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We present the complete classification of smooth toric Fano threefolds, known to the algebraic
geometry literature, and perform some preliminary analyses in the context of brane tilings and
Chern-Simons theory on M2-branes probing Calabi-Yau fourfold singularities. We emphasise that
these 18 spaces should be as intensely studied as their well-known counterparts: the del Pezzo
surfaces.

1. Introduction

A flurry of activity has, since the initial work of Bagger and Lambert [1–3] and Gustavsson
[4], rather excited the community for the past two years upon the subject of supersymmetric
Chern-Simons theories. It is by now widely believed that the world-volume theory of M2-
branes on various backgrounds is given by a (2+1)-dimensional quiver Chern-Simons (QCS)
theory [5–26], most conveniently described by a brane tiling.

Even though analogies with the case of D3-branes in Type IIB, whose world-
volume theory is a (3 + 1)-dimensional supersymmetric quiver gauge theory, are very
reassuring, the story is much less understood for the M2 case. Much work has been
devoted to the understanding of issues such as orbifolding, phases of duality, brane
tilings, and dimer/crystal models and so forth. Nevertheless, the role played by the
correspondence between the world-volume theory and the underlying Calabi-Yau geometry
is of indubitable importance. Indeed, there is a bijection: the vacuum moduli space of the
former is, tautologically, the latter, while the geometrical engineering on the latter gives,
by construction, the former. This bijection, called, respectively, the “forward” and “inverse”
algorithms [27, 28], persists in any dimension and can be succinctly summarised in Table 1.
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Table 1: Brane probes and associated world-volume physics in various backgrounds.

Brane probe Theory Background World-volume theory Vacuum moduli space
D5 Type IIB R

1,5 × CY2 (5+1)-dN = 1 gauge theory CY2
D3 Type IIB R

1,3 × CY3 (3+1)-dN = 1 gauge theory CY3
M2 M-theory R

1,2 × CY4 (2+1)-dN = 2 Chern-Simons CY4

A crucial feature for all the brane embeddings in Table 1 is that in the toric case they
are all described by brane tilings. The first case, with CY2, is described by one-dimensional
tilings, that is, brane intervals and thus brane constructions following the work in [29]. The
second case is the well-established two-dimensional brane tilings which use dimer techniques
to study supersymmetric gauge theories [30–32]. The third case is the newly proposed
construction [13] of Chern-Simon theories.

It is perhaps naı̈vely natural to propose three-dimensional tilings for the case of M2-
branes probing CY4, but in fact, it turns out not to be as useful as it may initially seem. These
three-dimensional tilings have been nicely advocated in the crystal model [33, 34]. The main
issue perhaps is the current shortcoming of this model to identify the gauge groups with a
simplex as it is done for the tilings in dimensions one and two. In the one-dimensional case
for toric CY2, the gauge group is identified with an edge of the tiling, and the matter content
with nodes. For the two-dimensional case for toric CY3, the gauge fields, matter fields, and
interactions are, respectively, identified with faces, edges, and nodes of the tiling. But for the
proposed crystal model, there is no such simple interpretation yet known.

We are thus led, for now, to keep on the path of two-dimensional tilings, while bearing
in mind that the data needed to specify a QCS theory is given by gauge groups, matter fields,
and interactions, as well as the additional data of the CS levels for the gauge groups. These
nicely map, respectively, to tiles, edges, and nodes, while the corresponding CS levels are
given by fluxes on the tiles. It would be interesting to check if this correspondence between
tilings in one and two dimensions, that is, for toric Calabi-Yau n-folds with n = 2, 3, 4, can be
extended to possibly higher-dimensional tilings and perhaps higher-dimensional Calabi-Yau
spaces.

The cases for Calabi-Yau two- and threefolds are well established over the past decade.
These are affine complex cones over base complex curves and surfaces, or real cones over real,
compact, Sasaki-Einstein three and five manifolds. Perhaps the most extensively studied are,
inspired by phenomenological concerns, D3-branes and Calabi-Yau threefolds and the widest
class studied therein is toric Calabi-Yau cones. A rather complete picture for both the forward
and inverse algorithms, as well as the unifying perspective of brane tilings and dimer models,
has emerged over the last decade. Ricci-flat metrics have even been found for infinite families
within the class of these noncompact spaces.

Another crucial family of Calabi-Yau threefold cones affords a clear construction,
and the world-volume physics has been intensely investigated (cf., e.g., [35–37]). The base
surfaces here are so-called del Pezzo surfaces which afford positive curvature, so that the
appropriate cones over them have just the right behaviour to make the affine threefold have
zero Ricci curvature. More precisely, these surfaces are dPn, which is P

2 blowup at n equal
to zero up to eight generic points, or the zeroth Hirzebruch surface F0 := P

1 × P
1. In fact,

the cones over F0 and dPn=0,1,2,3 are toric, whereby making these five del Pezzo members of
particular interest. The (3 + 1)-dimensional gauge theories for these were first constructed in
[27, 28], giving rise to such interesting phenomena as toric duality and tilings.
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Indeed, all toric gauge theories in (3 + 1) dimensions obey a remarkable topological
formula: take the number of nodes in the quiver, the number of fields, and the number of
terms in the superpotential; their alternating sum vanishes. This is a key for the powerful
brane tiling (dimer model) description (cf. review in [32]) of these theories. Interestingly,
this relation is still obeyed for the myriad of all known (2 + 1)-dimensional QCS theories
to date and suggests that a planar brane tiling may still be the underlying principle behind
theories living on M2-branes probing affine Calabi-Yau fourfolds. The richness of the (3 + 1)-
dimensional theories beckons for their analogous and extensions to the (2 + 1)-dimensional
case.

It is therefore a natural and important question to ask what are the corresponding
geometries for Calabi-Yau fourfolds and physically what are the associated (2 + 1)-
dimensional QCS theories on the M2-brane world volume, that is, what are the (smooth) toric
complex threefolds which admit positive curvature? Based on the ample experience with and
the wealth of physics engendered by the aforementioned five del Pezzo cases for threefolds,
these fourfolds could hold a key toward understanding QCS and M2 theories.

It is the purpose of the current short note, a prologue to [38], to present the dramatis
personae onto the stage and to introduce some rudiments of their properties as well as
to initiate the first constructions of the QCS physics associated thereto. Indeed, complex
manifolds admitting positive curvature are in general called Fano varieties of which the
del Pezzo surfaces are merely the two-dimensional examples. We will see that a complete
and convenient classification exists for the smooth toric Fano threefolds over which Calabi-
Yau four-fold cones can be established; we will take advantage of the existing data and use
the forward algorithm to explicitly construct the quivers, superpotentials, and Chern-Simons
levels for some cases. A companion paper, of substantially more length and in-depth analysis
[38], will ensue in the near future. It is our hope that the 18 characters to which we draw your
attention will, in due course, become as familiar as the del Pezzo family to the community.

2. Fano Varieties

Fano varieties are of obvious importance; these are varieties which admit an ample
anticanonical sheaf; thus, whereas Calabi-Yau varieties are of zero curvature, they are of
positive curvature. (Recently, lower bounds on the Ricci curvature of Fano manifolds have
been found [39].) Therefore, not only could Fano varieties constitute cycles of positive
volume that can shrink inside a Calabi-Yau, but also, could they provide local models of
Calabi-Yau of a higher dimension. This second case is perhaps of more interest in the brane-
probe scenario where the transverse directions to the branes are affine, noncompact Calabi-
Yau spaces. In particular, one could construct an affine complex cone over a Fano n-fold, so
as to construct a Calabi-Yau (n+1)-fold, and the branes then reside at the tip of the cone. This
situation has become well known to the AdS/CFT correspondence.

What are explicit examples of Fano varieties? In complex dimension one, there is only
P

1, the sphere, which obviously has positive curvature. In dimension two, they are called del
Pezzo surfaces. In particular, they are P

2, as well its blowup dPn at n = 1 up to n = 8 generic
points thereon, and the zeroth Hirzebruch surface F0 := P

1×P
1. Of these 10, P

2, F0, and dPn for
n = 1, 2, 3 admit a toric description. These have been used extensively in constructing gauge
theories on the D3-brane world volume [27–40], and the moduli spaces of these theories are
correspondingly local Calabi-Yau threefolds.
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We point out that, of course, the aforementioned are smooth Fano varieties. Indeed,
we can readily construct affine Calabi-Yau spaces which are singular cones. For example, for
complex dimension one, we indeed have the smooth P

1, leading to the affine Calabi-Yau 2-
fold C

2/Z2, with the corresponding quiver gauge theory in (5 + 1) dimensions, but we also
have any of the famous ADE singularities given by C

2 quotient by a discrete subgroup of
SU(2) which give rise to well-known gauge theories. In complex dimension 2, we have P

2,
corresponding to the affine Calabi-Yau 3-fold dP0 = C

3/Z3; however, any C
3/Zn is just as

good with a singular base Fano 2-fold in a weighted projected space.
Our chief interest lies in the situation of dimension three. These Fano threefolds can

give rise to Calabi-Yau fourfolds which can then be probed by M2-branes in order to arrive
at quiver Chern-Simons (QCS) theories on their world volume. A classification of the Fano
vareities was achieved in the 80s [41–43]; there is a wealth thereof. Our particular interest will
once more be on the toric Fano threefolds where such techniques as tilings and dimers will
be conducive. Toric Fano threefolds have been studied in [44, 45]. In dimension n, an obvious
general class of toric Fano k-folds is

∏
jP

kj where {kj} is a partition of n, that is, n =
∑

j kj .
With the rapid advance of computer algebra and algorithmic algebraic geometry,

especially in applications to physics (cf. [46–48]), even non-smooth Fano varieties can be
classified [50]. (Indeed, in any dimension d, it is known that there are a finite number
of smooth Fano varieties [49].) A convenient database has been established whereby one
could readily search within an online depository [51]. (We are grateful to Richard Thomas
for revealing this treasure trove to us.)

2.1. Smooth Toric Fano Threefolds

Given the enormity of the number, we were to allow singularities—against which, physically,
there need be no prejudice—and being inspired by the 2-fold case of the del Pezzo surfaces
all being smooth, we will henceforth restrict our attention to the smooth toric Fano threefolds.
In the parlance of toric geometry, the corresponding cone is called regular. There is a total of
18 such threefolds, a reasonable set indeed. We will adhere to the standard notation of [45]
wherein the family is tabulated and also to the identifier with the database [51] for the sake
of canonical reference. This is presented in Table 2.

2.1.1. Toric Data

Some detailed explanation of the nomenclature in Table 2 is in order. The toric data is such
that the columns are vectors which generate the cone of the variety; in the D-brane context,
this has become known as the Gt matrix. Note that each is a 3-vector, signifying that we are
dealing with threefolds. Moreover, the point (0, 0, 0) is always an internal point. This property
is equivalent to the Fano condition. Indeed, as we recall from [27, 28], the del Pezzo surfaces
all have a single internal point. The explicit topology of each space is also given, following
[45].

Indeed, our interest in (compact) Fano threefolds is that the complex cone thereupon
is an (noncompact) affine Calabi-Yau fourfold which M2-branes may probe. Going form
the data in the table to the fourfold is simple; we only need to add one more dimension,
say, a row of 1s to each of the matrices. In such cases, the geometry will be cones over what
is reported in the third column. In the physics literature, there have been several cases which
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Table 2: The 18 smooth toric Fano threefolds. For full explanation of notation, see the second paragraph of
Section 2.1 and those that follow.

Id of [51] Gt: toric data Geometry (b2, g, Sym)

P
3 4

( 1 0 0 −1 0
0 1 0 −1 0
0 0 1 −1 0

)
P

3 (1, 33, U(4))

B1 35
( 1 0 1 −1 1 0

0 1 1 −1 1 0
0 0 2 −1 1 0

)
P(OP2 ⊕ OP2(2)) (2, 32, [3, 12])

B2 36
( 1 0 0 −1 −1 0

0 1 0 −1 0 0
0 0 1 −1 0 0

)
P(OP2 ⊕ OP2(1)) (2, 29, [3, 12])

B3 37
( 1 0 0 −1 −1 0

0 1 0 −1 −1 0
0 0 1 −1 0 0

)
P(OP1 ⊕ OP1 ⊕ OP1(1)) (2, 28, [22, 12])

B4 24
( 1 0 0 −1 0 0

0 1 0 −1 0 0
0 0 1 0 −1 0

)

P
2 × P

1 (2, 28, [3, 2, 1])

C1 105
( 1 0 1 −1 0 1 0

0 1 1 −1 0 1 0
0 0 1 0 −1 0 0

)

P(OP1×P1 ⊕ OP1×P1(1, 1)) (3, 27, [22, 12])

C2 136
( 1 0 0 −1 −1 −2 0

0 1 0 −1 0 −1 0
0 0 1 −1 0 −1 0

)

P(OdP1 ⊕ OdP1(�)), �2|dP1
= 1 (3, 26, [2, 13])

C3 62
( 1 0 0 −1 0 0 0

0 1 0 0 −1 0 0
0 0 1 0 0 −1 0

)

P
1 × P

1 × P
1 (3, 25, [23, 1])

C4 123
( 1 0 0 −1 0 −1 0

0 1 0 −1 0 0 0
0 0 1 0 −1 0 0

)

dP1 × P
1 (3, 25, [22, 12])

C5 68
( 1 0 0 −1 −1 1 0

0 1 0 −1 −1 1 0
0 0 1 −1 0 0 0

)
P(OP1×P1 ⊕ OP1×P1(1,−1)) (3, 23, [22, 12])

D1 131
( 1 0 0 −1 −1 −1 0

0 1 0 −1 0 −1 0
0 0 1 −1 0 0 0

)
P

1-blowup of B2 (3, 26, [2, 13])

D2 139
( 1 0 0 −1 −1 0 0

0 1 0 −1 0 −1 0
0 0 1 −1 0 −1 0

)
P

1-blowup of B4 (3, 24, [2, 13])

E1 218
( 1 0 0 −1 −1 0 −1 0

0 1 0 −1 0 −1 −1 0
0 0 1 −1 0 0 0 0

)
dP2 bundle over P

1 (4, 24, [2, 13])

E2 275
( 1 0 0 −1 0 −1 −1 0

0 1 0 −1 0 0 0 0
0 0 1 0 −1 0 −1 0

)
dP2 bundle over P

1 (4, 23, [2, 13])

E3 266
( 1 0 0 −1 0 −1 0 0

0 1 0 −1 0 0 −1 0
0 0 1 0 −1 0 0 0

)
dP2 × P

1 (4, 22, [2, 13])

E4 271
( 1 0 0 −1 −1 −1 1 0

0 1 0 −1 0 −1 1 0
0 0 1 −1 0 0 0 0

)
dP2 bundle over P

1 (4, 21, [2, 13])

F1 324
( 1 0 0 −1 0 −1 0 1 0

0 1 0 −1 0 0 −1 1 0
0 0 1 0 −1 0 0 0 0

)
dP3 × P

1 (5, 19, [2, 13])

F2 369
( 1 0 0 −1 −1 0 −1 1 0

0 1 0 −1 0 −1 −1 1 0
0 0 1 −1 0 0 0 0 0

)
dP3 bundle over P

1 (5, 19, [2, 13])
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have been studied in considerable depth and detail: the cone over P
3 is the orbifold C

4/Z4,
the Sasaki-Einstein 7-fold (a homogeneous space which is a circle fibration over the P

1 × P
2),

which is a real cone over B4, is dubbed M1,1,1 (see [13]), and the real Sasaki-Einstein cone
over C3 is called Q1,1,1/Z2 (cf., e.g., [19, 24, 25]).

2.1.2. Fibrations and Bundles

We, of course, recognise P
3 (succeeding the sequence of P

1 in dimension 1 and P
2 = dP0

in dimension 2) and the natural generalisation P
1 × P

1 × P
1 of F0. Indeed, in k complex

dimensions, P
k and (P1)×k are always smooth, toric, and Fano. The toric del Pezzo surfaces

dP0,1,2,3 also appear in Table 2, either in direct product or as various fibers. The notation
P() means projectivisation so as to manufacture a compact project threefold. Indeed, we are
primarily interested in the affine Calabi-Yau four-fold cone over these Fano threefolds, so the
spaces in which we have interest do not need this projectivisation; we have included them
for consistency of notation in that we are discussing the Fano threefolds in this section.

Therefore, the cone in a sense undoes the said projectivisation, and the fourfold is
simply the total space of the fibration. For example, B1 is P(OP2 ⊕ OP2(2)); here, OP2(d) is a
line bundle of degree d over P

2, hence the fiber of OP2 ⊕ OP2(2) is of dimension 1 + 1 = 2,
which together with the base P

2 dictates the total space as being of dimension 2 + 2 = 4. (Of
course, in line with standard notation O is the structure sheaf, or the line bundle of degree
0.) Subsequently, the projectivisation is of dimension 4 − 1 = 3, as required. The actual affine
Calabi-Yau fourfold is simply the total space OP2 ⊕ OP2(2).

2.1.3. Symmetries

One piece of information, obviously of great importance, is the symmetry of the variety,
which is encoded in the world-volume physics, either manifestly or as hidden global
symmetries [52–55]. Inspecting the toric diagrams, we readily see that our list of Fano
threefolds affords the following symmetries. The most symmetric case is, of course, P

3,
the cone over it has a full U(4), acting as unitary transformations on the four coordinates.
Next, both B1 and B2 have SU(3) × U(1)2, with SU(3) acting on the base P

2 and U(1) for
each fiber. Similarly, B3 has symmetry SU(2)2 × U(1)2, with SU(2) for the base P

1, another
U(2) for the 2 identical line bundles OP1 , and one more U(1) for O(1)

P1 . Likewise, B4 has
SU(3) × SU(2) × U(1), with the SU(3) and SU(2) for the P

2 and P
1, respectively, and U(1)

for the cone which gives the affine Calabi-Yau 4-fold. Proceeding along the same vein, C1, C4,
and C5 share the symmetry SU(2)2 ×U(1)2, C2 has SU(2)×U(1)3, and C3 has SU(2)3 ×U(1).
All remaining cases, namely, the D’s, E’s, and F’s, are of symmetry SU(2) ×U(1)3.

Note that the rank of the group of symmetries must total to 4 because we are dealing
with a toric (affine) Calabi-Yau 4-fold. Indeed, one U(1) factor of the symmetry is the R-
symmetry and the remaining rank 3 symmetry, a global mesonic symmetry (cf. [52, 53]), and
there could be possible additional U(1)-baryonic symmetries. We have summarised these
mesonic symmetries in the last column of Table 2, under the entry Sym. Unless explicitly
written, we have used the short-hand notation that

[
3k3 , 2k2 , 1k1

]
:= SU(3)k3 × SU(2)k2 ×U(1)k1 . (2.1)
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We note that the three cases of there being only a singleU(1) symmetry, namely, P
3 (for

which U(4) contains the U(1)), B4, and C3, are products of projective spaces corresponding
to the three partitions of 3. The corresponding QCS theories for these have been already
constructed in the literature. This is perhaps unsurprising given the high degree of symmetry
for these spaces.

2.1.4. Some Geometrical Data

We have also listed, to the rightmost of the table, some geometrical data, such as topological
invariants. In particular, we tabulate the second Betti number b2 and the genus g. Indeed,
b2 = E − 3, where E is the number of external points in the toric diagram, or since there is
always a single internal point as discussed above, E is the number of columns of Gt minus
1. Now, recall that in the D3-brane probes on Calabi-Yau threefold case, the external vertices
count the conserved anomaly-free global charges of the (3 + 1)-dimensional gauge theory.
Each external vertex in the toric diagram is a divisor, and its corresponding charge gives rise
to a basis for the set of mesonic, and baryonic charges: one of which is the R-symmetry, three
of which are mesonic and the remaining E − 4 charges are baryonic.

However, in our present case of M2-branes probing the Calabi-Yau fourfold, the world-
volume Chern-Simons theory in (2+1) dimensions has no notion of anomaly, and hence there
is no distinction between anomalous and anomaly-free baryonic charges. (An exception to
this is the parity anomaly where one starts with a theory that has no CS terms, and one-
loop perturbation theory generates a nonzero CS term. Since the CS term is odd under parity,
one says that parity is conserved in the classical level but broken by a one-loop effect, hence
anomalous. This is the only instance in which one can have anomalies in (2 + 1) dimensions.
Nevertheless, all the theories we deal with are protected by supersymmetry and, as long as
the ranks are equal, the CS levels do not get quantum corrections (cf. [56]).) Thus, b2 seems
to be counting the number of baryonic charges if we extend the analogy from the (3 + 1)-
dimensional situation.

On the other hand, a conserved baryonic charge corresponds to a gauge field in AdS.
This is counted by the number of 2-cycles in the Sasaki-Einstein 7-fold (SE7), given by the 3-
form on each 2-cycle. The number of 2-cycles in the SE7 is equal to the number of 5-cycles by
Poincaré duality, which is in turn equal to the number E of external points in the toric diagram
subtracted by 4. That is, the baryonic symmetries also afford a nice geometrical interpretation
here: the number of columns of Gt is E + 1, then the number of baryonic symmetries is E − 4,
signifying U(1)E−4 (cf. of [25, Section 2] and also [23]). Then, since the second Betti number
is E − 3, we have the number of baryonic symmetries as the topological quantity b2 − 1.

Next, let us discuss the genus g. Note that a polarisation can be chosen as the ample
anticanonical sheaf A = K−1

X , which, due to its ampleness, can be used to embed into a
projective space. It turns out that this embedding is of degree d = c1(X)3 into P

g+1 such
that d = 2g − 2. Of physical importance is that the g + 2 homogeneous coordinates of
the ambient P

g+1 constitute g + 2 gauge invariant chiral operators which parameterise the
supersymmetric vacuum moduli space, with the relations satisfied amongst them providing
the explicit equation thereof. In short, the number of generators of the moduli space is g + 2.

2.1.5. Hilbert Series

Now, it was first pointed out in [57, 58] that the Hilbert series of an algebraic variety is
central toward understanding the gauge invariant operators of the gauge theory living on
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the branes probing the variety. For our purposes, this is a rational function which is the
generating function for counting the spectrum of operators; it could be multivariate, having a
number of “chemical potentials,” which we call the refined Hilbert series, or it could depend
on a single grading, which we call the unrefined Hilbert series. In particular, cones over the
Fano twofolds, that is, the del Pezzo surfaces, have an elegant expression for their unrefined
Hilbert series. We recall, [57, Section 3.3.1], that for the nth del Pezzo, of degree 9 − n, it is
f(t;dPn) = 1+((7−n)t+ t2/(1 − t)3)(n = 0, . . . , 8); Note that F0 has the same unrefined Hilbert
series as that of dP1 though the refined, multi-variate Hilbert series does differentiate the two.

The unrefined Hilbert series, computed for the canonical embedding stated above,
is also presented in [51], though perhaps not of immediate use since they are given as
series expansions. We have recomputed these as rational functions. By inspection, a succinct
equation, similar to the del Pezzo case, exists

f(t;X) =
1 +
(
g − 2

)
t +
(
g − 2

)
t2 + t3

(1 − t)4
=
∞∑

n=0

tn

6
(2n + 1)

((
g − 1

)
n2 +

(
g − 1

)
n + 6

)
, (2.2)

where g is the genus of X.

In the special cases where the Fano threefold X is the product of dPn with P
1, the

genus turns out to be 28 − 3n. Whence, the number of generators of the moduli space is
30 − 3n = 3(10 − n); the 3 corresponds to the P

1 factor, and the 10 − n refers to the dPn factor.

3. Reconstructing the Vacuum Moduli Space

With a current want of an inverse algorithm, with or without the aid of dimer technology, it
is difficult to systematically find the requisite quiver Chern-Simons theories whose moduli
spaces are Calabi-Yau cones over the Fano threefolds listed above, a question certainly of
considerable interest. Nevertheless, because the forward algorithm is now well established
[20], one could explicitly check whether a certain ansatz theory indeed gives the correct
moduli space. Therefore, with a combination of inspired guesses and systematic computer
scans, one could hope to find some theories.

Nomenclature

In accordance with the notation of [14, 19], and emphasising the intimate relation between
the (3 + 1)-dimensional gauge theory and the (2 + 1)-dimensional QCS, we denote the latter
as follows: let the superpotential and matter content be that of the D3-brane world-volume
theory for the Calabi-Yau threefold X, then we keep the same superpotential and quiver,
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but impose Chern-Simons levels �k, ordered according to a fixed choice for the nodes, while
obeying the constraint [19, 20]

∑

i

ki = 0, GCD(ki) = 1. (3.1)

We subsequently run the forward algorithm, the resulting vacuum moduli space is now a
Calabi-Yau fourfold and the QCS theory we will denote as X̃�k. Note, of course, that the actual
4-fold may be seemingly quite unrelated to X.

Furthermore, as always, we let Xa
ij denote the ath bifundamental field between nodes

i and j, and let φai signify the ath adjoint field for the ith node.

3.1. Various Candidates

d̃P0(1,−2,1) and B4

The quiver and superpotential can be readily recalled from, for example, [27, 28] (cf. also this
theory as a QCS from [13]); next, we can assign the Chern-Simons levels as (1,−2, 1), which
indeed satisfies the constraint (3.1)

W = εαβγX
(α)
12 X

(β)
23 X

(γ)
31 ,

CS-levels = (1,−2, 1).

23

1

(3.2)

Running through the forward algorithm gives us the following charge matrix Qt and toric
diagram Gt:

Qt =

(
−1 −1 −1 1 1 1

0 0 0 −2 1 1

)

, Gt =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 0 0 −1 1

1 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (3.3)

Now, take B4, or number 24, of the Fano list from Table 2, and consider the affine
CY4 cone thereupon, by adding a row of 1s. One can readily check that upto reordering the
columns, the twoGt matrices are explicitly related by a PSL(4; Z) transformation. This means
that the moduli spaces, as affine toric varieties, are isomorphic.
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Phases of F0

Next, we recall the well-known two phases of the (3 + 1)-dimensional theories for the CY3
over the zeroth Hirzebruch surface

W(F0)I = εijεpqX12
iX23

pX34
jX41

q,

W(F0)II = εijεmnX
i
12X

m
23X

jn

31 − εijεmnX
i
14X

m
43X

jn

31 .

Phase II
34

1 2 1 2

34
Phase I 

(3.4)

There are two toric phases, the first having 8 fields, and the second 12.
From these progenitors, we can obtain quite a few Calabi-Yau fourfold cones with

judicious choices of CS levels. We list these in Table 3, running, in each case, the forward
algorithm to the theory. The input is the superpotential and quiver of the indicated phase of
F0, together with the chosen Chern-Simons levels, and the output, the charge matrix Qt and
toric diagram Gt.

In this table, we have used the notation ∼ Cone(X) to mean that it is isomorphic, by
an explicit SL(4; Z) transformation of the toric diagrams (upto repetition and permutation
of the vertices) Gt to the Calabi-Yau fourfold cone over the Fano threefold X. Note that the
last row of Gt is always 1, this is a consequence of the Calabi-Yau condition. Furthermore,
note that the second 2 rows for phase I, corresponding to the F-terms, decouple into diagonal
form; this reflects the fact that the master space [52, 53] is the direct product of two conifolds.
Moreover, the first row of the table, for the theory corresponding to (P1)×3, has been obtained
in [25].

d̃P1 and D1

The theory for the cone over the dP1 surface is again well known. We present it below (note
that only two of the three bifundamental fields X34 group into an SU(2) multiplet and the
third is a singlet). Now, if we took the Chern-Simons levels as (−1,−1, 0, 2), and combining
with the standard theory

W = εabX13X
a
34X

b
41 + εabX42X

a
23X

b
34 + εabX

3
34X

a
41X12X

b
23,

CS-levels = (−1,−1, 0, 2),

34

1 2

(3.5)
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Table 3: The two phases of the (3 + 1)-dimensional gauge theory for the cone over the zeroth Hirzebruch
surface F0 beget 4 new QCS theories in (2 + 1) dimensions, the moduli spaces for which are cones over 4
different Fano threefolds.

F0 CS Levels �k Qt Gt ∼ Cone(X)

I (1, 1,−1,−1)
( 1 1 −1 1 −1 −1 0 0

1 1 1 −1 0 0 −1 −1
0 0 0 0 −1 −1 1 1
−1 −1 1 1 0 0 0 0

) ( 0 0 0 0 0 0 −1 1
0 0 0 0 −1 1 0 0
−1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1

)

C3

I (−2, 0, 1, 1)
( 0 0 0 2 −1 −1 0 0

0 0 −1 0 0 0 1 0
0 0 0 0 −1 −1 1 1
−1 −1 1 1 0 0 0 0

) ( 0 −1 −1 0 0 0 −1 1
0 0 0 0 −1 1 0 0
−1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1

)

C4

I (−2, 1, 0, 1)
( 0 0 1 −1 0 0 −1 1

0 0 −1 0 0 0 0 1
0 0 0 0 −1 −1 1 1
−1 −1 1 1 0 0 0 0

) ( −1 0 0 −1 1 0 1 0
0 0 0 0 −1 1 0 0
−1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1

)

C5

II (−2, 0, 1, 1)

( 0 −2 0 0 1 1 2 −2 0
1 −1 0 0 0 0 0 1 −1
0 0 0 0 1 1 −1 0 −1
0 0 1 1 0 0 0 −1 −1
1 1 0 0 0 0 −1 −1 0

) ( 0 −1 1 0 0 0 −1 0 1
0 0 −1 1 0 0 0 0 0
0 0 0 0 −1 1 0 0 0
1 1 1 1 1 1 1 1 1

)

C4

II (−2, 1, 0, 1)

( 0 1 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 −1
0 1 0 0 0 −1 −1 0 1
0 0 0 0 1 −1 −1 1 0
1 −1 −1 1 0 0 0 0 0

) ( −1 0 0 1 1 0 1 0 1
0 0 0 0 −1 0 0 1 0
1 0 0 −1 0 −1 0 −1 −1
1 1 1 1 1 1 1 1 1

)

C1

then we find the charge and toric matrices to be

Qt =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 1 0 0 0 −2

0 0 0 1 0 0 −1 0

−1 −1 1 1 1 0 0 −1

0 0 0 0 −1 −1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠
, Gt =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 −1 1 0 1 1 0

−1 0 0 0 −1 1 0 0

−1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠
, (3.6)

and resulting moduli space to be D1.

4. Outlook

In this short note, a prelude to [38], we have initiated the study of Fano threefolds in the
context of M2-branes. In particular, we have presented the classification of all smooth toric
Fano threefolds, the cones over which are Calabi-Yau fourfold singularities which the M2-
branes could probe. We have computed some preliminary geometrical data, including such
quantities as Hilbert series and global symmetries which have recently turned out to be
important for the physics of these models.

These 18 spaces are direct analogues of the toric del Pezzo surfaces, which have been
the subject of much investigation in the past decade in association with the construction
of (3 + 1)-dimensional world-volume quiver gauge theories for D3-branes. It is self-evident
that these spaces should be central to the study of (2 + 1)-dimensional quiver Chern-Simons
theories.

For some of these we have identified, using the forward algorithm, the quiver theories
whose mesonic moduli spaces are precisely as desired. Such a prima facie scan has produced
6 as moduli spaces of vacua, and they, as with all theories so far produced in the toric
M2-brane scenario, obey the planar brane tiling/dimer model condition. It is our hope that
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systematically all gauge theories for the 18 spaces can be soon geometrically engineered and
the corresponding tiling descriptions prescribed. These and many further details will appear
in the companion work of [38].

Acknowledgments

ÅdymtÃ yyxta twryamX h"lEaw yrlawl hXdqhb  

Scientiae et Technologiae Concilio Anglicae, et Ricardo Fitzjames, Episcopo Lon-
diniensis, ceterisque omnibus benefactoribus Collegii Mertonensis Oxoniensis, sed super
omnes, pro amore Catharinae Sanctae Alexandriae, lacrimarum Mariae semper Virginis, et
ad Maiorem Dei Gloriam hoc opusculum Y.-H. He dedicat. The authors are indebted to John
Davey, Kentaro Hori, Noppadol Mekareeya, Richard Thomas, Giuseppe Torri, and Alberto
Zaffaroni for enlightening discussions. A. Hanany would like to thank the kind hospitality,
during the initiation of this project, of IPMU in Tokyo and is further grateful to the University
of Richmond, the Perimeter Institute as well as the KITP in Santa Barbara, during the
completion. This research was supported in part by the National Science Foundation under
Grant no. PHY05-51164.

References

[1] J. Bagger and N. Lambert, “Modeling multiple M2-branes,” Physical Review D, vol. 75, no. 4, Article
ID 045020, 2007.

[2] J. Bagger and N. Lambert, “Gauge symmetry and supersymmetry of multiple M2-branes,” Physical
Review D, vol. 77, no. 6, Article ID 065008, 2008.

[3] J. Bagger and N. Lambert, “Comments on multiple M2-branes,” Journal of High Energy Physics, vol.
2008, no. 2, article 105, 2008.

[4] A. Gustavsson, “Algebraic structures on parallel M2 branes,” Nuclear Physics B, vol. 811, no. 1-2, pp.
66–76, 2009.

[5] M. Van Raamsdonk, “Comments on the Bagger-Lambert theory and multiple M2-branes,” Journal of
High Energy Physics, vol. 2008, no. 5, article 105, 2008.

[6] S. Mukhi and C. Papageorgakis, “M2 to D2,” Journal of High Energy Physics, vol. 2008, no. 5, article
085, 2008.

[7] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, “N = 6 superconformal Chern-Simons-
matter theories, M2-branes and their gravity duals,” Journal of High Energy Physics, vol. 2008, no. 10,
article 091, 2008.

[8] M. Benna, I. Klebanov, T. Klose, and M. Smedbäck, “Superconformal Chern-Simons theories and
AdS/CFT correspondence,” Journal of High Energy Physics, vol. 2008, no. 9, article 072, 2008.

[9] S. Kim, S. Lee, S. Lee, and J. Park, “M2-brane probe dynamics and toric duality,” Nuclear Physics B,
vol. 797, no. 1-2, pp. 340–370, 2008.

[10] K. Hosomichi, K. -M. Lee, S. Lee, S. Lee, and J. Park, “N = 5, 6 superconformal Chern-Simons theories
and M2-branes on orbifolds,” Journal of High Energy Physics, vol. 2008, no. 9, article 002, 2008.

[11] M. Schnabl and Y. Tachikawa, “Classification of N = 6 superconformal theories of ABJM type,” Journal
of High Energy Physics, vol. 2010, no. 9, article 103, 2010.

[12] D. Martelli and J. Sparks, “Moduli spaces of Chern-Simons quiver gauge theories and AdS4/CFT3,”
Physical Review D, vol. 78, no. 12, Article ID 126005, 2008.

[13] A. Hanany and A. Zaffaroni, “Tilings, Chern-Simons theories and M2 branes,” Journal of High Energy
Physics, vol. 2008, no. 10, article 111, 2008.

[14] A. Hanany, D. Vegh, and A. Zaffaroni, “Brane tilings and M2 branes,” Journal of High Energy Physics,
vol. 2009, no. 3, article 012, 2009.

[15] Y. Imamura and K. Kimura, “On the moduli space of elliptic Maxwell-Chern-Simons theories,”
Progress of Theoretical Physics, vol. 120, no. 3, pp. 509–523, 2008.



Advances in High Energy Physics 13

[16] Y. Imamura and K. Kimura, “N = 4 Chern-Simons theories with auxiliary vector multiplets,” Journal
of High Energy Physics, vol. 2008, no. 10, article 040, 2008.

[17] Y. Imamura and K. Kimura, “Quiver Chern-Simons theories and crystals,” Journal of High Energy
Physics, vol. 2008, no. 10, article 114, 2008.

[18] K. Ueda and M. Yamazaki, “Toric Calabi-Yau four-folds dual to Chern-Simons-matter theories,”
Journal of High Energy Physics, vol. 2008, no. 12, article 045, 2008.

[19] S. Franco, A. Hanany, J. Park, and D. Rodriguez-Gomez, “Towards M2-brane theories for generic toric
singularities,” Journal of High Energy Physics, vol. 2008, no. 12, article 110, 2008.

[20] A. Hanany and Y. H. He, “M2-branes and quiver Chern-Simons: a taxonomic study,” http://arxiv
.org/abs/0811.4044.

[21] O. Aharony, O. Bergman, and D. L. Jafferis, “Fractional M2-branes,” Journal of High Energy Physics,
vol. 2008, no. 11, article 043, 2008.

[22] C. Krishnan, C. MacCaferri, and H. Singh, “M2-brane flows and the Chern-Simons level,” Journal of
High Energy Physics, vol. 2009, no. 5, article 114, 2009.

[23] Y. Imamura, “Charges and homologies in AdS4/CFT3,” http://arxiv.org/abs/0903.3095.
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