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Abstract

In this paper, we present a formalism for computing the Yukawa cou-

plings in heterotic standard models. This is accomplished by calculating

the relevant triple products of cohomology groups, leading to terms propor-

tional to QHu, QH̄d, LHν and LH̄e in the low energy superpotential. These

interactions are subject to two very restrictive selection rules arising from

the geometry of the Calabi-Yau manifold. We apply our formalism to the

“minimal” heterotic standard model whose observable sector matter spec-

trum is exactly that of the MSSM. The non-vanishing Yukawa interactions

are explicitly computed in this context. These interactions exhibit a texture

rendering one out of the three quark/lepton families naturally light.
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1 Introduction

Obtaining non-vanishing Yukawa couplings is one of the most important issues in realis-

tic superstring model building [1]. In this paper, we present a formalism for computing

these terms and explicitly demonstrate, within an important class of E8×E8 superstring

vacua, that non-vanishing Yukawa couplings are generated in the low energy effective

theory.

In a series of papers [2–4] and [5], we presented a class of “heterotic standard model”

vacua within the context of the E8 ×E8 heterotic superstring. The observable sector of

a heterotic standard model vacuum is N = 1 supersymmetric and consists of a stable,

holomorphic vector bundle, V , with structure group SU(4) over an elliptically fibered

1



Calabi-Yau threefold, X, with a Z3 × Z3 fundamental group. In [2–4], we gave non-

trivial checks on the slope-stability of the vector bundle V . A rigorous proof of the

stability of this bundle was presented in [6]. The vector bundle V in [5] is also slope-

stable. This will be shown in detail in [7]. Each such bundle admits a gauge connection

which, in conjunction with a Wilson line, spontaneously breaks the observable sector

E8 gauge group down to the SU(3)C ×SU(2)L ×U(1)Y standard model group times an

additional gauged U(1)B−L symmetry. The spectrum arises as the cohomology of the

vector bundle V . For the vacuum presented in [5], the matter spectrum is found to be

precisely that of the minimal supersymmetric standard model (MSSM). For this reason,

we refer to [5] as the “minimal” heterotic standard model. The vacua presented in [2–4]

also have the matter spectrum of the MSSM, with the exception of one additional pair

of Higgs–Higgs conjugate superfields. These vacua contain no exotic multiplets and no

vector-like pairs of fields with the exception of the Higgs pairs. They exist for both weak

and strong string coupling. All previous attempts to find realistic particle physics vacua

in superstring theories [8–24] have run into difficulties. These include predicting extra

vector-like pairs of light fields, multiplets with exotic quantum numbers in the low energy

spectrum, enhanced gauge symmetries and so on. Heterotic standard models avoid all

of these problems. As for the hidden sector, there is no known obstruction to making

it N = 1 supersymmetric as well, but we have not yet constructed the requisite hidden

sector bundle. It is also unclear whether that is even phenomenologically desirable. In

any case, in this paper we consider only the visible sector interactions.

Elliptically fibered Calabi-Yau threefolds with Z2 and Z2 × Z2 fundamental group

were first constructed in [25–27] and [28, 29], respectively. More recently, the existence

of elliptic Calabi-Yau threefolds with Z3 × Z3 fundamental group was demonstrated

and their classification given in [30]. In [31–34], methods for building stable, holomor-

phic vector bundles with arbitrary structure group in E8 over simply-connected elliptic

Calabi-Yau threefolds were introduced. These results were greatly expanded in a number

of papers [25–27, 35–37] and then generalized to elliptically fibered Calabi-Yau threefolds

with non-trivial fundamental group in [27–29, 38]. To obtain a realistic spectrum, it was

found necessary to introduce a new method [25–29] for constructing vector bundles. This

method, which consists of building the requisite bundles by “extension” from simpler,

lower rank bundles, was used for manifolds with Z2 fundamental group in [27, 39–42]

and in the heterotic standard model context in [30]. In [2–4, 41, 42], it was shown that

to compute the complete low-energy spectrum of such vacua one must 1) evaluate the

relevant sheaf cohomologies, 2) find the action of the finite fundamental group on these

spaces and, finally, 3) tensor this with the action of the Wilson line on the associated

representation. The low energy spectrum is the invariant cohomology subspaces under

the resulting group action. This method was applied in [2–5] to compute the exact

spectrum of all multiplets transforming non-trivially under the action of the low energy
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gauge group. The accompanying natural method of “doublet-triplet” splitting was also

discussed. A formalism was presented in [43] that allows one to enumerate and describe

the multiplets transforming trivially under the low energy gauge group, namely, the

vector bundle moduli.

Using the above, one can construct a class of heterotic standard models and compute

their entire low-energy spectrum. For example, using a Z2 Wilson line one can break a

SU(5) GUT group to the standard model gauge group. Heterotic vacua in this context

were first computed in [41, 42]. This was recently refined in [44] to construct a realistic

heterotic standard model with three chiral families of quarks/leptons and one pair of

Higgs–Higgs conjugate fields. One can also use orbifold CFT to arrive at a minimal

spectrum [45]. But for the purposes of this paper we will be interested Z3 × Z3 Wil-

son lines breaking a Spin(10) GUT group to the standard model gauge group times

U(1)B−L. As mentioned previously, the observable sector spectrum consists exclusively

of the three chiral families of quarks/leptons (each family with a right-handed neutrino),

either one [5] or two [2–4] pairs of Higgs–Higgs conjugate fields and a small number of

uncharged geometric and vector bundle moduli. However, finding the particle spectrum

is far from the end of the story. To demonstrate that the particle physics in these vacua

is realistic, one must construct the interactions of these fields in the low energy effective

Lagrangian. These interactions occur in two distinct parts of the action. Recall that the

matter part of an N = 1 supersymmetric Lagrangian is completely described in terms

of two functions, the superpotential and the Kähler potential. Of these, the superpo-

tential, being a “holomorphic” function of chiral superfields, is much more amenable to

computation using methods of algebraic geometry. The superpotential itself is a sum of

several different pieces, such as Higgs µ-terms and Yukawa couplings. In a recent pa-

per [46], it was shown how to compute Higgs µ-terms in the superpotentials of heterotic

standard models. In this paper, we continue our study of holomorphic interactions by

presenting a formalism for computing Yukawa terms. We apply this method to calculate

the Yukawa texture in the minimal heterotic standard model [5].

Specifically, we do the following. In Section 2, we review the relevant facts about

the structure of heterotic standard model vacua in general and the minimal heterotic

vacuum in particular. The formalism for computing the low energy spectrum is briefly

discussed and we give the results for the minimal heterotic standard model vacuum.

The structure of Yukawa terms are then analyzed and shown to occur as the product

of three cohomology groups, two corresponding to the quark/lepton doublets (Q,L) and

singlets (u,d,ν,e), and one corresponding to Higgs (H) and Higgs conjugate (H̄) fields

in the effective low energy theory. It follows that cubic terms of the form QHu, QH̄d,

LHν and LH̄e are potentially generated in the superpotential. Section 3 is devoted to

discussing the first Leray spectral sequence, which is associated with the projection of

the covering threefold X̃ onto the base space B2. The Leray decomposition of a sheaf
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cohomology group into (p, q) subspaces is discussed and applied to the cohomology

spaces relevant to Yukawa terms. It is shown that the triple product is subject to

a (p, q) selection rule which severely restricts the allowed non-vanishing terms. The

second Leray decomposition, associated with the projection of the space B2 onto its

base P1, is presented in Section 4. The decomposition of any cohomology space into its

[s, t] subspaces is discussed and applied to cohomologies relevant to Yukawa terms. We

show that Yukawa couplings are subject to yet another selection rule associated with the

[s, t] decomposition. Finally, it is demonstrated that the subspaces of cohomology that

form non-vanishing cubic terms project non-trivially onto both quark/lepton doublets

and singlets, as well as Higgs and Higgs conjugate fields under the action of the Z3 × Z3

group.

We conclude that non-vanishing Yukawa terms proportional to QHu, QH̄d, LHν

and LH̄e appear in the low energy superpotential of a minimal heterotic standard model.

However, their structure is constrained by the above selection rules. The exact texture of

the Yukawa interactions and its implications for the quark/lepton mass matrix are pre-

sented in Section 5. We show that, in a suitable basis, one out of the three quark/lepton

families is, prior to higher order and non-perturbative corrections, massless. The re-

maining two generations have masses of the order of the electroweak symmetry breaking

scale.

2 Preliminaries

2.1 Heterotic String on a Calabi-Yau Manifold

The observable sector of an E8 × E8 heterotic standard model vacuum consists of a

stable, holomorphic vector bundle, V , over a Calabi-Yau threefold, X. In particular, we

are interested in an SU(4) instanton, breaking the low energy gauge group down to its

commutant

E8
SU(4)

// Spin(10) . (1)

Additionally, we want Z3 × Z3 Wilson lines W . The Spin(10) group is then sponta-

neously broken by the holonomy group of W to

Spin(10)
Z3×Z3

// SU(3)C × SU(2)L × U(1)Y × U(1)B−L . (2)

In this way, the standard model gauge group emerges in the low energy effective the-

ory multiplied by an additional U(1) gauge group whose charges correspond to B − L

quantum numbers.

For W to exist, the Calabi-Yau manifold X must have fundamental group Z3 × Z3.

The physical properties of this vacuum are most easily deduced not from X and V but,

rather, from two closely related entities, which we denote by X̃ and Ṽ respectively. X̃

4



is a simply-connected Calabi-Yau threefold which admits a freely acting Z3 × Z3 group

action such that

X = X̃
/(

Z3 × Z3

)
. (3)

That is, X̃ is the universal covering space of X. Similarly, Ṽ is a stable, holomorphic

vector bundle over X̃ with structure group SU(4) which is equivariant under the action

of Z3 × Z3. Then,

V = Ṽ
/(

Z3 × Z3

)
. (4)

The covering space X̃ for a heterotic standard model was discussed in detail in [30].

Here, it suffices to recall that X̃ is a fiber product

X̃ = B1 ×P1 B2 (5)

of two rational elliptic (dP9) surfaces B1 and B2 with Z3 × Z3 action. Thus, X̃ is

elliptically fibered over both surfaces with the projections

π1 : X̃ → B1 , π2 : X̃ → B2 . (6)

The surfaces B1 and B2 are themselves elliptically fibered over P1 with maps

β1 : B1 → P
1 , β2 : B2 → P

1 . (7)

Together, these projections yield the commutative diagram

X̃
π2

��
??

??
??π1

����
��

��

B1

β1 ��
??

??
??

B2

β2����
��

��

P1 .

(8)

The invariant homology ring of each special dP9 surface is generated by two Z3 × Z3

invariant curve classes f and t. Using the projections in eq. (6), these can be pulled

back to divisor classes

τ1 = π−1
1 (t1) , τ2 = π−1

2 (t2) , φ = π−1
1 (f1) = π−1

2 (f2) (9)

on X̃. These three classes generate the even invariant homology ring of X̃. In particular,

span{τ1, τ2, φ} = H2
(
X̃,C

)Z3×Z3

(10)

is the Z3 × Z3 invariant part of the Kähler moduli space.
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2.2 The Gauge Bundle

The crucial ingredient in a heterotic standard model is the choice of the observable sector

vector bundle Ṽ. These bundles are constructed using a generalization of the method of

bundle extensions [27, 29]. Specifically, Ṽ is the extension

0 −→ V1 −→ Ṽ −→ V2 −→ 0 (11)

of two rank two bundles V1 and V2 on X̃. The solution for V1 and V2 leading to the

minimal heterotic standard model is as follows. Define

V1 = OX̃(−τ1 + τ2) ⊗ π∗
1(W1) , V2 = OX̃(τ1 − τ2) ⊗ π∗

2(W2) , (12)

where O
X̃

(∓τ1±τ2) are line bundles on X̃ and the rank 2 bundles W1, W2 are constructed

via an equivariant version of the Serre construction as

0 −→ χ1OB1
(−f1) −→W1 −→ χ2

1OB1
(f1) ⊗ IB1

3 −→ 0 (13)

and

0 −→ χ2
2OB2

(−f2) −→ W2 −→ χ2OB2
(f2) ⊗ IB2

6 −→ 0 , (14)

where IB1

3 and IB2

6 denote the ideal sheaf1 of 3 and 6 points in B1 and B2 respectively.

The characters χ1 and χ2 are third roots of unity which generate the first and second

factors of Z3 × Z3. The observable sector equivariant bundle Ṽ is then an invariant

element of the space of extensions defined in eq. (11). The vector bundle Ṽ so-constructed

is slope-stable [7].

Let R be any representation of Spin(10) and U(Ṽ)R the associated tensor product

bundle of Ṽ. Then, each sheaf cohomology space H∗
(
X̃, U(Ṽ)R

)
carries a specific repre-

sentation of Z3 × Z3. Similarly, the Wilson line W manifests itself as a Z3 × Z3 group

action on each representation R of Spin(10). As discussed in detail in [4], the low-energy

particle spectrum is given by

ker
(
∂
/

Ṽ

)
=

(
H0

(
X̃,OX̃

)
⊗ 45

)Z3×Z3

⊕
(
H1

(
X̃, Ṽ

∨)
⊗ 16

)Z3×Z3

⊕
(
H1

(
X̃, Ṽ

)
⊗ 16

)Z3×Z3

⊕
(
H1

(
X̃,∧2Ṽ

)
⊗ 10

)Z3×Z3

⊕
(
H1

(
X̃, ad(Ṽ)

)
⊗ 1

)Z3×Z3

,

(15)

where the superscript indicates the invariant subspace under the action of Z3 × Z3. The

invariant cohomology space
(
H0(X̃,O

X̃
)⊗45

)Z3×Z3 corresponds to gauge superfields in

the low-energy spectrum carrying the adjoint representation of the gauge group. The

matter cohomology spaces

(
H1(X̃, Ṽ

∨
) ⊗ 16

)Z3×Z3

,
(
H1(X̃, Ṽ) ⊗ 16

)Z3×Z3

,
(
H1(X̃,∧2Ṽ) ⊗ 10

)Z3×Z3

(16)

1The analytic functions vanishing at the respective points.
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were all explicitly computed in [4]. One finds that H1
(
X̃, Ṽ

∨)
= 0 and, hence, there are

no vector-like pairs of quark/lepton families. The space
(
H1(X̃, Ṽ) ⊗ 16

)Z3×Z3 consists

of three chiral families of quarks/leptons, each family with a right-handed neutrino [47],

and transforming as

Q =
(
3, 2, 1, 1

)
, u =

(
3, 1,−4,−1

)
, d =

(
3, 1, 2,−1

)
(17)

and

L =
(
1, 2,−3,−3

)
, e =

(
1, 1, 6, 3

)
, ν =

(
1, 1, 0, 3

)
(18)

under SU(3)C × SU(2)L ×U(1)Y ×U(1)B−L. We have displayed the quantum numbers

3Y and 3(B − L) for convenience. The cohomology space
(
H1(X̃,∧2Ṽ) ⊗ 10

)Z3×Z3

is

spanned by one vector-like pair of Higgs–Higgs conjugate superfields

H =
(
1, 2, 3, 0

)
, H̄ =

(
1, 2,−3, 0

)
. (19)

That is, the matter spectrum is precisely that of the MSSM. The remaining cohomology

space,
(
H1(X̃, ad(Ṽ)) ⊗ 1

)Z3×Z3 , was computed using the formalism introduced in [43]

and corresponds to 13 vector bundle moduli.

2.3 Cubic Terms in the Superpotential

In this paper, we will focus on computing Yukawa terms. It follows from eq. (15) that

the 4-dimensional Higgs and quark/lepton fields correspond to certain ∂̄-closed (0, 1)-

forms on X̃ with values in the vector bundle ∧2Ṽ and Ṽ respectively. Since both H and

H̄ arise from the same cohomology space, we will denote either of these 1-forms simply

as ΨH . For the same reason, we will schematically represent any quark/lepton doublet

by Ψ(2) and any singlet 1-form by Ψ(1), in any family. They can be written as

ΨH = ψH
ῑ[ab] dz̄

ῑ, Ψ(1) = ψ
(1)
ῑa dz̄ῑ, Ψ(2) = ψ

(2)
ῑb dz̄ῑ, (20)

where a, b are valued in the SU(4) bundle Ṽ and {zι, z̄ῑ} are coordinates on the Calabi-

Yau threefold X̃. Doing the dimensional reduction of the 10-dimensional Lagrangian

yields cubic terms in the superpotential of the 4-dimensional effective action. It turns

out [13] that the coefficients of the cubic couplings are simply the various allowed ways

to obtain a number out of the forms ΨH , Ψ(1), Ψ(2). That is

W = · · ·+ λuQHu+ λdQH̄d+ λνLHν + λeLH̄e (21)

with the coefficients λ determined by

λ =

∫

X̃

Ω ∧ Tr
[
Ψ(2) ∧ ΨH ∧ Ψ(1)

]
=

=

∫

X̃

Ω ∧
(
ǫabcdψ

(2)
ῑa ψH

κ̄[bc] ψ
(1)
ǭd

)
dz̄ῑ ∧ dz̄κ̄ ∧ dz̄ǭ

(22)
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and Ω is the holomorphic (3, 0)-form. Mathematically, we are using the wedge product

together with a contraction of the vector bundle indices (that is, the determinant ∧4Ṽ =

O
X̃

) to obtain a product

H1
(
X̃, Ṽ

)
⊗H1

(
X̃,∧2Ṽ

)
⊗H1

(
X̃, Ṽ

)
−→

−→ H3
(
X̃, Ṽ ⊗∧2Ṽ ⊗ Ṽ

)
−→ H3

(
X̃,OX̃

)
(23)

plus the fact that on the Calabi-Yau manifold X̃

H3
(
X̃,OX̃

)
= H3

(
X̃,KX̃

)
= H

3,3

∂̄

(
X̃

)
= H6

(
X̃

)
(24)

can be integrated over. If one were to use the heterotic string with the “standard

embedding”, then the above product would simplify further to the intersection of certain

cycles in the Calabi-Yau threefold [48, 49]. However, in our case there is no such

description.

Hence, to compute Yukawa terms, we must first analyze the cohomology groups

H1
(
X̃, Ṽ

)
, H1

(
X̃,∧2Ṽ

)
, H3

(
X̃,OX̃

)
(25)

and the action of Z3 × Z3 on these spaces. We then have to evaluate the product in

eq. (23). As we will see in the following sections, the two independent elliptic fibrations

of X̃ will force some, but not all, products to vanish.

3 The First Elliptic Fibration

3.1 The Leray Spectral Sequence

As discussed in detail in [4], the cohomology spaces on X̃ are obtained by using two Leray

spectral sequences. In this section, we consider the first of these sequences corresponding

to the projection

X̃
π2−→ B2. (26)

For any sheaf F on X̃, the Leray spectral sequence tells us that2

H i
(
X̃,F

)
=

p+q=i⊕

p,q

Hp
(
B2, R

qπ2∗F
)
, (27)

2In all the spectral sequences we are considering in this paper, higher differentials vanish trivially.

Hence, the E2 and E∞ tableaux are equal and we will not distinguish them in the following. Further-

more, there are no extension ambiguities for C-vector spaces.

8



where the only non-vanishing entries are for p = 0, 1, 2 (since dimC(B2) = 2) and q = 0, 1

(since the fiber of X̃ is an elliptic curve, therefore of complex dimension one). Note that

the cohomologies Hp(B2, R
qπ2∗F) fill out the 2 × 3 tableau3

q=1 H0
(
B2, R

1π2∗F
)

H1
(
B2, R

1π2∗F
)

H2
(
B2, R

1π2∗F
)

q=0 H0
(
B2, π2∗F

)
H1

(
B2, π2∗F

)
H2

(
B2, π2∗F

)

p=0 p=1 p=2

⇒ Hp+q
(
X̃,F

)
, (28)

where “⇒ Hp+q
(
X̃,F

)
” reminds us of which cohomology group the tableau is comput-

ing. Such tableaux are very useful in keeping track of the elements of Leray spectral

sequences. As is clear from eq. (27), the sum over the diagonals yields the desired

cohomology of F . In the following, it will be very helpful to define

Hp
(
B2, R

qπ2∗F
)
≡

(
p, q

∣∣F
)
. (29)

Using this abbreviation, the tableau eq. (28) reads

q=1
(
0, 1

∣∣F
) (

1, 1
∣∣F

) (
2, 1

∣∣F
)

q=0
(
0, 0

∣∣F
) (

1, 0
∣∣F

) (
2, 0

∣∣F
)

p=0 p=1 p=2

⇒ Hp+q
(
X̃,F

)
. (30)

3.2 Degrees and Products

On the level of differential forms, we can understand the Leray spectral sequence as

decomposing differential forms into the number p of legs in the direction of the base and

the number q of legs in the fiber direction. Obviously, this extra grading is preserved

under the wedge-product of the differential forms. Hence, any product

H i
(
X̃,F1

)
⊗Hj

(
X̃,F2

)
−→ H i+j

(
X̃,F1 ⊗ F2

)
(31)

not only has to end up in overall degree i+ j, but also has to preserve the (p, q)-grading.

That is,

(
p1, q1

∣∣F1

)
⊗

(
p2, q2

∣∣F2

)
//
(
p1 + p2, q1 + q2

∣∣F1 ⊗ F2

)

Hp1+q1

(
X̃,F1

)∩

⊗ Hp2+q2

(
X̃,F2

)∩

// Hp1+p2+q1+q2

(
X̃,F1 ⊗F2

)
.

∩ (32)

This is all we are going to need in the following, but we would like to mention the

following caveat. Although it does not happen here, sometimes the push-down is not a

3Recall that the zero-th derived push-down is just the ordinary push-down, R0π2∗ = π2∗.
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vector bundle, but a (non-locally free) sheaf. Then the identification with bundle-valued

differential forms is not possible. The way around this is well-known; one has to replace

the coherent sheaf by a complex of vector bundles. Now one can again think in terms

of differential forms, but at the cost of working in the derived category. What can and

does happen in general is the appearance of derived tensor products. That is, the tensor

product of complexes may no longer be quasi-isomorphic to a complex with only one

entry. The effect is that the product ends up in

(
p1, q1

∣∣F1

)
⊗

(
p2, q2

∣∣F2

)
−→

min(hd(F1),hd(F2))⊕

n=0

(
p1 + p2 + n, q1 + q2 − n

∣∣F1 ⊗ F2

)
, (33)

where hd
(
Fi

)
+1 is the length of the shortest locally free resolution of Fi. In all products

that occur in this paper hd(F) = 0 and, hence, eq. (33) simplifies to eq. (32).

3.3 The First Leray Decomposition of the Volume Form

Let us first discuss the (p, q) Leray tableau for the sheaf F = OX̃ , which is the last term

in eq. (25). Since this is the trivial line bundle, it immediately follows that

q=1 0 0 1
q=0 1 0 0

p=0 p=1 p=2

⇒ Hp+q
(
X̃,O

X̃

)
. (34)

From eqns. (27) and (34) we see that

H3
(
X̃,OX̃

)
=

(
2, 1

∣∣OX̃

)
= 1, (35)

where the 1 indicates that H3(X̃,OX̃) is a one-dimensional space carrying the trivial

action of Z3 × Z3.

3.4 The First Leray Decomposition of Higgs Fields

Now consider the (p, q) Leray tableau for the sheaf F = ∧2Ṽ, which is the second term

in eq. (25). This can be explicitly computed and is given by

q=1 0 ρ4 0

q=0 0 ρ4 0
p=0 p=1 p=2

⇒ Hp+q
(
X̃,∧2Ṽ

)
, (36)

where ρ4 is the four-dimensional representation

ρ4 = χ2 ⊕ χ2
2 ⊕ χ1χ

2
2 ⊕ χ2

1χ2 (37)
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of Z3 × Z3. In general, it follows from eq. (27) that H1(X̃,∧2Ṽ) is the sum of the two

subspaces
(
0, 1

∣∣∧2Ṽ
)
⊕

(
1, 0

∣∣∧2Ṽ
)
. However, we see from the Leray tableau eq. (36) that

the
(
0, 1

∣∣∧2Ṽ
)

space vanishes. Hence,

H1
(
X̃,∧2Ṽ

)
=

(
1, 0

∣∣∧2Ṽ
)

= ρ4. (38)

3.5 The First Leray Decomposition of the Quark/Lepton Fields

Now consider the (p, q) Leray tableau for the sheaf F = Ṽ, which is the first term in

eq. (25). This can be explicitly computed and is given by

q=1 RG 0 0
q=0 0 RG⊕2 0

p=0 p=1 p=2

⇒ Hp+q
(
X̃, Ṽ

)
, (39)

where RG is the regular representation of Z3 × Z3 given by

RG = 1 ⊕ χ1 ⊕ χ2 ⊕ χ2
1 ⊕ χ2

2 ⊕ χ1χ2 ⊕ χ1χ
2
2 ⊕ χ2

1χ2 ⊕ χ2
1χ

2
2. (40)

It follows from eq. (27) that H1(X̃, Ṽ) is the sum of the two subspaces

H1
(
X̃, Ṽ

)
=

(
0, 1

∣∣Ṽ
)
⊕

(
1, 0

∣∣Ṽ
)
. (41)

Furthermore, eq. (39) tells us that

(
0, 1

∣∣Ṽ
)

= RG,
(
1, 0

∣∣Ṽ
)

= RG⊕2. (42)

Technically, the structure of eq. (41) is associated with the fact that the cohomology

H∗
(
X̃, Ṽ

)
decomposes into H∗

(
X̃, V1

)
⊕H∗

(
X̃, V2

)
. It turns out that the two subspaces

in eq. (41) arise as

RG = H1
(
X̃, V1

)
, RG⊕2 = H1

(
X̃, V2

)
(43)

respectively.

3.6 The (p,q) Selection Rule

Having computed the decompositions of H3(X̃,O
X̃

), H1(X̃,∧2Ṽ) and H1(X̃, Ṽ) into

their (p, q) Leray subspaces, we can now analyze the (p, q) components of the triple

product

H1
(
X̃, Ṽ

)
⊗H1

(
X̃,∧2Ṽ

)
⊗H1

(
X̃, Ṽ

)
−→ H3

(
X̃,O

X̃

)
(44)
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given in eq. (23). Inserting eqns. (38) and (41), we see that

H1
(
X̃, Ṽ

)
⊗H1

(
X̃,∧2Ṽ

)
⊗H1

(
X̃, Ṽ

)
=

((
0, 1

∣∣Ṽ
)
⊕

(
1, 0

∣∣Ṽ
))

⊗
(
1, 0

∣∣∧2Ṽ
)
⊗

((
0, 1

∣∣Ṽ
)
⊕

(
1, 0

∣∣Ṽ
))

=
((

0,1

∣∣Ṽ
)
⊗
(
1,0

∣∣∧2Ṽ

)
⊗
(
1,0

∣∣Ṽ
))⊕2

︸ ︷︷ ︸
total (p, q) degree = (2,1)

⊕
((

1,0

∣∣Ṽ
)
⊗
(
1,0

∣∣∧2Ṽ

)
⊗
(
1,0

∣∣Ṽ
))

︸ ︷︷ ︸
total (p, q) degree = (3,0)

⊕
((

0,1

∣∣Ṽ
)
⊗
(
0,1

∣∣∧2Ṽ

)
⊗
(
0,1

∣∣Ṽ
))

︸ ︷︷ ︸
total (p, q) degree = (0,3)

(45)

Because of the (p, q) degree, we see from eq. (35) that only the first term can have a

non-zero product in

H3
(
X̃,OX̃

)
=

(
2, 1

∣∣OX̃

)
. (46)

It follows that the first quark/lepton family, which arises from
(
0, 1

∣∣Ṽ
)

= RG, (47)

will form non-vanishing Yukawa terms with the second and third quark/lepton families

coming from (
1, 0

∣∣Ṽ
)

= RG⊕2. (48)

All other Yukawa couplings must vanish. We refer to this as the (p, q) Leray degree

selection rule. We conclude that the only non-zero product in eq. (44) is of the form
(
0, 1

∣∣Ṽ
)
⊗

(
1, 0

∣∣∧2Ṽ
)
⊗

(
1, 0

∣∣Ṽ
)
−→

(
2, 1

∣∣OX̃

)
. (49)

Roughly what happens is the following. The holomorphic (3, 0)-form Ω has two legs

in the base and one leg in the fiber direction. According to eq. (38), both 1-forms ΨH

corresponding to Higgs and Higgs conjugate have their one leg in the base direction.

Therefore, the wedge product in eq. (22) can only be non-zero if one quark/lepton 1-

form Ψ has its leg in the base direction and the other quark/lepton 1-form Ψ has its leg

in the fiber direction.

We conclude that due to a selection rule for the (p, q) Leray degree, the Yukawa terms

in the effective low energy theory can involve only a coupling of the first quark/lepton

family to the second and third. All other Yukawa couplings must vanish.

4 The Second Elliptic Fibration

4.1 The Second Leray Spectral Sequence

So far, we only made use of the fact that our Calabi-Yau manifold is an elliptic fibration

over the base B2. But the dP9 surface B2 is itself elliptically fibered over P1. Con-

sequently, there is yet another selection rule coming from the second elliptic fibration.

12



Therefore, we now consider the second Leray spectral sequence corresponding to the

projection

B2
β2

−→ P
1. (50)

For any sheaf F̂ on B2, the Leray sequence now starts with a 2 × 2 Leray tableau

t=1 H0
(
P

1, R1β2∗F̂
)

H1
(
P

1, R1β2∗F̂
)

t=0 H0
(
P

1, β2∗F̂
)

H1
(
P

1, β2∗F̂
)

s=0 s=1

⇒ Hs+t
(
B2, F̂

)
. (51)

Again, the sum over the diagonals yields the desired cohomology of F̂ . Note that to

evaluate the product eq. (49), we need the [s, t] Leray tableaux for

F̂ = R1π2∗

(
Ṽ
)
, π2∗

(
Ṽ
)
, π2∗

(
∧2 Ṽ

)
, R1π2∗

(
O

X̃

)
. (52)

In the following, it will be useful to define

Hs

(
P

1, Rtβ2∗

(
Rqπ2∗

(
F

)))
≡

[
s, t

∣∣q,F
]
. (53)

One can think of
[
s, t

∣∣q,F
]

as the subspace of H∗
(
X̃,F

)
that can be written as forms

with q legs in the π2-fiber direction, t legs in the β2-fiber direction, and s legs in the

base P1 direction.

4.2 The Second Leray Decomposition of the Volume Form

Let us first discuss the [s, t] Leray tableau for F̂ = R1π2∗

(
OX̃

)
= KB2

, the canonical

line bundle. It follows immediately that

t=1 0 1

t=0 0 0
s=0 s=1

⇒ Hs+t
(
B2, R

1π2∗

(
OX̃

))
. (54)

In our notation, this means that

H2
(
B2, R

1π2∗

(
OX̃

))
=

[
1, 1

∣∣1,OX̃

]
(55)

has pure [s, t] = [1, 1] degree. To summarize, we see that

H3
(
X̃,OX̃

)
=

(
2, 1

∣∣OX̃

)
=

[
1, 1

∣∣1,OX̃

]
= 1. (56)
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4.3 The Second Leray Decomposition of Higgs Fields

Now consider the [s, t] Leray tableau for the sheaf F̂ = π2∗

(
∧2 Ṽ

)
. This can be explicitly

computed and is given by

t=1 χ1χ
2
2 0

t=0 0 χ2 ⊕ χ2
2 ⊕ χ2

1χ2

s=0 s=1

⇒ Hs+t
(
B2, π2∗

(
∧2 Ṽ

))
. (57)

This means that the 4 copies of the 10 of Spin(10) given in eq. (38) split as

H1
(
X̃,∧2Ṽ

)
=

(
1, 0

∣∣∧2Ṽ
)

=
[
0, 1

∣∣0,∧2Ṽ
]
⊕

[
1, 0

∣∣0,∧2Ṽ
]
, (58)

where
[
0, 1

∣∣0,∧2Ṽ
]

= χ1χ
2
2[

1, 0
∣∣0,∧2Ṽ

]
= χ2 ⊕ χ2

2 ⊕ χ2
1χ2.

(59)

Note that [
0, 1

∣∣0,∧2Ṽ
]
⊕

[
1, 0

∣∣0,∧2Ṽ
]

= ρ4 (60)

in eq. (37), as it must.

4.4 The Second Leray Decomposition of the Quark/Lepton

Fields

Finally, let us consider the [s, t] Leray tableau for the quark/lepton fields. We have

already seen that, due to the (p, q) selection rule, both the first quark/lepton family

arising from (
0, 1

∣∣Ṽ
)

= RG (61)

and the second and third quark/lepton families coming from

(
1, 0

∣∣Ṽ
)

= RG⊕2 (62)

must occur in non-vanishing Yukawa interactions. Therefore, we are only interested in

the [s, t] decomposition of each of these subspaces. The
(
0, 1

∣∣Ṽ
)

subspace is associated

with the degree 0 cohomology of the sheaf R1π2∗

(
Ṽ
)
. The corresponding Leray tableau

is given by
t=1 0 0

t=0 RG 0
s=0 s=1

⇒ Hs+t
(
B2, R

1π2∗

(
Ṽ
))
. (63)

It follows that the first family of quarks/leptons has [s, t] degree [0, 0],

(
0, 1

∣∣Ṽ
)

=
[
0, 0

∣∣1, Ṽ
]

= RG. (64)
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The
(
1, 0

∣∣Ṽ
)

subspace is associated with the degree 1 cohomology of the sheaf π2∗

(
Ṽ
)
.

The corresponding Leray tableau is given by

t=1 RG⊕2 0

t=0 0 0
s=0 s=1

⇒ Hs+t
(
B2, π2∗

(
Ṽ
))
. (65)

It follows that the second and third families of quarks/leptons has [s, t] degree [0, 1],

(
1, 0

∣∣Ṽ
)

=
[
0, 1

∣∣1, Ṽ
]

= RG⊕2. (66)

4.5 The [s,t] Selection Rule

Having computed the decompositions of the relevant cohomology spaces into their [s, t]

Leray subspaces, we can now calculate the triple product eq. (23). The (p, q) selection

rule dictates that the only non-zero product is of the form eq. (49). Now split each term

in this product into its [s, t] subspaces, as given in eqns. (56), (59), and (64) respectively.

The result is

[
0, 0

∣∣1, Ṽ
]
⊗

([
0, 1

∣∣0,∧2Ṽ
]
⊕

[
1, 0

∣∣0,∧2Ṽ
])

⊗
[
0, 1

∣∣1, Ṽ
]

−→
[
1, 1

∣∣1,O
X̃

]
. (67)

Clearly, this triple product vanishes by degree unless we choose the
[
1, 0

∣∣0,∧2Ṽ
]

from

the
(
1, 0

∣∣∧2Ṽ
)

subspace. In this case, eq. (67) becomes

[
0, 0

∣∣1, Ṽ
]
⊗

[
1, 0

∣∣0,∧2Ṽ
]
⊗

[
0, 1

∣∣1, Ṽ
]
−→

[
1, 1

∣∣1,O
X̃

]
, (68)

which is consistent.

We conclude that there is, in addition to the (p, q) selection rule discussed above, a

[s, t] Leray degree selection rule. This rule continues to allow non-vanishing Yukawa cou-

plings of the first quark/lepton family with the second and third quark/lepton families,

but only through the [
1, 0

∣∣0,∧2Ṽ
]

= χ2 ⊕ χ2
2 ⊕ χ2

1χ2 (69)

component of
(
1, 0

∣∣∧2Ṽ
)

in eq. (58).

4.6 Wilson Lines

We have, in addition to the SU(4) instanton, a non-vanishing Wilson line. Its effect is to

break the Spin(10) gauge group down to the desired SU(3)C×SU(2)L×U(1)Y ×U(1)B−L

gauge group. First, consider the 16 matter representations. We choose the Wilson line

W so that its Z3 × Z3 action on each 16 is given by

16 =
[
χ1χ

2
2Q⊕ χ2

2e⊕ χ2
1χ

2
2u

]
⊕

[
L⊕ χ2

1d
]
⊕ χ2ν, (70)
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where the representations Q,u,d and L,ν,e were defined in eqns. (17) and (18), respec-

tively. Recall from eqns. (41) and (42) that H1
(
X̃, Ṽ

)
= RG ⊕ RG⊕2. Tensoring any

RG subspace of the cohomology space H1
(
X̃, Ṽ

)
with a 16 using eqns. (40) and (70),

we find that the invariant subspace under the Z3 × Z3 action is

(
RG⊗ 16

)Z3×Z3

= span
{
Q, u, d, L, ν, e

}
(71)

It follows that each RG subspace of H1
(
X̃, Ṽ

)
projects to a complete quark/lepton

family at low energy. This justifies our identification of the subspace RG with the first

quark/lepton family and the subspace RG⊕2 with the second and third quark/lepton

families throughout the text.

Second, notice that each fundamental matter field in the 10 can be broken to a Higgs

field, a color triplet, or projected out. In particular, we are going to choose the Wilson

line W so that its Z3 × Z3 action on a 10 representation of Spin(10) is given by

10 =
[
χ2

2H ⊕ χ2
1χ

2
2C

]
⊕

[
χ2H̄ ⊕ χ1χ2C̄

]
, (72)

where H and H̄ are defined in eq. (19) and

C =
(
3, 1,−2,−2

)
, C̄ =

(
3, 1, 2, 2

)
(73)

are the color triplet representations of SU(3)C ×SU(2)L ×U(1)Y ×U(1)B−L. Tensoring

this with the cohomology space H1
(
X̃,∧2Ṽ

)
, we find the invariant subspace under the

combined Z3 × Z3 action on the cohomology space and the Wilson line to be

(
H1

(
X̃,∧2Ṽ

)
⊗ 10

)Z3×Z3

= span
{
H, H̄

}
. (74)

Hence, precisely one pair of Higgs–Higgs conjugate fields survives the Z3 × Z3 quotient.

As required for any realistic model, all color triplets are projected out. The new infor-

mation now is the (p, q) and [s, t] degrees of the Higgs fields. Using the decompositions

eqns. (38) and (58) of H1
(
X̃,∧2Ṽ

)
, we find

(
H1

(
X̃,∧2Ṽ

)
⊗ 10

)Z3×Z3

=
((

1, 0
∣∣∧2Ṽ

)
⊗ 10

)Z3×Z3

=

=
([

0, 1
∣∣0,∧2Ṽ

]
⊗ 10

)Z3×Z3

︸ ︷︷ ︸
=0

⊕
([

1, 0
∣∣0,∧2Ṽ

]
⊗ 10

)Z3×Z3

︸ ︷︷ ︸
=span{H,H̄}

. (75)

The dimensions and basis’ of the two terms on the right side of this expression are deter-

mined by taking the tensor product of eqns. (59) and (72) and keeping the Z3 × Z3 in-

variant part. Note that the subspace forming the non-zero Yukawa couplings in eq. (68),

namely
[
1, 0

∣∣0,∧2Ṽ
]
, indeed projects to the Higgs–Higgs conjugate pair in the low energy

theory.
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5 Yukawa Couplings

To conclude, we analyzed cubic terms in the superpotential of the form

λu,ijQiHuj, λd,ijQiH̄dj, λν,ijLiHνj, λe,ijLiH̄ej (76)

where

• each coefficient λ is determined by an integral of the form of eq. (22),

• Qi,Li for i = 1, 2, 3 are the electroweak doublets of the three quarks/lepton families

respectively,

• uj,dj ,νj ,ej for j = 1, 2, 3 are the electroweak singlets of the three quark/lepton

families respectively,

• H is the Higgs field, and

• H̄ is the Higgs conjugate field.

We found that they are subject to two independent selection rules coming from the two

independent torus fibrations. The first selection rule is that the total (p, q) degree is

(2, 1). Since the (p, q) degrees for the first quark/lepton family, the second and third

quark/lepton families and the Higgs fields are (0, 1), (1, 0) and (1, 0) respectively, it

follows that the only non-vanishing λ coefficients are of the form

λu,1j, λu,j1 λd,1j , λd,j1 λν,1j, λν,j1 λe,1j, λe,j1 (77)

for j = 2, 3. That is, the only non-zero Yukawa terms couple the first family to the

second and third families respectively. The second selection rule imposes independent

constraints. It states that the total [s, t] degree has to be [1, 1]. Of the two possible

[s, t] degrees associated with the Higgs fields, only the [1, 0] subspace satisfies the [s, t]

selection rule. Happily, this is precisely the component that projects to a H-H̄ pair at

low energy. Hence, the conclusion in eq. (77) is unaltered.

Let us analyze, for example, the Yukawa contribution to the up-quark mass matrix.

Assuming that H gets a non-vanishing vacuum expectation value 〈H〉 in its charge

neutral component, this contribution can be written as



0 λu,12〈H〉 λu,13〈H〉

λu,21〈H〉 0 0

λu,31〈H〉 0 0



 (78)

Using independent non-singular transformations on the Qi and ui fields, one can find

bases in which eq. (78) becomes



0 0 0

0 λ〈H〉 0

0 0 λ〈H〉



 (79)
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where λ is an arbitrary, but non-zero, real number. We conclude from the zero diagonal

element that one up-quark is strictly massless4. Furthermore, the two non-zero diagonal

elements imply that the second and third up-quarks will have non-vanishing masses of

O
(
〈H〉

)
. However, the exact value of their masses will depend on the explicit normal-

ization of the kinetic energy terms in the low energy theory. These masses, therefore,

are in general not degenerate. This analysis applies to the down-quarks and the up- and

down-leptons as well. We conclude that, prior to higher order and non-perturbative cor-

rections, one complete generation of quarks/leptons will be massless. The remaining two

generations will have non-vanishing masses on the order of the electroweak symmetry

breaking scale which are, generically, non-degenerate.

The coefficients λ have no interpretation as an intersection number and, therefore,

no reason to be constant over the moduli space. In general, we expect them to depend

on the moduli. Of course, to explicitly compute the quark/lepton masses one needs, in

addition, the Kähler potential, which determines the correct normalization of the fields.
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