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1 Introduction

Let k denote a field. For each n ≥ 0 we have a category Pol(n) of finite
dimensional polynomial modules and a category Rat(n) of rational modules
over k. For r ≥ 0, we write Pol(n, r) for the full subcategory of Pol(n) whose
objects are the polynomial modules of degree r. Each V ∈ Pol(n) has a
unique decomposition V =

⊕∞
r=0 V (r), where V (r) is polynomial of degree r.

Furthermore, the category Pol(n, r) is naturally equivalent to the category
of modules for the (finite dimensional, associative) Schur algebra S(n, r). It
follows that every polynomial module has a projective cover and an injective
hull.

We here attempt to describe those polynomial modules which are both
projective and injective. We give a complete description in the cases n = 2, 3
and make a conjecture which, if true, gives a complete description in the
general case.

A finite dimensional polynomial module which is injective and projective
must be a tilting module and, thanks to a natural duality on the category of
polynomial modules, our problem is equivalent to that of determining which
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tilting modules are injective (equivalently projective). It is often in this form
that we address the problem. The two main technical advantages enjoyed
by tilting modules are a certain stability property, as n varies, and the fact
that the theory of tilting modules exists in the larger category of rational
modules.

We work with a quantum general linear group over an arbitrary base field
with arbitrary parameter q. We do this not only in the interests of generality
but also because our results, which are new even in the classical case, are
obtained by arguments which involve reduction from the “ideal rational cat-
egory” of representations of the quantum group over a field of characteristic
0 with parameter q a root of unity.

2 Preliminaries

2.1 Combinatorics

Much of polynomial representation theory is governed by the combinatorics
of partitions. We now introduce some of the terminology. For a thorough
treatment of most of the issues discussed here we refer the reader to Green’s
monograph [12]: useful additional references are [14] and [16].

By a partition we mean a sequence λ = (λ1, λ2, . . .) of non-negative integers
such that λ1 ≥ λ2 ≥ · · · and λi = 0 for i � 0. The length of the zero partition
is 0 and, if λ is non-zero, it has length m, where λm 6= 0 and λm+1 = 0. We
also call the length of λ its number of parts.

We denote by λ′ the conjugate (or transpose) of a partition λ. We fix a
positive integer l. A partition λ is called row l-regular if there is no i ≥ 0
such that λi+1 = λi+2 = · · · = λi+l > 0, and called column l-regular if λ′ is
row l-regular, i.e. if λi − λi+1 < l for all i ≥ 1.

Let P denote the set of all partitions and let Preg denote the set of row
l-regular partitions. There is defined on Preg an involution, known as the
Mullineux map. For λ ∈ Preg we write Mull(λ) for the image of λ under this
map and call Mull(λ) the Mullineux conjugate (or transpose) of λ.

The standard terms “hook lengths, l-core, l-weight, rim, l-segment and l-
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edge”, in connection with partitions, will be used without further reference.
For full explanations see [14] and [16].

We now fix a positive integer n. We write Λ(n) for the set of all n-tuples
of non-negative integers. We identify a partition having at most n parts
with an element of Λ(n) and write Λ+(n) for the set of partitions which have
at most n parts. We also set X(n) = Zn and write X+(n) for the set of
λ = (λ1, . . . , λn) ∈ X(n) such that λ1 ≥ λ2 ≥ · · · ≥ λn. We call elements
of X(n) weights, elements of X+(n) dominant weights, elements of Λ(n)
polynomial weights and elements of Λ+(n) dominant polynomial weights.
For α = (α1, . . . , αn) ∈ X(n) we write |α| for α1 + · · ·+ αn and call this the
degree of α. We write Λ+(n, r) for the set of dominant polynomial weights
of degree r, i.e. partitions of degree r which have at most n parts. For
λ ∈ Λ+(n) and l ∈ N, we say that λ is l-restricted if λi − λi+1 < l for all
i = 1, . . . n− 1. Note that if λ is column l-regular then it is l-restricted but
the converse is false.

We write εi for (0, . . . , 0, 1, 0, . . . , 0) (where 1 appears in the ith place). We
write Φ+ for the set of elements εi − εj, with 1 ≤ i < j ≤ n and call Φ+

the set of positive roots. We write Φ− for the set of elements εj − εi, with
1 ≤ i < j ≤ n and call Φ− the set of negative roots. We write Φ for Φ+∪Φ−,
and call Φ the set of roots. There is a natural partial order on X(n), called
the dominance order: we have λ ≤ µ if µ− λ is a sum of positive roots. For
partitions λ, µ we write λ ≤ µ if we have λ ≤ µ when λ, µ are regarded as
elements of X(n), for n suitably large. Of particular importance to us are
the elements δ = (n− 1, n− 2, . . . , 1, 0) and ω = (1, 1, . . . , 1) of Λ+(n).

The symmetric group W = Sym(n), of degree n, acts naturally on X(n).
For each positive root α = εi − εj ∈ Φ we define the reflection sα ∈ W to be
the permutation which swaps the i-th and the j-th coordinates and leaves
everything else fixed. Clearly, W is generated by {sα |α ∈ Φ}. Of particular
importance to us is the longest element w0 = (1, n)(2, n− 1) . . ..

For an integer m, we define the affine reflection sα,m by sα,m(λ) = sα(λ) +
mα. For a fixed positive integer l, we define the affine Weyl group Wl to be
the group generated by {sα,ml |α ∈ Φ, m ∈ Z}. We shall also use the dot
action of the affine Weyl group Wl on X(n) defined by w · λ = w(λ + δ)− δ
for λ ∈ X(n) and w ∈ Wl.
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2.2 Global Representation Theory

We here establish notation relating to a quantum general linear group
and its representation theory. For the most part this is a straightforward
generalization of the theory for general linear groups, as described in [12].
For a fuller account we refer the reader to [9] (especially to the Introduction
of [9] for the relationship with the ordinary general linear group).

Let k be a field. We shall use the expression “G is a quantum group over
k” to indicate that we have in mind a Hopf algebra over k, denoted k[G] and
called the coordinate algebra of G. We use the expression “θ : G → H is a
morphism of quantum groups” to indicate that G and H are quantum groups
and we have in mind a morphism of Hopf algebras from k[H] to k[G], denoted
θ] and called the comorphism of θ. By the expression “H is a subgroup of the
quantum group G” we indicate that we have in mind a quotient Hopf algebra
k[H] = k[G]/IH . The Hopf ideal IH is called the defining ideal of k[H]. The
morphism of quantum groups i : H → G such that i] : k[G] → k[H] is the
natural map will be called (by abuse of notation) inclusion.

By a (left) G-module we mean a right k[G]-comodule. We write Mod(G)
for the category of left G-modules and mod(G) for the category of finite di-
mensional left G-modules. For V ∈ Mod(G) we have the left exact functor
HomG(V,−), from Mod(G) to the category of k-spaces. We write Exti

G(V,−)
for the ith derived functor of HomG(V,−). Taking V = k, the trivial
one dimensional G-module, we have the cohomology functors H i(G,−) =
Exti

G(k,−), from G-modules to k-spaces. In particular, for a G-module V
with structure map τ : V → V ⊗ k[G] we have H0(G, V ) = V G, the “fixed
point space” {v ∈ V |τ(v) = v ⊗ 1}. For a finite dimensional G-module V
the dual space V ∗ = Homk(V, k) has a natural G-module structure. For
G-modules V, W the tensor product space V ⊗ W has a natural G-module
structure. Moreover, if V is finite dimensional then Homk(V, W ) has a natu-
ral G-module structure. We have, in general, HomG(V, W ) ≤ Homk(V, W )G

and equality if the antipode σG : k[G] → k[G] is injective.
For a positive integer n, a commutative ring R and q ∈ R, we have the

R-algebra A(n) = AR,q(n) given by generators cij = cij,R,q, 1 ≤ i, j ≤ n,
subject to the relations:

circis = ciscir for all 1 ≤ i, r, s ≤ n

cjrcis = qciscjr for all 1 ≤ i < j ≤ n, 1 ≤ r ≤ s ≤ n
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cjscir = circjs + (q − 1)ciscjr for all 1 ≤ i < j ≤ n, 1 ≤ r < s ≤ n.

Now we assume that R = k, then A(n) is a k-bialgebra with comultiplication
δ : A(n) → A(n) ⊗ A(n) and augmentation ε : A(n) → k satisfying δ(cij) =∑n

r=1 cir ⊗ crj and ε(cij) = δij, for 1 ≤ i, j ≤ n. The determinant d ∈ A(n) is
defined by d =

∑
π sgn(π)c1,1πc2,2π . . . cn,nπ where π runs over all permutations

of {1, 2, . . . , n} and where sgn(π) denotes the sign of a permutation π.
Now assume that q 6= 0. The bialgebra structure on A(n) extends to the

localization A(n)d of A(n) at d (with δ(d−1) = d−1 ⊗ d−1 and ε(d−1) = 1).
Furthermore, A(n)d is a Hopf algebra. We write k[G(n)] for A(n)d and call
G = G(n) the quantum general linear group of degree n. We denote the
antipode of k[G(n)] by S. We have S2(f) = dfd−1, for f ∈ k[G(n)], in
particular, S : k[G(n)] → k[G(n)] is injective. Explicitly, we have

S2(cij) = dcijd
−1 = qj−icij.

Let T (n) be the subgroup of G(n) whose defining ideal is generated by
{cij|1 ≤ i, j ≤ n, i 6= j}. Then k[T (n)] is the algebra of Laurent polynomial
k[t1, t

−1
1 , . . . , tn, t

−1
n ], where ti = cii + IT (n), for 1 ≤ i ≤ n. We shall also need

the subgroup B(n) of G(n), whose defining ideal is generated by {cij|1 ≤ i <
j ≤ n}.

We shall use the expression “V is a (left) rational G(n)-module” to indi-
cate that V is a right A(n)d-comodule. We write Rat(n) for the category
of right A(n)d-comodules. We write Pol(n) for the category of finite dimen-
sional right A(n)-comodules. We shall also say that an object in Pol(n)
is a polynomial G(n)-module. We have an algebra grading and coalgebra
decomposition A(n) =

⊕∞
r=0 A(n, r) (obtained by giving each cij degree 1).

Each A(n, r) is finite dimensional and the Schur algebra S(n, r) is by defi-
nition the dual algebra of A(n, r). We write Pol(n, r) for the category of fi-
nite dimensional right A(n, r)-comodules (equivalently left S(n, r)-modules).
We shall also say that an object in Pol(n, r) is a G(n)-module which is
polynomial of degree r. For V ∈ Pol(n) we have a unique decomposition
V = ⊕∞

r=0V (r), with V (r) ∈ Pol(n, r). It follows that Pol(n) has enough
injectives. For V, W ∈ Pol(n) we write HomPol(n)(V, W ) for the space of
comodule homomorphisms HomA(n)(V, W ). Thus for V ∈ Pol(n) we have
the left exact functor HomPol(n)(V,−), from Pol(n) to finite dimensional k-
spaces, and derived functors Exti

Pol(n)(V,−). However, for W ∈ Pol(n), we
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have Exti
G(V, W ) = Exti

Pol(V, W ), by [10], Section 4,(5). For G-modules V, W
we shall often simply write Exti(V, W ) for Exti

G(V, W ), though occasionally
write Exti

G(V, W ) or Exti
Pol(V, W ), as appropriate, for emphasis. We shall

also write simply Ext(V, W ) for Ext1
G(V, W ).

In the case in which q = 1 and k is algebraically closed, Rat(n) is naturally
equivalent to the category of rational modules for the algebraic group GLn(k)
and Pol(n) is naturally equivalent to the category of finite dimensional poly-
nomial GLn(k)-modules.

If V is a finite dimensional polynomial G(n)-module, and hence a rational
module, then the dual rational module V ∗ is not, in general, polynomial.
However, there is a duality which preserves polynomial modules. For V
polynomial of degree r we denote by V o the polynomial module of degree r
which is the contravariant dual of V . The construction is given in [9], Section
4.1, Remark (ii) (and in [12], Section 2.7 in the classical case).

For each λ = (λ1, . . . , λn) ∈ X(n) we have the one dimensional T (n)-
module kλ, with structure map taking x ∈ kλ to x⊗tλ, where tλ = tλ1

1 tλ2
2 . . . tλn

n .
The modules kλ,λ ∈ X(n), form a complete set of pairwise non-isomorphic
simple T (n)-modules and a T (n)-module V has a T (n)-module decompo-
sition V =

⊕
λ∈X(n) V λ, where V λ is a sum of copies of kλ. We say that

µ ∈ X(n) is a weight of V ∈ mod(T (n)) if V µ 6= 0. The (formal) charac-
ter ch V of a T (n)-module is the element of the ring of Laurent polynomials
Z[X1, X

−1
1 , . . . , Xn, X

−1
n ] defined by

ch V =
∑

λ∈X(n)

(dim V λ)Xλ

where Xλ = Xλ1
1 . . . Xλn

n , for λ = (λ1, . . . , λn) ∈ X(n).
For λ ∈ X(n) we have

An(λ) =
∑

w∈W

sgn(w)Xwλ ∈ Z[X1, X
−1
1 , . . . , Xn, X

−1
n ]

where sgn(w) denotes the sign of w ∈ W = Sym(n). Moreover An(λ + δ)
is divisible, in Z[X1, X

−1
1 , . . . , Xn, X

−1
n ] by An(δ) and we define χn(λ) =

An(λ + δ)/An(δ). Usually we abbreviate χn(λ) to χ(λ).
For λ ∈ X+(n) there is an irreducible rational G-module L(λ) with unique

highest weight λ. Moreover, {L(λ) |λ ∈ X+(n)} is a complete set of pairwise
non-isomorphic irreducible rational G-modules. Every irreducible rational
module is absolutely irreducible. The module L(λ) is polynomial if and only

6



if λ is a polynomial dominant weight. Moreover, {L(λ) |λ ∈ Λ+(n, r)} is
a complete set of pairwise non-isomorphic irreducible modules in Pol(n, r).
It is easy to check that, for a finite dimensional polynomial module V , the
contravariant dual V o has the same weight multiplicities as V . It follows that
L(λ)o is isomorphic to L(λ), for λ ∈ Λ+(n), and generally, that V and V o

have the same composition factors, counting multiplicities. We write I(λ)
for the injective hull and P (λ) for the projective cover of L(λ), in Pol(n), for
λ ∈ Λ+(n).

We recall that a rational module V is polynomial if and only if all compo-
sition factors of V are polynomial (see, for example [10], Section 4,(5)). Let
λ ∈ X+(n). There is a uniform bound on the dimension of rational modules
V such that V has simple socle L(λ) and all composition factors of V/L(λ)
come from the set {L(µ) |µ < λ}. We choose one of maximal dimension
and denote it ∇(λ). Similarly there is a uniquely determined (up to isomor-
phism) finite dimensional rational module ∆(λ) which has simple head L(λ),
all other composition factors in {L(µ) |µ < λ} and has maximal dimension
subject to these conditions. For λ polynomial we have ∇(λ)o ∼= ∆(λ) (and
∆(λ)o ∼= ∇(λ)). We have ch∇(λ) = ch∆(λ) = χ(λ).

Let V be a finite dimensional rational module. By a ∇-filtration of V we
mean a filtration 0 = V0 < V1 < · · · < Vt = V such that for each 1 ≤ i ≤ t, we
have Vi/Vi−1

∼= ∇(λ(i)), for some λ(i) ∈ X+(n). For λ ∈ Λ+(n), we identify
∇(λ) with a submodule of the injective envelope I(λ) of L(λ). The quotient
I(λ)/∇(λ) admits a ∇-filtration with all sections (up to isomorphism) from
{∇(µ) |µ > λ}. This means that Pol(n, r) is a high weight category, in
the terminology of Cline,Parshall and Scott, or equivalently that S(n, r) is
a quasi-hereditary algebra, for each r ≥ 0. For a finite dimensional rational
module V admitting a ∇-filtration and λ ∈ X+(n) we write (V : ∇(λ)) for
the filtration multiplicity of ∇(λ) in a ∇-filtration. We define ∆-filtrations
and ∆-filtration multiplicities similarly.

For λ, µ ∈ Λ+(n) we have that (I(λ) : ∇(µ)) is equal to the composition
multiplicity [∇(µ) : L(λ)] and dually, writing P (λ) for the projective cover
of L(λ), λ ∈ Λ+(n, r), we have that P (λ) has a ∆-filtration and that (P (λ) :
∆(µ)) = [∆(µ) : L(λ)] (which is also [∇(µ) : L(λ)]) for λ, µ ∈ Λ+(n) (see e.g.
[10], Section 4,(6)). If λ, µ ∈ X+(n) and Ext1(∇(λ),∇(µ)) 6= 0 then we must
have λ > µ. It follows that if V is a finite dimensional rational module which
admits a∇-filtration then there is a∇-filtration 0 = V0 < V1 < · · · < Vm = V
with Vi/Vi−1

∼= ∇(µi) and i < j whenever µi < µj.
We recall that, for λ, µ ∈ X+(n), the tensor product ∇(λ) ⊗ ∇(µ) has a
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∇-filtration (see e.g. [9], Section 4,(3)) and hence in general a tensor product
of modules admitting a ∇-filtration admits a ∇-filtration.

By a tilting module we mean a finite dimensional rational module V which
admits a ∇-filtration and also a ∆-filtration. For λ ∈ X+(n) there exists an
indecomposable tilting module T (λ) with unique highest weight λ. Moreover
{T (λ) |λ ∈ X+(n)} is a complete set of pairwise non-isomorphic indecom-
posable tilting modules. We have dim T (λ)λ = 1, for λ ∈ X+(n).

For λ = (λ1, λ2, . . . , λn) ∈ X(n) we define
λ∗ = −w0λ = (−λm, . . . ,−λ2,−λ1). By considering highest weights one
easily checks that, for λ ∈ X+(n), we have L(λ)∗ ∼= L(λ∗), ∇(λ)∗ ∼= ∆(λ∗),
∆(λ)∗ ∼= ∇(λ∗), T (λ)∗ ∼= T (λ∗).

We denote the natural polynomial module by E. Thus E has basis e1, . . . , en

and the structure map τ : E → E ⊗ A(n) satisfies τ(ei) =
∑n

j=1 ej ⊗ cji.
We have a symmetric algebra S(E) and exterior algebra

∧
(E) which have

natural G-module structures (see e.g. [10]). Moreover there are natural
gradings S(E) =

⊕∞
r=0 SrE and

∧
(E) =

⊕∞
r=0

∧rE preserved by the G-
action. We have, as G-modules, ∇(r, 0, . . . , 0) = SrE, for r ≥ 0, and
∇(1, 1, . . . , 1, 0, . . . , 0) =

∧rE (with 1 appearing r times) for 0 ≤ r ≤ n.
We write D for

∧nE and sometimes call D the determinant module.
For a finite sequence α = (α1, α2, . . . , αm) of non-negative integers, we have

the modules SαE = Sα1E⊗· · ·⊗SαmE and
∧αE =

∧α1E⊗· · ·⊗∧αmE. We
have a decomposition of polynomial modules A(n, r) ∼=

⊕
α∈Λ+(n,r) SαE. It

follows that a polynomial module of degree r is injective if and only if it is a
direct summand of a direct sum of copies of modules SαE, α ∈ Λ+(n, r).

We now discuss a truncation functor. We write En for E and, for λ ∈
X+(n), we write Ln(λ), In(λ), ∇n(λ), ∆n(λ), Tn(λ) for L(λ), I(λ), ∇(λ),
∆(λ), T (λ) when it is desirable to emphasize dependence on n. We choose
N ≥ n and truncate from polynomial modules for G(N) to polynomial mod-
ules for G(n), as in [12], Chapter 6. We have a natural map k[G(N)] →
k[G(n)], taking cij to cij for 1 ≤ i, j ≤ n and taking cij to 0 if i > n or j > n.
Thus a G(N)-module is naturally a G(n)-module by restriction.

We identify Λ(n) with a subgroup of Λ(N), in the obvious way. Let V
be a polynomial G(N)-module. We define a subspace fV =

⊕
θ∈Λ(n) V θ.

One sees, for α = (α1, α2, . . .) we have fSαEN = SαEn, which is a G(n)-
submodule. Moreover, since one may embed any polynomial G(N)-module
in a direct sum of copies of modules of the form SαE, one gets that fV is
a G(n)-submodule of V , for every polynomial G(N)-module V . Thus fV is
naturally a G(n)-module. If θ : V → V ′ is a morphism of polynomial G(N)-
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modules then the restriction fθ : fV → fV ′ is a morphism of G(n)-modules.
In this way we obtain an exact functor f : Pol(N) → Pol(n). We have
fEN = En and, for λ ∈ Λ+(n), we have fLN(λ) = Ln(λ), fIN(λ) = In(λ),
f∇N(λ) = ∇n(λ), f∆N(λ) = ∆n(λ) and fTN(λ) = Tn(λ).

Remark Note that if q = 1 and char k = 0, or q is not a root of unity
then all G-modules and hence all polynomial modules are semisimple (see
e.g. [10], Section 4, (8)) and our problem becomes trivial. Moreover, in the
construction of A(n) we may even take q = 0. But in that case the algebras
S(n, r) (dual to the coalgebras A(n, r)) are quasi-Frobenius, by [9], Section
2.2, (5), so that the notions of projective and injective coincide, and again
our problem is trivial.

Henceforth we shall therefore assume that q is a root of unity and that
char k > 0 if q = 1. Throughout the sequel l will be the smallest positive
integer such that 1 + q + · · · + ql−1 = 0. Thus either q = 1 and k has finite
characteristic l or q 6= 1 and is a primitive lth root of unity.

We shall make frequent use of the Steinberg module St = ∇((l − 1)δ) =
∆((l − 1)δ) = L((l − 1)δ).

2.3 Infinitesimal Representation Theory

The subalgebra of k[G] generated cl
ij, 1 ≤ i, j ≤ n, and d−l is a Hopf

subalgebra of k[G], which we denote k[G] and thereby define the quantum
group G. We identify G with the general linear group scheme GLn over k, of
degree n as follows. Let K be an algebraically closed field containing k. The
linear algebraic group GLn(K) has coordinate algebra K[GLn(K)] generated
by the coefficient functions x11, . . . , xnn and det(xij)

−1. The general linear
group scheme GLn over k has coordinate algebra k[x11, . . . , xnn, det(xij)

−1] (a
Hopf k-form of K[GLn(K)]). We identify G with GLn via the Hopf algebra
isomorphism k[GLn(K)] → k[G] taking xij to cl

ij.

We have the morphism of quantum groups F : G → G such that F ] :
k[G] → k[G] is inclusion. We call F the Frobenius morphism. In addition,
in the case in which k has characteristic p > 0 we have the usual Frobenius
morphism F̄ : G → G satisfying F̄ ](xij) = xp

ij, for all 1 ≤ i, j ≤ n. We shall
append ¯ to the notations defined in section 2.2 when we consider the corre-
sponding modules for G. In particular, we shall write L(λ), ∇(λ), I(λ) and
T (λ) to denote simple, costandard, polynomial injective and tilting modules
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respectively, labelled by λ ∈ X+(n), for G. We shall also write D to denote
the one dimensional determinant module for G.

The infinitesimal subgroup G1 is the subgroup with defining ideal gener-
ated by all cl

ij − δij. The Steinberg module St is injective (and projective)
as G1-module. Let λ ∈ Λ+(n) then T (λ) is injective (and projective) as
G1-module if and only if λ ∈ (l − 1)δ + Λ+(n), see [7] (2.4).

For a G-module V we have the Lyndon-Hochschild-Serre spectral sequence
with E2-page H i(G, Hj(G1, V )) converging to H∗(G, V ).

Setting T = T (n), we also have the subgroup G1T of G with defining
ideal generated by all cl

ij, i 6= j. For each λ ∈ X(n) there is an irreducible

G1T -module L̂1(λ) with unique highest weight λ (occurring with multiplicity
one) and {L̂1(λ) |λ ∈ X(n)} is a complete set of pairwise non-isomorphic
irreducible G1T -modules. (For further details see [9], especially Chapter 3.)

2.4 Statement of the Problem

After establishing the above notation we re-cap on the statement of our
problem. The problem is to classify all finite dimensional polynomial mod-
ules which are both projective and injective. An indecomposable polynomial
module is polynomial of degree r, for some r, so the problem is to classify
indecomposable S(n, r)-modules M which are both projective and injective.
Since M is injective we must have M = I(λ), for some λ ∈ Λ+(n, r). Recall
(for any λ ∈ Λ+(n, r)) that I(λ) has ∇(λ) occurring exactly once in a ∇-
filtration and for all τ ∈ Λ+(n, r) such that ∇(τ) occurs, we must have τ > λ.
Hence I(λ) is determined by its class in the Grothendieck group of finite di-
mensional S(n, r)-modules. Now if I(λ) is projective then the contravariant
dual I(λ)o is injective and hence isomorphic to I(τ) for some τ ∈ Λ+(n, r).
However, for any finite dimensional S(n, r)-module V the class represented
by V in the Grothendieck group of finite dimensional modules is equal to
the class in the Grothendieck group represented by V o. Hence we must have
λ = τ , i.e. I(λ)o = I(λ). Now I(λ)o has a ∇-filtration and hence I(λ) has a
∆-filtration. So I(λ) has both a∇-filtration and a ∆-filtration. Thus I(λ) is a
tilting module, i.e. we have I(λ) = T (µ), for some µ ∈ Λ+(n, r). Conversely,
if µ ∈ Λ+(n, r) is such that T (µ) is injective then we have T (µ) = I(λ) for
some λ ∈ Λ+(n, r). Moreover, we have T (µ)o = T (µ) (since T (µ)o is a tilting
module representing the same class as T (µ) in the Grothendieck of finite di-
mensional S(n, r)-modules) and hence I(λ)o = I(λ). Since I(λ) is injective,
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I(λ)o is projective, i.e. I(λ) is both injective and projective. Similarly if T (µ)
is projective we deduce that T (µ) = P (λ) for some λ such that P (λ) = I(λ).
We have noted the following result.

(1) Let M be a (non-zero) finite dimensional indecomposable polynomial
and let r be the degree of M . The following are equivalent:
(i) M = I(λ) = P (λ) for some λ ∈ Λ+(n, r);
(ii) M is a tilting module and an injective module.

Problem Our problem is thus to find those λ ∈ Λ+(n) such that I(λ) =
T (µ) for some µ ∈ Λ+(n), equivalently to find those µ ∈ Λ+(n) such that
T (µ) = I(λ) for some λ ∈ Λ+(n). In the cases in which this happens we
also seek to understand the relationship between λ and µ; and this we see as
essentially a generalization of the Mullineux correspondence.

Prompted by this formulation we introduce the following notation: we set

Λ+(n, r)1
k,q = {λ ∈ Λ+(n, r) | I(λ) is a tilting module}

and
Λ+(n, r)2

k,q = {µ ∈ Λ+(n, r)|T (µ) is an injective module}.

Thus our problem is to describe these sets explicitly and the bijection
Λ+(n, r)1

k,q → Λ+(n, r)2
k,q, λ 7→ µ, defined by I(λ) = T (µ).

3 Truncation from the case r ≤ n

Our first result in this section tells us where to look for the polynomial
modules which are both projective and injective.

Lemma 3.1 An indecomposable polynomial module is projective and injec-
tive if and only if it is an injective indecomposable summand of E⊗r, for
some r ≥ 0.

11



Proof: An injective indecomposable polynomial module which is a summand
of E⊗r is an injective tilting module and hence an injective and projective
module.

Now let M be an indecomposable polynomial module of degree r which
is both injective and projective. Then M = I(λ), for some λ ∈ Λ+(n, r).
However, I(λ) is a component of the tensor product of symmetric powers
SλE. We have the natural epimorphism E⊗r → SλE and hence there is an
epimorphism E⊗r → I(λ). But I(λ) is projective so this epimorphism splits
and M = I(λ) is a direct summand of E⊗r.

We now review the known case r ≤ n (see [9], Section 4.3 and 4.4(14)) and
derive two consequences of truncation from it. For a module V and a non-
negative integer m we shall often write mV for the direct sum V ⊕V ⊕· · ·⊕V
(m times).

For α = (α1, . . . , αn) ∈ Λ(n), we have

SαE =
⊕

µ∈Λ(n)

dµ I(µ) (1)

where dµ = dim L(µ)α (see [9] 2.1(8)). So first suppose that r ≤ n. We have
a decomposition

E⊗r =
⊕

λ∈Λ+(n,r)

dλI(λ)

where dλ = dim L(λ)ωr , λ ∈ Λ+(n, r) and ωr = (1, 1, .., 1, 0, .., 0) ∈ Λ+(n, r).
Now, dλ 6= 0 if and only if λ is column l-regular. As E, and hence E⊗r,
is a tilting module, we get that for λ column l-regular I(λ) is projective.
Moreover, in this case we have I(λ) = T (Mull(λ′)), see [9] 4.4(14) and [2].

We now use truncation to deduce results for arbitrary n and r.

Lemma 3.2 If µ ∈ Λ+(n, r)2
k,q then µ is row l-regular.

Proof: We have that T (µ) is a component of E⊗r, where r = |µ|. We choose
N ≥ r. Then we have E⊗r = fE⊗r

N , where f : mod(S(N, r)) → mod(S(n, r))
is the truncation functor discussed in section 2.2. Hence T (µ) is a summand
of fTN(τ), for some row l-regular τ ∈ Λ+(N, r). This implies fTN(τ) 6= 0 so
that τ ∈ Λ+(n, r) and indeed fTN(τ) = T (τ). Thus we get µ = τ , which is
row l-regular.
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Lemma 3.3 Let λ ∈ Λ+(n) be a column l-regular partition. Then Mull(λ′)
has at most n parts and we have I(λ) = T (Mull(λ′)). In particular I(λ) is
self dual, under contravariant duality, and hence projective.

Proof: Let |λ| = r and choose N ≥ r. We use the truncation functor
f : Pol(N) → Pol(n). We have IN(λ) = TN(Mull(λ′)). In particular we have
Mull(λ′) ≥ λ which implies that Mull(λ′) has at most n parts. Now applying
f to IN(λ) = TN(Mull(λ′)) gives In(λ) = Tn(Mull(λ′)), as required.

4 A Reduction Theorem

As mentioned in section 2.4, the problem of finding all projective injective
modules is equivalent to the problem of finding all injective (and hence pro-
jective) tilting modules.

The next theorem gives an inductive description of which tilting modules
T (λ) with λ ∈ (l − 1)δ + Λ+(n) are injective provided we know all injective
tilting modules T (µ) with µ /∈ (l − 1)δ + Λ+(n).

For a quantum group H and an H-module V the socle of V will be denoted
socH(V ) or simply soc(V ). For a real number a we write bac for the integer
part of a.

Theorem 4.1 Let λ ∈ Λ+(n) be column l-regular and let µ ∈ Λ+(n). Then
T ((l − 1)δ + λ + lµ) is injective as a polynomial G-module if and only if

T (µ)⊗D
⊗bλ1/lc

is injective as a polynomial G-module.
In this case, we have T ((l − 1)δ + λ + lµ) ∼= I((l − 1)δ + w0λ + lη) where

η is defined by T (µ) ∼= I(η).

Proof: We write λ1 = a + bl where 0 ≤ a ≤ l − 1. Suppose first that

T (µ) ⊗ D
⊗b

is injective. We will show that St ⊗ T (λ) ⊗ T (µ)F is injective
and hence, as T ((l− 1)δ + λ + lµ) occurs as a summand, it must be injective
as well. Suppose for a contradiction that St⊗ T (λ)⊗ T (µ)F is not injective.
Then for some θ ∈ Λ+(n), we have

Ext1
G(L(θ), St⊗ T (λ)⊗ T (µ)F ) 6= 0
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so that
Ext1

G(L(θ)⊗ T (λ)∗, St⊗ T (µ)F ) 6= 0

in other words

Ext1
G(L(θ)⊗ T (−λn,−λn−1, . . . ,−λ1), St⊗ T (µ)F ) 6= 0

and thus

Ext1
G(L(θ)⊗T (λ1−λn, λ1−λn−1, . . . , λ1−λ2, 0), St⊗D⊗a⊗(T (µ)⊗D

⊗b
)F ) 6= 0.

Hence there is some simple composition factor L of
L(θ)⊗ T (λ1 − λn, λ1 − λn−1, . . . , λ1 − λ2, 0) such that

Ext1
G(L, St⊗D⊗a ⊗ (T (µ)⊗D

⊗b
)F ) 6= 0.

But using [8] Section 4 Theorem (in the classical case) and [4] Proposition 5.4
(in the quantum case), we see that L must have the form St⊗D⊗a ⊗L(η)F ,
for some polynomial dominant weight η. Thus we have

Ext1
G(St⊗D⊗a ⊗ L(η)F , St⊗D⊗a ⊗ (T (µ)⊗D

⊗b
)F ) 6= 0.

But then, since St is projective (and injective) as a G1-module, the Lyndon-
Hochschild-Serre spectral sequence of section 2.3 degenerates and we get

Ext1
G(St⊗D⊗a ⊗ L(η)F , St⊗D⊗a ⊗ (T (µ)⊗D

⊗b
)F )

∼= Ext1
G
(L(η), T (µ)⊗D

⊗b
) 6= 0.

Thus T (µ)⊗D
⊗b

is not injective. This is a contradiction.
Assume, conversely, that T ((l−1)δ+λ+lµ) is injective. Now it is injective

as a G1T -module and as it has highest weight (l−1)δ+λ+ lµ, it follows from
[9] 3.2(10)(ii) and (14)(iv) that L̂1((l − 1)δ + w0λ + lξ) occurs in the G1T -
socle, for some ξ ∈ Λ+(n). Hence, L((l − 1)δ + w0λ) occurs in the G1-socle
and since the G-socle is simple, we must have

socG1(T ((l − 1)δ + λ + lµ)) = L((l − 1)δ + w0λ)⊗ V F

for some indecomposable G-module V . Now T ((l − 1)δ + λ + lµ) is a direct
summand of L(λ) ⊗ St ⊗ T (µ)F (see the argument of C. Pillen given in [7]
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Theorem 2.5) and the socle of this module has L((l − 1)δ + w0λ)-isotypic
component L((l − 1)δ + w0λ)⊗ T (µ)F , which is indecomposable. Hence

socG1T ((l − 1)δ + λ + lµ) = L((l − 1)δ + w0λ)⊗ T (µ)F

= L((l − 1)δ + (λn − bl, λn−1 − bl, . . . , a))⊗ (T (µ)⊗D
⊗b

)F .

Suppose, for a contradiction, that T (µ) ⊗ D
⊗b

is not injective. Then we

have Ext1
G
(L(θ), T (µ)⊗D

⊗b
) 6= 0 for some θ ∈ Λ+(n). Using the degeneracy

of the Lyndon-Hochschild-Serre spectral sequence again, we see that

Ext1
G(L((l − 1)δ + (λn − bl, λn−1 − bl, . . . , a))⊗ L(θ)F , T ((l − 1)δ + λ + lµ))

= Ext1
G
(L(θ), T (µ)⊗D

⊗b
) 6= 0.

This contradicts the fact that T ((l − 1)δ + λ + lµ) is injective.

Remark: It follows immediately from Theorem 4.1 that if char k = 0 and
q is a primitive l-th root of unity then any T (λ) with λ ∈ (l − 1)δ + Λ+(n)
is injective. In fact, these modules are injective in the rational category
Rat(n). Indeed it follows from the degeneracy of the Lyndon-Hochschild-
Serre spectral sequence, that a rational G-module is injective (in Rat(n)) if
and only if it is injective as a module for G1. Now the tilting module T (λ)
is injective if and only if λ ∈ (l − 1)δ + Λ+(n).

5 Conjecture

We make a conjecture which if true would determine the sets Λ+(n, r)1
k,q and

Λ+(n, r)2
k,q and the bijection between them, see Theorem 5.1. We first give

a couple of observations on addition and removal of columns.

Lemma 5.1 Let M be a finite dimensional polynomial module such that
D⊗M is projective (resp. injective). Then M is projective (resp. injective).
In particular, if λ ∈ Λ+(n) is such that D⊗I(λ) is projective (resp. D⊗T (λ)
is injective) then I(λ) is projective (resp. T (λ) is injective).
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Proof: Assume D⊗M is projective. For V ∈ Pol(n) we have Ext1(M, V ) ∼=
Ext1(D ⊗M, D ⊗ V ) = 0. Hence M is projective. The other case is similar.

Results in the other direction hold rarely but we do have the following.

Lemma 5.2 Suppose that λ ∈ Λ+(n) and that λ and ω + λ have the same
l-weight.
(i) We have I(ω+λ) = D⊗I(λ) and if I(λ) is projective then so is I(ω+λ).
(ii) If T (λ) is injective then so is T (ω + λ).

Proof: Let γ be the l-core of λ. The hypothesis implies that ω + γ is the
l-core of ω + λ.
(i) Let I = D⊗ I(λ). Then I has simple socle L(ω + λ) and hence I embeds
in I(ω + λ). Now let τ ∈ Λ+(n) be such that (I(ω + λ) : ∇(τ)) 6= 0. Then
τ lies in the block of ω + λ, in particular it has the same l-core as ω + λ,
i.e. ω + γ, and therefore τ has n rows. We may thus write τ = ω + ξ, for
some partition ξ. Hence we have (I(ω + λ) : ∇(τ)) = [∇(τ) : L(ω + λ)] =
[∇(ω + ξ) : L(ω + λ)] = [∇(ξ) : L(λ)] = (I(λ) : ∇(ξ)).

We thus get

dim I(ω + λ) =
∑
ξ

(I(ω + λ) : ∇(ω + ξ)) dim∇(ω + ξ)

=
∑
ξ

(I(λ) : ∇(ξ)) dim∇(ξ) = dim I(λ).

Hence we have I(ω + λ) = D ⊗ I(λ).
If I(λ) is projective then it is a tilting module and hence I(ω+λ) = D⊗I(λ)

is an injective tilting module and hence also projective.
(ii) If T (λ) is injective then we have T (λ) = I(µ) for some µ. Now λ and
µ lie in the same block and hence µ also has l-core γ. Now ω + µ has core
ω + γ and so I(ω + µ) = D ⊗ I(µ) = D ⊗ T (λ) = T (ω + λ) is injective.

Lemma 5.3 Let λ = (λ1, λ2, . . .) be a partition. The following are equiva-
lent:
(i) the rim of λ is equal to its l-edge and has length not divisible by l;
(ii) no first row hook length h11, h12, . . . is divisible by l.
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Proof: We assume that the rim of λ is equal to its l-edge and its length is not
divisible by l. If λ = (1t) for some t then t is not divisible by l and the only
hook length h11 is t. So we now assume that λ has more than one column.
Thus we have λ = (λ1, . . . , λm, 1a) for some m with λm > 1, a ≥ 0. Removing
the first column from λ we get a partition µ = (λ1 − 1, λ2 − 1, . . . , λm − 1)
with rim equal to l-edge. Moreover the length of the rim of µ can not be
divisible by l for otherwise the rim node (1, m) of λ would not be on its
l-edge. Thus we may assume inductively that the first row hook lengths of
µ, i.e. h12, h13, . . ., are not divisible by l. But h11 is the length of the rim of λ
and this is not divisible by l. Thus no first row hook length of λ is divisible
by l.

We leave it to the reader to reverse this argument.

Lemma 5.4 Let µ = (µ1, . . . , µn) ∈ Λ+(n) be column l-regular and suppose
that µn < l − 1. The following are equivalent:
(i) I(ω + µ) ∼= D ⊗ I(µ);
(ii) for all 1 ≤ i ≤ n we have µi + (n− i) 6≡ −1 mod l.
(iii) µ and ω + µ have the same l-weight.

Proof: (i) implies (ii). Suppose that I(µ) ⊗D ∼= I(ω + µ). As µn < l − 1,
ω + µ is column l-regular, so the highest weight of I(ω + µ) is given by
Mull((ω + µ)′). But the highest weight of I(µ)⊗D is given by ω + Mull(µ′).
Hence Mull((ω+µ)′) = ω+Mull(µ′) and in particular, it has exactly n parts.

Let λ = (ω + µ)′. Denote by a(λ) the length of its l-edge, by e(λ) the
length of its rim and by r(λ) its number of parts. Define ε by ε = 0 if l
divides a(λ) and ε = 1 otherwise. Then, by definition of the Mullineux map
(see [16]) we have

n = a(λ)− r(λ) + ε ≤ e(λ)− r(λ) + 1 = n + r(λ)− 1− r(λ) + 1 = n.

Thus we have equality and the rim of λ is equal to its l-edge and has length
not divisible by l. Thus no first row hook length is divisible by l. Hence no
first column hook length of ω + µ is divisible by l, in other words for each
1 ≤ i ≤ n we have that µi + (n− i) + 1 is not divisible by l.
(ii) implies (iii). Display the partition µ on an l-runner abacus (labelled
0, 1, . . . , l − 1) containing n beads. By definition, the bead corresponding
to µi lies on runner ri if and only if µi + n − i ≡ ri mod l. By assumption,
the (l − 1)-runner is empty. So ω + µ is represented on the abacus simply
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by shifting all the beads one step to the right. Recall that the l-core of a
partition is obtained by pushing all the beads up as far as possible along the
runners. We denote the l-core of µ by γ. Then the l-core of ω + µ is equal
to ω + γ. Thus µ and ω + µ have the same l-weight.
(iii) implies (i). See Lemma 5.2.

We now make our main conjecture.

Conjecture 5.1 Suppose λ ∈ Λ+(n) is such that I(λ) is projective. Then
either I(λ) is injective as a G1-module or λ is column l-regular.

Before seeing how this implies a complete solution to our problem we
refine the conjecture above by describing the intersection between the two
conditions. Recall from section 2.3 that a tilting module T (ν) is injective
as a G1-module if and only if ν ∈ (l − 1)δ + Λ+(n). We claim that if λ =
(λ1, . . . , λn) is column l-regular then I(λ) is injective as a G1-module if and
only if λ1 ≥ (n − 1)(l − 1). Suppose that I(λ) is injective as a G1-module.
Then I(λ) ∼= T ((l − 1)δ + η + lµ) for some η column l-regular and some
µ ∈ Λ+(n). So (as in the proof of Theorem 4.1) we have λ = (l−1)δ+w0η+lθ
for some θ ∈ Λ+(n) and so λ1 ≥ (n− 1)(l − 1).

Conversely, suppose λ1 ≥ (n− 1)(l − 1) then as λ is column l-regular, we
see that λ = (l − 1)δ + w0η where η is a column l-regular partition. Hence,
using Theorem 4.1, we see that T ((l− 1)δ + η) is injective and we must have
I(λ) ∼= T ((l − 1)δ + η) which is injective as a G1-module.

We can now reformulate our conjecture as follows.

Conjecture 5.2 Let λ ∈ Λ+(n) be such that I(λ) ∼= P (λ). Then exactly one
of the following conditions holds:
(i) λ is column l-regular and λ1 < (n− 1)(l − 1);
(ii) I(λ) is injective as a G1-module.

For µ ∈ Λ+(n) column l-regular, we define ti(µ) to be the least non-
negative integer congruent to µi + (n− i) modulo l. We set
t(µ) = max{t1(µ), . . . , tn(µ)}.
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Theorem 5.1 Assume Conjecture 5.2 holds. An indecomposable polynomial
G(n)-module M is projective and injective in Pol(n) in precisely the following
cases.

(i)
M ∼= I(λ) ∼= T (Mull(λ′))

for λ ∈ Λ+(n) column l-regular with λ1 < (n− 1)(l − 1).

(ii) (a) char k = 0 and

M ∼= I((l − 1)δ + w0λ + lµ) ∼= T ((l − 1)δ + λ + lµ)

for λ, µ ∈ Λ+(n) and λ column l-regular.

(b) char k = p and

M ∼= I((lpm − 1)δ + w0λ + lpmµ) ∼= T ((lpm − 1)δ + λ + lpmMull(µ′))

for m ≥ 0, λ, µ ∈ Λ+(n) with λ column lpm-regular, µ column p-regular with
µ1 < (n− 1)(p− 1) and λ1 + lpmt(µ) < lpm+1.

Proof: Any projective injective module must be tilting so let us start with
a tilting module T (η), η ∈ Λ+(n), and assume that it is injective in Pol(n).
Now T (η) is injective as a G1-module if and only if η ∈ (l − 1)δ + Λ+(n).

Suppose first that η /∈ (l− 1)δ + Λ+(n). Then Conjecture 5.2 implies that
T (η) ∼= I(λ) for some column l-regular λ with λ1 < (n− 1)(l− 1). Moreover,
using Lemma 3.3, we must have η = Mull(λ′).

Now suppose that η ∈ (l− 1)δ + Λ+(n). If char k = 0 then using Theorem
4.1 we see that T (η) is always injective and if we write η = (l− 1)δ + λ + lµ
for λ, µ ∈ Λ+(n) with λ column l-regular, then we have

T ((l − 1)δ + λ + lµ) ∼= I((l − 1)δ + w0λ + lµ).

Now assume that char k = p > 0. Define m ≥ 0 by η ∈ (lpm−1)δ+Λ+(n)\
(lpm+1−1)δ+Λ+(n). So η can be written as η = (lpm−1)δ+λ+ lpmξ with λ
column lpm-regular and ξ /∈ (p−1)δ+Λ+(n). It is easy to see, using Theorem

4.1 inductively, that T (η) is injective if and only if T (ξ) ⊗ D
⊗bλ1/lpmc

is
injective and in this case we have T (η) ∼= I((lpm−1)δ+w0λ+lpmµ) where µ is
defined by T (ξ) ∼= I(µ). Now, as ξ /∈ (p−1)δ+Λ+(n), Conjecture 5.2 implies
that µ must be column p-regular with µ1 < (n− 1)(p− 1) and using Lemma
3.3 we have ξ = Mull(µ′). Moreover, we must have I(µ + bλ1/lp

mcω) ∼=
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I(µ)⊗D
⊗bλ1/lpmc

. Using Lemma 5.4, we see that this is the case if and only
if bλ1/lp

mc+ t(µ) < p i.e. λ1 + lpmt(µ) < lpm+1.

6 Another Reduction Theorem

We here reduce our problem to the case in which the base field k has char-
acteristic zero.

Definition By a quantum modular reduction system, we mean a quintuple
(K, R, F, Q, q), where R is a local, complete discrete valuation ring with field
of fractions K and residue field F , and where Q is a unit in R with image q
in F .

(Note that such a system is determined by the complete, discrete, valuation
domain R and unit Q ∈ R.)

Examples (i) Let p be a prime, F the field of p elements and let q = 1.
Let K be a splitting field of Xp − 1 over Qp, the field of p-adic numbers.
Let R denote the ring of integers in K, i.e. the integral closure of the ring
of p-adic integers Zp in K. Then K is completely ramified over Qp (see e.g.
[3], Chapter 8, Lemma 4.2(i)). Hence the residue field of K is F . Let Q be
any primitive pth root of 1 in K. Then (K, R, F, Q, q) is a quantum modular
reduction system.
(ii) Let p be a prime and F a finite field with pm elements, say, and let q
be a non-zero element of F with multiplicative order l > 1. Let K be a
splitting field of Xpm − X over Qp. Let R be the ring of integers in K.
Then K is an unramified extension of Qp of degree m. The residue field
of K is F . Moreover, reduction modulo the maximal ideal of R determines
a group isomorphism between the group of units of K of exponent pm − 1
and the multiplicative group of the field F . (See [3] pp147,148). Hence if
Q is an element of exponent pm − 1 mapping to q then Q has order l and
(K,R, F, Q, q) is a quantum modular reduction system.

Lemma 6.1 If F is a subfield of the field L then we have Λ+(n, r)1
F,q =

Λ+(n, r)1
L,q and Λ+(n, r)2

F,q = Λ+(n, r)2
L,q.
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Proof: The absolute irreducibility of L(λ), for all λ ∈ Λ+(n, r) implies that
the tilting modules T (λ), λ ∈ Λ+(n, r), are all absolutely indecomposable,
see [9] Theorem A4.2(iii). The result follows and similarly for the statement
concerning injective modules.

Thus, in the case in which q = 1 and k has characteristic p we may replace
k by the field of p element, and in the case q 6= 1 (a root of unity) we may
replace k by the finite subfield generated by q.

In order to proceed we need to consider modules over an R-form of the
Schur algebra S(n, r) over K with parameter Q.

For a commutative ring R and Q ∈ R we have the R-algebra AR,Q(n) con-
structed by generators and relations as in section 2.2. According to [5] 2.4.1
Lemma, a ring homomorphism θ : R → R′, taking Q ∈ R to Q′ ∈ R′, in-
duces an R-algebra homomorphism θ̃ : AR,Q(n) → AR′,Q′(n), taking cij,R,Q to
cij,R′Q′ , for all 1 ≤ i, j ≤ n, and hence inducing an R-module homomorphism
AR,Q(n, r) → AR′,Q′(n, r) taking cij,R,Q to cij,R′,Q′ , for all i, j ∈ I(n, r), r ≥ 0.
Furthermore, the natural R′-module map R′ ⊗R AR,Q(n, r) → AR′,Q′(n, r) is
an isomorphism. In particular, if R is a domain and K is the field of fractions
of R then the induced map AR,Q(n, r) → AK,Q(n, r) is injective. We thus
identify AR,Q(n, r) with an R-submodule of AK,Q(n, r).

Then AR,Q(n, r) is a R-form of AK,Q(n, r). We write SR,Q(n, r) for the
R-submodule {ξ ∈ SK,Q(n, r)|ξ(AR,Q(n, r)) ≤ R}. Note that ξ ∈ SK,Q(n, r)
belongs to SR,Q(n, r) if, and only if, ξ(cij,R,Q) ∈ R, for all i, j ∈ I(n, r). Thus,
for ξ1, ξ2 ∈ SR,Q(n, r) and i, j ∈ I(n, r), we have
(ξ1 ∗ ξ2)(cij,R,Q) =

∑
h∈I(n,r) ξ1(cih,R,Q)ξ2(chj,R,Q) ∈ R. Thus the R-lattice

SR,Q(n, r) of SK,Q(n, r) is in fact an R-subalgebra.
We now fix a quantum modular reduction system (K,R, F, Q, q). We fur-

ther fix n ≥ 1 and r ≥ 0. We identify AF,q(n, r) with F⊗R AR,Q(n, r) and the
F -algebra SF,q(n, r) with F⊗RSR,Q(n, r). We write simply SK for SK,Q(n, r),
write SR for SR,Q(n, r) and write SF for SF,q(n, r). Further, for i, j ∈ I(n, r),
we write cij for cij,K,Q and cij,Q,R and cij,F,q, hoping that the context makes
it clear which is intended.

Let λ ∈ Λ+(n, r). For U = K or F , to emphasize dependence on the
field, we now write LU(λ) (resp. ∆U(λ), resp. ∇U(λ)) for the simple (resp.
standard, resp. costandard) module labelled by λ. We shall also need distin-
guished R-forms of the standard and costandard modules. Before defining
these, we recall the definition of a certain involutory anti-automorphism on
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a Schur algebra.
We write EK (resp. EF ) for the natural module for the quantum group

G(n) defined over K with parameter Q (resp. defined over F with parameter
q). However, for i ∈ I(n, r), we write simply ei for the corresponding standard
basis element of E⊗r

K or E⊗r
F (again hoping that the context will make it clear

which is intended).
Recall that we have a non-singular bilinear form on the K-space E⊗r

K ,
defined by (ei, ej) = δijQ

d(i), where d(i) is the number of pairs (a, b) with
1 ≤ a < b ≤ r and ia < ib. We have an involutory, anti-automorphism JK of
the K-algebra SK satisfying (ξx, y) = (x, JK(ξ)y), for all ξ ∈ SK , x, y ∈ E⊗r

K .
One also has the involutory anti-automorphism JF of SF , defined in the
same way. Let ξ ∈ SR. For i ∈ I(n, r), we have ξei =

∑
j ξ(cij)ej ∈ E⊗r

R .
Hence ξ(E⊗r

R ) ≤ E⊗r
R . We note that if x ∈ E⊗r

K and (x, y) ∈ R for all
y ∈ E⊗r

R then x ∈ E⊗r
R . For ξ ∈ SR and x ∈ E⊗r

R we have (JK(ξ)x, y) =
(x, JK(ξ)y) ∈ R. Hence we have JK(ξ) ∈ SR and so JK restricts to an R-
algebra anti-automorphism JR of SR. We note that, by construction, we have
JF = 1⊗R JR : SF → SF .

Let 0 6= v+ ∈ ∆K(λ). We define ∆R(λ) = SRv+ and observe that (since
dim ∆K(λ)λ = 1) the isomorphism type of ∆R(λ) is independent of the choice
of v+. For an SR-module M , which is an R-lattice (i.e. finitely generated
and free as an R-module) we have the SK-module MK = K ⊗R M and the
SF -module MF = F ⊗R M . We recall that MK and MF have the same
character, see [5], 2.4.3 Lemma. Thus, F ⊗R ∆R(λ) is generated by a highest
weight vector of weight λ and has the same character as ∆F (λ). Hence we
must have F ⊗R ∆R(λ) ∼= ∆F (λ).

For an SR-lattice M we define Mo to be the R-module HomR(M, R), re-
garded as an SR-module via the action given by (ξθ)(m) = θ(JR(ξ)m). We
define ∇R(λ) = ∆R(λ)o, for λ ∈ Λ+(n, r).

By a ∆-filtration of an SR-lattice M we mean an SR-module filtration
0 = M1 < M1 < · · · < Mt = M such that, for each 1 ≤ i ≤ t, we have
Mi/Mi−1

∼= ∆R(λ), for some λ ∈ Λ+(n, r) (which may depend on i). We
define ∇-filtration of an SR-lattice similarly.

Lemma 6.2 (i) For an SR-lattice M we have (MF )o ∼= (Mo)F .
(ii) An SR-lattice M has a ∆-filtration (resp. ∇-filtration) if and only if the
SF -module MF has a ∆-filtration (resp. ∇-filtration).

Proof: (i). This follows directly from the definitions.
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(ii) If suffices to prove the result on ∆-filtrations : the result for ∇-filtrations
follows by duality. Moreover, if M has a ∆-filtration then so has MF , since
F ⊗R ∆R(λ) ∼= ∆F (λ), for each λ ∈ Λ+(n, r), as noted above. We now con-
sider the converse. The proof is a refinement of the argument of [6], (11.5.3)
Lemma, dealing with Weyl filtrations for modules for the hyperalgebra of a
semisimple algebraic group.

So suppose now that M is an SR-lattice such that MF has a ∆-filtration.
Let λ be a highest weight of MK . Then Mλ = M ∩Mλ

K is a free R-module
so we may write Mλ = Ry⊕N , for some 0 6= y ∈ M and R-submodule N of
Mλ. Let Z = SRy.

Now inclusion Z → M induces an injective map ZK → MK (since K is
torsion free, hence flat, as an R-module - or, because localization is exact)
and we identify ZK with a SK-submodule of MK . Now ZK is generated by
a vector of weight λ, and λ is a highest weight of MK so that ZK is a homo-
morphic image of ∆K(λ). In particular, we have dimK ZK ≤ dimK ∆K(λ).
Thus the R-rank of Z, which is equal to the K-dimension of ZK is at most
dimK ∆K(λ) = dimF ∆F (λ).

Now the short exact sequence 0 → Z → M → M/Z → 0, of SR-modules,
gives rise to an exact sequence

0 → TorR
1 (M/Z, F ) → ZF → MF → (M/Z)F → 0. (2)

Let yF = 1 ⊗R y ∈ ZF . Note that the image of yF in MF is non-zero (since
Ry is an R-module summand of M). Since MF has a ∆-filtration any weight
vector of the highest weight λ generates a copy of ∆F (λ). Thus the map
φ : ZF → MF has image of dimension dimF ∆F (λ) and since dim ZF ≤
dimF ∆F (λ), we must have that φ : ZF → MF is injective and that ZF is
isomorphic to ∆F (λ).

Now we get that dimK ZK = dimF ZF = dimF ∆F (λ) = dimK ∆K(λ) and,
since ZK is generated by a vector of weight λ, we must have ZK

∼= ∆K(λ).
Since Z is generated by a (non-zero) highest weight vector inside the module
∆K(λ) we have Z ∼= ∆R(λ), by construction. But also, from (2) and the
injectivity of φ, we get that TorR

1 (F, M/Z) = 0, i.e. M/Z is torsion free,
i.e. M/Z is an SR-lattice. Moreover, we have a short exact sequence 0 →
ZF → MF → (M/Z)F → 0 and MF has a ∆-filtration and ZF

∼= ∆F (λ) so
that (M/Z)F also has a ∆-filtration. Now we may assume, by induction on
rank, that M/Z has a ∆-filtration and since Z ∼= ∆R(λ), we get that M has
a ∆-filtration, as required.
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Proposition 6.1 Let M an SR-lattice.
(i) If MF is a tilting module then so is MK.
(ii) If M is a projective SR-lattice (i.e. a finitely generated projective SR-
module) such that MF is injective then MK is injective.

Proof: (i) Since MF has both a ∆-filtration and a ∇-filtration so too does
MR, by Lemma 6.2. Hence MK has a ∆-filtration and a ∇-filtration, i.e. MK

is a tilting module.
(ii) The SF -module MF is both projective and injective, hence has both a
∆-filtration and a ∇-filtration. Hence MF is tilting and so, by (i), MK is
too. Now MK is a projective tilting module and hence also injective.

Theorem 6.1 (i) If λ ∈ Λ+(n, r) is such that TF (λ) is injective then TK(λ)
is injective.
(ii) If µ ∈ Λ+(n, r) is such that IF (µ) is projective then IK(µ) is also projec-
tive.

Proof: (i) If TF (λ) is injective then it is also projective. Since R is complete,
there exists some projective SR-lattice T such that TF

∼= TF (λ). Now TK is
a tilting module by Proposition 6.1. Moreover, TK and TF have the same
character. Hence TK is a projective tilting module with highest weight λ.
Thus TK(λ) is a summand of TK and hence also is a projective tilting module
and hence also injective.
(ii) We have IF (µ) = TF (λ), for some λ ∈ Λ+(n, r) and TF (λ) = TF for some
projective R-lattice T . The rest of the argument is as in (i).

Corollary 6.1 If the conjecture holds over all characteristic zero base fields
then it holds over all fields.

Proof: Suppose F is a field of characteristic p and IF (µ) is projective. We
may assume that F is the field generated by q. We have IF (µ) = TF (λ)
for some λ. By Examples (i) and (ii) above we have a quantum modular
reduction system (K, R, F, Q, q) where K is a p-adic number field and Q has
finite multiplicative order l. By Theorem 6.1, TK(λ) is injective and so, by
the conjecture for fields of characteristic 0, either λ ∈ (l−1)δ+Λ+(n) or λ =
Mull(τ ′), for some column l-regular τ ∈ Λ+(n). Hence either IF (µ) = TF (λ)
is injective as a G1-module or λ = Mull(τ ′), which implies TF (λ) = IF (τ) =
IF (µ) and hence µ = τ is column l-regular.
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7 The cases n = 2 and n = 3

In this section we will prove our conjecture when n = 2, 3. Note that by the
result of the previous section, it is enough to prove it in characteristic zero.
Throughout this section we assume that char k = 0 and q is a primitive l-th
root of unity.

Let us start with some general observations. Recall that for a subset π of
the set of dominant weights X+(n) we have a functor Oπ on the category
Rat(n) defined on an object V by setting Oπ(V ) to be the largest submodule
of V with all composition factors L(θ) satisfying θ ∈ π. Note that if π is
saturated in X+(n) and V has a ∇-filtration then so does Oπ(V ), see [9]
Lemma A.3.1.

We now consider a family of subsets of X+(n). For an integer r, we define
π(r) = {θ = (θ1, . . . , θn) ∈ X+(n) | θn ≥ r}. It is easy to check that π(r) is
saturated. For a rational module V , we call Oπ(r)(V ) the r-th level of V .
Note that Oπ(0)(V ) is the largest polynomial submodule of V .

This definition was motivated by the following proposition.

Proposition 7.1 Let η ∈ Λ+(n) and write η = λ + lµ where λ, µ ∈ Λ+(n)
with λ l-restricted and µn = 0. Then

I(η)⊗D⊗(n−1)(l−1) ∼= Oπ((n−1)(l−1))(T (2(l − 1)δ + w0λ + lµ)).

Moreover,
I(η)⊗D⊗(n−1)(l−1) ∼= T (2(l − 1)δ + w0λ + lµ)

if and only if λ1 ≥ (n− 1)(l − 1).

Proof: Set T = T (2(l − 1)δ + w0λ + lµ). Using the remark following The-
orem 4.1, we see that T ⊗D⊗−(n−1)(l−1) is the injective hull of L(λ + lµ) in
the category Rat(n). So the injective hull of L(λ + lµ) in Pol(n), namely
I(λ + lµ), is equal to Oπ(0)(T ⊗D⊗−(n−1)(l−1)). So we have

I(λ + lµ)⊗D⊗(n−1)(l−1) = Oπ((n−1)(l−1))(T ).

Now the last part of 2(l− 1)δ + w0λ + lµ is at least (n− 1)(l− 1) if and only
if λ1 ≥ (n− 1)(l − 1) and in this case we have Oπ((n−1)(l−1))(T ) = T .

Recall that we have a natural W -invariant Z-bilinear inner product ( , ) :
X(n) × X(n) → Z for which ε1, . . . , εn form an orthonormal basis. We put
β0 = ε1− εn and note that µ ≤ λ implies (µ, β0) ≤ (λ, β0) for all µ, λ ∈ X(n).
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Proposition 7.2 Let λ, µ ∈ Λ+(n) with λ l-restricted. Assume µi − µi+1 ≥
n−1 for all 1 ≤ i ≤ n−1. Then no proper submodule of T ((l−1)δ +λ+ lµ)
can be tilting.

Proof: Note that T = T ((l − 1)δ + λ + lµ) is isomorphic to
T ((l− 1)δ + λ)⊗∇(µ)F . Now the character of T ((l− 1)δ + λ) is divisible by
χ((l− 1)δ) and has highest weight (l− 1)δ + λ. It follows that the character
of T is a sum of terms χ((l−1)δ+wν + lµ) where w ∈ W , ν ∈ Λ+(n), ν ≤ λ.
We claim that under our assumption every weight of this form belongs to
(l−1)δ+Λ+(n) ⊂ Λ+(n). Now assume that the claim holds and suppose for a
contradiction that Y is a proper submodule of T and that Y is tilting. Then
since both Y and T admit ∇-filtrations, T/Y also admits a ∇-filtration. It
follows that ch Y is a sum of terms χ((l − 1)δ + wν + lµ), with w ∈ W ,
ν ∈ Λ+(n), ν ≤ λ and hence a sum of terms χ((l − 1)δ + τ), τ ∈ Λ+(n).
In particular, the highest weight of Y belongs to (l − 1)δ + Λ+(n) so Y is
injective and hence is a direct summand of the indecomposable module T .
This is a contradiction.

Let us prove the claim. We need to show that for w ∈ W , ν ∈ Λ+(n),
ν ≤ λ we have

((l − 1)δ + wν + lµ, αi) ≥ l − 1

where αi = εi − εi+1, for all i = 1, ..., n− 1. So we have to prove that

(wν, αi) + l(µ, αi) ≥ 0

for all i = 1, ..., n− 1. By assumption we have (µ, αi) ≥ n− 1. Now we have

(wν, αi) = (ν, w−1αi) ≥ −(ν, β0) ≥ −(λ, β0) ≥ −(n− 1)(l − 1)

as λ is l-restricted. So

(wν, αi) + l(µ, αi) ≥ l(n− 1)− (l − 1)(n− 1) ≥ 0.

Corollary 7.1 Let η = λ + lµ ∈ Λ+(n) with λ l-restricted and µi − µi+1 ≥
n− 1 for all 0 ≤ i ≤ n− 1. If I(η) ∼= P (η) then I(η) is injective in Rat(n).

Proof: Combine Proposition 7.1 with Proposition 7.2.
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Proposition 7.3 Conjecture 5.1 holds for n = 2

Proof: Let λ ∈ Λ+(2) and suppose that I(λ) ∼= P (λ) but it is not injective
in Rat(2). Then using Corollary 7.1 we see that λ must be l-restricted. Now
if λ is not column l-regular then λ1 ≥ λ2 ≥ l. Using Proposition 7.1, we get
that I(λ) is injective in Rat(2). This is a contradiction.

Before proving the conjecture for n = 3, we shall prove and recall a few
more general results. For an integer r, define the r-th slice of a rational
module V by Slicer(V ) = Oπ(r)(V )/Oπ(r+1)(V ). We set
π′(r) = π(r) \ π(r + 1) = {θ = (θ1, . . . , θn) ∈ X+(n) | θn = r}. Let f be the
truncation functor from Pol(n) to Pol(n− 1) defined in section 2.2.

Lemma 7.1 Let V ∈ Pol(n) with a ∇-filtration. Then for any r ≥ 0 we
have

ch(Slicer(V )) =
∑

λ∈π′(r)

(V : ∇(λ))χn(λ)

and
ch(fV ) =

∑
λ∈π′(0)

(V : ∇(λ))χn−1(λ).

Proof: This follows from the definitions of Slicer and properties of f given
in section 2.2.

Remark: Take V to be the indecomposable tilting module Tn(λ). By ten-
soring it with some negative power of the determinant if necessary, we can
assume that λn = 0. Then, since fTn(λ) = Tn−1(λ) (see section 2.2), Lemma
7.1 tells us that Slice0(Tn(λ)) gives the character of Tn−1(λ). In particular,
for n = 3 we know that the tilting modules in Pol(n − 1) = Pol(2) have at
most two ∇-factors, see [9] 3.4(4).

We recall some well-known facts about the translation functors in Rat(n)
(details for the analogous case of rational modules for a reductive group can
be found in [15]II.7and [1] section 5). For λ, µ ∈ X+(n) with µ − λ = wν
where w ∈ W and ν ∈ X+(n) satisfies (ν+δ, β0) ≤ l, we define the translation
functor T µ

λ on Rat(n) given on an object V ∈ Rat(n) by

T µ
λ (V ) = prµ(prλ(V )⊗ L(ν))
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where, for η ∈ X+(n) we denote by prη the functor projecting a rational
module onto the summand belonging to the (union of) blocks corresponding
to the orbit of η under the dot action of the affine Weyl group Wl. Now if
V has a ∇-filtration (resp. a ∆-filtration) then so does T µ

λ (V ). So if V is a
tilting module then so is T µ

λ (V ).
Now suppose that µ belongs to the closure of the facet containing λ. Let

w ∈ Wl with w · λ and w · µ ∈ Λ+(n). Assume that the stabiliser of w · µ in
the affine Weyl group Wl is given by {1, s} where s is an affine reflection and
that sw · λ < w · λ. Then we have

T µ
λ∇(w · λ) = T µ

λ∇(sw · λ) = ∇(w · µ) (3)

and we have the following short exact sequence

0 −→ ∇(sw · λ) −→ T λ
µ∇(w · µ) −→ ∇(w · λ) −→ 0. (4)

Moreover, the translates of the corresponding tilting modules are given by

T λ
µ T (w · µ) = T (w · λ) (5)

T µ
λ T (w · λ) = 2T (w · µ). (6)

Let us quote one last result proved by Humphreys and Jantzen for arbitrary
semisimple simply connected algebraic groups. The proof is based on Weyl’s
dimension formula so the result clearly applies to our situation.

Theorem 7.1 [13] If λ ∈ Λ+(n) and ∇(λ) = L(λ) then either λ is l-
restricted or λ ∈ (l − 1)δ + lΛ+(n)

Proposition 7.4 Assume n = 3. Let λ, µ ∈ Λ+(3) with λ l-restricted and
µ 6= 0. Then T ((l−1)δ+λ+ lµ) has no proper level which is a tilting module.

Proof: Let us consider the character of the tilting module T ((l−1)δ+λ+lµ).
For λ1 − λ3 ≤ l we have ch T ((l − 1)δ + λ) = χ((l − 1)δ)s(λ) where s(λ)
denotes the orbit sum of λ under the action of the Weyl group W , see e.g.
[11] 5.Proposition. As T ((l − 1)δ + λ + lµ) ∼= T ((l − 1)δ + λ) ⊗ ∇(µ)F we
have

ch T ((l − 1)δ + λ + lµ) = χ((l − 1)δ)χ(µ)F s(λ)

= χ((l − 1)δ + lµ)s(λ)

=
∑

θ∈Wλ

χ((l − 1)δ + θ + lµ),
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by Brauer’s formula, see [6] (2.2.3).
Using (4) and (5) we see that for λ1 − λ3 > l, we have

ch T ((l−1)δ+λ+lµ) =
∑

ν∈Wλ

χ((l−1)δ+ν+lµ)+
∑

τ∈W (sβ0,l·λ)

χ((l−1)δ+τ+lµ).

As T (η + aω) ∼= T (η) ⊗D⊗a for all η ∈ Λ+(3) and positive integer a, we
shall write the character of tilting modules as “SL3-characters”. Namely, for
a weight θ = (θ1, θ2, θ3) ∈ Λ(3) we shall consider instead the corresponding
“SL3-weight” (θ1 − θ2, θ2 − θ3). We shall represent the character of a tilting
module T as a set of dots in the dominant region, each dot representing the
highest weight of a ∇-factor of T . A dot with a circle around it means that
this ∇ occurs twice in a ∇-filtration of T . The straight lines represent the
walls of the dot action of the affine Weyl group Wl on X(n).

Note that the Morita equivalences given by the translation functors, see
[15] II.7.9 (or Scopes equivalences, see [8] section 5 in this context) for two
weights in the same facet implies that it is enough to consider one tilting
module for each facet.

So we get the following pictures for the characters of the T ((l−1)δ+λ+lµ)
where λ is l-restricted. We set (a, b) = (λ1 − λ2, λ2 − λ3) and (c, d) =
(µ1 − µ2, µ2 − µ3). Then 0 ≤ a, b ≤ l − 1 and c, d ≥ 0.
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r

Figure 0 Figure 1
a = b = 0 a, b 6= 0, a + b < l

r r

Figure 2 Figure 3
a = 0, b 6= 0, a + b < l a 6= 0, b = 0, a + b < l
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r

Figure 4 Figure 5
a + b = l, c, d ≥ 1 a + b = l, c ≥ 1, d = 0

Figure 6 Figure 7
a + b = l, c = 0, d ≥ 1 a + b = l, c = d = 0
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r

v
ur

Figure 8 Figure 9
a + b > l, c, d ≥ 1 a + b > l, c ≥ 1, d = 0

Figure 10 Figure 11
a + b > l, c = 0, d ≥ 1 a + b > l, c = d = 0
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The dashed lines in the pictures represent the character of the slices of the
tilting module, and the character of the levels are given by all the dots on
and below a given slice.

First observe that if a level has a highest weight contained in (l − 1)δ +
X+(n) then we are done using the same argument as in the proof of Proposi-
tion 7.2. So we are left with the following cases (note that we have assumed
that µ 6= 0): Figures 1,2,3 and 5: c ≥ 1, d = 0 (so the hexagon is against the
right wall), levels r and u; Figure 8: c ≥ 1, d = 1 (so the star is touching the
right wall), level r; Figure 9: levels r, u and v.

For Figure 3 level r, Figure 5 level u and Figure 9 level v, we see using
Theorem 7.1 that they cannot be tilting.

In Figure 1, if level u were tilting, then translating onto the wall and using
(3), we see that

would give the character of a tilting module, i.e. we would have a tilting
module whose character is 2χ(ν) for some ν ∈ Λ+(n) with ν not l-restricted
and ν /∈ (l − 1)δ + lΛ+(n). But then using Theorem 7.1, we see that ∇(ν)
cannot be simple and so 2χ(ν) is not the character of a tilting module. The
same argument shows that in Figure 9, level v cannot be tilting.

In Figure 1, if level r were tilting then using (3), the left hand side of
Figure 12 would give the character of a tilting module.
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+=

Figure 12

Now the character of the indecomposable tilting module with the same high-
est weight is given in Figure 3. So the tilting module whose character is given
by the left hand side of Figure 12 would decompose as a direct sum of tilting
modules whose characters are given by the right hand side of Figure 12. But
using Theorem 7.1, the second summand cannot be tilting.

When l ≥ 3 (i.e. the alcoves are non-empty), we can use (4) to show that if
level r of Figure 2 were tilting then so would level r of Figure 1. But we have
just shown that it was not. In fact, when l = 2, exactly the same argument
works. Consider the r-th level Y , say, in Figure 2. Suppose that Y is tilting.
We assume without loss of generality that Y ⊗D∗ is not polynomial. It has
two∇-quotients, namely∇(2t, 0, 0) and∇(2t−1, 1, 0). Apply the translation
functor T µ

λ where λ = (2t, 0, 0) and µ = (2t + 1, 1, 0), so we get

T µ
λ (Y ) = prµ(Y ⊗ Λ2E).

Since Y is tilting, so is T µ
λ (Y ) and it’s easy to see that it has character

χ(2t + 1, 1, 0) + 2χ(2t, 1, 1) + χ(2t, 2, 0). This is exactly the character repre-
sented in Figure 12 and we have just seen that it cannot be the character of
a tilting module.

In Figures 5 and 9, consider the r-th level Y , say. If Y were tilting then so
is Y ⊗D⊗−r. But this would contradict Lemma 7.1 and the remark following
it.
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Finally, in Figure 8, if level r were tilting then using (3), the following
picture would give the character of a tilting module

But it cannot be as the character of the indecomposable tilting module with
the same highest weight is given in Figure 3. This completes the proof of
Proposition 7.4.

Proposition 7.5 Assume n = 3. Let λ ∈ Λ+(3) be l-restricted. If I(λ) ∼=
P (λ) then either I(λ) is injective in Rat(3) or λ is column l-regular.

Proof: Write T = T (2(l − 1)δ + w0λ). Using Proposition 7.1, we have that

I(λ)⊗D⊗2(l−1) ∼= Oπ(2(l−1))(T )

Moreover, I(λ)⊗D2(l−1) is isomorphic to T if and only if λ1 ≥ 2(l− 1). Now
suppose that λ1 < 2(l − 1) and that λ is not column l-regular, i.e. λ3 ≥ l.
Then T has a ∇-quotient with highest weight

sα1+α2,3l · (4(l − 1) + λ3, 2(l − 1) + λ2, λ1)

= (3l − 2 + λ1, 2(l − 1) + λ2, l − 2 + λ3)

and l − 2 + λ3 ≥ 2(l − 1) as λ3 ≥ l. Moreover, it’s easy to see that T
has no factor ∇(µ) with (3l − 2 + λ1, 2(l − 1) + λ2, l − 2 + λ3) < µ <
(4(l − 1) + λ3, 2(l − 1) + λ2, λ1). So (3l − 2 + λ1, 2(l − 1) + λ2, l − 2 + λ3) is
a highest weight of I(λ) ⊗D⊗2(l−1), but it belongs to (l − 1)δ + Λ+(3), this
is a contradiction.

Corollary 7.2 Conjecture 5.1 holds for n = 3.

Proof: This follows from Propositions 7.4 and 7.5.
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