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The observable sector of the “minimal heterotic standard model” has

precisely the matter spectrum of the MSSM: three families of quarks and
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1 Introduction

The E8×E8 heterotic string [1–3] is, perhaps, the simplest context in which to construct

string compactifications giving rise to a realistic matter spectrum; that is, three families

of quarks/leptons and one (perhaps several) Higgs–Higgs conjugate pairs without any

exotic representations or any other vector-like pairs. Within the last year, there has

been significant progress in building such models [4–9]. In the vacua presented in [4–6],

called heterotic standard models, the observable sector has the MSSM matter spectrum

with the addition of one extra pair of Higgs fields. In [7] the number of Higgs pairs

was reduced to one, yielding the exact MSSM matter spectrum in the observable sector.

Hence, the vacua in [7] are called “minimal” heterotic standard models. The MSSM

matter spectrum has been obtained, in different contexts, in [8, 9].
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In this paper, we will confine our discussion to the heterotic standard model vacua

presented in [4–7]. Their basic construction is as follows. As is well known, the

whole matter content of the standard model, including the right-handed neutrino [10–

12] fits into the 16 and 10 representations of Spin(10). To embed this unification of

quarks/leptons into the E8 ×E8 heterotic string, one has to break the observable sector

E8 gauge group appropriately. This can be done by choosing a suitable gauge instan-

ton [13–20] as the vacuum field configuration on a Calabi-Yau threefold. In particular,

an SU(4) instanton leaves a Spin(10) gauge group unbroken [4]. The corresponding rank

4 vector bundle is constructed via the method of bundle extensions [21–23]. Of course,

the Spin(10) gauge group must be further broken to a group containing the standard

model gauge group as a factor. The obvious mechanism is to add Wilson lines [24–27],

thus breaking Spin(10) directly at the compactification scale. In particular, we use a

Z3 × Z3 Wilson line to break down to SU(3)C ×SU(2)L×U(1)Y ×U(1)B−L. In order to

do so, the Calabi-Yau threefold must have a large enough fundamental group [16, 28–30],

that is, it must contain a Z3 × Z3. A Calabi-Yau threefold whose fundamental group

is exactly Z3 × Z3 was constructed in [31], and is used in [4–7]. The low energy parti-

cle spectrum can then be computed using methods of algebraic geometry as discussed

in [32–34].

An important phenomenological aspect of heterotic standard model vacua is the

U(1)B−L factor occurring in the low energy gauge group. Usual nucleon decay is sup-

pressed in [4–7] by a large compactification mass of O
(
1016

)
GeV. In addition, these

theories exhibit natural doublet-triplet splitting, thus suppressing proton decay via di-

mension five operators. The role of the gauged U(1)B−L symmetry is to disallow any

∆L = 1 and ∆B = 1 dimension four terms that would lead to the disastrous decay

of nucleons [35]. Of course, this symmetry must be spontaneously broken at the order

of the electroweak scale. This will be discussed elsewhere [36]. Hence, only the usual

Yukawa couplings and a possible Higgs µ-term can occur in the superpotential at the

renormalizable level. Geometrically, these couplings are cubic products of cohomology

groups and restricted by classical geometry. The effect of the elliptic fibration of the

Calabi-Yau threefold on the Yukawa texture was analyzed in [37], and leads to one

naturally light quark/lepton family.

An essential requirement of these vacua is that the holomorphic vector bundle used in

the observable sector be slope-stable. This guarantees [38, 39] that the associated gauge

connection satisfies the hermitian Yang-Mills equations and, hence, preserves N = 1

supersymmetry. The vector bundles in the observable sector of [4–6] were shown to

be slope-stable in [40]. In this paper, we present an analogous proof that the SU(4)

vector bundle in the minimal heterotic standard model [7] is, indeed, slope-stable as

well. Thus, the observable sector containing exactly the matter spectrum of the MSSM

is N = 1 supersymmetric.
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The structure of the hidden sector is less clear. There is a maximal dimensional

subcone (codimension zero) of the Kähler cone where the observable sector bundle is

slope-stable and the hidden sector satisfies the Bogomolov bound. Hence, there is no

obstruction to constructing anomaly free vacua whose hidden sector bundle is slope-

stable. However, we have not explicitly constructed such a hidden sector bundle. Nor is

it entirely clear that this is desirable. As discussed in [41–43], the necessity to stabilize

all moduli at a point with a small positive cosmological constant [44] might require

that the vacuum, in the heterotic case, contain anti-five-branes. If the moduli can be

stabilized for such a configuration then, for example, a trivial hidden sector bundle

(which is trivially slope-stable) can be chosen. This issue will be discussed in detail

elsewhere. We note that the slope-stability of both the observable and hidden sector

bundles was proven for the vacuum in [9].

2 The Calabi-Yau Manifold

2.1 Double Fibration

Let us start by describing the underlying Calabi-Yau threefold. We begin with an elliptic

fibration over a rational elliptic (dP9) surface. Such an elliptic fibration is automatically

a fiber product

X̃ def= B1 ×P1 B2 (1)

of two dP9 surfaces B1 and B2. In the following, we always choose surfaces with suitable

Z3 × Z3 automorphisms [31] yielding a free Z3 × Z3 group action on X̃. There is a

commutative square of projections

dimC = 3 :
(
X̃, K

X̃
= O

X̃

)

π2

K
X̃|B2

= χ2
1OX̃

(φ)

��=
==

==
==

==
==

==

π1

KX̃|B1
= OX̃(φ)

����
��

��
��

��
��

�

dimC = 2 :
(
B1, KB1

= OB1
(−f)

)

β1

KB1|P1 = χ2
1OB1

(f)
��=

==
==

==
==

==
==

(
B2, KB2

= χ1OB2
(−f)

)

β2

KB2|P1 = OB2
(f)

����
��

��
��

��
��

�

dimC = 1 :
(

P1, KP1 = χ1OP1(−2)
)

,

(2)

where χ1, χ2 are characters [6] of Z3 × Z3 encoding the equivariant action on bundles.

The quotient

X def= X̃
/(

Z3 × Z3

)
(3)
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is a torus-fibered Calabi-Yau threefold with fundamental group π1

(
X

)
= Z3 × Z3, which

we take to be the base manifold of our string compactification. However, in practice we

work with equivariant constructions on the universal cover X̃. For a free group action

these descriptions are equivalent.

2.2 Topology

It is important to understand the even cohomology groups Hev
(
X, Z

)
, because that is

where the Chern classes live. Rationally, it is clear that

Hev
(
X̃, Q

)Z3×Z3

= Hev
(
X, Q

)
. (4)

The degree 2 invariant integral cohomology of X̃ is

H2
(
X̃, Z

)Z3×Z3

= spanZ

{
τ1, τ2, φ

}
. (5)

We can compare it with the cohomology of X using the quotient map

q : X̃ → X ⇒ q∗ : H∗
(
X, Z

)
→ H∗

(
X̃, Z

)
. (6)

In degree 2, the image is an index 3 sub-lattice of H2
(
X̃, Z

)
≃ Z3 generated by τ1 − τ2,

3τ1, φ. In other words, the equivariant line bundles on X̃ are of the form

OX̃(x1τ1 + x2τ2 + x3φ) x1, x2, x3 ∈ Z , x1 + x2 ≡ 0 mod 3 . (7)

The products of the degree 2 generators can easily be determined, and one finds relations

Hev
(
X̃, Q

)Z3×Z3

= Q
[
τ1, τ2, φ

]/ 〈
φ2, τiφ = 3τ 2

i

〉
. (8)

Hence, every even degree cohomology class can be written as a polynomial in τ1, τ2, and

φ subject to the relations φ2 = 0 and τiφ = 3τ 2
i .

3 Visible Bundle

3.1 Construction of the Bundle

Having presented the Calabi-Yau manifold, we proceed to define a holomorphic rank 4

vector bundle on it. First, define equivariant rank 2 vector bundles

V1 = OX̃

(
− τ1 + τ2

)
⊗ π∗

1

(
W1

)
(9a)

V2 = O
X̃

(
+ τ1 − τ2

)
⊗ π∗

2

(
W2

)
, (9b)

4



where W1 and W2 are rank 2 vector bundles on B1 and B2 which we will define in detail

in Section 6, eqns. (46a) and (46b). Using these, we define the desired rank 4 vector

bundle Ṽ as an extension

0 −→ V1 −→ Ṽ −→ V2 −→ 0 . (10)

Using the fact that the first Chern class of Wi is trivial, ∧2Wi = OBi
, we first remark

that

c1

(
Ṽ
)

= 0 ∈ H2
(
X̃, Z

)Z3×Z3

≃ Z3 . (11)

But we really want an SU(4) bundle on the quotient X = X̃
/
(Z3 × Z3), that is

c1

(
Ṽ
/(

Z3 × Z3

))
= 0 ∈ H2

(
X, Z

)
≃ Z3 ⊕ Z3 ⊕ Z3 . (12)

The vanishing of the first Chern class including the torsion part follows from ∧4Ṽ = OX̃ ,

where OX̃ stands for the trivial line bundle with the trivial Z3 × Z3 equivariant group

action.

3.2 Non-Trivial Extensions

We defined the rank 4 bundle Ṽ as a generic extension of the form eq. (10). Clearly, we

have to make sure that a non-trivial extension exists, since the trivial extension V1 ⊕V2

cannot give rise to an irreducible SU(4) instanton. The space of extensions is

Ext1
(
V2,V1

)
= H1

(
X̃,V1 ⊗ V∨

2

)
=

= H1
(
X̃,OX̃(−2τ1 + 2τ2) ⊗ π∗

1(W1) ⊗ π∗
2(W2

∨)
)

=

= H1
(
X̃, π∗

1

(
W1 ⊗OB1

(−2t)
)
⊗ π∗

2

(
W2 ⊗OB2

(2t)
))

. (13)

This cohomology group can directly be computed using the Leray spectral sequence and

the push-down eqns. (65) and (66). One obtains

H i
(
X̃, V1 ⊗ V∨

2

)
=






0 i = 3,

8R[Z3 × Z3] i = 2,

4R[Z3 × Z3] i = 1,

0 i = 0.

(14)

where R[Z3 × Z3] stands for the regular representation, that is, the sum of all 9 irre-

ducible representations of Z3 × Z3. Of course, only invariant extensions give rise to

equivariant vector bundles Ṽ. The invariant subspace is

Ext1
(
V2,V1

)Z3×Z3

= H1
(
X̃, V1 ⊗ V∨

2

)Z3×Z3

= 4 (15)

is indeed non-zero, so suitable extensions do exist.
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3.3 Low-Energy Spectrum

The low energy particle spectrum is determined through the cohomology of Ṽ and ∧2Ṽ

according to the decomposition

248 =
(
1, 45

)
⊕

(
4, 16

)
⊕

(
4, 16

)
⊕

(
6, 10

)
⊕

(
15, 1

)
(16)

under E8 ⊃ SU(4) × Spin(10). It is easy to show that H i
(
X̃, Ṽ

)
= 0 for i = 0, 2, 3.

Hence a simple index computation yields

H i
(
X̃, Ṽ

)
=





0 i = 3,

0 i = 2,

3R[Z3 × Z3] i = 1,

0 i = 0.

(17)

Furthermore, interrelated long exact sequences [6] together with

H∗
(
X̃, ∧2 V1

)
= H∗

(
X̃, ∧2 V2

)
= 0 (18)

yield

H i
(
X̃, ∧2 Ṽ

)
= H i

(
X̃, V1 ⊗ V2

)
= H i

(
X̃, π∗

1

(
W1

)
⊗ π∗

1

(
W1

))
. (19)

The latter is easily computed using the push-down formula eqns. (62) and (63) and the

Leray spectral sequence. The result is that

H i
(
X̃, ∧2 Ṽ

)
= H i

(
X̃, V1 ⊗ V2

)
=





0 i = 3,

χ2 ⊕ χ2
2 ⊕ χ1χ

2
2 ⊕ χ2

1χ2 i = 2,

χ2 ⊕ χ2
2 ⊕ χ1χ

2
2 ⊕ χ2

1χ2 i = 1,

0 i = 0.

(20)

Finally, the Z3 × Z3 group action on the cohomology is tensored with the Wilson line,

and every state that is not invariant under the combined action is projected out. The

regular representations in eq. (17) yield 3 full generations of quarks and leptons, each

with a right-handed neutrino. More interesting is the Wilson line action on the 10 of

Spin(10), which potentially could lead to exotic color triplets (“triplet Higgs”). We

chose the Wilson line such that

10 =
[
χ2

2

(
1, 2, 3, 0

)
⊕ χ2

1χ
2
2

(
3, 1,−2,−2

)]
⊕

[
χ2

(
1, 2,−3, 0

)
⊕ χ1χ2

(
3, 1, 2, 2

)]
(21)

under the decomposition

Spin(10) ⊃ SU(3)C × SU(2)L × U(1)Y × U(1)B−L × Z3 × Z3 . (22)

Combining eqns. (21) and (20), we see that one vector-like pair of Higgs survives the

Z3 × Z3 quotient while all color triplets are projected out.
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4 Slope-Stability

4.1 Conditions for Stability

We now proceed and show that the Kähler class ω ∈ H2
(
X̃, R

)
can be chosen such that

the visible sector vector bundle Ṽ, eq. (10), is equivariantly1 slope-stable. That means

that for all reflexive sub-sheaves F →֒ Ṽ, the slope

µ(F) def=
1

rankF

∫

X̃

c1(F) ∧ ω2 (23)

is negative,

µ
(
F

)
< µ

(
Ṽ
)

= 0 (24)

The easiest way to prove this is to derive a set of sufficient inequalities for the Kähler

class ω, and then to find a common solution [40]. We note that they are not always

necessary, that is, the inequalities are not sharp.

For example, consider only V1 defined by eqns. (9a), (46a). Let L be any sub-line

bundle, that is

0 // χ1OX̃(−τ1 + τ2 − φ) u // V1
v // χ2

1OX̃(−τ1 + τ2 + φ) ⊗ π∗
1I3

// 0

L

i

OO

v◦i

55kkkkkkkkkkkkkkkk

w

hhP
P

P
P

P
P

P

(25)

The composition v ◦ i either vanishes or not. We distinguish the two cases:

v ◦ i = 0: There exists a non-zero map

w : L → χ1OX̃(−τ1 + τ2 − φ) (26)

such that i = u ◦ w.

v ◦ i 6= 0: There exists a non-zero map

v ◦ i : L → χ2
1OX̃

(−τ1 + τ2 + φ) (27)

whose image vanishes at the codimension two locus where π∗
1I3 vanishes.

The existence of these maps restricts the line bundle L. Now if Ṽ is stable, then all

these line bundles L must be of negative slope, µ(L) < 0. We only have to check this

inequality for the L of largest slope, and these form a finite set (see Appendix A):

1Ṽ being equivariantly stable is the same as Ṽ/
(
Z3 × Z3

)
being stable. For the remainder of this

section, everything is equivariant.
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v ◦ i = 0:

L = OX̃(−τ1 + τ2 − φ) . (28)

v ◦ i 6= 0: The composition v ◦ i cannot be an isomorphism, since that would split the

short exact sequence eq. (25). Hence, L can only be a proper sub-line bundle, and

those of largest slope are

{
OX̃(−τ1 + τ2), OX̃(−4τ1 + τ2 + 2φ), OX̃(−3τ1 + φ),

O
X̃

(−2τ1 − τ2 + φ), O
X̃

(−τ1 − 2τ2 + 2φ)
}

. (29)

The first line bundle O
X̃

(−τ1 +τ2) actually has the same fiber degrees (coefficients

of τ1 and τ2) as the range of v ◦ i. Because of the push-down formula eq. (57), the

largest such sub-line bundle whose image vanishes at π∗
1I3 is actually

O
X̃

(−τ1 + τ2 + φ) ⊗ π∗
1 ◦ β∗

1

(
OP1(−3)

)
= O

X̃
(−τ1 + τ2 − 2φ) . (30)

Therefore, the possible line bundles L of largest slope are

L ∈
{
O

X̃
(−τ1 + τ2 − 2φ), O

X̃
(−4τ1 + τ2 + 2φ), O

X̃
(−3τ1 + φ),

OX̃(−2τ1 − τ2 + φ), OX̃(−τ1 − 2τ2 + 2φ)
}

. (31)

Similarly, one obtains a finite set of potentially destabilizing sub-line bundles of V2.

Now to prove [40] stability of Ṽ, it suffices to show that

• Sub-line bundles of Ṽ have negative slope.

• Rank 2 sub-bundles have negative slope. A sufficient criterion is that ∧2V1 has

negative slope and that proper sub-line bundles of ∧2V2 are of negative slope.

• Rank 3 sub-bundles (reflexive sheaves) have negative slope ⇔ sub-line bundles of

Ṽ
∨

have negative slope.

This gives a finite set of line bundles which have to have negative slope. One obtains

Proposition 1. If all line bundles OX̃(a1τ1 + a2τ2 + bφ) with

(a1, a2, b) ∈
{

(−1,−2, 2), (2,−2,−1), (2,−5, 1), (−4, 1, 2), (−1, 1,−1),

(−2, 2, 0), (−2,−1, 2), (1,−4, 2), (1,−1,−1)
}

(32)

have negative slope, then the vector bundle Ṽ, eq. (10), is equivariantly stable.
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4.2 Kähler Cone Substructure

The Kähler cone, that is the set of possible Kähler classes, is [40]

K def=
{
x1τ1 + x2τ2 + yφ

∣∣∣x1, x2, y > 0
}

⊂ H2
(
X̃, R

)
= 〈τ1, τ2, φ〉R

. (33)

The slope eq. (23) of a line bundle obviously depends quadratically on the Kähler pa-

rameters x1, x2, y, and can be computed [40] to be

µ
(
OX̃(a1τ1 + a2τ2 + bφ)

)
= 3(x1x2 + 6y)(a1x2 + a2x1) + x1x2(3a1 + 3a2 + 18b) . (34)

Therefore, according to Proposition 1 the vector bundle Ṽ is stable if the inequalities

µ
(
OX̃(−τ1 − 2τ2 + 2φ)

)
= 18x1x2 − 6x2

1 − 3x2
2 − 18yx2 − 36yx1 < 0

µ
(
OX̃(2τ1 − 2τ2 − φ)

)
=−6x2

1 + 6x2
2 + 36yx2 − 36yx1 − 18x1x2 < 0

µ
(
O

X̃
(2τ1 − 5τ2 + φ)

)
= −15x2

1 + 6x2
2 + 36yx2 − 90yx1 < 0

µ
(
OX̃(−4τ1 + τ2 + 2φ)

)
= 18x1x2 + 3x2

1 − 12x2
2 − 72yx2 + 18yx1 < 0

µ
(
O

X̃
(−τ1 + τ2 − φ)

)
= 3x2

1 − 3x2
2 − 18yx2 + 18yx1 − 18x1x2 < 0

µ
(
OX̃(−2τ1 + 2τ2)

)
= 6x2

1 − 6x2
2 − 36yx2 + 36yx1 < 0

µ
(
OX̃(−2τ1 − τ2 + 2φ)

)
= 18x1x2 − 3x2

1 − 6x2
2 − 36yx2 − 18yx1 < 0

µ
(
O

X̃
(τ1 − 4τ2 + 2φ)

)
= 18x1x2 − 12x2

1 + 3x2
2 + 18yx2 − 72yx1 < 0

µ
(
OX̃(τ1 − τ2 − φ)

)
=−3x2

1 + 3x2
2 + 18yx2 − 18yx1 − 18x1x2 < 0

(35)

are simultaneously satisfied.

It is easy to see that there are many solutions. For example, the Kähler class

ω = 3
(
2τ1 + 3τ2 + φ

)
∈ H2

(
X̃, R

)
(36)

satisfies all the inequalities eq. (35), the slopes being −621, −378, −702, −1512, −1269,

−594, −918, −27, and −675, respectively. The overall factor of 3 in eq. (36) is not

essential, but included to make it a Z3 × Z3-equivariant integral cohomology class. In

other words, the class is actually primitive in the integral cohomology of the quotient

X = X̃/(Z3 × Z3). Of course, in string theory the Kähler form is not quantized. As

usual, the radial part of the Kähler class, that is, the overall volume, does not matter

for the stability of vector bundles. We conclude from eq. (36) that the set

Ks ⊂ K ⊂ H2
(
X̃, R

)
(37)

of Kähler classes that make all slopes of the line bundles in Proposition 1 negative is

not empty. Therefore, the solution set Ks of the strict inequalities eq. (35) must be a

maximal-dimensional subcone of the Kähler cone K. Note that all cones have their tip

at the origin 0 ∈ H2
(
X̃, R

)
≃ R3. Hence, we can draw a 2-dimensional “star map” of

these cones as they are seen by an observer at the origin. This is depicted in Figure 1.

9



φ

τ1 τ2

Ks KB

Figure 1: Map projection of the unit sphere intersecting the Kähler cone, that

is, the positive octant in H2
(
X̃, R

)
≃ R3. The rank 4 bundle Ṽ is

stable inside the black triangular region Ks. In the white region KB the

Bogomolov inequality allows an N = 1 hidden sector, see Section 5.

One observes that the boundary of the set Ks is roughly triangular. On the right hand

side in Figure 1, it is bounded by two curved but smooth faces. Those bounds are an

artifact of our proof, and are merely sufficient but not necessary conditions. Although

it is in general difficult to determine the precise subcone of the Kähler cone where Ṽ is

stable, one expects it to extend even further to the right. On the other hand, the flat

face of Ks at the left in Figure 1 is a boundary saturating a necessary and sufficient

inequality. It is precisely the locus where the slope of V1 changes sign, and if one crosses

this line then µ
(
V1

)
> 0 becomes a destabilizing sub-bundle of Ṽ, see eq. (10). The

interpretation is analogous to the picture of D-branes as complexes; this boundary of

Ks is a line of marginal stability. To its right, the bound state Ṽ of V1 and V2 is stable.

To its left, the reversed bound state

0 −→ V2 −→ Ṽrev −→ V1 −→ 0 . (38)

is stable. Using the same methods as above, it is easy to see that Ṽrev is indeed stable in

a subcone of K extending to the left of Ks. Although reversing the short exact sequence

potentially alters the cohomology groups, it turns out that Ṽ and Ṽrev give rise to the

same low energy spectrum.

To summarize, the observable sector vector bundle Ṽ is slope-stable with respect

to any Kähler class ω in a 3-dimensional subcone Ks of the 3-dimensional Kähler cone
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K. The region Ks is show explicitly in Figure 1. By working harder to strengthen

Proposition 1 or by making small changes to the vector bundle it will be possible to

enlarge that fraction of the Kähler cone.

5 Hidden Sector

Although not the main topic of this paper, in this section we will briefly discuss the

hidden sector. Denote by Ṽ
′
the holomorphic vector bundle of the hidden sector. For

simplicity, we will assume that c1

(
Ṽ
′)

= 0, that is, the hidden sector contains an SU(n)

gauge instanton. Given the tangent bundle TX̃ of the Calabi-Yau threefold and the

observable sector bundle Ṽ, anomaly cancellation imposes the constraint

c2

(
Ṽ
′)

= c2

(
TX̃

)
− c2

(
Ṽ
)
− [C5] . (39)

Here, [C5] is the curve class on which five-branes are wrapped. For simplicity, let us

assume that [C5] = 0 (both weakly and strongly coupled heterotic string). Then, using

c2

(
TX̃

)
= 12

(
τ 2
1 + τ 2

2

)
, c2

(
Ṽ
)

= τ 2
1 + 4τ 2

2 + 4τ1τ2 , (40)

it follows that

c2

(
Ṽ
′)

= 11τ 2
1 + 8τ 2

2 − 4τ1τ2 =
(
3τ 2

1

)
+ 4

(
τ 2
1 + τ 2

2

)
− 4

(
τ1τ2 − τ 2

1 − τ 2
2

)
. (41)

Note that c2

(
Ṽ
′)

is neither effective nor antieffective, the terms in brackets being pull-

backs of effective curves on X. If Ṽ
′
is a slope-stable vector bundle with respect to a

Kähler class ω, then it must satisfy the Bogomolov inequality [45]

∫

X̃

c2

(
Ṽ
′)
∧ ω > 0 . (42)

Using the parametrization of ω in eq. (33), we see that

∫

X̃

c2

(
Ṽ
′)
∧ ω =

∫

X̃

(
11τ 2

1 + 8τ 2
2 − 4τ1τ2

)
∧

(
x1τ1 + x2τ2 + yφ

)
=

=

∫

X̃

(
4x1 + 7x2 − 12y

)
τ 2
1 τ2 = 3

(
4x1 + 7x2 − 12y

)
.

(43)

Therefore, the Bogomolov inequality is satisfied for any Kähler class for which

4x1 + 7x2 − 12y > 0 . (44)

This defines a 3-dimensional cone in the Kähler moduli space which we denote by KB.

The subcone KB is shown as the white region in Figure 1. Its complement, where

11



eq. (44) is violated, is drawn in pink. Note that the Kähler class eq. (36) for which the

observable sector vector bundle was proven to be stable also satisfies eq. (44). Hence,

Ks ∩ KB 6= ∅ . (45)

Since both Ks and KB are open (solutions of strict inequalities), their non-empty inter-

section is automatically a maximal-dimensional subcone of the Kähler cone. It follows

that both Ṽ and Ṽ
′
can, in principle, be slope-stable with respect to a Kähler class in

Ks ∩ KB. Often, the Bogomolov inequality is the only obstruction to finding stable

bundles. However, we have not explicitly constructed such a hidden sector bundle.

6 Serre Construction

6.1 General Construction

In this section, we are going to construct two SU(2) vector bundles W1 and W2 on the

dP9 surfaces B1 and B2, respectively. They are defined as extensions of the form

0 −→ χ1OB1
(−f) −→ W1 −→ χ2

1OB1
(f) ⊗ I3 −→ 0 (46a)

0 −→ χ2
2OB2

(−f) −→ W2 −→ χ2OB2
(f) ⊗ I6 −→ 0 (46b)

with the ideal sheaves I3 and I6 defined in Subsection 6.2. If they satisfy the Cayley-

Bacharach property, then W1 and W2 are rank 2 vector bundles for generic extensions.

We check this in Subsection 6.3.

Note that the determinant line bundles are trivial by construction, that is

∧2W1 = OB1
, ∧2W2 = OB2

. (47)

Therefore, the bundles are self-dual,

(
W1

)∨
= W1 ,

(
W2

)∨
= W2 . (48)

6.2 Ideal Sheaves

Let p1, p2, p3 be the singular points of the 3I1 Kodaira fibers in B1 → P1. Similarly,

let q1, q2, q3 be the singular points of the 3I1 Kodaira fibers in B2 → P1. Recall that

Z3 × Z3 is generated by g1 and g2, where g1 acts on the base P1 and g2 does not (it is a

translation along the elliptic fiber). The Z3 × Z3 characters are defined via

χ1(g1) = ω χ1(g2) = 1

χ2(g1) = 1 χ2(g2) = ω ,
(49)
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Note that the points pi and qj are g2-fixed points, and that g2 acts as χ2 ⊕ χ2
2 on the

tangent spaces Tpi
B1 and Tqj

B2. First, we define the ideal sheaf I3 as

0 −→ I3 −→ OB1
−→

⊕

i=1,2,3

Opi
−→ 0 . (50)

Furthermore, define for any G2 ≃ Z3 fixed point p the subscheme Z(p) as the point p

and its first derivative in χ2
2-direction. In local coordinates (x, y) ∈ C2, this Z3 group

acts as

g2(x, y) =
(
χ2(g2) x, χ2

2(g2) y
)

=
(
ωx, ω2y

)
, ω def= e

2πi
3 (51)

and the scheme Z(p) is

Z(p) = spec
(

C[x, y]
/〈

x, y2
〉 )

. (52)

Define the ideal sheaf I6 as the sheaf of functions vanishing at Z(q1), Z(q2), and Z(q3).

That is,

0 −→ I6 −→ OB2
−→

⊕

i=1,2,3

OZ(qi) −→ 0 . (53)

In other words, I6 are the functions vanishing at qi and whose first derivative in the χ2
2

direction vanishes.

6.3 Cayley-Bacharach Property

Recall the Cayley-Bacharach property for an extension

0 −→ L −→ W −→ M⊗ In −→ 0 (54)

of line bundles L, M and ideal sheaf In of n points on a surface B. It has the Cayley-

Bacharach property if the sections

s ∈ H0
(
B, L∨ ⊗M⊗ KB

)
(55)

vanishing at n− 1 points of the ideal sheaf automatically vanish at the n-th point. The

Cayley-Bacharach property implies that W is generically a rank 2 vector bundle.

First, let us check that W1, eq. (46a), has the Cayley-Bacharach property. The

sections in question are

s1 ∈ H0
(
B1, OB1

(−f)∨ ⊗OB1
(f) ⊗ KB1

)
=

= H0
(
B1, OB1

(f)
)

= H0
(

P1, OP1(1)
)

.
(56)

Furthermore, the ideal sheaf I3 vanishes at 3 points in 3 different fibers. But a section

of OB1
(f) can only vanish at one fiber, or it is identically zero. Hence, a section s1

vanishing at 2 of the 3 points vanishes automatically at the 3-rd, and the Cayley-

Bacharach property holds. The extension W2, eq. (46b), satisfies Cayley-Bacharach

analogously. Therefore, W1 and W2 are rank 2 vector bundles.
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6.4 Push-Down Formulae

To compute the cohomology groups of vector bundles, we always utilize the Leray spec-

tral sequence. For that, we need to know the push-down of all bundles involved.

First, consider the ideal sheaves. A standard application of the long exact sequence

for the push-down to eq. (50) immediately yields

β1∗

(
I3

)
= OP1(−3) , R1β1∗

(
I3

)
= χ1OP1(−1) . (57)

For the push-down of I6 defined in eq. (53), first note that according to the definition

of Z(qi) the push-down of the skyscraper sheaves are

β2∗OZ(qi) = Oβ2∗(qi) ⊕ χ2
2Oβ2∗(qi) . (58)

The long exact sequence for the push-down contains a non-zero coboundary map which

can be computed as in [6]. One finds that

β2∗

(
I6

)
= OP1(−3) , R1β2∗

(
I6

)
= OP1(−1) ⊕

[
3⊕

i=1

χ2
2Oβ2(qi)

]
. (59)

Using the push-down of the ideal sheaves, we find the long exact sequence

0 // χ1OP1(−1) // β1∗

(
W1

)
// χ2

1OP1(−2)
ED

δ

BC

GF@A
// χ2

1OP1(−2) // R1β1∗

(
W1

)
// OP1

// 0 .

(60)

From the discussion is Subsection 6.3 we know that W1 = W1
∨ is a vector bundle, that

is, it satisfies the relative duality for vector bundles

R1β1∗

(
W1

)
=

(
β1∗

(
W1

)
⊗ KB1|P1

)∨

. (61)

This uniquely fixes the coboundary map δ to be an isomorphism, and one obtains

β1∗W1 = χ1OP1(−1) ,

R1β1∗W1 = OP1 .
(62)

The coboundary map in the analogous push-down of W2 is zero for trivial reasons. We

find that

β2∗W2 = χ2
2OP1(−1) ⊕ χ2OP1(−2) ,

R1β2∗W2 = χ2
2OP1(1) ⊕ χ2OP1 .

(63)
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Finally, we need the push-down of Wi⊗OBi
(2t). These are simpler to compute since

the fiber degrees are large, so R1βi∗ vanishes. First, the push-down of the ideal sheaves

twisted by OBi
(2t) is

β1∗

(
I3 ⊗OB1

(2t)
)

= 3OP1 ⊕ 3OP1(−1) , R1β1∗

(
I3 ⊗OB1

(2t)
)

= 0 , (64a)

β2∗

(
I6 ⊗OB2

(2t)
)

= 6OP1(−1) , R1β2∗

(
I6 ⊗OB2

(2t)
)

= 0 . (64b)

The push-down long exact sequence for W1, W2 splits [6], and we obtain

β1∗

(
W1 ⊗OB1

(2t)
)

= 6OP1(−1) ⊕ 3OP1 ⊕ 3OP1(1) ,

R1β1∗

(
W1 ⊗OB1

(2t)
)

= 0 ,
(65)

and

β2∗

(
W2 ⊗OB2

(2t)
)

= 6OP1(−1) ⊕ 6OP1 ,

R1β2∗

(
W2 ⊗OB2

(2t)
)

= 0 .
(66)

The push-down for Wi ⊗OBi
(−2t) can be obtained by relative duality.
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A Line Bundles

By elementary computation of Hom(L,O
X̃

), one can easily see that every equivariant

sub-line bundle L of OX̃ is

OX̃(−φ), OX̃(−3τ1 + φ), OX̃(−2τ1 − τ2), OX̃(−τ1 − 2τ2), OX̃(−3τ2 + φ) (67)

or a sub-line bundle thereof. Since a sub-line bundle of a line bundle always has smaller

slope, the equivariant sub-line bundles of O
X̃

of largest slope are those listed in eq. (67).
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