric powers, decomposition matrix.
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Introduction

In the theory of highest weight categories, the classes of modules ∇ and ∆ are of

central interest. In particular, twisted tensor products of these modules occur

as important subquotients of ∇ and ∆ (see [12] and [13]).

Here we consider these modules for the group G = SL(2,K),the special linear

group of dimension 2 over an algebraically closed field K of characteristic p > 0.

Suppose that F : G −→ G is the corresponding Frobenius morphism and let G1

denote the first Frobenius kernel of G. If V is a G-module then we denote by V F

its Frobenius twist. Considered as a G1-module, V F is trivial. Conversely, if W

is a G-module on which G1 acts trivially then W ∼= V F for a unique G-module

V and we write W (−1) := V .

Consider the Borel subgroup B of G consisting of lower triangular matrices

and for λ ∈ N , let Kλ denote the 1-dimensional B-module of weight λ. Define

the induced G-module ∇(λ) by

∇(λ) := IndG
B(Kλ).

This is isomorphic to the symmetric power SλE where E is the natural 2-

dimensional G-module. The Weyl G-modules, ∆(λ), are defined by

∆(λ) := ∇(λ)∗.

Note that soc∇(λ) = top∆(λ) = L(λ) is simple and {L(λ) , λ ∈ N} form a

complete set of non-isomorphic simple G-modules. For 0 ≤ λ ≤ p − 1 we have

L(λ) = ∇(λ) = ∆(λ) and in general Steinberg’s tensor product theorem tells us
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that if λ =
∑

i≥0 λip
i is the p-adic expansion of λ then L(λ) is given by

L(λ) =
⊗
i≥0

L(λi)F i

.

The simple G-modules are thus self-dual.

The modules∇(λ) and ∆(λ) have highest weight λ occuring with multiplicity

1 and all their other weights µ satisfy µ < λ.

In order to prove our results, we use the Lyndon-Hochschild-Serre 5-term

exact sequence relating the Ext1-spaces of G and G1. For a rational G-module

V , we have the exact sequence (see [3])

0 −→ H1(G, (V G1)(−1)) −→ H1(G,V ) −→ H1(G1, V )G −→ H2(G, (V G1)(−1))

−→ H2(G,V ).

In Section 1, we describe properties ofG1-modules and we compute Exti
G1

(∆,∇)

for i ≥ 0 as G-modules. In Section 2, we use the 5-term exact sequence above

and the results of Section 1 to compute Ext1G(∇(r)F n ⊗∆(s),∇(k)F n ⊗ ∇(t))

for 0 ≤ k, r and 0 ≤ s, t ≤ pn − 1. In particular, we show that it has at most

dimension 1. We also find explicitly the non-split extensions corresponding to

a ∇. This filtration of ∇ by twisted tensor product of ∇’s and ∆’s explains the

symmetries observed in the decomposition matrix of G.

1 Computing ExtiG1
(∆,∇)

The category of G1-modules is equivalent to the category of U -modules where

U is the restricted Lie algebra of G. In particular, U is a self-injective algebra
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(see [15]). This category is very well understood ([9],[14]). The simple U -

modules are the restriction of the L(i) for 0 ≤ i ≤ p− 1 and the corresponding

projective U -modules P (i) have the following structure: for 0 ≤ i ≤ p − 2,

socP (i) = topP (i) = L(i) and radP (i)/socP (i) = L(j)⊕L(j) where i+j = p−2

and for i = p− 1 the projective module P (p− 1) = L(p− 1) is simple. Thus the

projective module P (p− 1) is alone in its block and P (i)and P (j) belong to the

same block if and only if i = j or i+ j = p− 2.

For an indecomposable non-projective U -module M , we denote by Ω(M)

the kernel of the projective cover of M (and we define inductively Ωk(M) =

Ω(Ωk−1(M)). Similarly, we define Ω−1(M) to be the cokernel of the injective

hull of M (and we define inductively Ω−k(M)). The projective (injective) G1-

modules are restrictions of G-modules and for n ≥ 0, we have an exact sequence

of G-modules ([17], [4])

0 −→ ∇(np+ i) −→ P (i)⊗∇(n)F −→ ∇((n+ 1)p+ j) −→ 0.

The restriction of this sequence to G1 gives the projective cover of∇((n+1)p+j)

and the injective hull of ∇(np+ i).

The G1-module ∇(np + i) has Loewy length 2 for n ≥ 1. We have a sequence

of G-modules ([17], [12])

0 −→ ∇(n)F ⊗∇(i) −→ ∇(np+ i) −→ ∇(n− 1)F ⊗∆(j) −→ 0 (1)

and its restriction to G1 gives the Loewy series of ∇(np+ i) as a G1-module.

Note finally that if V , W and X are G-modules and n ≥ 0 then Extn
G1

(V,W )
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has a natural structure of G-module and

Extn
G1

(V,W ⊗XF ) ∼= Extn
G1

(V,W )⊗XF

as G-modules.

W. van der Kallen proved in [16] that if V is a G-module with a good

filtration (that is a filtration with quotients isomorphic to some ∇’s) then

H0(G1, V )(−1) has a good filtration and hence, by dimension shifting (see [7]),

Hi(G1, V )(−1) has a good filtration for all i ≥ 0. Note that the module

V = ∇ ⊗ ∇ has a good filtration and the next two Propositions give the G-

modules Hi(G1, V ) = Exti
G1

(∆,∇) for i ≥ 0.

Write t = t1p+ t0 and s = s1p+ s0 where 0 ≤ s0, t0 ≤ p− 1.

Proposition 1.1 For i ≥ 1 we have

Exti
G1

(∆(s),∇(t)) ∼=



∇(s1 + t1 + i)F if s0 + t0 = p− 2 and i odd

or s0 = t0 ≤ p− 2 and i even

0 otherwise.

Proof:

From the block structure of G1 we only need to consider the cases s0 = t0 and

s0 + t0 = p− 2. Note that if s0 = t0 = p− 1 then ∆(s) and ∇(t) are projective

and so there is no non-split extension. Now suppose s0, t0 ≤ p− 2.

Exti
G1

(∆(s1p+ s0),∇(t1p+ t0) ∼= Exti
G1

(Ω−s1(∆(s1p+ s0),Ω−s1(∇(t1p+ t0)))
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∼=


Exti

G1
(∆(s0),∇((s1 + t1)p+ t0)) if s1 even

Exti
G1

(∆(p− 2− s0),∇((s1 + t1)p+ p− 2− t0)) if s1 odd

Now consider the exact sequence,

0 → ∇((s1+t1)p+t0) → P (t0)⊗∇(s1+t1)F → ∇((s1+t1+1)p+p−2−t0) → 0

and apply HomG1(∆(s0),−) to get

0 → HomG1(∆(s0),∇((s1 + t1)p+ t0)) → HomG1(∆(s0), P (t0)⊗∇(s1 + t1)F )

−→ HomG1(∆(s0),∇((s1 + t1 + 1)p+ p− 2− t0))

−→ Ext1G1
(∆(s0),∇((s1 + t1)p+ t0)) → 0 (2)

and

Exti+1
G1

(∆(s0),∇((s1 + t1)p+ t0)) ∼= Exti
G1

(∆(s0),∇((s1 + t1 +1)p+p−2− t0)).

Thus, if we prove the case i = 1 then the result follows by induction. Now,

observe that in the exact sequence (2) the first two terms are isomorphic (∆(s0)

is simple and P (t0) ⊗ ∇(s1 + t1)F is the injective hull of ∇((s1 + t1)p + t0)),

hence the last two terms are isomorphic too and we get

Ext1G1
(∆(s0),∇((s1 + t1)p+ t0))

∼= HomG1(∆(s0),∇((s1 + t1 + 1)p+ p− 2− t0))

∼= HomG1(∆(s0), P (p− 2− t0)⊗∇(s1 + t1 + 1)F )

∼= HomG1(∆(s0), P (p− 2− t0))⊗∇(s1 + t1 + 1)F

∼=


∇(s1 + t1 + 1)F if s0 + t0 = p− 2

0 otherwise.
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The proposition then follows by induction on i. QED

Proposition 1.2

HomG1(∆(s1p+ s0),∇(t1p+ t0)) ∼=


(∇(s1)⊗∇(t1))F if s0 = t0

0 otherwise.

Proof:

Note that by the decomposition into blocks of G1, we only need to consider the

cases s0 + t0 = p − 2 and s0 = t0. Suppose for a start that s0, t0 ≤ p − 2.

Consider the exact sequence

0 −→ ∇(t1)F ⊗∇(t0) −→ ∇(t1p+ t0) −→ ∇(t1 − 1)F ⊗∆(p− 2− t0) −→ 0.

Apply HomG1(∆(s1p+ s0),−) to get the exact sequence

0 → HomG1(∆(s1p+ s0),∇(t1)F ⊗∇(t0)) → HomG1(∆(s1p+ s0),∇(t1p+ t0))

→ HomG1(∆(s1p+s0),∇(t1−1)F⊗∆(p−2−t0)) → Ext1G1
(∆(s1p+s0),∇(t1)F⊗∇(t0))

→ Ext1G1
(∆(s1p+ s0),∇(t1p+ t0)). (3)

Now,

HomG1(∆(s1p+ s0),∇(t1)F ⊗∇(t0)) ∼= HomG1(∇(t0),∇(s1p+ s0))⊗∇(t1)F

∼= HomG1(∇(t0), P (s0))⊗∇(s1)F ⊗∇(t1)F

∼=


(∇(s1)⊗∇(t1))F if s0 = t0

0 otherwise,

and
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HomG1(∆(s1p+ s0),∇(t1 − 1)F ⊗∆(p− 2− t0))

∼= HomG1(∇(p− 2− t0),∇(s1p+ s0))⊗∇(t1 − 1)F

∼= HomG1(∇(p− 2− t0), P (s0))⊗∇(s1)F ⊗∇(t1 − 1)F

∼=


(∇(s1)⊗∇(t1 − 1))F if s0 + t0 = p− 2

0 otherwise.

Using Proposition 1.1, we get

Ext1G1
(∆(s1p+ s0),∇(t1)F ⊗∇(t0)) ∼= Ext1G1

(∇(t0),∇(s1p+ s0))⊗∇(t1)F

∼=


(∇(s1 + 1)⊗∇(t1))F if s0 + t0 = p− 2

0 otherwise

and

Ext1G1
(∆(s1p+ s0),∇(t1p+ t0)) ∼=


∇(s1 + t1 + 1)F if s0 + t0 = p− 2

0 otherwise.

So if s0 + t0 = p − 2 and p > 2 (i.e. s0 6= t0), then the exact sequence (3)

becomes

0 −→ HomG1(∆(s1p+ s0),∇(t1p+ t0)) −→ (∇(s1)⊗∇(t1 − 1))F

−→ (∇(s1 + 1)⊗∇(t1))F −→ ∇(s1 + t1 + 1)F .

As

dim(∇(s1 + 1)⊗∇(t1))F = dim(∇(s1)⊗∇(t1 − 1))F + dim∇(s1 + t1 + 1)F ,

we deduce that

HomG1(∆(s1p+ s0),∇(t1p+ t0)) = 0.
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If s0 = t0 and p = 2, the exact sequence (3) has the form

0 −→ (∇(s1)⊗∇(t1))F −→ HomG1(∆(s12 + s0),∇(t12 + t0))

−→ (∇(s1)⊗∇(t1 − 1))F −→ (∇(s1 + 1)⊗∇(t1))F −→ ∇(s1 + t1 + 1)F .

Hence,

HomG1(∆(s12 + s0),∇(t12 + t0)) ∼= (∇(s1)⊗∇(t1))F .

Finally if s0 = t0 and p > 2 then clearly

HomG1(∆(s1p+ s0),∇(t1p+ t0)) ∼= (∇(s1)⊗∇(t1))F .

In the case where s0 = t0 = p− 1, we have the following

∆(s1p+ s0) ∼= ∆(s1)F ⊗∆(p− 1)

∇(t1p+ t0) ∼= ∇(t1)F ⊗∇(p− 1),

and so

HomG1(∆(s1p+ (p− 1)),∇(t1p+ (p− 1)))

∼= HomG1(∆(p− 1),∇(p− 1))⊗ (∇(s1)⊗∇(t1))F

∼= (∇(s1)⊗∇(t1))F .

This completes the proof. QED

2 Extensions of G-modules

In [5] and [8], Cox and Erdmann determined the Ext1 and the Hom spaces

between ∇(λ) and ∇(µ) for arbitrary weights λ and µ. For completeness and
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to fix our notation, we state their result here.

For 0 ≤ a ≤ p− 1 denote by â, the integer such that a+ â = p− 1. For a weight

µ, define

ψ0(µ) =

{
u−1∑
i=0

µ̂ip
i : u ≥ 0

}

and

ψ1(µ) =

{
u−1∑
i=0

µ̂ip
i + pu+a : µ̂u 6= 0, , a ≥ 1, u ≥ 0

}
∪

{
u∑

i=0

µ̂ip
i : µ̂u 6= 0, u ≥ 0

}
.

With this notation we have,

HomG(∇(λ),∇(µ)) ∼=


K if λ = µ+ 2d, d ∈ ψ0(µ)

0 otherwise
(4)

and

Ext1G(∇(λ),∇(µ)) ∼=


K if λ = µ+ 2e, e ∈ ψ1(µ)

0 otherwise
(5)

In [2], Cline determined all the Ext1-spaces between simple G-modules. In

particular, for simple modules ∇(r)F ⊗∇(s) and ∇(k)F ⊗∇(t), he proved that

Ext1G(∇(r)F ⊗∇(s),∇(k)F ⊗∇(t)) ∼=


K if r = k ± 1, s+ t = p− 2

0 otherwise

The following theorem extends this result.
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Theorem 2.1 Let 0 ≤ k, r and 0 ≤ s, t ≤ pn − 1 then we have

Ext1G(∇(r)F n

⊗∆(s),∇(k)F n

⊗∇(t)) ∼=



K if
r = k + 2e, e ∈ ψ1(k)

s = t

or

r = k ± 1 + 2d, d ∈ ψ0(k)

t = t0 + t1p
i, 0 ≤ t0 ≤ pi − 1

s = t0 + (pn−i − 2− t1)pi

0 otherwise

Proof:

In order to prove this theorem, we use the five terms exact sequence:

0 −→ H1(G, (V G1)(−1)) −→ H1(G,V ) −→ H1(G1, V )G −→ H2(G, (V G1)(−1))

−→ H2(G,V ),

with V = ∆(r)F n ⊗∇(k)F n ⊗∇(s)⊗∇(t).

Write s = s1p + s0 and t = t1p + t0. Let us first compute H1(G, (V G1)(−1)).

Using Proposition 1.2, we have

V G1 = HomG1(∆(s),∇(t))⊗∆(r)F n

⊗∇(k)F n

∼=


(∇(s1)⊗∇(t1))F ⊗∆(r)F n ⊗∇(k)F n

if s0 = t0

0 otherwise.

Now,

(V G1)(−1) ∼=


∇(s1)⊗∇(t1)⊗∆(r)F n−1 ⊗∇(k)F n−1

if s0 = t0

0 otherwise.
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Hence for s0 = t0 we have

H1(G, (V G1)(−1)) ∼= Ext1G(∇(r)F n−1
⊗∆(s1),∇(k)F n−1

⊗∇(t1)),

and is zero in all other cases.

Let us now compute H1(G1, V )G. Using Proposition 1.1, we have

H1(G1, V ) = Ext1G1
(∇(r)F n

⊗∆(s),∇(k)F n

⊗∇(t))

∼= Ext1G1
(∆(s),∇(t))⊗∆(r)F n

⊗∇(k)F n

∼=


∇(s1 + t1 + 1)F ⊗∆(r)F n ⊗∇(k)F n

if s0 + t0 = p− 2

0 otherwise.

Thus,

H1(G1, V )G ∼=


HomG(∆(s1 + t1 + 1)F ,∆(r)F n ⊗∇(k)F n

) if s0 + t0 = p− 2

0 otherwise

Note that all the weights of ∆(r)F n ⊗ ∇(k)F n

are multiples of pn, so to get

non-zero homomorphisms, we must have s1 + t1 + 1 = cpn−1 for some c. But

s, t ≤ pn−1 implies that s1 + t1 ≤ 2pn−1−2, thus c = 1 and s1 + t1 +1 = pn−1.

Observe that

HomG(∆(pn−1)F ,∆(r)F n

⊗∇(k)F n

) ∼= HomG(∇(r)F n

,∇(pn−1)F ⊗∇(k)F n

)

and that all the weights of ∇(r)F n

are multiple of pn so the image of a homo-

morphism from ∇(r)F n

to ∇(pn−1)F ⊗∇(k)F n

lies in the submodule

∇(1)F n ⊗∇(k)F n ≤ ∇(pn−1)F ⊗∇(k)F n

. Hence,

HomG(∆(pn−1)F ,∆(r)F n

⊗∇(k)F n

) ∼= HomG(∇(r)F n

,∇(1)F n

⊗∇(k)F n

)

∼= HomG(∇(r),∇(1)⊗∇(k)).
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We claim that HomG(∇(r),∇(1)⊗∇(k)) ∼= K if r = k±1+2d where d ∈ ψ0(k)

and zero otherwise. Consider the exact sequence

0 −→ ∇(z − 1) −→ ∇(1)⊗∇(z) −→ ∇(z + 1) −→ 0. (6)

This sequence splits if and only if z 6= −1(mod p). Note that for

HomG(∇(r),∇(1)⊗∇(k)) to be non zero, we must have r+k = 1(mod 2). Now

suppose k = −1(mod p) then we can assume r 6= −1(mod p) and so using (6)

with z = r we have

HomG(∇(r),∇(1)⊗∇(k)) ∼= HomG(∇(1)⊗∇(r),∇(k))

∼= HomG(∇(r − 1)⊕∇(r + 1),∇(k)).

Now, using (4) we deduce that HomG(∇(r−1),∇(k)) ∼= K if and only if r−1 =

k+2d where d ∈ ψ0(k) and it is zero otherwise, and HomG(∇(r+1),∇(k)) ∼= K

if and only if r + 1 = k + 2d′ where d′ ∈ ψ0(k) and zero otherwise. Suppose

they are both non-zero then k+ 1 + 2d = k− 1 + 2d′. But this can only happen

when d = 0, d′ = 1 and r = k + 1. This means that k = p − 2(mod p) and

r = −1(mod p) contradicting our assumption. Now if k 6= −1(mod p) we use

(6) with z = k and the claim follows by a similar argument.

Hence, we have proved the following

H1(G1, V )G ∼=



K if s0 + t0 = p− 2, s1 + t1 = pn−1 − 1

r = k ± 1 + 2d where d ∈ ψ0(k)

0 otherwise.
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Let us now use the five term sequence to determine H1(G,V ). We shall do this

by induction on n. For n = 1 we have s, t ≤ p− 1 and

H1(G, (V G1)(−1)) ∼=


K if r = k + 2e, e ∈ ψ1(k) and s = t

0 otherwise

and

H1(G1, V )G ∼=


K if r = k ± 1 + 2d, d ∈ ψ0(k) and s+ t = p− 2

0 otherwise,

thus,

H1(G,V ) ∼=



K if r = k + 2e, e ∈ ψ1(k) and s = t

or r = k ± 1 + 2d, d ∈ ψ0(k) and s+ t = p− 2

0 otherwise.

Now we use induction. Note that if p = 2 and s0 = t0 = 0 and s1+t1 = 2n−1−1

then ∆(s1) and ∇(t1) are in different blocks of G1 and so

Exti
G(∇(r)F n−1

⊗∆(s1),∇(k)F n−1
⊗∇(t1)) = 0 for all i.
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So for all prime p we get

H1(G,V ) ∼=



K if
r = k + 2e, e ∈ ψ1(k)

s = t

or

r = k ± 1 + 2d, d ∈ ψ0(k)

t = t0 + t1p
i, 0 ≤ t0 ≤ pi − 1

s = t0 + (pn−i − 2− t1)pi

0 otherwise.

This completes the proof of our theorem. QED

Note that if we set n = 0 and s = t = 0 in Theorem 2.1 we get Erdmann and

Cox’s result given by equation (5).

The following proposition shows that when r = k − 1 and s = pn − 2 − t, the

extension is given by ∇(kpn + t). By considering weights, it is easy to see that

no other extension described in Theorem 2.1 can be isomorphic to an induced

module ∇(λ).

Proposition 2.1 For k ∈ N and 0 ≤ t ≤ pn − 2, there is an exact sequence of

G-modules

0 −→ ∇(k)F n

⊗∇(t) −→ ∇(kpn + t) −→ ∇(k − 1)F n

⊗∆(pn − 2− t) −→ 0.

Moreover, ∇(kpn + t) is the only non-split extension, up to isomorphism, of

∇(k − 1)F n ⊗∆(pn − t− 2) by ∇(k)F n ⊗∇(t).
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Dually, the only non-split extension, up to isomorphism, of ∆(k)F n ⊗∆(t) by

∆(k − 1)F n ⊗∇(pn − t− 2) is given by ∆(kpn + t).

Remark 1: For k ∈ N we have an isomorphism between ∇(k − 1)F n ⊗

Stn and ∇(kpn − 1) given by multiplication of polynomials. It is known that

there is an isomorphism between these modules more generally, see for example

[11](II.3).

Proof of Proposition 2.1:

If n = 1 then we are done by (1) (Section 1). Suppose n > 1 and write

t = apn−1 + d, for 0 ≤ a ≤ p − 1 and 0 ≤ d ≤ pn−1 − 1. Using induction we

have an exact sequence

0 −→ ∇(kp+ a)F n−1
⊗∇(d) −→ ∇((kp+ a)pn−1 + d) −→

∇(kp+ (a− 1))F n−1
⊗∆(pn−1 − d− 2) −→ 0.

Using the exact sequences (1) for ∇(kp + a)F n−1
and ∇(kp + (a − 1))F n−1

we

get a filtration of ∇(kpn + apn−1 + d) with quotients

∇(k − 1)F n ⊗∆(p− a− 1)F n−1 ⊗∆(pn−1 − d− 2)

∇(k)F n ⊗∇(a− 1)F n−1 ⊗∆(pn−1 − d− 2)

∇(k − 1)F n ⊗∆(p− a− 2)F n−1 ⊗∇(d)

∇(k)F n ⊗∇(a)F n−1 ⊗∇(d)

Observe that the module ∇(kpn + apn−1 + d) is multiplicity-free, so that the

four quotients have disjoint sets of weights. Hence, ∇(kpn + t)/∇(k)F n ⊗∇(t)
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has a filtration with quotients

∇(k − 1)F n ⊗∆(p− a− 1)F n−1 ⊗∆(pn−1 − d− 2)

∇(k − 1)F n ⊗∆(p− a− 2)F n−1 ⊗∇(d)

Note that for a = p− 1 or d = pn−1− 1, we only have one factor appearing and

so we are done by Remark 1 above. So suppose a ≤ p − 2 and d ≤ pn−1 − 2.

Using a very similar argument to the proof of Theorem 2.1 we can show that

Ext1G(∇(k − 1)F n

⊗∆(p− a− 1)F n−1
⊗∆(pn−1 − d− 2),

∇(k − 1)F n

⊗∆(p− a− 2)F n−1
⊗∇(d)) ∼= K.

Now as ∇(kpn +t) has simple top (see [1]), ∇(kpn +t)/∇(k)F n⊗∇(t) cannot be

a direct sum of non-zero modules. By induction, we know that ∆(pn− apn−1−

d− 2) has a filtration with quotients

∆(p− a− 1)F n−1 ⊗∆(pn−1 − d− 2)

∆(p− a− 2)F n−1 ⊗∇(d)

We deduce that the quotient ∇(kpn + t)/∇(k)F n ⊗∇(t) is isomorphic to

∇(k − 1)F n

⊗∆(pn − apn−1 − d− 2) = ∇(k − 1)F n

⊗∆(pn − 2− t).

This completes the proof QED

Remark 2: S.Donkin suggested an alternative proof of Proposition 2.1. I

shall sketch his argument here. Let us start with the exact sequence of B-

modules

0 −→ ∇(s− 1)⊗K−1 −→ ∇(s) −→ Ks −→ 0 (7)
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for any positive integer s. Apply the Frobenius morphism Fn to the sequence

(7) and tensor it with Kr for some 0 ≤ r ≤ pn−1. Then applying the induction

functor from B-modules to G-modules and using the duality of induction (see

[11],II.4)gives the required sequence.

Remark 3: The composition factors of the ∇’s are known for SL(2,K)

(use for example equation (1) repeatedly) but Proposition 2.1 gives a direct

explanation of the symmetries observed by A.Henke in the decomposition matrix

of SL(2,K) (see [10]). More precisely, if we write λ = kpn + t with k ≤ p − 1

then our proposition tells us that

[∇(kpn + t) : L(kpn + a)] = [∇(t) : L(a)],

[∇(kpn + t) : L((k − 1)pn + b)] = [∇(pn − 2− t) : L(b)].

Let us write the decomposition matrix of G with the ∇’s on the horizontal axis

and the L’s on the vertical axis (see figures 1 and 2 below). Then for each

n ≥ 1 and each 1 ≤ k ≤ p − 1, the columns corresponding to ∇(kpn + t) for

0 ≤ t ≤ pn − 1 are obtained from the left bottom pn × pn block by

1. Translation of length k along the diagonal,

2. Translation of length k−1 along the diagonal and then reflection through

the column corresponding to ∇(kpn − 1) (shaded on the figures).

Hence, we can construct the decomposition matrix inductively starting with the

left bottom p× p block which is just a diagonal matrix, as for 0 ≤ r ≤ p− 1 we

have ∇(r) = L(r).
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